1
|
Zhang Q, Ding Y, Zhang Y, Li Q, Shi S, Liu Y, Chen S, Wu Q, Xu X, Wu F, Cheng X, Niu Q. Early cortical alterations and neuropsychological mechanisms in amyotrophic lateral sclerosis. Neuroimage Clin 2025; 47:103809. [PMID: 40449058 PMCID: PMC12166458 DOI: 10.1016/j.nicl.2025.103809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 05/22/2025] [Accepted: 05/25/2025] [Indexed: 06/02/2025]
Abstract
OBJECTIVE This study investigates the characteristics of cortical structural and functional alterations in amyotrophic lateral sclerosis (ALS) patients and their modulation of emotional and cognitive functions, as well as to discuss their diagnostic value in early-stage ALS. METHODS Fifty-nine ALS patients (28 in ALS 1 and 31 in ALS 2, categorized using King's College Staging) and 31 healthy controls were evaluated using multiparametric MRI, motor and neuropsychological assessments, and serum neurofilament light chain (NfL) levels. Mediation analyses were performed to examine how cortical alterations influence the relationship between emotional and cognitive functions. Support vector machine (SVM) classification models were constructed to assess the diagnostic utility of differential cortical parameters. RESULTS ALS 1 patients exhibited increased cortical thickness (CT) and functional activity in the cingulate and frontotemporal regions, correlating with neuropsychological performance and NfL levels. Mediation analysis revealed that perigenual and frontotemporal functional activity significantly modulated the relationship between depressive symptoms and cognitive function. SVM classification showed that the combined altered regions with Amplitude of Low Frequency Fluctuations (ALFF) model achieved slightly better performance (AUC = 0.853, 95 %CI: 0.687-1.000, p < 0.001) compared to CT (AUC = 0.779, 95 %CI: 0.587-0.972, p < 0.001), although both models showed limited efficacy in differentiating between ALS 1 and ALS 2 groups. CONCLUSIONS Cortical structural and functional alterations in ALS mediate the impact of depression on cognitive function, offering insights into the neuropsychological mechanisms of the disease and potential biomarkers for early-stage diagnosis.
Collapse
Affiliation(s)
- Qianqian Zhang
- Department of Rare Diseases, The First Affiliated Hospital with Nanjing Medical University, Nanjing Medical University, No. 300, Guangzhou Road, Nanjing, China
| | - Yu Ding
- Department of Rare Diseases, The First Affiliated Hospital with Nanjing Medical University, Nanjing Medical University, No. 300, Guangzhou Road, Nanjing, China
| | - Yu Zhang
- Department of Rare Diseases, The First Affiliated Hospital with Nanjing Medical University, Nanjing Medical University, No. 300, Guangzhou Road, Nanjing, China
| | - Qingyang Li
- Department of Rare Diseases, The First Affiliated Hospital with Nanjing Medical University, Nanjing Medical University, No. 300, Guangzhou Road, Nanjing, China
| | - Shiyu Shi
- Department of Rare Diseases, The First Affiliated Hospital with Nanjing Medical University, Nanjing Medical University, No. 300, Guangzhou Road, Nanjing, China
| | - Yaxi Liu
- Department of Rare Diseases, The First Affiliated Hospital with Nanjing Medical University, Nanjing Medical University, No. 300, Guangzhou Road, Nanjing, China
| | - Sijie Chen
- Department of Radiology, The First Affiliated Hospital with Nanjing Medical University, Nanjing Medical University, No. 300, Guangzhou Road, Nanjing, China
| | - Qian Wu
- Department of Radiology, The First Affiliated Hospital with Nanjing Medical University, Nanjing Medical University, No. 300, Guangzhou Road, Nanjing, China
| | - Xiaoquan Xu
- Department of Radiology, The First Affiliated Hospital with Nanjing Medical University, Nanjing Medical University, No. 300, Guangzhou Road, Nanjing, China
| | - Feiyun Wu
- Department of Radiology, The First Affiliated Hospital with Nanjing Medical University, Nanjing Medical University, No. 300, Guangzhou Road, Nanjing, China
| | - Xi Cheng
- Department of Rare Diseases, The First Affiliated Hospital with Nanjing Medical University, Nanjing Medical University, No. 300, Guangzhou Road, Nanjing, China.
| | - Qi Niu
- Department of Rare Diseases, The First Affiliated Hospital with Nanjing Medical University, Nanjing Medical University, No. 300, Guangzhou Road, Nanjing, China.
| |
Collapse
|
2
|
Kleinerova J, Querin G, Pradat PF, Siah WF, Bede P. New developments in imaging in ALS. J Neurol 2025; 272:392. [PMID: 40353906 PMCID: PMC12069492 DOI: 10.1007/s00415-025-13143-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2025] [Revised: 04/30/2025] [Accepted: 05/05/2025] [Indexed: 05/14/2025]
Abstract
Neuroimaging in ALS has contributed considerable academic insights in recent years demonstrating genotype-specific topological changes decades before phenoconversion and characterising longitudinal propagation patterns in specific phenotypes. It has elucidated the radiological underpinnings of specific clinical phenomena such as pseudobulbar affect, apathy, behavioural change, spasticity, and language deficits. Academic concepts such as sexual dimorphism, motor reserve, cognitive reserve, adaptive changes, connectivity-based propagation, pathological stages, and compensatory mechanisms have also been evaluated by imaging. The underpinnings of extra-motor manifestations such as cerebellar, sensory, extrapyramidal and cognitive symptoms have been studied by purpose-designed imaging protocols. Clustering approaches have been implemented to uncover radiologically distinct disease subtypes and machine-learning models have been piloted to accurately classify individual patients into relevant diagnostic, phenotypic, and prognostic categories. Prediction models have been developed for survival in symptomatic patients and phenoconversion in asymptomatic mutation carriers. A range of novel imaging modalities have been implemented and 7 Tesla MRI platforms are increasingly being used in ALS studies. Non-ALS MND conditions, such as PLS, SBMA, and SMA, are now also being increasingly studied by quantitative neuroimaging approaches. A unifying theme of recent imaging papers is the departure from describing focal brain changes to focusing on dynamic structural and functional connectivity alterations. Progressive cortico-cortical, cortico-basal, cortico-cerebellar, cortico-bulbar, and cortico-spinal disconnection has been consistently demonstrated by recent studies and recognised as the primary driver of clinical decline. These studies have led the reconceptualisation of ALS as a "network" or "circuitry disease".
Collapse
Affiliation(s)
- Jana Kleinerova
- Computational Neuroimaging Group (CNG), School of Medicine, Trinity College Dublin, Room 5.43, Pearse Street, Dublin 2, Dublin, Ireland
| | - Giorgia Querin
- Biomedical Imaging Laboratory, CNRS, INSERM, Sorbonne University, Paris, France
- Department of Neurology, Pitié-Salpêtrière University Hospital, Paris, France
| | - Pierre-Francois Pradat
- Biomedical Imaging Laboratory, CNRS, INSERM, Sorbonne University, Paris, France
- Department of Neurology, Pitié-Salpêtrière University Hospital, Paris, France
| | - We Fong Siah
- Computational Neuroimaging Group (CNG), School of Medicine, Trinity College Dublin, Room 5.43, Pearse Street, Dublin 2, Dublin, Ireland
| | - Peter Bede
- Computational Neuroimaging Group (CNG), School of Medicine, Trinity College Dublin, Room 5.43, Pearse Street, Dublin 2, Dublin, Ireland.
- Department of Neurology, St James's Hospital, Dublin, Ireland.
| |
Collapse
|
3
|
Castelnovo V, Canu E, Aiello EN, Curti B, Sibilla E, Torre S, Freri F, Tripodi C, Lumaca L, Spinelli EG, Schito P, Russo T, Falzone Y, Verde F, Silani V, Ticozzi N, Sturm VE, Rankin KP, Gorno-Tempini ML, Poletti B, Filippi M, Agosta F. How to detect affect recognition alterations in amyotrophic lateral sclerosis. J Neurol 2024; 271:7208-7221. [PMID: 39287680 DOI: 10.1007/s00415-024-12686-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/02/2024] [Accepted: 09/05/2024] [Indexed: 09/19/2024]
Abstract
OBJECTIVE To define the clinical usability of an affect recognition (AR) battery-the Comprehensive Affect Testing System (CATS)-in an Italian sample of patients with amyotrophic lateral sclerosis (ALS). METHODS 96 ALS patients and 116 healthy controls underwent a neuropsychological assessment including the AR subtests of the abbreviated version of the CATS (CATS-A). CATS-A AR subtests and their global score (CATS-A AR Quotient, ARQ) were assessed for their factorial, convergent, and divergent validity. The diagnostic accuracy of each CATS-A AR measure in discriminating ALS patients with cognitive impairment from cognitively normal controls and patients was tested via receiver-operating characteristics analyses. Optimal cut-offs were identified for CATS-A AR measures yielding an acceptable AUC value (≥ .70). The ability of CATS-A ARQ to discriminate between different ALS cognitive phenotypes was also tested. Gray-matter (GM) volumes of controls, ALS with normal (ALS-nARQ), and impaired ARQ score (ALS-iARQ) were compared using ANCOVA models. RESULTS CATS-A AR subtests and ARQ proved to have moderate-to-strong convergent and divergent validity. Almost all considered CATS-A measures reached acceptable accuracy and diagnostic power (AUC range = .79-.83). ARQ showed to be the best diagnostic measure (sensitivity = .80; specificity = .75) and discriminated between different ALS cognitive phenotypes. Compared to ALS-nARQ, ALS-iARQ patients showed reduced GM volumes in the right anterior cingulate, right middle frontal, left inferior temporal, and superior occipital regions. CONCLUSIONS The AR subtests of the CATS-A, and in particular the CATS-A ARQ, are sound measures of AR in ALS. AR deficits may be a valid marker of frontotemporal involvement in these patients.
Collapse
Affiliation(s)
- Veronica Castelnovo
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elisa Canu
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Edoardo Nicolò Aiello
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Beatrice Curti
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Elisa Sibilla
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Silvia Torre
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Fabiola Freri
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy
| | - Chiara Tripodi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy
| | - Laura Lumaca
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy
| | - Edoardo Gioele Spinelli
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Paride Schito
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Tommaso Russo
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Yuri Falzone
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Federico Verde
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
- Department of Pathophysiology and Transplantation, "Dino Ferrari" Center, Università degli Studi Di Milano, Milan, Italy
| | - Vincenzo Silani
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
- Department of Pathophysiology and Transplantation, "Dino Ferrari" Center, Università degli Studi Di Milano, Milan, Italy
| | - Nicola Ticozzi
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
- Department of Pathophysiology and Transplantation, "Dino Ferrari" Center, Università degli Studi Di Milano, Milan, Italy
| | - Virginia E Sturm
- Memory and Aging Center, University of California, San Francisco, CA, USA
| | - Katherine P Rankin
- Memory and Aging Center, University of California, San Francisco, CA, USA
| | - Maria Luisa Gorno-Tempini
- Memory and Aging Center, University of California, San Francisco, CA, USA
- Global Brain Health Institute, University of California, San Francisco, CA, USA
| | - Barbara Poletti
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
- Department of Oncology and Hemato-Oncology, Università degli Studi Di Milano, Milan, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
- Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Federica Agosta
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy.
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Vita-Salute San Raffaele University, Milan, Italy.
| |
Collapse
|
4
|
Rabini G, Meli C, Prodomi G, Speranza C, Anzini F, Funghi G, Pierotti E, Saviola F, Fumagalli GG, Di Giacopo R, Malaguti MC, Jovicich J, Dodich A, Papagno C, Turella L. Tango and physiotherapy interventions in Parkinson's disease: a pilot study on efficacy outcomes on motor and cognitive skills. Sci Rep 2024; 14:11855. [PMID: 38789492 PMCID: PMC11126665 DOI: 10.1038/s41598-024-62786-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024] Open
Abstract
Pharmacological treatments in Parkinson's disease (PD), albeit effective in alleviating many motor symptoms, have limited effects in non-motor signatures as cognitive impairment, as well as in other aspects included postural instability. Consequently, complementary interventions are nowadays a prerogative of clinical practice managing PD symptomatology. In this pilot longitudinal study, we recruited twenty-four PD patients participating in one of two interventions: adapted Argentine Tango or group-based physiotherapy. Participants underwent a motor and neuropsychological evaluation before and after four months of activities, carried out twice a week. We found a general stabilization of motor and cognitive abilities, with significant improvements in several motor skills, mainly pertaining to static and dynamic balance, similarly in both groups. At cognitive level, we measured a significant improvement in both groups in the Action Naming task. Interestingly, only PD patients in the Tango group improved their performance in the test measuring facial emotion recognition. These findings highlight the crucial role that physical activities have in the stabilization and slowdown of disease's progression in PD. They further highlight the beneficial effects of a group-based physical intervention, which, especially in the case of Tango, could lead to behavioral ameliorations in domains other than the motor, such as emotion recognition.
Collapse
Affiliation(s)
- Giuseppe Rabini
- Center for Mind/Brain Sciences-CIMeC, University of Trento, Corso Bettini 31, 38068, Rovereto, TN, Italy.
| | - Claudia Meli
- Center for Mind/Brain Sciences-CIMeC, University of Trento, Corso Bettini 31, 38068, Rovereto, TN, Italy
| | - Giulia Prodomi
- Center for Mind/Brain Sciences-CIMeC, University of Trento, Corso Bettini 31, 38068, Rovereto, TN, Italy
| | - Chiara Speranza
- Center for Mind/Brain Sciences-CIMeC, University of Trento, Corso Bettini 31, 38068, Rovereto, TN, Italy
| | - Federica Anzini
- Center for Mind/Brain Sciences-CIMeC, University of Trento, Corso Bettini 31, 38068, Rovereto, TN, Italy
| | - Giulia Funghi
- Center for Mind/Brain Sciences-CIMeC, University of Trento, Corso Bettini 31, 38068, Rovereto, TN, Italy
| | - Enrica Pierotti
- Center for Mind/Brain Sciences-CIMeC, University of Trento, Corso Bettini 31, 38068, Rovereto, TN, Italy
| | - Francesca Saviola
- Center for Mind/Brain Sciences-CIMeC, University of Trento, Corso Bettini 31, 38068, Rovereto, TN, Italy
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Giorgio Giulio Fumagalli
- Center for Mind/Brain Sciences-CIMeC, University of Trento, Corso Bettini 31, 38068, Rovereto, TN, Italy
| | - Raffaella Di Giacopo
- Neurology Unit, Rovereto Hospital, Azienda Provinciale per i Servizi Sanitari (APSS) di Trento, Trento, Italy
| | - Maria Chiara Malaguti
- Neurology Unit, Rovereto Hospital, Azienda Provinciale per i Servizi Sanitari (APSS) di Trento, Trento, Italy
| | - Jorge Jovicich
- Center for Mind/Brain Sciences-CIMeC, University of Trento, Corso Bettini 31, 38068, Rovereto, TN, Italy
| | - Alessandra Dodich
- Center for Mind/Brain Sciences-CIMeC, University of Trento, Corso Bettini 31, 38068, Rovereto, TN, Italy
| | - Costanza Papagno
- Center for Mind/Brain Sciences-CIMeC, University of Trento, Corso Bettini 31, 38068, Rovereto, TN, Italy
| | - Luca Turella
- Center for Mind/Brain Sciences-CIMeC, University of Trento, Corso Bettini 31, 38068, Rovereto, TN, Italy
| |
Collapse
|
5
|
Katerelos A, Alexopoulos P, Economou P, Polychronopoulos P, Chroni E. Cognitive function in amyotrophic lateral sclerosis: a cross-sectional and prospective pragmatic clinical study with review of the literature. Neurol Sci 2024; 45:2075-2085. [PMID: 38105306 PMCID: PMC11021277 DOI: 10.1007/s10072-023-07262-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 12/08/2023] [Indexed: 12/19/2023]
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) can present with either bulbar or spinal symptoms, and in some cases, both types of symptoms may be present. In addition, cognitive impairment has been observed in ALS. The study aimed to evaluate the frontal and general cognitive performance in ALS not only cross-sectionally but also longitudinally. METHODS AND MATERIALS The Frontal Assessment Battery (FAB) and the Montreal Cognitive Assessment (MoCA) were employed to assess cognitive function in 52 adults with ALS and 52 cognitively healthy individuals. The statistical analyses encompassed the Pearson Chi square test, the Skillings-Mack test, the Spearman's rank correlation coefficient, and the Proportional Odds Logistic Regression Model (POLR). RESULTS Cross-sectionally, lower cognitive performance was associated with ALS diagnosis, older age, and motor functional decline. The cognitive impairment of individuals with bulbar and spinal-bulbar symptoms showed faster deterioration compared to those with spinal symptoms. The spinal subgroup consistently performed worst in delayed recall and attention, while the spinal-bulbar and bulbar subgroups exhibited inferior scores in delayed recall, attention, visuospatial skills, orientation, and verbal fluency. CONCLUSION The incorporation of cognitive screening in the diagnostic workup of ALS may be beneficial, as early detection can enhance symptom management and improve the quality of life for both individuals with ALS and their care partners.
