1
|
Mazhar MW, Ishtiaq M, Maqbool M, Mahmoud EA, Almana FA, Elansary HO. Exploring the potential of plant astrobiology: adapting flora for extra-terrestrial habitats: a review. Biol Futur 2025; 76:1-18. [PMID: 39302628 DOI: 10.1007/s42977-024-00245-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 09/04/2024] [Indexed: 09/22/2024]
Abstract
In recent years, the realm of astrobiology has expanded beyond the search for microbial life to encompass the intriguing possibility of plant life beyond our planet. Plant astrobiology delves into the adaptations and mechanisms that might allow Earth's flora to flourish in the harsh conditions of outer space and other celestial bodies. This review aims to shed light on the captivating field of plant astrobiology, its implications, and the challenges and opportunities it presents. Plant astrobiology marries the disciplines of botany and astrobiology, challenging us to envision the growth of plants beyond Earth's atmosphere. Researchers in this field are not only exploring the potential for plant life on other planets and moons but also investigating how plants could be harnessed to sustain life during extended space missions. The review discusses how plants could adapt to environments characterized by low gravity, high radiation, extreme temperature fluctuations, and different atmospheric compositions. It highlights the physiological changes necessary for plants to survive and reproduce in these conditions. A pivotal concept is the integration of plants into closed-loop life support systems, where plants would play a crucial role in recycling waste products, generating oxygen, and producing food. The review delves into ongoing research involving genetic modifications and synthetic biology techniques to enhance plants' resilience in space environments. It addresses ethical considerations associated with altering organisms for off-planet habitation. Additionally, the review contemplates the psychological and emotional benefits of having greenery in enclosed, isolated space habitats. The review concludes that by employing advanced research methodologies, the field of plant astrobiology can greatly enhance the viability and sustainability of future space missions, highlighting the essential role of plants in sustaining long-term human presence beyond Earth.
Collapse
Affiliation(s)
- Muhammad Waqas Mazhar
- Department of Botany, Mirpur University of Science and Technology, Mirpur, 10250, Pakistan
| | - Muhammad Ishtiaq
- Department of Botany, Mirpur University of Science and Technology, Mirpur, 10250, Pakistan.
- Department of Botany, Climate Change Research Centre, Herbarium and Biodiversity Conservation, Azad Jammu and Kashmir University of Bhimber (AJKUoB), Bhimber, 10040, Pakistan.
| | - Mehwish Maqbool
- Department of Botany, Mirpur University of Science and Technology, Mirpur, 10250, Pakistan
| | - Eman A Mahmoud
- Department of Food Industries, Faculty of Agriculture, Damietta University, Damietta, 34511, Egypt
| | - Fahed A Almana
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, 11451, Riyadh, Saudi Arabia
| | - Hosam O Elansary
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, 11451, Riyadh, Saudi Arabia
| |
Collapse
|
2
|
Pachiyappan JK, Patel M, Roychowdhury P, Nizam I, Seenivasan R, Sudhakar S, Jeyaprakash MR, Karri VVSR, Venkatesan J, Mehta P, Kothandan S, Thirugnanasambandham I, Kuppusamy G. A review of the physiological effects of microgravity and innovative formulation for space travelers. J Pharmacokinet Pharmacodyn 2024; 51:605-620. [PMID: 39162918 DOI: 10.1007/s10928-024-09938-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/12/2024] [Indexed: 08/21/2024]
Abstract
During the space travel mission, astronauts' physiological and psychological behavior will alter, and they will start consuming terrestrial drug products. However, factors such as microgravity, radiation exposure, temperature, humidity, strong vibrations, space debris, and other issues encountered, the drug product undergo instability This instability combined with physiological changes will affect the shelf life and diminish the pharmacokinetic and pharmacodynamic profile of the drug product. Consequently, the physicochemical changes will produce a toxic degradation product and a lesser potency dosage form which may result in reduced or no therapeutic action, so the astronaut consumes an additional dose to remain healthy. On long-duration missions like Mars, the drug product cannot be replaced, and the astronaut may relay on the available medications. Sometimes, radiation-induced impurities in the drug product will cause severe problems for the astronaut. So, this review article highlights the current state of various space-related factors affecting the drug product and provides a comprehensive summary of the physiological changes which primarly focus on absorption, distribution, metabolism, and excretion (ADME). Along with that, we insist some of the strategies like novel formulations, space medicine manufacturing from plants, and 3D printed medicine for astronauts in longer-duration missions. Such developments are anticipated to significantly contribute to new developments with applications in both human space exploration and on terrestrial healthcare.
