1
|
Guo C, Liu Z, He Y, Zhang S, He L, Wang M, Zhang Z. Recent advances of surface plasmon resonance sensors based on metal-organic frameworks. Talanta 2025; 292:128008. [PMID: 40147082 DOI: 10.1016/j.talanta.2025.128008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 03/20/2025] [Accepted: 03/22/2025] [Indexed: 03/29/2025]
Abstract
The surface Plasmon resonance (SPR) sensing technique combines rapid response, high sensitivity, non-destructive operation, high specificity, real-time on-site detection, and continuous monitoring advantages. These distinctive features enable its broad application in detecting disease biomarkers, viruses, foodborne contaminants, and hazardous gases. To enhance SPR sensing signals, metal-organic frameworks (MOFs), which emerge as a category of highly porous-organic frameworks, have demonstrated superior performance as SPR sensitive layers due to their features of large specific surface areas, high porosity, regular skeletons, tunable chemical components and functionality, and promising optoelectronic performances. Varieties of MOFs (such as UiO-66, porphyrin-based MOFs, and zeolitic imidazolate frameworks) and MOFs-based composites with improved plasmon-exciton coupling and charge carrier mobility exhibit amplified SPR responses through the integration of diverse effects. This review systematically summarizes the construction principle of MOFs-based SPR sensors and discusses their advancements for the inspection of biomarkers, drug residuals, viruses, and volatile organic gases. Finally, we also analyze the current challenge and provide the perspective about this field, which can inspire readers to a certain extent.
Collapse
Affiliation(s)
- Chuanpan Guo
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, PR China
| | - Zhenzhen Liu
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, PR China
| | - Yihan He
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, PR China
| | - Shuai Zhang
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, PR China
| | - Linghao He
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, PR China
| | - Minghua Wang
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, PR China.
| | - Zhihong Zhang
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, PR China.
| |
Collapse
|
2
|
Lazaro-Pacheco D, Taday PF, Paldánius PM. Exploring in-vivo infrared spectroscopy for nail-based diabetes screening. BIOMEDICAL OPTICS EXPRESS 2024; 15:1926-1942. [PMID: 38495687 PMCID: PMC10942683 DOI: 10.1364/boe.520102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/20/2024] [Accepted: 02/20/2024] [Indexed: 03/19/2024]
Abstract
Diabetes screening is traditionally complex, inefficient, and reliant on invasive sampling. This study evaluates near-infrared spectroscopy for non-invasive detection of glycated keratin in nails in vivo. Glycation of keratin, prevalent in tissues like nails and skin, is a key indicator of T2DM risk. In this study involving 200 participants (100 with diabetes, 100 without), NIR's efficacy was compared against a point-of-care HbA1c analyzer. Results showed a specificity of 92.9% in diabetes risk assessment. This study highlights the proposed NIR system potential as a simple, reliable tool for early diabetes screening and risk management in various healthcare settings.
Collapse
Affiliation(s)
- Daniela Lazaro-Pacheco
- University of Exeter, Engineering Department, Harrison Building, North Park Rd, Exeter EX44QF, United Kingdom
- Glyconics Limited, The Grosvenor, Basing View, Basingstoke RG214HG, United Kingdom
| | - Philip F Taday
- Glyconics Limited, The Grosvenor, Basing View, Basingstoke RG214HG, United Kingdom
| | - Päivi Maria Paldánius
- Children’s Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, University of Helsinki, Helsinki, Finland
| |
Collapse
|
3
|
Parolo C, Idili A, Heikenfeld J, Plaxco KW. Conformational-switch biosensors as novel tools to support continuous, real-time molecular monitoring in lab-on-a-chip devices. LAB ON A CHIP 2023; 23:1339-1348. [PMID: 36655710 PMCID: PMC10799767 DOI: 10.1039/d2lc00716a] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Recent years have seen continued expansion of the functionality of lab on a chip (LOC) devices. Indeed LOCs now provide scientists and developers with useful and versatile platforms across a myriad of chemical and biological applications. The field still fails, however, to integrate an often important element of bench-top analytics: real-time molecular measurements that can be used to "guide" a chemical response. Here we describe the analytical techniques that could provide LOCs with such real-time molecular monitoring capabilities. It appears to us that, among the approaches that are general (i.e., that are independent of the reactive or optical properties of their targets), sensing strategies relying on binding-induced conformational change of bioreceptors are most likely to succeed in such applications.
Collapse
Affiliation(s)
- Claudio Parolo
- Barcelona Institute for Global Health, Hospital Clínic Universitat de Barcelona, 08036, Barcelona, Spain
| | - Andrea Idili
- Department of Chemical Science and Technologies, University of Rome, Tor Vergata, 00133 Rome, Italy
| | - Jason Heikenfeld
- Novel Devices Laboratory, University of Cincinnati, Cincinnati, Ohio, USA
| | - Kevin W Plaxco
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California, USA.
- Interdepartmental Program in Biomolecular Science and Engineering, University of California Santa Barbara, Santa Barbara, California, USA
| |
Collapse
|
4
|
Algorri JF, Roldán-Varona P, Fernández-Manteca MG, López-Higuera JM, Rodriguez-Cobo L, Cobo-García A. Photonic Microfluidic Technologies for Phytoplankton Research. BIOSENSORS 2022; 12:1024. [PMID: 36421145 PMCID: PMC9688872 DOI: 10.3390/bios12111024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/10/2022] [Accepted: 11/13/2022] [Indexed: 06/16/2023]
Abstract
Phytoplankton is a crucial component for the correct functioning of different ecosystems, climate regulation and carbon reduction. Being at least a quarter of the biomass of the world's vegetation, they produce approximately 50% of atmospheric O2 and remove nearly a third of the anthropogenic carbon released into the atmosphere through photosynthesis. In addition, they support directly or indirectly all the animals of the ocean and freshwater ecosystems, being the base of the food web. The importance of their measurement and identification has increased in the last years, becoming an essential consideration for marine management. The gold standard process used to identify and quantify phytoplankton is manual sample collection and microscopy-based identification, which is a tedious and time-consuming task and requires highly trained professionals. Microfluidic Lab-on-a-Chip technology represents a potential technical solution for environmental monitoring, for example, in situ quantifying toxic phytoplankton. Its main advantages are miniaturisation, portability, reduced reagent/sample consumption and cost reduction. In particular, photonic microfluidic chips that rely on optical sensing have emerged as powerful tools that can be used to identify and analyse phytoplankton with high specificity, sensitivity and throughput. In this review, we focus on recent advances in photonic microfluidic technologies for phytoplankton research. Different optical properties of phytoplankton, fabrication and sensing technologies will be reviewed. To conclude, current challenges and possible future directions will be discussed.