Collapse
Affiliation(s)
- Adamantios Katerelos
- Department of Medicine, School of Health Sciences, University of Patras, Patras, Greece.
- Department of Neurology, Patras University General Hospital, Rio, Greece.
| | - Panagiotis Alexopoulos
- Department of Medicine, School of Health Sciences, University of Patras, Patras, Greece
- Mental Health Services, Patras University General Hospital, Rio, Greece
- Medical School, Trinity College Dublin, Global Brain Health Institute, The University of Dublin, Dublin, Republic of Ireland
- Faculty of Medicine, Klinikum Rechts Der Isar, Department of Psychiatry and Psychotherapy, Technical University of Munich, Munich, Germany
- Patras Dementia Day Care Centre, Patras, Greece
| | - Polychronis Economou
- Department of Civil Engineering (Statistics), School of Engineering, University of Patras, Patras, Greece
| | - Panagiotis Polychronopoulos
- Department of Medicine, School of Health Sciences, University of Patras, Patras, Greece
- Department of Neurology, Patras University General Hospital, Rio, Greece
| | - Elisabeth Chroni
- Department of Medicine, School of Health Sciences, University of Patras, Patras, Greece
- Department of Neurology, Patras University General Hospital, Rio, Greece
| |
Collapse
|
6
|
Spinelli EG, Ghirelli A, Basaia S, Canu E, Castelnovo V, Cividini C, Russo T, Schito P, Falzone YM, Riva N, Filippi M, Agosta F. Structural and Functional Brain Network Connectivity at Different King's Stages in Patients With Amyotrophic Lateral Sclerosis. Neurology 2024; 102:e207946. [PMID: 38165325 PMCID: PMC10962907 DOI: 10.1212/wnl.0000000000207946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/27/2023] [Indexed: 01/03/2024] Open
Abstract
BACKGROUND AND OBJECTIVES There is currently no validated disease-stage biomarker for amyotrophic lateral sclerosis (ALS). The identification of quantitative and reproducible markers of disease stratification in ALS is fundamental for study design definition and inclusion of homogenous patient cohorts into clinical trials. Our aim was to assess the rearrangements of structural and functional brain connectivity underlying the clinical stages of ALS, to suggest objective, reproducible measures provided by MRI connectomics mirroring disease staging. METHODS In this observational study, patients with ALS and healthy controls (HCs) underwent clinical evaluation and brain MRI on a 3T scanner. Patients were classified into 4 groups, according to the King's staging system. Structural and functional brain connectivity matrices were obtained using diffusion tensor and resting-state fMRI data, respectively. Whole-brain network-based statistics (NBS) analysis and comparisons of intraregional and inter-regional connectivity values using analysis of covariance models were performed between groups. Correlations between MRI and clinical/cognitive measures were tested using Pearson coefficient. RESULTS One hundred four patients with ALS and 61 age-matched and sex-matched HCs were included. NBS and regional connectivity analyses demonstrated a progressive decrease of intranetwork and internetwork structural connectivity of sensorimotor regions at increasing ALS stages in our cohort, compared with HCs. By contrast, functional connectivity showed divergent patterns between King's stages 3 (increase in basal ganglia and temporal circuits [p = 0.04 and p = 0.05, respectively]) and 4 (frontotemporal decrease [p = 0.03]), suggesting a complex interplay between opposite phenomena in late stages of the disease. Intraregional sensorimotor structural connectivity was correlated with ALS Functional Rating Scale-revised (ALSFRS-r) score (r = 0.31, p < 0.001) and upper motor neuron burden (r = -0.25, p = 0.01). Inter-regional frontal-sensorimotor structural connectivity was also correlated with ALSFRS-r (r = 0.24, p = 0.02). No correlations with cognitive measures were found. DISCUSSION MRI of the brain allows to demonstrate and quantify increasing disruption of structural connectivity involving the sensorimotor networks in ALS, mirroring disease stages. Frontotemporal functional disconnection seems to characterize only advanced disease phases. Our findings support the utility of MRI connectomics to stratify patients and stage brain pathology in ALS in a reproducible way, which may mirror clinical progression.
Collapse
Affiliation(s)
- Edoardo G Spinelli
- From the Neuroimaging Research Unit (E.G.S., A.G., S.B., E.C., V.C., C.C., M.F., F.A.), Division of Neuroscience, and Neurology Unit (E.G.S., A.G., T.R., P.S., Y.M.F., M.F., F.A.), IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (E.G.S., A.G., T.R., M.F., F.A.); Neurorehabilitation Unit (N.R., M.F.), and Neurophysiology Service (M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alma Ghirelli
- From the Neuroimaging Research Unit (E.G.S., A.G., S.B., E.C., V.C., C.C., M.F., F.A.), Division of Neuroscience, and Neurology Unit (E.G.S., A.G., T.R., P.S., Y.M.F., M.F., F.A.), IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (E.G.S., A.G., T.R., M.F., F.A.); Neurorehabilitation Unit (N.R., M.F.), and Neurophysiology Service (M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Silvia Basaia
- From the Neuroimaging Research Unit (E.G.S., A.G., S.B., E.C., V.C., C.C., M.F., F.A.), Division of Neuroscience, and Neurology Unit (E.G.S., A.G., T.R., P.S., Y.M.F., M.F., F.A.), IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (E.G.S., A.G., T.R., M.F., F.A.); Neurorehabilitation Unit (N.R., M.F.), and Neurophysiology Service (M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elisa Canu
- From the Neuroimaging Research Unit (E.G.S., A.G., S.B., E.C., V.C., C.C., M.F., F.A.), Division of Neuroscience, and Neurology Unit (E.G.S., A.G., T.R., P.S., Y.M.F., M.F., F.A.), IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (E.G.S., A.G., T.R., M.F., F.A.); Neurorehabilitation Unit (N.R., M.F.), and Neurophysiology Service (M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Veronica Castelnovo
- From the Neuroimaging Research Unit (E.G.S., A.G., S.B., E.C., V.C., C.C., M.F., F.A.), Division of Neuroscience, and Neurology Unit (E.G.S., A.G., T.R., P.S., Y.M.F., M.F., F.A.), IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (E.G.S., A.G., T.R., M.F., F.A.); Neurorehabilitation Unit (N.R., M.F.), and Neurophysiology Service (M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Camilla Cividini
- From the Neuroimaging Research Unit (E.G.S., A.G., S.B., E.C., V.C., C.C., M.F., F.A.), Division of Neuroscience, and Neurology Unit (E.G.S., A.G., T.R., P.S., Y.M.F., M.F., F.A.), IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (E.G.S., A.G., T.R., M.F., F.A.); Neurorehabilitation Unit (N.R., M.F.), and Neurophysiology Service (M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Tommaso Russo
- From the Neuroimaging Research Unit (E.G.S., A.G., S.B., E.C., V.C., C.C., M.F., F.A.), Division of Neuroscience, and Neurology Unit (E.G.S., A.G., T.R., P.S., Y.M.F., M.F., F.A.), IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (E.G.S., A.G., T.R., M.F., F.A.); Neurorehabilitation Unit (N.R., M.F.), and Neurophysiology Service (M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Paride Schito
- From the Neuroimaging Research Unit (E.G.S., A.G., S.B., E.C., V.C., C.C., M.F., F.A.), Division of Neuroscience, and Neurology Unit (E.G.S., A.G., T.R., P.S., Y.M.F., M.F., F.A.), IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (E.G.S., A.G., T.R., M.F., F.A.); Neurorehabilitation Unit (N.R., M.F.), and Neurophysiology Service (M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Yuri M Falzone
- From the Neuroimaging Research Unit (E.G.S., A.G., S.B., E.C., V.C., C.C., M.F., F.A.), Division of Neuroscience, and Neurology Unit (E.G.S., A.G., T.R., P.S., Y.M.F., M.F., F.A.), IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (E.G.S., A.G., T.R., M.F., F.A.); Neurorehabilitation Unit (N.R., M.F.), and Neurophysiology Service (M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Nilo Riva
- From the Neuroimaging Research Unit (E.G.S., A.G., S.B., E.C., V.C., C.C., M.F., F.A.), Division of Neuroscience, and Neurology Unit (E.G.S., A.G., T.R., P.S., Y.M.F., M.F., F.A.), IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (E.G.S., A.G., T.R., M.F., F.A.); Neurorehabilitation Unit (N.R., M.F.), and Neurophysiology Service (M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Massimo Filippi
- From the Neuroimaging Research Unit (E.G.S., A.G., S.B., E.C., V.C., C.C., M.F., F.A.), Division of Neuroscience, and Neurology Unit (E.G.S., A.G., T.R., P.S., Y.M.F., M.F., F.A.), IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (E.G.S., A.G., T.R., M.F., F.A.); Neurorehabilitation Unit (N.R., M.F.), and Neurophysiology Service (M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Federica Agosta
- From the Neuroimaging Research Unit (E.G.S., A.G., S.B., E.C., V.C., C.C., M.F., F.A.), Division of Neuroscience, and Neurology Unit (E.G.S., A.G., T.R., P.S., Y.M.F., M.F., F.A.), IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (E.G.S., A.G., T.R., M.F., F.A.); Neurorehabilitation Unit (N.R., M.F.), and Neurophysiology Service (M.F.), IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
7
|
Tan EL, Tahedl M, Lope J, Hengeveld JC, Doherty MA, McLaughlin RL, Hardiman O, Chang KM, Finegan E, Bede P. Language deficits in primary lateral sclerosis: cortical atrophy, white matter degeneration and functional disconnection between cerebral regions. J Neurol 2024; 271:431-445. [PMID: 37759084 DOI: 10.1007/s00415-023-11994-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023]
Abstract
BACKGROUND Primary lateral sclerosis (PLS) is traditionally regarded as a pure upper motor neuron disorder, but recent cases series have highlighted cognitive deficits in executive and language domains. METHODS A single-centre, prospective neuroimaging study was conducted with comprehensive clinical and genetic profiling. The structural and functional integrity of language-associated brain regions and networks were systematically evaluated in 40 patients with PLS in comparison to 111 healthy controls. The structural integrity of the arcuate fascicle, frontal aslant tract, inferior occipito-frontal fascicle, inferior longitudinal fascicle, superior longitudinal fascicle and uncinate fascicle was evaluated. Functional connectivity between the supplementary motor region and the inferior frontal gyrus and connectivity between Wernicke's and Broca's areas was also assessed. RESULTS Cortical thickness reductions were observed in both Wernicke's and Broca's areas. Fractional anisotropy reduction was noted in the aslant tract and increased radical diffusivity (RD) identified in the aslant tract, arcuate fascicle and superior longitudinal fascicle in the left hemisphere. Functional connectivity was reduced along the aslant track, i.e. between the supplementary motor region and the inferior frontal gyrus, but unaffected between Wernicke's and Broca's areas. Cortical thickness alterations, structural and functional connectivity changes were also noted in the right hemisphere. CONCLUSIONS Disease-burden in PLS is not confined to motor regions, but there is also a marked involvement of language-associated tracts, networks and cortical regions. Given the considerably longer survival in PLS compared to ALS, the impact of language impairment on the management of PLS needs to be carefully considered.
Collapse
Affiliation(s)
- Ee Ling Tan
- Room 5.43, Computational Neuroimaging Group (CNG), School of Medicine, Trinity College Dublin, Pearse Street, Dublin 2, Ireland
| | - Marlene Tahedl
- Room 5.43, Computational Neuroimaging Group (CNG), School of Medicine, Trinity College Dublin, Pearse Street, Dublin 2, Ireland
| | - Jasmin Lope
- Room 5.43, Computational Neuroimaging Group (CNG), School of Medicine, Trinity College Dublin, Pearse Street, Dublin 2, Ireland
| | | | - Mark A Doherty
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | | | - Orla Hardiman
- Room 5.43, Computational Neuroimaging Group (CNG), School of Medicine, Trinity College Dublin, Pearse Street, Dublin 2, Ireland
| | - Kai Ming Chang
- Room 5.43, Computational Neuroimaging Group (CNG), School of Medicine, Trinity College Dublin, Pearse Street, Dublin 2, Ireland
| | - Eoin Finegan
- Room 5.43, Computational Neuroimaging Group (CNG), School of Medicine, Trinity College Dublin, Pearse Street, Dublin 2, Ireland
| | - Peter Bede
- Room 5.43, Computational Neuroimaging Group (CNG), School of Medicine, Trinity College Dublin, Pearse Street, Dublin 2, Ireland.
- Department of Neurology, St James's Hospital, Dublin, Ireland.
| |
Collapse
|
8
|
Abrahams S. Neuropsychological impairment in amyotrophic lateral sclerosis-frontotemporal spectrum disorder. Nat Rev Neurol 2023; 19:655-667. [PMID: 37828358 DOI: 10.1038/s41582-023-00878-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2023] [Indexed: 10/14/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease with a rapid course, characterized by motor neuron dysfunction, leading to progressive disability and death. This Review, which is aimed at neurologists, psychologists and other health professionals who follow evidence-based practice relating to ALS and frontotemporal dementia (FTD), examines the neuropsychological evidence that has driven the reconceptualization of ALS as a spectrum disorder ranging from a pure motor phenotype to ALS-FTD. It focuses on changes in cognition and behaviour, which vary in severity across the spectrum: around 50% individuals with ALS are within the normal range, 15% meet the criteria for ALS-FTD, and the remaining 35% are in the mid-spectrum range with milder and more focal impairments. The cognitive impairments include deficits in verbal fluency, executive functions, social cognition and language, and apathy is the most prevalent behavioural change. The pattern and severity of cognitive and behavioural change predicts underlying regional cerebral dysfunction from brain imaging and post-mortem pathology. Our increased recognition of cognition and behaviour as part of the ALS phenotype has led to the development and standardization of assessment tools, which have been incorporated into research and clinical care. Measuring change over the course of the disease is vital for clinical trials, and neuropsychology is proving to be a biomarker for the earliest preclinical changes.
Collapse
Affiliation(s)
- Sharon Abrahams
- Human Cognitive Neuroscience, Department of Psychology, School of Philosophy, Psychology and Language Sciences, University of Edinburgh, Edinburgh, UK.
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
9
|
Chen H, Hu Z, Ke Z, Xu Y, Bai F, Liu Z. Aberrant Multimodal Connectivity Pattern Involved in Default Mode Network and Limbic Network in Amyotrophic Lateral Sclerosis. Brain Sci 2023; 13:brainsci13050803. [PMID: 37239275 DOI: 10.3390/brainsci13050803] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/07/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder that progressively affects bulbar and limb function. Despite increasing recognition of the disease as a multinetwork disorder characterized by aberrant structural and functional connectivity, its integrity agreement and its predictive value for disease diagnosis remain to be fully elucidated. In this study, we recruited 37 ALS patients and 25 healthy controls (HCs). High-resolution 3D T1-weighted imaging and resting-state functional magnetic resonance imaging were, respectively, applied to construct multimodal connectomes. Following strict neuroimaging selection criteria, 18 ALS and 25 HC patients were included. Network-based statistic (NBS) and the coupling of grey matter structural-functional connectivity (SC-FC coupling) were performed. Finally, the support vector machine (SVM) method was used to distinguish the ALS patients from HCs. Results showed that, compared with HCs, ALS individuals exhibited a significantly increased functional network, predominantly encompassing the connections between the default mode network (DMN) and the frontoparietal network (FPN). The increased structural connections predominantly involved the inter-regional connections between the limbic network (LN) and the DMN, the salience/ventral attention network (SVAN) and FPN, while the decreased structural connections mainly involved connections between the LN and the subcortical network (SN). We also found increased SC-FC coupling in DMN-related brain regions and decoupling in LN-related brain regions in ALS, which could differentiate ALS from HCs with promising capacity based on SVM. Our findings highlight that DMN and LN may play a vital role in the pathophysiological mechanism of ALS. Additionally, SC-FC coupling could be regarded as a promising neuroimaging biomarker for ALS and shows important clinical potential for early recognition of ALS individuals.