Collapse
Affiliation(s)
- Jey Kumar Pachiyappan
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, 643001, Tamil Nadu, India
| | - Manali Patel
- Department of Pharmaceutical Analysis, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, 382481, India
| | - Parikshit Roychowdhury
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, 643001, Tamil Nadu, India
| | - Imrankhan Nizam
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, 643001, Tamil Nadu, India
| | - Raagul Seenivasan
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, 643001, Tamil Nadu, India
| | - Swathi Sudhakar
- Department of Applied Mechanics and Biomedical Engineering, Indian Institute of Technology Madras, Chennai, 600036, India
| | - M R Jeyaprakash
- Department of Pharmaceutical Analysis, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, The Nilgiris, 643001, Tamil Nadu, India
| | | | - Jayakumar Venkatesan
- CEO, Harpy Aerospace International Private Limited, Chennai, 600056, Tamil Nadu, India
| | - Priti Mehta
- Department of Pharmaceutical Analysis, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, 382481, India.
| | - Sudhakar Kothandan
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, 643001, Tamil Nadu, India
| | - Indhumathi Thirugnanasambandham
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, 643001, Tamil Nadu, India
| | - Gowthamarajan Kuppusamy
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, 643001, Tamil Nadu, India.
| |
Collapse
|
3
|
Gonzalez Viejo C, Harris N, Tongson E, Fuentes S. Exploring consumer acceptability of leafy greens in earth and space immersive environments using biometrics. NPJ Sci Food 2024; 8:81. [PMID: 39384790 PMCID: PMC11464502 DOI: 10.1038/s41538-024-00314-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 09/24/2024] [Indexed: 10/11/2024] Open
Abstract
Novel research on food perception is required for long-term space exploration. There is limited research on food/beverage sensory analysis in space and space-simulated conditions, with many studies presenting biases in sensory and statistical methods. This study used univariate and multivariate analysis on data from pick-and-eat leafy greens to assess self-reported and biometric consumer sensory analysis in simulated microgravity using reclining chairs and space-immersive environments. According to ANOVA (p < 0.05), there were significant differences between interaction room × position for head movements; besides, there were non-significant differences in the interaction samples × environment. On the other hand, there were significant differences in the sample×position interaction for all liking attributes. Results from multivariate analysis showed effects on self-reported, physiological, and emotional responses of samples in space-related positions and environments related to sensory perception changes. Non-invasive biometrics could offer a powerful tool for developing digital twins to assess genetically modified plants and plant-based food/beverages for long-term space exploration.
Collapse
Affiliation(s)
- Claudia Gonzalez Viejo
- Digital Agriculture, Food and Wine Research Group. Faculty of Science, The University of Melbourne, VIC, 3010, Australia.
- Centre of Excellence in Plants for Space. Australian Research Council, University of Adelaide (Lead University), Glen Osmond Rd, Adelaide, SA, Australia.
| | - Natalie Harris
- Digital Agriculture, Food and Wine Research Group. Faculty of Science, The University of Melbourne, VIC, 3010, Australia
| | - Eden Tongson
- Digital Agriculture, Food and Wine Research Group. Faculty of Science, The University of Melbourne, VIC, 3010, Australia
| | - Sigfredo Fuentes
- Digital Agriculture, Food and Wine Research Group. Faculty of Science, The University of Melbourne, VIC, 3010, Australia
- Centre of Excellence in Plants for Space. Australian Research Council, University of Adelaide (Lead University), Glen Osmond Rd, Adelaide, SA, Australia
- Tecnologico de Monterrey, School of Engineering and Science, Ave. Eugenio Garza Sada 2501, Monterrey, NL, 64849, México
| |
Collapse
|
4
|
Saburov V, Kazakova E, Moiseev A, Kazakov E, Podlutskii M, Babina D, Korol M, Gorbatova I, Volkova P. Combining clinostating and proton irradiation for modeling the space environment: a case study with a Chernobyl accession of Arabidopsis thaliana. Int J Radiat Biol 2024; 100:1696-1710. [PMID: 39353463 DOI: 10.1080/09553002.2024.2409665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/14/2024] [Accepted: 09/20/2024] [Indexed: 10/04/2024]
Abstract
PURPOSE The study of mechanisms of plant responses to extreme conditions, particularly, microgravity and ionizing radiation, is crucial for space exploration. Modern space biology of plants focuses on increasing plant tolerance to harsh conditions of space environment. Given the limited access to the International Space Station, we designed and assembled the 3D clinostat for mimicking microgravity, which, in combination with proton irradiation, allows simulating space conditions. As a case study for testing the device, we studied the effect of clinostating on Arabidopsis thaliana accession originating from the Chernobyl exclusion zone. MATERIALS AND METHODS Using the combined clinostating and proton irradiation, we simulated the conditions of long-term space flight for Arabidopsis thaliana plants of the Chernobyl accession - progeny of chronically irradiated plants, grown from field-collected (Masa-0) and laboratory-cultivated (Masa-0-1) seeds, and for wild-type Col-8. The clinostating and irradiation of plants were also carried out separately. Plant responses were studied as photosynthetic and phenotypic endpoints of seedlings. RESULTS AND CONCLUSIONS Parameters of chlorophyll fluorescence estimated immediately after exposure showed that Masa-0-1 plants were resistant to the simulated space conditions, while Masa-0 demonstrated modulation of non-photochemical fluorescence quenching. Proton irradiation generally inhibited photosynthesis of Masa-0, Masa-0-1, and Col-8 seedlings. The combined effect of irradiation and clinostating modulated the photosynthetic activity of Col-8 seedlings. The leaf area of seedlings did not change after exposure to simulated conditions. The 3D clinostat model and software are published along with this article for researchers interested in the field of space biology.
