1
|
Witwit H, Cubitt B, Khafaji R, Castro EM, Goicoechea M, Lorenzo MM, Blasco R, Martinez-Sobrido L, de la Torre JC. Repurposing Drugs for Synergistic Combination Therapies to Counteract Monkeypox Virus Tecovirimat Resistance. Viruses 2025; 17:92. [PMID: 39861882 PMCID: PMC11769280 DOI: 10.3390/v17010092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 01/06/2025] [Accepted: 01/09/2025] [Indexed: 01/30/2025] Open
Abstract
The ongoing monkeypox (mpox) disease outbreak has spread to multiple countries in Central Africa and evidence indicates it is driven by a more virulent clade I monkeypox virus (MPXV) strain than the clade II strain associated with the 2022 global mpox outbreak, which led the WHO to declare this mpox outbreak a public health emergency of international concern. The FDA-approved small molecule antiviral tecovirimat (TPOXX) is recommended to treat mpox cases with severe symptoms, but the limited efficacy of TPOXX and the emergence of TPOXX resistant MPXV variants has challenged this medical practice of care and highlighted the urgent need for alternative therapeutic strategies. In this study we have used vaccinia virus (VACV) as a surrogate of MPXV to assess the antiviral efficacy of combination therapy of TPOXX together with mycophenolate mofetil (MMF), an FDA-approved immunosuppressive agent that we have shown to inhibit VACV and MPXV, or the N-myristoyltransferase (NMT) inhibitor IMP-1088. Both MMF and IMP-1088 drugs exhibited strong dose-dependent antiviral activity against VACV and mpox, and potent synergistic effects in conjunction with TPOXX. Our findings support combination therapy of direct-acting (TPOXX) and host-targeted (MMF and IMP-1088) antivirals as a promising approach to treat mpox and prevent the emergence and spread of TPOXX-resistant MPXV variants.
Collapse
Affiliation(s)
- Haydar Witwit
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Beatrice Cubitt
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Roaa Khafaji
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | - Miguel Goicoechea
- Division of Infectious Diseases, Scripps Health, San Diego, CA 92103, USA
| | | | - Rafael Blasco
- Departamento de Biotecnología, INIA CSIC, 28040 Madrid, Spain
| | | | - Juan C. de la Torre
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
2
|
Gautam M, Gabrani R. Current Combinatorial Therapeutic Aspects: The Future Prospect for Glioblastoma Treatment. Curr Med Sci 2024; 44:1175-1184. [PMID: 39695017 DOI: 10.1007/s11596-024-2950-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 03/21/2024] [Indexed: 12/20/2024]
Abstract
There are several types of brain tumors but glioblastoma (GBM) is one of the highly malignant tumors. A primary concern with GBM is that the treatment is inadequate. Even after giving many multi-stacked combinations of therapies to patients, inclusive of chemotherapy, radiation, and surgery, the median survival rate remains poor. Due to its heterogeneous nature, the use of selective therapy for specific targeting of tumor cells is of particular importance. Although many treatment alternatives which include surgery with adjuvant chemotherapy and radiotherapy are available, the prognosis of the disease is very poor. Combination therapy is becoming the foundation of modern antitumor therapy and it is continuously evolving and developing innovative drug regimens as evidenced by ongoing preclinical and clinical trials. In this review, we discuss the current treatment options and emerging therapeutic approaches for the treatment of GBM. The prospects for alternative glioblastoma therapy are also discussed.
Collapse
Affiliation(s)
- Megha Gautam
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, 201309, India
| | - Reema Gabrani
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, 201309, India.
| |
Collapse
|
3
|
Fernandes LDS, Ogasawara LS, Medina-Alarcón KP, dos Santos KS, de Matos Silva S, de Assis LR, Regasini LO, de Oliveira AG, Mendes Giannini MJS, Scarpa MV, Fusco Almeida AM. Bioprospecting, Synergistic Antifungal and Toxicological Aspects of the Hydroxychalcones and Their Association with Azole Derivates against Candida spp. for Treating Vulvovaginal Candidiasis. Pharmaceutics 2024; 16:843. [PMID: 39065540 PMCID: PMC11279727 DOI: 10.3390/pharmaceutics16070843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/10/2024] [Accepted: 06/17/2024] [Indexed: 07/28/2024] Open
Abstract
Vulvovaginal candidiasis (VVC) remains a prevalent fungal disease, characterized by challenges, such as increased fungal resistance, side effects of current treatments, and the rising prevalence of non-albicans Candida spp. naturally more resistant. This study aimed to propose a novel therapeutic approach by investigating the antifungal properties and toxicity of 2-hydroxychalcone (2-HC) and 3'-hydroxychalcone (3'-HC), both alone and in combination with fluconazole (FCZ) and clotrimazole (CTZ). A lipid carrier (LC) was also developed to deliver these molecules. The study evaluated in vitro anti-Candida activity against five Candida species and assessed cytotoxicity in the C33-A cell line. The safety and therapeutic efficacy of in vivo were tested using an alternative animal model, Galleria mellonella. The results showed antifungal activity of 2-HC and 3'-HC, ranging from 7.8 to 31.2 as fungistatic and 15.6 to 125.0 mg/L as fungicide effect, with cell viability above 80% from a concentration of 9.3 mg/L (2-HC). Synergistic and partially synergistic interactions of these chalcones with FCZ and CTZ demonstrated significant improvement in antifungal activity, with MIC values ranging from 0.06 to 62.5 mg/L. Some combinations reduced cytotoxicity, achieving 100% cell viability in many interactions. Additionally, two LCs with suitable properties for intravaginal application were developed. These formulations demonstrated promising therapeutic efficacy and low toxicity in Galleria mellonella assays. These results suggest the potential of this approach in developing new therapies for VVC.
Collapse
Affiliation(s)
- Lígia de Souza Fernandes
- Laboratory of Clinical Mycology, Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Road Araraquara Jaú, Km 01, S/N, Araraquara 14800-903, SP, Brazil; (L.d.S.F.); (L.S.O.); (K.P.M.-A.); (K.S.d.S.); (S.d.M.S.); (M.J.S.M.G.)
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Road Araraquara Jaú, Km 01, S/N, Araraquara 14800-903, SP, Brazil; (A.G.d.O.); (M.V.S.)
| | - Letícia Sayuri Ogasawara
- Laboratory of Clinical Mycology, Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Road Araraquara Jaú, Km 01, S/N, Araraquara 14800-903, SP, Brazil; (L.d.S.F.); (L.S.O.); (K.P.M.-A.); (K.S.d.S.); (S.d.M.S.); (M.J.S.M.G.)
| | - Kaila Petronila Medina-Alarcón
- Laboratory of Clinical Mycology, Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Road Araraquara Jaú, Km 01, S/N, Araraquara 14800-903, SP, Brazil; (L.d.S.F.); (L.S.O.); (K.P.M.-A.); (K.S.d.S.); (S.d.M.S.); (M.J.S.M.G.)
| | - Kelvin Sousa dos Santos
- Laboratory of Clinical Mycology, Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Road Araraquara Jaú, Km 01, S/N, Araraquara 14800-903, SP, Brazil; (L.d.S.F.); (L.S.O.); (K.P.M.-A.); (K.S.d.S.); (S.d.M.S.); (M.J.S.M.G.)
| | - Samanta de Matos Silva
- Laboratory of Clinical Mycology, Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Road Araraquara Jaú, Km 01, S/N, Araraquara 14800-903, SP, Brazil; (L.d.S.F.); (L.S.O.); (K.P.M.-A.); (K.S.d.S.); (S.d.M.S.); (M.J.S.M.G.)
| | - Letícia Ribeiro de Assis
- Department of Chemistry and Environmental Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), St. Quirino de Andrade, 215, São José do Rio Preto 01049-010, SP, Brazil; (L.R.d.A.); (L.O.R.)
| | - Luís Octavio Regasini
- Department of Chemistry and Environmental Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), St. Quirino de Andrade, 215, São José do Rio Preto 01049-010, SP, Brazil; (L.R.d.A.); (L.O.R.)
| | - Anselmo Gomes de Oliveira
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Road Araraquara Jaú, Km 01, S/N, Araraquara 14800-903, SP, Brazil; (A.G.d.O.); (M.V.S.)
| | - Maria José Soares Mendes Giannini
- Laboratory of Clinical Mycology, Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Road Araraquara Jaú, Km 01, S/N, Araraquara 14800-903, SP, Brazil; (L.d.S.F.); (L.S.O.); (K.P.M.-A.); (K.S.d.S.); (S.d.M.S.); (M.J.S.M.G.)
| | - Maria Virginia Scarpa
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Road Araraquara Jaú, Km 01, S/N, Araraquara 14800-903, SP, Brazil; (A.G.d.O.); (M.V.S.)
| | - Ana Marisa Fusco Almeida
- Laboratory of Clinical Mycology, Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Road Araraquara Jaú, Km 01, S/N, Araraquara 14800-903, SP, Brazil; (L.d.S.F.); (L.S.O.); (K.P.M.-A.); (K.S.d.S.); (S.d.M.S.); (M.J.S.M.G.)
| |
Collapse
|
4
|
Khambhati K, Siruka D, Ramakrishna S, Singh V. Current progress in high-throughput screening for drug repurposing. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 205:247-257. [PMID: 38789182 DOI: 10.1016/bs.pmbts.2024.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
High-throughput screening (HTS) is a simple, rapid and cost-effective solution to determine active candidates from large library of compounds. HTS is gaining attention from Pharmaceuticals and Biotechnology companies for accelerating their drug discovery programs. Conventional drug discovery program is time consuming and expensive. In contrast drug repurposing approach is cost-effective and increases speed of drug discovery as toxicity profile is already known. The present chapter highlight HTS technology including microplate, microfluidics, lab-on-chip, organ-on-chip for drug repurposing. The current chapter also highlights the application of HTS for bacterial infections and cancer.
Collapse
Affiliation(s)
- Khushal Khambhati
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana, Gujarat, India
| | - Deepak Siruka
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana, Gujarat, India
| | - Suresh Ramakrishna
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea; College of Medicine, Hanyang University, Seoul, South Korea
| | - Vijai Singh
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana, Gujarat, India.
| |
Collapse
|
5
|
Xu S, Esmaeili S, Cardozo-Ojeda EF, Goyal A, White JM, Polyak SJ, Schiffer JT. Two-way pharmacodynamic modeling of drug combinations and its application to pairs of repurposed Ebola and SARS-CoV-2 agents. Antimicrob Agents Chemother 2024; 68:e0101523. [PMID: 38470112 PMCID: PMC10989026 DOI: 10.1128/aac.01015-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 02/20/2024] [Indexed: 03/13/2024] Open
Abstract
Existing pharmacodynamic (PD) mathematical models for drug combinations discriminate antagonistic, additive, multiplicative, and synergistic effects, but fail to consider how concentration-dependent drug interaction effects may vary across an entire dose-response matrix. We developed a two-way pharmacodynamic (TWPD) model to capture the PD of two-drug combinations. TWPD captures interactions between upstream and downstream drugs that act on different stages of viral replication, by quantifying upstream drug efficacy and concentration-dependent effects on downstream drug pharmacodynamic parameters. We applied TWPD to previously published in vitro drug matrixes for repurposed potential anti-Ebola and anti-SARS-CoV-2 drug pairs. Depending on the drug pairing, the model recapitulated combined efficacies as or more accurately than existing models and can be used to infer efficacy at untested drug concentrations. TWPD fits the data slightly better in one direction for all drug pairs, meaning that we can tentatively infer the upstream drug. Based on its high accuracy, TWPD could be used in concert with PK models to estimate the therapeutic effects of drug pairs in vivo.
Collapse
Affiliation(s)
- Shuang Xu
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Diseases Division, Seattle, Washington, USA
| | - Shadisadat Esmaeili
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Diseases Division, Seattle, Washington, USA
| | - E. Fabian Cardozo-Ojeda
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Diseases Division, Seattle, Washington, USA
| | - Ashish Goyal
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Diseases Division, Seattle, Washington, USA
| | - Judith M. White
- Department of Microbiology, University of Virginia, Charlottesville, Virginia, USA
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Stephen J. Polyak
- Virology Division, Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
- Department of Global Health, University of Washington, Seattle, Washington, USA
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Joshua T. Schiffer
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Diseases Division, Seattle, Washington, USA
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, USA
| |
Collapse
|
6
|
Shi J, Chen C, Zhang M, Wang Z, Liu Y. Repurposing Anthracycline Drugs as Potential Antibiotic Candidates and Potentiators to Tackle Multidrug-Resistant Pathogens. ACS Infect Dis 2024; 10:594-605. [PMID: 38183662 DOI: 10.1021/acsinfecdis.3c00501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2024]
Abstract
The escalating mortality rate resulting from multidrug-resistant (MDR) bacteria has intensified the urgency for innovative antimicrobial agents. Currently, the antimicrobial activity of compounds is usually assessed by testing the minimum inhibitory concentration (MIC) on a standardized laboratory medium. However, such screening conditions differ from the in vivo environment, making it easy to overlook some antibacterial agents that are active in vivo but less active in vitro. Herein, by using tissue medium RPMI, we uncover that anthracyclines, especially mitoxantrone (MX), exhibit improved bacteriostatic and bactericidal effects against various MDR bacteria in host-like media. Transcriptome results reveal that LPS modification-related genes of bacterial membrane surfaces and metabolic genes are significantly down-regulated in RPMI media. Mechanistic studies demonstrate that MX leads to more substantial membrane damage, increased ROS production, and DNA damage in host-mimicking conditions. Furthermore, we demonstrate that MX and colistin exhibit strong synergistic effects against mcr-positive strains in host-mimicking media by disrupting iron homeostasis. In an experimental murine infection model, MX monotreatment demonstrates therapeutic efficacy in reducing bacterial burdens. Overall, our work suggests that mimicking the host condition is an effective strategy to identify new antimicrobial agents and highlights the therapeutic potential of anthracycline drugs in combating MDR pathogens.
