1
|
Das S, Dey MK, Devireddy R, Gartia MR. Biomarkers in Cancer Detection, Diagnosis, and Prognosis. SENSORS (BASEL, SWITZERLAND) 2023; 24:37. [PMID: 38202898 PMCID: PMC10780704 DOI: 10.3390/s24010037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/27/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024]
Abstract
Biomarkers are vital in healthcare as they provide valuable insights into disease diagnosis, prognosis, treatment response, and personalized medicine. They serve as objective indicators, enabling early detection and intervention, leading to improved patient outcomes and reduced costs. Biomarkers also guide treatment decisions by predicting disease outcomes and facilitating individualized treatment plans. They play a role in monitoring disease progression, adjusting treatments, and detecting early signs of recurrence. Furthermore, biomarkers enhance drug development and clinical trials by identifying suitable patients and accelerating the approval process. In this review paper, we described a variety of biomarkers applicable for cancer detection and diagnosis, such as imaging-based diagnosis (CT, SPECT, MRI, and PET), blood-based biomarkers (proteins, genes, mRNA, and peptides), cell imaging-based diagnosis (needle biopsy and CTC), tissue imaging-based diagnosis (IHC), and genetic-based biomarkers (RNAseq, scRNAseq, and spatial transcriptomics).
Collapse
Affiliation(s)
| | | | | | - Manas Ranjan Gartia
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA 70803, USA; (S.D.); (M.K.D.); (R.D.)
| |
Collapse
|
2
|
Antolin AA, Sanfelice D, Crisp A, Villasclaras Fernandez E, Mica IL, Chen Y, Collins I, Edwards A, Müller S, Al-Lazikani B, Workman P. The Chemical Probes Portal: an expert review-based public resource to empower chemical probe assessment, selection and use. Nucleic Acids Res 2022; 51:D1492-D1502. [PMID: 36268860 PMCID: PMC9825478 DOI: 10.1093/nar/gkac909] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/30/2022] [Accepted: 10/05/2022] [Indexed: 01/30/2023] Open
Abstract
We describe the Chemical Probes Portal (https://www.chemicalprobes.org/), an expert review-based public resource to empower chemical probe assessment, selection and use. Chemical probes are high-quality small-molecule reagents, often inhibitors, that are important for exploring protein function and biological mechanisms, and for validating targets for drug discovery. The publication, dissemination and use of chemical probes provide an important means to accelerate the functional annotation of proteins, the study of proteins in cell biology, physiology, and disease pathology, and to inform and enable subsequent pioneering drug discovery and development efforts. However, the widespread use of small-molecule compounds that are claimed as chemical probes but are lacking sufficient quality, especially being inadequately selective for the desired target or even broadly promiscuous in behaviour, has resulted in many erroneous conclusions in the biomedical literature. The Chemical Probes Portal was established as a public resource to aid the selection and best-practice use of chemical probes in basic and translational biomedical research. We describe the background, principles and content of the Portal and its technical development, as well as examples of its applications and use. The Chemical Probes Portal is a community resource and we therefore describe how researchers can be involved in its content and development.
Collapse
Affiliation(s)
- Albert A Antolin
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, SM2 5NG, UK,Department of Data Science, The Institute of Cancer Research, London, SM2 5NG, UK,Chemical Probes Portal, www.chemicalprobes.org
| | - Domenico Sanfelice
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, SM2 5NG, UK,Department of Data Science, The Institute of Cancer Research, London, SM2 5NG, UK,Chemical Probes Portal, www.chemicalprobes.org
| | - Alisa Crisp
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, SM2 5NG, UK,Department of Data Science, The Institute of Cancer Research, London, SM2 5NG, UK,Chemical Probes Portal, www.chemicalprobes.org
| | - Eloy Villasclaras Fernandez
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, SM2 5NG, UK,Department of Data Science, The Institute of Cancer Research, London, SM2 5NG, UK,Chemical Probes Portal, www.chemicalprobes.org
| | - Ioan L Mica
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, SM2 5NG, UK,Department of Data Science, The Institute of Cancer Research, London, SM2 5NG, UK,Chemical Probes Portal, www.chemicalprobes.org
| | - Yi Chen
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, SM2 5NG, UK,Department of Data Science, The Institute of Cancer Research, London, SM2 5NG, UK,Chemical Probes Portal, www.chemicalprobes.org
| | - Ian Collins
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, SM2 5NG, UK,Centre for Cancer Drug Discovery, The Institute of Cancer Research, London, SM2 5NG, UK,Chemical Probes Portal, www.chemicalprobes.org
| | - Aled Edwards
- Structural Genomics Consortium, University of Toronto, Toronto, ONM5G 1L7, Canada,Chemical Probes Portal, www.chemicalprobes.org
| | | | | | - Paul Workman
- To whom correspondence should be addressed. Tel: +44 2087224580;
| |
Collapse
|
3
|
The role of mixed lineage kinase 3 (MLK3) in cancers. Pharmacol Ther 2022; 238:108269. [DOI: 10.1016/j.pharmthera.2022.108269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 10/15/2022]
|
4
|
Emmerich CH, Gamboa LM, Hofmann MCJ, Bonin-Andresen M, Arbach O, Schendel P, Gerlach B, Hempel K, Bespalov A, Dirnagl U, Parnham MJ. Improving target assessment in biomedical research: the GOT-IT recommendations. Nat Rev Drug Discov 2021; 20:64-81. [PMID: 33199880 PMCID: PMC7667479 DOI: 10.1038/s41573-020-0087-3] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2020] [Indexed: 02/06/2023]
Abstract
Academic research plays a key role in identifying new drug targets, including understanding target biology and links between targets and disease states. To lead to new drugs, however, research must progress from purely academic exploration to the initiation of efforts to identify and test a drug candidate in clinical trials, which are typically conducted by the biopharma industry. This transition can be facilitated by a timely focus on target assessment aspects such as target-related safety issues, druggability and assayability, as well as the potential for target modulation to achieve differentiation from established therapies. Here, we present recommendations from the GOT-IT working group, which have been designed to support academic scientists and funders of translational research in identifying and prioritizing target assessment activities and in defining a critical path to reach scientific goals as well as goals related to licensing, partnering with industry or initiating clinical development programmes. Based on sets of guiding questions for different areas of target assessment, the GOT-IT framework is intended to stimulate academic scientists' awareness of factors that make translational research more robust and efficient, and to facilitate academia-industry collaboration.
Collapse
Affiliation(s)
| | - Lorena Martinez Gamboa
- Department of Experimental Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- QUEST Center for Transforming Biomedical Research, Berlin Institute of Health, Berlin, Germany
| | - Martine C J Hofmann
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Branch for Translational Medicine & Pharmacology TMP, Frankfurt am Main, Germany
| | - Marc Bonin-Andresen
- Department of Experimental Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Olga Arbach
- Department of Experimental Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- SPARK-Validation Fund, Berlin Institute of Health, Berlin, Germany
| | - Pascal Schendel
- Department of Experimental Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | - Katja Hempel
- Boehringer-Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Anton Bespalov
- PAASP GmbH, Heidelberg, Germany
- Valdman Institute of Pharmacology, Pavlov Medical University, St. Petersburg, Russia
| | - Ulrich Dirnagl
- Department of Experimental Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- QUEST Center for Transforming Biomedical Research, Berlin Institute of Health, Berlin, Germany
| | - Michael J Parnham
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Branch for Translational Medicine & Pharmacology TMP, Frankfurt am Main, Germany
- Faculty of Biochemistry, Chemistry & Pharmacy, J.W. Goethe University Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
5
|
Sawada JI, Ishii H, Matsuno K, Sato M, Suzuki Y, Asai A. Selective Inhibition of Spindle Microtubules by a Tubulin-Binding Quinazoline Derivative. Mol Pharmacol 2019; 96:609-618. [PMID: 31471455 DOI: 10.1124/mol.119.116624] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 08/20/2019] [Indexed: 02/03/2023] Open
Abstract
In the research field of tubulin-binding agents for the development of anticancer agents, hidden targets are emerging as a problem in understanding the exact mechanisms of actions. The quinazoline derivative 1-(4-methoxyphenyl)-1-(quinazolin-4-yl)ethan-1-ol (PVHD121) has anti-cell proliferative activity and inhibits tubulin polymerization by binding to the colchicine site of tubulin. However, the molecular mechanism of action of PVHD121 in cells remains unclear. Here, we demonstrate that PVHD121 delays mitotic entry and efficiently causes mitotic arrest with spindle checkpoint activation, leading to subsequent cell death. The dominant phenotype induced by PVHD121 was aberrant spindles with robust microtubules and unseparated centrosomes. The microtubules were radially distributed, and their ends appeared to adhere to kinetochores, and not to centrosomes. Extensive inhibition by high concentrations of PVHD121 eliminated all microtubules from cells. PVHD277 [1-(4-methoxyphenyl)-1-(2-morpholinoquinazolin-4-yl)ethan-1-ol], a PVHD121 derivative with fluorescence, tended to localize close to the centrosomes when cells prepared to enter mitosis. Our results show that PVHD121 is an antimitotic agent that selectively disturbs microtubule formation at centrosomes during mitosis. This antimitotic activity can be attributed to the targeting of centrosome maturation in addition to the interference with microtubule dynamics. Due to its unique bioactivity, PVHD121 is a potential tool for studying the molecular biology of mitosis and a potential lead compound for the development of anticancer agents. SIGNIFICANCE STATEMENT: Many tubulin-binding agents have been developed as potential anticancer agents. The aim of this study was to understand the subcellular molecular actions of a quinazoline derivative tubulin-binding agent, 1-(4-methoxyphenyl)-1-(quinazolin-4-yl)ethan-1-ol (PVHD121). As expected from its binding activity to tubulin, PVHD121 caused aberrant spindles and inhibited mitotic progression. However, in addition to tubulin, PVHD121 also targeted an unexpected biomolecule involved in centrosome maturation. Due to targeting the biomolecule just before entering mitosis, PVHD121 preferentially inhibited centrosome-derived microtubules rather than chromosome-derived microtubules during spindle formation. This study not only revealed the molecular action of PVHD121 in cells but also emphasized the importance of considering possible tubulin-independent effects of tubulin-binding agents via hidden targeted biomolecules for future use.
