1
|
Chung SM, Wang JC, Lin CR, Liu SC, Wu PT, Kuan FC, Fang CJ, Tu YK, Hsu KL, Lai PC, Shih CA. Beyond traditional therapies: a network meta-analysis on the treatment efficacy for chronic phantom limb pain. Reg Anesth Pain Med 2025; 50:213-224. [PMID: 38388020 PMCID: PMC12015063 DOI: 10.1136/rapm-2023-105104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/24/2024] [Indexed: 02/24/2024]
Abstract
BACKGROUND Phantom limb pain (PLP) frequently affects individuals with limb amputations. When PLP evolves into its chronic phase, known as chronic PLP, traditional therapies often fall short in providing sufficient relief. The optimal intervention for chronic PLP remains unclear. OBJECTIVE The objectives of this network meta-analysis (NMA) were to examine the efficacy of different treatments on pain intensity for patients with chronic PLP. EVIDENCE REVIEW We searched Medline, EMBASE, Cochrane CENTRAL, Scopus, and CINAHL EBSCO, focusing on randomized controlled trials (RCTs) that evaluated interventions such as neuromodulation, neural block, pharmacological methods, and alternative treatments. An NMA was conducted based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. The primary outcome was pain score improvement, and the secondary outcomes were adverse events. FINDINGS The NMA, incorporating 12 RCTs, indicated that neuromodulation, specifically repetitive transcranial magnetic stimulation, provided the most substantial pain improvement when compared with placebo/sham groups (mean difference=-2.9 points, 95% CI=-4.62 to -1.18; quality of evidence (QoE): moderate). Pharmacological intervention using morphine was associated with a significant increase in adverse event rate (OR=6.04, 95% CI=2.26 to 16.12; QoE: low). CONCLUSIONS The NMA suggests that neuromodulation using repetitive transcranial magnetic stimulation may be associated with significantly larger pain improvement for chronic PLP. However, the paucity of studies, varying patient characteristics across each trial, and absence of long-term results underscore the necessity for more comprehensive, large-scale RCTs. PROSPERO REGISTRATION NUMBER CRD42023455949.
Collapse
Affiliation(s)
- Sun-Mei Chung
- Mackay Memorial Hospital, Taipei, Taiwan
- School of Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jui-Chien Wang
- School of Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chung-Ren Lin
- Department of Anesthesiology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shu-Cheng Liu
- Department of Anesthesiology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Po-Ting Wu
- Department of Orthopedics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Orthopedics, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Fa-Chuan Kuan
- Department of Orthopedics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Medical Device R & D Core Laboratory, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Ching-Ju Fang
- Department of Secretariat, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Medical Library, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Kang Tu
- Institute of Epidemiology and Preventive Medicine, National Taiwan University College of Public Health, Taipei, Taiwan
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| | - Kai-Lan Hsu
- Department of Orthopedics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Medical Device R & D Core Laboratory, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Pei-Chun Lai
- Education Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chien-An Shih
- Department of Orthopedics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Orthopedics, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Medical Device R & D Core Laboratory, National Cheng Kung University Hospital, Tainan, Taiwan
| |
Collapse
|
2
|
Beccherle M, Scandola M. How pain and body representations transform each other: A narrative review. J Neuropsychol 2025; 19 Suppl 1:26-41. [PMID: 39233655 PMCID: PMC11923728 DOI: 10.1111/jnp.12390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 08/15/2024] [Indexed: 09/06/2024]
Abstract
Pain, as a multidimensional and subjective experience, intertwines with various aspects of body representation, involving sensory, affective and motivational components. This review explores the bidirectional relationship between pain and body representations, emphasizing the impact of the sense of ownership on pain perception, the transformative impact of pain on motor imagery, the effects associated with vicarious pain perception on body representations and the role of pain in the maintenance of body representations in specific clinical conditions. Literature indicates complex interactions between pain and body representations, with the sense of ownership inducing analgesic effects in some cases and hyperalgesia in others, contingent upon factors such as the appearance of the affected limb. Pain sensations inform the body on which actions might be executed without harm, and which are potentially dangerous. This information impacts on motor imagery too, showing reduced motor imagery and increased reaction times in tasks where motor imagery involves the painful body parts. Finally, contrary to the conventional view, according to which pain impairs body representation, evidence suggests that pain can serve as an informative somatosensory index, preserving or even enhancing the representation of the absent or affected body parts. This bidirectional relationship highlights the dynamic and multifaceted nature of the interplay between pain and body representations, offering insights into the adaptive nature of the central nervous system in response to perceived bodily states.
Collapse
Affiliation(s)
| | - Michele Scandola
- NPSY.Lab‐VR, Department of Human SciencesUniversity of VeronaVeronaItaly
| |
Collapse
|
3
|
Pacheco-Barrios K, Heemels RE, Martinez-Magallanes D, Daibes M, Naqui-Xicota C, Andrade M, Fregni F. Neural correlates of phantom motor execution: A functional neuroimaging systematic review and meta-analysis. Cortex 2024; 181:295-304. [PMID: 39341715 PMCID: PMC11611634 DOI: 10.1016/j.cortex.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/26/2024] [Accepted: 09/01/2024] [Indexed: 10/01/2024]
Abstract
Phantom motor execution (PME) shows promise as a new treatment for phantom limb pain (PLP) by inducing motor-related analgesia and retraining the pain network activation. However, the current understanding of the neural correlates underlying PME is limited. Databases were systematically searched for multimodal neuroimaging studies to explore the neural correlates of PME. A narrative synthesis (17 studies, n = 328) and coordinate-based meta-analysis were performed to identify activation commonalities. Contrasting PME-vs-REST revealed differential activation of the supplementary motor area (SMA), post-central gyrus, and dorsolateral superior frontal gyrus; while PME-vs-ME revealed differential activation of the right anterior insula, anterior cingulate, left amygdala, and right striatum. Further narrative synthesis revealed a positive correlation between PME-induced brain activity and PLP intensity, and a specific connectivity pattern during PME on the SMA-M1 network compared to ME and motor imagery. Our results suggest that the PME represents a distinct type of motor network activation, partially overlapping with ME and motor imagery activations but with special activation of interoceptive regulation and mood-related regions. Thus, confirming its potential as a therapeutic approach for PLP.