Collapse
Affiliation(s)
- José Francisco Algorri
- Photonics Engineering Group, Universidad de Cantabria, 39005 Santander, Spain
- CIBER de Bioingeniera, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain
| | - Pablo Roldán-Varona
- Photonics Engineering Group, Universidad de Cantabria, 39005 Santander, Spain
- CIBER de Bioingeniera, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain
| | | | - José Miguel López-Higuera
- Photonics Engineering Group, Universidad de Cantabria, 39005 Santander, Spain
- CIBER de Bioingeniera, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain
| | - Luis Rodriguez-Cobo
- Photonics Engineering Group, Universidad de Cantabria, 39005 Santander, Spain
- CIBER de Bioingeniera, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain
| | - Adolfo Cobo-García
- Photonics Engineering Group, Universidad de Cantabria, 39005 Santander, Spain
- CIBER de Bioingeniera, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain
| |
Collapse
|
5
|
Chang YL, Su CJ, Lu LC, Wan D. Aluminum Plasmonic Nanoclusters for Paper-Based Surface-Enhanced Raman Spectroscopy. Anal Chem 2022; 94:16319-16327. [DOI: 10.1021/acs.analchem.2c03014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Yu-Ling Chang
- Institute of Biomedical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30044, Taiwan
| | - Chiao-Jung Su
- Institute of Biomedical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30044, Taiwan
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30044, Taiwan
| | - Li-Chia Lu
- Institute of Biomedical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30044, Taiwan
| | - Dehui Wan
- Institute of Biomedical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30044, Taiwan
| |
Collapse
|
6
|
Li M, Singh R, Wang Y, Marques C, Zhang B, Kumar S. Advances in Novel Nanomaterial-Based Optical Fiber Biosensors-A Review. BIOSENSORS 2022; 12:bios12100843. [PMID: 36290980 PMCID: PMC9599727 DOI: 10.3390/bios12100843] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/30/2022] [Accepted: 10/04/2022] [Indexed: 05/24/2023]
Abstract
This article presents a concise summary of current advancements in novel nanomaterial-based optical fiber biosensors. The beneficial optical and biological properties of nanomaterials, such as nanoparticle size-dependent signal amplification, plasmon resonance, and charge-transfer capabilities, are widely used in biosensing applications. Due to the biocompatibility and bioreceptor combination, the nanomaterials enhance the sensitivity, limit of detection, specificity, and response time of sensing probes, as well as the signal-to-noise ratio of fiber optic biosensing platforms. This has established a practical method for improving the performance of fiber optic biosensors. With the aforementioned outstanding nanomaterial properties, the development of fiber optic biosensors has been efficiently promoted. This paper reviews the application of numerous novel nanomaterials in the field of optical fiber biosensing and provides a brief explanation of the fiber sensing mechanism.
Collapse
Affiliation(s)
- Muyang Li
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252059, China
| | - Ragini Singh
- College of Agronomy, Liaocheng University, Liaocheng 252059, China
| | - Yiran Wang
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252059, China
| | - Carlos Marques
- Department of Physics & I3N, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Bingyuan Zhang
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252059, China
| | - Santosh Kumar
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252059, China
| |
Collapse
|
7
|
Mohanty JN, Sahoo S, Routray SP, Bhuyan R. Does the diverse source of miRNAs affect human health? An approach towards diagnosis and therapeutic management. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
8
|
Nnachi RC, Sui N, Ke B, Luo Z, Bhalla N, He D, Yang Z. Biosensors for rapid detection of bacterial pathogens in water, food and environment. ENVIRONMENT INTERNATIONAL 2022; 166:107357. [PMID: 35777116 DOI: 10.1016/j.envint.2022.107357] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/10/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
Conventional techniques (e.g., culture-based method) for bacterial detection typically require a central laboratory and well-trained technicians, which may take several hours or days. However, recent developments within various disciplines of science and engineering have led to a major paradigm shift in how microorganisms can be detected. The analytical sensors which are widely used for medical applications in the literature are being extended for rapid and on-site monitoring of the bacterial pathogens in food, water and the environment. Especially, within the low-resource settings such as low and middle-income countries, due to the advantages of low cost, rapidness and potential for field-testing, their use is indispensable for sustainable development of the regions. Within this context, this paper discusses analytical methods and biosensors which can be used to ensure food safety, water quality and environmental monitoring. In brief, most of our discussion is focused on various rapid sensors including biosensors and microfluidic chips. The analytical performances such as the sensitivity, specificity and usability of these sensors, as well as a brief comparison with the conventional techniques for bacteria detection, form the core part of the discussion. Furthermore, we provide a holistic viewpoint on how future research should focus on exploring the synergy of different sensing technologies by developing an integrated multiplexed, sensitive and accurate sensors that will enable rapid detection for food safety, water and environmental monitoring.
Collapse
Affiliation(s)
- Raphael Chukwuka Nnachi
- School of Water, Energy and Environment, Cranfield University, Milton Keynes MK43, 0AL, United Kingdom
| | - Ning Sui
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Bowen Ke
- Laboratory of Anesthesiology & Critical Care Medicine, Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan 61004, PR China
| | - Zhenhua Luo
- School of Water, Energy and Environment, Cranfield University, Milton Keynes MK43, 0AL, United Kingdom
| | - Nikhil Bhalla
- Nanotechnology and Integrated Bioengineering Centre (NIBEC), School of Engineering, Ulster University, Shore Road, BT37 0QB Jordanstown, Northern Ireland, United Kingdom; Healthcare Technology Hub, Ulster University, Jordanstown Shore Road, BT37 0QB, Northern Ireland, United Kingdom
| | - Daping He
- School of Science, Wuhan University of Technology, Wuhan 430070, China
| | - Zhugen Yang
- School of Water, Energy and Environment, Cranfield University, Milton Keynes MK43, 0AL, United Kingdom.
| |
Collapse
|
9
|
Jiao F, Cao F, Gao Y, Shuang F, Dong D. A biosensor based on a thermal camera using infrared radiance as the signal probe. Talanta 2022; 246:123453. [DOI: 10.1016/j.talanta.2022.123453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/31/2022] [Accepted: 04/03/2022] [Indexed: 12/13/2022]
|
10
|
Kwon D. Light-based sensors set to revolutionize on-site testing. Nature 2022; 607:834-836. [PMID: 35879437 DOI: 10.1038/d41586-022-02043-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
11
|
Son H, Kim SJ, Hong J, Sung J, Lee B. Design of highly perceptible dual-resonance all-dielectric metasurface colorimetric sensor via deep neural networks. Sci Rep 2022; 12:8512. [PMID: 35595872 PMCID: PMC9122971 DOI: 10.1038/s41598-022-12592-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 04/25/2022] [Indexed: 02/02/2023] Open
Abstract
Colorimetric sensing, which provides effective detection of bio-molecular signals with one's naked eye, is an exceptionally promising sensing technique in that it enables convenient detection and simplification of entire sensing system. Though colorimetric sensors based on all-dielectric nanostructures have potential to exhibit distinct color variations enabling manageable detection due to their trivial intrinsic loss, there is crucial limitation that the sensitivity to environmental changes lags behind their plasmonic counterparts because of relatively small region of near field-analyte interaction of the dielectric Mie-type resonator. To overcome this challenge, we proposed all-dielectric metasurface colorimetric sensor which exhibits dual-resonance in the visible region. Thereafter, we confirmed with simulation that, in the elaborately designed dual-Lorentzian-type spectra, highly perceptible variations of structural color were manifested even in minute change of peripheral refractive index. In addition to verifying physical effectiveness of the superior colorimetric sensing performance appearing in the dual-resonance type sensor, by combining advanced optimization technique utilizing deep neural networks, we attempted to maximize sensing performance while obtaining dramatic improvement of design efficiency. Through well-trained deep neural network that accurately simulates the input target spectrum, we numerically verified that designed colorimetric sensor shows a remarkable sensing resolution distinguishable up to change of refractive index of 0.0086.