Collapse
Affiliation(s)
- Jun-Ichi Sawada
- Center for Drug Discovery, Graduate School of Pharmaceutical Sciences (J.-i.S., H.I., K.M., A.A.) and Laboratory of Organic Chemistry, School of Pharmaceutical Sciences (M.S., Y.S.), University of Shizuoka, Shizuoka, Japan
| | - Hirosuke Ishii
- Center for Drug Discovery, Graduate School of Pharmaceutical Sciences (J.-i.S., H.I., K.M., A.A.) and Laboratory of Organic Chemistry, School of Pharmaceutical Sciences (M.S., Y.S.), University of Shizuoka, Shizuoka, Japan
| | - Kenji Matsuno
- Center for Drug Discovery, Graduate School of Pharmaceutical Sciences (J.-i.S., H.I., K.M., A.A.) and Laboratory of Organic Chemistry, School of Pharmaceutical Sciences (M.S., Y.S.), University of Shizuoka, Shizuoka, Japan
| | - Masayuki Sato
- Center for Drug Discovery, Graduate School of Pharmaceutical Sciences (J.-i.S., H.I., K.M., A.A.) and Laboratory of Organic Chemistry, School of Pharmaceutical Sciences (M.S., Y.S.), University of Shizuoka, Shizuoka, Japan
| | - Yumiko Suzuki
- Center for Drug Discovery, Graduate School of Pharmaceutical Sciences (J.-i.S., H.I., K.M., A.A.) and Laboratory of Organic Chemistry, School of Pharmaceutical Sciences (M.S., Y.S.), University of Shizuoka, Shizuoka, Japan
| | - Akira Asai
- Center for Drug Discovery, Graduate School of Pharmaceutical Sciences (J.-i.S., H.I., K.M., A.A.) and Laboratory of Organic Chemistry, School of Pharmaceutical Sciences (M.S., Y.S.), University of Shizuoka, Shizuoka, Japan
| |
Collapse
|
6
|
Wang T, Liu XH, Guan J, Ge S, Wu MB, Lin JP, Yang LR. Advancement of multi-target drug discoveries and promising applications in the field of Alzheimer's disease. Eur J Med Chem 2019; 169:200-223. [PMID: 30884327 DOI: 10.1016/j.ejmech.2019.02.076] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 02/12/2019] [Accepted: 02/28/2019] [Indexed: 12/22/2022]
Abstract
Complex diseases (e.g., Alzheimer's disease) or infectious diseases are usually caused by complicated and varied factors, including environmental and genetic factors. Multi-target (polypharmacology) drugs have been suggested and have emerged as powerful and promising alternative paradigms in modern medicinal chemistry for the development of versatile chemotherapeutic agents to solve these medical challenges. The multifunctional agents capable of modulating multiple biological targets simultaneously display great advantages of higher efficacy, improved safety profile, and simpler administration compared to single-targeted agents. Therefore, multifunctional agents would certainly open novel avenues to rationally design the next generation of more effective but less toxic therapeutic agents. Herein, the authors review the recent progress made in the discovery and design processes of selective multi-targeted agents, especially the successful application of multi-target drugs for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Tao Wang
- School of Biological Science, Jining Medical University, Jining, China; Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Xiao-Huan Liu
- School of Biological Science, Jining Medical University, Jining, China
| | - Jing Guan
- School of Biological Science, Jining Medical University, Jining, China
| | - Shun Ge
- School of Biological Science, Jining Medical University, Jining, China.
| | - Mian-Bin Wu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China; Zhejiang Key Laboratory of Antifungal Drugs, Taizhou, 318000, China
| | - Jian-Ping Lin
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Li-Rong Yang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
7
|
Roman BI. Essay: Avoiding unfounded health claims on small molecules in scientific literature. Bioorg Chem 2019; 86:273-276. [PMID: 30735847 DOI: 10.1016/j.bioorg.2019.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 12/11/2018] [Accepted: 02/01/2019] [Indexed: 11/19/2022]
Abstract
The publication of unfounded health claims on small molecules in peer-reviewed scientific literature is a problem that requires attention. It undermines the evidence-based decision making processes of modern-day society, weakens the credibility of the scientific enterprise, and diverts resources to futile research efforts. In the present essay we discuss some human and scientific causes behind the issue. We propose a number of actions to be taken up by scientists, referees and publishers. One particularly important factor is the issue of enigmatic compound behavior in biological assays. We therefore also introduce the idea of biological filters, a pattern recognition method to triage enigmatic compounds into valuable hits and false positives, based on the entirety of their biological effects in cell-based systems.
Collapse
Affiliation(s)
- Bart I Roman
- Department of Green Chemistry and Technology, Coupure Links 653, 9000 Gent, Belgium; Cancer Research Institute Gent (CRIG), Corneel Heymanslaan 10, 9000 Gent, Belgium.
| |
Collapse
|
8
|
Chen GQ, Xu Y, Shen SM, Zhang J. Phenotype and target-based chemical biology investigations in cancers. Natl Sci Rev 2018; 6:1111-1127. [PMID: 34691990 PMCID: PMC8291603 DOI: 10.1093/nsr/nwy124] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 09/27/2018] [Accepted: 09/27/2018] [Indexed: 12/14/2022] Open
Abstract
Chemical biology has been attracting a lot of attention because of the key roles of chemical methods and techniques in helping to decipher and manipulate biological systems. Although chemical biology encompasses a broad field, this review will focus on chemical biology aimed at using exogenous chemical probes to interrogate, modify and manipulate biological processes, at the cellular and organismal levels, in a highly controlled and dynamic manner. In this area, many advances have been achieved for cancer biology and therapeutics, from target identification and validation based on active anticancer compounds (forward approaches) to discoveries of anticancer molecules based on some important targets including protein-protein interaction (reverse approaches). Herein we attempt to summarize some recent progresses mainly from China through applying chemical biology approaches to explore molecular mechanisms of carcinogenesis. Additionally, we also outline several new strategies for chemistry to probe cellular activities such as proximity-dependent labeling methods for identifying protein-protein interactions, genetically encoded sensors, and light activating or repressing gene expression system.
