1
|
Nicholson AA, Lieberman JM, Hosseini-Kamkar N, Eckstrand K, Rabellino D, Kearney B, Steyrl D, Narikuzhy S, Densmore M, Théberge J, Hosseiny F, Lanius RA. Exploring the impact of biological sex on intrinsic connectivity networks in PTSD: A data-driven approach. Prog Neuropsychopharmacol Biol Psychiatry 2025; 136:111180. [PMID: 39447688 PMCID: PMC11781259 DOI: 10.1016/j.pnpbp.2024.111180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 09/26/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
INTRODUCTION Sex as a biological variable (SABV) may help to account for the differential development and expression of post-traumatic stress disorder (PTSD) symptoms among trauma-exposed males and females. Here, we investigate the impact of SABV on PTSD-related neural alterations in resting-state functional connectivity (rsFC) within three core intrinsic connectivity networks (ICNs): the salience network (SN), central executive network (CEN), and default mode network (DMN). METHODS Using an independent component analysis (ICA), we compared rsFC of the SN, CEN, and DMN between males and females, with and without PTSD (n = 47 females with PTSD, n = 34 males with PTSD, n = 36 healthy control females, n = 20 healthy control males) via full factorial ANCOVAs. Additionally, linear regression analyses were conducted with clinical variables (i.e., PTSD and depression symptoms, childhood trauma scores) in order to determine intrinsic network connectivity characteristics specific to SABV. Furthermore, we utilized machine learning classification models to predict the biological sex and PTSD diagnosis of individual participants based on intrinsic network activity patterns. RESULTS Our findings revealed differential network connectivity patterns based on SABV and PTSD diagnosis. Males with PTSD exhibited increased intra-SN (i.e., SN-anterior insula) rsFC and increased DMN-right superior parietal lobule/precuneus/superior occipital gyrus rsFC as compared to females with PTSD. There were also differential network connectivity patterns for comparisons between the PTSD and healthy control groups for males and females, separately. We did not observe significant correlations between clinical measures of interest and brain region clusters which displayed significant between group differences as a function of biological sex, thus further reinforcing that SABV analyses are likely not confounded by these variables. Furthermore, machine learning classification models accurately predicted biological sex and PTSD diagnosis among novel/unseen participants based on ICN activation patterns. CONCLUSION This study reveals groundbreaking insights surrounding the impact of SABV on PTSD-related ICN alterations using data-driven methods. Our discoveries contribute to further defining neurobiological markers of PTSD among females and males and may offer guidance for differential sex-related treatment needs.
Collapse
Affiliation(s)
- Andrew A Nicholson
- The Institute of Mental Health Research, University of Ottawa, Royal Ottawa Hospital, Ontario, Canada; School of Psychology, University of Ottawa, Ottawa, Ontario, Canada; Atlas Institute for Veterans and Families, Ottawa, Ontario, Canada; Department of Cognition, Emotion, and Methods in Psychology, University of Vienna, Vienna, Austria; Department of Medical Biophysics, Western University, London, Ontario, Canada; Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada.
| | - Jonathan M Lieberman
- Atlas Institute for Veterans and Families, Ottawa, Ontario, Canada; Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada; Imaging, Lawson Health Research Institute, London, Ontario, Canada
| | - Niki Hosseini-Kamkar
- The Institute of Mental Health Research, University of Ottawa, Royal Ottawa Hospital, Ontario, Canada; Atlas Institute for Veterans and Families, Ottawa, Ontario, Canada
| | - Kristen Eckstrand
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Daniela Rabellino
- Imaging, Lawson Health Research Institute, London, Ontario, Canada; Department of Neuroscience, Western University, London, Ontario, Canada
| | - Breanne Kearney
- Department of Neuroscience, Western University, London, Ontario, Canada
| | - David Steyrl
- Department of Cognition, Emotion, and Methods in Psychology, University of Vienna, Vienna, Austria
| | - Sandhya Narikuzhy
- Atlas Institute for Veterans and Families, Ottawa, Ontario, Canada; Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada
| | - Maria Densmore
- Imaging, Lawson Health Research Institute, London, Ontario, Canada; Department of Psychiatry, Western University, London, Ontario, Canada
| | - Jean Théberge
- Department of Medical Biophysics, Western University, London, Ontario, Canada; Imaging, Lawson Health Research Institute, London, Ontario, Canada; Department of Psychiatry, Western University, London, Ontario, Canada; Department of Diagnostic Imaging, St. Joseph's Healthcare, London, Ontario, Canada
| | - Fardous Hosseiny
- Atlas Institute for Veterans and Families, Ottawa, Ontario, Canada
| | - Ruth A Lanius
- Atlas Institute for Veterans and Families, Ottawa, Ontario, Canada; Imaging, Lawson Health Research Institute, London, Ontario, Canada; Department of Neuroscience, Western University, London, Ontario, Canada; Department of Psychiatry, Western University, London, Ontario, Canada
| |
Collapse
|
2
|
Cenka K, Spaccasassi C, Petkovic S, Pezzetta R, Arcara G, Avenanti A. Temporal dynamics of implicit moral evaluation: From empathy for pain to mentalizing processes. Neuropsychologia 2024; 205:109033. [PMID: 39515579 DOI: 10.1016/j.neuropsychologia.2024.109033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 10/01/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024]
Abstract
To understand how we evaluate harm to others, it is crucial to consider the offender's intent and the victim's suffering. Previous research investigating event-related potentials (ERPs) during moral evaluation has been limited by small sample sizes and a priori selection of electrodes and time windows that may bias the results. To overcome these limitations, we examined ERPs in 66 healthy human adults using a data-driven analytic approach involving cluster-based permutation tests. Participants performed an implicit moral evaluation task requiring to observe scenarios depicting intentional harm (IHS), accidental harm (AHS), and neutral actions (NAS) while judging whether each scenario was set indoors or outdoors. Our results revealed two distinct clusters, peaking at ∼170 and ∼250 ms, showing differences between harm scenarios (IHS and AHS) and NAS, suggesting rapid processing of the victim's physical outcome. The difference between IHS and AHS scenarios emerged later, at ∼400 ms, potentially reflecting subsequent evaluation of the agent's intentions. Source analysis showed that brain regions associated with empathy for pain were associated with the earlier peaks at ∼170 and ∼250 ms, while the modulation of the activity of the mentalizing network was presented at ∼250 and ∼400 ms. These findings advance our understanding of the neural mechanisms underlying implicit moral evaluation. Notably, they provide electrocortical new insights for models of implicit moral evaluation, suggesting an early neural response linked to empathy for pain, with subsequent integration of empathy response with mentalizing processes, followed by later cognitive evaluations, likely reflecting the assessment of the agent's moral responsibility.
Collapse
Affiliation(s)
- Kamela Cenka
- Centro Studi e ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestrari", Alma Mater Studiorum Università di Bologna, Cesena Campus, Cesena, Italy.
| | - Chiara Spaccasassi
- Centro Studi e ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestrari", Alma Mater Studiorum Università di Bologna, Cesena Campus, Cesena, Italy
| | - Stella Petkovic
- Centro Studi e ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestrari", Alma Mater Studiorum Università di Bologna, Cesena Campus, Cesena, Italy; Sapienza, University of Rome and CLN2S@SAPIENZA, Istituto Italiano di Tecnologia, Rome, Italy
| | | | | | - Alessio Avenanti
- Centro Studi e ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestrari", Alma Mater Studiorum Università di Bologna, Cesena Campus, Cesena, Italy; Centro de Investigación en Neuropsicología y Neurociencias Cognitivas, Universidad Católica del Maule, Talca, Chile.
| |
Collapse
|
3
|
Tang WK, Hui E, Leung TWH. Loss of empathy in stroke. Front Psychol 2024; 15:1451431. [PMID: 39654928 PMCID: PMC11626759 DOI: 10.3389/fpsyg.2024.1451431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 11/11/2024] [Indexed: 12/12/2024] Open
Abstract
Background Loss of empathy (LoE) is common among stroke survivors, yet often undiagnosed and thus untreated. LoE is related to the loss of a caring marital relationship, higher care burden and poorer quality of life in carers. The present study will evaluate the clinical and MRI correlates of LoE in a cohort of stroke survivors. The secondary objective is to describe the 12-month course of LoE. Methods The current study is a prospective cohort study. We will recruit 246 subjects. Subjects and carers will receive a detailed assessment at a research clinic at 3, 9, and 15 months after stroke onset (T1/T2/T3). The Chinese version of the Interpersonal Reactivity Index (IRI), a 28-item personality assessment tool, will be completed by a carer for each subject. LoE is defined as an IRI total score of 39 or less. Patients will be examined by MRI including diffusion weighted imaging (DWI) within 1 week after the onset of stroke. A stepwise logistic regression will be performed to assess the importance of lesions in the regions of interest. To examine the predictors of LoE remission, the demographic, clinical and MRI variables of remitters and non-remitters at T2/T3 will be examined by logistic regression. Discussion This project will be the first longitudinal study on LoE in stroke survivors. The results will shed light on the association between prefrontal cortex and subcortical lesions and LoE risk, symptom severity and outcome. The findings will provide data to advance our understanding of the pathogenesis and clinical course of LoE in stroke as well as other neurological conditions. They are thus likely to be applicable to the large population of neurological patients at risk of LoE and should also stimulate further research in this field.
Collapse
Affiliation(s)
- Wai Kwong Tang
- Department of Psychiatry, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Edward Hui
- Department of Psychiatry, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Thomas Wai Hong Leung
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| |
Collapse
|
4
|
Muronaga M, Hirakawa H, Terao T, Izumi T, Satoh M, Kohno K. Association between irritable temperament and glucose metabolism in the left insula and the right cerebellum. J Psychiatr Res 2024; 177:228-233. [PMID: 39033668 DOI: 10.1016/j.jpsychires.2024.07.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/09/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
INTRODUCTION Affective temperaments are assumed to have biological and neural bases. In the present study, we analyzed 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) images of healthy participants to explore the neural basis of affective temperaments. METHOD We utilized data of affective temperament measured by the Temperament Evaluation of Memphis, Pisa, Paris, and San Diego-Autoquestionnaire and 18F-FDG PET images of healthy participants from two of our previous studies. A multiple regression analysis was performed to assess the association between 18F-FDG uptake and temperament scores using Statistical Parametric Mapping 12. RESULTS The final sample included 62 healthy participants. Whole-brain analysis revealed a cluster of 18F-FDG uptake that was significantly and positively associated with irritable temperament scores in the right cerebellum (Crus II, VIII, and IX). After further adjustment for the other four temperament scores, whole-brain analysis revealed a cluster of 18F-FDG uptake significantly and positively associated with irritable temperament scores in the left insula and right cerebellum (Crus II, VIII, and IX). However, no significant association was found between 18F-FDG uptake and the other four temperaments (depressive, cyclothymic, hyperthymic, and anxious). CONCLUSIONS The left insula and right cerebellum of the cerebrocerebellar circuit may be one of the neural bases of irritable temperament.
Collapse
Affiliation(s)
- Masaaki Muronaga
- Department of Neuropsychiatry, Oita University Faculty of Medicine, Oita, Japan
| | - Hirofumi Hirakawa
- Department of Neuropsychiatry, Oita University Faculty of Medicine, Oita, Japan.
| | - Takeshi Terao
- Department of Neuropsychiatry, Oita University Faculty of Medicine, Oita, Japan
| | - Toshihiko Izumi
- Department of Neuropsychiatry, Oita University Faculty of Medicine, Oita, Japan
| | - Moriaki Satoh
- Department of Neuropsychiatry, Oita University Faculty of Medicine, Oita, Japan
| | - Kentaro Kohno
- Department of Neuropsychiatry, Oita University Faculty of Medicine, Oita, Japan
| |
Collapse
|
5
|
Orlando I, Filippini N. Aging modulates frontal lobes involvement in emotion regulation processing. J Neurosci Res 2024; 102:e25282. [PMID: 38284857 DOI: 10.1002/jnr.25282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/16/2023] [Accepted: 11/24/2023] [Indexed: 01/30/2024]
Abstract
Emotion regulation (ER) is the process by which individuals can modulate the intensity of their emotional experience and it plays a crucial role in daily life. So far, behavioral analyses seem to suggest that ER ability remains stable throughout the lifespan. However, imaging studies evaluating the neural correlates of ER performance during the aging process have shown mixed results. In this study, we used the "Cambridge Centre for Ageing and Neuroscience cohort sample" to investigate: (1) ER behavioral performance and (2) the differential association between brain measures (based on both structural and functional connectivity data) and ER performance, in a group of younger/middle-aged participants (N = 159; age range: 18y < x < 58y) relative to a group of older healthy subjects (N = 136; age range: 58y < =x < 89y). Whereas we found no group-related differences either in ER behavioral data or the association between ER performance and structural data, we did observe that ER performance was differentially correlated in our two study groups to functional connectivity measures in the fronto-insular-temporal network, which has been shown to be involved in emotional processing. Group-related differences were specifically localized in a cluster of voxels within the anterior cingulate areas which revealed a reverse pattern between our study groups: in younger/middle-aged participants better ER performance was associated with increase connectivity, whereas among older participants better ER performance was related to reduced connectivity. Based on our results, we suggest that a de-differentiation mechanism, known to affect the frontal lobes brain activity and connectivity in older subjects, might explain our findings.
Collapse
Affiliation(s)
- Isabella Orlando
- Dept. of Psychology, Salesian Pontifical University of Rome, Rome, Italy
| | - Nicola Filippini
- Laboratory of Neuroimaging and Neurodegeneration, IRCCS San Camillo Hospital, Venice, Italy
| |
Collapse
|
6
|
Jayashankar A, Aziz-Zadeh L. Disgust Processing and Potential Relationships with Behaviors in Autism. Curr Psychiatry Rep 2023; 25:465-478. [PMID: 37672122 PMCID: PMC10627949 DOI: 10.1007/s11920-023-01445-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/24/2023] [Indexed: 09/07/2023]
Abstract
PURPOSE OF REVIEW While there are reports of differences in emotion processing in autism, it is less understood whether the emotion of disgust, in particular, plays a significant role in these effects. Here, we review literature on potential disgust processing differences in autism and its possible associations with autistic traits. RECENT FINDINGS In autism, there is evidence for differences in physical disgust processing, pica behaviors, attention away from other's disgust facial expressions, and differences in neural activity related to disgust processing. In typically developing individuals, disgust processing is related to moral processing, but modulated by individual differences in interoception and alexithymia. Autistic individuals may experience atypical disgust, which may lead to difficulty avoiding contaminants and affect socio-emotional processing. In autism, such outcomes may lead to increased occurrences of illness, contribute to gastrointestinal issues, diminish vicarious learning of disgust expression and behaviors, and potentially contribute to differences in processes related to moral reasoning, though further research is needed.
Collapse
Affiliation(s)
- Aditya Jayashankar
- USC Mrs. T.H. Chan Division of Occupational Science and Occupational Therapy, University of Southern California, Los Angeles, CA, 90089, USA.
- Brain and Creativity Institute, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA, 90089, USA.
| | - Lisa Aziz-Zadeh
- USC Mrs. T.H. Chan Division of Occupational Science and Occupational Therapy, University of Southern California, Los Angeles, CA, 90089, USA
- Brain and Creativity Institute, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| |
Collapse
|
7
|
Mi Y, Duan H, Xu Z, Lei X. The Impact of Sleep Deprivation on Brain Networks in Response to Social Evaluation Tasks. Brain Sci 2023; 13:1122. [PMID: 37626479 PMCID: PMC10452848 DOI: 10.3390/brainsci13081122] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/21/2023] [Accepted: 07/23/2023] [Indexed: 08/27/2023] Open
Abstract
Sleep loss may lead to negative bias during social interaction. In the current study, we conducted a revised social evaluation task experiment to investigate how sleep deprivation influences the self-referential and cognitive processes of social feedback. The experiment consisted of a first impression task and a social feedback task. Seventy-eight participants completed the first impression task and were divided into normal and poor sleep groups. The results of an independent samples t-test showed that participants who slept worse were less likely to socialize with others but did not evaluate others as less attractive. Afterward, 22 of the participants from the first impression task were recruited to complete the social feedback task during functional magnetic resonance imaging (fMRI) on the mornings following two different sleep conditions at night: one night of normal sleep and one night of sleep deprivation. The results of this within-subject design study showed that participants who experienced the latter condition showed increased activation within the default mode network (i.e. superior parietal lobule, precuneus, inferior parietal lobule, inferior temporal gyrus, and medial frontal gyrus) and anterior cingulate cortex (ACC) and stronger negative insula functional connectivity (FC) with the precuneus to negative feedback than positive feedback. The altered activation and behavioral pattern may indicate a negative bias for social cues. However, stronger negative coupling may indicate stronger cognitive control, which may protect against potential damage to self-concept. Our study suggested that sleep impairs most social functions, but may protect against impairment of important ones, such as self-concept.
