1
|
Leinweber B, Pilorz V, Olejniczak I, Skrum L, Begemann K, Heyde I, Stenger S, Sadik CD, Oster H. Bmal1 deficiency in neutrophils alleviates symptoms induced by high-fat diet. iScience 2025; 28:112038. [PMID: 40124497 PMCID: PMC11930374 DOI: 10.1016/j.isci.2025.112038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 12/24/2024] [Accepted: 02/12/2025] [Indexed: 03/25/2025] Open
Abstract
Physiological processes, including metabolism and immune responses, are generated by the circadian clock, driven by clock genes. Disrupting circadian rhythms through a high-fat diet promotes obesity and inflammation. Studies show that deleting the clock gene, brain, and muscle ARNT-like 1 (Bmal1) in adipose tissue leads to overeating and weight gain. We now show that Bmal1 deletion in neutrophils protects against diet-induced obesity and reduces inflammatory macrophage infiltration into epididymal white adipose tissue (eWAT), despite increased food intake over 20 weeks of a high-fat diet. This protection is linked to enhanced energy expenditure, increased UCP1 expression in iBAT, improved insulin sensitivity, and altered expression of genes encoding chemokine receptors CXCR2, CXCR4, and the ligand Cxcl2 in eWAT. Our findings reveal a key role of Bmal1 in neutrophils in regulating high-fat diet-induced adipose inflammation and emphasize circadian regulation's importance in immuno-metabolic function.
Collapse
Affiliation(s)
- Brinja Leinweber
- University of Lübeck, Institute of Neurobiology, Center of Brain, Behaviour and Metabolism, Marie-Curie-Strasse, 23562 Luebeck, Germany
| | - Violetta Pilorz
- University of Lübeck, Institute of Neurobiology, Center of Brain, Behaviour and Metabolism, Marie-Curie-Strasse, 23562 Luebeck, Germany
| | - Iwona Olejniczak
- University of Lübeck, Institute of Neurobiology, Center of Brain, Behaviour and Metabolism, Marie-Curie-Strasse, 23562 Luebeck, Germany
| | - Ludmila Skrum
- University of Lübeck, Institute of Neurobiology, Center of Brain, Behaviour and Metabolism, Marie-Curie-Strasse, 23562 Luebeck, Germany
| | - Kimberly Begemann
- University of Lübeck, Institute of Neurobiology, Center of Brain, Behaviour and Metabolism, Marie-Curie-Strasse, 23562 Luebeck, Germany
| | - Isabel Heyde
- University of Lübeck, Institute of Neurobiology, Center of Brain, Behaviour and Metabolism, Marie-Curie-Strasse, 23562 Luebeck, Germany
| | - Sarah Stenger
- University of Lübeck, Institute of Neurobiology, Center of Brain, Behaviour and Metabolism, Marie-Curie-Strasse, 23562 Luebeck, Germany
| | - Christian David Sadik
- University of Lübeck, Department of Dermatology, Allergy, and Venereology Ratzeburger Allee, 23562 Luebeck, Germany
| | - Henrik Oster
- University of Lübeck, Institute of Neurobiology, Center of Brain, Behaviour and Metabolism, Marie-Curie-Strasse, 23562 Luebeck, Germany
| |
Collapse
|
2
|
Garcia IS, Silva-Vignato B, Cesar ASM, Petrini J, da Silva VH, Morosini NS, Goes CP, Afonso J, da Silva TR, Lima BD, Clemente LG, Regitano LCDA, Mourão GB, Coutinho LL. Novel putative causal mutations associated with fat traits in Nellore cattle uncovered by eQTLs located in open chromatin regions. Sci Rep 2024; 14:10094. [PMID: 38698200 PMCID: PMC11066111 DOI: 10.1038/s41598-024-60703-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 04/26/2024] [Indexed: 05/05/2024] Open
Abstract
Intramuscular fat (IMF) and backfat thickness (BFT) are critical economic traits impacting meat quality. However, the genetic variants controlling these traits need to be better understood. To advance knowledge in this area, we integrated RNA-seq and single nucleotide polymorphisms (SNPs) identified in genomic and transcriptomic data to generate a linkage disequilibrium filtered panel of 553,581 variants. Expression quantitative trait loci (eQTL) analysis revealed 36,916 cis-eQTLs and 14,408 trans-eQTLs. Association analysis resulted in three eQTLs associated with BFT and 24 with IMF. Functional enrichment analysis of genes regulated by these 27 eQTLs revealed noteworthy pathways that can play a fundamental role in lipid metabolism and fat deposition, such as immune response, cytoskeleton remodeling, iron transport, and phospholipid metabolism. We next used ATAC-Seq assay to identify and overlap eQTL and open chromatin regions. Six eQTLs were in regulatory regions, four in predicted insulators and possible CCCTC-binding factor DNA binding sites, one in an active enhancer region, and the last in a low signal region. Our results provided novel insights into the transcriptional regulation of IMF and BFT, unraveling putative regulatory variants.