Collapse
Affiliation(s)
- Kevin Pacheco-Barrios
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, USA; Universidad San Ignacio de Loyola, Vicerrectorado de Investigación, Unidad de Investigación para la Generación y Síntesis de Evidencias en Salud, Lima, Peru.
| | - Robin Emily Heemels
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, USA; Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Heverlee, Belgium
| | - Daniela Martinez-Magallanes
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Marianna Daibes
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Cristina Naqui-Xicota
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Maria Andrade
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Felipe Fregni
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, USA.
| |
Collapse
|
4
|
Ortega-Márquez J, Garnier J, Mena L, Palagi Vigano AV, Grützmacher EB, Vallejos-Penaloza G, Costa V, Martinez-Magallanes D, Vaz de Macedo A, de Paula-Garcia WN, Schwartz DS, Fregni F, Pacheco-Barrios K. Clinical Characteristics Associated with the PLP-PLS Index, a New Potential Metric to Phenotype Phantom Limb Pain. Biomedicines 2024; 12:2035. [PMID: 39335548 PMCID: PMC11429012 DOI: 10.3390/biomedicines12092035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/04/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Phantom limb pain (PLP) is highly prevalent after amputation. However, the influence of non-painful sensations (PLS) remains unclear. This study examines the PLP-PLS index as a novel tool to differentiate PLP from PLS and explores the association of clinical factors with the index. METHODS We conducted a cross-sectional analysis of baseline data from 112 participants in a previous factorial trial in patients with unilateral traumatic lower limb amputation. Linear regression models were used to examine the associations between the index and various demographic, psychological and clinical factors. Logistic and Poisson regression, and e-value calculation were utilized for sensitivity analyses. RESULTS Adjusted multivariable linear regression models demonstrated significant associations of phantom movement sensation (β: -1.532; 95% CI: -2.615 to -0.449; p = 0.006) and time since amputation (β: 0.005; 95% CI: 0.0006 to 0.0101; p = 0.026) with the PLP-PLS index. These findings were confirmed by multivariable logistic regression (phantom movement sensation OR: 0.469; 95% CI: 0.200 to 1.099, p = 0.082; time since amputation OR: 1.003; 95% CI: 1.00003 to 1.007; p = 0.048) and sensitivity analyses. CONCLUSIONS Time since amputation and phantom movement sensation likely reflect distinct phenotypes and potential mechanisms for PLP and PLS. The PLP-PLS index is a promising clinical tool for selecting therapies to prevent/treat PLP and for measuring treatment effects to modulate phantom pain. These findings emphasize the importance of understanding the mechanisms underlying PLP and PLS for improving clinical management and guiding future research.
Collapse
Affiliation(s)
- Jorge Ortega-Márquez
- Master of Medical Sciences in Clinical Investigation, Harvard Medical School, Boston, MA 02115, USA
| | - Justyna Garnier
- Department of Psychology, SWPS University of Social Sciences and Humanities, 03-815 Warsaw, Poland;
| | - Lucas Mena
- Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo 05508-220, Brazil;
| | | | | | - Gabriel Vallejos-Penaloza
- Departamento de Ginecología y Obstetricia, Facultad de Medicina, Clínica Alemana, Universidad del Desarrollo, Santiago 7610315, Chile;
- Departamento de Ginecología y Obstetricia, Hospital Dr Luis Valentín Ferrada, Universidad Finis Terrae, Santiago 7501014, Chile
| | - Valton Costa
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA; (V.C.); (D.M.-M.); (F.F.)
- Laboratory of Neurosciences and Neurological Rehabilitation, Physical Therapy Department, Federal University of Sao Carlos, Sao Carlos 13565-905, Brazil
| | - Daniela Martinez-Magallanes
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA; (V.C.); (D.M.-M.); (F.F.)
| | - Antonio Vaz de Macedo
- Hematology Clinic, Hospital da Polícia Militar, Belo Horizonte, Minas Gerais 30110-013, Brazil;
| | | | - Denise Saretta Schwartz
- Departamento de Clínica Médica, Faculdade de Medicina Veterinária e Zootecnia (FMVZ), Universidade de São Paulo, São Paulo 05508-220, Brazil;
| | - Felipe Fregni
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA; (V.C.); (D.M.-M.); (F.F.)
| | - Kevin Pacheco-Barrios
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA; (V.C.); (D.M.-M.); (F.F.)
- Unidad de Investigación para la Generación y Síntesis de Evidencia en Salud, Universidad San Ignacio de Loyola, Vicerrectorado de Investigación, Lima 15026, Peru
| |
Collapse
|
5
|
Graham AN, Ryan CG, MacSween A, Atkinson G, Smith S, Martin DJ. The Test-Retest Reliability of Pain Outcome Measures in People With Phantom Limb Pain. Clin J Pain 2024; 40:490-496. [PMID: 38639472 DOI: 10.1097/ajp.0000000000001219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 04/09/2024] [Indexed: 04/20/2024]
Abstract
OBJECTIVES To quantify the test-retest reliability of 3 patient-reported outcome measures of pain for people living with phantom limb pain (PLP) and assess the impact of test-retest errors on future research and clinical decisions. METHODS Thirty-nine participants (30 males), mean (SD) age: 55 (16), mean (SD) years postamputation: 6.8 (8.3), reported their PLP levels on a visual analogue scale (VAS) for pain intensity, the revised short-form McGill Pain Questionnaire (SF-MPQ-2), and a pain diary, on 2 occasions 7 to 14 days apart. Mean systematic change, within-subjects SD, limits of agreement (LOA), coefficient of variation, and the intraclass correlation coefficient (ICC) were quantified alongside their respective 95% confidence intervals (95% CIs). RESULTS Systematic learning effects (mean changes) were not clinically relevant across the VAS, SF-MPQ-2, and pain diary. Within-subject SDs (95% CI) were 11.8 (9.6-15.3), 0.9 (0.7-1.2), and 8.6 (6.9-11.5), respectively. LOA (95% CI) were 32.6 (26.5-42.4), 2.5 (2-3.3), and 23.9 (19.2-31.8), respectively. ICCs (95% CI) were 0.8 (0.6-0.9), 0.8 (0.7-0.9), and 0.9 (0.8-0.9), respectively, but may have been inflated by sample heterogeneity. The test-retest errors allowed detection of clinically relevant effect sizes with feasible sample sizes in future studies, but individual errors were large. DISCUSSION For people with PLP, a pain intensity VAS, the SF-MPQ-2, and a pain diary show an acceptable level of intersession reliability for use in future clinical trials with feasible sample sizes. Nevertheless, the random error observed for all 3 of the pain outcome measures suggests they should be interpreted with caution in case studies and when monitoring individuals' clinical status and progress.