Collapse
Affiliation(s)
- Yiqi Mi
- Sleep and NeuroImaging Center, Faculty of Psychology, Southwest University, Chongqing 400715, China
- Key Laboratory of Cognition and Personality, Ministry of Education, Chongqing 400715, China
| | - Huimin Duan
- Sleep and NeuroImaging Center, Faculty of Psychology, Southwest University, Chongqing 400715, China
- Key Laboratory of Cognition and Personality, Ministry of Education, Chongqing 400715, China
| | - Ziye Xu
- Sleep and NeuroImaging Center, Faculty of Psychology, Southwest University, Chongqing 400715, China
- Key Laboratory of Cognition and Personality, Ministry of Education, Chongqing 400715, China
| | - Xu Lei
- Sleep and NeuroImaging Center, Faculty of Psychology, Southwest University, Chongqing 400715, China
- Key Laboratory of Cognition and Personality, Ministry of Education, Chongqing 400715, China
| |
Collapse
|
8
|
Lieberman JM, Rabellino D, Densmore M, Frewen PA, Steyrl D, Scharnowski F, Théberge J, Neufeld RWJ, Schmahl C, Jetly R, Narikuzhy S, Lanius RA, Nicholson AA. Posterior cingulate cortex targeted real-time fMRI neurofeedback recalibrates functional connectivity with the amygdala, posterior insula, and default-mode network in PTSD. Brain Behav 2023; 13:e2883. [PMID: 36791212 PMCID: PMC10013955 DOI: 10.1002/brb3.2883] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/07/2022] [Accepted: 12/12/2022] [Indexed: 02/17/2023] Open
Abstract
BACKGROUND Alterations within large-scale brain networks-namely, the default mode (DMN) and salience networks (SN)-are present among individuals with posttraumatic stress disorder (PTSD). Previous real-time functional magnetic resonance imaging (fMRI) and electroencephalography neurofeedback studies suggest that regulating posterior cingulate cortex (PCC; the primary hub of the posterior DMN) activity may reduce PTSD symptoms and recalibrate altered network dynamics. However, PCC connectivity to the DMN and SN during PCC-targeted fMRI neurofeedback remains unexamined and may help to elucidate neurophysiological mechanisms through which these symptom improvements may occur. METHODS Using a trauma/emotion provocation paradigm, we investigated psychophysiological interactions over a single session of neurofeedback among PTSD (n = 14) and healthy control (n = 15) participants. We compared PCC functional connectivity between regulate (in which participants downregulated PCC activity) and view (in which participants did not exert regulatory control) conditions across the whole-brain as well as in a priori specified regions-of-interest. RESULTS During regulate as compared to view conditions, only the PTSD group showed significant PCC connectivity with anterior DMN (dmPFC, vmPFC) and SN (posterior insula) regions, whereas both groups displayed PCC connectivity with other posterior DMN areas (precuneus/cuneus). Additionally, as compared with controls, the PTSD group showed significantly greater PCC connectivity with the SN (amygdala) during regulate as compared to view conditions. Moreover, linear regression analyses revealed that during regulate as compared to view conditions, PCC connectivity to DMN and SN regions was positively correlated to psychiatric symptoms across all participants. CONCLUSION In summary, observations of PCC connectivity to the DMN and SN provide emerging evidence of neural mechanisms underlying PCC-targeted fMRI neurofeedback among individuals with PTSD. This supports the use of PCC-targeted neurofeedback as a means by which to recalibrate PTSD-associated alterations in neural connectivity within the DMN and SN, which together, may help to facilitate improved emotion regulation abilities in PTSD.
Collapse
Affiliation(s)
- Jonathan M. Lieberman
- Department of Psychiatry and Behavioural NeurosciencesMcMaster UniversityHamiltonOntarioCanada
- Imaging, Lawson Health Research InstituteLondonOntarioCanada
| | - Daniela Rabellino
- Imaging, Lawson Health Research InstituteLondonOntarioCanada
- Department of NeuroscienceWestern UniversityLondonOntarioCanada
| | - Maria Densmore
- Imaging, Lawson Health Research InstituteLondonOntarioCanada
- Department of PsychiatryWestern UniversityLondonOntarioCanada
| | - Paul A. Frewen
- Department of NeuroscienceWestern UniversityLondonOntarioCanada
- Department of PsychologyWestern UniversityLondonOntarioCanada
| | - David Steyrl
- Department of Cognition, Emotion, and Methods in PsychologyUniversity of ViennaViennaAustria
| | - Frank Scharnowski
- Department of Cognition, Emotion, and Methods in PsychologyUniversity of ViennaViennaAustria
| | - Jean Théberge
- Imaging, Lawson Health Research InstituteLondonOntarioCanada
- Department of PsychiatryWestern UniversityLondonOntarioCanada
- Department of Medical BiophysicsWestern UniversityLondonOntarioCanada
- Department of Diagnostic ImagingSt. Joseph's HealthcareLondonOntarioCanada
| | - Richard W. J. Neufeld
- Department of NeuroscienceWestern UniversityLondonOntarioCanada
- Department of PsychiatryWestern UniversityLondonOntarioCanada
- Department of PsychologyWestern UniversityLondonOntarioCanada
- Department of PsychologyUniversity of British Columbia, OkanaganKelownaBritish ColumbiaCanada
| | - Christian Schmahl
- Department of Psychosomatic Medicine and PsychotherapyCentral Institute of Mental Health MannheimHeidelberg UniversityHeidelbergGermany
| | - Rakesh Jetly
- The Institute of Mental Health ResearchUniversity of Ottawa, Royal Ottawa HospitalOntarioCanada
| | - Sandhya Narikuzhy
- Department of Psychiatry and Behavioural NeurosciencesMcMaster UniversityHamiltonOntarioCanada
| | - Ruth A. Lanius
- Imaging, Lawson Health Research InstituteLondonOntarioCanada
- Department of NeuroscienceWestern UniversityLondonOntarioCanada
- Department of PsychiatryWestern UniversityLondonOntarioCanada
- Homewood Research InstituteGuelphOntarioCanada
| | - Andrew A. Nicholson
- Department of Psychiatry and Behavioural NeurosciencesMcMaster UniversityHamiltonOntarioCanada
- Department of Cognition, Emotion, and Methods in PsychologyUniversity of ViennaViennaAustria
- Department of Medical BiophysicsWestern UniversityLondonOntarioCanada
- The Institute of Mental Health ResearchUniversity of Ottawa, Royal Ottawa HospitalOntarioCanada
- Homewood Research InstituteGuelphOntarioCanada
- Atlas Institute for Veterans and FamiliesOttawaOntarioCanada
- School of PsychologyUniversity of OttawaOttawaCanada
| |
Collapse
|
9
|
Spaccasassi C, Cenka K, Petkovic S, Avenanti A. Sense of agency predicts severity of moral judgments. Front Psychol 2023; 13:1070742. [PMID: 36817371 PMCID: PMC9932714 DOI: 10.3389/fpsyg.2022.1070742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 12/13/2022] [Indexed: 02/05/2023] Open
Abstract
Sense of Agency (SoA) refers to the awareness of being the agent of our own actions. A key feature of SoA relies on the perceived temporal compression between our own actions and their sensory consequences, a phenomenon known as "Intentional Binding." Prior studies have linked SoA to the sense of responsibility for our own actions. However, it is unclear whether SoA predicts the way we judge the actions of others - including judgments of morally wrong actions like harming others. To address this issue, we ran an on-line pilot experiment where participants underwent two different tasks designed to tap into SoA and moral cognition. SoA was measured using the Intentional Binding task which allowed us to obtain both implicit (Intentional Binding) and explicit (Agency Rating) measures of SoA. Moral cognition was assessed by asking the same participants to evaluate videoclips where an agent could deliberately or inadvertently cause suffering to a victim (Intentional vs. Accidental Harm) compared with Neutral scenarios. Results showed a significant relation between both implicit and explicit measures of SoA and moral evaluation of the Accidental Harm scenarios, with stronger SoA predicting stricter moral judgments. These findings suggest that our capacity to feel in control of our actions predicts the way we judge others' actions, with stronger feelings of responsibility over our own actions predicting the severity of our moral evaluations of other actions. This was particularly true in ambiguous scenarios characterized by an incongruency between an apparently innocent intention and a negative action outcome.
Collapse
Affiliation(s)
- Chiara Spaccasassi
- Centre for Studies and Research in Cognitive Neuroscience, Department of Psychology, Alma Mater Studiorum Università di Bologna, Cesena, Italy,*Correspondence: Chiara Spaccasassi, ;
| | - Kamela Cenka
- Centre for Studies and Research in Cognitive Neuroscience, Department of Psychology, Alma Mater Studiorum Università di Bologna, Cesena, Italy
| | - Stella Petkovic
- Centre for Studies and Research in Cognitive Neuroscience, Department of Psychology, Alma Mater Studiorum Università di Bologna, Cesena, Italy,"Sapienza" University of Rome and CLN2S@SAPIENZA, Istituto Italiano di Tecnologia, Rome, Italy
| | - Alessio Avenanti
- Centre for Studies and Research in Cognitive Neuroscience, Department of Psychology, Alma Mater Studiorum Università di Bologna, Cesena, Italy,Centro de Investigación en Neuropsicología y Neurosciencias Cognitivas, Universidad Católica Del Maule, Talca, Chile
| |
Collapse
|
10
|
Lan Q, Ge J, Dai H, Lu J, Wu L, Liu B, Zhang L, Lu G, Qi R, Cao Z, Luo Y. Longitudinal changes in brain structure and their relationship with subclinical psychiatric symptoms in parents who lost their only child in China. Eur J Psychotraumatol 2023; 14:2216624. [PMID: 37334993 DOI: 10.1080/20008066.2023.2216624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/28/2023] [Accepted: 05/09/2023] [Indexed: 06/21/2023] Open
Abstract
BACKGROUND Losing an only child (Shidu) is a grievous traumatic event that may affect brain structure, even if it does not lead to psychiatric disorders. However, longitudinal changes in brain structure and their relationship to subclinical psychiatric symptoms (SPS) have not been well investigated in Shidu parents without any psychiatric disorders (SDNP). OBJECTIVES This study aimed to investigate cross-sectional and longitudinal changes in cortical thickness and surface area in SDNP, and to explore their relationship with SPS. METHODS A total of 50 SDNP and 40 matched healthy controls (HC) were enrolled. All participants underwent structural MRI scans and clinical assessment at baseline and at the 5-year follow-up. Differences in brain structural phenotypes (cortical thickness, surface area, and their annual rate of change) between the SDNP and HC groups were compared using FreeSurfer. Correlations between significant brain structural phenotypes and SPS in the SDNP group were evaluated using multiple linear regressions. RESULTS The SDNP group showed a smaller surface area in the left inferior parietal cortex than the HC group at baseline and follow-up. The SDNP group showed slower rates of cortical thinning and surface area loss in several brain regions than the HC group from baseline to follow-up. Moreover, slower rates of cortical thinning in the left insula, superior frontal cortex, and superior temporal cortex were associated with greater reductions in avoidance, depression, and trauma re-experiencing symptoms scores over time in the SDNP group, respectively. CONCLUSIONS Shidu trauma-induced structural abnormalities in the inferior parietal cortex may persist over time and be independent of the severity of psychiatric symptoms. The expansion of prefrontal, temporal, and insular cortex implicated in emotional regulation may contribute to improvements in psychiatric symptoms in Shidu parents.
Collapse
Affiliation(s)
- Qingyue Lan
- Department of Radiology, the Affiliated Yixing Hospital of Jiangsu University, Wuxi, People's Republic of China
| | - Jiyuan Ge
- Department of Radiology, the Affiliated Yixing Hospital of Jiangsu University, Wuxi, People's Republic of China
| | - Huanhuan Dai
- Department of Radiology, the Affiliated Yixing Hospital of Jiangsu University, Wuxi, People's Republic of China
| | - Junjie Lu
- Department of Intensive Care Unit, the Affiliated Yixing Hospital of Jiangsu University, Wuxi, People's Republic of China
| | - Luoan Wu
- Department of Psychiatry, Yixing mental health center, Wuxi, People's Republic of China
| | - Bo Liu
- Department of Radiology, the Affiliated Yixing Hospital of Jiangsu University, Wuxi, People's Republic of China
| | - Li Zhang
- Mental Health Institute, the Second Xiangya Hospital, National Technology Institute of Psychiatry, Key Laboratory of Psychiatry and Mental Health of Hunan Province, Central South University, Changsha, People's Republic of China
| | - Guangming Lu
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, People's Republic of China
| | - Rongfeng Qi
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, People's Republic of China
| | - Zhihong Cao
- Department of Radiology, the Affiliated Yixing Hospital of Jiangsu University, Wuxi, People's Republic of China
| | - Yifeng Luo
- Department of Radiology, the Affiliated Yixing Hospital of Jiangsu University, Wuxi, People's Republic of China
| |
Collapse
|
11
|
Santamaría-García H, Ogonowsky N, Baez S, Palacio N, Reyes P, Schulte M, López A, Matallana D, Ibanez A. Neurocognitive patterns across genetic levels in behavioral variant frontotemporal dementia: a multiple single cases study. BMC Neurol 2022; 22:454. [PMID: 36474176 PMCID: PMC9724347 DOI: 10.1186/s12883-022-02954-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 07/06/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Behavioral variant frontotemporal dementia (bvFTD) has been related to different genetic factors. Identifying multimodal phenotypic heterogeneity triggered by various genetic influences is critical for improving diagnosis, prognosis, and treatments. However, the specific impact of different genetic levels (mutations vs. risk variants vs. sporadic presentations) on clinical and neurocognitive phenotypes is not entirely understood, specially in patites from underrepresented regions such as Colombia. METHODS Here, in a multiple single cases study, we provide systematic comparisons regarding cognitive, neuropsychiatric, brain atrophy, and gene expression-atrophy overlap in a novel cohort of FTD patients (n = 42) from Colombia with different genetic levels, including patients with known genetic influences (G-FTD) such as those with genetic mutations (GR1) in particular genes (MAPT, TARDBP, and TREM2); patients with risk variants (GR2) in genes associated with FTD (tau Haplotypes H1 and H2 and APOE variants including ε2, ε3, ε4); and sporadic FTD patients (S-FTD (GR3)). RESULTS We found that patients from GR1 and GR2 exhibited earlier disease onset, pervasive cognitive impairments (cognitive screening, executive functioning, ToM), and increased brain atrophy (prefrontal areas, cingulated cortices, basal ganglia, and inferior temporal gyrus) than S-FTD patients (GR3). No differences in disease duration were observed across groups. Additionally, significant neuropsychiatric symptoms were observed in the GR1. The GR1 also presented more clinical and neurocognitive compromise than GR2 patients; these groups, however, did not display differences in disease onset or duration. APOE and tau patients showed more neuropsychiatric symptoms and primary atrophy in parietal and temporal cortices than GR1 patients. The gene-atrophy overlap analysis revealed atrophy in regions with specific genetic overexpression in all G-FTD patients. A differential family presentation did not explain the results. CONCLUSIONS Our results support the existence of genetic levels affecting the clinical, neurocognitive, and, to a lesser extent, neuropsychiatric presentation of bvFTD in the present underrepresented sample. These results support tailored assessments characterization based on the parallels of genetic levels and neurocognitive profiles in bvFTD.
Collapse
Affiliation(s)
- Hernando Santamaría-García
- PhD program in Neuroscience, Pontificia Universidad Javeriana, Bogotá, Colombia.
- Memory and cognition Center, Intellectus, Hospital Universitario San Ignacio, Bogotá, Colombia.
- Department of Neurology, Global Brain Health Institute, University of California San Francisco, San Francisco, CA, USA.
| | - Natalia Ogonowsky
- CONICET & Cognitive Neuroscience Center (CNC), Universidad de San Andrés, Buenos Aires, Argentina
| | - Sandra Baez
- Faculty of Psychology, Universidad de los Andes, Bogotá, Colombia
| | - Nicole Palacio
- Integrated Program in Neuroscience, McGill University, Montreal, Canada
| | - Pablo Reyes
- PhD program in Neuroscience, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Michael Schulte
- CONICET & Cognitive Neuroscience Center (CNC), Universidad de San Andrés, Buenos Aires, Argentina
| | - Andrea López
- Pontificia Universidad Javeriana, Bogotá, Colombia
- Fundación Santa Fe de Bogotá, Bogotá, Colombia
| | | | - Agustín Ibanez
- Latin American Institute for Brain Health (BrainLat), Universidad Adolfo Ibanez, Santiago de Chile, Chile.
- Cognitive Neuroscience Center (CNC), Universidad de San Andrés, & National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina.
- Trinity Collegue of Dublin, Dublin, Irland.
- Global Brain Health Insititute, Universidad California San Francisco-Trinity College of Dublin, San Francisco, USA.
- Global Brain Health Insititute, Universidad California San Francisco-Trinity College of Dublin, Dublin, Irland.
| |
Collapse
|
12
|
Zhang M, Yang F, Fan H, Fan F, Wang Z, Xiang H, Huang W, Tan Y, Tan S, Hong LE. Increased connectivity of insula sub-regions correlates with emotional dysregulation in patients with first-episode schizophrenia. Psychiatry Res Neuroimaging 2022; 326:111535. [PMID: 36084435 DOI: 10.1016/j.pscychresns.2022.111535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 08/05/2022] [Accepted: 08/24/2022] [Indexed: 11/21/2022]
Abstract
Dysfunctional insula is crucial in the development of social cognition deficits, especially emotional dysregulation in patients with schizophrenia. However, function networks of insula sub-regions in schizophrenia are rarely investigated. In this study, functional connectivity between insula sub-regions and whole-brain voxels and its relationship with social cognition ability were investigated in patients with first-episode schizophrenia (FES). This study included 47 patients with FES and 47 healthy controls (HCs). Resting-state functional connectivity (rsFC) was assessed using a seed-based approach, and social cognition was measured by the "managing emotions" branch of the Mayer-Salovey-Caruso Emotional Intelligence Test. Differences in rsFC of insula sub-regions between the two groups were examined. Patients with FES showed increased rsFC between the left anterior insula (AI) and the right inferior frontal gyrus or the right anterior middle cingulate cortex (aMCC) and between the right middle insula and the right aMCC. Moreover, the increased AI-aMCC connectivity correlated negatively with the "managing emotion" scores in patients. This study highlights the altered functional connectivity of insula sub-regions and its correlation with emotional dysregulation in patients with FES. Our findings provide some insights into underlying neuropathological mechanisms associated with emotional regulation deficiency in patients with schizophrenia.