Collapse
Affiliation(s)
- Guo-Qiang Chen
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| | - Ying Xu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| | - Shao-Ming Shen
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| | - Jian Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| |
Collapse
|
9
|
Jorda R, Hendrychová D, Voller J, Řezníčková E, Gucký T, Kryštof V. How Selective Are Pharmacological Inhibitors of Cell-Cycle-Regulating Cyclin-Dependent Kinases? J Med Chem 2018; 61:9105-9120. [PMID: 30234987 DOI: 10.1021/acs.jmedchem.8b00049] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Cyclin-dependent kinases (CDKs) are an important and emerging class of drug targets for which many small-molecule inhibitors have been developed. However, there is often insufficient data available on the selectivity of CDK inhibitors (CDKi) to attribute the effects on the presumed target CDK to these inhibitors. Here, we highlight discrepancies between the kinase selectivity of CDKi and the phenotype exhibited; we evaluated 31 CDKi (claimed to target CDK1-4) for activity toward CDKs 1, 2, 4, 5, 7, 9 and for effects on the cell cycle. Our results suggest that most CDKi should be reclassified as pan-selective and should not be used as a tool. In addition, some compounds did not even inhibit CDKs as their primary cellular targets; for example, NU6140 showed potent inhibition of Aurora kinases. We also established an online database of commercially available CDKi for critical evaluation of their utility as molecular probes. Our results should help researchers select the most relevant chemical tools for their specific applications.
Collapse
Affiliation(s)
- Radek Jorda
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research , Palacký University and Institute of Experimental Botany ASCR , Šlechtitelů 27 , 78371 Olomouc , Czech Republic
| | - Denisa Hendrychová
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research , Palacký University and Institute of Experimental Botany ASCR , Šlechtitelů 27 , 78371 Olomouc , Czech Republic
| | - Jiří Voller
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research , Palacký University and Institute of Experimental Botany ASCR , Šlechtitelů 27 , 78371 Olomouc , Czech Republic
| | - Eva Řezníčková
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research , Palacký University and Institute of Experimental Botany ASCR , Šlechtitelů 27 , 78371 Olomouc , Czech Republic
| | - Tomáš Gucký
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research , Palacký University and Institute of Experimental Botany ASCR , Šlechtitelů 27 , 78371 Olomouc , Czech Republic
| | - Vladimír Kryštof
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research , Palacký University and Institute of Experimental Botany ASCR , Šlechtitelů 27 , 78371 Olomouc , Czech Republic
| |
Collapse
|
10
|
Hoque M, Abbassi RH, Froio D, Man J, Johns TG, Stringer BW, Day BW, Pajic M, Kassiou M, Munoz L. Changes in cell morphology guide identification of tubulin as the off-target for protein kinase inhibitors. Pharmacol Res 2018; 134:166-178. [DOI: 10.1016/j.phrs.2018.06.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 06/13/2018] [Accepted: 06/22/2018] [Indexed: 10/28/2022]
|
11
|
Neckers L, Blagg B, Haystead T, Trepel JB, Whitesell L, Picard D. Methods to validate Hsp90 inhibitor specificity, to identify off-target effects, and to rethink approaches for further clinical development. Cell Stress Chaperones 2018; 23:467-482. [PMID: 29392504 PMCID: PMC6045531 DOI: 10.1007/s12192-018-0877-2] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 01/16/2018] [Accepted: 01/17/2018] [Indexed: 12/12/2022] Open
Abstract
The molecular chaperone Hsp90 is one component of a highly complex and interactive cellular proteostasis network (PN) that participates in protein folding, directs misfolded and damaged proteins for destruction, and participates in regulating cellular transcriptional responses to environmental stress, thus promoting cell and organismal survival. Over the last 20 years, it has become clear that various disease states, including cancer, neurodegeneration, metabolic disorders, and infection by diverse microbes, impact the PN. Among PN components, Hsp90 was among the first to be pharmacologically targeted with small molecules. While the number of Hsp90 inhibitors described in the literature has dramatically increased since the first such small molecule was described in 1994, it has become increasingly apparent that not all of these agents have been sufficiently validated for specificity, mechanism of action, and lack of off-target effects. Given the less than expected activity of Hsp90 inhibitors in cancer-related human clinical trials, a re-evaluation of potentially confounding off-target effects, as well as confidence in target specificity and mechanism of action, is warranted. In this commentary, we provide feasible approaches to achieve these goals and we discuss additional considerations to improve the clinical efficacy of Hsp90 inhibitors in treating cancer and other diseases.
Collapse
Affiliation(s)
- Len Neckers
- Urologic Oncology Branch, National Cancer Institute, Bethesda, MD, 20892, USA.
| | - Brian Blagg
- Warren Family Research Center for Drug Discovery and Development, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Timothy Haystead
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, 27710, USA
| | - Jane B Trepel
- Developmental Therapeutics Branch, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Luke Whitesell
- Whitehead Institute, Cambridge, MA, 02142, USA
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5G 1M1, Canada
| | - Didier Picard
- Département de Biologie Cellulaire, Université de Genève, 1211, Geneva 4, Switzerland.
| |
Collapse
|
12
|
Antolin AA, Tym JE, Komianou A, Collins I, Workman P, Al-Lazikani B. Objective, Quantitative, Data-Driven Assessment of Chemical Probes. Cell Chem Biol 2018; 25:194-205.e5. [PMID: 29249694 PMCID: PMC5814752 DOI: 10.1016/j.chembiol.2017.11.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 09/22/2017] [Accepted: 11/14/2017] [Indexed: 12/21/2022]
Abstract
Chemical probes are essential tools for understanding biological systems and for target validation, yet selecting probes for biomedical research is rarely based on objective assessment of all potential compounds. Here, we describe the Probe Miner: Chemical Probes Objective Assessment resource, capitalizing on the plethora of public medicinal chemistry data to empower quantitative, objective, data-driven evaluation of chemical probes. We assess >1.8 million compounds for their suitability as chemical tools against 2,220 human targets and dissect the biases and limitations encountered. Probe Miner represents a valuable resource to aid the identification of potential chemical probes, particularly when used alongside expert curation.
Collapse
Affiliation(s)
- Albert A Antolin
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, 15 Cotswold Road, London SM2 5NG, UK; Department of Data Science, The Institute of Cancer Research, 15 Cotswold Road, London SM2 5NG, UK
| | - Joseph E Tym
- Department of Data Science, The Institute of Cancer Research, 15 Cotswold Road, London SM2 5NG, UK
| | - Angeliki Komianou
- Department of Data Science, The Institute of Cancer Research, 15 Cotswold Road, London SM2 5NG, UK
| | - Ian Collins
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, 15 Cotswold Road, London SM2 5NG, UK
| | - Paul Workman
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, 15 Cotswold Road, London SM2 5NG, UK.
| | - Bissan Al-Lazikani
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, 15 Cotswold Road, London SM2 5NG, UK; Department of Data Science, The Institute of Cancer Research, 15 Cotswold Road, London SM2 5NG, UK.
| |
Collapse
|
13
|
|
14
|
Protein degradation: a validated therapeutic strategy with exciting prospects. Essays Biochem 2017; 61:517-527. [PMID: 28970340 DOI: 10.1042/ebc20170030] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 09/10/2017] [Accepted: 09/15/2017] [Indexed: 01/19/2023]
Abstract
In a time of unprecedented challenges in developing potent, selective and well-tolerated protein inhibitors as therapeutics, drug hunters are increasingly seeking alternative modalities to modulate pharmacological targets. Selective inhibitors are achievable for only a fraction of the proteome, and are not guaranteed to elicit the desired response in patients, especially when pursuing targets identified through genetic knockdown. Targeted protein degradation holds the potential to expand the range of proteins that can be effectively modulated. Drugs inducing protein degradation through misfolding or by modulating cereblon (CRBN) substrate recognition are already approved for treatment of cancer patients. The last decade has seen the development of proteolysis targeting chimeras (PROTACs), small molecules that elicit proteasomal degradation by causing protein polyubiquitination. These have been used to degrade a range of disease-relevant proteins in cells, and some show promising efficacy in preclinical animal models, although their clinical efficacy and tolerability is yet to be proven. This review introduces current strategies for protein degradation with an emphasis on PROTACs and the role of click chemistry in PROTAC research through the formation of libraries of preclicked PROTACs or in-cell click-formed PROTACs (CLIPTACs).