Collapse
Affiliation(s)
- Haifeng Chen
- Department of Neurology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
- Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210008, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210008, China
- Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing 210008, China
- Nanjing Neuropsychiatry Clinic Medical Center, Nanjing 210008, China
| | - Zheqi Hu
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210008, China
- Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing 210008, China
- Nanjing Neuropsychiatry Clinic Medical Center, Nanjing 210008, China
- Medical School of Nanjing University, Nanjing University, Nanjing 210093, China
| | - Zhihong Ke
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210008, China
- Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing 210008, China
- Nanjing Neuropsychiatry Clinic Medical Center, Nanjing 210008, China
- Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing 211166, China
| | - Yun Xu
- Department of Neurology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
- Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210008, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210008, China
- Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing 210008, China
- Nanjing Neuropsychiatry Clinic Medical Center, Nanjing 210008, China
| | - Feng Bai
- Department of Neurology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
- Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210008, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210008, China
- Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing 210008, China
- Nanjing Neuropsychiatry Clinic Medical Center, Nanjing 210008, China
| | - Zhuo Liu
- Department of Neurology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
- Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210008, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210008, China
- Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing 210008, China
- Nanjing Neuropsychiatry Clinic Medical Center, Nanjing 210008, China
| |
Collapse
|
10
|
Calvo A, Canosa A, Moglia C, Manera U, Grassano M, Vasta R, Palumbo F, Cugnasco P, Gallone S, Brunetti M, De Marchi F, Arena V, Pagani M, Dalgard C, Scholz SW, Chia R, Corrado L, Dalfonso S, Mazzini L, Traynor BJ, Chio A. Clinical and Metabolic Signature of UNC13A rs12608932 Variant in Amyotrophic Lateral Sclerosis. Neurol Genet 2022; 8:e200033. [PMID: 36313067 PMCID: PMC9608390 DOI: 10.1212/nxg.0000000000200033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/29/2022] [Indexed: 11/07/2022]
Abstract
Background and Objectives To characterize the clinical and cognitive behavioral phenotype and brain 18F-2-fluoro-2-deoxy-d-glucose-PET (18F-FDG-PET) metabolism of patients with amyotrophic lateral sclerosis (ALS) carrying the rs12608932 variant of the UNC13A gene. Methods The study population included 1,409 patients with ALS without C9orf72, SOD1, TARDBP, and FUS mutations identified through a prospective epidemiologic ALS register. Control participants included 1,012 geographically matched, age-matched, and sex-matched participants. Clinical and cognitive differences between patients carrying the C/C rs12608932 genotype and those carrying the A/A + A/C genotype were assessed. A subset of patients underwent 18F-FDG-PET. Results The C/C genotype was associated with an increased risk of ALS (odds ratio: 1.54, 95% confidence interval 1.18–2.01, p = 0.001). Patients with the C/C genotype were older, had more frequent bulbar onset, and manifested a higher rate of weight loss. In addition, they showed significantly reduced performance in the letter fluency test, fluency domain of Edinburgh Cognitive and Behavioural ALS Screen (ECAS) and story-based empathy task (reflecting social cognition). Patients with the C/C genotype had a shorter survival (median survival time, C/C 2.25 years, interquartile range [IQR] 1.33–3.92; A/A + C/C: 2.90 years, IQR 1.74–5.41; p = 0.0001). In Cox multivariable analysis, C/C genotype resulted to be an independent prognostic factor. Finally, patients with a C/C genotype had a specific pattern of hypometabolism on brain 18F-FDG-PET extending to frontal and precentral areas of the right hemisphere. Discussion C/C rs12608932 genotype of UNC13A is associated with a specific motor and cognitive/behavioral phenotype, which reflects on 18F-FDG-PET findings. Our observations highlight the importance of adding the rs12608932 variant in UNC13A to the ALS genetic panel to refine the individual prognostic prediction and reduce heterogeneity in clinical trials.
Collapse
Affiliation(s)
- Andrea Calvo
- "Rita Levi Montalcini" Department of Neuroscience (A. Calvo, A. Canosa, C.M., U.M., M.G., R.V., F.P., P.C., M.B., A. Chio), University of Torino, Turin, Italy; Neurology 1 (A. Calvo, A. Canosa, C.M., U.M., S.G., A. Chio), Azienda Universitario-Ospedaliera Città della Salute e della Scienza di Torino, Turin, Italy; Neuroscience Institute of Turin (NIT) (A. Calvo, A. Chio), Turin, Italy; Institute of Cognitive Sciences and Technologies (A. Canosa, M.P., A. Chio), C.N.R., Rome, Italy; ALS Center (F.D.M., L.M.), Department of Neurology, Maggiore della Carità Hospital, University of Eastern Piedmont, Novara, Italy; Positron Emission Tomography Centre AFFIDEA-IRMET S.p.A. (V.A.), Turin, Italy; Department of Medical Radiation Physics and Nuclear Medicine (M.P.), Karolinska University Hospital, Stockholm, Sweden; Department of Anatomy (C.D.), Physiology & Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD; The American Genome Center (C.D.), Uniformed Services University of the Health Sciences, Bethesda, MD; Neurodegenerative Diseases Research Unit (S.W.S.), Laboratory of Neurogenetics, National Institute of Neurological Disorders and Stroke, Bethesda, MD; Department of Neurology (S.W.S., B.J.T.), Johns Hopkins University Medical Center, Baltimore, MD; Neuromuscular Diseases Research Section (R.C., B.J.T.), Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD; and Department of Health Sciences (L.C., S.D.D.), University of Eastern Piedmont, Novara, Italy
| | - Antonio Canosa
- "Rita Levi Montalcini" Department of Neuroscience (A. Calvo, A. Canosa, C.M., U.M., M.G., R.V., F.P., P.C., M.B., A. Chio), University of Torino, Turin, Italy; Neurology 1 (A. Calvo, A. Canosa, C.M., U.M., S.G., A. Chio), Azienda Universitario-Ospedaliera Città della Salute e della Scienza di Torino, Turin, Italy; Neuroscience Institute of Turin (NIT) (A. Calvo, A. Chio), Turin, Italy; Institute of Cognitive Sciences and Technologies (A. Canosa, M.P., A. Chio), C.N.R., Rome, Italy; ALS Center (F.D.M., L.M.), Department of Neurology, Maggiore della Carità Hospital, University of Eastern Piedmont, Novara, Italy; Positron Emission Tomography Centre AFFIDEA-IRMET S.p.A. (V.A.), Turin, Italy; Department of Medical Radiation Physics and Nuclear Medicine (M.P.), Karolinska University Hospital, Stockholm, Sweden; Department of Anatomy (C.D.), Physiology & Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD; The American Genome Center (C.D.), Uniformed Services University of the Health Sciences, Bethesda, MD; Neurodegenerative Diseases Research Unit (S.W.S.), Laboratory of Neurogenetics, National Institute of Neurological Disorders and Stroke, Bethesda, MD; Department of Neurology (S.W.S., B.J.T.), Johns Hopkins University Medical Center, Baltimore, MD; Neuromuscular Diseases Research Section (R.C., B.J.T.), Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD; and Department of Health Sciences (L.C., S.D.D.), University of Eastern Piedmont, Novara, Italy
| | - Cristina Moglia
- "Rita Levi Montalcini" Department of Neuroscience (A. Calvo, A. Canosa, C.M., U.M., M.G., R.V., F.P., P.C., M.B., A. Chio), University of Torino, Turin, Italy; Neurology 1 (A. Calvo, A. Canosa, C.M., U.M., S.G., A. Chio), Azienda Universitario-Ospedaliera Città della Salute e della Scienza di Torino, Turin, Italy; Neuroscience Institute of Turin (NIT) (A. Calvo, A. Chio), Turin, Italy; Institute of Cognitive Sciences and Technologies (A. Canosa, M.P., A. Chio), C.N.R., Rome, Italy; ALS Center (F.D.M., L.M.), Department of Neurology, Maggiore della Carità Hospital, University of Eastern Piedmont, Novara, Italy; Positron Emission Tomography Centre AFFIDEA-IRMET S.p.A. (V.A.), Turin, Italy; Department of Medical Radiation Physics and Nuclear Medicine (M.P.), Karolinska University Hospital, Stockholm, Sweden; Department of Anatomy (C.D.), Physiology & Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD; The American Genome Center (C.D.), Uniformed Services University of the Health Sciences, Bethesda, MD; Neurodegenerative Diseases Research Unit (S.W.S.), Laboratory of Neurogenetics, National Institute of Neurological Disorders and Stroke, Bethesda, MD; Department of Neurology (S.W.S., B.J.T.), Johns Hopkins University Medical Center, Baltimore, MD; Neuromuscular Diseases Research Section (R.C., B.J.T.), Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD; and Department of Health Sciences (L.C., S.D.D.), University of Eastern Piedmont, Novara, Italy
| | - Umberto Manera
- "Rita Levi Montalcini" Department of Neuroscience (A. Calvo, A. Canosa, C.M., U.M., M.G., R.V., F.P., P.C., M.B., A. Chio), University of Torino, Turin, Italy; Neurology 1 (A. Calvo, A. Canosa, C.M., U.M., S.G., A. Chio), Azienda Universitario-Ospedaliera Città della Salute e della Scienza di Torino, Turin, Italy; Neuroscience Institute of Turin (NIT) (A. Calvo, A. Chio), Turin, Italy; Institute of Cognitive Sciences and Technologies (A. Canosa, M.P., A. Chio), C.N.R., Rome, Italy; ALS Center (F.D.M., L.M.), Department of Neurology, Maggiore della Carità Hospital, University of Eastern Piedmont, Novara, Italy; Positron Emission Tomography Centre AFFIDEA-IRMET S.p.A. (V.A.), Turin, Italy; Department of Medical Radiation Physics and Nuclear Medicine (M.P.), Karolinska University Hospital, Stockholm, Sweden; Department of Anatomy (C.D.), Physiology & Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD; The American Genome Center (C.D.), Uniformed Services University of the Health Sciences, Bethesda, MD; Neurodegenerative Diseases Research Unit (S.W.S.), Laboratory of Neurogenetics, National Institute of Neurological Disorders and Stroke, Bethesda, MD; Department of Neurology (S.W.S., B.J.T.), Johns Hopkins University Medical Center, Baltimore, MD; Neuromuscular Diseases Research Section (R.C., B.J.T.), Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD; and Department of Health Sciences (L.C., S.D.D.), University of Eastern Piedmont, Novara, Italy
| | - Maurizio Grassano
- "Rita Levi Montalcini" Department of Neuroscience (A. Calvo, A. Canosa, C.M., U.M., M.G., R.V., F.P., P.C., M.B., A. Chio), University of Torino, Turin, Italy; Neurology 1 (A. Calvo, A. Canosa, C.M., U.M., S.G., A. Chio), Azienda Universitario-Ospedaliera Città della Salute e della Scienza di Torino, Turin, Italy; Neuroscience Institute of Turin (NIT) (A. Calvo, A. Chio), Turin, Italy; Institute of Cognitive Sciences and Technologies (A. Canosa, M.P., A. Chio), C.N.R., Rome, Italy; ALS Center (F.D.M., L.M.), Department of Neurology, Maggiore della Carità Hospital, University of Eastern Piedmont, Novara, Italy; Positron Emission Tomography Centre AFFIDEA-IRMET S.p.A. (V.A.), Turin, Italy; Department of Medical Radiation Physics and Nuclear Medicine (M.P.), Karolinska University Hospital, Stockholm, Sweden; Department of Anatomy (C.D.), Physiology & Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD; The American Genome Center (C.D.), Uniformed Services University of the Health Sciences, Bethesda, MD; Neurodegenerative Diseases Research Unit (S.W.S.), Laboratory of Neurogenetics, National Institute of Neurological Disorders and Stroke, Bethesda, MD; Department of Neurology (S.W.S., B.J.T.), Johns Hopkins University Medical Center, Baltimore, MD; Neuromuscular Diseases Research Section (R.C., B.J.T.), Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD; and Department of Health Sciences (L.C., S.D.D.), University of Eastern Piedmont, Novara, Italy
| | - Rosario Vasta
- "Rita Levi Montalcini" Department of Neuroscience (A. Calvo, A. Canosa, C.M., U.M., M.G., R.V., F.P., P.C., M.B., A. Chio), University of Torino, Turin, Italy; Neurology 1 (A. Calvo, A. Canosa, C.M., U.M., S.G., A. Chio), Azienda Universitario-Ospedaliera Città della Salute e della Scienza di Torino, Turin, Italy; Neuroscience Institute of Turin (NIT) (A. Calvo, A. Chio), Turin, Italy; Institute of Cognitive Sciences and Technologies (A. Canosa, M.P., A. Chio), C.N.R., Rome, Italy; ALS Center (F.D.M., L.M.), Department of Neurology, Maggiore della Carità Hospital, University of Eastern Piedmont, Novara, Italy; Positron Emission Tomography Centre AFFIDEA-IRMET S.p.A. (V.A.), Turin, Italy; Department of Medical Radiation Physics and Nuclear Medicine (M.P.), Karolinska University Hospital, Stockholm, Sweden; Department of Anatomy (C.D.), Physiology & Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD; The American Genome Center (C.D.), Uniformed Services University of the Health Sciences, Bethesda, MD; Neurodegenerative Diseases Research Unit (S.W.S.), Laboratory of Neurogenetics, National Institute of Neurological Disorders and Stroke, Bethesda, MD; Department of Neurology (S.W.S., B.J.T.), Johns Hopkins University Medical Center, Baltimore, MD; Neuromuscular Diseases Research Section (R.C., B.J.T.), Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD; and Department of Health Sciences (L.C., S.D.D.), University of Eastern Piedmont, Novara, Italy
| | - Francesca Palumbo
- "Rita Levi Montalcini" Department of Neuroscience (A. Calvo, A. Canosa, C.M., U.M., M.G., R.V., F.P., P.C., M.B., A. Chio), University of Torino, Turin, Italy; Neurology 1 (A. Calvo, A. Canosa, C.M., U.M., S.G., A. Chio), Azienda Universitario-Ospedaliera Città della Salute e della Scienza di Torino, Turin, Italy; Neuroscience Institute of Turin (NIT) (A. Calvo, A. Chio), Turin, Italy; Institute of Cognitive Sciences and Technologies (A. Canosa, M.P., A. Chio), C.N.R., Rome, Italy; ALS Center (F.D.M., L.M.), Department of Neurology, Maggiore della Carità Hospital, University of Eastern Piedmont, Novara, Italy; Positron Emission Tomography Centre AFFIDEA-IRMET S.p.A. (V.A.), Turin, Italy; Department of Medical Radiation Physics and Nuclear Medicine (M.P.), Karolinska University Hospital, Stockholm, Sweden; Department of Anatomy (C.D.), Physiology & Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD; The American Genome Center (C.D.), Uniformed Services University of the Health Sciences, Bethesda, MD; Neurodegenerative Diseases Research Unit (S.W.S.), Laboratory of Neurogenetics, National Institute of Neurological Disorders and Stroke, Bethesda, MD; Department of Neurology (S.W.S., B.J.T.), Johns Hopkins University Medical Center, Baltimore, MD; Neuromuscular Diseases Research Section (R.C., B.J.T.), Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD; and Department of Health Sciences (L.C., S.D.D.), University of Eastern Piedmont, Novara, Italy
| | - Paolo Cugnasco
- "Rita Levi Montalcini" Department of Neuroscience (A. Calvo, A. Canosa, C.M., U.M., M.G., R.V., F.P., P.C., M.B., A. Chio), University of Torino, Turin, Italy; Neurology 1 (A. Calvo, A. Canosa, C.M., U.M., S.G., A. Chio), Azienda Universitario-Ospedaliera Città della Salute e della Scienza di Torino, Turin, Italy; Neuroscience Institute of Turin (NIT) (A. Calvo, A. Chio), Turin, Italy; Institute of Cognitive Sciences and Technologies (A. Canosa, M.P., A. Chio), C.N.R., Rome, Italy; ALS Center (F.D.M., L.M.), Department of Neurology, Maggiore della Carità Hospital, University of Eastern Piedmont, Novara, Italy; Positron Emission Tomography Centre AFFIDEA-IRMET S.p.A. (V.A.), Turin, Italy; Department of Medical Radiation Physics and Nuclear Medicine (M.P.), Karolinska University Hospital, Stockholm, Sweden; Department of Anatomy (C.D.), Physiology & Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD; The American Genome Center (C.D.), Uniformed Services University of the Health Sciences, Bethesda, MD; Neurodegenerative Diseases Research Unit (S.W.S.), Laboratory of Neurogenetics, National Institute of Neurological Disorders and Stroke, Bethesda, MD; Department of Neurology (S.W.S., B.J.T.), Johns Hopkins University Medical Center, Baltimore, MD; Neuromuscular Diseases Research Section (R.C., B.J.T.), Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD; and Department of Health Sciences (L.C., S.D.D.), University of Eastern Piedmont, Novara, Italy
| | - Salvatore Gallone
- "Rita Levi Montalcini" Department of Neuroscience (A. Calvo, A. Canosa, C.M., U.M., M.G., R.V., F.P., P.C., M.B., A. Chio), University of Torino, Turin, Italy; Neurology 1 (A. Calvo, A. Canosa, C.M., U.M., S.G., A. Chio), Azienda Universitario-Ospedaliera Città della Salute e della Scienza di Torino, Turin, Italy; Neuroscience Institute of Turin (NIT) (A. Calvo, A. Chio), Turin, Italy; Institute of Cognitive Sciences and Technologies (A. Canosa, M.P., A. Chio), C.N.R., Rome, Italy; ALS Center (F.D.M., L.M.), Department of Neurology, Maggiore della Carità Hospital, University of Eastern Piedmont, Novara, Italy; Positron Emission Tomography Centre AFFIDEA-IRMET S.p.A. (V.A.), Turin, Italy; Department of Medical Radiation Physics and Nuclear Medicine (M.P.), Karolinska University Hospital, Stockholm, Sweden; Department of Anatomy (C.D.), Physiology & Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD; The American Genome Center (C.D.), Uniformed Services University of the Health Sciences, Bethesda, MD; Neurodegenerative Diseases Research Unit (S.W.S.), Laboratory of Neurogenetics, National Institute of Neurological Disorders and Stroke, Bethesda, MD; Department of Neurology (S.W.S., B.J.T.), Johns Hopkins University Medical Center, Baltimore, MD; Neuromuscular Diseases Research Section (R.C., B.J.T.), Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD; and Department of Health Sciences (L.C., S.D.D.), University of Eastern Piedmont, Novara, Italy
| | - Maura Brunetti
- "Rita Levi Montalcini" Department of Neuroscience (A. Calvo, A. Canosa, C.M., U.M., M.G., R.V., F.P., P.C., M.B., A. Chio), University of Torino, Turin, Italy; Neurology 1 (A. Calvo, A. Canosa, C.M., U.M., S.G., A. Chio), Azienda Universitario-Ospedaliera Città della Salute e della Scienza di Torino, Turin, Italy; Neuroscience Institute of Turin (NIT) (A. Calvo, A. Chio), Turin, Italy; Institute of Cognitive Sciences and Technologies (A. Canosa, M.P., A. Chio), C.N.R., Rome, Italy; ALS Center (F.D.M., L.M.), Department of Neurology, Maggiore della Carità Hospital, University of Eastern Piedmont, Novara, Italy; Positron Emission Tomography Centre AFFIDEA-IRMET S.p.A. (V.A.), Turin, Italy; Department of Medical Radiation Physics and Nuclear Medicine (M.P.), Karolinska University Hospital, Stockholm, Sweden; Department of Anatomy (C.D.), Physiology & Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD; The American Genome Center (C.D.), Uniformed Services University of the Health Sciences, Bethesda, MD; Neurodegenerative Diseases Research Unit (S.W.S.), Laboratory of Neurogenetics, National Institute of Neurological Disorders and Stroke, Bethesda, MD; Department of Neurology (S.W.S., B.J.T.), Johns Hopkins University Medical Center, Baltimore, MD; Neuromuscular Diseases Research Section (R.C., B.J.T.), Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD; and Department of Health Sciences (L.C., S.D.D.), University of Eastern Piedmont, Novara, Italy