Collapse
Affiliation(s)
- Vyacheslav Saburov
- Laboratory for the Development and Operation of Irradiation Equipment, A. Tsyb Medical Radiological Research Center - Branch of the National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, Obninsk, Russia
| | - Elizaveta Kazakova
- Laboratory of Cellular and Molecular Radiobiology, Russian Institute of Radiology and Agroecology of National Research Centre «Kurchatov Institute», Obninsk, Russia
| | - Alexander Moiseev
- Laboratory for the Development and Operation of Irradiation Equipment, A. Tsyb Medical Radiological Research Center - Branch of the National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, Obninsk, Russia
| | - Evgeniy Kazakov
- Laboratory for the Development and Operation of Irradiation Equipment, A. Tsyb Medical Radiological Research Center - Branch of the National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, Obninsk, Russia
| | - Mikhail Podlutskii
- Laboratory of Cellular and Molecular Radiobiology, Russian Institute of Radiology and Agroecology of National Research Centre «Kurchatov Institute», Obninsk, Russia
| | - Darya Babina
- Laboratory of Cellular and Molecular Radiobiology, Russian Institute of Radiology and Agroecology of National Research Centre «Kurchatov Institute», Obninsk, Russia
| | - Marina Korol
- Laboratory of Cellular and Molecular Radiobiology, Russian Institute of Radiology and Agroecology of National Research Centre «Kurchatov Institute», Obninsk, Russia
| | - Irina Gorbatova
- Laboratory of Cellular and Molecular Radiobiology, Russian Institute of Radiology and Agroecology of National Research Centre «Kurchatov Institute», Obninsk, Russia
| | | |
Collapse
|
5
|
Rutter LA, MacKay MJ, Cope H, Szewczyk NJ, Kim J, Overbey E, Tierney BT, Muratani M, Lamm B, Bezdan D, Paul AM, Schmidt MA, Church GM, Giacomello S, Mason CE. Protective alleles and precision healthcare in crewed spaceflight. Nat Commun 2024; 15:6158. [PMID: 39039045 PMCID: PMC11263583 DOI: 10.1038/s41467-024-49423-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 06/05/2024] [Indexed: 07/24/2024] Open
Abstract
Common and rare alleles are now being annotated across millions of human genomes, and omics technologies are increasingly being used to develop health and treatment recommendations. However, these alleles have not yet been systematically characterized relative to aerospace medicine. Here, we review published alleles naturally found in human cohorts that have a likely protective effect, which is linked to decreased cancer risk and improved bone, muscular, and cardiovascular health. Although some technical and ethical challenges remain, research into these protective mechanisms could translate into improved nutrition, exercise, and health recommendations for crew members during deep space missions.
Collapse
Affiliation(s)
- Lindsay A Rutter
- Transborder Medical Research Center, University of Tsukuba, Ibaraki, 305-8575, Japan
- Department of Genome Biology, Institute of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Matthew J MacKay
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 10065, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10021, USA
- The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Henry Cope
- School of Medicine, University of Nottingham, Nottingham, DE22 3DT, UK
| | - Nathaniel J Szewczyk
- School of Medicine, University of Nottingham, Nottingham, DE22 3DT, UK
- Ohio Musculoskeletal and Neurological Institute (OMNI), Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, USA
| | - JangKeun Kim
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 10065, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Eliah Overbey
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 10065, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Braden T Tierney
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 10065, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Masafumi Muratani
- Transborder Medical Research Center, University of Tsukuba, Ibaraki, 305-8575, Japan
- Department of Genome Biology, Institute of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Ben Lamm
- Colossal Biosciences, 1401 Lavaca St, Unit #155 Austin, Austin, TX, 78701, USA
| | - Daniela Bezdan
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
- NGS Competence Center Tübingen (NCCT), University of Tübingen, Tübingen, Germany
- Yuri GmbH, Meckenbeuren, Germany
| | - Amber M Paul
- Embry-Riddle Aeronautical University, Department of Human Factors and Behavioral Neurobiology, Daytona Beach, FL, 32114, USA
| | - Michael A Schmidt
- Sovaris Aerospace, Boulder, CO, 80302, USA.