Collapse
Affiliation(s)
- Andrew N Graham
- Centre for Rehabilitation, School of Health and Life Sciences, Teesside University, United Kingdom
| | - Cormac G Ryan
- Centre for Rehabilitation, School of Health and Life Sciences, Teesside University, United Kingdom
| | - Alasdair MacSween
- Centre for Rehabilitation, School of Health and Life Sciences, Teesside University, United Kingdom
| | - Greg Atkinson
- School of Sport and Exercise Sciences, Liverpool John Moores University, United Kingdom
| | - Sally Smith
- South Tees Hospitals NHS Foundation Trust, Middlesbrough, United Kingdom
| | - Denis J Martin
- Centre for Rehabilitation, School of Health and Life Sciences, Teesside University, United Kingdom
- NIHR Applied Research Collaborative North East and North Cumbria, Cumbria, Northumberland, United Kingdom
| |
Collapse
|
6
|
Salgues S, Plancher G, Michael GA. Is it really on your hand? Spontaneous sensations are not peripheral sensations - Evidence from able-bodied individuals and a phantom limb syndrome patient. Brain Cogn 2024; 175:106138. [PMID: 38335922 DOI: 10.1016/j.bandc.2024.106138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024]
Abstract
Among other bodily signals, the perception of sensations arising spontaneously on the skin with no external triggers contributes to body awareness. The topic of spontaneous sensations (SPS) being quite recent in the literature, there is still a debate whether this phenomenon is elicited by peripheral cutaneous units' activity underlying tactile perception or originates directly from central mechanisms. In a first experiment, we figured that, if SPS depended on peripheral afferents, their perception on the glabrous hand should relate to the hand tactile sensitivity. On the contrary, we found no relationship at all, which led us to envisage the scenario of SPS in the absence of cutaneous units. In a second experiment, we present the case of Julie, a right-hand amputee that could perceive and report SPS arising on her phantom limb syndrome. We found that SPS distribution on the phantom limb followed the same gradient as that observed in control participants, unlike SPS perceived on the intact left hand. Those findings are crucial to the understanding of neural factors determining body awareness through SPS perception and provide insights into the existence of a precise neural gradient underlying somesthesis.
Collapse
Affiliation(s)
- Sara Salgues
- Département de Sciences Cognitives, Psychologie Cognitive & Neuropsychologie, Institut de Psychologie, Unité de Recherche Étude des Mécanismes Cognitifs (EA 3082), Université Lumière Lyon 2, Lyon, France; Laboratoire Mémoire Cerveau et Cognition, Université Paris Cité, Paris, France.
| | - Gaën Plancher
- Département de Sciences Cognitives, Psychologie Cognitive & Neuropsychologie, Institut de Psychologie, Unité de Recherche Étude des Mécanismes Cognitifs (EA 3082), Université Lumière Lyon 2, Lyon, France; Institut Universitaire de France (IUF), France
| | - George A Michael
- Département de Sciences Cognitives, Psychologie Cognitive & Neuropsychologie, Institut de Psychologie, Unité de Recherche Étude des Mécanismes Cognitifs (EA 3082), Université Lumière Lyon 2, Lyon, France
| |
Collapse
|
7
|
Simis M, Marques LM, Barbosa SP, Sugawara AT, Sato JR, Pacheco-Barrios K, Battistella LR, Fregni F. Distinct patterns of metabolic motor cortex activity for phantom and residual limb pain in people with amputations: A functional near-infrared spectroscopy study. Neurophysiol Clin 2024; 54:102939. [PMID: 38382136 DOI: 10.1016/j.neucli.2023.102939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 12/19/2023] [Accepted: 12/19/2023] [Indexed: 02/23/2024] Open
Abstract
BACKGROUND Phantom pain limb (PLP) has gained more attention due to the large number of people with amputations around the world and growing knowledge of the pain process, although its mechanisms are not completely understood. OBJECTIVES The aim of this study was to understand, in patients with amputations, the association between PLP and residual limb pain (RLP), and the brain metabolic response in cortical motor circuits, using functional near-infrared spectroscopy (fNIRS). METHODS Sixty participants were recruited from the rehabilitation program in São Paulo, Brazil. Included patients were aged over 18 years, with traumatic unilateral lower-limb amputation, with PLP for at least 3 months after full recovery from amputation surgery. PLP and RLP levels were measured using visual analogue scales. fNIRS was performed during motor execution and motor mirror tasks for 20 s. In order to highlight possible variables related to variation in pain measures, univariate linear regression analyses were performed for both experimental conditions, resulting in four fNIRS variables (two hemispheres x two experimental conditions). Later, in order to test the topographic specificity of the models, eight multivariate regression analyses were performed (two pain scales x two experimental conditions x two hemispheres), including the primary motor cortex (PMC) related channel as an independent variable as well as five other channels related to the premotor area, supplementary area, and somatosensory cortex. All models were controlled for age, sex, ethnicity, and education. RESULTS We found that: i) there is an asymmetric metabolic activation during motor execution and mirror task between hemispheres (with a predominance that is ipsilateral to the amputated limb), ii) increased metabolic response in the PMC ipsilateral to the amputation is associated with increased PLP (during both experimental tasks), while increased metabolic response in the contralateral PMC is associated with increased RLP (during the mirror motor task only); ii) increased metabolic activity of the ipsilateral premotor region is associated with increased PLP during the motor mirror task; iii) RLP was only associated with higher metabolic activity in the contralateral PMC and lower metabolic activity in the ipsilateral inferior frontal region during motor mirror task, but PLP was associated with higher metabolic activity during both tasks. CONCLUSION These results suggest there is both task and region specificity for the association between the brain metabolic response and the two different types of post-amputation pain. The metabolic predominance that is ipsilateral to the amputated limb during both tasks was associated with higher levels of PLP, suggesting a cortical motor network activity imbalance due to potential interhemispheric compensatory mechanisms. The present work contributes to the understanding of the underlying topographical patterns in the motor-related circuits associated with pain after amputations.