Collapse
Affiliation(s)
- Jingru Shi
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Chen Chen
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Miao Zhang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Zhiqiang Wang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China
| | - Yuan Liu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
7
|
Amarjargal A, Cegielska O, Kolbuk D, Kalaska B, Sajkiewicz P. On-Demand Sequential Release of Dual Drug from pH-Responsive Electrospun Janus Nanofiber Membranes toward Wound Healing and Infection Control. ACS APPLIED MATERIALS & INTERFACES 2024; 16:153-165. [PMID: 38150182 DOI: 10.1021/acsami.3c13676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Drugs against bacteria and abnormal cells, such as antibiotics and anticancer drugs, may save human lives. However, drug resistance is becoming more common in the clinical world. Nowadays, a synergistic action of multiple bioactive compounds and their combination with smart nanoplatforms has been considered an alternative therapeutic strategy to fight drug resistance in multidrug-resistant cancers and microorganisms. The present study reports a one-step fabrication of innovative pH-responsive Janus nanofibers loaded with two active compounds, each in separate polymer compartments for synergistic combination therapy. By dissolving one of the compartments from the nanofibers, we could clearly demonstrate a highly yielded anisotropic Janus structure with two faces by scanning electron microscopy (SEM) analysis. To better understand the distinctive attributes of Janus nanofibers, several analytical methods, such as X-ray diffraction (XRD), FTIR spectroscopy, and contact angle goniometry, were utilized to examine and compare them to those of monolithic nanofibers. Furthermore, a drug release test was conducted in pH 7.4 and 6.0 media since the properties of Janus nanofibers correlate significantly with different environmental pH levels. This resulted in the on-demand sequential codelivery of octenidine (OCT) and curcumin (CUR) to the corresponding pH stimulus. Accordingly, the antibacterial properties of Janus fibers against Escherichia coli and Staphylococcus aureus, tested in a suspension test, were pH-dependent, i.e., greater in pH 6 due to the synergistic action of two active compounds, and Eudragit E100 (EE), and highly satisfactory. The biocompatibility of the Janus fibers was confirmed in selected tests.
Collapse
Affiliation(s)
- Altangerel Amarjargal
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5b, Warsaw 02-106, Poland
- Power Engineering School, Mongolian University of Science and Technology, 8th khoroo, Baga toiruu, Sukhbaatar district, Ulaanbaatar 14191, Mongolia
| | - Olga Cegielska
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5b, Warsaw 02-106, Poland
| | - Dorota Kolbuk
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5b, Warsaw 02-106, Poland
| | - Bartlomiej Kalaska
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2c, Bialystok 15-089, Poland
| | - Pawel Sajkiewicz
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5b, Warsaw 02-106, Poland
| |
Collapse
|
8
|
Ugurel E, Turgut-Balik D. Synergistic combination of carvedilol, amlodipine, amitriptyline, and antibiotics as an alternative treatment approach for the susceptible and multidrug-resistant A. baumannii infections via drug repurposing. Eur J Clin Microbiol Infect Dis 2023; 42:1063-1072. [PMID: 37428238 DOI: 10.1007/s10096-023-04634-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/15/2023] [Indexed: 07/11/2023]
Abstract
We evaluated in vitro activity of 13 drugs used in the treatment of some non-communicable diseases via repurposing to determine their potential use in the treatment of Acinetobacter baumannii infections caused by susceptible and multidrug-resistant strains. A. baumannii is a multidrug-resistant Gram-negative bacteria causing nosocomial infections, especially in intensive care units. It has been identified in the WHO critical pathogen list and this emphasises urgent need for new treatment options. As the development of new therapeutics is expensive and time consuming, finding new uses of existing drugs via drug repositioning has been favoured. Antimicrobial susceptibility tests were conducted on all 13 drugs according to CLSI. Drugs with MIC values below 128 μg/mL and control antibiotics were further subjected to synergetic effect and bacterial time-kill analysis. Carvedilol-gentamicin (FICI 0.2813) and carvedilol-amlodipine (FICI 0.5625) were determined to have synergetic and additive effect, respectively, on the susceptible A. baumannii strain, and amlodipine-tetracycline (FICI 0.75) and amitriptyline-tetracycline (FICI 0.75) to have additive effect on the multidrug-resistant A. baumannii strain. Most remarkably, both amlodipine and amitriptyline reduced the MIC of multidrug-resistant, including some carbapenems, A. baumannii reference antibiotic tetracycline from 2 to 0.5 μg/mL, for 4-folds. All these results were further supported by bacterial time-kill assay and all combinations showed bactericidal activity, at certain hours, at 4XMIC. Combinations proposed in this study may provide treatment options for both susceptible and multidrug-resistant A. baumannii infections but requires further pharmacokinetics and pharmacodynamics analyses and in vivo re-evaluations using appropriate models.
Collapse
Affiliation(s)
- Erennur Ugurel
- Faculty of Chemical and Metallurgical Engineering, Department of Bioengineering, Yildiz Technical University, Davutpasa Campus, 34210, Esenler, Istanbul, Türkiye
| | - Dilek Turgut-Balik
- Faculty of Chemical and Metallurgical Engineering, Department of Bioengineering, Yildiz Technical University, Davutpasa Campus, 34210, Esenler, Istanbul, Türkiye.
| |
Collapse
|
9
|
Giugliano R, Della Sala G, Buonocore C, Zannella C, Tedesco P, Palma Esposito F, Ragozzino C, Chianese A, Morone MV, Mazzella V, Núñez-Pons L, Folliero V, Franci G, De Filippis A, Galdiero M, de Pascale D. New Imidazolium Alkaloids with Broad Spectrum of Action from the Marine Bacterium Shewanella aquimarina. Pharmaceutics 2023; 15:2139. [PMID: 37631353 PMCID: PMC10458398 DOI: 10.3390/pharmaceutics15082139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/03/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
The continuous outbreak of drug-resistant bacterial and viral infections imposes the need to search for new drug candidates. Natural products from marine bacteria still inspire the design of pharmaceuticals. Indeed, marine bacteria have unique metabolic flexibility to inhabit each ecological niche, thus expanding their biosynthetic ability to assemble unprecedented molecules. The One-Strain-Many-Compounds approach and tandem mass spectrometry allowed the discovery of a Shewanella aquimarina strain as a source of novel imidazolium alkaloids via molecular networking. The alkaloid mixture was shown to exert bioactivities such as: (a) antibacterial activity against antibiotic-resistant Staphylococcus aureus clinical isolates at 100 µg/mL, (b) synergistic effects with tigecycline and linezolid, (c) restoration of MRSA sensitivity to fosfomycin, and (d) interference with the biofilm formation of S. aureus 6538 and MRSA. Moreover, the mixture showed antiviral activity against viruses with and without envelopes. Indeed, it inhibited the entry of coronavirus HcoV-229E and herpes simplex viruses into human cells and inactivated poliovirus PV-1 in post-infection assay at 200 µg/mL. Finally, at the same concentration, the fraction showed anthelminthic activity against Caenorhabditis elegans, causing 99% mortality after 48 h. The broad-spectrum activities of these compounds are partially due to their biosurfactant behavior and make them promising candidates for breaking down drug-resistant infectious diseases.
Collapse
Affiliation(s)
- Rosa Giugliano
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (R.G.); (C.Z.); (A.C.); (M.V.M.); (A.D.F.)
| | - Gerardo Della Sala
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio Acton, 55, 80133 Naples, Italy; (G.D.S.); (C.B.); (P.T.); (F.P.E.); (C.R.)
| | - Carmine Buonocore
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio Acton, 55, 80133 Naples, Italy; (G.D.S.); (C.B.); (P.T.); (F.P.E.); (C.R.)
| | - Carla Zannella
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (R.G.); (C.Z.); (A.C.); (M.V.M.); (A.D.F.)
| | - Pietro Tedesco
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio Acton, 55, 80133 Naples, Italy; (G.D.S.); (C.B.); (P.T.); (F.P.E.); (C.R.)
| | - Fortunato Palma Esposito
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio Acton, 55, 80133 Naples, Italy; (G.D.S.); (C.B.); (P.T.); (F.P.E.); (C.R.)
| | - Costanza Ragozzino
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio Acton, 55, 80133 Naples, Italy; (G.D.S.); (C.B.); (P.T.); (F.P.E.); (C.R.)
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d’Alcontres, 31, 98166 Messina, Italy
| | - Annalisa Chianese
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (R.G.); (C.Z.); (A.C.); (M.V.M.); (A.D.F.)
| | - Maria Vittoria Morone
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (R.G.); (C.Z.); (A.C.); (M.V.M.); (A.D.F.)
| | - Valerio Mazzella
- Department of Integrative Marine Ecology (EMI), Stazione Zoologica Anton Dohrn, Ischia Marine Centre, Ischia, 80077 Naples, Italy;
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy;
| | - Laura Núñez-Pons
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy;
- Department of Integrative Marine Ecology (EMI), Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| | - Veronica Folliero
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (V.F.); (G.F.)
| | - Gianluigi Franci
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (V.F.); (G.F.)
| | - Anna De Filippis
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (R.G.); (C.Z.); (A.C.); (M.V.M.); (A.D.F.)
| | - Massimiliano Galdiero
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (R.G.); (C.Z.); (A.C.); (M.V.M.); (A.D.F.)
| | - Donatella de Pascale
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio Acton, 55, 80133 Naples, Italy; (G.D.S.); (C.B.); (P.T.); (F.P.E.); (C.R.)
| |
Collapse
|
10
|
Fletcher M, McCormack A, Parcell BJ, Coote PJ. Combination Therapy with Ciprofloxacin and Pentamidine against Multidrug-Resistant Pseudomonas aeruginosa: Assessment of In Vitro and In Vivo Efficacy and the Role of Resistance-Nodulation-Division (RND) Efflux Pumps. Antibiotics (Basel) 2023; 12:1236. [PMID: 37627656 PMCID: PMC10451767 DOI: 10.3390/antibiotics12081236] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
The aim of this work was to (i) evaluate the efficacy of a combination treatment of pentamidine with ciprofloxacin against Galleria mellonella larvae infected with an MDR strain of P. aeruginosa and (ii) determine if pentamidine acts as an efflux-pump inhibitor. Resistant clinical isolates, mutant strains overexpressing one of three RND efflux pumps (MexAB-OprM, MexCD-OprJ, and MexEF-OprN), and a strain with the same three pumps deleted were used. MIC assays confirmed that the clinical isolates and the mutants overexpressing efflux pumps were resistant to ciprofloxacin and pentamidine. The deletion of the three efflux pumps induced sensitivity to both compounds. Exposure to pentamidine and ciprofloxacin in combination resulted in the synergistic inhibition of all resistant strains in vitro, but no synergy was observed versus the efflux-pump deletion strain. The treatment of infected G. mellonella larvae with the combination of pentamidine and ciprofloxacin resulted in enhanced efficacy compared with the monotherapies and significantly reduced the number of proliferating bacteria. Our measurement of efflux activity from cells revealed that pentamidine had a specific inhibitory effect on the MexCD-OprJ and MexEF-OprN efflux pumps. However, the efflux activity and membrane permeability assays revealed that pentamidine also disrupted the membrane of all cells. In conclusion, pentamidine does possess some efflux-pump inhibitory activity, in addition to a more general disruptive effect on membrane integrity that accounts for its ability to potentiate ciprofloxacin activity. Notably, the enhanced efficacy of combination therapy with pentamidine and ciprofloxacin versus MDR P. aeruginosa strains in vivo merits further investigation into its potential to treat infections via this pathogen in patients.
Collapse
Affiliation(s)
- Megan Fletcher
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, The North Haugh, St Andrews, Fife KY16 9ST, UK; (M.F.); (A.M.)
| | - Alex McCormack
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, The North Haugh, St Andrews, Fife KY16 9ST, UK; (M.F.); (A.M.)
| | - Benjamin J. Parcell
- NHS Tayside, Medical Microbiology, Ninewells Hospital and Medical School, Dundee DD1 9SY, UK;
| | - Peter J. Coote
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, The North Haugh, St Andrews, Fife KY16 9ST, UK; (M.F.); (A.M.)
| |
Collapse
|
11
|
Venkateswaran P, Vasudevan S, David H, Shaktivel A, Shanmugam K, Neelakantan P, Solomon AP. Revisiting ESKAPE Pathogens: virulence, resistance, and combating strategies focusing on quorum sensing. Front Cell Infect Microbiol 2023; 13:1159798. [PMID: 37457962 PMCID: PMC10339816 DOI: 10.3389/fcimb.2023.1159798] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 06/08/2023] [Indexed: 07/18/2023] Open
Abstract
The human-bacterial association is long-known and well-established in terms of both augmentations of human health and attenuation. However, the growing incidents of nosocomial infections caused by the ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter sp.) call for a much deeper understanding of these organisms. Adopting a holistic approach that includes the science of infection and the recent advancements in preventing and treating infections is imperative in designing novel intervention strategies against ESKAPE pathogens. In this regard, this review captures the ingenious strategies commissioned by these master players, which are teamed up against the defenses of the human team, that are equally, if not more, versatile and potent through an analogy. We have taken a basketball match as our analogy, dividing the human and bacterial species into two teams playing with the ball of health. Through this analogy, we make the concept of infectious biology more accessible.