| | - Fabiola De Marchi
- "Rita Levi Montalcini" Department of Neuroscience (A. Calvo, A. Canosa, C.M., U.M., M.G., R.V., F.P., P.C., M.B., A. Chio), University of Torino, Turin, Italy; Neurology 1 (A. Calvo, A. Canosa, C.M., U.M., S.G., A. Chio), Azienda Universitario-Ospedaliera Città della Salute e della Scienza di Torino, Turin, Italy; Neuroscience Institute of Turin (NIT) (A. Calvo, A. Chio), Turin, Italy; Institute of Cognitive Sciences and Technologies (A. Canosa, M.P., A. Chio), C.N.R., Rome, Italy; ALS Center (F.D.M., L.M.), Department of Neurology, Maggiore della Carità Hospital, University of Eastern Piedmont, Novara, Italy; Positron Emission Tomography Centre AFFIDEA-IRMET S.p.A. (V.A.), Turin, Italy; Department of Medical Radiation Physics and Nuclear Medicine (M.P.), Karolinska University Hospital, Stockholm, Sweden; Department of Anatomy (C.D.), Physiology & Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD; The American Genome Center (C.D.), Uniformed Services University of the Health Sciences, Bethesda, MD; Neurodegenerative Diseases Research Unit (S.W.S.), Laboratory of Neurogenetics, National Institute of Neurological Disorders and Stroke, Bethesda, MD; Department of Neurology (S.W.S., B.J.T.), Johns Hopkins University Medical Center, Baltimore, MD; Neuromuscular Diseases Research Section (R.C., B.J.T.), Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD; and Department of Health Sciences (L.C., S.D.D.), University of Eastern Piedmont, Novara, Italy
| | - Vincenzo Arena
- "Rita Levi Montalcini" Department of Neuroscience (A. Calvo, A. Canosa, C.M., U.M., M.G., R.V., F.P., P.C., M.B., A. Chio), University of Torino, Turin, Italy; Neurology 1 (A. Calvo, A. Canosa, C.M., U.M., S.G., A. Chio), Azienda Universitario-Ospedaliera Città della Salute e della Scienza di Torino, Turin, Italy; Neuroscience Institute of Turin (NIT) (A. Calvo, A. Chio), Turin, Italy; Institute of Cognitive Sciences and Technologies (A. Canosa, M.P., A. Chio), C.N.R., Rome, Italy; ALS Center (F.D.M., L.M.), Department of Neurology, Maggiore della Carità Hospital, University of Eastern Piedmont, Novara, Italy; Positron Emission Tomography Centre AFFIDEA-IRMET S.p.A. (V.A.), Turin, Italy; Department of Medical Radiation Physics and Nuclear Medicine (M.P.), Karolinska University Hospital, Stockholm, Sweden; Department of Anatomy (C.D.), Physiology & Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD; The American Genome Center (C.D.), Uniformed Services University of the Health Sciences, Bethesda, MD; Neurodegenerative Diseases Research Unit (S.W.S.), Laboratory of Neurogenetics, National Institute of Neurological Disorders and Stroke, Bethesda, MD; Department of Neurology (S.W.S., B.J.T.), Johns Hopkins University Medical Center, Baltimore, MD; Neuromuscular Diseases Research Section (R.C., B.J.T.), Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD; and Department of Health Sciences (L.C., S.D.D.), University of Eastern Piedmont, Novara, Italy
| | - Marco Pagani
- "Rita Levi Montalcini" Department of Neuroscience (A. Calvo, A. Canosa, C.M., U.M., M.G., R.V., F.P., P.C., M.B., A. Chio), University of Torino, Turin, Italy; Neurology 1 (A. Calvo, A. Canosa, C.M., U.M., S.G., A. Chio), Azienda Universitario-Ospedaliera Città della Salute e della Scienza di Torino, Turin, Italy; Neuroscience Institute of Turin (NIT) (A. Calvo, A. Chio), Turin, Italy; Institute of Cognitive Sciences and Technologies (A. Canosa, M.P., A. Chio), C.N.R., Rome, Italy; ALS Center (F.D.M., L.M.), Department of Neurology, Maggiore della Carità Hospital, University of Eastern Piedmont, Novara, Italy; Positron Emission Tomography Centre AFFIDEA-IRMET S.p.A. (V.A.), Turin, Italy; Department of Medical Radiation Physics and Nuclear Medicine (M.P.), Karolinska University Hospital, Stockholm, Sweden; Department of Anatomy (C.D.), Physiology & Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD; The American Genome Center (C.D.), Uniformed Services University of the Health Sciences, Bethesda, MD; Neurodegenerative Diseases Research Unit (S.W.S.), Laboratory of Neurogenetics, National Institute of Neurological Disorders and Stroke, Bethesda, MD; Department of Neurology (S.W.S., B.J.T.), Johns Hopkins University Medical Center, Baltimore, MD; Neuromuscular Diseases Research Section (R.C., B.J.T.), Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD; and Department of Health Sciences (L.C., S.D.D.), University of Eastern Piedmont, Novara, Italy
| | - Clifton Dalgard
- "Rita Levi Montalcini" Department of Neuroscience (A. Calvo, A. Canosa, C.M., U.M., M.G., R.V., F.P., P.C., M.B., A. Chio), University of Torino, Turin, Italy; Neurology 1 (A. Calvo, A. Canosa, C.M., U.M., S.G., A. Chio), Azienda Universitario-Ospedaliera Città della Salute e della Scienza di Torino, Turin, Italy; Neuroscience Institute of Turin (NIT) (A. Calvo, A. Chio), Turin, Italy; Institute of Cognitive Sciences and Technologies (A. Canosa, M.P., A. Chio), C.N.R., Rome, Italy; ALS Center (F.D.M., L.M.), Department of Neurology, Maggiore della Carità Hospital, University of Eastern Piedmont, Novara, Italy; Positron Emission Tomography Centre AFFIDEA-IRMET S.p.A. (V.A.), Turin, Italy; Department of Medical Radiation Physics and Nuclear Medicine (M.P.), Karolinska University Hospital, Stockholm, Sweden; Department of Anatomy (C.D.), Physiology & Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD; The American Genome Center (C.D.), Uniformed Services University of the Health Sciences, Bethesda, MD; Neurodegenerative Diseases Research Unit (S.W.S.), Laboratory of Neurogenetics, National Institute of Neurological Disorders and Stroke, Bethesda, MD; Department of Neurology (S.W.S., B.J.T.), Johns Hopkins University Medical Center, Baltimore, MD; Neuromuscular Diseases Research Section (R.C., B.J.T.), Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD; and Department of Health Sciences (L.C., S.D.D.), University of Eastern Piedmont, Novara, Italy
| | - Sonja W Scholz
- "Rita Levi Montalcini" Department of Neuroscience (A. Calvo, A. Canosa, C.M., U.M., M.G., R.V., F.P., P.C., M.B., A. Chio), University of Torino, Turin, Italy; Neurology 1 (A. Calvo, A. Canosa, C.M., U.M., S.G., A. Chio), Azienda Universitario-Ospedaliera Città della Salute e della Scienza di Torino, Turin, Italy; Neuroscience Institute of Turin (NIT) (A. Calvo, A. Chio), Turin, Italy; Institute of Cognitive Sciences and Technologies (A. Canosa, M.P., A. Chio), C.N.R., Rome, Italy; ALS Center (F.D.M., L.M.), Department of Neurology, Maggiore della Carità Hospital, University of Eastern Piedmont, Novara, Italy; Positron Emission Tomography Centre AFFIDEA-IRMET S.p.A. (V.A.), Turin, Italy; Department of Medical Radiation Physics and Nuclear Medicine (M.P.), Karolinska University Hospital, Stockholm, Sweden; Department of Anatomy (C.D.), Physiology & Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD; The American Genome Center (C.D.), Uniformed Services University of the Health Sciences, Bethesda, MD; Neurodegenerative Diseases Research Unit (S.W.S.), Laboratory of Neurogenetics, National Institute of Neurological Disorders and Stroke, Bethesda, MD; Department of Neurology (S.W.S., B.J.T.), Johns Hopkins University Medical Center, Baltimore, MD; Neuromuscular Diseases Research Section (R.C., B.J.T.), Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD; and Department of Health Sciences (L.C., S.D.D.), University of Eastern Piedmont, Novara, Italy
| | - Ruth Chia
- "Rita Levi Montalcini" Department of Neuroscience (A. Calvo, A. Canosa, C.M., U.M., M.G., R.V., F.P., P.C., M.B., A. Chio), University of Torino, Turin, Italy; Neurology 1 (A. Calvo, A. Canosa, C.M., U.M., S.G., A. Chio), Azienda Universitario-Ospedaliera Città della Salute e della Scienza di Torino, Turin, Italy; Neuroscience Institute of Turin (NIT) (A. Calvo, A. Chio), Turin, Italy; Institute of Cognitive Sciences and Technologies (A. Canosa, M.P., A. Chio), C.N.R., Rome, Italy; ALS Center (F.D.M., L.M.), Department of Neurology, Maggiore della Carità Hospital, University of Eastern Piedmont, Novara, Italy; Positron Emission Tomography Centre AFFIDEA-IRMET S.p.A. (V.A.), Turin, Italy; Department of Medical Radiation Physics and Nuclear Medicine (M.P.), Karolinska University Hospital, Stockholm, Sweden; Department of Anatomy (C.D.), Physiology & Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD; The American Genome Center (C.D.), Uniformed Services University of the Health Sciences, Bethesda, MD; Neurodegenerative Diseases Research Unit (S.W.S.), Laboratory of Neurogenetics, National Institute of Neurological Disorders and Stroke, Bethesda, MD; Department of Neurology (S.W.S., B.J.T.), Johns Hopkins University Medical Center, Baltimore, MD; Neuromuscular Diseases Research Section (R.C., B.J.T.), Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD; and Department of Health Sciences (L.C., S.D.D.), University of Eastern Piedmont, Novara, Italy
| | - Lucia Corrado
- "Rita Levi Montalcini" Department of Neuroscience (A. Calvo, A. Canosa, C.M., U.M., M.G., R.V., F.P., P.C., M.B., A. Chio), University of Torino, Turin, Italy; Neurology 1 (A. Calvo, A. Canosa, C.M., U.M., S.G., A. Chio), Azienda Universitario-Ospedaliera Città della Salute e della Scienza di Torino, Turin, Italy; Neuroscience Institute of Turin (NIT) (A. Calvo, A. Chio), Turin, Italy; Institute of Cognitive Sciences and Technologies (A. Canosa, M.P., A. Chio), C.N.R., Rome, Italy; ALS Center (F.D.M., L.M.), Department of Neurology, Maggiore della Carità Hospital, University of Eastern Piedmont, Novara, Italy; Positron Emission Tomography Centre AFFIDEA-IRMET S.p.A. (V.A.), Turin, Italy; Department of Medical Radiation Physics and Nuclear Medicine (M.P.), Karolinska University Hospital, Stockholm, Sweden; Department of Anatomy (C.D.), Physiology & Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD; The American Genome Center (C.D.), Uniformed Services University of the Health Sciences, Bethesda, MD; Neurodegenerative Diseases Research Unit (S.W.S.), Laboratory of Neurogenetics, National Institute of Neurological Disorders and Stroke, Bethesda, MD; Department of Neurology (S.W.S., B.J.T.), Johns Hopkins University Medical Center, Baltimore, MD; Neuromuscular Diseases Research Section (R.C., B.J.T.), Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD; and Department of Health Sciences (L.C., S.D.D.), University of Eastern Piedmont, Novara, Italy
| | - Sandra Dalfonso
- "Rita Levi Montalcini" Department of Neuroscience (A. Calvo, A. Canosa, C.M., U.M., M.G., R.V., F.P., P.C., M.B., A. Chio), University of Torino, Turin, Italy; Neurology 1 (A. Calvo, A. Canosa, C.M., U.M., S.G., A. Chio), Azienda Universitario-Ospedaliera Città della Salute e della Scienza di Torino, Turin, Italy; Neuroscience Institute of Turin (NIT) (A. Calvo, A. Chio), Turin, Italy; Institute of Cognitive Sciences and Technologies (A. Canosa, M.P., A. Chio), C.N.R., Rome, Italy; ALS Center (F.D.M., L.M.), Department of Neurology, Maggiore della Carità Hospital, University of Eastern Piedmont, Novara, Italy; Positron Emission Tomography Centre AFFIDEA-IRMET S.p.A. (V.A.), Turin, Italy; Department of Medical Radiation Physics and Nuclear Medicine (M.P.), Karolinska University Hospital, Stockholm, Sweden; Department of Anatomy (C.D.), Physiology & Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD; The American Genome Center (C.D.), Uniformed Services University of the Health Sciences, Bethesda, MD; Neurodegenerative Diseases Research Unit (S.W.S.), Laboratory of Neurogenetics, National Institute of Neurological Disorders and Stroke, Bethesda, MD; Department of Neurology (S.W.S., B.J.T.), Johns Hopkins University Medical Center, Baltimore, MD; Neuromuscular Diseases Research Section (R.C., B.J.T.), Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD; and Department of Health Sciences (L.C., S.D.D.), University of Eastern Piedmont, Novara, Italy
| | - Letizia Mazzini
- "Rita Levi Montalcini" Department of Neuroscience (A. Calvo, A. Canosa, C.M., U.M., M.G., R.V., F.P., P.C., M.B., A. Chio), University of Torino, Turin, Italy; Neurology 1 (A. Calvo, A. Canosa, C.M., U.M., S.G., A. Chio), Azienda Universitario-Ospedaliera Città della Salute e della Scienza di Torino, Turin, Italy; Neuroscience Institute of Turin (NIT) (A. Calvo, A. Chio), Turin, Italy; Institute of Cognitive Sciences and Technologies (A. Canosa, M.P., A. Chio), C.N.R., Rome, Italy; ALS Center (F.D.M., L.M.), Department of Neurology, Maggiore della Carità Hospital, University of Eastern Piedmont, Novara, Italy; Positron Emission Tomography Centre AFFIDEA-IRMET S.p.A. (V.A.), Turin, Italy; Department of Medical Radiation Physics and Nuclear Medicine (M.P.), Karolinska University Hospital, Stockholm, Sweden; Department of Anatomy (C.D.), Physiology & Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD; The American Genome Center (C.D.), Uniformed Services University of the Health Sciences, Bethesda, MD; Neurodegenerative Diseases Research Unit (S.W.S.), Laboratory of Neurogenetics, National Institute of Neurological Disorders and Stroke, Bethesda, MD; Department of Neurology (S.W.S., B.J.T.), Johns Hopkins University Medical Center, Baltimore, MD; Neuromuscular Diseases Research Section (R.C., B.J.T.), Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD; and Department of Health Sciences (L.C., S.D.D.), University of Eastern Piedmont, Novara, Italy
| | - Bryan J Traynor
- "Rita Levi Montalcini" Department of Neuroscience (A. Calvo, A. Canosa, C.M., U.M., M.G., R.V., F.P., P.C., M.B., A. Chio), University of Torino, Turin, Italy; Neurology 1 (A. Calvo, A. Canosa, C.M., U.M., S.G., A. Chio), Azienda Universitario-Ospedaliera Città della Salute e della Scienza di Torino, Turin, Italy; Neuroscience Institute of Turin (NIT) (A. Calvo, A. Chio), Turin, Italy; Institute of Cognitive Sciences and Technologies (A. Canosa, M.P., A. Chio), C.N.R., Rome, Italy; ALS Center (F.D.M., L.M.), Department of Neurology, Maggiore della Carità Hospital, University of Eastern Piedmont, Novara, Italy; Positron Emission Tomography Centre AFFIDEA-IRMET S.p.A. (V.A.), Turin, Italy; Department of Medical Radiation Physics and Nuclear Medicine (M.P.), Karolinska University Hospital, Stockholm, Sweden; Department of Anatomy (C.D.), Physiology & Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD; The American Genome Center (C.D.), Uniformed Services University of the Health Sciences, Bethesda, MD; Neurodegenerative Diseases Research Unit (S.W.S.), Laboratory of Neurogenetics, National Institute of Neurological Disorders and Stroke, Bethesda, MD; Department of Neurology (S.W.S., B.J.T.), Johns Hopkins University Medical Center, Baltimore, MD; Neuromuscular Diseases Research Section (R.C., B.J.T.), Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD; and Department of Health Sciences (L.C., S.D.D.), University of Eastern Piedmont, Novara, Italy
| | - Adriano Chio
- "Rita Levi Montalcini" Department of Neuroscience (A. Calvo, A. Canosa, C.M., U.M., M.G., R.V., F.P., P.C., M.B., A. Chio), University of Torino, Turin, Italy; Neurology 1 (A. Calvo, A. Canosa, C.M., U.M., S.G., A. Chio), Azienda Universitario-Ospedaliera Città della Salute e della Scienza di Torino, Turin, Italy; Neuroscience Institute of Turin (NIT) (A. Calvo, A. Chio), Turin, Italy; Institute of Cognitive Sciences and Technologies (A. Canosa, M.P., A. Chio), C.N.R., Rome, Italy; ALS Center (F.D.M., L.M.), Department of Neurology, Maggiore della Carità Hospital, University of Eastern Piedmont, Novara, Italy; Positron Emission Tomography Centre AFFIDEA-IRMET S.p.A. (V.A.), Turin, Italy; Department of Medical Radiation Physics and Nuclear Medicine (M.P.), Karolinska University Hospital, Stockholm, Sweden; Department of Anatomy (C.D.), Physiology & Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD; The American Genome Center (C.D.), Uniformed Services University of the Health Sciences, Bethesda, MD; Neurodegenerative Diseases Research Unit (S.W.S.), Laboratory of Neurogenetics, National Institute of Neurological Disorders and Stroke, Bethesda, MD; Department of Neurology (S.W.S., B.J.T.), Johns Hopkins University Medical Center, Baltimore, MD; Neuromuscular Diseases Research Section (R.C., B.J.T.), Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD; and Department of Health Sciences (L.C., S.D.D.), University of Eastern Piedmont, Novara, Italy
| |
Collapse
|
11
|
Hinault T, Segobin S, Benbrika S, Carluer L, Doidy F, Eustache F, Viader F, Desgranges B. Longitudinal grey matter and metabolic contributions to cognitive changes in amyotrophic lateral sclerosis. Brain Commun 2022; 4:fcac228. [PMID: 36128222 PMCID: PMC9478152 DOI: 10.1093/braincomms/fcac228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/13/2022] [Accepted: 09/05/2022] [Indexed: 12/05/2022] Open
Abstract
Amyotrophic lateral sclerosis is characterized by rapidly evolving cognitive and brain impairments. While previous work revealed structural and functional alterations associated with cognitive decline in patients suffering from amyotrophic lateral sclerosis, the relationships between anatomo-functional changes and both disease's progression and the evolution of cognitive performance remain largely unexplored. Here, we took advantage of repeated multi-modal acquisitions in patients with amyotrophic lateral sclerosis over 1 year to assess the longitudinal sequence of grey matter atrophy, glucose metabolism and cognitive changes. Results revealed metabolic and structural changes over frontal, thalamic and temporal regions. Both cortical hypermetabolism and hypometabolism (right temporal gyrus and right angular gyrus, respectively) were associated with cognitive performance and thalamic hypometabolism during the follow-up testing session. Furthermore, the inferior frontal gyrus atrophy mediated the relation between early hypometabolism in this region and the subsequent decline of the theory of mind abilities. Marked volume loss was associated with larger hypometabolism and impaired cognitive performance. To our knowledge, this is the first study to longitudinally examine both grey matter volume and metabolic alteration patterns in patients with amyotrophic lateral sclerosis, over a mean follow-up time of 1 year. We identify how changes of the inferior frontal gyrus critically underly later cognitive performance, shedding new light on its high prognostic significance for amyotrophic lateral sclerosis-related changes. These results have important implications for our understanding of structural and functional changes associated with amyotrophic lateral sclerosis and how they underly cognitive impairments.