Collapse
Affiliation(s)
- Marcel Simis
- Instituto de Medicina Fisica e Reabilitacao, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo, SP, Brasil; Departamento de Medicina Legal, Bioética, Medicina do Trabalho e Medicina Física e Reabilitação, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brasil
| | - Lucas Murrins Marques
- Instituto de Medicina Fisica e Reabilitacao, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo, SP, Brasil
| | - Sara Pinto Barbosa
- Instituto de Medicina Fisica e Reabilitacao, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo, SP, Brasil
| | - André Tadeu Sugawara
- Instituto de Medicina Fisica e Reabilitacao, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo, SP, Brasil
| | - João Ricardo Sato
- Interdisciplinary Unit for Applied Neuroscience (NINA), Universidade Federal do ABC (UFABC), São Bernardo do Campo, Brazil; Center for Mathematics, Computing and Cognition (CMCC), Universidade Federal do ABC (UFABC), São Bernardo do Campo, Brazil
| | - Kevin Pacheco-Barrios
- Universidad San Ignacio de Loyola, Vicerrectorado de Investigación, Unidad de Investigación para la Generación y Síntesis de Evidencias en Salud, Lima, Peru; Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Linamara Rizzo Battistella
- Instituto de Medicina Fisica e Reabilitacao, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo, SP, Brasil; Departamento de Medicina Legal, Bioética, Medicina do Trabalho e Medicina Física e Reabilitação, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brasil
| | - Felipe Fregni
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, USA.
| |
Collapse
|
8
|
Weiss T, Koehler H, Croy I. Pain and Reorganization after Amputation: Is Interoceptive Prediction a Key? Neuroscientist 2023; 29:665-675. [PMID: 35950521 PMCID: PMC10623598 DOI: 10.1177/10738584221112591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
There is an ongoing discussion on the relevance of brain reorganization following amputation for phantom limb pain. Recent attempts to provide explanations for seemingly controversial findings-specifically, maladaptive plasticity versus persistent functional representation as a complementary process-acknowledged that reorganization in the primary somatosensory cortex is not sufficient to explain phantom limb pain satisfactorily. Here we provide theoretical considerations that might help integrate the data reviewed and suppose a possible additional driver of the development of phantom limb pain-namely, an error in interoceptive predictions to somatosensory sensations and movements of the missing limb. Finally, we derive empirically testable consequences based on our considerations to guide future research.
Collapse
Affiliation(s)
- Thomas Weiss
- Department of Psychology, Clinical Psychology, Friedrich Schiller University Jena, Jena, Germany
| | - Hanna Koehler
- Department of Psychology, Clinical Psychology, Friedrich Schiller University Jena, Jena, Germany
- Biomagnetic Center, Jena University Hospital, Jena, Germany
| | - Ilona Croy
- Department of Psychology, Clinical Psychology, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
9
|
Abstract
Neurological insults, such as congenital blindness, deafness, amputation, and stroke, often result in surprising and impressive behavioural changes. Cortical reorganisation, which refers to preserved brain tissue taking on a new functional role, is often invoked to account for these behavioural changes. Here, we revisit many of the classical animal and patient cortical remapping studies that spawned this notion of reorganisation. We highlight empirical, methodological, and conceptual problems that call this notion into doubt. We argue that appeal to the idea of reorganisation is attributable in part to the way that cortical maps are empirically derived. Specifically, cortical maps are often defined based on oversimplified assumptions of 'winner-takes-all', which in turn leads to an erroneous interpretation of what it means when these maps appear to change. Conceptually, remapping is interpreted as a circuit receiving novel input and processing it in a way unrelated to its original function. This implies that neurons are either pluripotent enough to change what they are tuned to or that a circuit can change what it computes. Instead of reorganisation, we argue that remapping is more likely to occur due to potentiation of pre-existing architecture that already has the requisite representational and computational capacity pre-injury. This architecture can be facilitated via Hebbian and homeostatic plasticity mechanisms. Crucially, our revised framework proposes that opportunities for functional change are constrained throughout the lifespan by the underlying structural 'blueprint'. At no period, including early in development, does the cortex offer structural opportunities for functional pluripotency. We conclude that reorganisation as a distinct form of cortical plasticity, ubiquitously evoked with words such as 'take-over'' and 'rewiring', does not exist.
Collapse
Affiliation(s)
- Tamar R Makin
- MRC Cognition and Brain Sciences Unit, University of CambridgeCambridgeUnited Kingdom
| | - John W Krakauer
- Department of Neuroscience, Johns Hopkins University School of MedicineBaltimoreUnited States
- Department of Neurology, Johns Hopkins University School of MedicineBaltimoreUnited States
- The Santa Fe InstituteSanta FeUnited States
| |
Collapse
|
10
|
Sanders Z, Dempsey‐Jones H, Wesselink DB, Edmondson LR, Puckett AM, Saal HP, Makin TR. Similar somatotopy for active and passive digit representation in primary somatosensory cortex. Hum Brain Mapp 2023; 44:3568-3585. [PMID: 37145934 PMCID: PMC10203813 DOI: 10.1002/hbm.26298] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 12/11/2022] [Accepted: 03/13/2023] [Indexed: 05/07/2023] Open
Abstract
Scientists traditionally use passive stimulation to examine the organisation of primary somatosensory cortex (SI). However, given the close, bidirectional relationship between the somatosensory and motor systems, active paradigms involving free movement may uncover alternative SI representational motifs. Here, we used 7 Tesla functional magnetic resonance imaging to compare hallmark features of SI digit representation between active and passive tasks which were unmatched on task or stimulus properties. The spatial location of digit maps, somatotopic organisation, and inter-digit representational structure were largely consistent between tasks, indicating representational consistency. We also observed some task differences. The active task produced higher univariate activity and multivariate representational information content (inter-digit distances). The passive task showed a trend towards greater selectivity for digits versus their neighbours. Our findings highlight that, while the gross features of SI functional organisation are task invariant, it is important to also consider motor contributions to digit representation.
Collapse
Affiliation(s)
- Zeena‐Britt Sanders
- Wellcome Centre of Integrative NeuroimagingFMRIB, John Radcliffe HospitalOxfordUK
| | - Harriet Dempsey‐Jones
- Institute of Cognitive NeuroscienceUniversity College LondonLondonUK
- School of PsychologyThe University of QueenslandBrisbaneAustralia
| | - Daan B. Wesselink
- Wellcome Centre of Integrative NeuroimagingFMRIB, John Radcliffe HospitalOxfordUK
- Institute of Cognitive NeuroscienceUniversity College LondonLondonUK
| | | | - Alexander M. Puckett
- School of PsychologyThe University of QueenslandBrisbaneAustralia
- Queensland Brain InstituteThe University of QueenslandBrisbaneAustralia
| | - Hannes P. Saal
- Queensland Brain InstituteThe University of QueenslandBrisbaneAustralia
| | - Tamar R. Makin
- Wellcome Centre of Integrative NeuroimagingFMRIB, John Radcliffe HospitalOxfordUK
- Institute of Cognitive NeuroscienceUniversity College LondonLondonUK
- MRC Cognition and Brain Sciences UnitUniversity of CambridgeCambridgeUK
| |
Collapse
|
11
|
Kuffler DP. Evolving techniques for reducing phantom limb pain. Exp Biol Med (Maywood) 2023; 248:561-572. [PMID: 37158119 PMCID: PMC10350801 DOI: 10.1177/15353702231168150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023] Open
Abstract
At least two million people in the United States of America live with lost limbs, and the number is expected to double by 2050, although the incidence of amputations is significantly greater in other parts of the world. Within days to weeks of the amputation, up to 90% of these individuals develop neuropathic pain, presenting as phantom limb pain (PLP). The pain level increases significantly within one year and remains chronic and severe for about 10%. Amputation-induced changes are considered to underlie the causation of PLP. Techniques applied to the central nervous system (CNS) and peripheral nervous system (PNS) are designed to reverse amputation-induced changes, thereby reducing/eliminating PLP. The primary treatment for PLP is the administration of pharmacological agents, some of which are considered but provide no more than short-term pain relief. Alternative techniques are also discussed, which provide only short-term pain relief. Changes induced by various cells and the factors they release are required to change neurons and their environment to reduce/eliminate PLP. It is concluded that novel techniques that utilize autologous platelet-rich plasma (PRP) may provide long-term PLP reduction/elimination.