Collapse
Affiliation(s)
- Ingrid Soares Garcia
- Department of Animal Science, College of Agriculture "Luiz de Queiroz", University of São Paulo, Piracicaba, SP, Brazil
| | - Bárbara Silva-Vignato
- Department of Animal Science, College of Agriculture "Luiz de Queiroz", University of São Paulo, Piracicaba, SP, Brazil
| | - Aline Silva Mello Cesar
- Department of Agroindustry, Food and Nutrition, College of Agriculture "Luiz de Queiroz", University of São Paulo, Piracicaba, SP, Brazil
| | - Juliana Petrini
- Department of Animal Science, College of Agriculture "Luiz de Queiroz", University of São Paulo, Piracicaba, SP, Brazil
| | - Vinicius Henrique da Silva
- Department of Animal Science, College of Agriculture "Luiz de Queiroz", University of São Paulo, Piracicaba, SP, Brazil
| | - Natália Silva Morosini
- Department of Animal Science, College of Agriculture "Luiz de Queiroz", University of São Paulo, Piracicaba, SP, Brazil
| | - Carolina Purcell Goes
- Department of Animal Science, College of Agriculture "Luiz de Queiroz", University of São Paulo, Piracicaba, SP, Brazil
| | | | - Thaís Ribeiro da Silva
- Department of Animal Science, College of Agriculture "Luiz de Queiroz", University of São Paulo, Piracicaba, SP, Brazil
| | - Beatriz Delcarme Lima
- Department of Animal Science, College of Agriculture "Luiz de Queiroz", University of São Paulo, Piracicaba, SP, Brazil
| | - Luan Gaspar Clemente
- Department of Animal Science, College of Agriculture "Luiz de Queiroz", University of São Paulo, Piracicaba, SP, Brazil
| | | | - Gerson Barreto Mourão
- Department of Animal Science, College of Agriculture "Luiz de Queiroz", University of São Paulo, Piracicaba, SP, Brazil
| | - Luiz Lehmann Coutinho
- Department of Animal Science, College of Agriculture "Luiz de Queiroz", University of São Paulo, Piracicaba, SP, Brazil.
| |
Collapse
|
3
|
Hughes FM, Harper SN, Nosé BD, Allkanjari A, Zheng MT, Jin H, Purves JT. Specialized Pro-resolution Mediators in the bladder; Annexin-A1 normalizes inflammation and bladder dysfunction during bladder outlet obstruction. Am J Physiol Renal Physiol 2021; 321:F443-F454. [PMID: 34396790 DOI: 10.1152/ajprenal.00205.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Bladder Outlet Obstruction (BOO) is ultimately experienced by ≈90% of men, most commonly secondary to benign prostatic hyperplasia. Inflammation is a critical driver of BOO pathology in the bladder and can be divided into two critical steps; initiation and resolution. While great strides have been made toward understanding initiation of inflammation in the bladder (through the NLRP3 inflammasome), no studies have examined resolution. Resolution is controlled by 5 classes of compounds known as Specialized Pro-resolving Mediators (SPMs), all of which bind to one or more of 7 different receptors. Using immunocytochemistry, we show the presence of 6 of the known SPM receptors in the bladder of control and BOO rats; the 7th has no rodent homolog. The expression was predominantly localized to the urothelia, often with some expression in the smooth muscle, but little to none in the interstitial cells. We next examined the therapeutic potential of the Annexin-A1 resolution system, also present in control and BOO bladders. Using the peptide mimetic Ac2-26, we blocked inflammation-initiating pathways (NLRP3 activation), diminished BOO-induced inflammation (Evans blue dye extravasation), and normalized bladder dysfunction (urodynamics). Excitingly, Ac2-26 also promoted faster and more complete functional recovery after surgical de-obstruction. Together, the results demonstrate that the bladder expresses a wide variety of potential pro-resolving pathways and that modulation of just one of these pathways can alleviate many detrimental aspects of BOO and speed recovery after de-obstruction. This work establishes a precedent for future studies evaluating SPM effectiveness in resolving the many conditions associated with bladder inflammation.
Collapse
Affiliation(s)
- Francis M Hughes
- Division of Urology, Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| | - Shelby N Harper
- Division of Urology, Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| | - Brent D Nosé
- Division of Urology, Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| | - Armand Allkanjari
- Division of Urology, Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| | - Michael T Zheng
- Division of Urology, Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| | - Huixia Jin
- Division of Urology, Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| | - J Todd Purves
- Division of Urology, Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
4
|
de Castro IC, Pequito DCT, Borghetti G, Yamaguchi AA, de Brito GAP, Yamazaki RK, Pôrto LCJ, Coimbra TM, Fernandes LC, Fernandez R. Obesity-like metabolic effects of high-carbohydrate or high-fat diets consumption in metabolic and renal functions. Arch Physiol Biochem 2021; 129:810-820. [PMID: 33502908 DOI: 10.1080/13813455.2021.1874019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Present study investigated which diet, high-carbohydrate (HCD) or high-fat (HFD), most effectively induces classical characteristics of obesity in mice. Mice were fed commercial chow (control), an HCD, or an HFD for 12 weeks. HFD and HCD increased body weight, fat mass, and glycaemia, whereas the HFD augmented insulinemia. In the kidney, the HFD caused albuminuria, and reductions in fractional Na+ excretion, Thromboxane B2 (TXB2) excretion, and urinary flow, whereas the HCD reduced glomerular filtration, plasma osmolality, and TXB2 and Prostaglandin E2 excretion. The consumption of HFD and HCD modified parameters that indicate histopathological changes, such as proliferation (proliferating-cell-nuclear antigen), inflammation (c-Jun N-terminal-protein), and epithelial-mesenchymal transition (vimentin, and desmin) in renal tissue, but the HCD group presents fewer signals of glomerular hypertrophy or tubule degeneration. In summary, the HCD generated the metabolic and renal changes required for an obesity model, but with a delay in the development of these modifications concerning the HFD.