Collapse
Affiliation(s)
- Meng Zhang
- Beijing HuiLongGuan Hospital, Peking University HuiLongGuan Clinical Medical School, Beijing 100096, China
| | - Fude Yang
- Beijing HuiLongGuan Hospital, Peking University HuiLongGuan Clinical Medical School, Beijing 100096, China.
| | - Hongzhen Fan
- Beijing HuiLongGuan Hospital, Peking University HuiLongGuan Clinical Medical School, Beijing 100096, China
| | - Fengmei Fan
- Beijing HuiLongGuan Hospital, Peking University HuiLongGuan Clinical Medical School, Beijing 100096, China
| | - Zhiren Wang
- Beijing HuiLongGuan Hospital, Peking University HuiLongGuan Clinical Medical School, Beijing 100096, China
| | - Hong Xiang
- Chongqing University Three Gorges Hospital, Chongqing 404000, China
| | - Wenqian Huang
- Beijing HuiLongGuan Hospital, Peking University HuiLongGuan Clinical Medical School, Beijing 100096, China
| | - Yunlong Tan
- Beijing HuiLongGuan Hospital, Peking University HuiLongGuan Clinical Medical School, Beijing 100096, China
| | - Shuping Tan
- Beijing HuiLongGuan Hospital, Peking University HuiLongGuan Clinical Medical School, Beijing 100096, China.
| | - L Elliot Hong
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21288, United States of America
| |
Collapse
|
13
|
Sánchez Tombe JR. Lesions in the Ventromedial Prefrontal Cortex and their Impact on Social Cognition. REVISTA COLOMBIANA DE PSICOLOGÍA 2022. [DOI: 10.15446/rcp.v31n2.88206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Aims: To identify the impact of ventromedial prefrontal cortex injury (vmPFC) on social cognition (SC) processes in a stroke patient in relation to a control group matched by age, gender and schooling. Possible associations between post-injury behavior and impacted neuropsychological attributes of emotion recognition, Theory of Mind (ToM), and empathy are discussed. Method: A patient with stroke in right vmPFC and 10 healthy participants completed different screening, neuropsychological assessment and SC tests. Results: Correlations were found between damage in vmPFC and alterations in affective ToM, working and retrograde memory, mood and relational alterations in the patient. Discrepancies were found with respect to other studies in relation to the laterality of the injury and the impact of cognitive and affective empathy which seems to be relatively intact. Conclusions: There is a need to clarify the role of affective ToM after acquired brain injury (ABI) in vmPFC. A protocol is needed to assess and intervene in aspects of ToM that would involve documenting strengths and deficits of ToM: inter and intrapersonal after an ABI. Similarly, there is a need to address the lateralization of different domains of function in vmPFC and their relationship to affective ToM.
How to cite: Sánchez Tombe, J. R. (2022). Lesions In The Ventromedial Prefrontal Cortex And Their Impact On Social Cognition. Revista Colombiana de Psicología,31(2), 11-26. https://doi.org/10.15446/rcp.v31n2.88206
Collapse
|
14
|
Ebisch SJH, Scalabrini A, Northoff G, Mucci C, Sergi MR, Saggino A, Aquino A, Alparone FR, Perrucci MG, Gallese V, Di Plinio S. Intrinsic Shapes of Empathy: Functional Brain Network Topology Encodes Intersubjective Experience and Awareness Traits. Brain Sci 2022; 12:brainsci12040477. [PMID: 35448008 PMCID: PMC9024660 DOI: 10.3390/brainsci12040477] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/31/2022] [Accepted: 04/02/2022] [Indexed: 02/04/2023] Open
Abstract
Trait empathy is an essential personality feature in the intricacy of typical social inclinations of individuals. Empathy is likely supported by multilevel neuronal network functioning, whereas local topological properties determine network integrity. In the present functional MRI study (N = 116), we aimed to trace empathic traits to the intrinsic brain network architecture. Empathy was conceived as composed of two dimensions within the concept of pre-reflective, intersubjective understanding. Vicarious experience consists of the tendency to resonate with the feelings of other individuals, whereas intuitive understanding refers to a natural awareness of others’ emotional states. Analyses of graph theoretical measures of centrality showed a relationship between the fronto-parietal network and psychometric measures of vicarious experience, whereas intuitive understanding was associated with sensorimotor and subcortical networks. Salience network regions could constitute hubs for information processing underlying both dimensions. The network properties related to empathy dimensions mainly concern inter-network information flow. Moreover, interaction effects implied several sex differences in the relationship between functional network organization and trait empathy. These results reveal that distinct intrinsic topological network features explain individual differences in separate dimensions of intersubjective understanding. The findings could help understand the impact of brain damage or stimulation through alterations of empathy-related network integrity.
Collapse
Affiliation(s)
- Sjoerd J. H. Ebisch
- Department of Neuroscience, Imaging and Clinical Sciences (DNISC), G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (A.A.); (F.R.A.); (M.G.P.); (S.D.P.)
- Institute of Advanced Biomedical Technologies (ITAB), G. d’Annunzio University of Chieti-Pescara, Via Luigi Polacchi 11, 66100 Chieti, Italy
- Correspondence:
| | - Andrea Scalabrini
- Department of Psychological, Health and Territorial Sciences (DiSPuTer), G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy;
| | - Georg Northoff
- The Royal’s Institute of Mental Health Research, University of Ottawa, Ottawa, ON K1N 6N5, Canada;
- Brain and Mind Research Institute, Centre for Neural Dynamics, Faculty of Medicine, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Mental Health Centre, Zhejiang University School of Medicine, Hangzhou 310030, China
- Centre for Cognition and Brain Disorders, Hangzhou Normal University, Hangzhou 310030, China
- TMU Research Centre for Brain and Consciousness, Shuang Hospital, Taipei Medical University, Taipei 110, Taiwan
- Graduate Institute of Humanities in Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Clara Mucci
- Department of Human and Social Sciences, University of Bergamo, 24129 Bergamo, Italy;
| | - Maria Rita Sergi
- Department of Medicine and Aging Sciences, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (M.R.S.); (A.S.)
| | - Aristide Saggino
- Department of Medicine and Aging Sciences, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (M.R.S.); (A.S.)
| | - Antonio Aquino
- Department of Neuroscience, Imaging and Clinical Sciences (DNISC), G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (A.A.); (F.R.A.); (M.G.P.); (S.D.P.)
| | - Francesca R. Alparone
- Department of Neuroscience, Imaging and Clinical Sciences (DNISC), G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (A.A.); (F.R.A.); (M.G.P.); (S.D.P.)
| | - Mauro Gianni Perrucci
- Department of Neuroscience, Imaging and Clinical Sciences (DNISC), G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (A.A.); (F.R.A.); (M.G.P.); (S.D.P.)
- Institute of Advanced Biomedical Technologies (ITAB), G. d’Annunzio University of Chieti-Pescara, Via Luigi Polacchi 11, 66100 Chieti, Italy
| | - Vittorio Gallese
- Unit of Neuroscience, Department of Medicine and Surgery, University of Parma, 43121 Parma, Italy;
| | - Simone Di Plinio
- Department of Neuroscience, Imaging and Clinical Sciences (DNISC), G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (A.A.); (F.R.A.); (M.G.P.); (S.D.P.)
| |
Collapse
|
15
|
Ozzoude M, Varriano B, Beaton D, Ramirez J, Holmes MF, Scott CJM, Gao F, Sunderland KM, McLaughlin P, Rabin J, Goubran M, Kwan D, Roberts A, Bartha R, Symons S, Tan B, Swartz RH, Abrahao A, Saposnik G, Masellis M, Lang AE, Marras C, Zinman L, Shoesmith C, Borrie M, Fischer CE, Frank A, Freedman M, Montero-Odasso M, Kumar S, Pasternak S, Strother SC, Pollock BG, Rajji TK, Seitz D, Tang-Wai DF, Turnbull J, Dowlatshahi D, Hassan A, Casaubon L, Mandzia J, Sahlas D, Breen DP, Grimes D, Jog M, Steeves TDL, Arnott SR, Black SE, Finger E, Tartaglia MC. Investigating the contribution of white matter hyperintensities and cortical thickness to empathy in neurodegenerative and cerebrovascular diseases. GeroScience 2022; 44:1575-1598. [PMID: 35294697 DOI: 10.1007/s11357-022-00539-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 02/22/2022] [Indexed: 11/24/2022] Open
Abstract
Change in empathy is an increasingly recognised symptom of neurodegenerative diseases and contributes to caregiver burden and patient distress. Empathy impairment has been associated with brain atrophy but its relationship to white matter hyperintensities (WMH) is unknown. We aimed to investigate the relationships amongst WMH, brain atrophy, and empathy deficits in neurodegenerative and cerebrovascular diseases. Five hundred thirteen participants with Alzheimer's disease/mild cognitive impairment, amyotrophic lateral sclerosis, frontotemporal dementia (FTD), Parkinson's disease, or cerebrovascular disease (CVD) were included. Empathy was assessed using the Interpersonal Reactivity Index. WMH were measured using a semi-automatic segmentation and FreeSurfer was used to measure cortical thickness. A heterogeneous pattern of cortical thinning was found between groups, with FTD showing thinning in frontotemporal regions and CVD in left superior parietal, left insula, and left postcentral. Results from both univariate and multivariate analyses revealed that several variables were associated with empathy, particularly cortical thickness in the fronto-insulo-temporal and cingulate regions, sex (female), global cognition, and right parietal and occipital WMH. Our results suggest that cortical atrophy and WMH may be associated with empathy deficits in neurodegenerative and cerebrovascular diseases. Future work should consider investigating the longitudinal effects of WMH and atrophy on empathy deficits in neurodegenerative and cerebrovascular diseases.
Collapse
Affiliation(s)
- Miracle Ozzoude
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Tower, 60 Leonard Avenue, 6th floor 6KD-407, Toronto, ON, M5T 0S8, Canada.,L.C. Campbell Cognitive Neurology Unit, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Brenda Varriano
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Tower, 60 Leonard Avenue, 6th floor 6KD-407, Toronto, ON, M5T 0S8, Canada
| | - Derek Beaton
- Rotman Research Institute of Baycrest Centre, Toronto, ON, Canada
| | - Joel Ramirez
- L.C. Campbell Cognitive Neurology Unit, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.,Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Melissa F Holmes
- L.C. Campbell Cognitive Neurology Unit, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.,Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Christopher J M Scott
- L.C. Campbell Cognitive Neurology Unit, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.,Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Fuqiang Gao
- L.C. Campbell Cognitive Neurology Unit, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.,Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, ON, Canada
| | | | - Paula McLaughlin
- Nova Scotia Health and Dalhousie University, Halifax, NS, Canada
| | - Jennifer Rabin
- Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, ON, Canada.,Division of Neurology, Department of Medicine, University of Toronto, Toronto, ON, Canada.,Harquail Centre for Neuromodulation, Hurvitz Brain Sciences Program, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.,Rehabilitation Sciences Institute, University of Toronto, Toronto, ON, Canada
| | - Maged Goubran
- Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, ON, Canada.,Harquail Centre for Neuromodulation, Hurvitz Brain Sciences Program, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Donna Kwan
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada.,Queen's University, Kingston, ON, Canada
| | - Angela Roberts
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, USA.,School of Communication Sciences and Disorders, Faculty of Health Sciences, Western University, London, ON, Canada
| | - Robert Bartha
- Robarts Research Institute, Western University, London, ON, Canada
| | - Sean Symons
- Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, ON, Canada.,Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Brian Tan
- Rotman Research Institute of Baycrest Centre, Toronto, ON, Canada
| | - Richard H Swartz
- Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, ON, Canada.,Division of Neurology, Department of Medicine, University of Toronto, Toronto, ON, Canada.,Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.,Heart & Stroke Foundation Canadian Partnership for Stroke Recovery, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Agessandro Abrahao
- Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, ON, Canada.,Harquail Centre for Neuromodulation, Hurvitz Brain Sciences Program, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Gustavo Saposnik
- Li Ka Shing Knowledge Institute, St. Michael's Hospital, University of Toronto, Toronto, ON, Canada.,Division of Neurology, Department of Medicine, St. Michael's Hospital, University of Toronto, Toronto, ON, Canada
| | - Mario Masellis
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, ON, Canada.,Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Anthony E Lang
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, ON, Canada.,Edmond J Safra Program for Parkinson Disease, Movement Disorder Clinic, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Connie Marras
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, ON, Canada.,Edmond J Safra Program for Parkinson Disease, Movement Disorder Clinic, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Lorne Zinman
- Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, ON, Canada.,Division of Neurology, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Christen Shoesmith
- Department of Clinical Neurological Sciences, Western University, London, ON, Canada
| | - Michael Borrie
- Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.,St. Joseph's Healthcare Centre, London, ON, Canada
| | - Corinne E Fischer
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
| | - Andrew Frank
- Department of Medicine (Neurology), University of Ottawa Brain and Mind Research Institute and Ottawa Hospital Research Institute, Ottawa, ON, Canada.,Bruyère Research Institute, Ottawa, ON, Canada
| | - Morris Freedman
- Rotman Research Institute of Baycrest Centre, Toronto, ON, Canada.,Division of Neurology, Department of Medicine, University of Toronto, Toronto, ON, Canada.,Division of Neurology, Baycrest Health Sciences, Toronto, ON, Canada
| | - Manuel Montero-Odasso
- Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.,Lawson Health Research Institute, London, ON, Canada.,Gait and Brain Lab, Parkwood Institute, London, ON, Canada
| | - Sanjeev Kumar
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Adult Neurodevelopment and Geriatric Psychiatry, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Stephen Pasternak
- Department of Clinical Neurological Sciences, Western University, London, ON, Canada
| | - Stephen C Strother
- Rotman Research Institute of Baycrest Centre, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Bruce G Pollock
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Adult Neurodevelopment and Geriatric Psychiatry, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Tarek K Rajji
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Adult Neurodevelopment and Geriatric Psychiatry, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Toronto Dementia Research Alliance, University of Toronto, Toronto, ON, Canada
| | - Dallas Seitz
- Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - David F Tang-Wai
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, ON, Canada.,Memory Clinic, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - John Turnbull
- Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada.,Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Dar Dowlatshahi
- Department of Medicine (Neurology), University of Ottawa Brain and Mind Research Institute and Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Ayman Hassan
- Thunder Bay Regional Health Research Institute, Thunder Bay, ON, Canada
| | - Leanne Casaubon
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Jennifer Mandzia
- Department of Clinical Neurological Sciences, Western University, London, ON, Canada.,Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Demetrios Sahlas
- Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada.,Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - David P Breen
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK.,Anne Rowling Regenerative Neurology Clinic, University of Edinburgh, Edinburgh, UK.,Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
| | - David Grimes
- Department of Medicine (Neurology), University of Ottawa Brain and Mind Research Institute and Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Mandar Jog
- Department of Clinical Neurological Sciences, Western University, London, ON, Canada.,Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.,London Health Sciences Centre, London, ON, Canada
| | - Thomas D L Steeves
- Division of Neurology, Department of Medicine, St. Michael's Hospital, University of Toronto, Toronto, ON, Canada
| | - Stephen R Arnott
- Rotman Research Institute of Baycrest Centre, Toronto, ON, Canada
| | - Sandra E Black
- L.C. Campbell Cognitive Neurology Unit, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.,Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, ON, Canada.,Heart & Stroke Foundation Canadian Partnership for Stroke Recovery, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.,Toronto Dementia Research Alliance, University of Toronto, Toronto, ON, Canada.,Division of Neurology, Department of Medicine, St. Michael's Hospital, University of Toronto, Toronto, ON, Canada
| | - Elizabeth Finger
- Department of Clinical Neurological Sciences, Western University, London, ON, Canada.,Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | | | - Maria Carmela Tartaglia
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Tower, 60 Leonard Avenue, 6th floor 6KD-407, Toronto, ON, M5T 0S8, Canada. .,Division of Neurology, Department of Medicine, University of Toronto, Toronto, ON, Canada. .,Memory Clinic, Toronto Western Hospital, University Health Network, Toronto, ON, Canada.
| |
Collapse
|
16
|
Zhu Z, Zhao Y, Wen K, Li Q, Pan N, Fu S, Li F, Radua J, Vieta E, Kemp GJ, Biswa BB, Gong Q. Cortical thickness abnormalities in patients with bipolar disorder: A systematic review and meta-analysis. J Affect Disord 2022; 300:209-218. [PMID: 34971699 DOI: 10.1016/j.jad.2021.12.080] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 10/10/2021] [Accepted: 12/19/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND An increasing number of neuroimaging studies report alterations of cortical thickness (CT) related to the neuropathology of bipolar disorder (BD). We provide here a whole-brain vertex-wise meta-analysis, which may help improve the spatial precision of these identifications. METHODS A comprehensive meta-analysis was performed to investigate the differences in CT between patients with BD and healthy controls (HCs) by using a newly developed mask for CT analysis in seed-based d mapping (SDM) meta-analytic software. We used meta-regression to explore the effects of demographics and clinical characteristics on CT. This meta-review was conducted in accordance with PRISMA guideline. RESULTS We identified 21 studies meeting criteria for the systematic review, of which 11 were eligible for meta-analysis. The meta-analysis comprising 649 BD patients and 818 HCs showed significant cortical thinning in the left insula extending to left Rolandic operculum and Heschl gyrus, the orbital part of left inferior frontal gyrus (IFG), the medial part of left superior frontal gyrus (SFG) as well as bilateral anterior cingulate cortex (ACC) in BD. In meta-regression analyses, mean patient age was negatively correlated with reduced CT in the left insula. LIMITATIONS All enrolled studies were cross-sectional; we could not explore the potential effects of medication and mood states due to the limited data. CONCLUSIONS Our results suggest that BD patients have significantly thinner frontoinsular cortex than HCs, and the results may be helpful in revealing specific neuroimaging biomarkers of BD patients.