Collapse
|
15
|
Haberkorn U, Mier W, Kopka K, Herold-Mende C, Altmann A, Babich J. Identification of Ligands and Translation to Clinical Applications. J Nucl Med 2017; 58:27S-33S. [DOI: 10.2967/jnumed.116.186791] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 03/15/2017] [Indexed: 12/16/2022] Open
|
16
|
Ellermann M, Eheim A, Rahm F, Viklund J, Guenther J, Andersson M, Ericsson U, Forsblom R, Ginman T, Lindström J, Silvander C, Trésaugues L, Giese A, Bunse S, Neuhaus R, Weiske J, Quanz M, Glasauer A, Nowak-Reppel K, Bader B, Irlbacher H, Meyer H, Queisser N, Bauser M, Haegebarth A, Gorjánácz M. Novel Class of Potent and Cellularly Active Inhibitors Devalidates MTH1 as Broad-Spectrum Cancer Target. ACS Chem Biol 2017; 12:1986-1992. [PMID: 28679043 DOI: 10.1021/acschembio.7b00370] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
MTH1 is a hydrolase responsible for sanitization of oxidized purine nucleoside triphosphates to prevent their incorporation into replicating DNA. Early tool compounds published in the literature inhibited the enzymatic activity of MTH1 and subsequently induced cancer cell death; however recent studies have questioned the reported link between these two events. Therefore, it is important to validate MTH1 as a cancer dependency with high quality chemical probes. Here, we present BAY-707, a substrate-competitive, highly potent and selective inhibitor of MTH1, chemically distinct compared to those previously published. Despite superior cellular target engagement and pharmacokinetic properties, inhibition of MTH1 with BAY-707 resulted in a clear lack of in vitro or in vivo anticancer efficacy either in mono- or in combination therapies. Therefore, we conclude that MTH1 is dispensable for cancer cell survival.
Collapse
|
17
|
Blagg J, Workman P. Choose and Use Your Chemical Probe Wisely to Explore Cancer Biology. Cancer Cell 2017; 32:9-25. [PMID: 28697345 PMCID: PMC5511331 DOI: 10.1016/j.ccell.2017.06.005] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 05/31/2017] [Accepted: 06/09/2017] [Indexed: 01/15/2023]
Abstract
Small-molecule chemical probes or tools have become progressively more important in recent years as valuable reagents to investigate fundamental biological mechanisms and processes causing disease, including cancer. Chemical probes have also achieved greater prominence alongside complementary biological reagents for target validation in drug discovery. However, there is evidence of widespread continuing misuse and promulgation of poor-quality and insufficiently selective chemical probes, perpetuating a worrisome and misleading pollution of the scientific literature. We discuss current challenges with the selection and use of chemical probes, and suggest how biologists can and should be more discriminating in the probes they employ.
Collapse
Affiliation(s)
- Julian Blagg
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London SM2 5NG, UK.
| | - Paul Workman
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London SM2 5NG, UK.
| |
Collapse
|
18
|
Kollmann K, Warsch W, Gonzalez-Arias C, Nice FL, Avezov E, Milburn J, Li J, Dimitropoulou D, Biddie S, Wang M, Poynton E, Colzani M, Tijssen MR, Anand S, McDermott U, Huntly B, Green T. A novel signalling screen demonstrates that CALR mutations activate essential MAPK signalling and facilitate megakaryocyte differentiation. Leukemia 2017; 31:934-944. [PMID: 27740635 PMCID: PMC5383931 DOI: 10.1038/leu.2016.280] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 08/18/2016] [Accepted: 08/24/2016] [Indexed: 12/15/2022]
Abstract
Most myeloproliferative neoplasm (MPN) patients lacking JAK2 mutations harbour somatic CALR mutations that are thought to activate cytokine signalling although the mechanism is unclear. To identify kinases important for survival of CALR-mutant cells, we developed a novel strategy (KISMET) that utilizes the full range of kinase selectivity data available from each inhibitor and thus takes advantage of off-target noise that limits conventional small-interfering RNA or inhibitor screens. KISMET successfully identified known essential kinases in haematopoietic and non-haematopoietic cell lines and identified the mitogen activated protein kinase (MAPK) pathway as required for growth of the CALR-mutated MARIMO cells. Expression of mutant CALR in murine or human haematopoietic cell lines was accompanied by myeloproliferative leukemia protein (MPL)-dependent activation of MAPK signalling, and MPN patients with CALR mutations showed increased MAPK activity in CD34 cells, platelets and megakaryocytes. Although CALR mutations resulted in protein instability and proteosomal degradation, mutant CALR was able to enhance megakaryopoiesis and pro-platelet production from human CD34+ progenitors. These data link aberrant MAPK activation to the MPN phenotype and identify it as a potential therapeutic target in CALR-mutant positive MPNs.
Collapse
Affiliation(s)
- K Kollmann
- Cambridge Institute for Medical Research and Wellcome Trust/MRC Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - W Warsch
- Cambridge Institute for Medical Research and Wellcome Trust/MRC Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - C Gonzalez-Arias
- Cambridge Institute for Medical Research and Wellcome Trust/MRC Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - F L Nice
- Cambridge Institute for Medical Research and Wellcome Trust/MRC Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - E Avezov
- Cambridge Institute for Medical Research, Wellcome Trust MRC Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, Cambridge, UK
| | - J Milburn
- Cambridge Institute for Medical Research and Wellcome Trust/MRC Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - J Li
- Cambridge Institute for Medical Research and Wellcome Trust/MRC Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - D Dimitropoulou
- Cambridge Institute for Medical Research and Wellcome Trust/MRC Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - S Biddie
- Cambridge Institute for Medical Research and Wellcome Trust/MRC Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - M Wang
- Cambridge Institute for Medical Research and Wellcome Trust/MRC Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - E Poynton
- Cambridge Institute for Medical Research and Wellcome Trust/MRC Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - M Colzani
- Department of Haematology, University of Cambridge, and National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge, UK
| | - M R Tijssen
- Department of Haematology, University of Cambridge, and National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge, UK
| | - S Anand
- Cambridge Institute for Medical Research and Wellcome Trust/MRC Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - U McDermott
- Cancer Genome Project, Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridgeshire, UK
| | - B Huntly
- Cambridge Institute for Medical Research and Wellcome Trust/MRC Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - T Green
- Cambridge Institute for Medical Research and Wellcome Trust/MRC Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| |
Collapse
|
19
|
|
20
|
O'Connor JPB, Aboagye EO, Adams JE, Aerts HJWL, Barrington SF, Beer AJ, Boellaard R, Bohndiek SE, Brady M, Brown G, Buckley DL, Chenevert TL, Clarke LP, Collette S, Cook GJ, deSouza NM, Dickson JC, Dive C, Evelhoch JL, Faivre-Finn C, Gallagher FA, Gilbert FJ, Gillies RJ, Goh V, Griffiths JR, Groves AM, Halligan S, Harris AL, Hawkes DJ, Hoekstra OS, Huang EP, Hutton BF, Jackson EF, Jayson GC, Jones A, Koh DM, Lacombe D, Lambin P, Lassau N, Leach MO, Lee TY, Leen EL, Lewis JS, Liu Y, Lythgoe MF, Manoharan P, Maxwell RJ, Miles KA, Morgan B, Morris S, Ng T, Padhani AR, Parker GJM, Partridge M, Pathak AP, Peet AC, Punwani S, Reynolds AR, Robinson SP, Shankar LK, Sharma RA, Soloviev D, Stroobants S, Sullivan DC, Taylor SA, Tofts PS, Tozer GM, van Herk M, Walker-Samuel S, Wason J, Williams KJ, Workman P, Yankeelov TE, Brindle KM, McShane LM, Jackson A, Waterton JC. Imaging biomarker roadmap for cancer studies. Nat Rev Clin Oncol 2017; 14:169-186. [PMID: 27725679 PMCID: PMC5378302 DOI: 10.1038/nrclinonc.2016.162] [Citation(s) in RCA: 739] [Impact Index Per Article: 92.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Imaging biomarkers (IBs) are integral to the routine management of patients with cancer. IBs used daily in oncology include clinical TNM stage, objective response and left ventricular ejection fraction. Other CT, MRI, PET and ultrasonography biomarkers are used extensively in cancer research and drug development. New IBs need to be established either as useful tools for testing research hypotheses in clinical trials and research studies, or as clinical decision-making tools for use in healthcare, by crossing 'translational gaps' through validation and qualification. Important differences exist between IBs and biospecimen-derived biomarkers and, therefore, the development of IBs requires a tailored 'roadmap'. Recognizing this need, Cancer Research UK (CRUK) and the European Organisation for Research and Treatment of Cancer (EORTC) assembled experts to review, debate and summarize the challenges of IB validation and qualification. This consensus group has produced 14 key recommendations for accelerating the clinical translation of IBs, which highlight the role of parallel (rather than sequential) tracks of technical (assay) validation, biological/clinical validation and assessment of cost-effectiveness; the need for IB standardization and accreditation systems; the need to continually revisit IB precision; an alternative framework for biological/clinical validation of IBs; and the essential requirements for multicentre studies to qualify IBs for clinical use.