- Advanced Pattern Analysis & Human Performance Group, Boulder, CO, 80302, USA.
| | - George M Church
- GC Therapeutics Inc, Cambridge, MA, 02139, USA.
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA.
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02115, USA.
| | | | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 10065, USA.
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10021, USA.
- The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, 10065, USA.
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02115, USA.
- The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, 10065, USA.
| |
Collapse
|
6
|
Morgan MF, Diab J, Gilliham M, Mortimer JC. Green horizons: how plant synthetic biology can enable space exploration and drive on Earth sustainability. Curr Opin Biotechnol 2024; 86:103069. [PMID: 38341984 DOI: 10.1016/j.copbio.2024.103069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/27/2023] [Accepted: 01/09/2024] [Indexed: 02/13/2024]
Abstract
As humanity looks towards expanding activity from low Earth orbit to the Moon and beyond, resource use efficiency and self-sustainability will be critical to ensuring success in the long term. Furthermore, solutions developed for the stringent requirements of space will be equally valuable in meeting sustainability goals here on Earth. Advances in synthetic biology allow us to harness the complex metabolism of life to produce the materials we need in situ. Translating those lessons learned from microbial systems to more carbon-efficient photosynthetic organisms is an area of growing interest. Plants can be engineered to sustainably meet a range of needs, from fuels to materials and medicines.
Collapse
Affiliation(s)
- Matthew Fox Morgan
- School of Agriculture, Food and Wine & Waite Research Institute, University of Adelaide, Glen Osmond, SA 5064, Australia; ARC Centre of Excellent in Plants for Space, Australia
| | - Jonathan Diab
- School of Agriculture, Food and Wine & Waite Research Institute, University of Adelaide, Glen Osmond, SA 5064, Australia; ARC Centre of Excellent in Plants for Space, Australia
| | - Matthew Gilliham
- School of Agriculture, Food and Wine & Waite Research Institute, University of Adelaide, Glen Osmond, SA 5064, Australia; ARC Centre of Excellent in Plants for Space, Australia.
| | - Jenny C Mortimer
- School of Agriculture, Food and Wine & Waite Research Institute, University of Adelaide, Glen Osmond, SA 5064, Australia; ARC Centre of Excellent in Plants for Space, Australia; Joint BioEnergy Institute, CA, USA.
| |
Collapse
|
7
|
Gonzalez Viejo C, Harris N, Fuentes S. Assessment of changes in sensory perception, biometrics and emotional response for spaceexploration by simulating microgravity positions. Food Res Int 2024; 175:113827. [PMID: 38129014 DOI: 10.1016/j.foodres.2023.113827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 11/28/2023] [Accepted: 12/02/2023] [Indexed: 12/23/2023]
Abstract
Long-term space exploration endeavors, encompassing journeys from the Earth to the Moon by 2030 and subsequent voyages from the Moon to Mars by 2040, necessitate the utilization of plant-based materials not solely for sustenance and refreshments but also the production of pharmaceuticals and repair compounds, such as plastics, among others. Nevertheless, the vital aspects of research in this domain pertain to the nutritional value and sensory perception associated with plant-based food. Prior investigations have shown altered sensory perception in space, manifested as diminished olfactory sensations and heightened taste perception (saltiness and sweetness). Nonetheless, studies concerning changes in aroma, basic tastes, and mouthfeel have been limited due to the logistical challenges associated with conducting experiments in the unique environment of space. To address this limitation, the present study employed sensory trials and biometrics from video using simulated microgravity chairs to simulate alterations in sensory perception akin to those encountered in space conditions. The findings of this study align with previous reports of changes in aroma and taste perception and contribute to the understanding of changes in the mouthfeel, heart rate, blood pressure, and emotional response that could be experienced in space environments. These experimental endeavors are critical to facilitate the advancement and development of novel plants and food materials tailored to the requirements of long-term space exploration.
Collapse
Affiliation(s)
- Claudia Gonzalez Viejo
- Digital Agriculture, Food and Wine Research Group, Faculty of Science, The University of Melbourne, VIC 3010, Australia; ARC Centre of Excellence for Plants in Space, The University of Melbourne, Australia
| | - Natalie Harris
- Digital Agriculture, Food and Wine Research Group, Faculty of Science, The University of Melbourne, VIC 3010, Australia
| | - Sigfredo Fuentes
- Digital Agriculture, Food and Wine Research Group, Faculty of Science, The University of Melbourne, VIC 3010, Australia; ARC Centre of Excellence for Plants in Space, The University of Melbourne, Australia; Tecnologico de Monterrey, School of Engineering and Science, Ave. Eugenio Garza Sada 2501, Monterrey, N.L. 64849, Mexico.