Collapse
Affiliation(s)
- Hyunwoo Son
- Inter-University Semiconductor Research Center, School of Electrical and Computer Engineering, Seoul National University, Gwanakro 1, Gwanak-Gu, Seoul, 08826, Republic of Korea
| | - Sun-Je Kim
- Department of Physics, Myongji University, Myongjiro 116, Namdong, Cheoin-Gu, Yongin, Gyeonggi-Do, 17058, Republic of Korea
| | - Jongwoo Hong
- Inter-University Semiconductor Research Center, School of Electrical and Computer Engineering, Seoul National University, Gwanakro 1, Gwanak-Gu, Seoul, 08826, Republic of Korea
| | - Jangwoon Sung
- Inter-University Semiconductor Research Center, School of Electrical and Computer Engineering, Seoul National University, Gwanakro 1, Gwanak-Gu, Seoul, 08826, Republic of Korea
| | - Byoungho Lee
- Inter-University Semiconductor Research Center, School of Electrical and Computer Engineering, Seoul National University, Gwanakro 1, Gwanak-Gu, Seoul, 08826, Republic of Korea.
| |
Collapse
|
12
|
Zhang R, Lu L, Chang Y, Liu M. Gas sensing based on metal-organic frameworks: Concepts, functions, and developments. JOURNAL OF HAZARDOUS MATERIALS 2022; 429:128321. [PMID: 35236036 DOI: 10.1016/j.jhazmat.2022.128321] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/16/2022] [Accepted: 01/19/2022] [Indexed: 05/13/2023]
Abstract
Effective detection of pollutant gases is vital for protection of natural environment and human health. There is an increasing demand for sensing devices that are equipped with high sensitivity, fast response/recovery speed, and remarkable selectivity. Particularly, attention is given to the designability of sensing materials with porous structures. Among diverse kinds of porous materials, metal-organic frameworks (MOFs) exhibit high porosity, high degree of crystallinity and exceptional chemical activity. Their strong host-guest interactions with guest molecules facilitate the application of MOFs in adsorption, catalysis and sensing systems. In particular, the tailorable framework/composition and potential for post-synthetic modification of MOFs endow them with widely promising application in gas sensing devices. In this review, we outlined the fundamental aspects and applications of MOFs for gas sensors, and discussed various techniques of monitoring gases based on MOFs as functional materials. Insights and perspectives for further challenges faced by MOFs are discussed in the end.
Collapse
Affiliation(s)
- Rui Zhang
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian 116024, China
| | - Lihui Lu
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian 116024, China
| | - Yangyang Chang
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian 116024, China
| | - Meng Liu
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
13
|
Kocheril PA, Lenz KD, Mascareñas DDL, Morales-Garcia JE, Anderson AS, Mukundan H. Portable Waveguide-Based Optical Biosensor. BIOSENSORS 2022; 12:195. [PMID: 35448255 PMCID: PMC9025188 DOI: 10.3390/bios12040195] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 05/31/2023]
Abstract
Rapid, on-site diagnostics allow for timely intervention and response for warfighter support, environmental monitoring, and global health needs. Portable optical biosensors are being widely pursued as a means of achieving fieldable biosensing due to the potential speed and accuracy of optical detection. We recently developed the portable engineered analytic sensor with automated sampling (PEGASUS) with the goal of developing a fieldable, generalizable biosensing platform. Here, we detail the development of PEGASUS's sensing hardware and use a test-bed system of identical sensing hardware and software to demonstrate detection of a fluorescent conjugate at 1 nM through biotin-streptavidin chemistry.
Collapse
Affiliation(s)
- Philip A. Kocheril
- Physical Chemistry and Applied Spectroscopy Group, Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA; (P.A.K.); (K.D.L.); (A.S.A.)
| | - Kiersten D. Lenz
- Physical Chemistry and Applied Spectroscopy Group, Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA; (P.A.K.); (K.D.L.); (A.S.A.)
| | - David D. L. Mascareñas
- National Security Education Center, Los Alamos National Laboratory, Los Alamos, NM 87545, USA; (D.D.L.M.); (J.E.M.-G.)
| | - John E. Morales-Garcia
- National Security Education Center, Los Alamos National Laboratory, Los Alamos, NM 87545, USA; (D.D.L.M.); (J.E.M.-G.)
| | - Aaron S. Anderson
- Physical Chemistry and Applied Spectroscopy Group, Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA; (P.A.K.); (K.D.L.); (A.S.A.)
| | - Harshini Mukundan
- Physical Chemistry and Applied Spectroscopy Group, Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA; (P.A.K.); (K.D.L.); (A.S.A.)
| |
Collapse
|
14
|
Penetration of the SARS-CoV-2 Spike Protein across the Blood–Brain Barrier, as Revealed by a Combination of a Human Cell Culture Model System and Optical Biosensing. Biomedicines 2022; 10:biomedicines10010188. [PMID: 35052867 PMCID: PMC8773803 DOI: 10.3390/biomedicines10010188] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/31/2021] [Accepted: 01/12/2022] [Indexed: 01/12/2023] Open
Abstract
Since the outbreak of the global pandemic caused by severe acute respiratory coronavirus 2 (SARS-CoV-2), several clinical aspects of the disease have come into attention. Besides its primary route of infection through the respiratory system, SARS-CoV-2 is known to have neuroinvasive capacity, causing multiple neurological symptoms with increased neuroinflammation and blood–brain barrier (BBB) damage. The viral spike protein disseminates via circulation during infection, and when reaching the brain could possibly cross the BBB, which was demonstrated in mice. Therefore, its medical relevance is of high importance. The aim of this study was to evaluate the barrier penetration of the S1 subunit of spike protein in model systems of human organs highly exposed to the infection. For this purpose, in vitro human BBB and intestinal barrier cell–culture systems were investigated by an optical biosensing method. We found that spike protein crossed the human brain endothelial cell barrier effectively. Additionally, spike protein passage was found in a lower amount for the intestinal barrier cell layer. These observations were corroborated with parallel specific ELISAs. The findings on the BBB model could provide a further basis for studies focusing on the mechanism and consequences of spike protein penetration across the BBB to the brain.