Collapse
Affiliation(s)
- Parvathy Venkateswaran
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Sahana Vasudevan
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Helma David
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Adityan Shaktivel
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Karthik Shanmugam
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Prasanna Neelakantan
- Division of Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Adline Princy Solomon
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| |
Collapse
|
12
|
Shanbhag C, Saraogi I. Bacterial GTPases as druggable targets to tackle antimicrobial resistance. Bioorg Med Chem Lett 2023; 87:129276. [PMID: 37030567 DOI: 10.1016/j.bmcl.2023.129276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 04/08/2023]
Abstract
Small molecules as antibacterial agents have contributed immensely to the growth of modern medicine over the last several decades. However, the emergence of drug resistance among bacterial pathogens has undermined the effectiveness of the existing antibiotics. Thus, there is an exigency to address the antibiotic crisis by developing new antibacterial agents and identifying novel drug targets in bacteria. In this review, we summarize the importance of guanosine triphosphate hydrolyzing proteins (GTPases) as key agents for bacterial survival. We also discuss representative examples of small molecules that target bacterial GTPases as novel antibacterial agents, and highlight areas that are ripe for exploration. Given their vital roles in cell viability, virulence, and antibiotic resistance, bacterial GTPases are highly attractive antibacterial targets that will likely play a vital role in the fight against antimicrobial resistance.
Collapse
|
13
|
Jesmina ARS, Induja DK, Drissya T, Sruthi CR, Raghu KG, Nelson-Sathi S, Kumar BNSAD, Lankalapalli RS. In vitro antibacterial effects of combination of ciprofloxacin with compounds isolated from Streptomyces luteireticuli NIIST-D75. J Antibiot (Tokyo) 2023; 76:198-210. [PMID: 36781977 DOI: 10.1038/s41429-023-00600-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 01/11/2023] [Accepted: 01/31/2023] [Indexed: 02/15/2023]
Abstract
Three phenazines, 1-methoxyphenazine (1), methyl-6-methoxyphenazine-1-carboxylate (2), 1,6-dimethoxyphenazine (4), and a 2,3-dimethoxy benzamide (3) were isolated from the Streptomyces luteireticuli NIIST-D75, and the antibacterial effects of compounds 1-3, each in combination with ciprofloxacin, were investigated. The in vitro antibacterial activity was assessed by microdilution, checkerboard, and time-kill assay against Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and Salmonella typhi. According to the checkerboard assay results, each combination of compounds 1, 2 and 3 with ciprofloxacin resulted in a significantly lower minimum inhibitory concentrations (MICs) of 0.02-1.37 µg ml-1, suggesting synergistic combinations by fractional inhibitory concentration index, and displayed bactericidal activity in time-kill kinetics within 48 h. SEM analysis was carried out to determine the changes in morphology in S. aureus and E. coli during treatment with individual combination of ciprofloxacin and compounds (1-3), which revealed drastic changes in the cells such as dent formation, biofilm disruption, cell bursting, and doughnut-like formation, change in surface morphology in S. aureus, and cell elongation, cell burst with ruptured cell, and change in surface morphology in E. coli. Hep G2 cell viability was not affected by the compounds (1-3) that were tested for cytotoxicity up to 250 µM.
Collapse
Affiliation(s)
- Abdul Rasheed Safiya Jesmina
- Agro-Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, 695019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - D K Induja
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, 695019, India
| | - Thankappan Drissya
- Agro-Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, 695019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Chakiniplackal Rajan Sruthi
- Agro-Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, 695019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Kozhiparambil Gopalan Raghu
- Agro-Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, 695019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shijulal Nelson-Sathi
- Transdisciplinary Biology, Bioinformatics Laboratory, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, 695014, India
| | - Bhaskaran Nair Saraswathy Amma Dileep Kumar
- Agro-Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, 695019, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - Ravi S Lankalapalli
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, 695019, India.
| |
Collapse
|
14
|
Spiramycin Disarms Pseudomonas aeruginosa without Inhibiting Growth. Antibiotics (Basel) 2023; 12:antibiotics12030499. [PMID: 36978366 PMCID: PMC10044227 DOI: 10.3390/antibiotics12030499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/26/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Spiramycin is a 16-membered macrolide antibiotic currently used in therapy to treat infections caused by Gram-positive bacteria responsible for respiratory tract infections, and it is also effective against some Gram-negative bacteria and against Toxoplasma spp. In contrast, Pseudomonas aeruginosa, which is one of the pathogens of most concern globally, is intrinsically resistant to spiramycin. In this study we show that spiramycin inhibits the expression of virulence determinants in P. aeruginosa in the absence of any significant effect on bacterial multiplication. In vitro experiments demonstrated that production of pyoverdine and pyocyanin by an environmental strain of P. aeruginosa was markedly reduced in the presence of spiramycin, as were biofilm formation, swarming motility, and rhamnolipid production. Moreover, treatment of P. aeruginosa with spiramycin sensitized the bacterium to H2O2 exposure. The ability of spiramycin to dampen the virulence of the P. aeruginosa strain was confirmed in a Galleria mellonella animal model. The results demonstrated that when G. mellonella larvae were infected with P. aeruginosa, the mortality after 24 h was >90%. In contrast, when the spiramycin was injected together with the bacterium, the mortality dropped to about 50%. Furthermore, marked reduction in transcript levels of the antimicrobial peptides gallerimycin, gloverin and moricin, and lysozyme was found in G. mellonella larvae infected with P. aeruginosa and treated with spiramycin, compared to the larvae infected without spiramycin treatment suggesting an immunomodulatory activity of spiramycin. These results lay the foundation for clinical studies to investigate the possibility of using the spiramycin as an anti-virulence and anti-inflammatory drug for a more effective treatment of P. aeruginosa infections, in combination with other antibiotics.
Collapse
|
15
|
Synergy between Human Peptide LL-37 and Polymyxin B against Planktonic and Biofilm Cells of Escherichia coli and Pseudomonas aeruginosa. Antibiotics (Basel) 2023; 12:antibiotics12020389. [PMID: 36830299 PMCID: PMC9952724 DOI: 10.3390/antibiotics12020389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 02/01/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
The rise in antimicrobial resistant bacteria is limiting the number of effective treatments for bacterial infections. Escherichia coli and Pseudomonas aeruginosa are two of the pathogens with the highest prevalence of resistance, and with the greatest need for new antimicrobial agents. Combinations of antimicrobial peptides (AMPs) and antibiotics that display synergistic effects have been shown to be an effective strategy in the development of novel therapeutic agents. In this study, we investigated the synergy between the AMP LL-37 and various classes of antibiotics against E. coli and P. aeruginosa strains. Of the six antibiotics tested (ampicillin, tetracycline, ciprofloxacin, gentamicin, aztreonam, and polymyxin B (PMB)), LL-37 displayed the strongest synergy against E. coli MG1655 and P. aeruginosa PAO1 laboratory strains when combined with PMB. Given the strong synergy, the PMB + LL-37 combination was chosen for further examination where it demonstrated synergy against multidrug-resistant and clinical E. coli isolates. Synergy of PMB + LL-37 towards clinical isolates of P. aeruginosa varied and showed synergistic, additive, or indifferent effects. The PMB + LL-37 combination treatment showed significant prevention of biofilm formation as well as eradication of pre-grown E. coli and P. aeruginosa biofilms. Using the Galleria mellonella wax worm model, we showed that the PMB + LL-37 combination treatment retained its antibacterial capacities in vivo. Flow analyses were performed to characterize the mode of action. The results of the present study provide proof of principle for the synergistic response between LL-37 and PMB and give novel insights into a promising new antimicrobial combination against gram-negative planktonic and biofilm cells.
Collapse
|
16
|
Cui K, Yang W, Liu Z, Liu G, Li D, Sun Y, He G, Ma S, Cao Y, Jiang X, Chevalier S, Cornelis P, Wei Q, Wang Y. Chenodeoxycholic Acid-Amikacin Combination Enhances Eradication of Staphylococcus aureus. Microbiol Spectr 2023; 11:e0243022. [PMID: 36625660 PMCID: PMC9927322 DOI: 10.1128/spectrum.02430-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 12/07/2022] [Indexed: 01/11/2023] Open
Abstract
The rise of antibiotic resistance and dearth of novel antibiotics have posed a serious health crisis worldwide. In this study, we screened a combination of antibiotics and nonantibiotics providing a viable strategy to solve this issue by broadening the antimicrobial spectrum. We found that chenodeoxycholic acid (CDCA), a cholic acid derivative of the traditional Chinese medicine (TCM) Tanreqing (TRQ), synergizes with amikacin against Staphylococcus aureus in vitro, and this synergistic killing was effective against diverse methicillin-resistant S. aureus (MRSA) variants, including small-colony variants (SCVs), biofilm strains, and persisters. The CDCA-amikacin combination protects a mouse model from S. aureus infections. Mechanistically, CDCA increases the uptake of aminoglycosides in a proton motive force-dependent manner by dissipating the chemical potential and potentiates reactive oxygen species (ROS) generation by inhibiting superoxide dismutase activity. This work highlights the potential use of TCM components in treating S. aureus-associated infections and extend the use of aminoglycosides in eradicating Gram-positive pathogens. IMPORTANCE Multidrug resistance (MDR) is spreading globally with increasing speed. The search for new antibiotics is one of the key strategies in the fight against MDR. Antibiotic resistance breakers that may or may not have direct antibacterial action and can either be coadministered or conjugated with other antibiotics are being studied. To better expand the antibacterial spectrum of certain antibiotics, we identified one component from a traditional Chinese medicine, Tanreqing (TRQ), that increased the activity of aminoglycosides. We found that this so-called agent, chenodeoxycholic acid (CDCA), sensitizes Staphylococcus aureus to aminoglycoside killing and protects a mouse model from S. aureus infections. CDCA increases the uptake of aminoglycosides in a proton motive force-dependent manner by dissipating the chemical potential and potentiates ROS generation by inhibiting superoxide dismutase activity in S. aureus. Our work highlights the potential use of TCM or its effective components, such as CDCA, in treating antibiotic resistance-associated infections.
Collapse
Affiliation(s)
- Kaiyu Cui
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Weifeng Yang
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhiyuan Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Guijian Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Dongying Li
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yanan Sun
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Gaiying He
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shuhua Ma
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yu Cao
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xuefan Jiang
- Beijing University of Chinese Medicine, Beijing, China
| | - Sylvie Chevalier
- Normandy University, University of Rouen Normandy, Laboratory of Microbiology Signals and Microenvironment, Evreux, France
| | - Pierre Cornelis
- Normandy University, University of Rouen Normandy, Laboratory of Microbiology Signals and Microenvironment, Evreux, France
| | - Qing Wei
- Nanchang Institute of Technology, Nanchang, Jiangxi, China
| | - Yi Wang
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
17
|
Lang X, Liu J, Zhang G, Feng X, Dan W. Knowledge Mapping of Drug Repositioning's Theme and Development. Drug Des Devel Ther 2023; 17:1157-1174. [PMID: 37096060 PMCID: PMC10122475 DOI: 10.2147/dddt.s405906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 04/11/2023] [Indexed: 04/26/2023] Open
Abstract
Background In recent years, the emergence of new diseases and resistance to known diseases have led to increasing demand for new drugs. By means of bibliometric analysis, this paper studied the relevant articles on drug repositioning in recent years and analyzed the current research foci and trends. Methodology The Web of Science database was searched to collect all relevant literature on drug repositioning from 2001 to 2022. These data were imported into CiteSpace and bibliometric online analysis platforms for bibliometric analysis. The processed data and visualized images predict the development trends in the research field. Results The quality and quantity of articles published after 2011 have improved significantly, with 45 of them cited more than 100 times. Articles posted by journals from different countries have high citation values. Authors from other institutions have also collaborated to analyze drug rediscovery. Keywords found in the literature include molecular docking (N=223), virtual screening (N=170), drug discovery (N=126), machine learning (N=125), and drug-target interaction (N=68); these words represent the core content of drug repositioning. Conclusion The key focus of drug research and development is related to the discovery of new indications for drugs. Researchers are starting to retarget drugs after analyzing online databases and clinical trials. More and more drugs are being targeted at other diseases to treat more patients, based on saving money and time. It is worth noting that researchers need more financial and technical support to complete drug development.
Collapse
Affiliation(s)
- Xiaona Lang
- Pharmacy Department, Tianjin Hospital, Tianjin, People’s Republic of China
| | - Jinlei Liu
- Cardiology Department, Guang ‘anmen Hospital, Chinese Academy of Traditional Chinese Medicine, Beijing, People’s Republic of China
| | - Guangzhong Zhang
- Dermatological Department, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, People’s Republic of China
| | - Xin Feng
- Pharmacy Department, Tianjin Hospital, Tianjin, People’s Republic of China
| | - Wenchao Dan
- Dermatological Department, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, People’s Republic of China
- Correspondence: Wenchao Dan, Dermatological Department, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, People’s Republic of China, Tel +86 13652001152, Email
| |
Collapse
|
18
|
Desmond A, O’Halloran F, Cotter L, Hill C, Field D. Bioengineered Nisin A Derivatives Display Enhanced Activity against Clinical Neonatal Pathogens. Antibiotics (Basel) 2022; 11:1516. [PMID: 36358171 PMCID: PMC9686653 DOI: 10.3390/antibiotics11111516] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 08/27/2023] Open
Abstract
Neonatal infection is a significant cause of mortality and morbidity in infants. The global incidence of multi-drug resistance continues to rise among neonatal pathogens, indicating a need for alternative treatment strategies. Nisin is an antimicrobial peptide that exhibits broad-spectrum activity against a wide variety of clinical pathogens and can be used in combination with antibiotics to improve their effectiveness. This study examined the activity of nisin and bioengineered derivatives against multi-drug resistant Streptococcus agalactiae and Staphylococcus capitis isolates and investigated the potential synergy between nisin peptides and selected antibiotics. Whole genome sequence analysis of the strains revealed the presence of multi-drug resistant determinants, e.g., macrolide, tetracycline, β-lactam, aminoglycoside, while the S. agalactiae strains all possessed both nsr and nsrFP genes and the S. capitis strains were found to encode the nsr gene alone. Deferred antagonism assays demonstrated that nisin PV had improved antimicrobial activity against all strains tested (n = 10). The enhanced specific activity of this peptide was confirmed using minimum inhibitory concentrations (MIC) (0-4-fold lower MIC for nisin PV) and broth-based survival assays. Combinations of nisin peptides with antibiotics were assessed for enhanced antimicrobial activity using growth and time-kill assays and revealed a more effective nisin PV/ampicillin combination against one S. capitis strain while a nisin A/erythromycin combination displayed a synergistic effect against one S. agalactiae strain. The findings of this study suggest that nisin derivatives alone and in combination with antibiotics have potential as alternative antimicrobial strategies to target neonatal pathogens.