Collapse
Affiliation(s)
- Ziyu Zhu
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Youjin Zhao
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China; Functional and Molecular Imaging Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
| | - Keren Wen
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Qian Li
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Nanfang Pan
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Shiqin Fu
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Fei Li
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China; Functional and Molecular Imaging Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
| | - Joaquim Radua
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, Chengdu, Sichuan, China; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Mental Health Research Networking Center (CIBERSAM), Barcelona, Spain; Department of Clinical Neuroscience, Centre for Psychiatric Research and Education, Karolinska Institutet, Stockholm, Sweden; Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, Northern Ireland United Kingdom
| | - Eduard Vieta
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Mental Health Research Networking Center (CIBERSAM), Barcelona, Spain; Barcelona Bipolar Disorders and Depressive Unit, Hospital Clinic, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Graham J Kemp
- Liverpool Magnetic Resonance Imaging Centre (LiMRIC) and Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Bharat B Biswa
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA; The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, Fujian, China.
| |
Collapse
|
17
|
Miranda M, Campo CG, Birba A, Neely A, Hernandez FDT, Faure E, Costa GR, Ibáñez A, García A. An action-concept processing advantage in a patient with a double motor cortex. Brain Cogn 2022; 156:105831. [PMID: 34922210 PMCID: PMC9944406 DOI: 10.1016/j.bandc.2021.105831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 02/08/2023]
Abstract
Patients with atrophy in motor brain regions exhibit selective deficits in processing action-related meanings, suggesting a link between movement conceptualization and the amount of regional tissue. Here we examine such a relation in a unique opposite model: a rare patient with a double cortex (due to subcortical band heterotopia) in primary/supplementary motor regions, and no double cortex in multimodal semantic regions. We measured behavioral performance in action- and object-concept processing as well and resting-state functional connectivity. Both dimensions involved comparisons with healthy controls. Results revealed preserved accuracy in action and object categories for the patient. However, unlike controls, the patient exhibited faster performance for action than object concepts, a difference that was uninfluenced by general cognitive abilities. Moreover, this pattern was accompanied by heightened functional connectivity between the bilateral primary motor cortices. This suggests that a functionally active double motor cortex may entail action-processing advantages. Our findings offer new constraints for models of action semantics and motor-region function at large.
Collapse
Affiliation(s)
- Magdalena Miranda
- National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina,Instituto de Neurociencia Cognitiva y Traslacional (INCyT), Buenos Aires, Argentina
| | - Cecilia Gonzalez Campo
- National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina,Cognitive Neuroscience Center, Universidad de San Andrés, Buenos Aires, Argentina
| | - Agustina Birba
- National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina,Cognitive Neuroscience Center, Universidad de San Andrés, Buenos Aires, Argentina,Latin American Brain Health (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile
| | - Alejandra Neely
- Latin American Brain Health (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile
| | | | - Evelyng Faure
- Department of Radiology, Clínica las Condes, Santiago, Chile,Advanced Epilepsy Center, Clínica las Condes, Santiago, Chile
| | - Gonzalo Rojas Costa
- Department of Radiology, Clínica las Condes, Santiago, Chile,Advanced Epilepsy Center, Clínica las Condes, Santiago, Chile,Health Innovation Center, Clínica las Condes, Santiago, Chile
| | - Agustín Ibáñez
- National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina,Cognitive Neuroscience Center, Universidad de San Andrés, Buenos Aires, Argentina,Latin American Brain Health (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile,Global Brain Health Institute, University of California-San Francisco, San Francisco, California, and Trinity College Dublin, Dublin, Ireland
| | - Adolfo García
- National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina; Cognitive Neuroscience Center, Universidad de San Andrés, Buenos Aires, Argentina; Global Brain Health Institute, University of California-San Francisco, San Francisco, CA, United States; and Trinity College Dublin, Dublin, Ireland; Departamento de Lingüística y Literatura, Facultad de Humanidades, Universidad de Santiago de Chile, Santiago, Chile.
| |
Collapse
|
18
|
Jaillard A, Zeffiro TA. Phylogeny of Neurological Disorders/Anatomy and Disorders of Basic Emotion in Stroke: In Clinical Neuroanatomy, Brain Structure and Function. ENCYCLOPEDIA OF BEHAVIORAL NEUROSCIENCE, 2ND EDITION 2022:251-259. [DOI: 10.1016/b978-0-12-819641-0.00070-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
19
|
Lateralized deficits in arousal processing after insula lesions: Behavioral and autonomic evidence. Cortex 2022; 148:168-179. [DOI: 10.1016/j.cortex.2021.12.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/21/2021] [Accepted: 12/14/2021] [Indexed: 02/07/2023]
|
20
|
Martins D, Rademacher L, Gabay AS, Taylor R, Richey JA, Smith DV, Goerlich KS, Nawijn L, Cremers HR, Wilson R, Bhattacharyya S, Paloyelis Y. Mapping social reward and punishment processing in the human brain: A voxel-based meta-analysis of neuroimaging findings using the social incentive delay task. Neurosci Biobehav Rev 2021; 122:1-17. [PMID: 33421544 DOI: 10.1016/j.neubiorev.2020.12.034] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 12/11/2020] [Accepted: 12/31/2020] [Indexed: 11/18/2022]
Abstract
Social rewards or punishments motivate human learning and behaviour, and alterations in the brain circuits involved in the processing of these stimuli have been linked with several neuropsychiatric disorders. However, questions still remain about the exact neural substrates implicated in social reward and punishment processing. Here, we conducted four Anisotropic Effect Size Signed Differential Mapping voxel-based meta-analyses of fMRI studies investigating the neural correlates of the anticipation and receipt of social rewards and punishments using the Social Incentive Delay task. We found that the anticipation of both social rewards and social punishment avoidance recruits a wide network of areas including the basal ganglia, the midbrain, the dorsal anterior cingulate cortex, the supplementary motor area, the anterior insula, the occipital gyrus and other frontal, temporal, parietal and cerebellar regions not captured in previous coordinate-based meta-analysis. We identified decreases in the BOLD signal during the anticipation of both social reward and punishment avoidance in regions of the default-mode network that were missed in individual studies likely due to a lack of power. Receipt of social rewards engaged a robust network of brain regions including the ventromedial frontal and orbitofrontal cortices, the anterior cingulate cortex, the amygdala, the hippocampus, the occipital cortex and the brainstem, but not the basal ganglia. Receipt of social punishments increased the BOLD signal in the orbitofrontal cortex, superior and inferior frontal gyri, lateral occipital cortex and the insula. In contrast to the receipt of social rewards, we also observed a decrease in the BOLD signal in the basal ganglia in response to the receipt of social punishments. Our results provide a better understanding of the brain circuitry involved in the processing of social rewards and punishment. Furthermore, they can inform hypotheses regarding brain areas where disruption in activity may be associated with dysfunctional social incentive processing during disease.
Collapse
Affiliation(s)
- D Martins
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London, SE5 8AF, UK.
| | - L Rademacher
- Department of Psychiatry and Psychotherapy, University of Lübeck, Germany and Department of Psychology, Goethe University Frankfurt, Frankfurt, Germany
| | - A S Gabay
- Department of Experimental Psychology, University of Oxford, New Radcliffe House, Oxford, OX2 6NW, UK
| | - R Taylor
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London, SE5 8AF, UK
| | - J A Richey
- Department of Psychology, Virginia Tech, Blacksburg, USA
| | - D V Smith
- Department of Psychology, Temple University, Philadelphia, PA, 19122, USA
| | - K S Goerlich
- Department of Biomedical Sciences of Cells & Systems, Section Cognitive Neuroscience, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - L Nawijn
- Department of Psychiatry, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - H R Cremers
- Department of Clinical Psychology, University of Amsterdam, Amsterdam, the Netherlands
| | - R Wilson
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London, United Kingdom
| | - S Bhattacharyya
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London, United Kingdom
| | - Y Paloyelis
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London, SE5 8AF, UK
| |
Collapse
|
21
|
Ozzoude M, Ramirez J, Raamana PR, Holmes MF, Walker K, Scott CJM, Gao F, Goubran M, Kwan D, Tartaglia MC, Beaton D, Saposnik G, Hassan A, Lawrence-Dewar J, Dowlatshahi D, Strother SC, Symons S, Bartha R, Swartz RH, Black SE. Cortical Thickness Estimation in Individuals With Cerebral Small Vessel Disease, Focal Atrophy, and Chronic Stroke Lesions. Front Neurosci 2020; 14:598868. [PMID: 33381009 PMCID: PMC7768006 DOI: 10.3389/fnins.2020.598868] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/24/2020] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Regional changes to cortical thickness in individuals with neurodegenerative and cerebrovascular diseases (CVD) can be estimated using specialized neuroimaging software. However, the presence of cerebral small vessel disease, focal atrophy, and cortico-subcortical stroke lesions, pose significant challenges that increase the likelihood of misclassification errors and segmentation failures. PURPOSE The main goal of this study was to examine a correction procedure developed for enhancing FreeSurfer's (FS's) cortical thickness estimation tool, particularly when applied to the most challenging MRI obtained from participants with chronic stroke and CVD, with varying degrees of neurovascular lesions and brain atrophy. METHODS In 155 CVD participants enrolled in the Ontario Neurodegenerative Disease Research Initiative (ONDRI), FS outputs were compared between a fully automated, unmodified procedure and a corrected procedure that accounted for potential sources of error due to atrophy and neurovascular lesions. Quality control (QC) measures were obtained from both procedures. Association between cortical thickness and global cognitive status as assessed by the Montreal Cognitive Assessment (MoCA) score was also investigated from both procedures. RESULTS Corrected procedures increased "Acceptable" QC ratings from 18 to 76% for the cortical ribbon and from 38 to 92% for tissue segmentation. Corrected procedures reduced "Fail" ratings from 11 to 0% for the cortical ribbon and 62 to 8% for tissue segmentation. FS-based segmentation of T1-weighted white matter hypointensities were significantly greater in the corrected procedure (5.8 mL vs. 15.9 mL, p < 0.001). The unmodified procedure yielded no significant associations with global cognitive status, whereas the corrected procedure yielded positive associations between MoCA total score and clusters of cortical thickness in the left superior parietal (p = 0.018) and left insula (p = 0.04) regions. Further analyses with the corrected cortical thickness results and MoCA subscores showed a positive association between left superior parietal cortical thickness and Attention (p < 0.001). CONCLUSION These findings suggest that correction procedures which account for brain atrophy and neurovascular lesions can significantly improve FS's segmentation results and reduce failure rates, thus maximizing power by preventing the loss of our important study participants. Future work will examine relationships between cortical thickness, cerebral small vessel disease, and cognitive dysfunction due to neurodegenerative disease in the ONDRI study.
Collapse
Affiliation(s)
- Miracle Ozzoude
- LC Campbell Cognitive Neurology Research, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
| | - Joel Ramirez
- LC Campbell Cognitive Neurology Research, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
| | | | - Melissa F. Holmes
- LC Campbell Cognitive Neurology Research, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
| | - Kirstin Walker
- LC Campbell Cognitive Neurology Research, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
| | - Christopher J. M. Scott
- LC Campbell Cognitive Neurology Research, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
| | - Fuqiang Gao
- LC Campbell Cognitive Neurology Research, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
| | - Maged Goubran
- LC Campbell Cognitive Neurology Research, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Donna Kwan
- Centre for Neuroscience Studies, Queens University, Kingston, ON, Canada
| | - Maria C. Tartaglia
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Division of Neurology, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Derek Beaton
- Rotman Research Institute, Baycrest Health Sciences, Toronto, ON, Canada
| | - Gustavo Saposnik
- Stroke Outcomes and Decision Neuroscience Research Unit, Division of Neurology, St. Michael’s Hospital, University of Toronto, Toronto, ON, Canada
| | - Ayman Hassan
- Thunder Bay Regional Health Research Institute, Thunder Bay, ON, Canada
| | | | - Dariush Dowlatshahi
- Department of Medicine (Neurology), Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Stephen C. Strother
- Rotman Research Institute, Baycrest Health Sciences, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Sean Symons
- Department of Medical Imaging, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Robert Bartha
- Centre for Functional and Metabolic Mapping, Department of Medical Biophysics, Robarts Research Institute, University of Western Ontario, London, ON, Canada
| | - Richard H. Swartz
- Department of Medicine (Neurology), Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Sandra E. Black
- LC Campbell Cognitive Neurology Research, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
- Department of Medicine (Neurology), Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
22
|
Citherlet D, Boucher O, Gravel V, Roy-Côté F, Bouthillier A, Nguyen DK. The effects of insular and mesiotemporal lesions on affective information processing: Preliminary evidence from patients with epilepsy surgery. Epilepsy Behav 2020; 111:107264. [PMID: 32640413 DOI: 10.1016/j.yebeh.2020.107264] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 11/13/2022]
Abstract
Depressive symptoms and anxiety are common complaints in patients who have had epilepsy surgery. Recent studies have reported disturbances in emotional memory, facial and vocal emotion recognition, and affective learning after temporal lobe and/or insular resection for drug-resistant seizures, suggesting that these regions may be involved in emotional processes underlying psychological symptoms. The insula is a core component of the salience network and is thought to be involved in processing emotions such as disgust, and the role of mesial temporal lobe structures in affective processing is well established. However, to our knowledge, no study has yet investigated whether attentional processing of affective information is altered when these structures are resected as part of an epilepsy surgery. The present study examined the interference control capacity and attentional biases for emotional information in adult patients with epilepsy who underwent temporal lobe resections including the amygdala and hippocampus (n = 15) and/or partial or complete insular resections (n = 16). Patients were tested on an Emotional Stroop test and on a Dot-Probe task using fearful and disgusting pictures and were compared with a healthy control group (n = 30) matched for age, gender, and education. Repeated-measures analyses of variances revealed a significant effect of emotional words on color naming speed in the Emotional Stroop task among insular patients, which was not observed in the other groups. By contrast, the groups did not differ on Dot-Probe task performance. These preliminary findings suggest that insular damage may alter emotional interference control.
Collapse
Affiliation(s)
- Daphné Citherlet
- Centre de Recherche du Centre Hospitalier de l'Université de Montreal (CHUM), Montreal, Quebec, Canada; Université de Montréal, Département de neurosciences, Montreal, Canada
| | - Olivier Boucher
- Centre de Recherche du Centre Hospitalier de l'Université de Montreal (CHUM), Montreal, Quebec, Canada; Université de Montréal, Département de psychologie, Montreal, Canada; CHUM, Service de psychologie, Montreal, Quebec, Canada
| | - Victoria Gravel
- Centre de Recherche du Centre Hospitalier de l'Université de Montreal (CHUM), Montreal, Quebec, Canada; Université de Montréal, Département de psychologie, Montreal, Canada
| | - Frédérique Roy-Côté
- Centre de Recherche du Centre Hospitalier de l'Université de Montreal (CHUM), Montreal, Quebec, Canada; Université de Montréal, Département de psychologie, Montreal, Canada
| | | | - Dang Khoa Nguyen
- Centre de Recherche du Centre Hospitalier de l'Université de Montreal (CHUM), Montreal, Quebec, Canada; Université de Montréal, Département de neurosciences, Montreal, Canada; CHUM, Service de neurologie, Montreal, Quebec, Canada.
| |
Collapse
|
23
|
Bagnis A, Celeghin A, Diano M, Mendez CA, Spadaro G, Mosso CO, Avenanti A, Tamietto M. Functional neuroanatomy of racial categorization from visual perception: A meta-analytic study. Neuroimage 2020; 217:116939. [DOI: 10.1016/j.neuroimage.2020.116939] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 05/01/2020] [Accepted: 05/08/2020] [Indexed: 01/30/2023] Open
|
24
|
Scalabrini A, Mucci C, Esposito R, Damiani S, Northoff G. Dissociation as a disorder of integration - On the footsteps of Pierre Janet. Prog Neuropsychopharmacol Biol Psychiatry 2020; 101:109928. [PMID: 32194203 DOI: 10.1016/j.pnpbp.2020.109928] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 02/13/2020] [Accepted: 03/12/2020] [Indexed: 12/19/2022]
Abstract
At the end of the 19th century Pierre Janet described dissociation as an altered state of consciousness manifested in disrupted integration of psychological functions. Clinically, such disruption comprises compartmentalization symptoms like amnesia, detachment symptoms like depersonalization/derealization, and structural dissociation of personality with changes in the sense of self. The exact neuronal mechanisms leading to these different symptoms remain unclear. We here suggest to put Janet's original account of dissociation as disrupted integration of psychological functions into a novel context, that is, a neuronal context as related to current brain imaging. This requires a combined theoretical and empirical approach on data supporting such neuronal reframing of Janet. For that, we here review (i) past and (ii) recent psychological and neuronal views on dissociation together with neuroscientific theories of integration, which (iii) are supported and complemented by preliminary fMRI data. We propose three neuronal mechanisms of dynamic integration operating at different levels of the brain's spontaneous activity - temporo-spatial binding on the regional level, temporo-spatial synchronization on the network level, and temporo-spatial globalization on the global level. These neuronal mechanisms, in turn, may be related to different symptomatic manifestation of dissociation operating at different levels, e.g., compartmentalization, detachment, and structural, which, as we suggest, can all be traced to disrupted integration of neuronal and psychological functions as originally envisioned by Janet.