| |
Collapse
|
8
|
Aniskina TS, Sudarikov KA, Levinskikh MA, Gulevich AA, Baranova EN. Bread Wheat in Space Flight: Is There a Difference in Kernel Quality? PLANTS (BASEL, SWITZERLAND) 2023; 13:73. [PMID: 38202381 PMCID: PMC10780891 DOI: 10.3390/plants13010073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/16/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024]
Abstract
Planning long-term space flights necessarily includes issues of providing food for the crew. One of the areas of research is the development of technologies for independent production of food by the crew. Extensive research on lettuce has confirmed that the "space production" of lettuce is not inferior to that on Earth, even in the absence of gravity, but the same deep understanding of the quality of grain crops has not yet been achieved. Therefore, the goal of our work is to establish whether the conditions for growing wheat in outer space without gravity affect the weight and basic parameters of the grain, and whether this leads to increased asymmetry of the kernel and distortion of the starch composition. The objects of the study were wheat (Triticum aestivum L.) kernels of the Super Dwarf cultivar. Of which, 100 kernels matured in outer space conditions in the Lada growth chamber on the International Space Station (ISS), and 85 kernels of the control wheat grown in a similar growth chamber under terrestrial conditions. It has been established that kernels from ISS have significant differences to a smaller extent in weight, area, length, and width of the kernel. However, the kernels under both conditions were predominantly large (the average weight of a kernel in space is 0.0362 g, and in terrestrial conditions-0.0376 g). The hypothesis that the level of fluctuating asymmetry will increase in outer space was not confirmed; significant differences between the options were not proven. In general, the kernels are fairly even (coefficients of variation for the main parameters of the kernel are within 6-12%) and with a low or very low level of asymmetry. The length of starch granules of type A in filled and puny kernels is significantly greater in kernels from ISS than in the control, and in terms of the width of starch granules B and roundness indices, both experimental variants are the same. It can be assumed that the baking qualities of earthly kernels will be slightly higher, since the ratio of type B starch granules to type A is 5-8% higher than on the ISS. Also, the width of the aleurone layer cells in mature kernels was significantly inferior to the result obtained on Earth. The work proposes a new method for establishing the asymmetry of kernels without a traumatic effect (in early works, it was supposed to study asymmetry in transverse sections of the kernels). Perhaps this will make it possible to further develop a computer scanning program that will determine the level of asymmetry of the wheat fruit.
Collapse
Affiliation(s)
- Tatiana S. Aniskina
- N.V. Tsitsin Main Botanical Garden of Russian Academy of Sciences, 127276 Moscow, Russia
| | - Kirill A. Sudarikov
- Russian State Agrarian University—Moscow K.A. Timiryazev Agricultural Academy (RSAU-MTAA), Timiryazevskaya 49, 127434 Moscow, Russia;
- Institute of Development Strategy, 101000 Moscow, Russia
| | | | - Alexander A. Gulevich
- All-Russia Research Institute of Agricultural Biotechnology, Timiryzevskaya 42, 127550 Moscow, Russia;
| | - Ekaterina N. Baranova
- N.V. Tsitsin Main Botanical Garden of Russian Academy of Sciences, 127276 Moscow, Russia
- Russian State Agrarian University—Moscow K.A. Timiryazev Agricultural Academy (RSAU-MTAA), Timiryazevskaya 49, 127434 Moscow, Russia;
- All-Russia Research Institute of Agricultural Biotechnology, Timiryzevskaya 42, 127550 Moscow, Russia;
| |
Collapse
|
9
|
De Micco V, Amitrano C, Mastroleo F, Aronne G, Battistelli A, Carnero-Diaz E, De Pascale S, Detrell G, Dussap CG, Ganigué R, Jakobsen ØM, Poulet L, Van Houdt R, Verseux C, Vlaeminck SE, Willaert R, Leys N. Plant and microbial science and technology as cornerstones to Bioregenerative Life Support Systems in space. NPJ Microgravity 2023; 9:69. [PMID: 37620398 PMCID: PMC10449850 DOI: 10.1038/s41526-023-00317-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 08/02/2023] [Indexed: 08/26/2023] Open
Abstract
Long-term human space exploration missions require environmental control and closed Life Support Systems (LSS) capable of producing and recycling resources, thus fulfilling all the essential metabolic needs for human survival in harsh space environments, both during travel and on orbital/planetary stations. This will become increasingly necessary as missions reach farther away from Earth, thereby limiting the technical and economic feasibility of resupplying resources from Earth. Further incorporation of biological elements into state-of-the-art (mostly abiotic) LSS, leading to bioregenerative LSS (BLSS), is needed for additional resource recovery, food production, and waste treatment solutions, and to enable more self-sustainable missions to the Moon and Mars. There is a whole suite of functions crucial to sustain human presence in Low Earth Orbit (LEO) and successful settlement on Moon or Mars such as environmental control, air regeneration, waste management, water supply, food production, cabin/habitat pressurization, radiation protection, energy supply, and means for transportation, communication, and recreation. In this paper, we focus on air, water and food production, and waste management, and address some aspects of radiation protection and recreation. We briefly discuss existing knowledge, highlight open gaps, and propose possible future experiments in the short-, medium-, and long-term to achieve the targets of crewed space exploration also leading to possible benefits on Earth.