Collapse
Affiliation(s)
- Anna Desmond
- Department of Biological Sciences, Munster Technological University, T12 P928 Cork, Ireland
| | - Fiona O’Halloran
- Department of Biological Sciences, Munster Technological University, T12 P928 Cork, Ireland
| | - Lesley Cotter
- Department of Biological Sciences, Munster Technological University, T12 P928 Cork, Ireland
| | - Colin Hill
- School of Microbiology, University College Cork, T12 YN60 Cork, Ireland
- APC Microbiome Ireland, University College Cork, T12 YN60 Cork, Ireland
| | - Des Field
- School of Microbiology, University College Cork, T12 YN60 Cork, Ireland
- APC Microbiome Ireland, University College Cork, T12 YN60 Cork, Ireland
| |
Collapse
|
19
|
Olasunkanmi OI, Mageto J, Avala Ntsigouaye J, Yi M, Fei Y, Chen Y, Chen S, Xu W, Lin L, Zhao W, Wang Y, Zhong ZH. Novel Antiviral Activity of Ethyl 3-Hydroxyhexanoate Against Coxsackievirus B Infection. Front Microbiol 2022; 13:875485. [PMID: 35495645 PMCID: PMC9048257 DOI: 10.3389/fmicb.2022.875485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/14/2022] [Indexed: 01/26/2023] Open
Abstract
Coxsackievirus group B (CVB) is a member of the genus Enterovirus in the family Picornaviridae. CVB infection has been implicated as a major etiologic agent of viral myocarditis, dilated cardiomyopathy, meningitis, and pancreatitis among children and young adults. Until date, no antiviral agent has been licensed for the treatment of Coxsackievirus infection. In an effort to identify antiviral agents against diseases caused by the CVB, we found that ethyl 3-hydroxyhexanoate (EHX), a volatile compound present in fruits and food additives, is a potent antiviral compound. In this study, we demonstrated that EHX treatment significantly inhibits CVB replication both in vivo and in vitro. Furthermore, EHX possesses antiviral activity at 50% effective concentration (EC50) of 1.2 μM and 50% cytotoxicity (CC50) of 25.6 μM, yielding a selective index (SI) value as high as 20.8. Insights into the mechanism of antiviral activity of EHX showed that it acts at the step of viral RNA replication. Since EHX has received approval as food additives, treatment of CVB-related infections with EHX might be a safe therapeutic option and may be a promising strategy for the development of semi-synthetic antiviral drugs for viral diseases.
Collapse
Affiliation(s)
| | - James Mageto
- Department of Microbiology, Harbin Medical University, Harbin, China
| | | | - Ming Yi
- Department of Microbiology, Harbin Medical University, Harbin, China
| | - Yanru Fei
- Department of Microbiology, Harbin Medical University, Harbin, China
| | - Yang Chen
- Department of Microbiology, Harbin Medical University, Harbin, China
| | - Sijia Chen
- Department of Microbiology, Harbin Medical University, Harbin, China
| | - Weizhen Xu
- Department of Microbiology, Harbin Medical University, Harbin, China
| | - Lexun Lin
- Department of Microbiology, Harbin Medical University, Harbin, China
| | - Wenran Zhao
- Department of Cell Biology, Harbin Medical University, Harbin, China
| | - Yan Wang
- Department of Cell Biology, Harbin Medical University, Harbin, China
| | - Zhao-Hua Zhong
- Department of Microbiology, Harbin Medical University, Harbin, China
| |
Collapse
|
20
|
Parlak C, Alver Ö, Bağlayan Ö, Ramasami P. Theoretical insights of the drug-drug interaction between favipiravir and ibuprofen: a DFT, QTAIM and drug-likeness investigation. J Biomol Struct Dyn 2022:1-8. [DOI: 10.1080/07391102.2022.2066022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Cemal Parlak
- Department of Physics, Science Faculty, Ege University, Izmir, Turkey
| | - Özgür Alver
- Department of Physics, Science Faculty, Eskisehir Technical University, Eskisehir, Turkey
| | - Özge Bağlayan
- Department of Physics, Science Faculty, Eskisehir Technical University, Eskisehir, Turkey
| | - Ponnadurai Ramasami
- Computational Chemistry Group, Department of Chemistry, Faculty of Science, University of Mauritius, Réduit, Mauritius
- Department of Chemistry, College of Science, Engineering and Technology, University of South Africa, Pretoria, South Africa
| |
Collapse
|
21
|
Ngan DK, Xu T, Xia M, Zheng W, Huang R. Repurposing drugs as COVID-19 therapies: a toxicity evaluation. Drug Discov Today 2022; 27:1983-1993. [PMID: 35395401 PMCID: PMC8983078 DOI: 10.1016/j.drudis.2022.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 02/17/2022] [Accepted: 04/01/2022] [Indexed: 12/24/2022]
Abstract
Drug repurposing is an appealing method to address the Coronavirus 2019 (COVID-19) pandemic because of the low cost and efficiency. We analyzed our in-house database of approved drug screens and compared their activity profiles with results from a severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) cytopathic effect (CPE) assay. The activity profiles of the human ether-à-go-go-related gene (hERG), phospholipidosis (PLD), and many cytotoxicity screens were found significantly correlated with anti-SARS-CoV-2 activity. hERG inhibition is a nonspecific off-target effect that has contributed to promiscuous drug interactions, whereas drug-induced PLD is an undesirable effect linked to hERG blockers. Thus, this study identifies preferred drug candidates as well as chemical structures that should be avoided because of their potential to induce toxicity. Lastly, we highlight the hERG liability of anti-SARS-CoV-2 drugs currently enrolled in clinical trials.
Collapse
Affiliation(s)
- Deborah K Ngan
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Tuan Xu
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Menghang Xia
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Wei Zheng
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Ruili Huang
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA.
| |
Collapse
|
22
|
Medhasi S, Chindamporn A, Worasilchai N. A Review: Antimicrobial Therapy for Human Pythiosis. Antibiotics (Basel) 2022; 11:antibiotics11040450. [PMID: 35453202 PMCID: PMC9029071 DOI: 10.3390/antibiotics11040450] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/16/2022] [Accepted: 03/22/2022] [Indexed: 01/14/2023] Open
Abstract
Human pythiosis is associated with poor prognosis with significant mortality caused by Pythium insidiosum. Antimicrobials’ in vitro and in vivo results against P. insidiosum are inconsistent. Although antimicrobials are clinically useful, they are not likely to achieve therapeutic success alone without surgery and immunotherapy. New therapeutic options are therefore needed. This non-exhaustive review discusses the rationale antimicrobial therapy, minimum inhibitory concentrations, and efficacy of antibacterial and antifungal agents against P. insidiosum. This review further provides insight into the immunomodulating effects of antimicrobials that can enhance the immune response to infections. Current data support using antimicrobial combination therapy for the pharmacotherapeutic management of human pythiosis. Also, the success or failure of antimicrobial treatment in human pythiosis might depend on the immunomodulatory effects of drugs. The repurposing of existing drugs is a safe strategy for anti-P. insidiosum drug discovery. To improve patient outcomes in pythiosis, we suggest further research and a deeper understanding of P. insidiosum virulence factors, host immune response, and host immune system modification by antimicrobials.
Collapse
Affiliation(s)
- Sadeep Medhasi
- Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Ariya Chindamporn
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Navaporn Worasilchai
- Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Immunomodulation of Natural Products Research Group, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence: ; Tel.: +66-2218-1065
| |
Collapse
|
23
|
Cho H, Kim KS. Repurposing of Ciclopirox to Overcome the Limitations of Zidovudine (Azidothymidine) against Multidrug-Resistant Gram-Negative Bacteria. Pharmaceutics 2022; 14:552. [PMID: 35335928 PMCID: PMC8950944 DOI: 10.3390/pharmaceutics14030552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/17/2022] [Accepted: 02/28/2022] [Indexed: 11/17/2022] Open
Abstract
Multidrug-resistant (MDR) Gram-negative bacteria are the top-priority pathogens to be eradicated. Drug repurposing (e.g., the use of non-antibiotics to treat bacterial infections) may be helpful to overcome the limitations of current antibiotics. Zidovudine (azidothymidine, AZT), a licensed oral antiviral agent, is a leading repurposed drug against MDR Gram-negative bacterial infections. However, the rapid emergence of bacterial resistance due to long-term exposure, overuse, or misuse limits its application, making it necessary to develop new alternatives. In this study, we investigated the efficacy of ciclopirox (CPX) as an alternative to AZT. The minimum inhibitory concentrations of AZT and CPX against MDR Gram-negative bacteria were determined; CPX appeared more active against β-lactamase-producing Escherichia coli, whereas AZT displayed no selectivity for any antibiotic-resistant strain. Motility assays revealed that β-lactamase-producing Escherichia coli strains were less motile in nature and more strongly affected by CPX than a parental strain. Resistance against CPX was not observed in E. coli even after 25 days of growth, whereas AZT resistance was observed in less than 2 days. Moreover, CPX effectively killed AZT-resistant strains with different resistance mechanisms. Our findings indicate that CPX may be utilized as an alternative or supplement to AZT-based medications to treat opportunistic Gram-negative bacterial infections.
Collapse
Affiliation(s)
| | - Kwang-sun Kim
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea;
| |
Collapse
|
24
|
Goh KKK, Toh WGH, Hee DKH, Ting EZW, Chua NGS, Zulkifli FIB, Sin LJ, Tan TT, Kwa ALH, Lim TP. Quantification of Fosfomycin in Combination with Nine Antibiotics in Human Plasma and Cation-Adjusted Mueller-Hinton II Broth via LCMS. Antibiotics (Basel) 2022; 11:antibiotics11010054. [PMID: 35052932 PMCID: PMC8772704 DOI: 10.3390/antibiotics11010054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 02/05/2023] Open
Abstract
Fosfomycin-based combination therapy has emerged as an attractive option in our armamentarium due to its synergistic activity against carbapenem-resistant Gram-negative bacteria (CRGNB). The ability to simultaneously measure fosfomycin and other antibiotic drug levels will support in vitro and clinical investigations to develop rational antibiotic combination dosing regimens against CRGNB infections. We developed an analytical assay to measure fosfomycin with nine important antibiotics in human plasma and cation-adjusted Mueller–Hinton II broth (CAMHB). We employed a liquid-chromatography tandem mass spectrometry method and validated the method based on accuracy, precision, matrix effect, limit-of-detection, limit-of-quantification, specificity, carryover, and short-term and long-term stability on U.S. Food & Drug Administration (FDA) guidelines. Assay feasibility was assessed in a pilot clinical study in four patients on antibiotic combination therapy. Simultaneous quantification of fosfomycin, levofloxacin, meropenem, doripenem, aztreonam, piperacillin/tazobactam, ceftolozane/tazobactam, ceftazidime/avibactam, cefepime, and tigecycline in plasma and CAMHB were achieved within 4.5 min. Precision, accuracy, specificity, and carryover were within FDA guidelines. Fosfomycin combined with any of the nine antibiotics were stable in plasma and CAMHB up to 4 weeks at −80 °C. The assay identified and quantified the respective antibiotics administered in the four subjects. Our assay can be a valuable tool for in vitro and clinical applications.
Collapse
Affiliation(s)
- Kelvin Kau-Kiat Goh
- Department of Pharmacy, Singapore General Hospital, Outram Road, Singapore 169608, Singapore; (K.K.-K.G.); (W.G.-H.T.); (N.G.S.C.); (F.I.B.Z.); (L.-J.S.)