Collapse
Affiliation(s)
- Andrea Scalabrini
- Department of Psychological, Health and Territorial Sciences (DiSPuTer), G. d'Annunzio University of Chieti-Pescara, Via dei Vestini 33, Chieti (CH) 66100, Italy.
| | - Clara Mucci
- Department of Psychological, Health and Territorial Sciences (DiSPuTer), G. d'Annunzio University of Chieti-Pescara, Via dei Vestini 33, Chieti (CH) 66100, Italy
| | - Rosy Esposito
- Department of Psychological, Health and Territorial Sciences (DiSPuTer), G. d'Annunzio University of Chieti-Pescara, Via dei Vestini 33, Chieti (CH) 66100, Italy
| | - Stefano Damiani
- Department of Brain and Behavioral Science, University of Pavia, Pavia 27100, Italy
| | - Georg Northoff
- The Royal's Institute of Mental Health Research, University of Ottawa, Canada; Brain and Mind Research Institute, Centre for Neural Dynamics, Faculty of Medicine, University of Ottawa, 145 Carling Avenue, Rm. 6435, Ottawa, Ontario K1Z 7K4, Canada; Mental Health Centre, Zhejiang University School of Medicine, Tianmu Road 305, Zhejiang Province, Hangzhou 310013, China; Centre for Cognition and Brain Disorders, Hangzhou Normal University, Tianmu Road 305, Zhejiang Province, Hangzhou 310013, China; TMU Research Centre for Brain and Consciousness, Shuang Hospital, Taipei MedicalUniversity, No. 250 Wu-Xing Street, 11031 Taipei, Taiwan; Graduate Institute of Humanities in Medicine, Taipei Medical University, No. 250 Wu-Xing Street, Taipei 11031, Taiwan.
| |
Collapse
|
25
|
Holtmann O, Bruchmann M, Mönig C, Schwindt W, Melzer N, Miltner WHR, Straube T. Lateralized Deficits of Disgust Processing After Insula-Basal Ganglia Damage. Front Psychol 2020; 11:1429. [PMID: 32714249 PMCID: PMC7347022 DOI: 10.3389/fpsyg.2020.01429] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 05/27/2020] [Indexed: 12/22/2022] Open
Abstract
A growing body of evidence suggests a role of the insular cortex (IC) and the basal ganglia (BG) in the experience, expression, and recognition of disgust. However, human lesion research, probing this structure-function link, has yielded rather disparate findings in single cases of unilateral and bilateral damage to these areas. Comparative group approaches are needed to elucidate whether disgust-related deficits specifically follow damage to the IC-BG system, or whether there might be a differential hemispheric contribution to disgust processing. We examined emotional processing by means of a comprehensive emotional test battery in four patients with left- and four patients with right-hemispheric lesions to the IC-BG system as well as in 19 healthy controls. While single tests did not provide clear-cut separations of patient groups, composite scores indicated selective group effects for disgust. Importantly, left-lesioned patients presented attenuated disgust composites, while right-lesioned patients showed increased disgust composites, as compared to each other and controls. These findings propose a left-hemispheric basis of disgust, potentially due to asymmetrical representations of autonomic information in the human forebrain. The present study provides the first behavioral evidence of hemispheric lateralization of a specific emotion in the human brain, and contributes to neurobiological models of disgust.
Collapse
Affiliation(s)
- Olga Holtmann
- Institute of Medical Psychology and Systems Neuroscience, University of Muenster, Muenster, Germany.,Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Muenster, Muenster, Germany
| | - Maximilian Bruchmann
- Institute of Medical Psychology and Systems Neuroscience, University of Muenster, Muenster, Germany.,Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Muenster, Muenster, Germany
| | - Constanze Mönig
- Department of Neurology, University Hospital Muenster, Muenster, Germany
| | - Wolfram Schwindt
- Institute of Clinical Radiology, University Hospital Muenster, Muenster, Germany
| | - Nico Melzer
- Department of Neurology, University Hospital Muenster, Muenster, Germany
| | - Wolfgang H R Miltner
- Department of Clinical Psychology, Friedrich Schiller University Jena, Jena, Germany
| | - Thomas Straube
- Institute of Medical Psychology and Systems Neuroscience, University of Muenster, Muenster, Germany.,Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Muenster, Muenster, Germany
| |
Collapse
|
26
|
Li Y, Zhang T, Li W, Zhang J, Jin Z, Li L. Linking brain structure and activation in anterior insula cortex to explain the trait empathy for pain. Hum Brain Mapp 2019; 41:1030-1042. [PMID: 31691467 PMCID: PMC7267919 DOI: 10.1002/hbm.24858] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 10/21/2019] [Accepted: 10/22/2019] [Indexed: 01/10/2023] Open
Abstract
The ability to perceive, understand, and react to the feelings of others' pain is referred to as empathy for pain which is composed of two components, affective‐perceptual empathy and cognitive‐evaluative empathy. Recent reviews on the neural mechanisms of empathetic pain showed the anterior insula (AI) cortex as a core circuit for empathy. However, little is known about the modulation of brain anatomy and empathic responses by trait measures of empathy (trait empathy). Thus, we investigated whether individual variation in the personality trait of empathy is associated with individual variation in the structure of specific brain regions using voxel‐based morphometry (VBM). We further investigated the relationship between the trait empathy and the activity of the same regions using state measures of empathy for pain in a trial‐by‐trial fashion in the given situation. VBM analysis indicated a small but significant negative relationship between trait empathy and gray matter volume in the bilateral AI. Functional MRI study further demonstrated that experimentally induced activity of the bilateral AI during state empathy for pain was also correlated with trait empathy. An asymmetry exists between the right and left AI between the affective and cognitive empathy. The right AI was found to be involved in the affective‐perceptual form of empathy and the left AI was active in cognitive‐evaluative forms of empathy. The interindividual differences in trait empathy may be reflected both in the state empathy and more stable brain structure difference.
Collapse
Affiliation(s)
- Yun Li
- Key Laboratory for NeuroInformation of Ministry of Education, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Psychiatry and Psychology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China, 610054.,School of Management, Chengdu University of Traditional Chinese Medicine, Chengdu, China, 611137
| | - Tingting Zhang
- Key Laboratory for NeuroInformation of Ministry of Education, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Psychiatry and Psychology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China, 610054
| | - Wenjuan Li
- Key Laboratory for NeuroInformation of Ministry of Education, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Psychiatry and Psychology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China, 610054
| | - Junjun Zhang
- Key Laboratory for NeuroInformation of Ministry of Education, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Psychiatry and Psychology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China, 610054
| | - Zhenlan Jin
- Key Laboratory for NeuroInformation of Ministry of Education, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Psychiatry and Psychology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China, 610054
| | - Ling Li
- Key Laboratory for NeuroInformation of Ministry of Education, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Psychiatry and Psychology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China, 610054
| |
Collapse
|
27
|
Harricharan S, Nicholson AA, Thome J, Densmore M, McKinnon MC, Théberge J, Frewen PA, Neufeld RWJ, Lanius RA. PTSD and its dissociative subtype through the lens of the insula: Anterior and posterior insula resting‐state functional connectivity and its predictive validity using machine learning. Psychophysiology 2019; 57:e13472. [DOI: 10.1111/psyp.13472] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 06/24/2019] [Accepted: 07/29/2019] [Indexed: 11/30/2022]
Affiliation(s)
- Sherain Harricharan
- Department of Neuroscience Western University London Ontario Canada
- Department of Psychiatry Western University London Ontario Canada
- Imaging Division Lawson Health Research Institute London Ontario Canada
| | - Andrew A. Nicholson
- Department of Psychological Research and Research Methods University of Vienna Vienna Austria
| | - Janine Thome
- Department of Psychiatry Western University London Ontario Canada
- Imaging Division Lawson Health Research Institute London Ontario Canada
| | - Maria Densmore
- Department of Psychiatry Western University London Ontario Canada
- Imaging Division Lawson Health Research Institute London Ontario Canada
| | - Margaret C. McKinnon
- Mood Disorders Program St. Joseph's Healthcare Hamilton Ontario Canada
- Department of Psychiatry and Behavioural Neurosciences McMaster University Hamilton Ontario Canada
- Homewood Research Institute Guelph Ontario Canada
| | - Jean Théberge
- Department of Psychiatry Western University London Ontario Canada
- Imaging Division Lawson Health Research Institute London Ontario Canada
- Department of Medical Imaging Western University London Ontario Canada
- Department of Medical Biophysics Western University London Ontario Canada
- Department of Diagnostic Imaging St. Joseph's Healthcare London Ontario Canada
| | - Paul A. Frewen
- Department of Neuroscience Western University London Ontario Canada
- Department of Psychiatry Western University London Ontario Canada
- Department of Psychology Western University London Ontario Canada
| | - Richard W. J. Neufeld
- Department of Psychiatry Western University London Ontario Canada
- Department of Psychology Western University London Ontario Canada
| | - Ruth A. Lanius
- Department of Neuroscience Western University London Ontario Canada
- Department of Psychiatry Western University London Ontario Canada
- Imaging Division Lawson Health Research Institute London Ontario Canada
| |
Collapse
|
28
|
Calvo N, Abrevaya S, Martínez Cuitiño M, Steeb B, Zamora D, Sedeño L, Ibáñez A, García AM. Rethinking the Neural Basis of Prosody and Non-literal Language: Spared Pragmatics and Cognitive Compensation in a Bilingual With Extensive Right-Hemisphere Damage. Front Psychol 2019; 10:570. [PMID: 30941077 PMCID: PMC6433823 DOI: 10.3389/fpsyg.2019.00570] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 02/28/2019] [Indexed: 11/13/2022] Open
Abstract
Above and beyond the critical contributions of left perisylvian regions to language, the neural networks supporting pragmatic aspects of verbal communication in native and non-native languages (L1s and L2, respectively) have often been ascribed to the right hemisphere (RH). However, several reports have shown that left-hemisphere activity associated with pragmatic domains (e.g., prosody, indirect speech, figurative language) is comparable to or even greater than that observed in the RH, challenging the proposed putative role of the latter for relevant domains. Against this background, we report on an adult bilingual patient showing preservation of pragmatic verbal skills in both languages (L1: Spanish, L2: English) despite bilateral damage mainly focused on the RH. After two strokes, the patient sustained lesions in several regions previously implicated in pragmatic functions (vast portions of the right fronto-insulo-temporal cortices, the bilateral amygdalae and insular cortices, and the left putamen). Yet, comparison of linguistic and pragmatic skills with matched controls revealed spared performance on multiple relevant tasks in both her L1 and L2. Despite mild difficulties in some aspects of L2 prosody, she showed no deficits in comprehending metaphors and idioms, or understanding indirect speech acts in either language. Basic verbal skills were also preserved in both languages, including verbal auditory discrimination, repetition of words and pseudo-words, cognate processing, grammaticality judgments, equivalent recognition, and word and sentence translation. Taken together, the evidence shows that multiple functions of verbal communication can be widely spared despite extensive damage to the RH, and that claims for a putative relation between pragmatics and the RH may have been overemphasized in the monolingual and bilingual literature. We further discuss the case in light of previous reports of pragmatic and linguistic deficits following brain lesions and address its relation to cognitive compensation in bilingual patients.
Collapse
Affiliation(s)
- Noelia Calvo
- Laboratory of Experimental Psychology and Neuroscience, Institute of Cognitive and Translational Neuroscience, INECO Foundation, Favaloro University, Buenos Aires, Argentina.,National Scientific and Technical Research Council, Buenos Aires, Argentina.,Faculty of Psychology, National University of Córdoba, Córdoba, Argentina
| | - Sofía Abrevaya
- Laboratory of Experimental Psychology and Neuroscience, Institute of Cognitive and Translational Neuroscience, INECO Foundation, Favaloro University, Buenos Aires, Argentina.,National Scientific and Technical Research Council, Buenos Aires, Argentina
| | - Macarena Martínez Cuitiño
- Faculty of Psychology, National University of Córdoba, Córdoba, Argentina.,Laboratory of Language Research (LILEN), Institute of Cognitive and Translational Neuroscience (INCYT), Buenos Aires, Argentina
| | - Brenda Steeb
- Laboratory of Language Research (LILEN), Institute of Cognitive and Translational Neuroscience (INCYT), Buenos Aires, Argentina
| | - Dolores Zamora
- Laboratory of Language Research (LILEN), Institute of Cognitive and Translational Neuroscience (INCYT), Buenos Aires, Argentina
| | - Lucas Sedeño
- Laboratory of Experimental Psychology and Neuroscience, Institute of Cognitive and Translational Neuroscience, INECO Foundation, Favaloro University, Buenos Aires, Argentina.,National Scientific and Technical Research Council, Buenos Aires, Argentina
| | - Agustín Ibáñez
- Laboratory of Experimental Psychology and Neuroscience, Institute of Cognitive and Translational Neuroscience, INECO Foundation, Favaloro University, Buenos Aires, Argentina.,National Scientific and Technical Research Council, Buenos Aires, Argentina.,Universidad Autónoma del Caribe, Barranquilla, Colombia.,Department of Psychology, Universidad Adolfo Ibáñez, Santiago, Chile.,Centre of Excellence in Cognition and Its Disorders, Australian Research Council, Sydney, NSW, Australia
| | - Adolfo M García
- Laboratory of Experimental Psychology and Neuroscience, Institute of Cognitive and Translational Neuroscience, INECO Foundation, Favaloro University, Buenos Aires, Argentina.,National Scientific and Technical Research Council, Buenos Aires, Argentina.,Faculty of Education, National University of Cuyo, Mendoza, Argentina
| |
Collapse
|
29
|
Di Lernia D, Serino S, Polli N, Cacciatore C, Persani L, Riva G. Interoceptive Axes Dissociation in Anorexia Nervosa: A Single Case Study With Follow Up Post-recovery Assessment. Front Psychol 2019; 9:2488. [PMID: 30705649 PMCID: PMC6345152 DOI: 10.3389/fpsyg.2018.02488] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 11/22/2018] [Indexed: 12/28/2022] Open
Abstract
Anorexia nervosa (AN) is a disorder characterized by alterations in body perception. Recent literature suggested that AN can also impair the processing of stimuli from inside the body (i.e., interoceptive) however, very few studies performed a complete interoceptive assessment exploring the evolution of the interoceptive dimensions before and after the subject’s recovery. To address this gap in knowledge, this study presented the case of Diana, a 25 years old woman affected by AN. At hospital admission, Diana performed a complete interoceptive assessment for accuracy (IAc), metacognitive awareness (IAw), sensibility (IAs), and interoceptive buffer saturation (IBs) – a new index that behaviourally evaluated the amount of interoceptive processing. Measures were repeated at the end of an outpatients rehabilitative hospital program, after Diana’s recovery. Results were confronted with a control (N = 4) of healthy female subjects. Analyses indicated severe deficits in accuracy, buffer saturation, and sensibility compared to control group. Conversely, metacognitive awareness was pathologically enhanced. After the rehabilitative hospital program, Diana’s clinical condition was largely improved and this reflected back on the interoceptive patterns that appeared restored, with no difference in interoceptive accuracy and metacognition compared to the control group. In conclusion, results indicated a very specific dissociation between interoceptive axes in AN with pervasive deficits in perception and processing that were accompanied by a pathologically enhanced confidence in the wrong perceptions. This case study reported an interesting and unique clinical pattern with a severe dissociation between interoceptive perceptions that nonetheless appeared restored after the subject’s recovery, highlighting the role of interoceptive assessment in the clinical evolution of AN.