Collapse
Affiliation(s)
- Veronica De Micco
- Department of Agricultural Sciences, University of Naples Federico II, via Università 100, 80055, Portici (NA), Italy.
| | - Chiara Amitrano
- Department of Agricultural Sciences, University of Naples Federico II, via Università 100, 80055, Portici (NA), Italy
| | - Felice Mastroleo
- Microbiology Unit, Nuclear Medical Applications, Belgian Nuclear Research Centre (SCK CEN), 2400, Mol, Belgium
| | - Giovanna Aronne
- Department of Agricultural Sciences, University of Naples Federico II, via Università 100, 80055, Portici (NA), Italy
| | - Alberto Battistelli
- Istituto di Ricerca sugli Ecosistemi Terrestri Consiglio Nazionale delle Ricerche Viale Marconi 2, 05010, Porano (TR), Italy
| | - Eugenie Carnero-Diaz
- Institute of Systematic, Evolution, Biodiversity, Sorbonne University, National Museum of Natural History, CNRS, EPHE, UA, 45, rue Buffon CP50, 75005, Paris, France
| | - Stefania De Pascale
- Department of Agricultural Sciences, University of Naples Federico II, via Università 100, 80055, Portici (NA), Italy
| | - Gisela Detrell
- Institute of Space Systems, University of Stuttgart, Pfaffenwaldring 29, 70569, Stuttgart, Germany
| | - Claude-Gilles Dussap
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, F-63000, Clermont-Ferrand, France
| | - Ramon Ganigué
- Center for Microbial Ecology and Technology, Ghent University, Coupure Links 653, 9000, Gent, Belgium
| | - Øyvind Mejdell Jakobsen
- Centre for Interdisciplinary Research in Space (CIRiS), NTNU Social Research, Trondheim, Norway
| | - Lucie Poulet
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, F-63000, Clermont-Ferrand, France
| | - Rob Van Houdt
- Microbiology Unit, Nuclear Medical Applications, Belgian Nuclear Research Centre (SCK CEN), 2400, Mol, Belgium
| | - Cyprien Verseux
- Center of Applied Space Technology and Microgravity (ZARM), University of Bremen, 28359, Bremen, Germany
| | - Siegfried E Vlaeminck
- Research Group of Sustainable Energy, Air and Water Technology, University of Antwerp, 2020, Antwerpen, Belgium
| | - Ronnie Willaert
- Research Groups NAMI and NANO, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Natalie Leys
- Microbiology Unit, Nuclear Medical Applications, Belgian Nuclear Research Centre (SCK CEN), 2400, Mol, Belgium
| |
Collapse
|
10
|
Nakashima J, Pattathil S, Avci U, Chin S, Alan Sparks J, Hahn MG, Gilroy S, Blancaflor EB. Glycome profiling and immunohistochemistry uncover changes in cell walls of Arabidopsis thaliana roots during spaceflight. NPJ Microgravity 2023; 9:68. [PMID: 37608048 PMCID: PMC10444889 DOI: 10.1038/s41526-023-00312-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 07/26/2023] [Indexed: 08/24/2023] Open
Abstract
A large and diverse library of glycan-directed monoclonal antibodies (mAbs) was used to determine if plant cell walls are modified by low-gravity conditions encountered during spaceflight. This method called glycome profiling (glycomics) revealed global differences in non-cellulosic cell wall epitopes in Arabidopsis thaliana root extracts recovered from RNA purification columns between seedlings grown on the International Space Station-based Vegetable Production System and paired ground (1-g) controls. Immunohistochemistry on 11-day-old seedling primary root sections showed that ten of twenty-two mAbs that exhibited spaceflight-induced increases in binding through glycomics, labeled space-grown roots more intensely than those from the ground. The ten mAbs recognized xyloglucan, xylan, and arabinogalactan epitopes. Notably, three xylem-enriched unsubstituted xylan backbone epitopes were more intensely labeled in space-grown roots than in ground-grown roots, suggesting that the spaceflight environment accelerated root secondary cell wall formation. This study highlights the feasibility of glycomics for high-throughput evaluation of cell wall glycans using only root high alkaline extracts from RNA purification columns, and subsequent validation of these results by immunohistochemistry. This approach will benefit plant space biological studies because it extends the analyses possible from the limited amounts of samples returned from spaceflight and help uncover microgravity-induced tissue-specific changes in plant cell walls.