Collapse
Affiliation(s)
- James P B O'Connor
- CRUK and EPSRC Cancer Imaging Centre in Cambridge and Manchester, University of Manchester, Manchester, UK
| | - Eric O Aboagye
- Department of Surgery and Cancer, Imperial College, London, UK
| | - Judith E Adams
- Department of Clinical Radiology, Central Manchester University Hospitals NHS Foundation Trust, Manchester, UK
| | - Hugo J W L Aerts
- Department of Radiation Oncology, Harvard Medical School, Boston, MA
| | - Sally F Barrington
- CRUK and EPSRC Comprehensive Imaging Centre at KCL and UCL, Kings College London, London, UK
| | - Ambros J Beer
- Department of Nuclear Medicine, University Hospital Ulm, Ulm, Germany
| | - Ronald Boellaard
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, Groningen, The Netherlands
| | - Sarah E Bohndiek
- CRUK and EPSRC Cancer Imaging Centre in Cambridge and Manchester, University of Cambridge, Cambridge, UK
| | - Michael Brady
- CRUK and EPSRC Cancer Imaging Centre, University of Oxford, Oxford, UK
| | - Gina Brown
- Radiology Department, Royal Marsden Hospital, London, UK
| | - David L Buckley
- Division of Biomedical Imaging, University of Leeds, Leeds, UK
| | | | | | | | - Gary J Cook
- CRUK and EPSRC Comprehensive Imaging Centre at KCL and UCL, Kings College London, London, UK
| | - Nandita M deSouza
- CRUK Cancer Imaging Centre, The Institute of Cancer Research, London, UK
| | - John C Dickson
- CRUK and EPSRC Cancer Imaging Centre at KCL and UCL, University College London, London, UK
| | - Caroline Dive
- Clinical and Experimental Pharmacology, CRUK Manchester Institute, Manchester, UK
| | | | - Corinne Faivre-Finn
- Radiotherapy Related Research Group, University of Manchester, Manchester, UK
| | - Ferdia A Gallagher
- CRUK and EPSRC Cancer Imaging Centre in Cambridge and Manchester, University of Cambridge, Cambridge, UK
| | - Fiona J Gilbert
- CRUK and EPSRC Cancer Imaging Centre in Cambridge and Manchester, University of Cambridge, Cambridge, UK
| | | | - Vicky Goh
- CRUK and EPSRC Comprehensive Imaging Centre at KCL and UCL, Kings College London, London, UK
| | - John R Griffiths
- CRUK and EPSRC Cancer Imaging Centre in Cambridge and Manchester, University of Cambridge, Cambridge, UK
| | - Ashley M Groves
- CRUK and EPSRC Cancer Imaging Centre at KCL and UCL, University College London, London, UK
| | - Steve Halligan
- CRUK and EPSRC Cancer Imaging Centre at KCL and UCL, University College London, London, UK
| | - Adrian L Harris
- CRUK and EPSRC Cancer Imaging Centre, University of Oxford, Oxford, UK
| | - David J Hawkes
- CRUK and EPSRC Cancer Imaging Centre at KCL and UCL, University College London, London, UK
| | - Otto S Hoekstra
- Department of Radiology and Nuclear Medicine, VU University Medical Centre, Amsterdam, The Netherlands
| | - Erich P Huang
- Biometric Research Program, National Cancer Institute, Bethesda, MD
| | - Brian F Hutton
- CRUK and EPSRC Cancer Imaging Centre at KCL and UCL, University College London, London, UK
| | - Edward F Jackson
- Department of Medical Physics, University of Wisconsin, Madison, WI
| | - Gordon C Jayson
- Institute of Cancer Sciences, University of Manchester, Manchester, UK
| | - Andrew Jones
- Medical Physics, The Christie Hospital NHS Foundation Trust, Manchester, UK
| | - Dow-Mu Koh
- CRUK Cancer Imaging Centre, The Institute of Cancer Research, London, UK
| | | | - Philippe Lambin
- Department of Radiation Oncology, University of Maastricht, Maastricht, Netherlands
| | - Nathalie Lassau
- Department of Imaging, Gustave Roussy Cancer Campus, Villejuif, France
| | - Martin O Leach
- CRUK Cancer Imaging Centre, The Institute of Cancer Research, London, UK
| | - Ting-Yim Lee
- Imaging Research Labs, Robarts Research Institute, London, Ontario, Canada
| | - Edward L Leen
- Department of Surgery and Cancer, Imperial College, London, UK
| | - Jason S Lewis
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Yan Liu
- EORTC Headquarters, EORTC, Brussels, Belgium
| | - Mark F Lythgoe
- Centre for Advanced Biomedical Imaging, University College London, London, UK
| | - Prakash Manoharan
- CRUK and EPSRC Cancer Imaging Centre in Cambridge and Manchester, University of Manchester, Manchester, UK
| | - Ross J Maxwell
- Northern Institute for Cancer Research, Newcastle University, Newcastle, UK
| | - Kenneth A Miles
- CRUK and EPSRC Cancer Imaging Centre at KCL and UCL, University College London, London, UK
| | - Bruno Morgan
- Cancer Studies and Molecular Medicine, University of Leicester, Leicester, UK
| | - Steve Morris
- Institute of Epidemiology and Health, University College London, London, UK
| | - Tony Ng
- CRUK and EPSRC Comprehensive Imaging Centre at KCL and UCL, Kings College London, London, UK
| | - Anwar R Padhani
- Paul Strickland Scanner Centre, Mount Vernon Hospital, London, UK
| | - Geoff J M Parker
- CRUK and EPSRC Cancer Imaging Centre in Cambridge and Manchester, University of Manchester, Manchester, UK
| | - Mike Partridge
- CRUK and EPSRC Cancer Imaging Centre, University of Oxford, Oxford, UK
| | - Arvind P Pathak
- Department of Radiology, The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Andrew C Peet
- Institute of Cancer and Genomics, University of Birmingham, Birmingham, UK
| | - Shonit Punwani
- CRUK and EPSRC Cancer Imaging Centre at KCL and UCL, University College London, London, UK
| | - Andrew R Reynolds
- Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, London, UK
| | - Simon P Robinson
- CRUK Cancer Imaging Centre, The Institute of Cancer Research, London, UK
| | | | - Ricky A Sharma
- CRUK and EPSRC Cancer Imaging Centre at KCL and UCL, University College London, London, UK
| | - Dmitry Soloviev
- CRUK and EPSRC Cancer Imaging Centre in Cambridge and Manchester, University of Cambridge, Cambridge, UK
| | - Sigrid Stroobants
- Molecular Imaging Center Antwerp, University of Antwerp, Antwerp, Belgium
| | - Daniel C Sullivan
- Department of Radiology, Duke University School of Medicine, Durham, NC
| | - Stuart A Taylor
- CRUK and EPSRC Cancer Imaging Centre at KCL and UCL, University College London, London, UK
| | - Paul S Tofts
- Brighton and Sussex Medical School, University of Sussex, Brighton, UK
| | - Gillian M Tozer
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| | - Marcel van Herk
- Radiotherapy Related Research Group, University of Manchester, Manchester, UK
| | - Simon Walker-Samuel
- Centre for Advanced Biomedical Imaging, University College London, London, UK
| | | | - Kaye J Williams
- CRUK and EPSRC Cancer Imaging Centre in Cambridge and Manchester, University of Manchester, Manchester, UK
| | - Paul Workman
- CRUK Cancer Therapeutics Unit, The Institute of Cancer Research, London, UK
| | - Thomas E Yankeelov
- Institute of Computational Engineering and Sciences, The University of Texas, Austin, TX
| | - Kevin M Brindle
- CRUK and EPSRC Cancer Imaging Centre in Cambridge and Manchester, University of Cambridge, Cambridge, UK
| | - Lisa M McShane
- Biometric Research Program, National Cancer Institute, Bethesda, MD
| | - Alan Jackson
- CRUK and EPSRC Cancer Imaging Centre in Cambridge and Manchester, University of Manchester, Manchester, UK
| | - John C Waterton
- CRUK and EPSRC Cancer Imaging Centre in Cambridge and Manchester, University of Manchester, Manchester, UK
| |
Collapse
|
21
|
Rodgers U, Lanyon-Hogg T, Masumoto N, Ritzefeld M, Burke R, Blagg J, Magee AI, Tate EW. Characterization of Hedgehog Acyltransferase Inhibitors Identifies a Small Molecule Probe for Hedgehog Signaling by Cancer Cells. ACS Chem Biol 2016; 11:3256-3262. [PMID: 27779865 PMCID: PMC5349656 DOI: 10.1021/acschembio.6b00896] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 10/13/2016] [Indexed: 01/01/2023]
Abstract
The Sonic Hedgehog (Shh) signaling pathway plays a critical role during embryonic development and cancer progression. N-terminal palmitoylation of Shh by Hedgehog acyltransferase (Hhat) is essential for efficient signaling, raising interest in Hhat as a novel drug target. A recently identified series of dihydrothienopyridines has been proposed to function via this mode of action; however, the lead compound in this series (RUSKI-43) was subsequently shown to possess cytotoxic activity unrelated to canonical Shh signaling. To identify a selective chemical probe for cellular studies, we profiled three RUSKI compounds in orthogonal cell-based assays. We found that RUSKI-43 exhibits off-target cytotoxicity, masking its effect on Hhat-dependent signaling, hence results obtained with this compound in cells should be treated with caution. In contrast, RUSKI-201 showed no off-target cytotoxicity, and quantitative whole-proteome palmitoylation profiling with a bioorthogonal alkyne-palmitate reporter demonstrated specific inhibition of Hhat in cells. RUSKI-201 is the first selective Hhat chemical probe in cells and should be used in future studies of Hhat catalytic function.