Collapse
|
15
|
Altug H, Oh SH, Maier SA, Homola J. Advances and applications of nanophotonic biosensors. NATURE NANOTECHNOLOGY 2022; 17:5-16. [PMID: 35046571 DOI: 10.1038/s41565-021-01045-5] [Citation(s) in RCA: 261] [Impact Index Per Article: 87.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 11/02/2021] [Indexed: 05/14/2023]
Abstract
Nanophotonic devices, which control light in subwavelength volumes and enhance light-matter interactions, have opened up exciting prospects for biosensing. Numerous nanophotonic biosensors have emerged to address the limitations of the current bioanalytical methods in terms of sensitivity, throughput, ease-of-use and miniaturization. In this Review, we provide an overview of the recent developments of label-free nanophotonic biosensors using evanescent-field-based sensing with plasmon resonances in metals and Mie resonances in dielectrics. We highlight the prospects of achieving an improved sensor performance and added functionalities by leveraging nanostructures and on-chip and optoelectronic integration, as well as microfluidics, biochemistry and data science toolkits. We also discuss open challenges in nanophotonic biosensing, such as reducing the overall cost and handling of complex biological samples, and provide an outlook for future opportunities to improve these technologies and thereby increase their impact in terms of improving health and safety.
Collapse
Affiliation(s)
- Hatice Altug
- Laboratory of Bionanophotonic Systems, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| | - Sang-Hyun Oh
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, USA.
| | - Stefan A Maier
- Chair in Hybrid Nanosystems, Nanoinstitut Munich, Faculty of Physics, Ludwig-Maximilians Universität München, Munich, Germany.
- Department of Physics, Imperial College London, London, UK.
| | - Jiří Homola
- Institute of Photonics and Electronics of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
16
|
Soler M, Lechuga LM. Biochemistry strategies for label-free optical sensor biofunctionalization: advances towards real applicability. Anal Bioanal Chem 2021; 414:5071-5085. [PMID: 34735605 PMCID: PMC9242939 DOI: 10.1007/s00216-021-03751-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/18/2021] [Accepted: 10/22/2021] [Indexed: 12/01/2022]
Abstract
Label-free biosensors, and especially those based on optical transducers like plasmonic or silicon photonic systems, have positioned themselves as potential alternatives for rapid and highly sensitive clinical diagnostics, on-site environmental monitoring, and for quality control in foods or other industrial applications, among others. However, most of the biosensor technology has not yet been transferred and implemented in commercial products. Among the several causes behind that, a major challenge is the lack of standardized protocols for sensor biofunctionalization. In this review, we summarize the most common methodologies for sensor surface chemical modification and bioreceptor immobilization, discussing their advantages and limitations in terms of analytical sensitivity and selectivity, reproducibility, and versatility. Special focus is placed on the suggestions of innovative strategies towards antifouling and biomimetic functional coatings to boost the applicability and reliability of optical biosensors in clinics and biomedicine. Finally, a brief overview of research directions in the area of device integration, automation, and multiplexing will give a glimpse of the future perspectives for label-free optical biosensors.
Collapse
Affiliation(s)
- Maria Soler
- Nanobiosensors and Bioanalytical Applications Group (NanoB2A), Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, BIST, and CIBER-BBN, Bellaterra, 08193, Barcelona, Spain.
| | - Laura M Lechuga
- Nanobiosensors and Bioanalytical Applications Group (NanoB2A), Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, BIST, and CIBER-BBN, Bellaterra, 08193, Barcelona, Spain
| |
Collapse
|
17
|
García-Rupérez J. Integrated nanophotonics - guiding molecular analysis out from the lab. Expert Rev Mol Diagn 2021; 21:995-997. [PMID: 34310261 DOI: 10.1080/14737159.2021.1960507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Jaime García-Rupérez
- Nanophotonics Technology Center, Universitat Politècnica De València, Valencia, Spain
| |
Collapse
|
18
|
Kitadai H, Yuan M, Ma Y, Ling X. Graphene-Based Environmental Sensors: Electrical and Optical Devices. Molecules 2021; 26:molecules26082165. [PMID: 33918751 PMCID: PMC8070241 DOI: 10.3390/molecules26082165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/29/2021] [Accepted: 04/08/2021] [Indexed: 11/16/2022] Open
Abstract
In this review paper, we summarized the recent progress of using graphene as a sensing platform for environmental applications. Especially, we highlight the electrical and optical sensing devices developed based on graphene and its derivatives. We discussed the role of graphene in these devices, the sensing mechanisms, and the advantages and disadvantages of specific devices. The approaches to improve the sensitivity and selectivity are also discussed.
Collapse
Affiliation(s)
- Hikari Kitadai
- Department of Chemistry, Boston University, Boston, MA 02215, USA; (H.K.); (M.Y.)
| | - Meng Yuan
- Department of Chemistry, Boston University, Boston, MA 02215, USA; (H.K.); (M.Y.)
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China;
| | - Yongqiang Ma
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China;
| | - Xi Ling
- Department of Chemistry, Boston University, Boston, MA 02215, USA; (H.K.); (M.Y.)
- Division of Materials Science and Engineering, Boston University, Boston, MA 02215, USA
- The Photonics Center, Boston University, Boston, MA 02215, USA
- Correspondence:
| |
Collapse
|
19
|
Hossain M, Aïssa B, Samara A, Mansour SA, Broussillou CA, Benito VB. Hydrophilic Antireflection and Antidust Silica Coatings. ACS OMEGA 2021; 6:5276-5286. [PMID: 33681568 PMCID: PMC7931203 DOI: 10.1021/acsomega.0c05405] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 01/20/2021] [Indexed: 05/31/2023]
Abstract
We report on the optical and morphological properties of silica thin layers deposited by reactive RF magnetron sputtering of a SiO2 target under different oxygen to total flow ratios [r(O2) = O2/Ar, ranging from 0 to 25%]. The refractive index (n), extinction coefficient, total transmission, and total reflectance were systematically investigated, while field-emission scanning electron microscopy, atomic force microscopy, and three-dimensional (3D) average roughness data construction measurements were carried out to probe the surface morphology. Contact angle measurements were performed to assess the hydrophilicity of our coatings as a function of the oxygen content. We performed a thorough numerical analysis using 1D-solar cell capacitance simulator (SCAPS-1D) based on the measured experimental optical properties to simulate the photovoltaic (PV) device performance, where a clear improvement in the photoconversion efficiency from 25 to 26.5% was clearly observed with respect to r(O2). Finally, a computational analysis using OptiLayer confirmed a minimum total reflectance of less than 0.4% by coupling a silica layer with n = 1.415 with another high-refractive-index (i.e., >2) oxide layer. These promising results pave the way for optimization of silica thin films as efficient antireflection and self-cleaning coatings to display better PV performance in a variety of locations including a desert environment.