- SingHealth Duke-NUS Pathology Academic Clinical Programme, 8 College Road, Singapore 169857, Singapore
| | - Wilson Ghim-Hon Toh
- Department of Pharmacy, Singapore General Hospital, Outram Road, Singapore 169608, Singapore; (K.K.-K.G.); (W.G.-H.T.); (N.G.S.C.); (F.I.B.Z.); (L.-J.S.)
| | - Daryl Kim-Hor Hee
- Shimadzu (Asia Pacific) Pte Ltd., 79 Science Park Dr, #02-01/08 Cintech IV, Singapore 118264, Singapore; (E.Z.-W.T.); (D.K.-H.H.)
| | - Edwin Zhi-Wei Ting
- Shimadzu (Asia Pacific) Pte Ltd., 79 Science Park Dr, #02-01/08 Cintech IV, Singapore 118264, Singapore; (E.Z.-W.T.); (D.K.-H.H.)
| | - Nathalie Grace Sy Chua
- Department of Pharmacy, Singapore General Hospital, Outram Road, Singapore 169608, Singapore; (K.K.-K.G.); (W.G.-H.T.); (N.G.S.C.); (F.I.B.Z.); (L.-J.S.)
| | - Farah Iffah Binte Zulkifli
- Department of Pharmacy, Singapore General Hospital, Outram Road, Singapore 169608, Singapore; (K.K.-K.G.); (W.G.-H.T.); (N.G.S.C.); (F.I.B.Z.); (L.-J.S.)
| | - Li-Jiao Sin
- Department of Pharmacy, Singapore General Hospital, Outram Road, Singapore 169608, Singapore; (K.K.-K.G.); (W.G.-H.T.); (N.G.S.C.); (F.I.B.Z.); (L.-J.S.)
| | - Thuan-Tong Tan
- SingHealth Duke-NUS Medicine Academic Clinical Programme, 8 College Road, Singapore 169857, Singapore;
- Department of Infectious Diseases, Singapore General Hospital, Outram Road, Singapore 169608, Singapore
| | - Andrea Lay-Hoon Kwa
- Department of Pharmacy, Singapore General Hospital, Outram Road, Singapore 169608, Singapore; (K.K.-K.G.); (W.G.-H.T.); (N.G.S.C.); (F.I.B.Z.); (L.-J.S.)
- SingHealth Duke-NUS Medicine Academic Clinical Programme, 8 College Road, Singapore 169857, Singapore;
- Emerging Infectious Diseases Program, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
- Correspondence: (A.L.-H.K.); (T.-P.L.); Tel.: +65-6321-3401 (A.L.-H.K.); +65-6326-6959 (T.-P.L.)
| | - Tze-Peng Lim
- Department of Pharmacy, Singapore General Hospital, Outram Road, Singapore 169608, Singapore; (K.K.-K.G.); (W.G.-H.T.); (N.G.S.C.); (F.I.B.Z.); (L.-J.S.)
- SingHealth Duke-NUS Pathology Academic Clinical Programme, 8 College Road, Singapore 169857, Singapore
- SingHealth Duke-NUS Medicine Academic Clinical Programme, 8 College Road, Singapore 169857, Singapore;
- Correspondence: (A.L.-H.K.); (T.-P.L.); Tel.: +65-6321-3401 (A.L.-H.K.); +65-6326-6959 (T.-P.L.)
| |
Collapse
|
25
|
White JM, Schiffer JT, Bender Ignacio RA, Xu S, Kainov D, Ianevski A, Aittokallio T, Frieman M, Olinger GG, Polyak SJ. Drug Combinations as a First Line of Defense against Coronaviruses and Other Emerging Viruses. mBio 2021; 12:e0334721. [PMID: 34933447 PMCID: PMC8689562 DOI: 10.1128/mbio.03347-21] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The world was unprepared for coronavirus disease 2019 (COVID-19) and remains ill-equipped for future pandemics. While unprecedented strides have been made developing vaccines and treatments for COVID-19, there remains a need for highly effective and widely available regimens for ambulatory use for novel coronaviruses and other viral pathogens. We posit that a priority is to develop pan-family drug cocktails to enhance potency, limit toxicity, and avoid drug resistance. We urge cocktail development for all viruses with pandemic potential both in the short term (<1 to 2 years) and longer term with pairs of drugs in advanced clinical testing or repurposed agents approved for other indications. While significant efforts were launched against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), in vitro and in the clinic, many studies employed solo drugs and had disappointing results. Here, we review drug combination studies against SARS-CoV-2 and other viruses and introduce a model-driven approach to assess drug pairs with the highest likelihood of clinical efficacy. Where component agents lack sufficient potency, we advocate for synergistic combinations to achieve therapeutic levels. We also discuss issues that stymied therapeutic progress against COVID-19, including testing of agents with low likelihood of efficacy late in clinical disease and lack of focus on developing virologic surrogate endpoints. There is a need to expedite efficient clinical trials testing drug combinations that could be taken at home by recently infected individuals and exposed contacts as early as possible during the next pandemic, whether caused by a coronavirus or another viral pathogen. The approach herein represents a proactive plan for global viral pandemic preparedness.
Collapse
Affiliation(s)
- Judith M. White
- University of Virginia, Department of Cell Biology, Charlottesville, Virginia, USA
- University of Virginia, Department of Microbiology, Charlottesville, Virginia, USA
| | - Joshua T. Schiffer
- University of Washington, Division of Allergy and Infectious Diseases, Seattle, Washington, USA
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Diseases Division, Seattle, Washington, USA
| | - Rachel A. Bender Ignacio
- University of Washington, Division of Allergy and Infectious Diseases, Seattle, Washington, USA
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Diseases Division, Seattle, Washington, USA
| | - Shuang Xu
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Diseases Division, Seattle, Washington, USA
| | - Denis Kainov
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Institute of Technology, University of Tartu, Tartu, Estonia
- Institute for Molecular Medicine Finland, FIMM, University of Helsinki, Helsinki, Finland
| | - Aleksandr Ianevski
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Institute for Molecular Medicine Finland, FIMM, University of Helsinki, Helsinki, Finland
| | - Tero Aittokallio
- Institute for Molecular Medicine Finland, FIMM, University of Helsinki, Helsinki, Finland
- Oslo Centre for Biostatistics and Epidemiology (OCBE), University of Oslo, Oslo, Norway
- Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Matthew Frieman
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | | - Stephen J. Polyak
- Virology Division, Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
- Department of Global Health, University of Washington, Seattle, Washington, USA
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
26
|
Kaur R, Rani P, Atanasov AG, Alzahrani Q, Gupta R, Kapoor B, Gulati M, Chawla P. Discovery and Development of Antibacterial Agents: Fortuitous and Designed. Mini Rev Med Chem 2021; 22:984-1029. [PMID: 34939541 DOI: 10.2174/1570193x19666211221150119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 10/18/2021] [Accepted: 10/25/2021] [Indexed: 11/22/2022]
Abstract
Today, antibacterial drug resistance has turned into a significant public health issue. Repeated intake, suboptimal and/or unnecessary use of antibiotics, and, additionally, the transfer of resistance genes are the critical elements that make microorganisms resistant to conventional antibiotics. A substantial number of antibacterials that were successfully utilized earlier for prophylaxis and therapeutic purposes have been rendered inadequate due to this phenomenon. Therefore, the exploration of new molecules has become a continuous endeavour. Many such molecules are at various stages of investigation. A surprisingly high number of new molecules are currently in the stage of phase 3 clinical trials. A few new agents have been commercialized in the last decade. These include solithromycin, plazomicin, lefamulin, omadacycline, eravacycline, delafloxacin, zabofloxacin, finafloxacin, nemonoxacin, gepotidacin, zoliflodacin, cefiderocol, BAL30072, avycaz, zerbaxa, vabomere, relebactam, tedizolid, cadazolid, sutezolid, triclosan and afabiacin. This article aims to review the investigational and recently approved antibacterials with a focus on their structure, mechanisms of action/resistance, and spectrum of activity. Delving deep, their success or otherwise in various phases of clinical trials is also discussed while attributing the same to various causal factors.
Collapse
Affiliation(s)
- Ravleen Kaur
- Department of Health Sciences, Cape Breton University, Sydney, Nova Scotia. Canada
| | - Pooja Rani
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara. India
| | - Atanas G Atanasov
- Ludwig Boltzmann Institute of Digital Health and Patient Safety, Medical University of Vienna, Vienna. Austria
| | - Qushmua Alzahrani
- Department of Pharmacy/Nursing/Medicine Health and Environment, University of the Region of Joinville (UNIVILLE) volunteer researcher, Joinville. Brazil
| | - Reena Gupta
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara . India
| | - Bhupinder Kapoor
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara . India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara . India
| | - Pooja Chawla
- Department of Pharmaceutical Chemistry and Analysis, ISF College of Pharmacy, Ghal Kalan Moga, Punjab 142001. India
| |
Collapse
|
27
|
Yuce M, Cicek E, Inan T, Dag AB, Kurkcuoglu O, Sungur FA. Repurposing of FDA-approved drugs against active site and potential allosteric drug-binding sites of COVID-19 main protease. Proteins 2021; 89:1425-1441. [PMID: 34169568 PMCID: PMC8441840 DOI: 10.1002/prot.26164] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/02/2021] [Accepted: 06/06/2021] [Indexed: 02/06/2023]
Abstract
The novel coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) still has serious negative effects on health, social life, and economics. Recently, vaccines from various companies have been urgently approved to control SARS-CoV-2 infections. However, any specific antiviral drug has not been confirmed so far for regular treatment. An important target is the main protease (Mpro ), which plays a major role in replication of the virus. In this study, Gaussian and residue network models are employed to reveal two distinct potential allosteric sites on Mpro that can be evaluated as drug targets besides the active site. Then, Food and Drug Administration (FDA)-approved drugs are docked to three distinct sites with flexible docking using AutoDock Vina to identify potential drug candidates. Fourteen best molecule hits for the active site of Mpro are determined. Six of these also exhibit high docking scores for the potential allosteric regions. Full-atom molecular dynamics simulations with MM-GBSA method indicate that compounds docked to active and potential allosteric sites form stable interactions with high binding free energy (∆Gbind ) values. ∆Gbind values reach -52.06 kcal/mol for the active site, -51.08 kcal/mol for the potential allosteric site 1, and - 42.93 kcal/mol for the potential allosteric site 2. Energy decomposition calculations per residue elucidate key binding residues stabilizing the ligands that can further serve to design pharmacophores. This systematic and efficient computational analysis successfully determines ivermectine, diosmin, and selinexor currently subjected to clinical trials, and further proposes bromocriptine, elbasvir as Mpro inhibitor candidates to be evaluated against SARS-CoV-2 infections.
Collapse
Affiliation(s)
- Merve Yuce
- Department of Chemical EngineeringIstanbul Technical UniversityIstanbulTurkey
| | - Erdem Cicek
- Computational Science and Engineering DivisionInformatics Institute, Istanbul Technical UniversityIstanbulTurkey
| | - Tugce Inan
- Department of Chemical EngineeringIstanbul Technical UniversityIstanbulTurkey
| | - Aslihan Basak Dag
- Department of Molecular Biology and GeneticsIstanbul Technical UniversityIstanbulTurkey
| | - Ozge Kurkcuoglu
- Department of Chemical EngineeringIstanbul Technical UniversityIstanbulTurkey
| | - Fethiye Aylin Sungur
- Computational Science and Engineering DivisionInformatics Institute, Istanbul Technical UniversityIstanbulTurkey
| |
Collapse
|
28
|
Saied EM, El-Maradny YA, Osman AA, Darwish AMG, Abo Nahas HH, Niedbała G, Piekutowska M, Abdel-Rahman MA, Balbool BA, Abdel-Azeem AM. A Comprehensive Review about the Molecular Structure of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2): Insights into Natural Products against COVID-19. Pharmaceutics 2021; 13:1759. [PMID: 34834174 PMCID: PMC8624722 DOI: 10.3390/pharmaceutics13111759] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/06/2021] [Accepted: 10/11/2021] [Indexed: 12/15/2022] Open
Abstract
In 2019, the world suffered from the emergence of COVID-19 infection, one of the most difficult pandemics in recent history. Millions of confirmed deaths from this pandemic have been reported worldwide. This disaster was caused by SARS-CoV-2, which is the last discovered member of the family of Coronaviridae. Various studies have shown that natural compounds have effective antiviral properties against coronaviruses by inhibiting multiple viral targets, including spike proteins and viral enzymes. This review presents the classification and a detailed explanation of the SARS-CoV-2 molecular characteristics and structure-function relationships. We present all currently available crystal structures of different SARS-CoV-2 proteins and emphasized on the crystal structure of different virus proteins and the binding modes of their ligands. This review also discusses the various therapeutic approaches for COVID-19 treatment and available vaccinations. In addition, we highlight and compare the existing data about natural compounds extracted from algae, fungi, plants, and scorpion venom that were used as antiviral agents against SARS-CoV-2 infection. Moreover, we discuss the repurposing of select approved therapeutic agents that have been used in the treatment of other viruses.