Collapse
Affiliation(s)
- Ursula
R. Rodgers
- Molecular
Medicine Section, National Heart & Lung
Institute, Imperial College London, London SW7 2AZ, United
Kingdom
| | - Thomas Lanyon-Hogg
- Department
of Chemistry, Imperial College London, London SW7 2AZ, United Kingdom
| | - Naoko Masumoto
- Department
of Chemistry, Imperial College London, London SW7 2AZ, United Kingdom
| | - Markus Ritzefeld
- Department
of Chemistry, Imperial College London, London SW7 2AZ, United Kingdom
| | - Rosemary Burke
- Cancer
Research UK Cancer Therapeutics Unit, The
Institute of Cancer Research, London, SW7 3RP, United Kingdom
| | - Julian Blagg
- Cancer
Research UK Cancer Therapeutics Unit, The
Institute of Cancer Research, London, SW7 3RP, United Kingdom
| | - Anthony I. Magee
- Molecular
Medicine Section, National Heart & Lung
Institute, Imperial College London, London SW7 2AZ, United
Kingdom
| | - Edward W. Tate
- Department
of Chemistry, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
22
|
Vaughan L, Clarke PA, Barker K, Chanthery Y, Gustafson CW, Tucker E, Renshaw J, Raynaud F, Li X, Burke R, Jamin Y, Robinson SP, Pearson A, Maira M, Weiss WA, Workman P, Chesler L. Inhibition of mTOR-kinase destabilizes MYCN and is a potential therapy for MYCN-dependent tumors. Oncotarget 2016; 7:57525-57544. [PMID: 27438153 PMCID: PMC5295370 DOI: 10.18632/oncotarget.10544] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 06/01/2016] [Indexed: 02/07/2023] Open
Abstract
MYC oncoproteins deliver a potent oncogenic stimulus in several human cancers, making them major targets for drug development, but efforts to deliver clinically practical therapeutics have not yet been realized. In childhood cancer, aberrant expression of MYC and MYCN genes delineates a group of aggressive tumours responsible for a major proportion of pediatric cancer deaths. We designed a chemical-genetic screen that identifies compounds capable of enhancing proteasomal elimination of MYCN oncoprotein. We isolated several classes of compound that selectively kill MYCN expressing cells and we focus on inhibitors of PI3K/mTOR pathway in this study. We show that PI3K/mTOR inhibitors selectively killed MYCN-expressing neuroblastoma tumor cells, and induced significant apoptosis of transgenic MYCN-driven neuroblastoma tumors concomitant with elimination of MYCN protein in vivo. Mechanistically, the ability of these compounds to degrade MYCN requires complete blockade of mTOR but not PI3 kinase activity and we highlight NVP-BEZ235 as a PI3K/mTOR inhibitor with an ideal activity profile. These data establish that MYCN expression is a marker indicative of likely clinical sensitivity to mTOR inhibition, and provide a rationale for the selection of clinical candidate MYCN-destabilizers likely to be useful for the treatment of MYCN-driven cancers.
Collapse
Affiliation(s)
- Lynsey Vaughan
- Division of Clinical Studies, The Institute of Cancer Research, Sutton, Surrey, UK
- Present address: Cell Signalling Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, UK
| | - Paul A. Clarke
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, Signal Transduction and Molecular Pharmacology Team, The Institute of Cancer Research, Sutton, Surrey, UK
| | - Karen Barker
- Division of Clinical Studies, The Institute of Cancer Research, Sutton, Surrey, UK
| | - Yvan Chanthery
- Department of Neurology, Pediatrics, Neurosurgery, Brain Tumor Research Center and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Clay W. Gustafson
- Department of Neurology, Pediatrics, Neurosurgery, Brain Tumor Research Center and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Elizabeth Tucker
- Division of Clinical Studies, The Institute of Cancer Research, Sutton, Surrey, UK
| | - Jane Renshaw
- Division of Clinical Studies, The Institute of Cancer Research, Sutton, Surrey, UK
| | - Florence Raynaud
- Cancer Research UK Cancer Therapeutics Unit, Clinical Pharmacology and Trials Team, Sutton, Surrey, UK
| | - Xiaodun Li
- Division of Clinical Studies, The Institute of Cancer Research, Sutton, Surrey, UK
- Present address: MRC Cancer Unit, University of Cambridge, Cambridge, UK
| | - Rosemary Burke
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, Target Selection and Hit Discovery Team, The Institute of Cancer Research, Sutton, Surrey, UK
| | - Yann Jamin
- Cancer Research UK & Engineering and Physical Sciences Research Council Cancer Imaging Centre, The Institute of Cancer Research, Sutton, Surrey, UK
| | - Simon P. Robinson
- Cancer Research UK & Engineering and Physical Sciences Research Council Cancer Imaging Centre, The Institute of Cancer Research, Sutton, Surrey, UK
| | - Andrew Pearson
- Division of Clinical Studies, The Institute of Cancer Research, Sutton, Surrey, UK
| | - Michel Maira
- Novartis Pharma AG, Basel, Switzerland
- Present address: Basilea Pharmaceutica International AG, Basel, Switzerland
| | - William A. Weiss
- Department of Neurology, Pediatrics, Neurosurgery, Brain Tumor Research Center and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Paul Workman
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, Signal Transduction and Molecular Pharmacology Team, The Institute of Cancer Research, Sutton, Surrey, UK
| | - Louis Chesler
- Division of Clinical Studies, The Institute of Cancer Research, Sutton, Surrey, UK
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, Signal Transduction and Molecular Pharmacology Team, The Institute of Cancer Research, Sutton, Surrey, UK
- The Royal Marsden NHS Trust, Children and Young People's Unit, Sutton, Surrey, UK
| |
Collapse
|
23
|
Hohmann AF, Martin LJ, Minder JL, Roe JS, Shi J, Steurer S, Bader G, McConnell D, Pearson M, Gerstberger T, Gottschamel T, Thompson D, Suzuki Y, Koegl M, Vakoc CR. Sensitivity and engineered resistance of myeloid leukemia cells to BRD9 inhibition. Nat Chem Biol 2016; 12:672-9. [PMID: 27376689 PMCID: PMC4990482 DOI: 10.1038/nchembio.2115] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 04/06/2016] [Indexed: 02/07/2023]
Abstract
Here we show that acute myeloid leukemia (AML) cells require the BRD9 subunit of the SWI-SNF chromatin-remodeling complex to sustain MYC transcription, rapid cell proliferation and a block in differentiation. Based on these observations, we derived small-molecule inhibitors of the BRD9 bromodomain that selectively suppress the proliferation of mouse and human AML cell lines. To establish these effects as on-target, we engineered a bromodomain-swap allele of BRD9 that retains functionality despite a radically altered bromodomain pocket. Expression of this allele in AML cells confers resistance to the antiproliferative effects of our compound series, thus establishing BRD9 as the relevant cellular target. Furthermore, we used an analogous domain-swap strategy to generate an inhibitor-resistant allele of EZH2. To our knowledge, our study provides the first evidence for a role of BRD9 in cancer and reveals a simple genetic strategy for constructing resistance alleles to demonstrate on-target activity of chemical probes in cells.