Collapse
Affiliation(s)
- Mohammad
Istiaque Hossain
- Qatar Environment and Energy
Research Institute (QEERI), Hamad Bin Khalifa
University (HBKU), Qatar Foundation, Education City, Doha 34110, Qatar
| | - Brahim Aïssa
- Qatar Environment and Energy
Research Institute (QEERI), Hamad Bin Khalifa
University (HBKU), Qatar Foundation, Education City, Doha 34110, Qatar
| | - Ayman Samara
- Qatar Environment and Energy
Research Institute (QEERI), Hamad Bin Khalifa
University (HBKU), Qatar Foundation, Education City, Doha 34110, Qatar
| | - Said A. Mansour
- Qatar Environment and Energy
Research Institute (QEERI), Hamad Bin Khalifa
University (HBKU), Qatar Foundation, Education City, Doha 34110, Qatar
| | - Cédric A. Broussillou
- Qatar Environment and Energy
Research Institute (QEERI), Hamad Bin Khalifa
University (HBKU), Qatar Foundation, Education City, Doha 34110, Qatar
| | - Veronica Bermudez Benito
- Qatar Environment and Energy
Research Institute (QEERI), Hamad Bin Khalifa
University (HBKU), Qatar Foundation, Education City, Doha 34110, Qatar
| |
Collapse
|
20
|
Frutiger A, Gatterdam K, Blickenstorfer Y, Reichmuth AM, Fattinger C, Vörös J. Ultra Stable Molecular Sensors by Submicron Referencing and Why They Should Be Interrogated by Optical Diffraction-Part II. Experimental Demonstration. SENSORS (BASEL, SWITZERLAND) 2020; 21:E9. [PMID: 33375003 PMCID: PMC7792590 DOI: 10.3390/s21010009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 12/12/2022]
Abstract
Label-free optical biosensors are an invaluable tool for molecular interaction analysis. Over the past 30 years, refractometric biosensors and, in particular, surface plasmon resonance have matured to the de facto standard of this field despite a significant cross reactivity to environmental and experimental noise sources. In this paper, we demonstrate that sensors that apply the spatial affinity lock-in principle (part I) and perform readout by diffraction overcome the drawbacks of established refractometric biosensors. We show this with a direct comparison of the cover refractive index jump sensitivity as well as the surface mass resolution of an unstabilized diffractometric biosensor with a state-of-the-art Biacore 8k. A combined refractometric diffractometric biosensor demonstrates that a refractometric sensor requires a much higher measurement precision than the diffractometric to achieve the same resolution. In a conceptual and quantitative discussion, we elucidate the physical reasons behind and define the figure of merit of diffractometric biosensors. Because low-precision unstabilized diffractometric devices achieve the same resolution as bulky stabilized refractometric sensors, we believe that label-free optical sensors might soon move beyond the drug discovery lab as miniaturized, mass-produced environmental/medical sensors. In fact, combined with the right surface chemistry and recognition element, they might even bring the senses of smell/taste to our smart devices.
Collapse
Affiliation(s)
- Andreas Frutiger
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, University and ETH Zürich, 8092 Zürich, Switzerland; (A.F.); (Y.B.); (A.M.R.)
| | - Karl Gatterdam
- Institute of Structural Biology, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany;
| | - Yves Blickenstorfer
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, University and ETH Zürich, 8092 Zürich, Switzerland; (A.F.); (Y.B.); (A.M.R.)
| | - Andreas Michael Reichmuth
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, University and ETH Zürich, 8092 Zürich, Switzerland; (A.F.); (Y.B.); (A.M.R.)
| | - Christof Fattinger
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, 4070 Basel, Switzerland
| | - János Vörös
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, University and ETH Zürich, 8092 Zürich, Switzerland; (A.F.); (Y.B.); (A.M.R.)
| |
Collapse
|
21
|
Jain A, Sarsaiya S, Chen J, Wu Q, Lu Y, Shi J. Changes in global Orchidaceae disease geographical research trends: recent incidences, distributions, treatment, and challenges. Bioengineered 2020; 12:13-29. [PMID: 33283604 PMCID: PMC8806279 DOI: 10.1080/21655979.2020.1853447] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Many of the Orchidaceae species are threatened due to environmental changes and over exploitation for full fill global demands. The main objective of this article was critically analyzed the recent global distribution of Orchidaceae diversity, its disease patterns, microbial disease identification, detection, along with prevention and challenges. Critical analysis findings revealed that Orchidaceae growth and developments were affected indirectly or directly as a result of complex microbial ecological interactions. Studies have identified many species associated with orchids, some are pathogenic and cause symptoms such as soft rot, brown rot, brown spot, black rot, wilt, foliar, root rot, anthracnose, leaf spot. The review was provided the comprehensive data to evaluate the identification and detection of microbial disease, which is the most important challenge for sustainable cultivation of Orchidaceae diversity. Furthermore, this article is the foremost of disease triggering microbes, orchid relations, and assimilates various consequences that both promoted the considerate and facts of such disease multipart, and will permit the development of best operative disease management practices.
Collapse
Affiliation(s)
- Archana Jain
- Key Laboratory of Basic Pharmacology and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University , Zunyi, Guizhou, China
| | - Surendra Sarsaiya
- Key Laboratory of Basic Pharmacology and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University , Zunyi, Guizhou, China.,Bioresource Institute for Healthy Utilization, Zunyi Medical University , Zunyi, Guizhou, China.,Laboratory, CES Analytical and Research Services India Private Limited (Formerly Known as Creative Enviro Services) , Bhopal, Madhya Pradesh, India
| | - Jishuang Chen
- Bioresource Institute for Healthy Utilization, Zunyi Medical University , Zunyi, Guizhou, China
| | - Qin Wu
- Key Laboratory of Basic Pharmacology and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University , Zunyi, Guizhou, China
| | - Yuanfu Lu
- Key Laboratory of Basic Pharmacology and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University , Zunyi, Guizhou, China
| | - Jingshan Shi
- Key Laboratory of Basic Pharmacology and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University , Zunyi, Guizhou, China
| |
Collapse
|
22
|
Leuermann J, Stamenkovic V, Ramirez-Priego P, Sánchez-Postigo A, Fernández-Gavela A, Chapman CA, Bailey RC, Lechuga LM, Perez-Inestrosa E, Collado D, Halir R, Molina-Fernández Í. Coherent silicon photonic interferometric biosensor with an inexpensive laser source for sensitive label-free immunoassays. OPTICS LETTERS 2020; 45:6595-6598. [PMID: 33325848 DOI: 10.1364/ol.411635] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 11/09/2020] [Indexed: 06/12/2023]
Abstract
Over the past two decades, integrated photonic sensors have been of major interest to the optical biosensor community due to their capability to detect low concentrations of molecules with label-free operation. Among these, interferometric sensors can be read-out with simple, fixed-wavelength laser sources and offer excellent detection limits but can suffer from sensitivity fading when not tuned to their quadrature point. Recently, coherently detected sensors were demonstrated as an attractive alternative to overcome this limitation. Here we show, for the first time, to the best of our knowledge, that this coherent scheme provides sub-nanogram per milliliter limits of detection in C-reactive protein immunoassays and that quasi-balanced optical arm lengths enable operation with inexpensive Fabry-Perot-type lasers sources at telecom wavelengths.