Collapse
Affiliation(s)
- Thomas Hinault
- Normandie University, UNICAEN, PSL Université Paris, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine (NIMH), Caen 14032, France
| | - Shailendra Segobin
- Normandie University, UNICAEN, PSL Université Paris, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine (NIMH), Caen 14032, France
| | - Soumia Benbrika
- Normandie University, UNICAEN, PSL Université Paris, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine (NIMH), Caen 14032, France
| | - Laurence Carluer
- Normandie University, UNICAEN, PSL Université Paris, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine (NIMH), Caen 14032, France
| | - Franck Doidy
- Normandie University, UNICAEN, PSL Université Paris, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine (NIMH), Caen 14032, France
| | - Francis Eustache
- Normandie University, UNICAEN, PSL Université Paris, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine (NIMH), Caen 14032, France
| | - Fausto Viader
- Normandie University, UNICAEN, PSL Université Paris, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine (NIMH), Caen 14032, France
| | - Béatrice Desgranges
- Normandie University, UNICAEN, PSL Université Paris, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine (NIMH), Caen 14032, France
| |
Collapse
|
12
|
Clusters of anatomical disease-burden patterns in ALS: a data-driven approach confirms radiological subtypes. J Neurol 2022; 269:4404-4413. [PMID: 35333981 PMCID: PMC9294023 DOI: 10.1007/s00415-022-11081-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 12/28/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is associated with considerable clinical heterogeneity spanning from diverse disability profiles, differences in UMN/LMN involvement, divergent progression rates, to variability in frontotemporal dysfunction. A multitude of classification frameworks and staging systems have been proposed based on clinical and neuropsychological characteristics, but disease subtypes are seldom defined based on anatomical patterns of disease burden without a prior clinical stratification. A prospective research study was conducted with a uniform imaging protocol to ascertain disease subtypes based on preferential cerebral involvement. Fifteen brain regions were systematically evaluated in each participant based on a comprehensive panel of cortical, subcortical and white matter integrity metrics. Using min–max scaled composite regional integrity scores, a two-step cluster analysis was conducted. Two radiological clusters were identified; 35.5% of patients belonging to ‘Cluster 1’ and 64.5% of patients segregating to ‘Cluster 2’. Subjects in Cluster 1 exhibited marked frontotemporal change. Predictor ranking revealed the following hierarchy of anatomical regions in decreasing importance: superior lateral temporal, inferior frontal, superior frontal, parietal, limbic, mesial inferior temporal, peri-Sylvian, subcortical, long association fibres, commissural, occipital, ‘sensory’, ‘motor’, cerebellum, and brainstem. While the majority of imaging studies first stratify patients based on clinical criteria or genetic profiles to describe phenotype- and genotype-associated imaging signatures, a data-driven approach may identify distinct disease subtypes without a priori patient categorisation. Our study illustrates that large radiology datasets may be potentially utilised to uncover disease subtypes associated with unique genetic, clinical or prognostic profiles.
Collapse
|
13
|
Brain Connectivity and Network Analysis in Amyotrophic Lateral Sclerosis. Neurol Res Int 2022; 2022:1838682. [PMID: 35178253 PMCID: PMC8844436 DOI: 10.1155/2022/1838682] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 01/13/2022] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with no effective treatment or cure. ALS is characterized by the death of lower motor neurons (LMNs) in the spinal cord and upper motor neurons (UMNs) in the brain and their networks. Since the lower motor neurons are under the control of UMN and the networks, cortical degeneration may play a vital role in the pathophysiology of ALS. These changes that are not apparent on routine imaging with CT scans or MRI brain can be identified using modalities such as diffusion tensor imaging, functional MRI, arterial spin labelling (ASL), electroencephalogram (EEG), magnetoencephalogram (MEG), functional near-infrared spectroscopy (fNIRS), and positron emission tomography (PET) scan. They can help us generate a representation of brain networks and connectivity that can be visualized and parsed out to characterize and quantify the underlying pathophysiology in ALS. In addition, network analysis using graph measures provides a novel way of understanding the complex network changes occurring in the brain. These have the potential to become biomarker for the diagnosis and treatment of ALS. This article is a systematic review and overview of the various connectivity and network-based studies in ALS.
Collapse
|
14
|
Pallidal functional connectivity changes are associated with disgust recognition in pure motor amyotrophic lateral sclerosis. NEUROIMAGE: CLINICAL 2022; 35:103145. [PMID: 36002963 PMCID: PMC9421543 DOI: 10.1016/j.nicl.2022.103145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 07/19/2022] [Accepted: 08/02/2022] [Indexed: 11/23/2022] Open
Abstract
In cognitively normal ALS, we detected early difficulties in recognizing disgust. Pallidum functional connectivity (FC) alterations occur in pure-motor ALS patients. Reduced left pallidum-temporal FC is linked to altered disgust recognition.
In the present study, we aimed to investigate the resting-state functional connectivity (RS-FC) of the globus pallidus (GP) in patients with amyotrophic lateral sclerosis (ALS) compared to healthy controls, and the relationship between RS-FC changes and disgust recognition. Twenty-six pure-motor ALS patients and 52 healthy controls underwent RS functional MRI and a neuropsychological assessment including the Comprehensive Affect Testing System. A seed-based RS-FC analysis was performed between the left and right GP and the rest of the brain and compared between groups. Correlations between RS-FC significant changes and subjects’ performance in recognizing disgust were tested. Compared to controls, patients were significantly less able to recognize disgust. In ALS compared to controls, the seed-based analysis showed: reduced RS-FC between bilateral GP and bilateral middle and superior frontal and middle cingulate gyri, and increased RS-FC between bilateral GP and bilateral postcentral, supramarginal and superior temporal gyri and Rolandic operculum. Decreased RS-FC was further observed between left GP and left middle and inferior temporal gyri and bilateral caudate; and increased RS-FC was also shown between right GP and left lingual and fusiform gyri. In patients and controls, lower performance in recognizing disgust correlated with reduced RS-FC between left GP and left middle and inferior temporal gyri. In pure-motor ALS patients, we demonstrated altered RS-FC between GP and the rest of the brain. The reduced left pallidum-temporo-striatal RS-FC may have a role in the lower ability of patients in recognizing disgust.
Collapse
|
15
|
Magno MA, Canu E, Filippi M, Agosta F. Social cognition in the FTLD spectrum: evidence from MRI. J Neurol 2021; 269:2245-2258. [PMID: 34797434 DOI: 10.1007/s00415-021-10892-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/14/2021] [Accepted: 11/03/2021] [Indexed: 10/19/2022]
Abstract
Over the past few years, there has been great interest in social cognition, a wide term referring to the human ability of understanding others' emotions, thoughts, and intentions, to empathize with them and to behave accordingly. While there is no agreement on the classification of social cognitive processes, they can broadly be categorized as consisting of theory of mind, empathy, social perception, and social behavior. The study of social cognition and its relative deficits is increasingly assuming clinical relevance. However, the clinical and neuroanatomical correlates of social cognitive alterations in neurodegenerative conditions, such as those belonging to the frontotemporal lobar (FTLD) spectrum, are not fully established. In this review, we describe the current understanding of social cognition impairments in different FTLD conditions with respect to MRI.
Collapse
Affiliation(s)
- Maria Antonietta Magno
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy
| | - Elisa Canu
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy.,Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Federica Agosta
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy. .,Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy. .,Vita-Salute San Raffaele University, Milan, Italy.
| |
Collapse
|
16
|
Emotional Processing and Experience in Amyotrophic Lateral Sclerosis: A Systematic and Critical Review. Brain Sci 2021; 11:brainsci11101356. [PMID: 34679420 PMCID: PMC8534224 DOI: 10.3390/brainsci11101356] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/10/2021] [Accepted: 10/12/2021] [Indexed: 11/16/2022] Open
Abstract
Even though increasing literature describes changes in emotional processing in Amyotrophic Lateral Sclerosis (ALS), efforts to summarize relevant findings are lacking in the field. A systematic literature review was performed to provide a critical and up-to-date account of emotional abilities in ALS. References were identified by searches of PubMed, Web of Science and Scopus (1980–2021, English literature), with the following key terms: (“Amyotrophic Lateral Sclerosis” or “Primary Lateral Sclerosis” or “Motor Neuron”) and “Emotion*” and (“Processing” or “Attribution” or “Elaboration” or “Perception” or “Recognition”). Studies concerning only caregivers, pseudobulbar affect, and social cognition were excluded. Forty-one articles were included, all concerning ALS, and seven topics were identified: Emotion recognition, Emotional responsiveness, Emotional reactivity, Faces approachability rating, Valence rating, Memory for emotional materials and Alexithymia. The majority of these aspects have only been sparsely addressed. The evidence confirms altered emotional processing in ALS. The most consistent findings regard the recognition of facial expressions for negative emotions, but also alterations in the subjective responsiveness to emotional stimuli (arousal, valence and approachability), in psychophysiological and cerebral reactivity and in emotional memory, together with alexithymia traits, were reported. According to this evidence, emotional abilities should be included in the clinical assessment and therapeutic interventions.
Collapse
|
17
|
What Do We Know about Theory of Mind Impairment in Parkinson's Disease? Behav Sci (Basel) 2021; 11:bs11100130. [PMID: 34677223 PMCID: PMC8533307 DOI: 10.3390/bs11100130] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 12/15/2022] Open
Abstract
Theory of mind (ToM) is a social cognitive skill that involves the ability to attribute mental states to self and others (what they think (cognitive ToM) and feel (affective ToM)). We aim to provide an overview of previous knowledge of ToM in Parkinson's disease (PD). In the last few years more attention has been paid to the study of this construct as a non-motor manifestation of PD. In advanced stages, both components of ToM (cognitive and affective) are commonly impaired, although in early PD results remain controversial. Executive dysfunction correlates with ToM deficits and other cognitive domains such as language and visuospatial function have also been related to ToM. Recent studies have demonstrated that PD patients with mild cognitive impairment show ToM deficits more frequently in comparison with cognitively normal PD patients. In addition to the heterogeneity of ToM tests administered in different studies, depression and dopaminergic medication may also be acting as confounding factors, but there are still insufficient data to support this. Neuroimaging studies conducted to understand the underlying networks of cognitive and affective ToM deficits in PD are lacking. The study of ToM deficit in PD continues to be important, as this may worsen quality of life and favor social stigma. Future studies should be considered, including assessment of the patients' cognitive state, associated mood disorders, and the role of dopaminergic deficit.
Collapse
|
18
|
Testoni I, Palazzo L, Ronconi L, Rossi G, Ferizoviku J, Morales JRP. The experience of children with a parent suffering from Amyotrophic Lateral Sclerosis during the COVID-19 pandemic. Sci Rep 2021; 11:16046. [PMID: 34362966 PMCID: PMC8346605 DOI: 10.1038/s41598-021-95338-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/29/2021] [Indexed: 12/15/2022] Open
Abstract
Children that have a parent with Amyotrophic Lateral Sclerosis (ALS) suffer from the progressive loss of their beloved ones. During the COVID-19 pandemic, the difficulties faced by these children have increased. The study aimed to detect whether there were differences between the minors experiencing a relative's ALS and the minors with no experience of ALS and it aimed also to detect the impact of COVID-19 pandemic on these minors. The study involved Italian participants, in particular: the target group consisted of 38 children (7-18 years) (T0/T1); the control group consisted of 38 children (9-14 years) (T0 only). The following variables were measured: attachment with the Security Scale (SS), affects with the Positive and Negative Affect Schedule for Children (PANAS-C), behavioural problems with Strengths and Difficulties Questionnaire (SDQ), death representation with Testoni Death Representation Scale for Children (TDRS-C), self-concept with the Multidimensional Self Concept Scale (MSCS), resilience and socio-emotional skills with the Devereux Student Strengths Assessment (DESSA). The results showed higher negative affectivity (p < .001), externalising behaviours (p < .05), uncertainty in reflective function (p < .05) in the target group compared to the control one; after the COVID-19 pandemic minors in the target group showed reduced certainty of mental states (p < .05) and interpersonal and scholastic self-esteem (p < .05). The impact of ALS on these minors is significant and produces negative affect, externalizing behaviours and uncertainty of mental states. The lockdown situation due to the COVID-19 pandemic has further aggravated minors in their school and interpersonal self-esteem.