Collapse
Affiliation(s)
- Essa M. Saied
- Chemistry Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
- Institute for Chemistry, Humboldt Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany
| | - Yousra A. El-Maradny
- Microbiology Department, High Institute of Public Health, Alexandria University, Alexandria 21526, Egypt;
| | - Alaa A. Osman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, New Giza University, Newgiza, km 22 Cairo-Alexandria Desert Road, Cairo 12256, Egypt;
| | - Amira M. G. Darwish
- Food Technology Department, Arid Lands Cultivation Research Institute (ALCRI), City of Scientific Research and Technological Applications (SRTA City), Alexandria 21934, Egypt;
| | - Hebatallah H. Abo Nahas
- Zoology Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt; (H.H.A.N.); (M.A.A.-R.)
| | - Gniewko Niedbała
- Department of Biosystems Engineering, Faculty of Environmental and Mechanical Engineering, Poznań University of Life Sciences, Wojska Polskiego 50, 60-627 Poznań, Poland;
| | - Magdalena Piekutowska
- Department of Geoecology and Geoinformation, Institute of Biology and Earth Sciences, Pomeranian University in Słupsk, Partyzantów 27, 76-200 Słupsk, Poland;
| | - Mohamed A. Abdel-Rahman
- Zoology Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt; (H.H.A.N.); (M.A.A.-R.)
| | - Bassem A. Balbool
- Faculty of Biotechnology, October University for Modern Sciences and Arts, Giza 12585, Egypt;
| | - Ahmed M. Abdel-Azeem
- Botany and Microbiology Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
29
|
Inhibitors of Venezuelan Equine Encephalitis Virus Identified Based on Host Interaction Partners of Viral Non-Structural Protein 3. Viruses 2021; 13:v13081533. [PMID: 34452398 PMCID: PMC8402862 DOI: 10.3390/v13081533] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/20/2021] [Accepted: 07/29/2021] [Indexed: 12/11/2022] Open
Abstract
Venezuelan equine encephalitis virus (VEEV) is a new world alphavirus and a category B select agent. Currently, no FDA-approved vaccines or therapeutics are available to treat VEEV exposure and resultant disease manifestations. The C-terminus of the VEEV non-structural protein 3 (nsP3) facilitates cell-specific and virus-specific host factor binding preferences among alphaviruses, thereby providing targets of interest when designing novel antiviral therapeutics. In this study, we utilized an overexpression construct encoding HA-tagged nsP3 to identify host proteins that interact with VEEV nsP3 by mass spectrometry. Bioinformatic analyses of the putative interactors identified 42 small molecules with the potential to inhibit the host interaction targets, and thus potentially inhibit VEEV. Three inhibitors, tomatidine, citalopram HBr, and Z-VEID-FMK, reduced replication of both the TC-83 strain and the Trinidad donkey (TrD) strain of VEEV by at least 10-fold in astrocytoma, astroglial, and microglial cells. Further, these inhibitors reduced replication of the related New World (NW) alphavirus Eastern equine encephalitis virus (EEEV) in multiple cell types, thus demonstrating broad-spectrum antiviral activity. Time-course assays revealed all three inhibitors reduced both infectious particle production and positive-sense RNA levels post-infection. Further evaluation of the putative host targets for the three inhibitors revealed an interaction of VEEV nsP3 with TFAP2A, but not eIF2S2. Mechanistic studies utilizing siRNA knockdowns demonstrated that eIF2S2, but not TFAP2A, supports both efficient TC-83 replication and genomic RNA synthesis, but not subgenomic RNA translation. Overall, this work reveals the composition of the VEEV nsP3 proteome and the potential to identify host-based, broad spectrum therapeutic approaches to treat new world alphavirus infections.
Collapse
|
30
|
Zhang S, Qu X, Tang H, Wang Y, Yang H, Yuan W, Yue B. Diclofenac Resensitizes Methicillin-Resistant Staphylococcus aureus to β-Lactams and Prevents Implant Infections. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2100681. [PMID: 34258168 PMCID: PMC8261494 DOI: 10.1002/advs.202100681] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/12/2021] [Indexed: 05/25/2023]
Abstract
Implant infections caused by methicillin-resistant Staphylococcus aureus (MRSA) can cause major complications during the perioperative period. Diclofenac, one of the most widely used nonsteroidal anti-inflammatory drugs, is often used to relieve pain and inflammation. In this study, it is found that high-dose diclofenac can inhibit the growth of MRSA, and does not easily induce drug-resistant mutations after continuous passage. However, low-doses diclofenac can resensitize bacteria to β-lactams, which help to circumvent drug resistance and improve the antibacterial efficacy of conventional antibiotics. Further, low-dose diclofenac in combination with β-lactams inhibit MRSA associated biofilm formation in implants. Transcriptomic and proteomic analyses indicate that diclofenac can reduce the expression of genes and proteins associated with β-lactam resistance: mecA, mecR, and blaZ; peptidoglycan biosynthesis: murA, murC, femA, and femB; and biofilm formation: altE and fnbP. Murine implant infection models indicate that diclofenac combined with β-lactams, can substantially alleviate MRSA infections in vivo. In addition, it is investigated that low dose diclofenac can inhibit MRSA antibiotic resistance via the mecA/blaZ pathway and related biofilms in implants. The synergistic effect of diclofenac and β-lactams might have promising applications for preventing perioperative infection, considering its multitarget effects against MRSA.
Collapse
Affiliation(s)
- Shutao Zhang
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, School of MedicineShanghai Jiaotong UniversityShanghai200127China
| | - Xinhua Qu
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, School of MedicineShanghai Jiaotong UniversityShanghai200127China
| | - Haozheng Tang
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, School of MedicineShanghai Jiaotong UniversityShanghai200127China
| | - You Wang
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, School of MedicineShanghai Jiaotong UniversityShanghai200127China
| | - Hongtao Yang
- Department of Plastic & Reconstructive SurgeryThe Ohio State UniversityColumbusOH43210USA
- School of Medical Science and EngineeringBeihang UniversityBeijing100191China
| | - Weien Yuan
- Engineering Research Center of Cell & Therapeutic AntibodyMinistry of EducationSchool of PharmacyShanghai Jiao Tong UniversityShanghai200240China
| | - Bing Yue
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, School of MedicineShanghai Jiaotong UniversityShanghai200127China
| |
Collapse
|
31
|
Dos Santos Nascimento IJ, de Aquino TM, da Silva-Júnior EF. Drug Repurposing: A Strategy for Discovering Inhibitors against Emerging Viral Infections. Curr Med Chem 2021; 28:2887-2942. [PMID: 32787752 DOI: 10.2174/0929867327666200812215852] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Viral diseases are responsible for several deaths around the world. Over the past few years, the world has seen several outbreaks caused by viral diseases that, for a long time, seemed to possess no risk. These are diseases that have been forgotten for a long time and, until nowadays, there are no approved drugs or vaccines, leading the pharmaceutical industry and several research groups to run out of time in the search for new pharmacological treatments or prevention methods. In this context, drug repurposing proves to be a fast and economically viable technique, considering the fact that it uses drugs that have a well-established safety profile. Thus, in this review, we present the main advances in drug repurposing and their benefit for searching new treatments against emerging viral diseases. METHODS We conducted a search in the bibliographic databases (Science Direct, Bentham Science, PubMed, Springer, ACS Publisher, Wiley, and NIH's COVID-19 Portfolio) using the keywords "drug repurposing", "emerging viral infections" and each of the diseases reported here (CoV; ZIKV; DENV; CHIKV; EBOV and MARV) as an inclusion/exclusion criterion. A subjective analysis was performed regarding the quality of the works for inclusion in this manuscript. Thus, the selected works were those that presented drugs repositioned against the emerging viral diseases presented here by means of computational, high-throughput screening or phenotype-based strategies, with no time limit and of relevant scientific value. RESULTS 291 papers were selected, 24 of which were CHIKV; 52 for ZIKV; 43 for DENV; 35 for EBOV; 10 for MARV; and 56 for CoV and the rest (72 papers) related to the drugs repurposing and emerging viral diseases. Among CoV-related articles, most were published in 2020 (31 papers), updating the current topic. Besides, between the years 2003 - 2005, 10 articles were created, and from 2011 - 2015, there were 7 articles, portraying the outbreaks that occurred at that time. For ZIKV, similar to CoV, most publications were during the period of outbreaks between the years 2016 - 2017 (23 articles). Similarly, most CHIKV (13 papers) and DENV (14 papers) publications occur at the same time interval. For EBOV (13 papers) and MARV (4 papers), they were between the years 2015 - 2016. Through this review, several drugs were highlighted that can be evolved in vivo and clinical trials as possible used against these pathogens showed that remdesivir represent potential treatments against CoV. Furthermore, ribavirin may also be a potential treatment against CHIKV; sofosbuvir against ZIKV; celgosivir against DENV, and favipiravir against EBOV and MARV, representing new hopes against these pathogens. CONCLUSION The conclusions of this review manuscript show the potential of the drug repurposing strategy in the discovery of new pharmaceutical products, as from this approach, drugs could be used against emerging viral diseases. Thus, this strategy deserves more attention among research groups and is a promising approach to the discovery of new drugs against emerging viral diseases and also other diseases.
Collapse
|
32
|
Cheng YS, Roma JS, Shen M, Mota Fernandes C, Tsang PS, Forbes HE, Boshoff H, Lazzarini C, Del Poeta M, Zheng W, Williamson PR. Identification of Antifungal Compounds against Multidrug-Resistant Candida auris Utilizing a High-Throughput Drug-Repurposing Screen. Antimicrob Agents Chemother 2021; 65:e01305-20. [PMID: 33468482 PMCID: PMC8097445 DOI: 10.1128/aac.01305-20] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 12/31/2020] [Indexed: 12/30/2022] Open
Abstract
Candida auris is an emerging fatal fungal infection that has resulted in several outbreaks in hospitals and care facilities. Current treatment options are limited by the development of drug resistance. Identification of new pharmaceuticals to combat these drug-resistant infections will thus be required to overcome this unmet medical need. We have established a bioluminescent ATP-based assay to identify new compounds and potential drug combinations showing effective growth inhibition against multiple strains of multidrug-resistant Candida auris The assay is robust and suitable for assessing large compound collections by high-throughput screening (HTS). Utilizing this assay, we conducted a screen of 4,314 approved drugs and pharmacologically active compounds that yielded 25 compounds, including 6 novel anti-Candida auris compounds and 13 sets of potential two-drug combinations. Among the drug combinations, the serine palmitoyltransferase inhibitor myriocin demonstrated a combinational effect with flucytosine against all tested isolates during screening. This combinational effect was confirmed in 13 clinical isolates of Candida auris.
Collapse
Affiliation(s)
- Yu-Shan Cheng
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland, USA
| | - Jose Santinni Roma
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Min Shen
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland, USA
| | - Caroline Mota Fernandes
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
| | - Patricia S Tsang
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - He Eun Forbes
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Helena Boshoff
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Cristina Lazzarini
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
| | - Maurizio Del Poeta
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
- Division of Infectious Diseases, Stony Brook University, Stony Brook, New York, USA
- Veterans Affairs Medical Center, Northport, New York, USA
| | - Wei Zheng
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland, USA
| | - Peter R Williamson
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
33
|
Formulation, Stability, Pharmacokinetic, and Modeling Studies for Tests of Synergistic Combinations of Orally Available Approved Drugs against Ebola Virus In Vivo. Microorganisms 2021; 9:microorganisms9030566. [PMID: 33801811 PMCID: PMC7998926 DOI: 10.3390/microorganisms9030566] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/01/2021] [Accepted: 03/05/2021] [Indexed: 12/28/2022] Open
Abstract
Outbreaks of Ebola ebolavirus (EBOV) have been associated with high morbidity and mortality. Milestones have been reached recently in the management of EBOV disease (EVD) with licensure of an EBOV vaccine and two monoclonal antibody therapies. However, neither vaccines nor therapies are available for other disease-causing filoviruses. In preparation for such outbreaks, and for more facile and cost-effective management of EVD, we seek a cocktail containing orally available and room temperature stable drugs with strong activity against multiple filoviruses. We previously showed that (bepridil + sertraline) and (sertraline + toremifene) synergistically suppress EBOV in cell cultures. Here, we describe steps towards testing these combinations in a mouse model of EVD. We identified a vehicle suitable for oral delivery of the component drugs and determined that, thus formulated the drugs are equally active against EBOV as preparations in DMSO, and they maintain activity upon storage in solution for up to seven days. Pharmacokinetic (PK) studies indicated that the drugs in the oral delivery vehicle are well tolerated in mice at the highest doses tested. Collectively the data support advancement of these combinations to tests for synergy in a mouse model of EVD. Moreover, mathematical modeling based on human oral PK projects that the combinations would be more active in humans than their component single drugs.
Collapse
|
34
|
Sierra JM, Viñas M. Future prospects for Antimicrobial peptide development: peptidomimetics and antimicrobial combinations. Expert Opin Drug Discov 2021; 16:601-604. [PMID: 33626997 DOI: 10.1080/17460441.2021.1892072] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Josep M Sierra
- Laboratory of Molecular Microbiology and Antimicrobials, Department of Pathology and Experimental Therapeutics, School of Medicine, IDIBELL, University of Barcelona, Barcelona, Spain
| | - Miguel Viñas
- Laboratory of Molecular Microbiology and Antimicrobials, Department of Pathology and Experimental Therapeutics, School of Medicine, IDIBELL, University of Barcelona, Barcelona, Spain
| |
Collapse
|
35
|
Cyanobacteria and Eukaryotic Microalgae as Emerging Sources of Antibacterial Peptides. Molecules 2020; 25:molecules25245804. [PMID: 33316949 PMCID: PMC7763478 DOI: 10.3390/molecules25245804] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 12/17/2022] Open
Abstract
Cyanobacteria and microalgae are oxygen-producing photosynthetic unicellular organisms encompassing a great diversity of species, which are able to grow under all types of extreme environments and exposed to a wide variety of predators and microbial pathogens. The antibacterial compounds described for these organisms include alkaloids, fatty acids, indoles, macrolides, peptides, phenols, pigments and terpenes, among others. This review presents an overview of antibacterial peptides isolated from cyanobacteria and microalgae, as well as their synergism and mechanisms of action described so far. Antibacterial cyanopeptides belong to different orders, but mainly from Oscillatoriales and Nostocales. Cyanopeptides have different structures but are mainly cyclic peptides. This vast peptide repertoire includes ribosomal and abundant non-ribosomal peptides, evaluated by standard conventional methodologies against pathogenic Gram-negative and Gram-positive bacteria. The antibacterial activity described for microalgal peptides is considerably scarcer, and limited to protein hydrolysates from two Chlorella species, and few peptides from Tetraselmis suecica. Despite the promising applications of antibacterial peptides and the importance of searching for new natural sources of antibiotics, limitations still persist for their pharmaceutical applications.