Collapse
Affiliation(s)
- Anja F Hohmann
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA.,Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | - Laetitia J Martin
- Boehringer Ingelheim Regional Center Vienna GmbH and Company KG, Vienna, Austria
| | - Jessica L Minder
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | - Jae-Seok Roe
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | - Junwei Shi
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA.,Molecular and Cellular Biology Program, Stony Brook University, Stony Brook, New York, USA
| | - Steffen Steurer
- Boehringer Ingelheim Regional Center Vienna GmbH and Company KG, Vienna, Austria
| | - Gerd Bader
- Boehringer Ingelheim Regional Center Vienna GmbH and Company KG, Vienna, Austria
| | - Darryl McConnell
- Boehringer Ingelheim Regional Center Vienna GmbH and Company KG, Vienna, Austria
| | - Mark Pearson
- Boehringer Ingelheim Regional Center Vienna GmbH and Company KG, Vienna, Austria
| | - Thomas Gerstberger
- Boehringer Ingelheim Regional Center Vienna GmbH and Company KG, Vienna, Austria
| | - Teresa Gottschamel
- Boehringer Ingelheim Regional Center Vienna GmbH and Company KG, Vienna, Austria
| | - Diane Thompson
- Boehringer Ingelheim Regional Center Vienna GmbH and Company KG, Vienna, Austria
| | - Yutaka Suzuki
- Department of Medical Genome Sciences, University of Tokyo, Kashiwa, Japan
| | - Manfred Koegl
- Boehringer Ingelheim Regional Center Vienna GmbH and Company KG, Vienna, Austria
| | - Christopher R Vakoc
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA.,Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| |
Collapse
|
24
|
Dale T, Clarke PA, Esdar C, Waalboer D, Adeniji-Popoola O, Ortiz-Ruiz MJ, Mallinger A, Samant RS, Czodrowski P, Musil D, Schwarz D, Schneider K, Stubbs M, Ewan K, Fraser E, TePoele R, Court W, Box G, Valenti M, de Haven Brandon A, Gowan S, Rohdich F, Raynaud F, Schneider R, Poeschke O, Blaukat A, Workman P, Schiemann K, Eccles SA, Wienke D, Blagg J. A selective chemical probe for exploring the role of CDK8 and CDK19 in human disease. Nat Chem Biol 2015; 11:973-980. [PMID: 26502155 PMCID: PMC4677459 DOI: 10.1038/nchembio.1952] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 10/01/2015] [Indexed: 12/31/2022]
Abstract
There is unmet need for chemical tools to explore the role of the Mediator complex in human pathologies ranging from cancer to cardiovascular disease. Here we determine that CCT251545, a small-molecule inhibitor of the WNT pathway discovered through cell-based screening, is a potent and selective chemical probe for the human Mediator complex-associated protein kinases CDK8 and CDK19 with >100-fold selectivity over 291 other kinases. X-ray crystallography demonstrates a type 1 binding mode involving insertion of the CDK8 C terminus into the ligand binding site. In contrast to type II inhibitors of CDK8 and CDK19, CCT251545 displays potent cell-based activity. We show that CCT251545 and close analogs alter WNT pathway-regulated gene expression and other on-target effects of modulating CDK8 and CDK19, including expression of genes regulated by STAT1. Consistent with this, we find that phosphorylation of STAT1(SER727) is a biomarker of CDK8 kinase activity in vitro and in vivo. Finally, we demonstrate in vivo activity of CCT251545 in WNT-dependent tumors.
Collapse
Affiliation(s)
- Trevor Dale
- School of Bioscience, Cardiff University, Cardiff, UK
| | - Paul A. Clarke
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, SW7 3RP
| | | | - Dennis Waalboer
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, SW7 3RP
| | | | - Maria-Jesus Ortiz-Ruiz
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, SW7 3RP
| | - Aurélie Mallinger
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, SW7 3RP
| | - Rahul S. Samant
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, SW7 3RP
| | | | | | | | | | - Mark Stubbs
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, SW7 3RP
| | - Ken Ewan
- School of Bioscience, Cardiff University, Cardiff, UK
| | | | - Robert TePoele
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, SW7 3RP
| | - Will Court
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, SW7 3RP
| | - Gary Box
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, SW7 3RP
| | - Melanie Valenti
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, SW7 3RP
| | - Alexis de Haven Brandon
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, SW7 3RP
| | - Sharon Gowan
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, SW7 3RP
| | | | - Florence Raynaud
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, SW7 3RP
| | | | | | | | - Paul Workman
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, SW7 3RP
| | | | - Suzanne A. Eccles
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, SW7 3RP
| | - Dirk Wienke
- Merck KGaA, Merck Serono, Darmstadt, Germany
| | - Julian Blagg
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, SW7 3RP
| |
Collapse
|
25
|
Simonin C, Awale M, Brand M, van Deursen R, Schwartz J, Fine M, Kovacs G, Häfliger P, Gyimesi G, Sithampari A, Charles R, Hediger MA, Reymond J. Optimization of TRPV6 Calcium Channel Inhibitors Using a 3D Ligand‐Based Virtual Screening Method. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201507320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Céline Simonin
- Department of Chemistry and Biochemistry, National Center of Competence in Research NCCR TransCure, University of Bern, Freiestrasse 3, 3012 Bern (Switzerland)
| | - Mahendra Awale
- Department of Chemistry and Biochemistry, National Center of Competence in Research NCCR TransCure, University of Bern, Freiestrasse 3, 3012 Bern (Switzerland)
| | - Michael Brand
- Department of Chemistry and Biochemistry, National Center of Competence in Research NCCR TransCure, University of Bern, Freiestrasse 3, 3012 Bern (Switzerland)
| | - Ruud van Deursen
- Department of Chemistry and Biochemistry, National Center of Competence in Research NCCR TransCure, University of Bern, Freiestrasse 3, 3012 Bern (Switzerland)
| | - Julian Schwartz
- Department of Chemistry and Biochemistry, National Center of Competence in Research NCCR TransCure, University of Bern, Freiestrasse 3, 3012 Bern (Switzerland)
| | - Michael Fine
- Institute of Biochemistry and Molecular Medicine, National Center of Competence in Research NCCR TransCure, University of Bern, Bühlstrasse 28, 3012 Bern (Switzerland)
| | - Gergely Kovacs
- Institute of Biochemistry and Molecular Medicine, National Center of Competence in Research NCCR TransCure, University of Bern, Bühlstrasse 28, 3012 Bern (Switzerland)
| | - Pascal Häfliger
- Institute of Biochemistry and Molecular Medicine, National Center of Competence in Research NCCR TransCure, University of Bern, Bühlstrasse 28, 3012 Bern (Switzerland)
| | - Gergely Gyimesi
- Institute of Biochemistry and Molecular Medicine, National Center of Competence in Research NCCR TransCure, University of Bern, Bühlstrasse 28, 3012 Bern (Switzerland)
| | - Abilashan Sithampari
- Institute of Biochemistry and Molecular Medicine, National Center of Competence in Research NCCR TransCure, University of Bern, Bühlstrasse 28, 3012 Bern (Switzerland)
| | - Roch‐Philippe Charles
- Institute of Biochemistry and Molecular Medicine, National Center of Competence in Research NCCR TransCure, University of Bern, Bühlstrasse 28, 3012 Bern (Switzerland)
| | - Matthias A. Hediger
- Institute of Biochemistry and Molecular Medicine, National Center of Competence in Research NCCR TransCure, University of Bern, Bühlstrasse 28, 3012 Bern (Switzerland)
| | - Jean‐Louis Reymond
- Department of Chemistry and Biochemistry, National Center of Competence in Research NCCR TransCure, University of Bern, Freiestrasse 3, 3012 Bern (Switzerland)
| |
Collapse
|
26
|
Simonin C, Awale M, Brand M, van Deursen R, Schwartz J, Fine M, Kovacs G, Häfliger P, Gyimesi G, Sithampari A, Charles RP, Hediger MA, Reymond JL. Optimization of TRPV6 Calcium Channel Inhibitors Using a 3D Ligand-Based Virtual Screening Method. Angew Chem Int Ed Engl 2015; 54:14748-52. [PMID: 26457814 DOI: 10.1002/anie.201507320] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 09/02/2015] [Indexed: 12/31/2022]
Abstract
Herein, we report the discovery of the first potent and selective inhibitor of TRPV6, a calcium channel overexpressed in breast and prostate cancer, and its use to test the effect of blocking TRPV6-mediated Ca(2+)-influx on cell growth. The inhibitor was discovered through a computational method, xLOS, a 3D-shape and pharmacophore similarity algorithm, a type of ligand-based virtual screening (LBVS) method described briefly here. Starting with a single weakly active seed molecule, two successive rounds of LBVS followed by optimization by chemical synthesis led to a selective molecule with 0.3 μM inhibition of TRPV6. The ability of xLOS to identify different scaffolds early in LBVS was essential to success. The xLOS method may be generally useful to develop tool compounds for poorly characterized targets.