Collapse
Affiliation(s)
- Ines Testoni
- Department of Philosophy, Sociology, Pedagogy and Applied Psychology (FISPPA), University of Padova, 35139, Padova, Italy.
- Emili Sagol Creative Arts Therapies Research Center, University of Haifa, 3498838, Haifa, Israel.
| | - Lorenza Palazzo
- Department of Philosophy, Sociology, Pedagogy and Applied Psychology (FISPPA), University of Padova, 35139, Padova, Italy
| | - Lucia Ronconi
- Department of Philosophy, Sociology, Pedagogy and Applied Psychology (FISPPA), University of Padova, 35139, Padova, Italy
| | - Gabriella Rossi
- A.I.S.L.A., Italian Association Amyotrophic Lateral Sclerosis, BAOBAB Project Coordinator, 20124, Milano, Italy
- Fondazione Mediolanum, 20080, Basiglio (MI), Italy
| | - Jenny Ferizoviku
- A.I.S.L.A., Italian Association Amyotrophic Lateral Sclerosis, BAOBAB Project Coordinator, 20124, Milano, Italy
| | - Jose Ramon Pernia Morales
- A.I.S.L.A., Italian Association Amyotrophic Lateral Sclerosis, BAOBAB Project Coordinator, 20124, Milano, Italy
| |
Collapse
|
19
|
Benbrika S, Doidy F, Carluer L, Mondou A, Pélerin A, Eustache F, Viader F, Desgranges B. Longitudinal Study of Cognitive and Emotional Alterations in Amyotrophic Lateral Sclerosis: Clinical and Imaging Data. Front Neurol 2021; 12:620198. [PMID: 34305771 PMCID: PMC8296637 DOI: 10.3389/fneur.2021.620198] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 05/24/2021] [Indexed: 11/13/2022] Open
Abstract
Objectives: Extra-motor manifestations occur in 50% of patients with amyotrophic lateral sclerosis (ALS). These mainly concern cognition, emotional processing and behavior. Depression and anxiety are less frequent. Little is known about how these manifestations change as the disease progresses. Similarly, although cortical thinning has been well-documented at disease onset, there are scant data about cortical thinning over time and how this correlates with extra-motor manifestations. The present study therefore assessed cognitive, emotional and psychological state and cortical thinning in a group of patients with ALS at baseline and after a follow-up period. Methods: We assessed executive functions, facial emotion recognition, depressive and anxious symptoms, and cortical thinning in 43 patients with ALS at baseline, comparing them with 28 healthy controls, and 21 of them 9 months later. We looked for links among the extra-motor manifestations and correlations with cortical thickness. Results: At baseline, patients had poor executive function and recognition of complex emotions from the eyes, and more anxious and depressive symptoms than controls. At follow-up, only inhibition abilities had worsened. Cortical thinning was observed in bilateral pre-central regions and other parts of the cerebral cortex at baseline. Over time, it worsened in motor and extra-motor areas. Executive functions correlated with thinning in the middle and inferior frontal gyrus and orbitofrontal cortex. Conclusions: During follow-up, there was little deterioration in extra-motor manifestations and psychological state, despite continuing cortical thinning. Patients with affective Theory of Mind (ToM) changes seemed less depressed than the others. Impaired mental flexibility was subtended by prefrontal regions with cortical thinning.
Collapse
Affiliation(s)
- Soumia Benbrika
- Normandie Univ, UNICAEN, PSL Université Paris, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine, Caen, France
| | - Franck Doidy
- Normandie Univ, UNICAEN, PSL Université Paris, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine, Caen, France
| | - Laurence Carluer
- Normandie Univ, UNICAEN, PSL Université Paris, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine, Caen, France
| | - Audrey Mondou
- Normandie Univ, UNICAEN, PSL Université Paris, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine, Caen, France
| | - Alice Pélerin
- Normandie Univ, UNICAEN, PSL Université Paris, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine, Caen, France
| | - Francis Eustache
- Normandie Univ, UNICAEN, PSL Université Paris, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine, Caen, France
| | - Fausto Viader
- Normandie Univ, UNICAEN, PSL Université Paris, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine, Caen, France
| | - Béatrice Desgranges
- Normandie Univ, UNICAEN, PSL Université Paris, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine, Caen, France
| |
Collapse
|
20
|
Temp AGM, Dyrba M, Büttner C, Kasper E, Machts J, Kaufmann J, Vielhaber S, Teipel S, Prudlo J. Cognitive Profiles of Amyotrophic Lateral Sclerosis Differ in Resting-State Functional Connectivity: An fMRI Study. Front Neurosci 2021; 15:682100. [PMID: 34248485 PMCID: PMC8261303 DOI: 10.3389/fnins.2021.682100] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/17/2021] [Indexed: 11/18/2022] Open
Abstract
Background Half of all amyotrophic lateral sclerosis-frontotemporal spectrum disorder (ALS-FTSD) patients are classified as cognitively impaired, of which 10% have frontotemporal dementia (FTD), and an additional 40% suffer from a frontotemporal syndrome not severe enough to be described as dementia (cognitively impaired/ALSci). As changes in cerebral function measured by resting-state magnet resonance imaging (rs-fMRI) are known in ALS, we investigated whether group differences in resting-state functional connectivity (RSFC) networks could be observed between ALS patients with different cognitive profiles against healthy controls (HC). Furthermore, we correlated cognition and motor functioning with network connectivity. Methods Healthy controls, 69, and 97 ALS patients underwent functional MRI scanning and cognitive assessment. The ALS patients were categorized as non-impaired (ALSni; n = 68), cognitively impaired (ALSci; n = 21), and ALS-FTD (n = 8). Group differences in connectivity of the default mode network (DMN), motor network (MN), and ventral attention network (VAN) were investigated using a full-factorial model; correlations between global cognitive performance, shifting, and motor symptom severity were established using Pearson’s correlation. Results At a liberal alpha level of uncorrected p < 0.005 and a cluster size exceeding 20 voxels, we found widespread decreases in functional connectivity in all three networks when comparing ALS patients to HC. Similar patterns of hypoconnectivity in the bilateral motor cortices and frontotemporal emerged when comparing the ALSci and ALS-FTD patients to those not cognitively impaired. Hyperconnectivity in the DMN temporal gyrus correlated with worse global cognition; moreover, hyperconnectivity in the VAN thalamus, insula, and putamen correlated with worse shifting ability. Better-preserved motor function correlated with higher MN connectivity. Only the motor-related effects prevailed at a more conservative significance level of pFDR< 0.001. Conclusion Resting-state functional connectivity differs between cognitive profiles of ALS and is directly associated with clinical presentation, specifically with motor function, and cognitive shifting.
Collapse
Affiliation(s)
- Anna G M Temp
- German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany
| | - Martin Dyrba
- German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany
| | - Charlotte Büttner
- German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany
| | - Elisabeth Kasper
- Department of Neurology, Rostock University Medical Center, Rostock, Germany
| | - Judith Machts
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany.,Department of Neurology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Jörn Kaufmann
- Department of Neurology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Stefan Vielhaber
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany.,Department of Neurology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Stefan Teipel
- German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany.,Department of Psychosomatic Medicine, Rostock University Medical Center, Rostock, Germany
| | - Johannes Prudlo
- German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany.,Department of Neurology, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
21
|
Mahoney CJ, Ahmed RM, Huynh W, Tu S, Rohrer JD, Bedlack RS, Hardiman O, Kiernan MC. Pathophysiology and Treatment of Non-motor Dysfunction in Amyotrophic Lateral Sclerosis. CNS Drugs 2021; 35:483-505. [PMID: 33993457 DOI: 10.1007/s40263-021-00820-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/20/2021] [Indexed: 12/21/2022]
Abstract
Amyotrophic lateral sclerosis is a progressive and fatal neurodegenerative disease typically presenting with bulbar or limb weakness. There is increasing evidence that amyotrophic lateral sclerosis is a multisystem disease with early and frequent impacts on cognition, behaviour, sleep, pain and fatigue. Dysfunction of normal physiological and metabolic processes also appears common. Evidence from pre-symptomatic studies and large epidemiological cohorts examining risk factors for the future development of amyotrophic lateral sclerosis have reported a high prevalence of changes in behaviour and mental health before the emergence of motor weakness. This suggests that changes beyond the motor system are underway at an early stage with dysfunction across brain networks regulating a variety of cognitive, behavioural and other homeostatic processes. The full impact of non-motor dysfunction continues to be established but there is now sufficient evidence that the presence of non-motor symptoms impacts overall survival in amyotrophic lateral sclerosis, and with up to 80% reporting non-motor symptoms, there is an urgent need to develop more robust therapeutic approaches. This review provides a contemporary overview of the pathobiology of non-motor dysfunction, offering readers a practical approach with regard to assessment and management. We review the current evidence for pharmacological and non-pharmacological treatment of non-motor dysfunction in amyotrophic lateral sclerosis and highlight the need to further integrate non-motor dysfunction as an important outcome measure for future clinical trial design.
Collapse
Affiliation(s)
- Colin J Mahoney
- Brain and Mind Centre, The University of Sydney, 94 Mallett Street, Camperdown, NSW, Australia.
| | - Rebekah M Ahmed
- Brain and Mind Centre, The University of Sydney, 94 Mallett Street, Camperdown, NSW, Australia.,Department of Neurology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - William Huynh
- Brain and Mind Centre, The University of Sydney, 94 Mallett Street, Camperdown, NSW, Australia
| | - Sicong Tu
- Brain and Mind Centre, The University of Sydney, 94 Mallett Street, Camperdown, NSW, Australia
| | - Jonathan D Rohrer
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Richard S Bedlack
- Department of Neurology, Duke University Hospital, Durham, North Carolina, USA
| | - Orla Hardiman
- Academic Unit of Neurology, Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland
| | - Matthew C Kiernan
- Brain and Mind Centre, The University of Sydney, 94 Mallett Street, Camperdown, NSW, Australia.,Department of Neurology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| |
Collapse
|
22
|
Consonni M, Dalla Bella E, Bersano E, Lauria G. Cognitive and behavioural impairment in amyotrophic lateral sclerosis: A landmark of the disease? A mini review of longitudinal studies. Neurosci Lett 2021; 754:135898. [PMID: 33862143 DOI: 10.1016/j.neulet.2021.135898] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/26/2021] [Accepted: 04/08/2021] [Indexed: 01/02/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a heterogeneous neurodegenerative disease marked by progressive loss of motor abilities. Approximately half of patents with ALS experience cognitive (ALSci) or behavioural impairment (ALSbi) during the course of the disease, with a small percentage developing overt frontotemporal dementia (FTD). ALSci and/or ALSbi can occur simultaneously with motor neuron degeneration or develop in advanced stages of the disease, but it can even precede motor involvement in some cases, namely in ALS patients meeting criteria for FTD. Despite clear evidence that cognitive/behavioural impairment may appear early in the course of ALS, no prominent deterioration seems to occur with disease progression. Longitudinal studies have failed to reach conclusive results on the progression of cognitive and behavioural involvement in ALS. This may be due to some structural limitations of the studies, such as attrition rate, practice effect, short-time interval between neuropsychological assessments, but it can also be due to the heterogeneity of ALS phenotypes. The objective of this review is to provide a comprehensive and critical analysis of results of longitudinal studies highlighting cognitive and behavioural domains mainly affected by neurodegeneration pointing out the determinants that might be associate with the development and worsening of frontotemporal symptoms in ALS. At this regard, older age, rapidly progressing ALS, bulbar-onset, advanced disease stages are among factors mainly associated with cognitive and behavioural involvement. Moreover, the progression of cognitive and behavioural deficits seems to be not directly related to the slope of motor disability, thus suggesting the independence of neuropsychological and motor functional decline in ALS. Cognitive and motor involvement may indeed present with distinct trajectories suggesting a differential vulnerability of motor and non-motor cortical networks. In this scenario, determining the progression of extra-motor involvement in ALS may help refine understanding of the clinical implications of cognitive and behavioural abnormalities, and provide clues to the aetiology of the disease.
Collapse
Affiliation(s)
- Monica Consonni
- 3rd Neurology Unit and Motor Neuron Diseases Centre, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133, Milan, Italy.
| | - Eleonora Dalla Bella
- 3rd Neurology Unit and Motor Neuron Diseases Centre, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133, Milan, Italy
| | - Enrica Bersano
- 3rd Neurology Unit and Motor Neuron Diseases Centre, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133, Milan, Italy; Department of Biomedical and Clinical Sciences "Luigi Sacco", University of Milan, Via Festa del Perdono 7, 20122, Milan, Italy
| | - Giuseppe Lauria
- 3rd Neurology Unit and Motor Neuron Diseases Centre, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133, Milan, Italy; Department of Biomedical and Clinical Sciences "Luigi Sacco", University of Milan, Via Festa del Perdono 7, 20122, Milan, Italy
| |
Collapse
|
23
|
Castelnovo V, Canu E, Calderaro D, Riva N, Poletti B, Basaia S, Solca F, Silani V, Filippi M, Agosta F. Progression of brain functional connectivity and frontal cognitive dysfunction in ALS. Neuroimage Clin 2020; 28:102509. [PMID: 33395998 PMCID: PMC7708866 DOI: 10.1016/j.nicl.2020.102509] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 12/31/2022]
Abstract
OBJECTIVE To investigate the progression of resting-state functional connectivity (rs-FC) changes in patients with amyotrophic lateral sclerosis (ALS) and their relationship with frontal cognitive alterations. METHODS This is a multicentre, observational and longitudinal study. At baseline and after six months, 25 ALS patients underwent 3D T1-weighted MRI, resting-state functional MRI (rs-fMRI), and the computerized Test of Attentional Performance (TAP). Using independent component analysis, rs-FC changes of brain networks involving connections to frontal lobes and their relationship with baseline cognitive scores and cognitive changes over time were assessed. With a seed-based approach, rs-FC longitudinal changes of the middle frontal gyrus (MFG) were also explored. RESULTS After six months, ALS patients showed an increased rs-FC of the left anterior cingulate, left middle frontal gyrus (MFG) and left superior frontal gyrus within the frontostriatal network, and of the left MFG, left supramarginal gyrus and right angular gyrus within the left frontoparietal network. Within the frontostriatal network, a worse baseline performance at TAP divided attention task was associated with an increased rs-FC over time in the left MFG and a worse baseline performance at the category fluency index was related with increased rs-FC over time in the left frontal superior gyrus. After six months, the seed-based rs-FC analysis of the MFG with the whole brain showed decreased rs-FC of the right MFG with frontoparietal regions in patients compared to controls. CONCLUSIONS Rs-FC changes in ALS patients progressed over time within the frontostriatal and the frontoparietal networks and are related to frontal-executive dysfunction. The MFG seems a potential core region in the framework of a frontoparietal functional breakdown, which is typical of frontotemporal lobar degeneration. These findings offer new potential markers for monitoring extra-motor progression in ALS.
Collapse
Affiliation(s)
- Veronica Castelnovo
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Elisa Canu
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Davide Calderaro
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Nilo Riva
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Barbara Poletti
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Silvia Basaia
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Federica Solca
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Vincenzo Silani
- Department of Pathophysiology and Transplantation, "Dino Ferrari" Center, Università degli Studi di Milano, Milano, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; Neurophysiology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Federica Agosta
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy.
| |
Collapse
|
24
|
Bi XA, Hu X, Xie Y, Wu H. A novel CERNNE approach for predicting Parkinson's Disease-associated genes and brain regions based on multimodal imaging genetics data. Med Image Anal 2020; 67:101830. [PMID: 33096519 DOI: 10.1016/j.media.2020.101830] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 07/24/2020] [Accepted: 09/01/2020] [Indexed: 12/13/2022]
Abstract
The detection and pathogenic factors analysis of Parkinson's disease (PD) has a practical significance for its diagnosis and treatment. However, the traditional research paradigms are commonly based on single neural imaging data, which is easy to ignore the complementarity between multimodal imaging genetics data. The existing researches also pay little attention to the comprehensive framework of patient detection and pathogenic factors analysis for PD. Based on functional magnetic resonance imaging (fMRI) data and single nucleotide polymorphism (SNP) data, a novel brain disease multimodal data analysis model is proposed in this paper. Firstly, according to the complementarity between the two types of data, the classical correlation analysis method is used to construct the fusion feature of subjects. Secondly, based on the artificial neural network, the fusion feature analysis tool named clustering evolutionary random neural network ensemble (CERNNE) is designed. This method integrates multiple neural networks constructed randomly, and uses clustering evolution strategy to optimize the ensemble learner by adaptive selective integration, selecting the discriminative features for PD analysis and ensuring the generalization performance of the ensemble model. By combining with data fusion scheme, the CERNNE is applied to forming a multi-task analysis framework, recognizing PD patients and predicting PD-associated brain regions and genes. In the multimodal data experiment, the proposed framework shows better classification performance and pathogenic factors predicting ability, which provides a new perspective for the diagnosis of PD.