Collapse
|
36
|
Yadav M, Dhagat S, Eswari JS. Emerging strategies on in silico drug development against COVID-19: challenges and opportunities. Eur J Pharm Sci 2020; 155:105522. [PMID: 32827661 PMCID: PMC7438372 DOI: 10.1016/j.ejps.2020.105522] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/14/2020] [Accepted: 08/18/2020] [Indexed: 12/22/2022]
Abstract
The importance of coronaviruses as human pathogen has been highlighted by the recent outbreak of SARS-CoV-2 leading to the search of suitable drugs to overcome respiratory infections caused by the virus. Due to the lack of specific drugs against coronavirus, the existing antiviral and antimalarial drugs are currently being administered to the patients infected with SARS-CoV-2. The scientists are also considering repurposing of some of the existing drugs as a suitable option in search of effective drugs against coronavirus till the establishment of a potent drug and/or vaccine. Computer-aided drug discovery provides a promising attempt to enable scientists to develop new and target specific drugs to combat any disease. The discovery of novel targets for COVID-19 using computer-aided drug discovery tools requires knowledge of the structure of coronavirus and various target proteins present in the virus. Targeting viral proteins will make the drug specific against the virus, thereby, increasing the chances of viral mortality. Hence, this review provides the structure of SARS-CoV-2 virus along with the important viral components involved in causing infection. It also focuses on the role of various target proteins in disease, the mechanism by which currently administered drugs act against the virus and the repurposing of few drugs. The gap arising from the absence of specific drugs is addressed by proposing potential antiviral drug targets which might provide insights into structure-based drug development against SARS-CoV-2.
Collapse
Affiliation(s)
- Manisha Yadav
- Department of Biotechnology, National Institute of Technology Raipur, C.G., 492010, India
| | - Swasti Dhagat
- Department of Biotechnology, National Institute of Technology Raipur, C.G., 492010, India
| | - J Satya Eswari
- Department of Biotechnology, National Institute of Technology Raipur, C.G., 492010, India.
| |
Collapse
|
37
|
A fluorescence-based high throughput-screening assay for the SARS-CoV RNA synthesis complex. J Virol Methods 2020; 288:114013. [PMID: 33166547 PMCID: PMC7833800 DOI: 10.1016/j.jviromet.2020.114013] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 11/02/2020] [Accepted: 11/02/2020] [Indexed: 01/05/2023]
Abstract
The Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) emergence in 2003 introduced the first serious human coronavirus pathogen to an unprepared world. To control emerging viruses, existing successful anti(retro)viral therapies can inspire antiviral strategies, as conserved viral enzymes (eg., viral proteases and RNA-dependent RNA polymerases) represent targets of choice. Since 2003, much effort has been expended in the characterization of the SARS-CoV replication/transcription machinery. Until recently, a pure and highly active preparation of SARS-CoV recombinant RNA synthesis machinery was not available, impeding target-based high throughput screening of drug candidates against this viral family. The current Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) pandemic revealed a new pathogen whose RNA synthesis machinery is highly (>96 % aa identity) homologous to SARS-CoV. This phylogenetic relatedness highlights the potential use of conserved replication enzymes to discover inhibitors against this significant pathogen, which in turn, contributes to scientific preparedness against emerging viruses. Here, we report the use of a purified and highly active SARS-CoV replication/transcription complex (RTC) to set-up a high-throughput screening of Coronavirus RNA synthesis inhibitors. The screening of a small (1520 compounds) chemical library of FDA-approved drugs demonstrates the robustness of our assay and will allow to speed-up drug discovery against the SARS-CoV-2.
Collapse
|
38
|
DeSarno AE, Parcell BJ, Coote PJ. Repurposing the anti-viral drug zidovudine (AZT) in combination with meropenem as an effective treatment for infections with multi-drug resistant, carbapenemase-producing strains of Klebsiella pneumoniae. Pathog Dis 2020; 78:5923554. [DOI: 10.1093/femspd/ftaa063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 10/12/2020] [Indexed: 12/19/2022] Open
Abstract
Abstract
Multi-drug resistant (MDR) Klebsiella pneumoniae represent a global threat to healthcare due to lack of effective treatments and high mortality rates. The aim of this research was to explore the potential of administering zidovudine (AZT) in combination with an existing antibiotic to treat resistant K. pneumoniae infections. Two MDR K. pneumoniae strains were employed, producing either the NDM-1 or KPC-3 carbapenemase. Efficacy of combinations of AZT with meropenem were compared with monotherapies against infections in Galleria mellonella larvae by measuring larval mortality and bacterial burden. The effect of the same combinations in vitro was determined via checkerboard and time-kill assays. In vitro, both K. pneumoniae strains were resistant to meropenem but were susceptible to AZT. In G. mellonella, treatment with either AZT or meropenem alone offered minimal therapeutic benefit against infections with either strain. In contrast, combination therapy of AZT with meropenem presented significantly enhanced efficacy compared to monotherapies. This was correlated with prevention of bacterial proliferation within the larvae but not elimination. Checkerboard assays showed that the interaction between AZT and meropenem was not synergistic but indifferent. In summary, combination therapy of AZT with meropenem represents a potential treatment for carbapenemase-producing MDR K. pneumoniae and merits further investigation.
Collapse
Affiliation(s)
- Alexandra E DeSarno
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, The North Haugh, St Andrews, Fife KY16 9ST, UK
| | - Benjamin J Parcell
- NHS Tayside, Department of Medical Microbiology, Ninewells Hospital and Medical School, Dundee DD1 9SY, UK
| | - Peter J Coote
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, The North Haugh, St Andrews, Fife KY16 9ST, UK
| |
Collapse
|
39
|
Gupta MN, Roy I. Drugs, host proteins and viral proteins: how their promiscuities shape antiviral design. Biol Rev Camb Philos Soc 2020; 96:205-222. [PMID: 32918378 DOI: 10.1111/brv.12652] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/24/2020] [Accepted: 08/27/2020] [Indexed: 12/12/2022]
Abstract
The reciprocal nature of drug specificity and target specificity implies that the same is true for their respective promiscuities. Protein promiscuity has two broadly different types of footprint in drug design. The first is relaxed specificity of binding sites for substrates, inhibitors, effectors or cofactors. The second involves protein-protein interactions of regulatory processes such as signal transduction and transcription, and here protein intrinsic disorder plays an important role. Both viruses and host cells exploit intrinsic disorder for their survival, as do the design and discovery programs for antivirals. Drug action, strictly speaking, always relies upon promiscuous activity, with drug promiscuity enlarging its scope. Drug repurposing searches for additional promiscuity on the part of both the drug and the target in the host. Understanding the subtle nuances of these promiscuities is critical in the design of novel and more effective antivirals.
Collapse
Affiliation(s)
- Munishwar Nath Gupta
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Hauz Khas, New Delhi, 110016, India
| | - Ipsita Roy
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab, 160062, India
| |
Collapse
|
40
|
In vitro screening of a FDA approved chemical library reveals potential inhibitors of SARS-CoV-2 replication. Sci Rep 2020; 10:13093. [PMID: 32753646 PMCID: PMC7403393 DOI: 10.1038/s41598-020-70143-6] [Citation(s) in RCA: 249] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 07/24/2020] [Indexed: 01/08/2023] Open
Abstract
A novel coronavirus, named SARS-CoV-2, emerged in 2019 in China and rapidly spread worldwide. As no approved therapeutics exists to treat COVID-19, the disease associated to SARS-Cov-2, there is an urgent need to propose molecules that could quickly enter into clinics. Repurposing of approved drugs is a strategy that can bypass the time-consuming stages of drug development. In this study, we screened the PRESTWICK CHEMICAL LIBRARY composed of 1,520 approved drugs in an infected cell-based assay. The robustness of the screen was assessed by the identification of drugs that already demonstrated in vitro antiviral effect against SARS-CoV-2. Thereby, 90 compounds were identified as positive hits from the screen and were grouped according to their chemical composition and their known therapeutic effect. Then EC50 and CC50 were determined for a subset of 15 compounds from a panel of 23 selected drugs covering the different groups. Eleven compounds such as macrolides antibiotics, proton pump inhibitors, antiarrhythmic agents or CNS drugs emerged showing antiviral potency with 2 < EC50 ≤ 20 µM. By providing new information on molecules inhibiting SARS-CoV-2 replication in vitro, this study provides information for the selection of drugs to be further validated in vivo. Disclaimer: This study corresponds to the early stages of antiviral development and the results do not support by themselves the use of the selected drugs to treat SARS-CoV-2 infection.
Collapse
|
41
|
Touret F, Gilles M, Barral K, Nougairède A, van Helden J, Decroly E, de Lamballerie X, Coutard B. In vitro screening of a FDA approved chemical library reveals potential inhibitors of SARS-CoV-2 replication. Sci Rep 2020; 10:13093. [PMID: 32753646 DOI: 10.1101/2020.04.03.023846] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 07/24/2020] [Indexed: 05/20/2023] Open
Abstract
A novel coronavirus, named SARS-CoV-2, emerged in 2019 in China and rapidly spread worldwide. As no approved therapeutics exists to treat COVID-19, the disease associated to SARS-Cov-2, there is an urgent need to propose molecules that could quickly enter into clinics. Repurposing of approved drugs is a strategy that can bypass the time-consuming stages of drug development. In this study, we screened the PRESTWICK CHEMICAL LIBRARY composed of 1,520 approved drugs in an infected cell-based assay. The robustness of the screen was assessed by the identification of drugs that already demonstrated in vitro antiviral effect against SARS-CoV-2. Thereby, 90 compounds were identified as positive hits from the screen and were grouped according to their chemical composition and their known therapeutic effect. Then EC50 and CC50 were determined for a subset of 15 compounds from a panel of 23 selected drugs covering the different groups. Eleven compounds such as macrolides antibiotics, proton pump inhibitors, antiarrhythmic agents or CNS drugs emerged showing antiviral potency with 2 < EC50 ≤ 20 µM. By providing new information on molecules inhibiting SARS-CoV-2 replication in vitro, this study provides information for the selection of drugs to be further validated in vivo. Disclaimer: This study corresponds to the early stages of antiviral development and the results do not support by themselves the use of the selected drugs to treat SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Franck Touret
- Unité Des Virus Emergents (UVE: Aix Marseille Univ, IRD 190, INSERM 1207, IHU Méditerranée Infection), 13005, Marseille, France.
| | - Magali Gilles
- Unité Des Virus Emergents (UVE: Aix Marseille Univ, IRD 190, INSERM 1207, IHU Méditerranée Infection), 13005, Marseille, France
| | - Karine Barral
- Aix-Marseille Univ, INSERM U1068, CNRS UMR7258, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Antoine Nougairède
- Unité Des Virus Emergents (UVE: Aix Marseille Univ, IRD 190, INSERM 1207, IHU Méditerranée Infection), 13005, Marseille, France
| | - Jacques van Helden
- Institut Français de Bioinformatique (IFB), UMS 3601-CNRS, Université Paris-Saclay, Orsay, France
- Aix-Marseille Univ, INSERM, Lab. Theory and Approaches of Genome Complexity (TAGC), Marseille, France
| | - Etienne Decroly
- AFMB UMR 7257, Aix-Marseille Université, CNRS, Marseille, France
| | - Xavier de Lamballerie
- Unité Des Virus Emergents (UVE: Aix Marseille Univ, IRD 190, INSERM 1207, IHU Méditerranée Infection), 13005, Marseille, France
| | - Bruno Coutard
- Unité Des Virus Emergents (UVE: Aix Marseille Univ, IRD 190, INSERM 1207, IHU Méditerranée Infection), 13005, Marseille, France.
| |
Collapse
|
42
|
Jeong GU, Song H, Yoon GY, Kim D, Kwon YC. Therapeutic Strategies Against COVID-19 and Structural Characterization of SARS-CoV-2: A Review. Front Microbiol 2020; 11:1723. [PMID: 32765482 PMCID: PMC7381222 DOI: 10.3389/fmicb.2020.01723] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 06/30/2020] [Indexed: 01/18/2023] Open
Abstract
The novel coronavirus, SARS-CoV-2, or 2019-nCoV, which originated in Wuhan, Hubei province, China in December 2019, is a grave threat to public health worldwide. A total of 3,672,238 confirmed cases of coronavirus disease 2019 (COVID-19) and 254,045 deaths were reported globally up to May 7, 2020. However, approved antiviral agents for the treatment of patients with COVID-19 remain unavailable. Drug repurposing of approved antivirals against other viruses such as HIV or Ebola virus is one of the most practical strategies to develop effective antiviral agents against SARS-CoV-2. A combination of repurposed drugs can improve the efficacy of treatment, and structure-based drug design can be employed to specifically target SARS-CoV-2. This review discusses therapeutic strategies using promising antiviral agents against SARS-CoV-2. In addition, structural characterization of potentially therapeutic viral or host cellular targets associated with COVID-19 have been discussed to refine structure-based drug design strategies.