Collapse
Affiliation(s)
| | | | - Gina Borghetti
- Biodiversity Studies Centre, Federal University of Roraima (UFRR), Boa Vista, Brazil
| | - Adriana Aya Yamaguchi
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA
| | | | | | | | - Terezila Machado Coimbra
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, Brazil
| | | | - Ricardo Fernandez
- Department of Physiology, Federal University of Paraná (UFPR), Curitiba, Brazil
| |
Collapse
|
5
|
Galectin-1 accelerates high-fat diet-induced obesity by activation of peroxisome proliferator-activated receptor gamma (PPARγ) in mice. Cell Death Dis 2021; 12:66. [PMID: 33431823 PMCID: PMC7801586 DOI: 10.1038/s41419-020-03367-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 11/27/2020] [Accepted: 12/04/2020] [Indexed: 12/13/2022]
Abstract
Galectin-1 contains a carbohydrate-recognition domain (CRD) as a member of the lectin family. Here, we investigated whether galectin-1 regulates adipogenesis and lipid accumulation. Galectin-1 mRNA is highly expressed in metabolic tissues such as the muscle and adipose tissues. Higher mRNA expression of galectin-1 was detected in white adipose tissues (WATs) of mice that were fed a high-fat diet (HFD) than in those of mice fed a normal-fat diet (NFD). Protein expression of galectin-1 also increased during adipocyte differentiation. Galectin-1 silencing inhibited the differentiation of 3T3-L1 cells and the expression of lipogenic factors, such as PPARγ, C/EBPα, FABP4, and FASN at both mRNA and protein levels. Lactose, an inhibitor by the binding with CRD of galectin-1 in extracellular matrix, did not affect adipocyte differentiation. Galectin-1 is localized in multiple cellular compartments in 3T3-L1 cells. However, we found that DMI (dexamethasone, methylisobutylxanthine, insulin) treatment increased its nuclear localization. Interestingly, galectin-1 interacted with PPARγ. Galectin-1 overexpression resulted in increased PPARγ expression and transcriptional activity. Furthermore, we prepared galectin-1-knockout (Lgals1−/−) mice and fed a 60% HFD. After 10 weeks, Lgals1−/− mice exhibited lower body weight and gonadal WAT (gWAT) mass than wild-type mice. Fasting glucose level was also lower in Lgals1−/−mice than that in wild-type mice. Moreover, lipogenic genes were significantly downregulated in the gWATs and liver tissues from Lgals1−/− mice. Pro-inflammatory cytokines, such as CCL2, CCL3, TNFα, and F4/80, as well as macrophage markers, were also drastically downregulated in the gWATs and liver tissues of Lgals1−/− mice. In addition, Lgals1−/−mice showed elevated expression of genes involved in thermogenesis in the brown adipose tissue. Collectively, galectin-1 exacerbates obesity of mice fed HFD by increment of PPARγ expression and activation. Our findings suggest that galectin-1 could be a potential therapeutic target for obesity and needed further study for clinical application.
Collapse
|
6
|
Sabapathy V, Stremska ME, Mohammad S, Corey RL, Sharma PR, Sharma R. Novel Immunomodulatory Cytokine Regulates Inflammation, Diabetes, and Obesity to Protect From Diabetic Nephropathy. Front Pharmacol 2019; 10:572. [PMID: 31191312 PMCID: PMC6540785 DOI: 10.3389/fphar.2019.00572] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 05/06/2019] [Indexed: 12/25/2022] Open
Abstract
Obesity-linked (type 2) diabetic nephropathy (T2DN) has become the largest contributor to morbidity and mortality in the modern world. Recent evidences suggest that inflammation may contribute to the pathogenesis of T2DN and T-regulatory cells (Treg) are protective. We developed a novel cytokine (named IL233) bearing IL-2 and IL-33 activities in a single molecule and demonstrated that IL233 promotes Treg and T-helper (Th) 2 immune responses to protect mice from inflammatory acute kidney injury. Here, we investigated whether through a similar enhancement of Treg and inhibition of inflammation, IL233 protects from T2DN in a genetically obese mouse model, when administered either early or late after the onset of diabetes. In the older mice with obesity and microalbuminuria, IL233 treatment reduced hyperglycemia, plasma glycated proteins, and albuminuria. Interestingly, IL233 administered before the onset of microalbuminuria not only strongly inhibited the progression of T2DN and reversed diabetes as indicated by lowering of blood glucose, normalization of glucose tolerance and insulin levels in islets, but surprisingly, also attenuated weight gain and adipogenicity despite comparable food intake. Histological examination of kidneys showed that saline control mice had severe inflammation, glomerular hypertrophy, and mesangial expansion, which were all attenuated in the IL233 treated mice. The protection correlated with greater accumulation of Tregs, group 2 innate lymphoid cells (ILC2), alternately activated macrophages and eosinophils in the adipose tissue, along with a skewing toward T-helper 2 responses. Thus, the novel IL233 cytokine bears therapeutic potential as it protects genetically obese mice from T2DN by regulating multiple contributors to pathogenesis. Short Description: A novel bifunctional cytokine IL233, bearing IL-2 and IL-33 activities reverses inflammation and protects from type-2 diabetic nephropathy through promoting T-regulatory cells and type 2 immune response.