Collapse
Affiliation(s)
- Xia-An Bi
- Hunan Provincial Key Laboratory of Intelligent Computing and Language Information Processing, Hunan Normal University, Changsha 410081, China; College of Information Science and Engineering, Hunan Normal University, Changsha 410081, China.
| | - Xi Hu
- Hunan Provincial Key Laboratory of Intelligent Computing and Language Information Processing, Hunan Normal University, Changsha 410081, China; College of Information Science and Engineering, Hunan Normal University, Changsha 410081, China
| | - Yiming Xie
- Hunan Provincial Key Laboratory of Intelligent Computing and Language Information Processing, Hunan Normal University, Changsha 410081, China; College of Information Science and Engineering, Hunan Normal University, Changsha 410081, China
| | - Hao Wu
- Hunan Provincial Key Laboratory of Intelligent Computing and Language Information Processing, Hunan Normal University, Changsha 410081, China; College of Information Science and Engineering, Hunan Normal University, Changsha 410081, China
| |
Collapse
|
25
|
Trojsi F, Siciliano M, Tedeschi G. Selective degeneration of amygdalar nuclei in amyotrophic lateral sclerosis. J Neurol Sci 2020; 417:117038. [DOI: 10.1016/j.jns.2020.117038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 07/13/2020] [Indexed: 11/30/2022]
|
26
|
Steinke A, Lange F, Seer C, Petri S, Kopp B. A Computational Study of Executive Dysfunction in Amyotrophic Lateral Sclerosis. J Clin Med 2020; 9:E2605. [PMID: 32796719 PMCID: PMC7463664 DOI: 10.3390/jcm9082605] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/29/2020] [Accepted: 07/31/2020] [Indexed: 12/28/2022] Open
Abstract
Executive dysfunction is a well-documented, yet nonspecific corollary of various neurological diseases and psychiatric disorders. Here, we applied computational modeling of latent cognition for executive control in amyotrophic lateral sclerosis (ALS) patients. We utilized a parallel reinforcement learning model of trial-by-trial Wisconsin Card Sorting Test (WCST) behavior. Eighteen ALS patients and 21 matched healthy control participants were assessed on a computerized variant of the WCST (cWCST). ALS patients showed latent cognitive symptoms, which can be characterized as bradyphrenia and haphazard responding. A comparison with results from a recent computational Parkinson's disease (PD) study (Steinke et al., 2020, J Clin Med) suggests that bradyphrenia represents a disease-nonspecific latent cognitive symptom of ALS and PD patients alike. Haphazard responding seems to be a disease-specific latent cognitive symptom of ALS, whereas impaired stimulus-response learning seems to be a disease-specific latent cognitive symptom of PD. These data were obtained from the careful modeling of trial-by-trial behavior on the cWCST, and they suggest that computational cognitive neuropsychology provides nosologically specific indicators of latent facets of executive dysfunction in ALS (and PD) patients, which remain undiscoverable for traditional behavioral cognitive neuropsychology. We discuss implications for neuropsychological assessment, and we discuss opportunities for confirmatory computational brain imaging studies.
Collapse
Affiliation(s)
- Alexander Steinke
- Department of Neurology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany; (F.L.); (C.S.); (S.P.); (B.K.)
| | - Florian Lange
- Department of Neurology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany; (F.L.); (C.S.); (S.P.); (B.K.)
- Behavioral Engineering Research Group, KU Leuven, Naamsestraat 69, 3000 Leuven, Belgium
| | - Caroline Seer
- Department of Neurology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany; (F.L.); (C.S.); (S.P.); (B.K.)
- Movement Control & Neuroplasticity Research Group, Department of Movement Sciences, KU Leuven, Leuven, Tervuursevest 101, 3001 Leuven, Belgium
- LBI-KU Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium
| | - Susanne Petri
- Department of Neurology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany; (F.L.); (C.S.); (S.P.); (B.K.)
| | - Bruno Kopp
- Department of Neurology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany; (F.L.); (C.S.); (S.P.); (B.K.)
| |
Collapse
|
27
|
Vallée C, Maurel P, Corouge I, Barillot C. Acquisition Duration in Resting-State Arterial Spin Labeling. How Long Is Enough? Front Neurosci 2020; 14:598. [PMID: 32848529 PMCID: PMC7406917 DOI: 10.3389/fnins.2020.00598] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 05/15/2020] [Indexed: 12/12/2022] Open
Abstract
Resting-state Arterial Spin Labeling (rs-ASL) is a rather confidential method compared to resting-state BOLD. As ASL allows to quantify the cerebral blood flow, unlike BOLD, rs-ASL can lead to significant clinical subject-scaled applications. Despite directly impacting clinical practicability and functional networks estimation, there is no standard for rs-ASL regarding the acquisition duration. Our work here focuses on assessing the feasibility of ASL as an rs-fMRI method and on studying the effect of the acquisition duration on the estimation of functional networks. To this end, we acquired a long 24 min 30 s rs-ASL sequence and investigated how estimations of six typical functional brain networks evolved with respect to the acquisition duration. Our results show that, after a certain acquisition duration, the estimations of all functional networks reach their best and are stabilized. Since, for clinical application, the acquisition duration should be the shortest possible, we suggest an acquisition duration of 14 min, i.e., 240 volumes with our sequence parameters, as it covers the functional networks estimation stabilization.
Collapse
Affiliation(s)
- Corentin Vallée
- Université de Rennes, Inria, CNRS, Inserm, IRISA UMR 6074, Empenn ERL U-1228, Rennes, France
| | | | | | | |
Collapse
|
28
|
Chipika RH, Christidi F, Finegan E, Li Hi Shing S, McKenna MC, Chang KM, Karavasilis E, Doherty MA, Hengeveld JC, Vajda A, Pender N, Hutchinson S, Donaghy C, McLaughlin RL, Hardiman O, Bede P. Amygdala pathology in amyotrophic lateral sclerosis and primary lateral sclerosis. J Neurol Sci 2020; 417:117039. [PMID: 32713609 DOI: 10.1016/j.jns.2020.117039] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/19/2020] [Accepted: 07/13/2020] [Indexed: 12/26/2022]
Abstract
Temporal lobe studies in motor neuron disease overwhelmingly focus on white matter alterations and cortical grey matter atrophy. Reports on amygdala involvement are conflicting and the amygdala is typically evaluated as single structure despite consisting of several functionally and cytologically distinct nuclei. A prospective, single-centre, neuroimaging study was undertaken to comprehensively characterise amygdala pathology in 100 genetically-stratified ALS patients, 33 patients with PLS and 117 healthy controls. The amygdala was segmented into groups of nuclei using a Bayesian parcellation algorithm based on a probabilistic atlas and shape deformations were additionally assessed by vertex analyses. The accessory basal nucleus (p = .021) and the cortical nucleus (p = .022) showed significant volume reductions in C9orf72 negative ALS patients compared to controls. The lateral nucleus (p = .043) and the cortico-amygdaloid transition (p = .024) were preferentially affected in C9orf72 hexanucleotide carriers. A trend of total volume reduction was identified in C9orf72 positive ALS patients (p = .055) which was also captured in inferior-medial shape deformations on vertex analyses. Our findings highlight that the amygdala is affected in ALS and our study demonstrates the selective involvement of specific nuclei as opposed to global atrophy. The genotype-specific patterns of amygdala involvement identified by this study are consistent with the growing literature of extra-motor clinical features. Mesial temporal lobe pathology in ALS is not limited to hippocampal pathology but, as a key hub of the limbic system, the amygdala is also affected in ALS.
Collapse
Affiliation(s)
- Rangariroyashe H Chipika
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Foteini Christidi
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland; Department of Neurology, Aeginition Hospital, University of Athens, Greece
| | - Eoin Finegan
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Stacey Li Hi Shing
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Mary Clare McKenna
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Kai Ming Chang
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland; Electronics and Computer Science, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Efstratios Karavasilis
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland; 2nd Department of Radiology, Attikon University Hospital, University of Athens, Athens, Greece
| | - Mark A Doherty
- Complex Trait Genomics Laboratory, Smurfit Institute of Genetics, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Jennifer C Hengeveld
- Complex Trait Genomics Laboratory, Smurfit Institute of Genetics, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Alice Vajda
- Complex Trait Genomics Laboratory, Smurfit Institute of Genetics, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Niall Pender
- Department of psychology, Beaumont Hospital Dublin, Ireland
| | - Siobhan Hutchinson
- Department of Neurology, St James's Hospital, James's St, Ushers, Dublin 8 D08 NHY1, Ireland
| | - Colette Donaghy
- Department of Neurology, Belfast, Western Health & Social Care Trust, UK
| | - Russell L McLaughlin
- Complex Trait Genomics Laboratory, Smurfit Institute of Genetics, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Orla Hardiman
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Peter Bede
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland.
| |
Collapse
|
29
|
Luo C, Hu N, Xiao Y, Zhang W, Gong Q, Lui S. Comparison of Gray Matter Atrophy in Behavioral Variant Frontal Temporal Dementia and Amyotrophic Lateral Sclerosis: A Coordinate-Based Meta-Analysis. Front Aging Neurosci 2020; 12:14. [PMID: 32116647 PMCID: PMC7026505 DOI: 10.3389/fnagi.2020.00014] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 01/16/2020] [Indexed: 02/05/2023] Open
Abstract
Background: There is growing evidence supporting behavioral variant frontotemporal dementia (bvFTD) and amyotrophic lateral sclerosis (ALS) as extreme points of a disease spectrum. The aim of this study was to delineate the common and different patterns of gray matter atrophy associated with bvFTD and with ALS by pooling together the results of previous voxel-based morphometry (VBM) studies. Methods: We retrieved VBM studies that investigated gray matter atrophy in bvFTD patients vs. controls and in ALS patients vs. controls. Stereotactic data were extracted from those studies and subsequently tested for convergence and differences using activation likelihood estimation (ALE). A behavioral analysis using the BrainMap database was performed to assess the functional roles of the regions affected by bvFTD and/or ALS. Results: Our study demonstrated a convergence of gray matter atrophy in the frontolimbic structures that involve the bilateral anterior insula and anterior cingulate cortex. Comparing the pattern of GM atrophy in bvFTD and ALS patients revealed greater atrophy in the frontomedial cortex, bilateral caudate, left anterior insula, and right thalamus in those with bvFTD and a higher degree of atrophy in the right motor cortex of those with ALS. Behavioral analysis revealed that the pattern of the affected regions contributed to the dysfunction of emotional and cognitive processing in bvFTD patients and the dysfunction of motor execution in ALS patients. Conclusion: Our results revealed a shared neural basis between bvFTD and ALS subjects, as well as a specific and distinct neural signature that underpinned the clinical manifestations of those two diseases. Those findings outlined the role of the frontomedial-caudate circuit in the development of bvFTD-like deficits in ALS patients.
Collapse
Affiliation(s)
- Chunyan Luo
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital, Sichuan University, Chengdu, China.,Psychoradiology Research Unit of the Chinese Academy of Medical Sciences (2018RU011), West China Hospital of Sichuan University, Chengdu, China
| | - Na Hu
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital, Sichuan University, Chengdu, China.,Psychoradiology Research Unit of the Chinese Academy of Medical Sciences (2018RU011), West China Hospital of Sichuan University, Chengdu, China
| | - Yuan Xiao
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital, Sichuan University, Chengdu, China.,Psychoradiology Research Unit of the Chinese Academy of Medical Sciences (2018RU011), West China Hospital of Sichuan University, Chengdu, China
| | - Wenjing Zhang
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital, Sichuan University, Chengdu, China.,Psychoradiology Research Unit of the Chinese Academy of Medical Sciences (2018RU011), West China Hospital of Sichuan University, Chengdu, China
| | - Qiyong Gong
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital, Sichuan University, Chengdu, China.,Psychoradiology Research Unit of the Chinese Academy of Medical Sciences (2018RU011), West China Hospital of Sichuan University, Chengdu, China
| | - Su Lui
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital, Sichuan University, Chengdu, China.,Psychoradiology Research Unit of the Chinese Academy of Medical Sciences (2018RU011), West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
30
|
Bisecco A, Altieri M, Santangelo G, Di Nardo F, Docimo R, Caiazzo G, Capuano R, Pappacena S, d'Ambrosio A, Bonavita S, Trojsi F, Cirillo M, Esposito F, Tedeschi G, Gallo A. Resting-State Functional Correlates of Social Cognition in Multiple Sclerosis: An Explorative Study. Front Behav Neurosci 2020; 13:276. [PMID: 32116584 PMCID: PMC7016209 DOI: 10.3389/fnbeh.2019.00276] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 12/04/2019] [Indexed: 12/12/2022] Open
Abstract
Social cognition includes mental operations essential for functional social interactions, and several studies revealed an impairment of social cognition abilities in patients with Multiple Sclerosis (MS). These deficits have been related to global and focal gray matter atrophy as well as microstructural white matter damage. Although some studies reveal a correlation between social cognition and task-based functional magnetic resonance imaging (MRI), no studies to date have explored the association between brain resting-state functional connectivity (RS-FC) abnormalities and several measures of social cognition in MS. The aim of this explorative study was to assess the contribution of RS-FC abnormalities of major brain networks to social cognition in MS patients. Clinical, neuropsychological, and MRI data were collected from 41 non-depressed and cognitively preserved relapsing-remitting MS patients (mean disease duration = 8.8 ± 8.2 years; median Expanded Disability Status Scale = 1.5, range 0–6.5) and 25 matched healthy controls (HCs). The ToM Pictures Sequencing Task (TMPS) and the Reading the Mind in the Eyes Task were employed to evaluate social cognition. All participants underwent a structural MRI and RS functional MRI 3T protocol. Regional gray matter atrophy was measured, and FCs of the default mode (DMN), right and left fronto-parietal, executive (EN), salience, cerebellar, and limbic (LN) networks were evaluated by independent component analysis (ICA). Differences on TMPS were found between MS patients and HC (MS < HC). In the MS group, associations were found between right middle temporal gyrus FC (in the DMN) and reciprocity subscale of TMPS, posterior cingulate cortex (PCC) FC (in the DMN) and first-order false-belief subscale of TMPS, cingulate gyrus FC (in the EN) and TMPS as well as reciprocity subscale of TMPS, and right superior temporal gyrus (in the LN) and reciprocity subscale of TMPS. All detected RS-FC changes did not co-localize with regional gray matter atrophy. The results suggest an association between social cognition and RS-FC changes of DMN, EN, and LN in MS. Future studies should further explore the possible adaptive or maladaptive mechanisms of these FC abnormalities in MS.
Collapse
Affiliation(s)
- Alvino Bisecco
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Napoli, Italy
| | - Manuela Altieri
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Napoli, Italy.,Department of Psychology, University of Campania Luigi Vanvitelli, Caserta, Italy
| | - Gabriella Santangelo
- Department of Psychology, University of Campania Luigi Vanvitelli, Caserta, Italy
| | - Federica Di Nardo
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Napoli, Italy
| | - Renato Docimo
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Napoli, Italy
| | - Giuseppina Caiazzo
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Napoli, Italy
| | - Rocco Capuano
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Napoli, Italy
| | - Simona Pappacena
- Department of Psychology, University of Campania Luigi Vanvitelli, Caserta, Italy
| | - Alessandro d'Ambrosio
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Napoli, Italy
| | - Simona Bonavita
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Napoli, Italy
| | - Francesca Trojsi
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Napoli, Italy
| | - Mario Cirillo
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Napoli, Italy
| | - Fabrizio Esposito
- Department of Medicine and Surgery, University of Salerno, Baronissi, Italy
| | - Gioacchino Tedeschi
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Napoli, Italy
| | - Antonio Gallo
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Napoli, Italy
| |
Collapse
|
31
|
Benbrika S, Desgranges B, Eustache F, Viader F. Cognitive, Emotional and Psychological Manifestations in Amyotrophic Lateral Sclerosis at Baseline and Overtime: A Review. Front Neurosci 2019; 13:951. [PMID: 31551700 PMCID: PMC6746914 DOI: 10.3389/fnins.2019.00951] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 08/22/2019] [Indexed: 12/11/2022] Open
Abstract
It is now well recognized that, in addition to motor impairment, amyotrophic lateral sclerosis (ALS) may cause extra-motor clinical signs and symptoms. These can include the alteration of certain cognitive functions, impaired social cognition, and changes in the perception and processing of emotions. Where these extra-motor manifestations occur in ALS, they usually do so from disease onset. In about 10% of cases, the cognitive and behavioral changes meet the diagnostic criteria for frontotemporal dementia. The timecourse of behavioral and cognitive involvement in ALS is unclear. Whereas longitudinal studies have failed to show cognitive decline over time, some cross-sectional studies have demonstrated poorer cognitive performances in the advanced stages of the disease. Neuroimaging studies show that in ALS, extra-motor signs and symptoms are associated with specific brain lesions, but little is known about how they change over time. Finally, patients with ALS appear less depressed than might be expected, given the prognosis. Moreover, many patients achieve satisfactory psychosocial adjustment throughout the course of the disease, regardless of their degree of motor disability. There are scant longitudinal data on extra-motor impairment in ALS, and to our knowledge, no systematic review on this subject has yet been published. Even so, a better understanding of patients' clinical trajectory is essential if they are to be provided with tailored care and given the best possible support. We therefore undertook to review the evidence for extra-motor changes and their time course in ALS, in both the cognitive, emotional and psychological domains, with a view to identifying mechanisms that may help these patients cope with their disease.