Collapse
Affiliation(s)
- Gi Uk Jeong
- Center for Convergence for Emerging Virus Infection, Korea Research Institute of Chemical Technology (KRICT), Daejeon, South Korea
| | - Hanra Song
- Division of Therapeutics and Biotechnology, KRICT, Daejeon, South Korea
| | - Gun Young Yoon
- Center for Convergence for Emerging Virus Infection, Korea Research Institute of Chemical Technology (KRICT), Daejeon, South Korea
| | - Doyoun Kim
- Division of Therapeutics and Biotechnology, KRICT, Daejeon, South Korea
| | - Young-Chan Kwon
- Center for Convergence for Emerging Virus Infection, Korea Research Institute of Chemical Technology (KRICT), Daejeon, South Korea
| |
Collapse
|
43
|
Abdulla A, Wang B, Qian F, Kee T, Blasiak A, Ong YH, Hooi L, Parekh F, Soriano R, Olinger GG, Keppo J, Hardesty CL, Chow EK, Ho D, Ding X. Project IDentif.AI: Harnessing Artificial Intelligence to Rapidly Optimize Combination Therapy Development for Infectious Disease Intervention. ADVANCED THERAPEUTICS 2020; 3:2000034. [PMID: 32838027 PMCID: PMC7235487 DOI: 10.1002/adtp.202000034] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Indexed: 12/24/2022]
Abstract
In 2019/2020, the emergence of coronavirus disease 2019 (COVID-19) resulted in rapid increases in infection rates as well as patient mortality. Treatment options addressing COVID-19 included drug repurposing, investigational therapies such as remdesivir, and vaccine development. Combination therapy based on drug repurposing is among the most widely pursued of these efforts. Multi-drug regimens are traditionally designed by selecting drugs based on their mechanism of action. This is followed by dose-finding to achieve drug synergy. This approach is widely-used for drug development and repurposing. Realizing synergistic combinations, however, is a substantially different outcome compared to globally optimizing combination therapy, which realizes the best possible treatment outcome by a set of candidate therapies and doses toward a disease indication. To address this challenge, the results of Project IDentif.AI (Identifying Infectious Disease Combination Therapy with Artificial Intelligence) are reported. An AI-based platform is used to interrogate a massive 12 drug/dose parameter space, rapidly identifying actionable combination therapies that optimally inhibit A549 lung cell infection by vesicular stomatitis virus within three days of project start. Importantly, a sevenfold difference in efficacy is observed between the top-ranked combination being optimally and sub-optimally dosed, demonstrating the critical importance of ideal drug and dose identification. This platform is disease indication and disease mechanism-agnostic, and potentially applicable to the systematic N-of-1 and population-wide design of highly efficacious and tolerable clinical regimens. This work also discusses key factors ranging from healthcare economics to global health policy that may serve to drive the broader deployment of this platform to address COVID-19 and future pandemics.
Collapse
Affiliation(s)
- Aynur Abdulla
- Institute for Personalized MedicineSchool of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030China
| | - Boqian Wang
- Institute for Personalized MedicineSchool of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030China
| | - Feng Qian
- Ministry of Education Key Laboratory of Contemporary AnthropologyHuman Phenome InstituteSchool of Life SciencesFudan UniversityShanghai200438China
| | - Theodore Kee
- The N.1 Institute for Health (N.1)National University of SingaporeSingapore117456Singapore
- The Institute for Digital Medicine (WisDM)Yong Loo Lin School of MedicineNational University of SingaporeSingapore11756Singapore
- Department of Biomedical EngineeringNUS EngineeringNational University of SingaporeSingapore117583Singapore
| | - Agata Blasiak
- The N.1 Institute for Health (N.1)National University of SingaporeSingapore117456Singapore
- The Institute for Digital Medicine (WisDM)Yong Loo Lin School of MedicineNational University of SingaporeSingapore11756Singapore
- Department of Biomedical EngineeringNUS EngineeringNational University of SingaporeSingapore117583Singapore
| | - Yoong Hun Ong
- The N.1 Institute for Health (N.1)National University of SingaporeSingapore117456Singapore
| | - Lissa Hooi
- Cancer Science Institute of SingaporeNational University of SingaporeSingapore117599Singapore
| | | | | | - Gene G. Olinger
- Global Health Surveillance and Diagnostic DivisionMRIGlobalGaithersburgMD20878USA
- Boston University School of MedicineDivision of Infectious DiseasesBostonMA02118USA
| | - Jussi Keppo
- NUS Business School and Institute of Operations Research and AnalyticsNational University of SingaporeSingapore119245Singapore
| | - Chris L. Hardesty
- KPMG Global Health and Life Sciences Centre of ExcellenceSingapore048581Singapore
| | - Edward K. Chow
- The N.1 Institute for Health (N.1)National University of SingaporeSingapore117456Singapore
- Cancer Science Institute of SingaporeNational University of SingaporeSingapore117599Singapore
- Department of PharmacologyYong Loo Lin School of MedicineNational University of SingaporeSingapore117600Singapore
| | - Dean Ho
- The N.1 Institute for Health (N.1)National University of SingaporeSingapore117456Singapore
- The Institute for Digital Medicine (WisDM)Yong Loo Lin School of MedicineNational University of SingaporeSingapore11756Singapore
- Department of Biomedical EngineeringNUS EngineeringNational University of SingaporeSingapore117583Singapore
- Department of PharmacologyYong Loo Lin School of MedicineNational University of SingaporeSingapore117600Singapore
| | - Xianting Ding
- Institute for Personalized MedicineSchool of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030China
| |
Collapse
|
44
|
Abstract
COVID-19 has now been declared a pandemic and new treatments are urgently needed as we enter a phase beyond containment. Developing new drugs from scratch is a lengthy process, thus impractical to face the immediate global challenge. Drug repurposing is an emerging strategy where existing medicines, having already been tested safe in humans, are redeployed to combat difficult-to-treat diseases. While using such repurposed drugs individually may ultimately not yield a significant clinical benefit, carefully combined cocktails could be very effective, as was for HIV in the 1990s; the urgent question now being which combination.
Collapse
|
45
|
Discovery and development of safe-in-man broad-spectrum antiviral agents. Int J Infect Dis 2020; 93:268-276. [PMID: 32081774 PMCID: PMC7128205 DOI: 10.1016/j.ijid.2020.02.018] [Citation(s) in RCA: 161] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/07/2020] [Accepted: 02/11/2020] [Indexed: 12/13/2022] Open
Abstract
We reviewed the discovery and development process of broad-spectrum antiviral agents. We summarized the information on 120 safe-in-man agents in a freely accessible database. Further studies will increase the number of broad-spectrum antivirals, expand the spectrum of their indications, and identify drug combinations for treatment of emerging and re-emerging viral infections.
Viral diseases are one of the leading causes of morbidity and mortality in the world. Virus-specific vaccines and antiviral drugs are the most powerful tools to combat viral diseases. However, broad-spectrum antiviral agents (BSAAs, i.e. compounds targeting viruses belonging to two or more viral families) could provide additional protection of the general population from emerging and re-emerging viral diseases, reinforcing the arsenal of available antiviral options. Here, we review discovery and development of BSAAs and summarize the information on 120 safe-in-man agents in a freely accessible database (https://drugvirus.info/). Future and ongoing pre-clinical and clinical studies will increase the number of BSAAs, expand the spectrum of their indications, and identify drug combinations for treatment of emerging and re-emerging viral infections as well as co-infections.
Collapse
|
46
|
Nabirotchkin S, Peluffo AE, Rinaudo P, Yu J, Hajj R, Cohen D. Next-generation drug repurposing using human genetics and network biology. Curr Opin Pharmacol 2020; 51:78-92. [PMID: 31982325 DOI: 10.1016/j.coph.2019.12.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/16/2019] [Accepted: 12/19/2019] [Indexed: 12/26/2022]
Abstract
Drug repurposing has attracted increased attention, especially in the context of drug discovery rates that remain too low despite a recent wave of approvals for biological therapeutics (e.g. gene therapy). These new biological entities-based treatments have high costs that are difficult to justify for small markets that include rare diseases. Drug repurposing, involving the identification of single or combinations of existing drugs based on human genetics data and network biology approaches represents a next-generation approach that has the potential to increase the speed of drug discovery at a lower cost. This Pharmacological Perspective reviews progress and perspectives in combining human genetics, especially genome-wide association studies, with network biology to drive drug repurposing for rare and common diseases with monogenic or polygenic etiologies. Also, highlighted here are important features of this next generation approach to drug repurposing, which can be combined with machine learning methods to meet the challenges of personalized medicine.
Collapse
Affiliation(s)
- Serguei Nabirotchkin
- Network Biology & Drug Discovery Department, Pharnext, 11 rue René Jacques, 92130 Issy-les-Moulineaux, France
| | - Alex E Peluffo
- Data Science Department, Pharnext, 11 rue René Jacques, 92130 Issy-les-Moulineaux, France.
| | - Philippe Rinaudo
- Data Science Department, Pharnext, 11 rue René Jacques, 92130 Issy-les-Moulineaux, France
| | - Jinchao Yu
- Data Science Department, Pharnext, 11 rue René Jacques, 92130 Issy-les-Moulineaux, France
| | - Rodolphe Hajj
- Preclinical Research and Pharmacology Department, Pharnext, 11 rue René Jacques, 92130 Issy-les-Moulineaux, France
| | - Daniel Cohen
- Chief Executive Officer, Pharnext, 11 rue René Jacques, 92130 Issy-les-Moulineaux, France
| |
Collapse
|
47
|
González A, Casado J, Chueca E, Salillas S, Velázquez-Campoy A, Espinosa Angarica V, Bénejat L, Guignard J, Giese A, Sancho J, Lehours P, Lanas Á. Repurposing Dihydropyridines for Treatment of Helicobacter pylori Infection. Pharmaceutics 2019; 11:pharmaceutics11120681. [PMID: 31847484 PMCID: PMC6969910 DOI: 10.3390/pharmaceutics11120681] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/12/2019] [Accepted: 12/13/2019] [Indexed: 12/11/2022] Open
Abstract
Antibiotic resistance is a major cause of the increasing failures in the current eradication therapies against Helicobacter pylori. In this scenario, repurposing drugs could be a valuable strategy to fast-track novel antimicrobial agents. In the present study, we analyzed the inhibitory capability of 1,4-dihydropyridine (DHP) antihypertensive drugs on the essential function of the H. pylori response regulator HsrA and investigated both the in vitro antimicrobial activities and the in vivo efficacy of DHP treatments against H. pylori. Six different commercially available and highly prescribed DHP drugs-namely, Nifedipine, Nicardipine, Nisoldipine, Nimodipine, Nitrendipine, and Lercanidipine-noticeably inhibited the DNA binding activity of HsrA and exhibited potent bactericidal activities against both metronidazole- and clarithromycin-resistant strains of H. pylori, with minimal inhibitory concentration (MIC) values in the range of 4 to 32 mg/L. The dynamics of the decline in the bacterial counts at 2 × MIC appeared to be correlated with the lipophilicity of the drugs, suggesting different translocation efficiencies of DHPs across the bacterial membrane. Oral treatments with 100 mg/kg/day of marketed formulations of Nimodipine or Nitrendipine in combination with omeprazole significantly reduced the H. pylori gastric colonization in mice. The results presented here support a novel therapeutic solution for treatment of antibiotic-resistant H. pylori infections.
Collapse
Affiliation(s)
- Andrés González
- Aragon Institute for Health Research (IIS Aragón), San Juan Bosco 13, 50009 Zaragoza, Spain
- Institute for Biocomputation and Physics of Complex Systems (BIFI), Mariano Esquilor (Edif. I+D), 50018 Zaragoza, Spain
- Correspondence: ; Tel.: +34-976-762807
| | - Javier Casado
- Department of Biochemistry and Molecular & Cellular Biology, University of Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Eduardo Chueca
- Aragon Institute for Health Research (IIS Aragón), San Juan Bosco 13, 50009 Zaragoza, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Sandra Salillas
- Institute for Biocomputation and Physics of Complex Systems (BIFI), Mariano Esquilor (Edif. I+D), 50018 Zaragoza, Spain
- Department of Biochemistry and Molecular & Cellular Biology, University of Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Adrián Velázquez-Campoy
- Institute for Biocomputation and Physics of Complex Systems (BIFI), Mariano Esquilor (Edif. I+D), 50018 Zaragoza, Spain
- Department of Biochemistry and Molecular & Cellular Biology, University of Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Monforte de Lemos 3-5, 28029 Madrid, Spain
- ARAID Foundation, Government of Aragon, Ranillas 1-D, 50018 Zaragoza, Spain
| | - Vladimir Espinosa Angarica
- Cancer Science Institute, National University of Singapore, 14 Medical Drive, #12-01, Singapore 117599, Singapore
| | - Lucie Bénejat
- UMR1053 Bordeaux Research in Translational Oncology, INSERM, Université Bordeaux, BaRITOn, 33000 Bordeaux, France
- French National Reference Center for Campylobacters & Helicobacters, 33000 Bordeaux, France
| | - Jérome Guignard
- UMR1053 Bordeaux Research in Translational Oncology, INSERM, Université Bordeaux, BaRITOn, 33000 Bordeaux, France
| | - Alban Giese
- UMR1053 Bordeaux Research in Translational Oncology, INSERM, Université Bordeaux, BaRITOn, 33000 Bordeaux, France
| | - Javier Sancho
- Aragon Institute for Health Research (IIS Aragón), San Juan Bosco 13, 50009 Zaragoza, Spain
- Institute for Biocomputation and Physics of Complex Systems (BIFI), Mariano Esquilor (Edif. I+D), 50018 Zaragoza, Spain
- Department of Biochemistry and Molecular & Cellular Biology, University of Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Philippe Lehours
- UMR1053 Bordeaux Research in Translational Oncology, INSERM, Université Bordeaux, BaRITOn, 33000 Bordeaux, France
- French National Reference Center for Campylobacters & Helicobacters, 33000 Bordeaux, France
| | - Ángel Lanas
- Aragon Institute for Health Research (IIS Aragón), San Juan Bosco 13, 50009 Zaragoza, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Monforte de Lemos 3-5, 28029 Madrid, Spain
- Digestive Diseases Service, University Clinic Hospital Lozano Blesa; San Juan Bosco 15, 50009 Zaragoza, Spain
- Department of Medicine, Psychiatry and Dermatology, University of Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
| |
Collapse
|