Collapse
Affiliation(s)
- Vikram Sabapathy
- Center for Immunity, Inflammation and Regenerative Medicine, Division of Nephrology, Department of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Marta E. Stremska
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, United States
| | - Saleh Mohammad
- Center for Immunity, Inflammation and Regenerative Medicine, Division of Nephrology, Department of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Rebecca L. Corey
- Center for Immunity, Inflammation and Regenerative Medicine, Division of Nephrology, Department of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Poonam R. Sharma
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, United States
| | - Rahul Sharma
- Center for Immunity, Inflammation and Regenerative Medicine, Division of Nephrology, Department of Medicine, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
7
|
Pietrani NT, Ferreira CN, Rodrigues KF, Perucci LO, Carneiro FS, Bosco AA, Oliveira MC, Pereira SS, Teixeira AL, Alvarez-Leite JI, Ferreira AV, Sousa LP, Gomes KB. Proresolving protein Annexin A1: The role in type 2 diabetes mellitus and obesity. Biomed Pharmacother 2018; 103:482-489. [PMID: 29677533 DOI: 10.1016/j.biopha.2018.04.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 03/26/2018] [Accepted: 04/03/2018] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Annexin A1 (AnxA1) is a protein involved in inflammation resolution that might be altered in obesity-associated type 2 diabetes mellitus (DM), which is a chronic inflammatory disease. The aim of this study was to evaluate AnxA1 serum levels in individuals with and without DM stratified according to the body mass index (BMI), and the dynamic of AnxA1 expression in adipose tissue from humans with obesity and non-obesity. METHODS Serum samples were obtained from 41 patients with DM (lean, overweight and obese) and 40 controls, and adipose tissue samples were obtained from 16 individuals with obesity (with or without DM), and 15 controls. RESULTS DM patients showed similar AnxA1 serum levels when compared to controls. However, when the individuals were stratified according to BMI, AnxA1 levels were higher in individuals with obesity than lean or overweight, and in overweight compared to lean individuals. Moreover, AnxA1 was correlated positively with IL-6 levels. AnxA1 levels were also positively correlated with BMI, waist circumference and waist-to-hip ratio. Furthermore, higher levels of cleaved AnxA1 were observed in adipose tissue from individuals with obesity, independently of DM status. CONCLUSIONS Enhanced levels of AnxA1 in serum of individuals with obesity suggest an attempt to counter-regulate the systemic inflammation process in this disease. However, the higher levels of cleaved AnxA1 in the adipose tissue of individuals with obesity could compromise its anti-inflammatory and proresolving actions, locally. Considering our data, AnxA1 cleavage in the adipose tissue, despite increased serum levels of this protein, and consequently the failure in inflammation resolution, suggests an important pathophysiological mechanism involved in inflammatory status observed in obesity.
Collapse
Affiliation(s)
- Nathalia T Pietrani
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Cláudia N Ferreira
- Colégio Técnico - COLTEC- Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Kathryna F Rodrigues
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Luiza O Perucci
- Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Fernanda S Carneiro
- Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Adriana A Bosco
- Santa Casa de Belo Horizonte, Belo Horizonte, Minas Gerais, Brazil
| | - Marina C Oliveira
- Escola de Enfermagem, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Solange S Pereira
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Antônio L Teixeira
- Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Jacqueline I Alvarez-Leite
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Adaliene V Ferreira
- Escola de Enfermagem, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Lirlândia P Sousa
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Karina B Gomes
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
8
|
Perucci LO, Sugimoto MA, Gomes KB, Dusse LM, Teixeira MM, Sousa LP. Annexin A1 and specialized proresolving lipid mediators: promoting resolution as a therapeutic strategy in human inflammatory diseases. Expert Opin Ther Targets 2017; 21:879-896. [PMID: 28786708 DOI: 10.1080/14728222.2017.1364363] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION The timely resolution of inflammation is essential to restore tissue homeostasis and to avoid chronic inflammatory diseases. Resolution of inflammation is an active process modulated by various proresolving mediators, including annexin A1 (AnxA1) and specialized proresolving lipid mediators (SPMs), which counteract excessive inflammatory responses and stimulate proresolving mechanisms. Areas covered: The protective effects of AnxA1 and SPMs have been extensively explored in pre-clinical animal models. However, studies investigating the function of these molecules in human diseases are just emerging. This review highlights recent advances on the role of proresolving mediators, and pharmacological opportunities of promoting resolution pathways in preclinical models and patients with various human diseases. Expert opinion: Dysregulation or 'failure' in proresolving mechanisms might be involved in the pathogenesis of chronic inflammatory diseases. Altered levels of proresolving mediators were found in a wide range of human diseases. In some cases, AnxA1 and SPMs are up-regulated in human blood and tissues but fail to engage in proresolving signaling and, hence, to regulate excessive inflammation. Thus, the new concept of 'resolution pharmacology' could be applied to compensate deficiency of endogenous proresolving mediators' generation and/or possible failures in the engagement of resolution pathways observed in many chronic inflammatory diseases.