Collapse
Affiliation(s)
- Daniele Di Lernia
- Department of Psychology, Università Cattolica del Sacro Cuore, Milan, Italy
| | - Silvia Serino
- Department of Psychology, Università Cattolica del Sacro Cuore, Milan, Italy.,Applied Technology for Neuro-Psychology Lab, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Nicoletta Polli
- UO di Endocrinologia e Malattie Metaboliche, IRCCS Istituto Auxologico, Milan, Italy.,Dipartimento di Scienze Cliniche e di Comunità, Università degli Studi di Milano, Milan, Italy
| | - Chiara Cacciatore
- UO di Endocrinologia e Malattie Metaboliche, IRCCS Istituto Auxologico, Milan, Italy
| | - Luca Persani
- UO di Endocrinologia e Malattie Metaboliche, IRCCS Istituto Auxologico, Milan, Italy.,Dipartimento di Scienze Cliniche e di Comunità, Università degli Studi di Milano, Milan, Italy
| | - Giuseppe Riva
- Department of Psychology, Università Cattolica del Sacro Cuore, Milan, Italy.,Applied Technology for Neuro-Psychology Lab, IRCCS Istituto Auxologico Italiano, Milan, Italy
| |
Collapse
|
30
|
Jadhav KS, Boutrel B. Prefrontal cortex development and emergence of self-regulatory competence: the two cardinal features of adolescence disrupted in context of alcohol abuse. Eur J Neurosci 2019; 50:2274-2281. [PMID: 30586204 DOI: 10.1111/ejn.14316] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 11/29/2018] [Accepted: 12/12/2018] [Indexed: 01/21/2023]
Abstract
Adolescence is a tumultuous period in the lifetime of an individual confronted to major changes in emotional, social and cognitive appraisal. During this period of questioning and doubt, while the executive functions are still maturing, the abstract reasoning remains vague and the response inhibition loose; ultimately the adolescent scarcely resists temptation. Consequently, adolescence is often associated with uninhibited risk-taking, reckless behaviours, among which are alcohol and illicit drugs use. Here, we discuss how the development of the prefrontal cortex (which critically contributes to rational decision-making and temporal processing of complex events) can be associated with the idiosyncratic adolescent behaviour, and potentially uncontrolled alcohol use. Most importantly, we present clinical and preclinical evidence supporting that ethanol exposure has deleterious effects on the adolescent developing brain. Ultimately, we discuss why a late maturing prefrontal cortex represents a ripe candidate to environmental influences that contribute to shape the adolescent brain but, potentially, can also trigger lifelong maladaptive responses, including increased vulnerability to develop substance use disorder later in life.
Collapse
Affiliation(s)
- Kshitij S Jadhav
- Laboratory on the Neurobiology of Addictive and Eating Disorders, Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, Site de Cery, CH-1008, Prilly, Switzerland
| | - Benjamin Boutrel
- Laboratory on the Neurobiology of Addictive and Eating Disorders, Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, Site de Cery, CH-1008, Prilly, Switzerland.,Division of Adolescent and Child Psychiatry, Department of Psychiatry, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
31
|
Caldiroli A, Buoli M, van Haren NEM, de Nijs J, Altamura AC, Cahn W. The relationship of IQ and emotional processing with insula volume in schizophrenia. Schizophr Res 2018; 202:141-148. [PMID: 29954697 DOI: 10.1016/j.schres.2018.06.048] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 06/19/2018] [Accepted: 06/19/2018] [Indexed: 11/18/2022]
Abstract
OBJECTIVE The insula is involved in general and social cognition, in particular emotion regulation. Aim of this study is to investigate whether insula volume is associated with Intelligence Quotient (IQ) and emotional processing in schizophrenia patients versus healthy controls (HC). METHODS Magnetic resonance imaging (MRI) brain scans, IQ and emotional processing tests (Benton Facial Recognition Test [BFRT], Degraded Facial Affect Recognition Task [DFAR], Emotional Mentalizing Task [EMT]) were administered in 246 subjects (133 schizophrenia patients and 113 controls). First order linear regression analyses were performed with group as independent variable and IQ/emotional processing test scores as dependent variables. Second order stepwise linear regression analyses were performed with IQ/emotional processing test scores as independent variables (as well as intracranial volumes, age, gender and cannabis abuse) and right/left insula volumes as dependent ones. A final mediation analysis (Sobel test) was performed to verify if IQ or emotional processing test scores could explain the eventual differences in insula volumes between the two groups. RESULTS Schizophrenia patients presented lower insula volumes (left: F = 9.72, p < 0.01; right: F = 10.93, p < 0.01) as compared with healthy controls. Smaller insula volumes in schizophrenia patients are mediated by lower IQ scores (Sobel tests: 3.07, p < 0.01 for right insula; 2.72, p < 0.01 for left insula), but not by impairments in emotion processing. CONCLUSIONS IQ, but not emotional processing mediates smaller insula volumes in schizophrenia patients.
Collapse
Affiliation(s)
- Alice Caldiroli
- Department of Psychiatry, University of Milan, Fondazione IRCCS Ca'Granda Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122 Milan, Italy; University Medical Center Utrecht, Department of Psychiatry, Brain Center Rudolf Magnus, the Netherlands
| | - Massimiliano Buoli
- Department of Psychiatry, University of Milan, Fondazione IRCCS Ca'Granda Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122 Milan, Italy; University Medical Center Utrecht, Department of Psychiatry, Brain Center Rudolf Magnus, the Netherlands.
| | - Neeltje E M van Haren
- University Medical Center Utrecht, Department of Psychiatry, Brain Center Rudolf Magnus, the Netherlands; Department of Child and Adolescent Psychiatry/Psychology, Erasmus Medical Centre, Rotterdam, the Netherlands
| | - Jessica de Nijs
- University Medical Center Utrecht, Department of Psychiatry, Brain Center Rudolf Magnus, the Netherlands
| | - A Carlo Altamura
- Department of Psychiatry, University of Milan, Fondazione IRCCS Ca'Granda Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122 Milan, Italy
| | - Wiepke Cahn
- University Medical Center Utrecht, Department of Psychiatry, Brain Center Rudolf Magnus, the Netherlands
| |
Collapse
|
32
|
Bastuji H, Frot M, Perchet C, Hagiwara K, Garcia-Larrea L. Convergence of sensory and limbic noxious input into the anterior insula and the emergence of pain from nociception. Sci Rep 2018; 8:13360. [PMID: 30190593 PMCID: PMC6127143 DOI: 10.1038/s41598-018-31781-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 08/22/2018] [Indexed: 01/19/2023] Open
Abstract
Two parallel di-synaptic routes convey nociceptive input to the telencephalon: the spino-thalamic system projecting principally to the posterior insula, and the spino-parabrachial pathway reaching the amygdalar nucleus. Interplay between the two systems underlies the sensory and emotional aspects of pain, and was explored here in humans with simultaneous recordings from the amygdala, posterior and anterior insulae. Onsets of thermo-nociceptive responses were virtually identical in the posterior insula and the amygdalar complex, but no significant functional connectivity was detected between them using coherence analysis. Anterior insular sectors responded with ~30 ms delay relative to both the posterior insula and the amygdala. While intra-insular functional correlation was significant during the whole analysis period, coherence between the anterior insula and the amygdala became significant after 700 ms of processing. Phase lags indicated information transfer initially directed from the amygdalar complex to the insula. Parallel but independent activation of sensory and limbic nociceptive networks appear to converge in the anterior insula in less than one second. While the anterior insula is often considered as providing input into the limbic system, our results underscore its reverse role, i.e., receiving and integrating very rapidly limbic with sensory input, to initiate a perceptual decision on the stimulus 'painfulness'.
Collapse
Affiliation(s)
- Hélène Bastuji
- Central Integration of Pain (NeuroPain) Lab - Lyon Neuroscience Research Center, INSERM U1028; CNRS. UMR5292, Université Claude Bernard, Bron, F-69677, France.
- Unité d'Hypnologie, Service de Neurologie Fonctionnelle et d'Épileptologie, Hôpital Neurologique, Hospices Civils de Lyon, Bron, F-69677, France.
| | - Maud Frot
- Central Integration of Pain (NeuroPain) Lab - Lyon Neuroscience Research Center, INSERM U1028; CNRS. UMR5292, Université Claude Bernard, Bron, F-69677, France
| | - Caroline Perchet
- Central Integration of Pain (NeuroPain) Lab - Lyon Neuroscience Research Center, INSERM U1028; CNRS. UMR5292, Université Claude Bernard, Bron, F-69677, France
| | - Koichi Hagiwara
- Central Integration of Pain (NeuroPain) Lab - Lyon Neuroscience Research Center, INSERM U1028; CNRS. UMR5292, Université Claude Bernard, Bron, F-69677, France
| | - Luis Garcia-Larrea
- Central Integration of Pain (NeuroPain) Lab - Lyon Neuroscience Research Center, INSERM U1028; CNRS. UMR5292, Université Claude Bernard, Bron, F-69677, France
- Centre d'évaluation et de traitement de la douleur, Hôpital Neurologique, Lyon, France
| |
Collapse
|
33
|
Santens P, Vanschoenbeek G, Miatton M, De Letter M. The moral brain and moral behaviour in patients with Parkinson's disease: a review of the literature. Acta Neurol Belg 2018; 118:387-393. [PMID: 30014443 DOI: 10.1007/s13760-018-0986-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 07/11/2018] [Indexed: 01/05/2023]
Abstract
Morality is a complex and versatile concept that necessitates the integrated activity of multiple interacting networks in the brain. Numerous cortical and subcortical areas, many of which are implicated in either emotional and cognitive control or Theory of Mind, are involved in the processing of moral behaviour. Different methods have been used to investigate various aspects of morality, which has lead to confusing and sometimes opposing results. Emotional, cognitive and personality changes have long been recognized in Parkinson's disease (PD) patients, suggesting a potential impact on moral aspects of behaviour in daily living situations. Alterations in social cognition have been described in all stages of PD but these are rather directly related to PD pathology and not to dopaminergic or DBS treatment. There are no convincing data supporting the hypothesis that dopaminergic treatment or deep brain stimulation of the STN per se interfere with morality in PD patients, although subgroups of patients may display socially unacceptable behaviour. Research in social cognition in PD patients is a fascinating topic that needs further attention in view of the impact on quality of life for PD patients and their caregivers.
Collapse
Affiliation(s)
- Patrick Santens
- Department of Neurology, Ghent University Hospital, Ghent University, Corneel Heymanslaan 10, 13K12, 9000, Ghent, Belgium.
| | - Giel Vanschoenbeek
- Department of Neurology, Ghent University Hospital, Ghent University, Corneel Heymanslaan 10, 13K12, 9000, Ghent, Belgium
| | - Marijke Miatton
- Department of Neurology, Ghent University Hospital, Ghent University, Corneel Heymanslaan 10, 13K12, 9000, Ghent, Belgium
| | - Miet De Letter
- Department of Speech, Language and Hearing Sciences, Ghent University, Corneel Heymanslaan 10, 2P1, 9000, Ghent, Belgium
| |
Collapse
|
34
|
Steeb B, García-Cordero I, Huizing MC, Collazo L, Borovinsky G, Ferrari J, Cuitiño MM, Ibáñez A, Sedeño L, García AM. Progressive Compromise of Nouns and Action Verbs in Posterior Cortical Atrophy. Front Psychol 2018; 9:1345. [PMID: 30123155 PMCID: PMC6085559 DOI: 10.3389/fpsyg.2018.01345] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 07/13/2018] [Indexed: 12/18/2022] Open
Abstract
Processing of nouns and action verbs can be differentially compromised following lesions to posterior and anterior/motor brain regions, respectively. However, little is known about how these deficits progress in the course of neurodegeneration. To address this issue, we assessed productive lexical skills in a patient with posterior cortical atrophy (PCA) at two different stages of his pathology. On both occasions, he underwent a structural brain imaging protocol and completed semantic fluency tasks requiring retrieval of animals (nouns) and actions (verbs). Imaging results were compared with those of controls via voxel-based morphometry (VBM), whereas fluency performance was compared to age-matched norms through Crawford's t-tests. In the first assessment, the patient exhibited atrophy of more posterior regions supporting multimodal semantics (medial temporal and lingual gyri), together with a selective deficit in noun fluency. Then, by the second assessment, the patient's atrophy had progressed mainly toward fronto-motor regions (rolandic operculum, inferior and superior frontal gyri) and subcortical motor hubs (cerebellum, thalamus), and his fluency impairments had extended to action verbs. These results offer unprecedented evidence of the specificity of the pathways related to noun and action-verb impairments in the course of neurodegeneration, highlighting the latter's critical dependence on damage to regions supporting motor functions, as opposed to multimodal semantic processes.
Collapse
Affiliation(s)
- Brenda Steeb
- Laboratory of Language Research (LILEN), Institute of Cognitive and Translational Neuroscience (INCYT), INECO Foundation, Favaloro University, Buenos Aires, Argentina
| | - Indira García-Cordero
- Laboratory of Experimental Psychology and Neuroscience (LPEN), Institute of Cognitive and Translational Neuroscience (INCYT), INECO Foundation, Favaloro University, Buenos Aires, Argentina.,National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Marjolein C Huizing
- Laboratory of Language Research (LILEN), Institute of Cognitive and Translational Neuroscience (INCYT), INECO Foundation, Favaloro University, Buenos Aires, Argentina
| | - Lucas Collazo
- Laboratory of Language Research (LILEN), Institute of Cognitive and Translational Neuroscience (INCYT), INECO Foundation, Favaloro University, Buenos Aires, Argentina
| | - Geraldine Borovinsky
- Laboratory of Language Research (LILEN), Institute of Cognitive and Translational Neuroscience (INCYT), INECO Foundation, Favaloro University, Buenos Aires, Argentina
| | - Jesica Ferrari
- Department of Language Speech, Institute of Cognitive Neurology, Buenos Aires, Argentina
| | - Macarena M Cuitiño
- Laboratory of Language Research (LILEN), Institute of Cognitive and Translational Neuroscience (INCYT), INECO Foundation, Favaloro University, Buenos Aires, Argentina.,National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina.,Faculty of Psychology, Favaloro University, Buenos Aires, Argentina.,Faculty of Psychology, University of Buenos Aires, Buenos Aires, Argentina
| | - Agustín Ibáñez
- Laboratory of Experimental Psychology and Neuroscience (LPEN), Institute of Cognitive and Translational Neuroscience (INCYT), INECO Foundation, Favaloro University, Buenos Aires, Argentina.,National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina.,Universidad Autónoma del Caribe, Barranquilla, Colombia.,Center for Social and Cognitive Neuroscience, School of Psychology, Universidad Adolfo Ibáñez, Santiago de Chile, Chile.,Centre of Excellence in Cognition and its Disorders, Australian Research Council, Sydney, NSW, Australia
| | - Lucas Sedeño
- Laboratory of Experimental Psychology and Neuroscience (LPEN), Institute of Cognitive and Translational Neuroscience (INCYT), INECO Foundation, Favaloro University, Buenos Aires, Argentina.,National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Adolfo M García
- Laboratory of Experimental Psychology and Neuroscience (LPEN), Institute of Cognitive and Translational Neuroscience (INCYT), INECO Foundation, Favaloro University, Buenos Aires, Argentina.,National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina.,Faculty of Education, National University of Cuyo, Mendoza, Argentina
| |
Collapse
|
35
|
Cervetto S, Abrevaya S, Martorell Caro M, Kozono G, Muñoz E, Ferrari J, Sedeño L, Ibáñez A, García AM. Action Semantics at the Bottom of the Brain: Insights From Dysplastic Cerebellar Gangliocytoma. Front Psychol 2018; 9:1194. [PMID: 30050490 PMCID: PMC6052139 DOI: 10.3389/fpsyg.2018.01194] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 06/20/2018] [Indexed: 12/14/2022] Open
Abstract
Recent embodied cognition research shows that access to action verbs in shallow-processing tasks becomes selectively compromised upon atrophy of the cerebellum, a critical motor region. Here we assessed whether cerebellar damage also disturbs explicit semantic processing of action pictures and its integration with ongoing motor responses. We evaluated a cognitively preserved 33-year-old man with severe dysplastic cerebellar gangliocytoma (Lhermitte-Duclos disease), encompassing most of the right cerebellum and the posterior part of the left cerebellum. The patient and eight healthy controls completed two semantic association tasks (involving pictures of objects and actions, respectively) that required motor responses. Accuracy results via Crawford’s modified t-tests revealed that the patient was selectively impaired in action association. Moreover, reaction-time analysis through Crawford’s Revised Standardized Difference Test showed that, while processing of action concepts involved slower manual responses in controls, no such effect was observed in the patient, suggesting that motor-semantic integration dynamics may be compromised following cerebellar damage. Notably, a Bayesian Test for a Deficit allowing for Covariates revealed that these patterns remained after covarying for executive performance, indicating that they were not secondary to extra-linguistic impairments. Taken together, our results extend incipient findings on the embodied functions of the cerebellum, offering unprecedented evidence of its crucial role in processing non-verbal action meanings and integrating them with concomitant movements. These findings illuminate the relatively unexplored semantic functions of this region while calling for extensions of motor cognition models.