Collapse
Affiliation(s)
- Damien P Kuffler
- Institute of Neurobiology, Medical Sciences Campus, University of Puerto Rico, San Juan 00901, Puerto Rico
| |
Collapse
|
12
|
Bottemanne H, Joly L. [Mother brain: Bayesian theory of maternal interoception during pregnancy and postpartum]. L'ENCEPHALE 2023; 49:185-195. [PMID: 36243551 DOI: 10.1016/j.encep.2022.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 05/28/2022] [Accepted: 05/30/2022] [Indexed: 11/05/2022]
Abstract
The perinatal period, including pregnancy and postpartum, causes major morphological, endocrinal, and thermal transitions in women. As the fetus grows, abdominal muscle fibers stretch, internal organs such as the bladder or colon move, and the uterine anatomy changes. Many of these changes involve interoception, the perception of internal body signals such as muscle and visceral sensations. Despite the importance of these interoceptive signals, few studies have explored perinatal interoception. We propose an innovative theory of maternal interoception based on recent findings in neuroscience. We show that interoceptive signals processing during pregnancy is crucial for understanding perinatal phenomenology and psychopathology, such as maternal perception of fetal movements, maternal-infant bonding, denial of pregnancy, phantom fetal movements after childbirth, pseudocyesis or even puerperal delusion. Knowing the importance of these interoceptive mechanisms, clinicians in obstetrics, gynecology and mental health should be particularly vigilant to maternal interoception during the perinatal period.
Collapse
Affiliation(s)
- Hugo Bottemanne
- Department of Psychiatry, Sorbonne University, Pitié-Salpêtrière Hospital, DMU Neuroscience, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France; Paris Brain Institute - Institut du Cerveau (ICM), Department of Neuroscience, UMR 7225/UMRS 1127, Sorbonne University/CNRS/INSERM, Paris, France; Sorbonne University, Department of Philosophy, SND Research Unit, UMR 8011, CNRS, Paris, France.
| | - Lucie Joly
- Department of Psychiatry, Sorbonne University, Pitié-Salpêtrière Hospital, DMU Neuroscience, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France; Paris Brain Institute - Institut du Cerveau (ICM), Department of Neuroscience, UMR 7225/UMRS 1127, Sorbonne University/CNRS/INSERM, Paris, France
| |
Collapse
|
13
|
Root V, Muret D, Arribas M, Amoruso E, Thornton J, Tarall-Jozwiak A, Tracey I, Makin TR. Complex pattern of facial remapping in somatosensory cortex following congenital but not acquired hand loss. eLife 2022; 11:e76158. [PMID: 36583538 PMCID: PMC9851617 DOI: 10.7554/elife.76158] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 12/29/2022] [Indexed: 12/31/2022] Open
Abstract
Cortical remapping after hand loss in the primary somatosensory cortex (S1) is thought to be predominantly dictated by cortical proximity, with adjacent body parts remapping into the deprived area. Traditionally, this remapping has been characterised by changes in the lip representation, which is assumed to be the immediate neighbour of the hand based on electrophysiological research in non-human primates. However, the orientation of facial somatotopy in humans is debated, with contrasting work reporting both an inverted and upright topography. We aimed to fill this gap in the S1 homunculus by investigating the topographic organisation of the face. Using both univariate and multivariate approaches we examined the extent of face-to-hand remapping in individuals with a congenital and acquired missing hand (hereafter one-handers and amputees, respectively), relative to two-handed controls. Participants were asked to move different facial parts (forehead, nose, lips, tongue) during functional MRI (fMRI) scanning. We first confirmed an upright face organisation in all three groups, with the upper-face and not the lips bordering the hand area. We further found little evidence for remapping of both forehead and lips in amputees, with no significant relationship to the chronicity of their phantom limb pain (PLP). In contrast, we found converging evidence for a complex pattern of face remapping in congenital one-handers across multiple facial parts, where relative to controls, the location of the cortical neighbour - the forehead - is shown to shift away from the deprived hand area, which is subsequently more activated by the lips and the tongue. Together, our findings demonstrate that the face representation in humans is highly plastic, but that this plasticity is restricted by the developmental stage of input deprivation, rather than cortical proximity.