Collapse
Affiliation(s)
- Luiza Oliveira Perucci
- a Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia , Universidade Federal de Minas Gerais , Belo Horizonte , Minas Gerais , Brazil.,b Programa de Pós-Graduação em Análises Clínicas e Toxicológicas , Universidade Federal de Minas Gerais , Belo Horizonte , Minas Gerais , Brazil
| | - Michelle Amantéa Sugimoto
- a Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia , Universidade Federal de Minas Gerais , Belo Horizonte , Minas Gerais , Brazil.,c Programa de Pós-Graduação em Ciências Farmacêuticas , Universidade Federal de Minas Gerais , Belo Horizonte , Minas Gerais , Brazil
| | - Karina Braga Gomes
- a Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia , Universidade Federal de Minas Gerais , Belo Horizonte , Minas Gerais , Brazil.,b Programa de Pós-Graduação em Análises Clínicas e Toxicológicas , Universidade Federal de Minas Gerais , Belo Horizonte , Minas Gerais , Brazil
| | - Luci Maria Dusse
- a Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia , Universidade Federal de Minas Gerais , Belo Horizonte , Minas Gerais , Brazil.,b Programa de Pós-Graduação em Análises Clínicas e Toxicológicas , Universidade Federal de Minas Gerais , Belo Horizonte , Minas Gerais , Brazil.,c Programa de Pós-Graduação em Ciências Farmacêuticas , Universidade Federal de Minas Gerais , Belo Horizonte , Minas Gerais , Brazil
| | - Mauro Martins Teixeira
- d Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas , Universidade Federal de Minas Gerais , Belo Horizonte , Minas Gerais , Brazil
| | - Lirlândia Pires Sousa
- a Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia , Universidade Federal de Minas Gerais , Belo Horizonte , Minas Gerais , Brazil.,b Programa de Pós-Graduação em Análises Clínicas e Toxicológicas , Universidade Federal de Minas Gerais , Belo Horizonte , Minas Gerais , Brazil.,c Programa de Pós-Graduação em Ciências Farmacêuticas , Universidade Federal de Minas Gerais , Belo Horizonte , Minas Gerais , Brazil
| |
Collapse
|
9
|
Lopez-Candales A, Hernández Burgos PM, Hernandez-Suarez DF, Harris D. Linking Chronic Inflammation with Cardiovascular Disease: From Normal Aging to the Metabolic Syndrome. JOURNAL OF NATURE AND SCIENCE 2017; 3:e341. [PMID: 28670620 PMCID: PMC5488800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The metabolic syndrome (MetS) is a cluster of clinical disorders including an unhealthy body habitus with a large waistline, dyslipidemia, glucose intolerance and hypertension. It is known that these disorders not only increase the chances of developing type 2 diabetes mellitus (T2DM), but also cardiovascular disease (CVD). Furthermore, the co-occurrence of all these risk factors known as the MetS is linked to pathways sharing common underlying mediators and mechanisms. Though insulin resistance has been considered as the root of the problem to explain the conglomerate of metabolic abnormalities within this syndrome; new evidence points to several pro-inflammatory cytokines, reactive oxygen species and free fatty acid intermediates might play an even greater role in regulating a series of intracellular signaling pathways sustain as well as perpetuate the development of the MetS and its CVD complications. Since having a diagnosis of MetS confers not only a 5-fold increase in the risk of T2DM, but also a 2-fold risk of developing CVD over a period of 5 to 10 years; it is vital to better recognize the mechanisms by which the MetS is associated with such adverse outcomes. Therefore, it is the purpose of this review to address (1) how inflammation modifies insulin sensitivity, (2) known factors believed to contribute to this process, and (3) new concepts of inflammatory markers in regulating the development of MetS and its individual components.
Collapse
Affiliation(s)
- Angel Lopez-Candales
- Cardiovascular Medicine Division, University of Puerto Rico School of Medicine, San Juan, Puerto Rico
| | | | | | - David Harris
- Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, OH, USA
| |
Collapse
|
10
|
Wang N, Cheng J, Han B, Li Q, Chen Y, Xia F, Jiang B, Jensen MD, Lu Y. Exposure to severe famine in the prenatal or postnatal period and the development of diabetes in adulthood: an observational study. Diabetologia 2017; 60:262-269. [PMID: 27807599 DOI: 10.1007/s00125-016-4148-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 10/03/2016] [Indexed: 01/19/2023]
Abstract
AIMS/HYPOTHESIS Limited studies have compared the effect of prenatal or postnatal exposure to different severities of famine on the risk of developing diabetes. We aimed to measure the association between diabetes in adulthood and the exposure to different degrees of famine early in life (during the prenatal or postnatal period) during China's Great Famine (1959-1962). METHODS Data from 3967 individuals were included (a total of 2115 individuals from areas severely affected by famine, 1858 from moderately affected areas, 6 excluded due to missing data). A total of 2335 famine-exposed individuals were further divided into those exposed during the fetal stage, childhood or adolescence/young adulthood. We constructed a difference-in-differences model to compare HbA1c and fasting plasma glucose among the participants exposed to different degrees of famine intensity at different life stages. Logistic analyses were used as measures of the association between diabetes and the different levels of famine severity at different life stages. RESULTS Individuals who had been exposed to famine during the fetal period, childhood, and adolescence/adulthood and who had lived in a severely affected area had a 0.31%, 0.20% and 0.27% higher HbA1c, respectively, (all p < 0.01) compared with unexposed individuals. After adjusting for age, sex, smoking status, education level and waist circumference, participants exposed to severe famine during the fetal stage (OR 1.90, 95% CI 1.12, 3.21) and childhood (OR 1.44, 95% CI 1.06, 1.97) had significantly higher odds estimates. Unexposed participants living in severely and moderately affected areas had a comparable prevalence of diabetes (OR 1.22, 95% CI 0.80, 1.87). A significant interaction between famine exposure during the fetal and childhood periods and the level of severity in the area of exposure was found (p < 0.05). CONCLUSIONS/INTERPRETATION Exposure to severe famine in the fetal or childhood period may predict a higher HbA1c and an increased diabetes risk in adulthood. These results from China indicate that both the prenatal and postnatal period may offer critical time windows for the determination of the risk of diabetes.
Collapse
Affiliation(s)
- Ningjian Wang
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200011, People's Republic of China
| | - Jing Cheng
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200011, People's Republic of China
| | - Bing Han
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200011, People's Republic of China
| | - Qin Li
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200011, People's Republic of China
| | - Yi Chen
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200011, People's Republic of China
| | - Fangzhen Xia
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200011, People's Republic of China
| | - Boren Jiang
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200011, People's Republic of China
| | - Michael D Jensen
- Endocrine Research Unit, 5-194 Joseph, Mayo Clinic, Rochester, MN, 55905, USA.
| | - Yingli Lu
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200011, People's Republic of China.