Collapse
Affiliation(s)
| | - Béatrice Desgranges
- Neuropsychology and Imaging of Human Memory, Normandy University-PSL Research University-EPHE-INSERM U1077, Caen University Hospital, Caen, France
| | | | | |
Collapse
|
32
|
Trojsi F, Siciliano M, Femiano C, Santangelo G, Lunetta C, Calvo A, Moglia C, Marinou K, Ticozzi N, Ferro C, Scialò C, Sorarù G, Conte A, Falzone YM, Tortelli R, Russo M, Sansone VA, Chiò A, Mora G, Silani V, Volanti P, Caponnetto C, Querin G, Sabatelli M, Riva N, Logroscino G, Messina S, Fasano A, Monsurrò MR, Tedeschi G, Mandrioli J. Comparative Analysis of C9orf72 and Sporadic Disease in a Large Multicenter ALS Population: The Effect of Male Sex on Survival of C9orf72 Positive Patients. Front Neurosci 2019; 13:485. [PMID: 31156370 PMCID: PMC6534038 DOI: 10.3389/fnins.2019.00485] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 04/29/2019] [Indexed: 12/30/2022] Open
Abstract
We investigated whether the C9orf72 repeat expansion is associated with specific clinical features, comorbidities, and prognosis in patients with amyotrophic lateral sclerosis (ALS). A cohort of 1417 ALS patients, diagnosed between January 1, 2009 and December 31, 2013 by 13 Italian ALS Referral Centers, was screened for the C9orf72 repeat expansion, and the analyses were performed comparing patients carrying this expansion (ALS-C9Pos) to those negative for this and other explored ALS-related mutations (ALS without genetic mutations, ALSwoGM). Compared to the ALSwoGM group, ALS-C9Pos patients (n = 84) were younger at disease onset, at the first clinical observation and at diagnosis (p < 0.001). After correcting for these differences, we found that ALS-C9Pos patients had higher odds of bulbar onset, diagnosis of frontotemporal dementia (FTD) and family history of ALS, FTD, and Alzheimer's disease and had lower odds of spinal onset, non-invasive ventilation, hypertension and psychiatric diseases than ALSwoGM patients. Among these variables, those related to shorter survival time were: bulbar onset, presence of FTD, hypertension, psychiatric disease, and family history of ALS (p < 0.05). Cox proportional hazards regression multivariate analysis suggested that carrying the C9orf72 repeat expansion was an independent factor negatively impacting on survival time in men (HR 1.58, 95% CI 1.07–2.33, p = 0.021), but not in women (p > 0.05) as well as in the whole sample (p > 0.05). When compared to ALSwoGM, ALS-C9Pos showed an earlier disease onset, no significant diagnostic delay and a higher odds of bulbar onset, FTD and family history of ALS and dementia. Moreover, male sex drove the negative effect of expanded variant on survival, confirming the hypothesis that sex is likely to be a crucial factor in the biology of C9orf72-related disease.
Collapse
Affiliation(s)
- Francesca Trojsi
- Department of Advanced Medical and Surgical Sciences, MRI Research Center SUN-FISM, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Mattia Siciliano
- Department of Advanced Medical and Surgical Sciences, MRI Research Center SUN-FISM, University of Campania "Luigi Vanvitelli", Naples, Italy.,Department of Psychology, Università degli Studi della Campania "L. Vanvitelli", Naples, Italy
| | - Cinzia Femiano
- Department of Advanced Medical and Surgical Sciences, MRI Research Center SUN-FISM, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Gabriella Santangelo
- Department of Psychology, Università degli Studi della Campania "L. Vanvitelli", Naples, Italy
| | - Christian Lunetta
- NEuroMuscular Omnicentre (NEMO), Serena Onlus Foundation, Milan, Italy.,NEMO Sud Clinical Center for Neuromuscular Diseases, Aurora Onlus Foundation, Messina, Italy
| | - Andrea Calvo
- ALS Center, "Rita Levi Montalcini" Department of Neuroscience, University of Torino, Turin, Italy
| | - Cristina Moglia
- ALS Center, "Rita Levi Montalcini" Department of Neuroscience, University of Torino, Turin, Italy
| | - Kalliopi Marinou
- Department of Neurorehabilitation-ALS Center, IRCCS Scientific Clinical Institute Maugeri, Milan, Italy
| | - Nicola Ticozzi
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy.,Department of Pathophysiology and Transplantation, "Dino Ferrari" Center, University of Milan, Milan, Italy
| | - Christian Ferro
- Neurorehabilitation Unit/ALS Center, Scientific Clinical Institutes (ICS) Maugeri, IRCCS, Messina, Italy
| | - Carlo Scialò
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal, and Child Health (DINOGMI), University of Genova, IRCCS AOU San Martino-IST, Genova, Italy
| | - Gianni Sorarù
- Department of Neurosciences, Neuromuscular Center, University of Padova, Padua, Italy
| | - Amelia Conte
- NEuroMuscular Omnicentre (NEMO), Serena Onlus Foundation-Pol. A. Gemelli Foundation, Rome, Italy
| | - Yuri M Falzone
- Department of Neurology, Institute of Experimental Neurology (INSPE), Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Rosanna Tortelli
- Department of Clinical Research in Neurology, University of Bari "A. Moro", at Pia Fondazione "Card. G. Panico", Lecce, Italy
| | - Massimo Russo
- NEMO Sud Clinical Center for Neuromuscular Diseases, Aurora Onlus Foundation, Messina, Italy.,Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Valeria Ada Sansone
- NEuroMuscular Omnicentre (NEMO), Serena Onlus Foundation, Milan, Italy.,Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Adriano Chiò
- ALS Center, "Rita Levi Montalcini" Department of Neuroscience, University of Torino, Turin, Italy
| | - Gabriele Mora
- Department of Neurorehabilitation-ALS Center, IRCCS Scientific Clinical Institute Maugeri, Milan, Italy
| | - Vincenzo Silani
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy.,Department of Pathophysiology and Transplantation, "Dino Ferrari" Center, University of Milan, Milan, Italy
| | - Paolo Volanti
- Neurorehabilitation Unit/ALS Center, Scientific Clinical Institutes (ICS) Maugeri, IRCCS, Messina, Italy
| | - Claudia Caponnetto
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal, and Child Health (DINOGMI), University of Genova, IRCCS AOU San Martino-IST, Genova, Italy
| | - Giorgia Querin
- Department of Neurosciences, Neuromuscular Center, University of Padova, Padua, Italy
| | - Mario Sabatelli
- NEuroMuscular Omnicentre (NEMO), Serena Onlus Foundation-Pol. A. Gemelli Foundation, Rome, Italy.,Department of Geriatrics, Neurosciences and Orthopedics, Institute of Neurology, Catholic University of Sacred Heart, Rome, Italy
| | - Nilo Riva
- Department of Neurology, Institute of Experimental Neurology (INSPE), Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Giancarlo Logroscino
- Department of Clinical Research in Neurology, University of Bari "A. Moro", at Pia Fondazione "Card. G. Panico", Lecce, Italy
| | - Sonia Messina
- NEMO Sud Clinical Center for Neuromuscular Diseases, Aurora Onlus Foundation, Messina, Italy.,Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Antonio Fasano
- Department of Neuroscience, S. Agostino-Estense Hospital and University of Modena and Reggio Emilia, Modena, Italy
| | - Maria Rosaria Monsurrò
- Department of Advanced Medical and Surgical Sciences, MRI Research Center SUN-FISM, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Gioacchino Tedeschi
- Department of Advanced Medical and Surgical Sciences, MRI Research Center SUN-FISM, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Jessica Mandrioli
- Department of Neuroscience, S. Agostino-Estense Hospital and University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
33
|
Zucchi E, Ticozzi N, Mandrioli J. Psychiatric Symptoms in Amyotrophic Lateral Sclerosis: Beyond a Motor Neuron Disorder. Front Neurosci 2019; 13:175. [PMID: 30914912 PMCID: PMC6421303 DOI: 10.3389/fnins.2019.00175] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 02/14/2019] [Indexed: 12/11/2022] Open
Abstract
The historical view that Amyotrophic Lateral Sclerosis (ALS) as a pure motor disorder has been increasingly challenged by the discovery of cognitive and behavioral changes in the spectrum of Frontotemporal Dementia (FTD). Less recognized and still significant comorbidities that ALS patients may present are prior or concomitant psychiatric illness, such as psychosis and schizophrenia, or mood disorders. These non-motor symptoms disturbances have a close time relationship with disease onset, may constitute part of a larger framework of network disruption in motor neuron disorders, and may impact ALS patients and families, with regards to ethical choices and end-of-life decisions. This review aims at identifying the most common psychiatric alterations related to ALS and its prognosis, looking at a common genetic background and shared structural brain pathology.
Collapse
Affiliation(s)
- Elisabetta Zucchi
- Department of Neuroscience, Azienda Ospedaliero Universitaria di Modena, University of Modena and Reggio Emilia, Modena, Italy
| | - Nicola Ticozzi
- Department of Neurology and Laboratory of Neuroscience, Istituto Auxologico Italiano, Istituto di Ricovero e Cura a Carattere Scientifico, Milan, Italy.,Department of Pathophysiology and Transplantation, 'Dino Ferrari' Center, Università degli Studi di Milano, Milan, Italy
| | - Jessica Mandrioli
- Department of Neuroscience, Azienda Ospedaliera Universitaria Modena, St. Agostino- Estense Hospital, Modena, Italy
| |
Collapse
|
34
|
The changing landscape of motor neuron disease imaging: the transition from descriptive studies to precision clinical tools. Curr Opin Neurol 2019; 31:431-438. [PMID: 29750730 DOI: 10.1097/wco.0000000000000569] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW Neuroimaging in motor neuron disease (MND) has traditionally been seen as an academic tool with limited direct relevance to individualized patient care. This has changed radically in recent years as computational imaging has emerged as a viable clinical tool with true biomarker potential. This transition is not only fuelled by technological advances but also by important conceptual developments. RECENT FINDINGS The natural history of MND is now evaluated by presymptomatic, postmortem and multi-timepoint longitudinal imaging studies. The anatomical spectrum of MND imaging has also been expanded from an overwhelmingly cerebral focus to innovative spinal and muscle applications. In contrast to the group-comparisons of previous studies, machine-learning and deep-learning approaches are increasingly utilized to model real-life diagnostic dilemmas and aid prognostic classification. The focus from evaluating focal structural changes has shifted to the appraisal of network integrity by connectivity-based approaches. The armamentarium of MND imaging has also been complemented by novel PET-ligands, spinal toolboxes and the availability of magnetoencephalography and high-field magnetic resonance (MR) imaging platforms. SUMMARY In addition to the technological and conceptual advances, collaborative multicentre research efforts have also gained considerable momentum. This opinion-piece reviews emerging trends in MND imaging and their implications to clinical care and drug development.
Collapse
|
35
|
Strikwerda-Brown C, Ramanan S, Irish M. Neurocognitive mechanisms of theory of mind impairment in neurodegeneration: a transdiagnostic approach. Neuropsychiatr Dis Treat 2019; 15:557-573. [PMID: 30863078 PMCID: PMC6388953 DOI: 10.2147/ndt.s158996] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Much of human interaction is predicated upon our innate capacity to infer the thoughts, beliefs, emotions, and perspectives of others, in short, to possess a "theory of mind" (ToM). While the term has evolved considerably since its inception, ToM encompasses our unique ability to apprehend the mental states of others, enabling us to anticipate and predict subsequent behavior. From a developmental perspective, ToM has been a topic of keen research interest, with numerous studies seeking to explicate the origins of this fundamental capacity and its disruption in developmental disorders such as autism. The study of ToM at the opposite end of the lifespan, however, is paradoxically new born, emerging as a topic of interest in its own right comparatively recently. Here, we consider the unique insights afforded by studying ToM capacity in neurodegenerative disorders. Arguing from a novel, transdiagnostic perspective, we consider how ToM vulnerability reflects the progressive degradation of neural circuits specialized for an array of higher-order cognitive processes. This mechanistic approach enables us to consider the common and unique neurocognitive mechanisms that underpin ToM dysfunction across neurodegenerative disorders and for the first time examine its relation to behavioral disturbances across social, intimate, legal, and criminal settings. As such, we aim to provide a comprehensive overview of ToM research in neurodegeneration, the resultant challenges for family members, clinicians, and the legal profession, and future directions worthy of exploration.
Collapse
Affiliation(s)
- Cherie Strikwerda-Brown
- The University of Sydney, Brain and Mind Centre, Sydney, NSW, Australia,
- The University of Sydney, School of Psychology, Sydney, NSW, Australia,
- ARC Centre of Excellence in Cognition and its Disorders, Sydney, NSW, Australia,
| | - Siddharth Ramanan
- The University of Sydney, Brain and Mind Centre, Sydney, NSW, Australia,
- The University of Sydney, School of Psychology, Sydney, NSW, Australia,
- ARC Centre of Excellence in Cognition and its Disorders, Sydney, NSW, Australia,
| | - Muireann Irish
- The University of Sydney, Brain and Mind Centre, Sydney, NSW, Australia,
- The University of Sydney, School of Psychology, Sydney, NSW, Australia,
- ARC Centre of Excellence in Cognition and its Disorders, Sydney, NSW, Australia,
| |
Collapse
|
36
|
Proudfoot M, Bede P, Turner MR. Imaging Cerebral Activity in Amyotrophic Lateral Sclerosis. Front Neurol 2019; 9:1148. [PMID: 30671016 PMCID: PMC6332509 DOI: 10.3389/fneur.2018.01148] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 12/11/2018] [Indexed: 01/30/2023] Open
Abstract
Advances in neuroimaging, complementing histopathological insights, have established a multi-system involvement of cerebral networks beyond the traditional neuromuscular pathological view of amyotrophic lateral sclerosis (ALS). The development of effective disease-modifying therapy remains a priority and this will be facilitated by improved biomarkers of motor system integrity against which to assess the efficacy of candidate drugs. Functional MRI (FMRI) is an established measure of both cerebral activity and connectivity, but there is an increasing recognition of neuronal oscillations in facilitating long-distance communication across the cortical surface. Such dynamic synchronization vastly expands the connectivity foundations defined by traditional neuronal architecture. This review considers the unique pathogenic insights afforded by the capture of cerebral disease activity in ALS using FMRI and encephalography.
Collapse
Affiliation(s)
- Malcolm Proudfoot
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Peter Bede
- Computational Neuroimaging Group, Academic Unit of Neurology, Trinity College Dublin, Dublin, Ireland
| | - Martin R Turner
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom.,Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
37
|
Linse K, Aust E, Joos M, Hermann A. Communication Matters-Pitfalls and Promise of Hightech Communication Devices in Palliative Care of Severely Physically Disabled Patients With Amyotrophic Lateral Sclerosis. Front Neurol 2018; 9:603. [PMID: 30100896 PMCID: PMC6072854 DOI: 10.3389/fneur.2018.00603] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 07/06/2018] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is the most common motor neuron disease, leading to progressive paralysis, dysarthria, dysphagia, and respiratory disabilities. Therapy is mostly focused on palliative interventions. During the course of the disease, verbal as well as nonverbal communicative abilities become more and more impaired. In this light, communication has been argued to be “the essence of human life” and crucial for patients' quality of life. High-tech augmentative and alternative communication (HT-AAC) technologies such as eyetracking based computer devices and brain-computer-interfaces provide the possibility to maintain caregiver-independent communication and environmental control even in the advanced disease state of ALS. Thus, they enable patients to preserve social participation and to independently communicate end-of-life-decisions. In accordance with these functions of HT-AAC, their use is reported to strengthen self-determination, increase patients' quality of life and reduce caregiver burden. Therefore, HT-AAC should be considered as standard of (palliative) care for people with ALS. On the other hand, the supply with individually tailored HT-AAC technologies is limited by external and patient-inherent variables. This review aims to provide an overview of the possibilities and limitations of HT-AAC technologies and discuss their role in the palliative care for patients with ALS.
Collapse
Affiliation(s)
- Katharina Linse
- Department of Neurology, Technische Universität Dresden, Dresden, Germany.,German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany
| | - Elisa Aust
- Department of Neurology, Technische Universität Dresden, Dresden, Germany
| | - Markus Joos
- Interactive Minds Dresden GmbH, Dresden, Germany
| | - Andreas Hermann
- Department of Neurology, Technische Universität Dresden, Dresden, Germany.,German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany
| |
Collapse
|