Collapse
|
23
|
Recent progress in micro/nano biosensors for shellfish toxin detection. Biosens Bioelectron 2020; 176:112899. [PMID: 33358058 DOI: 10.1016/j.bios.2020.112899] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 11/16/2020] [Accepted: 12/05/2020] [Indexed: 12/21/2022]
Abstract
Shellfish toxins, as one kind of marine toxin, have attracted worldwide attention due to their severe threat to food safety and human health. Therefore, it is highly essential and urgent to develop a low-cost and convenient method to detect these toxins. With the rapid advance in microfabrication processes, micro/nano biosensors provide novel approaches to address this issue. In addition to their features of low cost, portability, easy operation, high efficiency and high bioactivity, micro/nano biosensors have great potential to realize on-the-spot, rapid detection of shellfish toxins. This review focuses on the most recent advances in the development of micro/nano biosensors for shellfish toxin detection. These biosensors are mainly classified into five categories according to their transducer detection principles, which include optical devices, electrochemical sensors, electrochemiluminescence, field-effect transistors, and acoustic devices. Sensor strategies, toxin analytes, biosensitive elements, coupling methods and field detection performance are highlighted to discuss the applications of shellfish toxin detection. With advances in sensor technology, biomaterials, microfabrication and miniaturized electronics, micro/nano biosensors applied to in-field fast detection of shellfish toxins are expected to play a critical role in food safety, environmental monitoring, and foreign trade in the foreseeable future. Finally, the current challenges and future development trends of micro/nano biosensors for shellfish toxin detection are discussed.
Collapse
|
24
|
Singh R, Kumar S, Liu FZ, Shuang C, Zhang B, Jha R, Kaushik BK. Etched multicore fiber sensor using copper oxide and gold nanoparticles decorated graphene oxide structure for cancer cells detection. Biosens Bioelectron 2020; 168:112557. [DOI: 10.1016/j.bios.2020.112557] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/13/2020] [Accepted: 08/24/2020] [Indexed: 02/07/2023]
|
25
|
Soler M, Estevez MC, Cardenosa-Rubio M, Astua A, Lechuga LM. How Nanophotonic Label-Free Biosensors Can Contribute to Rapid and Massive Diagnostics of Respiratory Virus Infections: COVID-19 Case. ACS Sens 2020; 5:2663-2678. [PMID: 32786383 PMCID: PMC7447078 DOI: 10.1021/acssensors.0c01180] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/07/2020] [Indexed: 12/23/2022]
Abstract
The global sanitary crisis caused by the emergence of the respiratory virus SARS-CoV-2 and the COVID-19 outbreak has revealed the urgent need for rapid, accurate, and affordable diagnostic tests to broadly and massively monitor the population in order to properly manage and control the spread of the pandemic. Current diagnostic techniques essentially rely on polymerase chain reaction (PCR) tests, which provide the required sensitivity and specificity. However, its relatively long time-to-result, including sample transport to a specialized laboratory, delays massive detection. Rapid lateral flow tests (both antigen and serological tests) are a remarkable alternative for rapid point-of-care diagnostics, but they exhibit critical limitations as they do not always achieve the required sensitivity for reliable diagnostics and surveillance. Next-generation diagnostic tools capable of overcoming all the above limitations are in demand, and optical biosensors are an excellent option to surpass such critical issues. Label-free nanophotonic biosensors offer high sensitivity and operational robustness with an enormous potential for integration in compact autonomous devices to be delivered out-of-the-lab at the point-of-care (POC). Taking the current COVID-19 pandemic as a critical case scenario, we provide an overview of the diagnostic techniques for respiratory viruses and analyze how nanophotonic biosensors can contribute to improving such diagnostics. We review the ongoing published work using this biosensor technology for intact virus detection, nucleic acid detection or serological tests, and the key factors for bringing nanophotonic POC biosensors to accurate and effective COVID-19 diagnosis on the short term.
Collapse
Affiliation(s)
| | | | - Maria Cardenosa-Rubio
- Nanobiosensors and Bioanalytical Applications (NanoB2A),
Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, BIST and
CIBER-BBN, 08193 Bellaterra, Barcelona, Spain
| | - Alejandro Astua
- Nanobiosensors and Bioanalytical Applications (NanoB2A),
Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, BIST and
CIBER-BBN, 08193 Bellaterra, Barcelona, Spain
| | - Laura M. Lechuga
- Nanobiosensors and Bioanalytical Applications (NanoB2A),
Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, BIST and
CIBER-BBN, 08193 Bellaterra, Barcelona, Spain
| |
Collapse
|
26
|
Boroujerdi R, Abdelkader A, Paul R. State of the Art in Alcohol Sensing with 2D Materials. NANO-MICRO LETTERS 2020; 12:33. [PMID: 34138082 PMCID: PMC7770777 DOI: 10.1007/s40820-019-0363-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 12/05/2019] [Indexed: 05/17/2023]
Abstract
Since the discovery of graphene, the star among new materials, there has been a surge of attention focused on the monatomic and monomolecular sheets which can be obtained by exfoliation of layered compounds. Such materials are known as two-dimensional (2D) materials and offer enormous versatility and potential. The ultimate single atom, or molecule, thickness of the 2D materials sheets provides the highest surface to weight ratio of all the nanomaterials, which opens the door to the design of more sensitive and reliable chemical sensors. The variety of properties and the possibility of tuning the chemical and surface properties of the 2D materials increase their potential as selective sensors, targeting chemical species that were previously difficult to detect. The planar structure and the mechanical flexibility of the sheets allow new sensor designs and put 2D materials at the forefront of all the candidates for wearable applications. When developing sensors for alcohol, the response time is an essential factor for many industrial and forensic applications, particularly when it comes to hand-held devices. Here, we review recent developments in the applications of 2D materials in sensing alcohols along with a study on parameters that affect the sensing capabilities. The review also discusses the strategies used to develop the sensor along with their mechanisms of sensing and provides a critique of the current limitations of 2D materials-based alcohol sensors and an outlook for the future research required to overcome the challenges.
Collapse
Affiliation(s)
- Ramin Boroujerdi
- Faculty of Science and Technology, Bournemouth University, Talbot Campus, Fern Barrow, Poole, BH12 5BB, UK.
| | - Amor Abdelkader
- Faculty of Science and Technology, Bournemouth University, Talbot Campus, Fern Barrow, Poole, BH12 5BB, UK.
- Department of Engineering, University of Cambridge, Cambridge, CB3 0FS, UK.
| | - Richard Paul
- Faculty of Science and Technology, Bournemouth University, Talbot Campus, Fern Barrow, Poole, BH12 5BB, UK.
| |
Collapse
|
27
|
Hong Q, Luo J, Wen C, Zhang J, Zhu Z, Qin S, Yuan X. Hybrid metal-graphene plasmonic sensor for multi-spectral sensing in both near- and mid-infrared ranges. OPTICS EXPRESS 2019; 27:35914-35924. [PMID: 31878756 DOI: 10.1364/oe.27.035914] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 11/14/2019] [Indexed: 05/21/2023]
Abstract
This paper proposes a hybrid metal-graphene plasmonic sensor which can simultaneously perform multi-spectral sensing in near- and mid-IR ranges. The proposed sensor consists of an array of asymmetric gold nano-antennas integrated with an unpatterned graphene sheet. The gold antennas support sharp Fano-resonances for near-IR sensing while the excitation of graphene plasmonic resonances extend the sensing spectra to the mid-IR range. Such a broadband spectral range goes far beyond previously demonstrated multi-spectral plasmonic sensors. The sensitivity and figure of merit (FOM) as well as their dependence on the thickness of the sensing layer and Fermi energy of graphene are studied systematically. This new type of sensor combines the advantages of conventional metallic plasmonic sensors and graphene plasmonic sensors and may open a new door for high-performance, multi-functional plasmonic sensing.