Collapse
Affiliation(s)
- Jin Nakashima
- Analytical Instrumentation Facility, North Carolina State University, 2410 Campus Shore Drive, Raleigh, NC, 27606, USA
| | - Sivakumar Pattathil
- Mascoma LLC (Lallemand Inc.), 67 Etna Road, Lebanon, NH, 03766, USA
- The University of Georgia, Complex Carbohydrate Research Center, 315 Riverbend Road, Athens, GA, 30602, USA
| | - Utku Avci
- The University of Georgia, Complex Carbohydrate Research Center, 315 Riverbend Road, Athens, GA, 30602, USA
- Department of Agricultural Biotechnology, Faculty of Agriculture, Eskisehir Osmangazi University, 26160, Eskisehir, Turkey
| | - Sabrina Chin
- Department of Botany, 430 Lincoln Drive, University of Wisconsin, Madison, WI, 53706, USA
| | - J Alan Sparks
- Noble Research Institute LLC, 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Michael G Hahn
- Department of Agricultural Biotechnology, Faculty of Agriculture, Eskisehir Osmangazi University, 26160, Eskisehir, Turkey
| | - Simon Gilroy
- Department of Botany, 430 Lincoln Drive, University of Wisconsin, Madison, WI, 53706, USA
| | - Elison B Blancaflor
- Utilization & Life Sciences Office, Exploration Research and Technology Programs, NASA John F. Kennedy Space Center, Merritt Island, FL, 32899, USA.
| |
Collapse
|
11
|
Molina-Montenegro MA, Escobedo VM, Atala C. Inoculation with extreme endophytes improves performance and nutritional quality in crop species grown under exoplanetary conditions. FRONTIERS IN PLANT SCIENCE 2023; 14:1139704. [PMID: 37426965 PMCID: PMC10325655 DOI: 10.3389/fpls.2023.1139704] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 04/28/2023] [Indexed: 07/11/2023]
Abstract
Introduction Technological advances have made possible long space travels and even exoplanetary colonies in the future. Nevertheless, the success of these activities depends on our ability to produce edible plants in stressful conditions such as high radiation, extreme temperatures and low oxygen levels. Since beneficial microorganisms, such as fungal endophytes from extreme environments, have helped agriculture cope with those difficulties, endophytic fungi may be a putative tool to ensure plant growth under exoplanetary conditions. Additionally, growing crops in polyculture has been shown to increase productivity and spatial efficiency, which is essential given the likely space restrictions in such conditions. Methods We evaluated the effect of the inoculation with a mix of two fungal endophytes from the Atacama Desert on performance (survival and biomass) and nutritional quality of three crop species (lettuce, chard and spinach) grown under exoplanetary conditions. In addition, we measured the amount of antioxidants (flavonoids and phenolics) as possible mechanisms to cope with such abiotic conditions. The exoplanetary conditions were; high UV radiation, low temperature, low water availability, and low oxygen levels. These crops were put in growing chambers in monoculture, dual culture and polyculture (the three species in the same pot) for 30 days. Results and Discussion Our results show that inoculation with extreme endophytes improved survival by ca. 15 - 35% and biomass by ca. 30 - 35% in all crop species. The most evident increase was when grown in polyculture, except for survival in spinach, where inoculated plants had higher survival only in dual culture. Nutritional quality and the amount of the antioxidant compounds antioxidants increased in all crop species when inoculated with the endophytes. Overall, fungal endophytes isolated from extreme environments such as the Atacama Desert, the driest desert in the world, could be a key biotechnological tool for future space agriculture, helping plants cope with environmental stress. Additionally, inoculated plants should be grown in polyculture to increase crop turnover and space-use efficiency. Lastly, these results provide useful insights to face the future challenges of space-farming.
Collapse
Affiliation(s)
- Marco A. Molina-Montenegro
- Centre for Integrative Ecology, Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
- Centro de Investigación en Estudios Avanzados del Maule (CIEAM), Universidad Católica del Maule, Talca, Chile
| | - Victor M. Escobedo
- Centre for Integrative Ecology, Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
- Instituto de Investigación Interdisciplinaria (I), Universidad de Talca, Talca, Chile
| | - Cristian Atala
- Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| |
Collapse
|
12
|
Jurga A, Ratkiewicz K, Wdowikowska A, Reda M, Janicka M, Chohura P, Janiak K. Urine and grey water based liquid fertilizer - Production and the response of plants. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 331:117248. [PMID: 36652879 DOI: 10.1016/j.jenvman.2023.117248] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/21/2022] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
Plant cultivation is a key aspect of future long-distance space missions, and the creation of an efficient food system will not be possible without it. The production of fertilizer in space is based on the recovery of water and nutrients from wastewater, such as urine and grey water. In this study, the fertilizer production process was conducted in an aerobic, activated sludge reactor, where nitrification and the process of carbon removal take place. Treated streams have three potential factors that could affect the plants growth in a hydroponic system (anionic surfactants, nutrients deficiencies, high salinity). The effect of these factors was examined for two hydroponic configurations. Their influence on lettuce yield, quality parameters and stress response were investigated and compared to the control cultivation. The results showed that the main cause of a decrease (up to 24%) in the yield productivity of plants grown on nitrified urine and grey water is oxidative stress originated from a deficiency of elements, not from used anionic surfactant. Enrichment with nutrients resulted in the restoration of proper protein synthesis and an increase in the activity of antioxidant enzymes, which was positively reflected in the qualitative and quantitative parameters of the enriched cultivation (fresh leaves mass equal to 103% of the control). Results also show that Sodium Methyl Cocoyl Taurate (SMCT) surfactant itself after biological treatment used in plant cultivation has no negative effects reflected in lettuce yield or quality.