| |
Collapse
|
11
|
Kim DG, Bae GS, Jo IJ, Choi SB, Kim MJ, Jeong JH, Kang DG, Lee HS, Song HJ, Park SJ. Guggulsterone Attenuated Lipopolysaccharide-Induced Inflammatory Responses in Mouse Inner Medullary Collecting Duct-3 Cells. Inflammation 2016; 39:87-95. [PMID: 26260258 DOI: 10.1007/s10753-015-0226-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Guggulsterone (GS) is a phytosterol that has been used to treat inflammatory diseases such as colitis, obesity, and thrombosis. Although many previous studies have examined activities of GS, the effect of GS on lipopolysaccharide (LPS)-induced inflammatory responses in mouse inner medullary collecting duct-3 (mIMCD-3) cells have not been examined. Therefore, here, we investigated the anti-inflammatory action of GS on mIMCD-3 cells exposed to LPS. LPS treatment on mIMCD-3 cells produced pro-inflammatory molecules such as inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α) significantly; however, GS treatment significantly inhibited the production of pro-inflammatory molecules. In addition, GS inhibited the degradation of Iκ-Bα and translocation of NF-κB on mIMCD-3 cells. These results suggest that GS could inhibit inflammatory responses in collecting duct cells which could contribute to kidney injury during systemic infection.
Collapse
Affiliation(s)
- Dong-Goo Kim
- BK21 Plus Team, Professional Graduate School of Oriental Medicine, Wonkwang University, Iksan, Jeonbuk, 540-749, South Korea.,Department of Herbology, School of Oriental Medicine, Wonkwang University, Iksan, Jeonbuk, 540-749, South Korea
| | - Gi-Sang Bae
- Department of Herbology, School of Oriental Medicine, Wonkwang University, Iksan, Jeonbuk, 540-749, South Korea.,Hanbang Body Fluid Research Center, Wonkwang University, Iksan, Jeonbuk, 540-749, South Korea
| | - Il-Joo Jo
- Department of Herbology, School of Oriental Medicine, Wonkwang University, Iksan, Jeonbuk, 540-749, South Korea.,Hanbang Body Fluid Research Center, Wonkwang University, Iksan, Jeonbuk, 540-749, South Korea
| | - Sun-Bok Choi
- BK21 Plus Team, Professional Graduate School of Oriental Medicine, Wonkwang University, Iksan, Jeonbuk, 540-749, South Korea
| | - Myoung-Jin Kim
- BK21 Plus Team, Professional Graduate School of Oriental Medicine, Wonkwang University, Iksan, Jeonbuk, 540-749, South Korea.,Department of Herbology, School of Oriental Medicine, Wonkwang University, Iksan, Jeonbuk, 540-749, South Korea
| | - Jun-Hyeok Jeong
- BK21 Plus Team, Professional Graduate School of Oriental Medicine, Wonkwang University, Iksan, Jeonbuk, 540-749, South Korea.,Department of Herbology, School of Oriental Medicine, Wonkwang University, Iksan, Jeonbuk, 540-749, South Korea
| | - Dae-Gil Kang
- BK21 Plus Team, Professional Graduate School of Oriental Medicine, Wonkwang University, Iksan, Jeonbuk, 540-749, South Korea.,Hanbang Body Fluid Research Center, Wonkwang University, Iksan, Jeonbuk, 540-749, South Korea.,Professional Graduate School of Oriental Medicine and College of Oriental Medicine, Wonkwang University, Shinyong-dong, Iksan, Jeonbuk, 570-749, South Korea
| | - Ho-Sub Lee
- BK21 Plus Team, Professional Graduate School of Oriental Medicine, Wonkwang University, Iksan, Jeonbuk, 540-749, South Korea.,Hanbang Body Fluid Research Center, Wonkwang University, Iksan, Jeonbuk, 540-749, South Korea.,Professional Graduate School of Oriental Medicine and College of Oriental Medicine, Wonkwang University, Shinyong-dong, Iksan, Jeonbuk, 570-749, South Korea
| | - Ho-Joon Song
- BK21 Plus Team, Professional Graduate School of Oriental Medicine, Wonkwang University, Iksan, Jeonbuk, 540-749, South Korea.,Department of Herbology, School of Oriental Medicine, Wonkwang University, Iksan, Jeonbuk, 540-749, South Korea
| | - Sung-Joo Park
- BK21 Plus Team, Professional Graduate School of Oriental Medicine, Wonkwang University, Iksan, Jeonbuk, 540-749, South Korea. .,Department of Herbology, School of Oriental Medicine, Wonkwang University, Iksan, Jeonbuk, 540-749, South Korea. .,Hanbang Body Fluid Research Center, Wonkwang University, Iksan, Jeonbuk, 540-749, South Korea.
| |
Collapse
|
12
|
Zhang Y, Kolonin MG. Cytokine signaling regulating adipose stromal cell trafficking. Adipocyte 2016; 5:369-374. [PMID: 27994950 DOI: 10.1080/21623945.2016.1220452] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 07/27/2016] [Accepted: 07/28/2016] [Indexed: 01/31/2023] Open
Abstract
Adipocyte progenitors, known as adipose stromal cells (ASC), can become mobilized, recruited by tumors, and contribute to cancer progression. Mechanisms underlying ASC trafficking have remained obscure. We recently reported that CXCL1 expressed by cancer cells chemoattracts ASC expressing CXCR1 in obesity. As a candidate mechanism of CXCL1 activation, we identified interleukin (IL)-22, systemic circulation of which is increased in obesity. It has been reported that IL-22 signaling through IL-22R is upstream of CXCL1. Here, we provide evidence that IL-22 expression by leukocytes infiltrating WAT and IL-22R expression by tumors is obesity-dependent. We propose that obesity-associated adipocyte death and the resulting recruitment of leukocytes triggers the IL-22 signaling cascade that induces CXCL1 secretion by cancer cells responsible for ASC trafficking to tumors.