Collapse
|
28
|
Knoerzer M, Szydzik C, Ren G, Huertas CS, Palmer S, Tang P, Nguyen TG, Bui L, Boes A, Mitchell A. Optical frequency comb based system for photonic refractive index sensor interrogation. OPTICS EXPRESS 2019; 27:21532-21545. [PMID: 31510229 DOI: 10.1364/oe.27.021532] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 06/28/2019] [Indexed: 06/10/2023]
Abstract
In this contribution, we demonstrate how an optical frequency comb can be used to enhance the functionality of an integrated photonic biosensor platform. We show that if an optical frequency comb is used to sample the spectral response of a Mach-Zehnder interferometer and if the line spacing is arranged to sample the periodic response at 120° intervals, then it is possible to combine these samples into a single measurement of the interferometer phase. This phase measurement approach is accurate, independent of the bias of the interferometer and robust against intensity fluctuations that are common to each of the comb lines. We demonstrate this approach with a simple silicon photonic interferometric refractive index sensor and show that the benefits of our approach can be obtained without degrading the lower limit of detection of 3.70×10-7 RIU.
Collapse
|
29
|
Designing the National Network for Automatic Monitoring of Water Quality Parameters in Greece. WATER 2019. [DOI: 10.3390/w11061310] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Water quality indices that describe the status of water are commonly used in freshwater vulnerability assessment. The design of river water quality monitoring programs has always been a complex process and despite the numerous methodologies employed by experts, there is still no generally accepted, holistic and practical approach to support all the phases and elements related. Here, a Geographical Information System (GIS)-based multicriteria decision analysis approach was adopted so as to contribute to the design of the national network for monitoring of water quality parameters in Greece that will additionally fulfill the urgent needs for an operational, real-time monitoring of the water resources. During this cost-effective and easily applied procedure the high priority areas were defined by taking into consideration the most important conditioning factors that impose pressures on rivers and the special conditions that increase the need for monitoring locally. The areas of increased need for automatic monitoring of water quality parameters are highlighted and the output map is validated. The sites in high priority areas are proposed for the installation of automatic monitoring stations and the installation and maintenance budget is presented. Finally, the proposed network is contrasted with the current automatic monitoring network in Greece.
Collapse
|
30
|
Molina-Fernández Í, Leuermann J, Ortega-Moñux A, Wangüemert-Pérez JG, Halir R. Fundamental limit of detection of photonic biosensors with coherent phase read-out. OPTICS EXPRESS 2019; 27:12616-12629. [PMID: 31052800 DOI: 10.1364/oe.27.012616] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 03/08/2019] [Indexed: 06/09/2023]
Abstract
Photonic biosensors offer label-free detection of biomolecules for applications ranging from clinical diagnosis to food quality monitoring. Both sensors based on Mach-Zehnder interferometers and ring resonators are widely used, but are usually read-out using different schemes, making a direct comparison of their fundamental limit of detection challenging. A coherent detection scheme, adapted from optical communication systems, has been recently shown to achieve excellent detection limits, using a simple fixed-wavelength source. Here we present, for the first time, a theoretical model to determine the fundamental limit of detection of such a coherent read-out system, for both interferometric and resonant sensors. Based on this analysis, we provide guidelines for sensor optimization in the presence of optical losses and show that interferometric sensors are preferable over resonant structures when the sensor size is not limited by the available sample volume.
Collapse
|
31
|
Recent development of fiber-optic chemical sensors and biosensors: Mechanisms, materials, micro/nano-fabrications and applications. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.08.001] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
32
|
Watanabe K, Nomoto M, Nakamura F, Hachuda S, Sakata A, Watanabe T, Goshima Y, Baba T. Label-free and spectral-analysis-free detection of neuropsychiatric disease biomarkers using an ion-sensitive GaInAsP nanolaser biosensor. Biosens Bioelectron 2018; 117:161-167. [DOI: 10.1016/j.bios.2018.05.059] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 05/29/2018] [Accepted: 05/31/2018] [Indexed: 12/26/2022]
|
33
|
Multipolar passive cloaking by nonradiating anapole excitation. Sci Rep 2018; 8:12514. [PMID: 30131515 PMCID: PMC6104082 DOI: 10.1038/s41598-018-30935-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 08/03/2018] [Indexed: 11/18/2022] Open
Abstract
In this paper, we demonstrate the relation between cloaking effect and its nonradiating state by considering the destructive multipolar interaction between near-field scattering by bare object and surrounding coating located in its proximity. This cloaking effect is underpinned by anapole mode excitation and it occurs as destructive interference between the electric dipole moment, generated by a bare object (here a central metallic scatterer) and the toroidal moment, formed inside the cloak (a surrounding cluster of dielectric cylinders). Numerical results show how a cloaking effect based on the formation of the anapole mode can lead to an overall nonradiating metamolecule with all-dielectric materials in the coating region.
Collapse
|
34
|
Chocarro-Ruiz B, Herranz S, Fernández Gavela A, Sanchís J, Farré M, Marco MP, Lechuga LM. Interferometric nanoimmunosensor for label-free and real-time monitoring of Irgarol 1051 in seawater. Biosens Bioelectron 2018; 117:47-52. [PMID: 29885579 DOI: 10.1016/j.bios.2018.05.044] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/14/2018] [Accepted: 05/24/2018] [Indexed: 12/19/2022]
Abstract
An interferometric nanobiosensor for the specific and label-free detection of the pollutant Irgarol 1051 directly in seawater has been settled. Due to the low molecular weight of Irgarol pollutant and its expected low concentration in seawater, the sensor is based on a competitive inhibition immunoassay. Parameters as surface biofunctionalization, concentration of the selective antibody and regeneration conditions have been carefully evaluated. The optimized immunosensor shows a limit of detection of only 3 ng/L, well below the 16 ng/L set by the EU as the maximum allowable concentration in seawater. It can properly operate during 30 assay-regeneration cycles using the same sensor biosurface and with a time-to-result of only 20 min for each cycle. Moreover, the interferometric nanosensor is able to directly detect low concentrations of Irgarol 1051 in seawater without requiring sample pre-treatments and without showing any background signal due to sea matrix effect.