Collapse
Affiliation(s)
- Sabrina Cervetto
- Laboratory of Experimental Psychology and Neuroscience, Institute of Cognitive and Translational Neuroscience, INECO Foundation, Favaloro University, Buenos Aires, Argentina.,Departamento de Educación Física y Salud, Instituto Superior de Educación Física, Universidad de la República, Montevideo, Uruguay
| | - Sofía Abrevaya
- Laboratory of Experimental Psychology and Neuroscience, Institute of Cognitive and Translational Neuroscience, INECO Foundation, Favaloro University, Buenos Aires, Argentina.,National Scientific and Technical Research Council, Buenos Aires, Argentina
| | - Miguel Martorell Caro
- Laboratory of Experimental Psychology and Neuroscience, Institute of Cognitive and Translational Neuroscience, INECO Foundation, Favaloro University, Buenos Aires, Argentina
| | - Giselle Kozono
- Laboratory of Experimental Psychology and Neuroscience, Institute of Cognitive and Translational Neuroscience, INECO Foundation, Favaloro University, Buenos Aires, Argentina
| | - Edinson Muñoz
- Departamento de Lingüística y Literatura, Facultad de Humanidades, Universidad de Santiago de Chile, Santiago, Chile
| | - Jesica Ferrari
- Neuropsychiatry Department, Institute of Cognitive Neurology, Buenos Aires, Argentina
| | - Lucas Sedeño
- Laboratory of Experimental Psychology and Neuroscience, Institute of Cognitive and Translational Neuroscience, INECO Foundation, Favaloro University, Buenos Aires, Argentina.,National Scientific and Technical Research Council, Buenos Aires, Argentina
| | - Agustín Ibáñez
- Laboratory of Experimental Psychology and Neuroscience, Institute of Cognitive and Translational Neuroscience, INECO Foundation, Favaloro University, Buenos Aires, Argentina.,National Scientific and Technical Research Council, Buenos Aires, Argentina.,Universidad Autónoma del Caribe, Barranquilla, Colombia.,Center for Social and Cognitive Neuroscience, School of Psychology, Universidad Adolfo Ibáñez, Santiago de Chile, Chile.,Centre of Excellence in Cognition and its Disorders, Australian Research Council (ARC), Sydney, NSW, Australia
| | - Adolfo M García
- Laboratory of Experimental Psychology and Neuroscience, Institute of Cognitive and Translational Neuroscience, INECO Foundation, Favaloro University, Buenos Aires, Argentina.,National Scientific and Technical Research Council, Buenos Aires, Argentina.,Faculty of Education, National University of Cuyo, Mendoza, Argentina
| |
Collapse
|
36
|
Ibáñez A, Zimerman M, Sedeño L, Lori N, Rapacioli M, Cardona JF, Suarez DMA, Herrera E, García AM, Manes F. Early bilateral and massive compromise of the frontal lobes. NEUROIMAGE-CLINICAL 2018; 18:543-552. [PMID: 29845003 PMCID: PMC5964834 DOI: 10.1016/j.nicl.2018.02.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 01/29/2018] [Accepted: 02/26/2018] [Indexed: 12/20/2022]
Abstract
The frontal lobes are one of the most complex brain structures involved in both domain-general and specific functions. The goal of this work was to assess the anatomical and cognitive affectations from a unique case with massive bilateral frontal affectation. We report the case of GC, an eight-year old child with nearly complete affectation of bilateral frontal structures and spared temporal, parietal, occipital, and cerebellar regions. We performed behavioral, neuropsychological, and imaging (MRI, DTI, fMRI) evaluations. Neurological and neuropsychological examinations revealed a mixed pattern of affected (executive control/abstraction capacity) and considerably preserved (consciousness, language, memory, spatial orientation, and socio-emotional) functions. Both structural (DTI) and functional (fMRI) connectivity evidenced abnormal anterior connections of the amygdala and parietal networks. In addition, brain structural connectivity analysis revealed almost complete loss of frontal connections, with atypical temporo-posterior pathways. Similarly, functional connectivity showed an aberrant frontoparietal network and relative preservation of the posterior part of the default mode network and the visual network. We discuss this multilevel pattern of behavioral, structural, and functional connectivity results. With its unique pattern of compromised and preserved structures and functions, this exceptional case offers new constraints and challenges for neurocognitive theories.
Collapse
Affiliation(s)
- Agustín Ibáñez
- Institute of Cognitive and Translational Neuroscience (INCyT), INECO Foundation, Favaloro University, Buenos Aires, Argentina; National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina; Universidad Autónoma del Caribe, Barranquilla, Colombia; Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibáñez, Santiago, Chile; Centre of Excellence in Cognition and its Disorders, Australian Research Council (ACR), Sydney, Australia.
| | - Máximo Zimerman
- Institute of Cognitive and Translational Neuroscience (INCyT), INECO Foundation, Favaloro University, Buenos Aires, Argentina
| | - Lucas Sedeño
- Institute of Cognitive and Translational Neuroscience (INCyT), INECO Foundation, Favaloro University, Buenos Aires, Argentina; National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Nicolas Lori
- Institute of Cognitive and Translational Neuroscience (INCyT), INECO Foundation, Favaloro University, Buenos Aires, Argentina; Laboratory of Neuroimaging and Neuroscience (LANEN), Institute of Translational and Cognitive Neuroscience (INCyT), INECO Foundation, Rosario, Argentina
| | - Melina Rapacioli
- Institute of Cognitive and Translational Neuroscience (INCyT), INECO Foundation, Favaloro University, Buenos Aires, Argentina; National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Juan F Cardona
- Instituto de Psicología, Universidad del Valle, Cali, Colombia
| | | | - Eduar Herrera
- Departamento de Estudios Psicológicos, Universidad ICESI, Cali, Colombia
| | - Adolfo M García
- Institute of Cognitive and Translational Neuroscience (INCyT), INECO Foundation, Favaloro University, Buenos Aires, Argentina; National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina; Faculty of Education, National University of Cuyo (UNCuyo), Mendoza, Argentina
| | - Facundo Manes
- Institute of Cognitive and Translational Neuroscience (INCyT), INECO Foundation, Favaloro University, Buenos Aires, Argentina
| |
Collapse
|
37
|
Ibáñez A, García AM, Esteves S, Yoris A, Muñoz E, Reynaldo L, Pietto ML, Adolfi F, Manes F. Social neuroscience: undoing the schism between neurology and psychiatry. Soc Neurosci 2018; 13:1-39. [PMID: 27707008 PMCID: PMC11177280 DOI: 10.1080/17470919.2016.1245214] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Multiple disorders once jointly conceived as "nervous diseases" became segregated by the distinct institutional traditions forged in neurology and psychiatry. As a result, each field specialized in the study and treatment of a subset of such conditions. Here we propose new avenues for interdisciplinary interaction through a triangulation of both fields with social neuroscience. To this end, we review evidence from five relevant domains (facial emotion recognition, empathy, theory of mind, moral cognition, and social context assessment), highlighting their common disturbances across neurological and psychiatric conditions and discussing their multiple pathophysiological mechanisms. Our proposal is anchored in multidimensional evidence, including behavioral, neurocognitive, and genetic findings. From a clinical perspective, this work paves the way for dimensional and transdiagnostic approaches, new pharmacological treatments, and educational innovations rooted in a combined neuropsychiatric training. Research-wise, it fosters new models of the social brain and a novel platform to explore the interplay of cognitive and social functions. Finally, we identify new challenges for this synergistic framework.
Collapse
Affiliation(s)
- Agustín Ibáñez
- a Laboratory of Experimental Psychology and Neuroscience (LPEN), Institute of Cognitive and Translational Neuroscience (INCyT), INECO Foundation , Favaloro University , Buenos Aires , Argentina
- b National Scientific and Technical Research Council (CONICET) , Buenos Aires , Argentina
- c Center for Social and Cognitive Neuroscience (CSCN), School of Psychology , Universidad Adolfo Ibáñez , Santiago de Chile , Chile
- d Universidad Autónoma del Caribe , Barranquilla , Colombia
- e Centre of Excellence in Cognition and its Disorders , Australian Research Council (ACR) , Sydney , Australia
| | - Adolfo M García
- a Laboratory of Experimental Psychology and Neuroscience (LPEN), Institute of Cognitive and Translational Neuroscience (INCyT), INECO Foundation , Favaloro University , Buenos Aires , Argentina
- b National Scientific and Technical Research Council (CONICET) , Buenos Aires , Argentina
- f Faculty of Elementary and Special Education (FEEyE) , National University of Cuyo (UNCuyo) , Mendoza , Argentina
| | - Sol Esteves
- a Laboratory of Experimental Psychology and Neuroscience (LPEN), Institute of Cognitive and Translational Neuroscience (INCyT), INECO Foundation , Favaloro University , Buenos Aires , Argentina
| | - Adrián Yoris
- a Laboratory of Experimental Psychology and Neuroscience (LPEN), Institute of Cognitive and Translational Neuroscience (INCyT), INECO Foundation , Favaloro University , Buenos Aires , Argentina
- b National Scientific and Technical Research Council (CONICET) , Buenos Aires , Argentina
| | - Edinson Muñoz
- g Departamento de Lingüística y Literatura, Facultad de Humanidades , Universidad de Santiago de Chile , Santiago , Chile
| | - Lucila Reynaldo
- a Laboratory of Experimental Psychology and Neuroscience (LPEN), Institute of Cognitive and Translational Neuroscience (INCyT), INECO Foundation , Favaloro University , Buenos Aires , Argentina
| | | | - Federico Adolfi
- a Laboratory of Experimental Psychology and Neuroscience (LPEN), Institute of Cognitive and Translational Neuroscience (INCyT), INECO Foundation , Favaloro University , Buenos Aires , Argentina
| | - Facundo Manes
- a Laboratory of Experimental Psychology and Neuroscience (LPEN), Institute of Cognitive and Translational Neuroscience (INCyT), INECO Foundation , Favaloro University , Buenos Aires , Argentina
- b National Scientific and Technical Research Council (CONICET) , Buenos Aires , Argentina
- e Centre of Excellence in Cognition and its Disorders , Australian Research Council (ACR) , Sydney , Australia
- i Department of Experimental Psychology , University of South Carolina , Columbia , SC , USA
| |
Collapse
|
38
|
Vicario CM, Rafal RD, Borgomaneri S, Paracampo R, Kritikos A, Avenanti A. Pictures of disgusting foods and disgusted facial expressions suppress the tongue motor cortex. Soc Cogn Affect Neurosci 2017; 12:352-362. [PMID: 27614770 PMCID: PMC5390717 DOI: 10.1093/scan/nsw129] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 08/26/2016] [Indexed: 12/27/2022] Open
Abstract
The tongue holds a unique role in gustatory disgust. However, it is unclear whether the tongue representation in the motor cortex (tM1) is affected by the sight of distaste-related stimuli. Using transcranial magnetic stimulation (TMS) in healthy humans, we recorded tongue motor-evoked potentials (MEPs) as an index of tM1 cortico-hypoglossal excitability. MEPs were recorded while participants viewed pictures associated with gustatory disgust and revulsion (i.e. rotten foods and faces expressing distaste), non-oral-related disgusting stimuli (i.e. invertebrates like worms) and control stimuli. We found that oral-related disgust pictures suppressed tM1 cortico-hypoglossal output. This tM1 suppression was predicted by interindividual differences in disgust sensitivity. No similar suppression was found for disgusting invertebrates or when MEPs were recorded from a control muscle. These findings suggest that revulsion-eliciting food pictures trigger anticipatory inhibition mechanisms, possibly preventing toxin swallowing and contamination. A similar suppression is elicited when viewing distaste expressions, suggesting vicarious motor inhibition during social perception of disgust. Our study suggests an avoidant-defensive mechanism in human cortico-hypoglossal circuits and its ‘resonant’ activation in the vicarious experience of others’ distaste. These findings support a role for the motor system in emotion-driven motor anticipation and social cognition.
Collapse
Affiliation(s)
- Carmelo M Vicario
- Wolfson Centre for Clinical and Cognitive Neuroscience, School of Psychology, Bangor University, Bangor Gwynedd LL57 2DG, UK.,School of Psychology, University of Tasmania, Hobart, Tasmania 7000, Australia
| | - Robert D Rafal
- Wolfson Centre for Clinical and Cognitive Neuroscience, School of Psychology, Bangor University, Bangor Gwynedd LL57 2DG, UK
| | - Sara Borgomaneri
- Department of Psychology and Center for Studies and Research in Cognitive Neuroscience, University of Bologna, Cesena Campus, Cesena 47521, Italy.,IRCCS Fondazione Santa Lucia, Roma 00179, Italy
| | - Riccardo Paracampo
- Department of Psychology and Center for Studies and Research in Cognitive Neuroscience, University of Bologna, Cesena Campus, Cesena 47521, Italy
| | - Ada Kritikos
- School of Psychology, The University of Queensland, McElwain Building, St Lucia Campus, Brisbane 4072, Australia
| | - Alessio Avenanti
- Department of Psychology and Center for Studies and Research in Cognitive Neuroscience, University of Bologna, Cesena Campus, Cesena 47521, Italy.,IRCCS Fondazione Santa Lucia, Roma 00179, Italy
| |
Collapse
|
39
|
Koh MJ, Seol J, Kang JI, Kim BS, Namkoong K, Chang JW, Kim SJ. Altered resting-state functional connectivity in patients with obsessive-compulsive disorder: A magnetoencephalography study. Int J Psychophysiol 2017; 123:80-87. [PMID: 29107610 DOI: 10.1016/j.ijpsycho.2017.10.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 10/10/2017] [Accepted: 10/26/2017] [Indexed: 02/02/2023]
Abstract
Aberrant cortical-striatal-thalamic-cortical circuits have been implicated in the pathophysiology of obsessive-compulsive disorder (OCD). However, the neurobiological basis of OCD remains unclear. We compared patterns of functional connectivity in patients with OCD and in healthy controls using resting-state magnetoencephalography (MEG). Participants comprised 24 patients with OCD (21 men, 3 women) and 22 age- and sex-matched healthy controls (19 men, 3 women). Resting-state measurements were obtained over a 6-min period using a 152-channel whole-head MEG system. We examined group differences in oscillatory activity and distribution of functional cortical hubs based on the nodal centrality of phase-locking value (PLV) maps. Differences in resting-state functional connectivity were examined through PLV analysis in selected regions of interest based on these two findings. Patients with OCD demonstrated significantly lower delta band activity in the cortical regions of the limbic lobe, insula, orbitofrontal, and temporal regions, and theta band activity in the parietal lobe regions than healthy controls. Patients with OCD exhibited fewer functional hubs in the insula and orbitofrontal cortex and additional hubs in the cingulate and temporo-parietal regions. The OCD group exhibited significantly lower phase synchronization among the insula, orbitofrontal cortex, and cortical regions of the limbic lobe in all band frequencies, except in the delta band. Altered functional networks in the resting state may be associated with the pathophysiology of OCD. These MEG findings indicate that OCD is associated with decreased functional connectivity in terms of phase synchrony, particularly in the insula, orbitofrontal cortex, and cortical regions of the limbic lobe.
Collapse
Affiliation(s)
- Min Jung Koh
- Medical Affairs, Janssen Korea, Seoul, Republic of Korea; Department of Psychiatry, Graduate School, Yonsei University, Seoul, Republic of Korea
| | - Jaeho Seol
- Department of Neuroscience and Biomedical Engineering, and Aalto NeuroImaging, Aalto University, Espoo, Finland
| | - Jee In Kang
- Department of Psychiatry & Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Bong Soo Kim
- EIT/LOFUS Center, International St. Mary's Hospital, Catholic Kwandong University, Incheon, Republic of Korea
| | - Kee Namkoong
- Department of Psychiatry & Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jin Woo Chang
- Department of Neurosurgery, Brain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Se Joo Kim
- Department of Psychiatry & Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
40
|
Yousefi Heris A. Why emotion recognition is not simulational. PHILOSOPHICAL PSYCHOLOGY 2017. [DOI: 10.1080/09515089.2017.1306038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Ali Yousefi Heris
- Graduate School of Systemic Neuroscience, Research Center for Neurophilosophy and Ethics of Neurosciences, University of Munich, Munich, Germany
| |
Collapse
|
41
|
Core, social and moral disgust are bounded: A review on behavioral and neural bases of repugnance in clinical disorders. Neurosci Biobehav Rev 2017; 80:185-200. [PMID: 28506923 DOI: 10.1016/j.neubiorev.2017.05.008] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 04/19/2017] [Accepted: 05/09/2017] [Indexed: 12/12/2022]
Abstract
Disgust is a multifaceted experience that might affect several aspects of life. Here, we reviewed research on neurological and psychiatric disorders that are characterized by abnormal disgust processing to test the hypothesis of a shared neurocognitive architecture in the representation of three disgust domains: i) personal experience of 'core disgust'; ii) social disgust, i.e., sensitivity to others' expressions of disgust; iii) moral disgust, i.e., sensitivity to ethical violations. Our review provides some support to the shared neurocognitive hypothesis and suggests that the insula might be the "hub" structure linking the three domains of disgust sensitivity, while other brain regions may subserve specific facets of the multidimensional experience. Our review also suggests a role of serotonin core and moral disgust, supporting "neo-sentimentalist" theories of morality, which posit a causal role of affect in moral judgment.
Collapse
|
42
|
Impaired Emotion Recognition after Left Hemispheric Stroke: A Case Report and Brief Review of the Literature. Case Rep Neurol Med 2017; 2017:1045039. [PMID: 28555167 PMCID: PMC5438834 DOI: 10.1155/2017/1045039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 03/15/2017] [Accepted: 04/05/2017] [Indexed: 01/07/2023] Open
Abstract
Impaired recognition of emotion after stroke can have important implications for social competency, social participation, and consequently quality of life. We describe a case of left hemispheric ischemic stroke with impaired recognition of specifically faces expressing fear. Three months later, the patient's spouse reports that the patient was irritable and slow in communication, which may be caused by the impaired emotion recognition. The case is discussed in relation to the literature concerning emotion recognition and its neural correlates. Our case supports the notion that emotion recognition, including fear recognition, is regulated by a network of interconnected brain regions located in both hemispheres. We conclude that impaired emotion recognition is not uncommon after stroke and can be caused by dysfunction of this emotion-network.