Collapse
|
13
|
Zachut M. Defining the Adipose Tissue Proteome of Dairy Cows to Reveal Biomarkers Related to Peripartum Insulin Resistance and Metabolic Status. J Proteome Res 2015; 14:2863-71. [PMID: 26062109 DOI: 10.1021/acs.jproteome.5b00190] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Adipose tissue is a central regulator of metabolism in dairy cows; however, little is known about the association between various proteins in adipose tissue and the metabolic status of peripartum cows. Therefore, the objectives were to (1) examine total protein expression in adipose tissue of dairy cows and (2) identify biomarkers in adipose that are linked to insulin resistance and to cows' metabolic status. Adipose tissue biopsies were obtained from eight multiparous cows at -17 and +4 days relative to parturition. Proteins were analyzed by intensity-based, label-free, quantitative shotgun proteomics (nanoLC-MS/MS). Cows were divided into groups with insulin-resistant (IR) and insulin-sensitive (IS) adipose according to protein kinase B phosphorylation following insulin stimulation. Cows with IR adipose lost more body weight postpartum compared with IS cows. Differential expression of 143 out of 586 proteins was detected in prepartum versus postpartum adipose. Comparing IR to IS adipose revealed differential expression of 18.9% of the proteins; those related to lipolysis (hormone-sensitive lipase, perilipin, monoglycerol lipase) were increased in IR adipose. In conclusion, we found novel biomarkers related to IR in adipose and to metabolic status that could be used to characterize high-yielding dairy cows that are better adapted to peripartum metabolic stress.
Collapse
Affiliation(s)
- Maya Zachut
- Department of Ruminant Science, Institute of Animal Sciences, Volcani Center, P.O. Box 6, Bet Dagan 50250, Israel
| |
Collapse
|
14
|
Schering L, Hoene M, Kanzleiter T, Jähnert M, Wimmers K, Klaus S, Eckel J, Weigert C, Schürmann A, Maak S, Jonas W, Sell H. Identification of novel putative adipomyokines by a cross-species annotation of secretomes and expression profiles. Arch Physiol Biochem 2015; 121:194-205. [PMID: 26599229 DOI: 10.3109/13813455.2015.1092044] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Adipose tissue and skeletal muscle are organs that respond strongly to obesity and physical activity exhibiting high secretory activity. To identify novel putative adipomyokines, comparative expression studies of skeletal muscle and adipose tissue of lean (C57BL/6J) and obese (C57BL/6J on a high-fat diet and NZO) mice, of sedentary and endurance trained C57BL/6J mice and of cattle characterized by different amounts of intramuscular fat were combined with human secretome data and scored. In highly regulated transcripts, we identified 119 myokines, 79 adipokines and 22 adipomyokines. Network analysis of these candidates revealed remodelling of extracellular matrix and tissue fibrosis as relevant functions of several of these candidates. Given the pathophysiogical relevance of fibrosis for adipose-muscle-cross-talk in obesity and type 2 diabetes and its physiological role in exercise adaptation and meat quality of farm animals, they represent interesting candidates for further investigations in different research areas and species.
Collapse
Affiliation(s)
- Lisa Schering
- a Institute for Muscle Biology and Growth, Leibniz Institute for Farm Animal Biology , Dummerstorf , Germany
| | - Miriam Hoene
- b Division of Clinical Chemistry and Pathobiochemistry , Department of Internal Medicine IV, University Hospital Tübingen , Tübingen , Germany
| | - Timo Kanzleiter
- c Department of Experimental Diabetology , German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany and German Center for Diabetes Research (DZD) , Neuherberg , Germany
- d German Center for Diabetes Research (DZD) , Neuherberg , Germany
| | - Markus Jähnert
- c Department of Experimental Diabetology , German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany and German Center for Diabetes Research (DZD) , Neuherberg , Germany
- d German Center for Diabetes Research (DZD) , Neuherberg , Germany
| | - Klaus Wimmers
- e Institute for Genome Biology, Leibniz Institute for Farm Animal Biology , Dummerstorf , Germany
| | - Susanne Klaus
- f Group of Energy Metabolism, German Institute of Human Nutrition Potsdam-Rehbruecke , Nuthetal , Germany , and
| | - Jürgen Eckel
- d German Center for Diabetes Research (DZD) , Neuherberg , Germany
- g Paul-Langerhans-Group for Integrative Physiology, German Diabetes Center , Düsseldorf , Germany
| | - Cora Weigert
- b Division of Clinical Chemistry and Pathobiochemistry , Department of Internal Medicine IV, University Hospital Tübingen , Tübingen , Germany
- d German Center for Diabetes Research (DZD) , Neuherberg , Germany
| | - Annette Schürmann
- c Department of Experimental Diabetology , German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany and German Center for Diabetes Research (DZD) , Neuherberg , Germany
- d German Center for Diabetes Research (DZD) , Neuherberg , Germany
| | - Steffen Maak
- a Institute for Muscle Biology and Growth, Leibniz Institute for Farm Animal Biology , Dummerstorf , Germany
| | - Wenke Jonas
- c Department of Experimental Diabetology , German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany and German Center for Diabetes Research (DZD) , Neuherberg , Germany
- d German Center for Diabetes Research (DZD) , Neuherberg , Germany
| | - Henrike Sell
- d German Center for Diabetes Research (DZD) , Neuherberg , Germany
- g Paul-Langerhans-Group for Integrative Physiology, German Diabetes Center , Düsseldorf , Germany
| |
Collapse
|
15
|
Abstract
The combination of obesity and hypertension is associated with high morbidity and mortality because it leads to cardiovascular and kidney disease. Potential mechanisms linking obesity to hypertension include dietary factors, metabolic, endothelial and vascular dysfunction, neuroendocrine imbalances, sodium retention, glomerular hyperfiltration, proteinuria, and maladaptive immune and inflammatory responses. Visceral adipose tissue also becomes resistant to insulin and leptin and is the site of altered secretion of molecules and hormones such as adiponectin, leptin, resistin, TNF and IL-6, which exacerbate obesity-associated cardiovascular disease. Accumulating evidence also suggests that the gut microbiome is important for modulating these mechanisms. Uric acid and altered incretin or dipeptidyl peptidase 4 activity further contribute to the development of hypertension in obesity. The pathophysiology of obesity-related hypertension is especially relevant to premenopausal women with obesity and type 2 diabetes mellitus who are at high risk of developing arterial stiffness and endothelial dysfunction. In this Review we discuss the relationship between obesity and hypertension with special emphasis on potential mechanisms and therapeutic targeting that might be used in a clinical setting.