Collapse
Affiliation(s)
- Blanca Chocarro-Ruiz
- Nanobiosensors and Bioanalytical Applications Group, Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, BIST and CIBER-BBN, Campus UAB, Ed-ICN2, 08193 Bellaterra, Barcelona, Spain
| | - Sonia Herranz
- Nanobiosensors and Bioanalytical Applications Group, Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, BIST and CIBER-BBN, Campus UAB, Ed-ICN2, 08193 Bellaterra, Barcelona, Spain
| | - Adrián Fernández Gavela
- Nanobiosensors and Bioanalytical Applications Group, Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, BIST and CIBER-BBN, Campus UAB, Ed-ICN2, 08193 Bellaterra, Barcelona, Spain
| | - Josep Sanchís
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), C/ Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Marinella Farré
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), C/ Jordi Girona 18-26, 08034 Barcelona, Spain
| | - M Pilar Marco
- Nanobiotechnology for Diagnostics Group (Nb4D), IQAC-CSIC and CIBER-BBN, C/ Jordi Girona, 18-26, 08034 Barcelona, Spain
| | - Laura M Lechuga
- Nanobiosensors and Bioanalytical Applications Group, Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, BIST and CIBER-BBN, Campus UAB, Ed-ICN2, 08193 Bellaterra, Barcelona, Spain.
| |
Collapse
|
35
|
Mariani S, Strambini LM, Barillaro G. Electrical Double Layer-Induced Ion Surface Accumulation for Ultrasensitive Refractive Index Sensing with Nanostructured Porous Silicon Interferometers. ACS Sens 2018; 3:595-605. [PMID: 29299931 DOI: 10.1021/acssensors.7b00650] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Herein, we provide the first experimental evidence on the use of electrical double layer (EDL)-induced accumulation of charged ions (using both Na+ and K+ ions in water as the model) onto a negatively charged nanostructured surface (e.g., thermally growth SiO2)-Ion Surface Accumulation, ISA-as a means of improving performance of nanostructured porous silicon (PSi) interferometers for optical refractometric applications. Nanostructured PSi interferometers are very promising optical platforms for refractive index sensing due to PSi huge specific surface (hundreds of m2 per gram) and low preparation cost (less than $0.01 per 8 in. silicon wafer), though they have shown poor resolution ( R) and detection limit (DL) (on the order of 10-4-10-5 RIU) compared to other plasmonic and photonic platforms ( R and DL on the order of 10-7-10-8 RIU). This can be ascribed to both low sensitivity and high noise floor of PSi interferometers when bulk refractive index variation of the solution infiltrating the nanopores either approaches or is below 10-4 RIU. Electrical double layer-induced ion surface accumulation (EDL-ISA) on oxidized PSi interferometers allows the interferometer output signal (spectral interferogram) to be impressively amplified at bulk refractive index variation below 10-4 RIU, increasing, in turn, sensitivity up to 2 orders of magnitude and allowing reliable measurement of refractive index variations to be carried out with both DL and R of 10-7 RIU. This represents a 250-fold-improvement (at least) with respect to the state-of-the-art literature on PSi refractometers and pushes PSi interferometer performance to that of state-of-the-art ultrasensitive photonics/plasmonics refractive index platforms.
Collapse
Affiliation(s)
- Stefano Mariani
- Dipartimento di Ingegneria dell’Informazione, Università di Pisa, via G. Caruso 16, 56122 Pisa, Italy
| | - Lucanos Marsilio Strambini
- Istituto di Elettronica e di Ingegneria dell’Informazione e delle Telecomunicazioni, Consiglio Nazionale delle Ricerche, via G. Caruso 16, 56122 Pisa, Italy
| | - Giuseppe Barillaro
- Dipartimento di Ingegneria dell’Informazione, Università di Pisa, via G. Caruso 16, 56122 Pisa, Italy
- Istituto di Elettronica e di Ingegneria dell’Informazione e delle Telecomunicazioni, Consiglio Nazionale delle Ricerche, via G. Caruso 16, 56122 Pisa, Italy
| |
Collapse
|
36
|
Yesilkoy F, Terborg RA, Pello J, Belushkin AA, Jahani Y, Pruneri V, Altug H. Phase-sensitive plasmonic biosensor using a portable and large field-of-view interferometric microarray imager. LIGHT, SCIENCE & APPLICATIONS 2018; 7:17152. [PMID: 30839537 PMCID: PMC6060062 DOI: 10.1038/lsa.2017.152] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 10/26/2017] [Accepted: 10/27/2017] [Indexed: 05/03/2023]
Abstract
Nanophotonics, and more specifically plasmonics, provides a rich toolbox for biomolecular sensing, since the engineered metasurfaces can enhance light-matter interactions to unprecedented levels. So far, biosensing associated with high-quality factor plasmonic resonances has almost exclusively relied on detection of spectral shifts and their associated intensity changes. However, the phase response of the plasmonic resonances have rarely been exploited, mainly because this requires a more sophisticated optical arrangement. Here we present a new phase-sensitive platform for high-throughput and label-free biosensing enhanced by plasmonics. It employs specifically designed Au nanohole arrays and a large field-of-view interferometric lens-free imaging reader operating in a collinear optical path configuration. This unique combination allows the detection of atomically thin (angstrom-level) topographical features over large areas, enabling simultaneous reading of thousands of microarray elements. As the plasmonic chips are fabricated using scalable techniques and the imaging reader is built with low-cost off-the-shelf consumer electronic and optical components, the proposed platform is ideal for point-of-care ultrasensitive biomarker detection from small sample volumes. Our research opens new horizons for on-site disease diagnostics and remote health monitoring.
Collapse
Affiliation(s)
- Filiz Yesilkoy
- Institute of BioEngineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Roland A Terborg
- ICFO—Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
| | - Josselin Pello
- ICFO—Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
| | - Alexander A Belushkin
- Institute of BioEngineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Yasaman Jahani
- Institute of BioEngineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Valerio Pruneri
- ICFO—Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
- ICREA—Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain
| | - Hatice Altug
- Institute of BioEngineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
37
|
Szydzik C, Gavela AF, Herranz S, Roccisano J, Knoerzer M, Thurgood P, Khoshmanesh K, Mitchell A, Lechuga LM. An automated optofluidic biosensor platform combining interferometric sensors and injection moulded microfluidics. LAB ON A CHIP 2017; 17:2793-2804. [PMID: 28682395 DOI: 10.1039/c7lc00524e] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A primary limitation preventing practical implementation of photonic biosensors within point-of-care platforms is their integration with fluidic automation subsystems. For most diagnostic applications, photonic biosensors require complex fluid handling protocols; this is especially prominent in the case of competitive immunoassays, commonly used for detection of low-concentration, low-molecular weight biomarkers. For this reason, complex automated microfluidic systems are needed to realise the full point-of-care potential of photonic biosensors. To fulfil this requirement, we propose an on-chip valve-based microfluidic automation module, capable of automating such complex fluid handling. This module is realised through application of a PDMS injection moulding fabrication technique, recently described in our previous work, which enables practical fabrication of normally closed pneumatically actuated elastomeric valves. In this work, these valves are configured to achieve multiplexed reagent addressing for an on-chip diaphragm pump, providing the sample and reagent processing capabilities required for automation of cyclic competitive immunoassays. Application of this technique simplifies fabrication and introduces the potential for mass production, bringing point-of-care integration of complex automated microfluidics into the realm of practicality. This module is integrated with a highly sensitive, label-free bimodal waveguide photonic biosensor, and is demonstrated in the context of a proof-of-concept biosensing assay, detecting the low-molecular weight antibiotic tetracycline.
Collapse
Affiliation(s)
- C Szydzik
- School of Engineering, RMIT University, Melbourne, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|