Collapse
Affiliation(s)
- Anna Jurga
- Faculty of Environmental Engineering, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wroclaw, Poland.
| | - Krzysztof Ratkiewicz
- Faculty of Environmental Engineering, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wroclaw, Poland
| | - Anna Wdowikowska
- Department of Plant Molecular Physiology, Faculty of Biological Science, University of Wrocław, Kanonia 6/8, 50-328, Wroclaw, Poland
| | - Małgorzata Reda
- Department of Plant Molecular Physiology, Faculty of Biological Science, University of Wrocław, Kanonia 6/8, 50-328, Wroclaw, Poland
| | - Małgorzata Janicka
- Department of Plant Molecular Physiology, Faculty of Biological Science, University of Wrocław, Kanonia 6/8, 50-328, Wroclaw, Poland
| | - Piotr Chohura
- Faculty of Life Science and Technology, Wroclaw University of Environmental and Life Sciences, St. C. K. Norwida 27, 50-375, Wroclaw, Poland
| | - Kamil Janiak
- Faculty of Environmental Engineering, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wroclaw, Poland; Wroclaw Municipal Water and Sewage Company, Na Grobli 19, 50-421, Wroclaw, Poland
| |
Collapse
|
13
|
Negrão S, Julkowska MM. Editorial overview: Plant biotechnology. Curr Opin Biotechnol 2022; 75:102733. [PMID: 35562266 DOI: 10.1016/j.copbio.2022.102733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Sónia Negrão
- School of Biology and Environmental Science, University College Dublin, Belfield Dublin 4, Ireland.
| | | |
Collapse
|
14
|
Watkins P, Hughes J, Gamage TV, Knoerzer K, Ferlazzo ML, Banati RB. Long term food stability for extended space missions: a review. LIFE SCIENCES IN SPACE RESEARCH 2022; 32:79-95. [PMID: 35065765 DOI: 10.1016/j.lssr.2021.12.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 12/12/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
At present, human spaceflight is confined to low Earth orbit but, in future, will again go to the Moon and, beyond, to Mars. The provision of food during these extended missions will need to meet the special nutritional and psychosocial needs of the crew. Terrestrially grown and processed food products, currently provided for consumption by astronauts/cosmonauts, have not yet been systematically optimised to maintain their nutritional integrity and reach the shelf-life necessary for extended space voyages. Notably, space food provisions for Mars exploration will be subject to extended exposure to galactic cosmic radiation and solar particle events, the impact of which is not fully understood. In this review, we provide a summary of the existing knowledge about current space food products, the impact of radiation and storage on food composition, the identification of radiolytic biomarkers and identify gaps in our knowledge that are specific in relation to the effect of the cosmic radiation on food in space.
Collapse
Affiliation(s)
- Peter Watkins
- CSIRO, Agriculture and Food, 671 Sneydes Road, Werribee, Vic 3030, Australia; CSIRO, Space Technology Future Science Platform, 41 Boggo Road, Dutton Park, Qld 4102, Australia.
| | - Joanne Hughes
- CSIRO, Agriculture and Food, 39 Kessels Road, Coopers Plains, Qld 4108, Australia; CSIRO, Space Technology Future Science Platform, 41 Boggo Road, Dutton Park, Qld 4102, Australia
| | - Thambaramala V Gamage
- CSIRO, Agriculture and Food, 671 Sneydes Road, Werribee, Vic 3030, Australia; CSIRO, Space Technology Future Science Platform, 41 Boggo Road, Dutton Park, Qld 4102, Australia
| | - Kai Knoerzer
- CSIRO, Agriculture and Food, 671 Sneydes Road, Werribee, Vic 3030, Australia; CSIRO, Space Technology Future Science Platform, 41 Boggo Road, Dutton Park, Qld 4102, Australia
| | - Mélanie L Ferlazzo
- ANSTO, Human Health (Space Health Program), New Illawarra Road, Lucas Heights, NSW 2234, Australia; Inserm, U1296 unit, Radiation: Defense, Health and Environment, Centre Léon-Bérard, 28, rue Laennec, 69008 Lyon, France
| | - Richard B Banati
- ANSTO, Human Health (Space Health Program), New Illawarra Road, Lucas Heights, NSW 2234, Australia
| |
Collapse
|