Collapse
Affiliation(s)
- Vincent G DeMarco
- Internal Medicine, University of Missouri, Columbia School of Medicine, One Hospital Drive, Columbia, MO 65212, USA
| | - Annayya R Aroor
- Internal Medicine, University of Missouri, Columbia School of Medicine, One Hospital Drive, Columbia, MO 65212, USA
| | - James R Sowers
- Internal Medicine, University of Missouri, Columbia School of Medicine, One Hospital Drive, Columbia, MO 65212, USA
| |
Collapse
|
16
|
Lukaszewski MA, Eberlé D, Vieau D, Breton C. Nutritional manipulations in the perinatal period program adipose tissue in offspring. Am J Physiol Endocrinol Metab 2013; 305:E1195-207. [PMID: 24045869 DOI: 10.1152/ajpendo.00231.2013] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Epidemiological studies demonstrated initially that maternal undernutrition results in low birth weight with increased risk for long-lasting energy balance disorders. Maternal obesity and diabetes associated with high birth weight, excessive nutrition in neonates, and rapid catchup growth also increase the risk of adult-onset obesity. As stated by the Developmental Origin of Health and Disease concept, nutrient supply perturbations in the fetus or neonate result in long-term programming of individual body weight set point. Adipose tissue is a key fuel storage unit involved mainly in the maintenance of energy homeostasis. Studies in numerous animal models have demonstrated that the adipose tissue is the focus of developmental programming events in a sex- and depot-specific manner. In rodents, adipose tissue development is particularly active during the perinatal period, especially during the last week of gestation and during early postnatal life. In contrast to rodents, this process essentially takes place before birth in bigger mammals. Despite these different developmental time windows, altricial and precocial species share several mechanisms of adipose tissue programming. Offspring from malnourished dams present adipose tissue with a series of alterations: impaired glucose uptake, insulin and leptin resistance, low-grade inflammation, modified sympathetic activity with reduced noradrenergic innervations, and thermogenesis. These modifications reprogram adipose tissue metabolism by changing fat distribution and composition and by enhancing adipogenesis, predisposing the offspring to fat accumulation. Subtle adipose tissue circadian rhythm changes are also observed. Inappropriate hormone levels, modified tissue sensitivity (especially glucocorticoid system), and epigenetic mechanisms are key factors for adipose tissue programming during the perinatal period.
Collapse
Affiliation(s)
- Marie-Amélie Lukaszewski
- Unité Environnement Périnatal et Croissance, UPRES EA 4489, Equipe Dénutritions Maternelles Périnatales, Université Lille-Nord de France, Villeneuve d'Ascq, France
| | | | | | | |
Collapse
|
17
|
Aroor AR, McKarns S, Demarco VG, Jia G, Sowers JR. Maladaptive immune and inflammatory pathways lead to cardiovascular insulin resistance. Metabolism 2013; 62:1543-52. [PMID: 23932846 PMCID: PMC3809332 DOI: 10.1016/j.metabol.2013.07.001] [Citation(s) in RCA: 160] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 07/02/2013] [Accepted: 07/04/2013] [Indexed: 01/11/2023]
Abstract
Insulin resistance is a hallmark of obesity, the cardiorenal metabolic syndrome and type 2 diabetes mellitus (T2DM). The progression of insulin resistance increases the risk for cardiovascular disease (CVD). The significance of insulin resistance is underscored by the alarming rise in the prevalence of obesity and its associated comorbidities in the Unites States and worldwide over the last 40-50 years. The incidence of obesity is also on the rise in adolescents. Furthermore, premenopausal women have lower CVD risk compared to men, but this protection is lost in the setting of obesity and insulin resistance. Although systemic and cardiovascular insulin resistance is associated with impaired insulin metabolic signaling and cardiovascular dysfunction, the mechanisms underlying insulin resistance and cardiovascular dysfunction remain poorly understood. Recent studies show that insulin resistance in obesity and diabetes is linked to a metabolic inflammatory response, a state of systemic and tissue specific chronic low grade inflammation. Evidence is also emerging that there is polarization of macrophages and lymphocytes towards a pro-inflammatory phenotype that contributes to progression of insulin resistance in obesity, cardiorenal metabolic syndrome and diabetes. In this review, we provide new insights into factors, such as, the renin-angiotensin-aldosterone system, sympathetic activation and incretin modulators (e.g., DPP-4) and immune responses that mediate this inflammatory state in obesity and other conditions characterized by insulin resistance.
Collapse
Affiliation(s)
- Annayya R Aroor
- Division of Endocrinology, Diabetes and Metabolism, Diabetes Cardiovascular Center, University of Missouri, Columbia, MO, USA; Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA
| | | | | | | | | |
Collapse
|