Collapse
Affiliation(s)
- Victoria Root
- WIN Centre, University of OxfordOxfordUnited Kingdom
- Institute of Cognitive Neuroscience, University College LondonLondonUnited Kingdom
- Medical Research Council Cognition and Brain Sciences Unit (CBU), University of CambridgeCambridgeUnited Kingdom
| | - Dollyane Muret
- Institute of Cognitive Neuroscience, University College LondonLondonUnited Kingdom
| | - Maite Arribas
- Institute of Cognitive Neuroscience, University College LondonLondonUnited Kingdom
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College LondonLondonUnited Kingdom
| | - Elena Amoruso
- Institute of Cognitive Neuroscience, University College LondonLondonUnited Kingdom
- Medical Research Council Cognition and Brain Sciences Unit (CBU), University of CambridgeCambridgeUnited Kingdom
| | - John Thornton
- Wellcome Trust Centre for Neuroimaging, University College LondonLondonUnited Kingdom
| | | | - Irene Tracey
- WIN Centre, University of OxfordOxfordUnited Kingdom
| | - Tamar R Makin
- Institute of Cognitive Neuroscience, University College LondonLondonUnited Kingdom
- Medical Research Council Cognition and Brain Sciences Unit (CBU), University of CambridgeCambridgeUnited Kingdom
- Wellcome Trust Centre for Neuroimaging, University College LondonLondonUnited Kingdom
| |
Collapse
|
14
|
Bao BB, Zhu HY, Wei HF, Li J, Wang ZB, Li YH, Hua XY, Zheng MX, Zheng XY. Altered intra- and inter-network brain functional connectivity in upper-limb amputees revealed through independent component analysis. Neural Regen Res 2022; 17:2725-2729. [PMID: 35662220 PMCID: PMC9165370 DOI: 10.4103/1673-5374.339496] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/07/2022] [Accepted: 02/18/2022] [Indexed: 11/04/2022] Open
Abstract
Although cerebral neuroplasticity following amputation has been observed, little is understood about how network-level functional reorganization occurs in the brain following upper-limb amputation. The objective of this study was to analyze alterations in brain network functional connectivity (FC) in upper-limb amputees (ULAs). This observational study included 40 ULAs and 40 healthy control subjects; all participants underwent resting-state functional magnetic resonance imaging. Changes in intra- and inter-network FC in ULAs were quantified using independent component analysis and brain network FC analysis. We also analyzed the correlation between FC and clinical manifestations, such as pain. We identified 11 independent components using independent component analysis from all subjects. In ULAs, intra-network FC was decreased in the left precuneus (precuneus gyrus) within the dorsal attention network and left precentral (precentral gyrus) within the auditory network; but increased in the left Parietal_Inf (inferior parietal, but supramarginal and angular gyri) within the ventral sensorimotor network, right Cerebelum_Crus2 (crus II of cerebellum) and left Temporal_Mid (middle temporal gyrus) within the ventral attention network, and left Rolandic_Oper (rolandic operculum) within the auditory network. ULAs also showed decreased inter-network FCs between the dorsal sensorimotor network and ventral sensorimotor network, the dorsal sensorimotor network and right frontoparietal network, and the dorsal sensorimotor network and dorsal attention network. Correlation analyses revealed negative correlations between inter-network FC changes and residual limb pain and phantom limb pain scores, but positive correlations between inter-network FC changes and daily activity hours of stump limb. These results show that post-amputation plasticity in ULAs is not restricted to local remapping; rather, it also occurs at a network level across several cortical regions. This observation provides additional insights into the plasticity of brain networks after upper-limb amputation, and could contribute to identification of the mechanisms underlying post-amputation pain.
Collapse
Affiliation(s)
- Bing-Bo Bao
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Hong-Yi Zhu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Hai-Feng Wei
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Jing Li
- Institute of Diagnostic and Interventional Radiology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Zhi-Bin Wang
- Institute of Diagnostic and Interventional Radiology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Yue-Hua Li
- Institute of Diagnostic and Interventional Radiology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Xu-Yun Hua
- Department of Traumatology and Orthopedics, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mou-Xiong Zheng
- Department of Traumatology and Orthopedics, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xian-You Zheng
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| |
Collapse
|
15
|
Yanagisawa T, Fukuma R, Seymour B, Tanaka M, Yamashita O, Hosomi K, Kishima H, Kamitani Y, Saitoh Y. Neurofeedback Training without Explicit Phantom Hand Movements and Hand-Like Visual Feedback to Modulate Pain: A Randomized Crossover Feasibility Trial. THE JOURNAL OF PAIN 2022; 23:2080-2091. [PMID: 35932992 DOI: 10.1016/j.jpain.2022.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 06/25/2022] [Accepted: 07/20/2022] [Indexed: 01/04/2023]
Abstract
Phantom limb pain is attributed to abnormal sensorimotor cortical representations, although the causal relationship between phantom limb pain and sensorimotor cortical representations suffers from the potentially confounding effects of phantom hand movements. We developed neurofeedback training to change sensorimotor cortical representations without explicit phantom hand movements or hand-like visual feedback. We tested the feasibility of neurofeedback training in fourteen patients with phantom limb pain. Neurofeedback training was performed in a single-blind, randomized, crossover trial using two decoders constructed using motor cortical currents measured during phantom hand movements; the motor cortical currents contralateral or ipsilateral to the phantom hand (contralateral and ipsilateral training) were estimated from magnetoencephalograms. Patients were instructed to control the size of a disk, which was proportional to the decoding results, but to not move their phantom hands or other body parts. The pain assessed by the visual analogue scale was significantly greater after contralateral training than after ipsilateral training. Classification accuracy of phantom hand movements significantly increased only after contralateral training. These results suggested that the proposed neurofeedback training changed phantom hand representation and modulated pain without explicit phantom hand movements or hand-like visual feedback, thus showing the relation between the phantom hand representations and pain. PERSPECTIVE: Our work demonstrates the feasibility of using neurofeedback training to change phantom hand representation and modulate pain perception without explicit phantom hand movements and hand-like visual feedback. The results enhance the mechanistic understanding of certain treatments, such as mirror therapy, that change the sensorimotor cortical representation.
Collapse
Affiliation(s)
- Takufumi Yanagisawa
- Osaka University, Institute for Advanced Co-Creation Studies, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; Osaka University Graduate School of Medicine, Department of Neurosurgery, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; ATR Computational Neuroscience Laboratories, Department of Neuroinformatics, 2-2-2 Hikaridai, Seika-cho, Kyoto 619-0288, Japan.