Collapse
|
43
|
Tanaka S, Kirino E. Reorganization of the thalamocortical network in musicians. Brain Res 2017; 1664:48-54. [PMID: 28377159 DOI: 10.1016/j.brainres.2017.03.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 03/25/2017] [Accepted: 03/27/2017] [Indexed: 01/21/2023]
Abstract
The cortico-thalamocortical network is relevant to music performance in that the network can regulate sensitivity to afferent input or sound, mediate the integration of multimodal information required for the performance, and play a role in skilled performance control. We, therefore, predicted that this network would be reorganized via musical training-induced neuroplasticity. To test this hypothesis, we analyzed resting-state functional connectivity of the thalamocortical network in musicians (n=35) and nonmusicians (n=35). The seed-to-voxel functional connectivity analysis of the left thalamus seed showed enhanced connectivity voxels in the precuneus/posterior cingulate cortex (PCC) in musicians compared with nonmusicians. Region of interest (ROI)-to-ROI functional connectivity analysis showed that the auditory areas were also more strongly connected with the left thalamus in musicians. Discriminant analysis using the ROI-to-ROI functional connectivity data of the precuneus/PCC and auditory areas as predictors yielded an 87% correct discrimination of musicians from nonmusicians. Therefore, we can conclude that, as a consequence of long-term musical training, musicians have a characteristically organized thalamocortical network. The precuneus and PCC are principal nodes of the default mode network and play a pivotal role in the manipulation of mental imagery. We propose that the reorganized thalamocortical network in musicians contributes not only to higher sensitivity to sound but also to the integration of mental imagery with sound, which are both presumed to be important for better music performance.
Collapse
Affiliation(s)
- Shoji Tanaka
- Department of Information and Communication Sciences, Sophia University, Tokyo 102-0081, Japan.
| | - Eiji Kirino
- Department of Psychiatry, Juntendo University School of Medicine, Tokyo 113-8431, Japan; Juntendo Shizuoka Hospital, Shizuoka 410-2211, Japan
| |
Collapse
|
44
|
García AM, Bocanegra Y, Herrera E, Pino M, Muñoz E, Sedeño L, Ibáñez A. Action-semantic and syntactic deficits in subjects at risk for Huntington's disease. J Neuropsychol 2017; 12:389-408. [PMID: 28296213 DOI: 10.1111/jnp.12120] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/23/2017] [Indexed: 12/21/2022]
Abstract
Frontostriatal networks play critical roles in grounding action semantics and syntactic skills. Indeed, their atrophy distinctively disrupts both domains, as observed in patients with Huntington's disease (HD) and Parkinson's disease, even during early disease stages. However, frontostriatal degeneration in these conditions may begin up to 15 years before the onset of clinical symptoms, opening avenues for pre-clinical detection via sensitive tasks. Such a mission is particularly critical in HD, given that patients' children have 50% chances of inheriting the disease. Against this background, we assessed whether deficits in the above-mentioned domains emerge in subjects at risk to develop HD. We administered tasks tapping action semantics, object semantics, and two forms of syntactic processing to 18 patients with HD, 19 asymptomatic first-degree relatives, and sociodemographically matched controls for each group. The patients evinced significant deficits in all tasks, but only those in the two target domains were independent of overall cognitive state. More crucially, relative to controls, the asymptomatic relatives were selectively impaired in action semantics and in the more complex syntactic task, with both patterns emerging irrespective of the subjects' overall cognitive state. Our findings highlight the relevance of these dysfunctions as potential prodromal biomarkers of HD. Moreover, they offer theoretical insights into the differential contributions of frontostriatal hubs to both domains while paving the way for innovations in diagnostic procedures.
Collapse
Affiliation(s)
- Adolfo M García
- Laboratory of Experimental Psychology and Neuroscience (LPEN), Institute of Cognitive and Translational Neuroscience (INCYT), INECO Foundation, Favaloro University, Buenos Aires, Argentina.,National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina.,Faculty of Education, National University of Cuyo (UNCuyo), Mendoza, Argentina
| | - Yamile Bocanegra
- Neuroscience Group, Faculty of Medicine, University of Antioquia (UDEA), Medellín, Colombia.,Group of Neuropsychology and Conduct (GRUNECO), Faculty of Medicine, University of Antioquia (UDEA), Medellín, Colombia
| | - Eduar Herrera
- Psychological Studies Department, Icesi University, Cali, Colombia
| | - Mariana Pino
- Autonomous University of the Caribbean, Barranquilla, Colombia
| | - Edinson Muñoz
- Departamento de Lingüística y Literatura, Facultad de Humanidades, Universidad de Santiago de Chile, Chile
| | - Lucas Sedeño
- Laboratory of Experimental Psychology and Neuroscience (LPEN), Institute of Cognitive and Translational Neuroscience (INCYT), INECO Foundation, Favaloro University, Buenos Aires, Argentina.,National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Agustín Ibáñez
- Laboratory of Experimental Psychology and Neuroscience (LPEN), Institute of Cognitive and Translational Neuroscience (INCYT), INECO Foundation, Favaloro University, Buenos Aires, Argentina.,National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina.,Autonomous University of the Caribbean, Barranquilla, Colombia.,Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibáñez, Santiago de Chile, Chile.,Centre of Excellence in Cognition and its Disorders, Australian Research Council (ACR), Sydney, New South Wales, Australia
| |
Collapse
|
45
|
Adolfi F, Couto B, Richter F, Decety J, Lopez J, Sigman M, Manes F, Ibáñez A. Convergence of interoception, emotion, and social cognition: A twofold fMRI meta-analysis and lesion approach. Cortex 2017; 88:124-142. [DOI: 10.1016/j.cortex.2016.12.019] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 11/16/2016] [Accepted: 12/20/2016] [Indexed: 01/19/2023]
|
46
|
García AM, Sedeño L, Herrera Murcia E, Couto B, Ibáñez A. A Lesion-Proof Brain? Multidimensional Sensorimotor, Cognitive, and Socio-Affective Preservation Despite Extensive Damage in a Stroke Patient. Front Aging Neurosci 2017; 8:335. [PMID: 28119603 PMCID: PMC5222788 DOI: 10.3389/fnagi.2016.00335] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 12/23/2016] [Indexed: 12/17/2022] Open
Abstract
In this study, we report an unusual case of mutidimensional sensorimotor, cognitive, and socio-affective preservation in an adult with extensive, acquired bilateral brain damage. At age 43, patient CG sustained a cerebral hemorrhage and a few months later, she suffered a second (ischemic) stroke. As a result, she exhibited extensive damage of the right hemisphere (including frontal, temporal, parietal, and occipital regions), left Sylvian and striatal areas, bilateral portions of the insula and the amygdala, and the splenium. However, against all probability, she was unimpaired across a host of cognitive domains, including executive functions, attention, memory, language, sensory perception (e.g., taste recognition and intensity discrimination), emotional processing (e.g., experiencing of positive and negative emotions), and social cognition skills (prosody recognition, theory of mind, facial emotion recognition, and emotional evaluation). Her functional integrity was further confirmed through neurological examination and contextualized observation of her performance in real-life tasks. In sum, CG's case resists straightforward classifications, as the extent and distribution of her lesions would typically produce pervasive, multidimensional deficits. We discuss the rarity of this patient against the backdrop of other reports of atypical cognitive preservation, expound the limitations of several potential accounts, and highlight the challenges that the case poses for current theories of brain organization and resilience.
Collapse
Affiliation(s)
- Adolfo M García
- Laboratory of Experimental Psychology and Neuroscience, Institute of Cognitive and Translational Neuroscience, INECO Foundation, Favaloro UniversityBuenos Aires, Argentina; National Scientific and Technical Research Council (CONICET)Buenos Aires, Argentina; Faculty of Elementary and Special Education, National University of CuyoMendoza, Argentina
| | - Lucas Sedeño
- Laboratory of Experimental Psychology and Neuroscience, Institute of Cognitive and Translational Neuroscience, INECO Foundation, Favaloro UniversityBuenos Aires, Argentina; National Scientific and Technical Research Council (CONICET)Buenos Aires, Argentina
| | | | - Blas Couto
- Laboratory of Experimental Psychology and Neuroscience, Institute of Cognitive and Translational Neuroscience, INECO Foundation, Favaloro University Buenos Aires, Argentina
| | - Agustín Ibáñez
- Laboratory of Experimental Psychology and Neuroscience, Institute of Cognitive and Translational Neuroscience, INECO Foundation, Favaloro UniversityBuenos Aires, Argentina; National Scientific and Technical Research Council (CONICET)Buenos Aires, Argentina; Universidad Autónoma del CaribeBarranquilla, Colombia; Center for Social and Cognitive Neuroscience, School of Psychology, Universidad Adolfo IbáñezSantiago de Chile, Chile; Centre of Excellence in Cognition and its Disorders, Australian Research CouncilSydney, NSW, Australia
| |
Collapse
|
47
|
Matallana D, Gómez-Restrepo C, Ramirez P, Martínez NT, Rondon M. [The Recognition of Emotions, Empathy and Moral Judgment in the National Mental Health Survey in Colombia, 2015]. ACTA ACUST UNITED AC 2016; 45 Suppl 1:96-104. [PMID: 27993262 DOI: 10.1016/j.rcp.2016.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 03/12/2016] [Accepted: 04/05/2016] [Indexed: 12/30/2022]
Abstract
BACKGROUND Social cognition refers to the mental processes involved in social interactions. Different aspects, such as the perception of others, self-knowledge, motivation and the cultural context, can modulate empathy responses and moral judgments regarding the actions of others. The National Mental Health Survey (ENSM for its acronym in Spanish) explored aspects of social cognition such as the perception of emotions, empathy and moral judgment in situations in which another person experiences pain. OBJECTIVE To describe the overall findings of the ENSM in relation to the emotional perception and empathic responses to situations where pain is inflicted on others in an intentional or accidental manner. METHODS A total of 3863 people aged 18-96 years old completed the social cognition module. They were asked to identify the emotions expressed in the images of several faces. A modified version of the awareness of social inference test (TASIT) was used. Additionally, the cognitive, affective, and moral elements of empathy were assessed with a modified version of the empathy for pain task (EPT), which uses a sequence of images in which someone is being hurt. RESULTS Happiness was identified by 91.5% of those interviewed; neutral or emotionless faces were identified by 65%; 55% of respondents correctly identified surprise. Only 19.7%, 21.8% and 27.4% could identify negative emotions like fear, disgust and sadness, respectively. When the data were analysed by age, poverty status, and different regions of the country, the results tend to vary. As regards empathy, 73.7% correctly identified intentional actions, and accidental actions were identified by 56.6%. According to the moral judgment of some respondents, even in situations where the pain was caused by accident, there must be some kind of punishment (20.7% deserved a low punishment and 26.8% a moderate one). CONCLUSIONS Noteworthy findings include the high recognition of happiness by the respondents, in contrast to the apparent difficulty in recognising sadness, and paradoxical results regarding punishment and empathy. This should be studied in greater detail, but these results can contribute to a deeper understanding of the complex Colombian social context.
Collapse
Affiliation(s)
- Diana Matallana
- Instituto de Envejecimiento, Facultad de Medicina, Pontificia Universidad Javeriana; Intellectus-Hospital Universitario San Ignacio, Bogotá, Colombia
| | - Carlos Gómez-Restrepo
- Instituto de Envejecimiento, Facultad de Medicina, Pontificia Universidad Javeriana; Intellectus-Hospital Universitario San Ignacio, Bogotá, Colombia; Departamento de Epidemiología Clínica y Bioestadística, Facultad de Medicina, Pontificia Universidad Javeriana, Hospital Universitario San Ignacio, Bogotá, Colombia.
| | - Paulina Ramirez
- Departamento de Psiquiatría y Salud Mental, Facultad de Medicina, Pontificia Universidad Javeriana, Hospital Universitario San Ignacio, Bogotá, Colombia
| | - Nathalie Tamayo Martínez
- Departamento de Epidemiología Clínica y Bioestadística, Facultad de Medicina, Pontificia Universidad Javeriana, Hospital Universitario San Ignacio, Bogotá, Colombia
| | - Martin Rondon
- Departamento de Epidemiología Clínica y Bioestadística, Facultad de Medicina, Pontificia Universidad Javeriana, Hospital Universitario San Ignacio, Bogotá, Colombia
| |
Collapse
|
48
|
Tanaka S, Kirino E. Functional Connectivity of the Precuneus in Female University Students with Long-Term Musical Training. Front Hum Neurosci 2016; 10:328. [PMID: 27445765 PMCID: PMC4925677 DOI: 10.3389/fnhum.2016.00328] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Accepted: 06/13/2016] [Indexed: 12/15/2022] Open
Abstract
Conceiving concrete mental imagery is critical for skillful musical expression and performance. The precuneus, a core component of the default mode network (DMN), is a hub of mental image processing that participates in functions such as episodic memory retrieval and imagining future events. The precuneus connects with many brain regions in the frontal, parietal, temporal, and occipital cortices. The aim of this study was to examine the effects of long-term musical training on the resting-state functional connectivity of the precuneus. Our hypothesis was that the functional connectivity of the precuneus is altered in musicians. We analyzed the functional connectivity of the precuneus using resting-state functional magnetic resonance imaging (fMRI) data recorded in female university students majoring in music and nonmusic disciplines. The results show that the music students had higher functional connectivity of the precuneus with opercular/insular regions, which are associated with interoceptive and emotional processing; Heschl’s gyrus (HG) and the planum temporale (PT), which process complex tonal information; and the lateral occipital cortex (LOC), which processes visual information. Connectivity of the precuneus within the DMN did not differ between the two groups. Our finding suggests that functional connections between the precuneus and the regions outside of the DMN play an important role in musical performance. We propose that a neural network linking the precuneus with these regions contributes to translate mental imagery into information relevant to musical performance.
Collapse
Affiliation(s)
- Shoji Tanaka
- Department of Information and Communication Sciences, Sophia University Tokyo, Japan
| | - Eiji Kirino
- Department of Psychiatry, Juntendo University School of MedicineTokyo, Japan; Juntendo Shizuoka HospitalShizuoka, Japan
| |
Collapse
|
49
|
Baez S, Kanske P, Matallana D, Montañes P, Reyes P, Slachevsky A, Matus C, Vigliecca NS, Torralva T, Manes F, Ibanez A. Integration of Intention and Outcome for Moral Judgment in Frontotemporal Dementia: Brain Structural Signatures. NEURODEGENER DIS 2016; 16:206-17. [DOI: 10.1159/000441918] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 10/22/2015] [Indexed: 11/19/2022] Open
|
50
|
Baez S, García AM, Ibanez A. The Social Context Network Model in Psychiatric and Neurological Diseases. Curr Top Behav Neurosci 2016; 30:379-396. [PMID: 27130326 DOI: 10.1007/7854_2016_443] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The role of contextual modulations has been extensively studied in basic sensory and cognitive processes. However, little is known about their impact on social cognition, let alone their disruption in disorders compromising such a domain. In this chapter, we flesh out the social context network model (SCNM), a neuroscientific proposal devised to address the issue. In SCNM terms, social context effects rely on a fronto-temporo-insular network in charge of (a) updating context cues to make predictions, (b) consolidating context-target associative learning, and (c) coordinating internal and external milieus. First, we characterize various social cognition domains as context-dependent phenomena. Then, we review behavioral and neural evidence of social context impairments in behavioral variant frontotemporal dementia (bvFTD) and autism spectrum disorder (ASD), highlighting their relation with key SCNM hubs. Next, we show that other psychiatric and neurological conditions involve context-processing impairments following damage to the brain regions included in the model. Finally, we call for an ecological approach to social cognition assessment, moving beyond widespread abstract and decontextualized methods.
Collapse
Affiliation(s)
- Sandra Baez
- Laboratory of Experimental Psychology and Neuroscience (LPEN), Institute of Translational and Cognitive Neuroscience (INCyT), INECO Foundation, Favaloro University, Pacheco de Melo 1860, 1126, Buenos Aires, Argentina. .,National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina. .,UDP-INECO Foundation Core on Neuroscience (UIFCoN), Diego Portales University, Santiago, Chile. .,Grupo de Investigación Cerebro Y Cognición Social, Bogotá, Colombia.
| | - Adolfo M García
- Laboratory of Experimental Psychology and Neuroscience (LPEN), Institute of Translational and Cognitive Neuroscience (INCyT), INECO Foundation, Favaloro University, Pacheco de Melo 1860, 1126, Buenos Aires, Argentina.,National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina.,UDP-INECO Foundation Core on Neuroscience (UIFCoN), Diego Portales University, Santiago, Chile.,Faculty of Elementary and Special Education (FEEyE), National University of Cuyo (UNCuyo), Mendoza, Argentina
| | - Agustín Ibanez
- National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina. .,Institute of Translational and Cognitive Neuroscience (INCyT), INECO Foundation, Favaloro University, Buenos Aires, Argentina. .,Universidad Autónoma Del Caribe, Barranquilla, Colombia. .,Laboratory of Neuroscience, Adolfo Ibáñez University, Santiago, Chile. .,Australian Research Council (ARC) Centre of Excellence in Cognition and Its Disorders, Sydney, Australia.
| |
Collapse
|