Collapse
Affiliation(s)
- Céline Simonin
- Department of Chemistry and Biochemistry, National Center of Competence in Research NCCR TransCure, University of Bern, Freiestrasse 3, 3012 Bern (Switzerland)
| | - Mahendra Awale
- Department of Chemistry and Biochemistry, National Center of Competence in Research NCCR TransCure, University of Bern, Freiestrasse 3, 3012 Bern (Switzerland)
| | - Michael Brand
- Department of Chemistry and Biochemistry, National Center of Competence in Research NCCR TransCure, University of Bern, Freiestrasse 3, 3012 Bern (Switzerland)
| | - Ruud van Deursen
- Department of Chemistry and Biochemistry, National Center of Competence in Research NCCR TransCure, University of Bern, Freiestrasse 3, 3012 Bern (Switzerland)
| | - Julian Schwartz
- Department of Chemistry and Biochemistry, National Center of Competence in Research NCCR TransCure, University of Bern, Freiestrasse 3, 3012 Bern (Switzerland)
| | - Michael Fine
- Institute of Biochemistry and Molecular Medicine, National Center of Competence in Research NCCR TransCure, University of Bern, Bühlstrasse 28, 3012 Bern (Switzerland)
| | - Gergely Kovacs
- Institute of Biochemistry and Molecular Medicine, National Center of Competence in Research NCCR TransCure, University of Bern, Bühlstrasse 28, 3012 Bern (Switzerland)
| | - Pascal Häfliger
- Institute of Biochemistry and Molecular Medicine, National Center of Competence in Research NCCR TransCure, University of Bern, Bühlstrasse 28, 3012 Bern (Switzerland)
| | - Gergely Gyimesi
- Institute of Biochemistry and Molecular Medicine, National Center of Competence in Research NCCR TransCure, University of Bern, Bühlstrasse 28, 3012 Bern (Switzerland)
| | - Abilashan Sithampari
- Institute of Biochemistry and Molecular Medicine, National Center of Competence in Research NCCR TransCure, University of Bern, Bühlstrasse 28, 3012 Bern (Switzerland)
| | - Roch-Philippe Charles
- Institute of Biochemistry and Molecular Medicine, National Center of Competence in Research NCCR TransCure, University of Bern, Bühlstrasse 28, 3012 Bern (Switzerland)
| | - Matthias A Hediger
- Institute of Biochemistry and Molecular Medicine, National Center of Competence in Research NCCR TransCure, University of Bern, Bühlstrasse 28, 3012 Bern (Switzerland).
| | - Jean-Louis Reymond
- Department of Chemistry and Biochemistry, National Center of Competence in Research NCCR TransCure, University of Bern, Freiestrasse 3, 3012 Bern (Switzerland).
| |
Collapse
|
27
|
Investigating Apoptozole as a Chemical Probe for HSP70 Inhibition. PLoS One 2015; 10:e0140006. [PMID: 26458144 PMCID: PMC4601772 DOI: 10.1371/journal.pone.0140006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 09/02/2015] [Indexed: 11/26/2022] Open
Abstract
The use of chemical tools to validate clinical targets has gained in popularity over recent years and the importance of understanding the activity, selectivity and mechanism of action of these compounds is well recognized. Dysregulation of the HSP70 protein family has been linked to multiple cancer types and drug resistance, highlighting their importance as popular targets for anti-cancer drug development. Apoptozole is a recently identified small molecule, which has been reported to possess strong affinity for the HSP70 isoforms HSP72 and HSC70. We investigated apoptozole as a potential chemical tool for HSP70 inhibition. Unfortunately, using both biochemical and biophysical techniques, we were unable to find any experimental evidence that apoptozole binds to HSP70 in a specific and developable way. Instead, we provide experimental evidence that apoptozole forms aggregates under aqueous conditions that could interact with HSP70 proteins in a non-specific manner.
Collapse
|
28
|
Zheng W, Li G, Li X. Affinity purification in target identification: the specificity challenge. Arch Pharm Res 2015; 38:1661-85. [DOI: 10.1007/s12272-015-0635-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 07/07/2015] [Indexed: 12/16/2022]
|
29
|
Vangamudi B, Paul TA, Shah PK, Kost-Alimova M, Nottebaum L, Shi X, Zhan Y, Leo E, Mahadeshwar HS, Protopopov A, Futreal A, Tieu TN, Peoples M, Heffernan TP, Marszalek JR, Toniatti C, Petrocchi A, Verhelle D, Owen DR, Draetta G, Jones P, Palmer WS, Sharma S, Andersen JN. The SMARCA2/4 ATPase Domain Surpasses the Bromodomain as a Drug Target in SWI/SNF-Mutant Cancers: Insights from cDNA Rescue and PFI-3 Inhibitor Studies. Cancer Res 2015; 75:3865-3878. [PMID: 26139243 DOI: 10.1158/0008-5472.can-14-3798] [Citation(s) in RCA: 197] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 06/15/2015] [Indexed: 12/21/2022]
Abstract
The SWI/SNF multisubunit complex modulates chromatin structure through the activity of two mutually exclusive catalytic subunits, SMARCA2 and SMARCA4, which both contain a bromodomain and an ATPase domain. Using RNAi, cancer-specific vulnerabilities have been identified in SWI/SNF-mutant tumors, including SMARCA4-deficient lung cancer; however, the contribution of conserved, druggable protein domains to this anticancer phenotype is unknown. Here, we functionally deconstruct the SMARCA2/4 paralog dependence of cancer cells using bioinformatics, genetic, and pharmacologic tools. We evaluate a selective SMARCA2/4 bromodomain inhibitor (PFI-3) and characterize its activity in chromatin-binding and cell-functional assays focusing on cells with altered SWI/SNF complex (e.g., lung, synovial sarcoma, leukemia, and rhabdoid tumors). We demonstrate that PFI-3 is a potent, cell-permeable probe capable of displacing ectopically expressed, GFP-tagged SMARCA2-bromodomain from chromatin, yet contrary to target knockdown, the inhibitor fails to display an antiproliferative phenotype. Mechanistically, the lack of pharmacologic efficacy is reconciled by the failure of bromodomain inhibition to displace endogenous, full-length SMARCA2 from chromatin as determined by in situ cell extraction, chromatin immunoprecipitation, and target gene expression studies. Furthermore, using inducible RNAi and cDNA complementation (bromodomain- and ATPase-dead constructs), we unequivocally identify the ATPase domain, and not the bromodomain of SMARCA2, as the relevant therapeutic target with the catalytic activity suppressing defined transcriptional programs. Taken together, our complementary genetic and pharmacologic studies exemplify a general strategy for multidomain protein drug-target validation and in case of SMARCA2/4 highlight the potential for drugging the more challenging helicase/ATPase domain to deliver on the promise of synthetic-lethality therapy.
Collapse
Affiliation(s)
- Bhavatarini Vangamudi
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, TX
| | | | - Parantu K Shah
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, TX
| | - Maria Kost-Alimova
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, TX
| | | | - Xi Shi
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, TX
| | - Yanai Zhan
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, TX
| | - Elisabetta Leo
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, TX
| | - Harshad S Mahadeshwar
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, TX
| | - Alexei Protopopov
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, TX
| | - Andrew Futreal
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, TX
| | - Trang N Tieu
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, TX
| | - Mike Peoples
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, TX
| | - Timothy P Heffernan
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, TX
| | - Joseph R Marszalek
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, TX
| | - Carlo Toniatti
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, TX
| | - Alessia Petrocchi
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, TX
| | | | | | - Giulio Draetta
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, TX
| | - Philip Jones
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, TX
| | - Wylie S Palmer
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, TX
| | | | - Jannik N Andersen
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, TX
| |
Collapse
|
30
|
Meyer CJ, Krauth M, Wick MJ, Shay JW, Gellert G, De Brabander JK, Northcote PT, Miller JH. Peloruside A Inhibits Growth of Human Lung and Breast Tumor Xenografts in an Athymic nu/nu Mouse Model. Mol Cancer Ther 2015; 14:1816-23. [DOI: 10.1158/1535-7163.mct-15-0167] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 05/28/2015] [Indexed: 11/16/2022]
|