| | - Ryohei Fukuma
- Osaka University, Institute for Advanced Co-Creation Studies, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; Osaka University Graduate School of Medicine, Department of Neurosurgery, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; ATR Computational Neuroscience Laboratories, Department of Neuroinformatics, 2-2-2 Hikaridai, Seika-cho, Kyoto 619-0288, Japan
| | - Ben Seymour
- University of Oxford, Institute of Biomedical Engineering, Department of Engineering Science, Old Road Campus Research Building, Oxford OX3 7DQ, UK; National Institute for Information and Communications Technology, Center for Information and Neural Networks, 1-3 Suita, Osaka 565-0871, Japan
| | - Masataka Tanaka
- Osaka University Graduate School of Medicine, Department of Neurosurgery, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Okito Yamashita
- RIKEN Center for Advanced Intelligence Project, Nihonbashi 1-chome Mitsui Building, 15th floor, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan; ATR Neural Information Analysis Laboratories, Department of Computational Brain Imaging, 2-2-2 Hikaridai, Seika-cho, Kyoto 619-0288, Japan
| | - Koichi Hosomi
- Osaka University Graduate School of Medicine, Department of Neurosurgery, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; Osaka University Graduate School of Medicine, Department of Neuromodulation and Neurosurgery, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Haruhiko Kishima
- Osaka University Graduate School of Medicine, Department of Neurosurgery, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yukiyasu Kamitani
- ATR Computational Neuroscience Laboratories, Department of Neuroinformatics, 2-2-2 Hikaridai, Seika-cho, Kyoto 619-0288, Japan; Kyoto University, Graduate School of Informatics, Yoshidahonmachi, Sakyoku, Kyoto, Kyoto 606-8501, Japan
| | - Youichi Saitoh
- Osaka University Graduate School of Medicine, Department of Neurosurgery, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; Osaka University Graduate School of Medicine, Department of Neuromodulation and Neurosurgery, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
16
|
Liu S, Fu W, Wei C, Ma F, Cui N, Shan X, Zhang Y. Interference of unilateral lower limb amputation on motor imagery rhythm and remodeling of sensorimotor areas. Front Hum Neurosci 2022; 16:1011463. [PMID: 36405081 PMCID: PMC9669607 DOI: 10.3389/fnhum.2022.1011463] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/19/2022] [Indexed: 12/10/2024] Open
Abstract
PURPOSE The effect of sensorimotor stripping on neuroplasticity and motor imagery capacity is unknown, and the physiological mechanisms of post-amputation phantom limb pain (PLP) illness remain to be investigated. MATERIALS AND METHODS In this study, an electroencephalogram (EEG)-based event-related (de)synchronization (ERD/ERS) analysis was conducted using a bilateral lower limb motor imagery (MI) paradigm. The differences in the execution of motor imagery tasks between left lower limb amputations and healthy controls were explored, and a correlation analysis was calculated between level of phantom limb pain and ERD/ERS. RESULTS The multiple frequency bands showed a significant ERD phenomenon when the healthy control group performed the motor imagery task, whereas amputees showed significant ERS phenomena in mu band. Phantom limb pain in amputees was negatively correlated with bilateral sensorimotor areas electrode powers. CONCLUSION Sensorimotor abnormalities reduce neural activity in the sensorimotor cortex, while the motor imagination of the intact limb is diminished. In addition, phantom limb pain may lead to over-activation of sensorimotor areas, affecting bilateral sensorimotor area remodeling.
Collapse
Affiliation(s)
- Shaowen Liu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing, China
| | - Wenjin Fu
- Brainup Institute of Science and Technology, Chongqing, China
| | - Conghui Wei
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing, China
| | - Fengling Ma
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing, China
| | - Nanyi Cui
- Brainup Institute of Science and Technology, Chongqing, China
| | - Xinying Shan
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing, China
| | - Yan Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
17
|
Graham A, Ryan CG, MacSween A, Alexanders J, Livadas N, Oatway S, Atkinson G, Martin DJ. Sensory discrimination training for adults with chronic musculoskeletal pain: a systematic review. Physiother Theory Pract 2022; 38:1107-1125. [PMID: 33078667 DOI: 10.1080/09593985.2020.1830455] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND Sensory discrimination training (SDT) is a form of feedback guided sensory training used in the treatment of chronic musculoskeletal pain (CMP). OBJECTIVE This systematic review aimed to investigate the efficacy and safety of SDT for CMP. METHODS MEDLINE, CINAHL, EMBASE, AMED, CENTRAL, PsycINFO, Scopus, OT Seeker, PEDro, ETHOS, Web of Science, and Open Grey were searched for appropriate randomized controlled trials (RCTs). Included papers were assessed for risk of bias, and evidence was graded using the GRADE approach. The protocol was published on PROSPERO (anonymized). RESULTS Ten RCTs met the inclusion/exclusion criteria. There was conflicting evidence from seven RCTs for the efficacy of SDT for chronic low back pain (CLBP). There was very low-quality evidence from two studies supporting the efficacy of SDT for phantom limb pain (PLP). There was very low-quality evidence from one RCT for the efficacy of SDT for Fibromyalgia. No adverse effects of SDT were identified. CONCLUSIONS SDT has been delivered in multiple forms in the literature. SDT does not appear to be associated with any adverse effects and shows potential regarding its clinical efficacy. However, there is a lack of high-quality evidence upon which to make any firm clinical recommendations.
Collapse
Affiliation(s)
- Andrew Graham
- School of Health and Life Sciences, Teesside University, Middlesbrough, UK
| | - Cormac G Ryan
- School of Health and Life Sciences, Teesside University, Middlesbrough, UK
| | - Alasdair MacSween
- School of Health and Life Sciences, Teesside University, Middlesbrough, UK
| | - Jenny Alexanders
- School of Health and Life Sciences, Teesside University, Middlesbrough, UK
| | - Nick Livadas
- School of Health and Life Sciences, Teesside University, Middlesbrough, UK
| | - Sarah Oatway
- School of Health and Life Sciences, Teesside University, Middlesbrough, UK
| | - Greg Atkinson
- School of Health and Life Sciences, Teesside University, Middlesbrough, UK
| | - Denis J Martin
- School of Health and Life Sciences, Teesside University, Middlesbrough, UK
| |
Collapse
|
18
|
Guémann M, Halgand C, Bastier A, Lansade C, Borrini L, Lapeyre É, Cattaert D, de Rugy A. Sensory substitution of elbow proprioception to improve myoelectric control of upper limb prosthesis: experiment on healthy subjects and amputees. J Neuroeng Rehabil 2022; 19:59. [PMID: 35690860 PMCID: PMC9188052 DOI: 10.1186/s12984-022-01038-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 05/31/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Current myoelectric prostheses lack proprioceptive information and rely on vision for their control. Sensory substitution is increasingly developed with non-invasive vibrotactile or electrotactile feedback, but most systems are designed for grasping or object discriminations, and few were tested for online control in amputees. The objective of this work was evaluate the effect of a novel vibrotactile feedback on the accuracy of myoelectric control of a virtual elbow by healthy subjects and participants with an upper-limb amputation at humeral level. METHODS Sixteen, healthy participants and 7 transhumeral amputees performed myoelectric control of a virtual arm under different feedback conditions: vision alone (VIS), vibration alone (VIB), vision plus vibration (VIS + VIB), or no feedback at all (NO). Reach accuracy was evaluated by angular errors during discrete as well as back and forth movements. Healthy participants' workloads were assessed with the NASA-TLX questionnaire, and feedback conditions were ranked according to preference at the end of the experiment. RESULTS Reach errors were higher in NO than in VIB, indicating that our vibrotactile feedback improved performance as compared to no feedback. Conditions VIS and VIS+VIB display similar levels of performance and produced lower errors than in VIB. Vision remains therefore critical to maintain good performance, which is not ameliorated nor deteriorated by the addition of vibrotactile feedback. The workload associated with VIB was higher than for VIS and VIS+VIB, which did not differ from each other. 62.5% of healthy subjects preferred the VIS+VIB condition, and ranked VIS and VIB second and third, respectively. CONCLUSION Our novel vibrotactile feedback improved myoelectric control of a virtual elbow as compared to no feedback. Although vision remained critical, the addition of vibrotactile feedback did not improve nor deteriorate the control and was preferred by participants. Longer training should improve performances with VIB alone and reduce the need of vision for close-loop prosthesis control.
Collapse
Affiliation(s)
- Matthieu Guémann
- HYBRID Team, INCIA, CNRS, UMR 5287, Bordeaux, France. .,Unité de Physiologie de l'Exercice et des Activités en Conditions Extrêmes,Département Environnements Opérationnels, Institut de Recherche Biomédicale des Armées, Brétigny, France.
| | | | | | | | - Léo Borrini
- Physical and Rehabilitation Medicine Department, Percy Military Hospital, Clamart, France
| | - Éric Lapeyre
- Physical and Rehabilitation Medicine Department, Percy Military Hospital, Clamart, France
| | | | - Aymar de Rugy
- HYBRID Team, INCIA, CNRS, UMR 5287, Bordeaux, France
| |
Collapse
|
19
|
Schone HR, Baker CI, Katz J, Nikolajsen L, Limakatso K, Flor H, Makin TR. Making sense of phantom limb pain. J Neurol Neurosurg Psychiatry 2022; 93:jnnp-2021-328428. [PMID: 35609964 PMCID: PMC9304093 DOI: 10.1136/jnnp-2021-328428] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 04/04/2022] [Indexed: 01/01/2023]
Abstract
Phantom limb pain (PLP) impacts the majority of individuals who undergo limb amputation. The PLP experience is highly heterogenous in its quality, intensity, frequency and severity. This heterogeneity, combined with the low prevalence of amputation in the general population, has made it difficult to accumulate reliable data on PLP. Consequently, we lack consensus on PLP mechanisms, as well as effective treatment options. However, the wealth of new PLP research, over the past decade, provides a unique opportunity to re-evaluate some of the core assumptions underlying what we know about PLP and the rationale behind PLP treatments. The goal of this review is to help generate consensus in the field on how best to research PLP, from phenomenology to treatment. We highlight conceptual and methodological challenges in studying PLP, which have hindered progress on the topic and spawned disagreement in the field, and offer potential solutions to overcome these challenges. Our hope is that a constructive evaluation of the foundational knowledge underlying PLP research practices will enable more informed decisions when testing the efficacy of existing interventions and will guide the development of the next generation of PLP treatments.
Collapse
Affiliation(s)
- Hunter R Schone
- NIMH, National Institutes of Health, Bethesda, Maryland, USA
- Institute of Cognitive Neuroscience, University College London, London, UK
| | - Chris I Baker
- NIMH, National Institutes of Health, Bethesda, Maryland, USA
| | - Joel Katz
- Department of Psychology, York University, Toronto, Ontario, Canada
- Transitional Pain Service, Department of Anesthesia and Pain Management, Toronto General Hospital, Toronto, Ontario, Canada
| | - Lone Nikolajsen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Anesthesiology and Intensive Care, Aarhus University Hospital, Aarhus, Denmark
| | - Katleho Limakatso
- Department of Anaesthesia and Perioperative Medicine, Pain Management Unit, Neuroscience Institute, University of Cape Town, Rondebosch, Western Cape, South Africa
| | - Herta Flor
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health/Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Center for Neuroplasticity and Pain, Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark
| | - Tamar R Makin
- Institute of Cognitive Neuroscience, University College London, London, UK
| |
Collapse
|
20
|
Multisensory stimulation decreases phantom limb distortions and is optimally integrated. iScience 2022; 25:104129. [PMID: 35391829 PMCID: PMC8980810 DOI: 10.1016/j.isci.2022.104129] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 10/16/2021] [Accepted: 03/17/2022] [Indexed: 11/22/2022] Open
Abstract
The multisensory integration of signals from different senses is crucial to develop an unambiguous percept of the environment and our body. Losing a limb causes drastic changes in the body, sometimes causing pain and distorted phantom limb perception. Despite the debate over why these phenomena arise, some researchers suggested that they might be linked to an impairment of multisensory signals inflow and integration. Therefore, reestablishing optimally integrated sensory feedback could be crucial. The related benefits on sensory performance and body self-representation are still to be demonstrated, particularly in lower-limb amputees. We present a multisensory framework combining Virtual reality and electro-cutaneous stimulation that allows the optimal integration of visuo-tactile stimuli in lower-limb amputees even if nonspatially matching. We also showed that this multisensory stimulation allowed faster sensory processing, higher embodiment, and reductions in phantom limb distortions. Our findings support the development of multisensory rehabilitation approaches, restoring a correct body representation. Multisensory platform combining virtual reality and electro-cutaneous stimulation. Leg amputees optimally integrate nonspatially matching visuo-tactile stimulation. Multisensory stimulation allows faster information processing and higher embodiment. Phantom limb distortions are reduced after multisensory stimulation.
Collapse
|
21
|
Garcia-Pallero MÁ, Cardona D, Rueda-Ruzafa L, Rodriguez-Arrastia M, Roman P. Central nervous system stimulation therapies in phantom limb pain: a systematic review of clinical trials. Neural Regen Res 2022; 17:59-64. [PMID: 34100428 PMCID: PMC8451556 DOI: 10.4103/1673-5374.314288] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Phantom limb pain is a chronic pain syndrome that is difficult to cope with. Despite neurostimulation treatment is indicated for refractory neuropathic pain, there is scant evidence from randomized controlled trials to recommend it as the treatment choice. Thus, a systematic review was performed to analyze the efficacy of central nervous system stimulation therapies as a strategy for pain management in patients with phantom limb pain. A literature search for studies conducted between 1970 and September 2020 was carried out using the MEDLINE and Embase databases. Principles of The Preferred Reporting Items for Systematic Reviews and Meta-Analyses guideline were followed. There were a total of 10 full-text articles retrieved and included in this review. Deep brain stimulation, repetitive transcranial magnetic stimulation, transcranial direct current stimulation, and motor cortex stimulation were the treatment strategies used in the selected clinical trials. Repetitive transcranial magnetic stimulation and transcranial direct current stimulation were effective therapies to reduce pain perception, as well as to relieve anxiety and depression symptoms in phantom limb pain patients. Conversely, invasive approaches were considered the last treatment option as evidence in deep brain stimulation and motor cortex stimulation suggests that the value of phantom limb pain treatment remains controversial. However, the findings on use of these treatment strategies in other forms of neuropathic pain suggest that these invasive approaches could be a potential option for phantom limb pain patients.
Collapse
Affiliation(s)
| | - Diana Cardona
- Department of Nursing Science, Physiotherapy and Medicine, University of Almería, Almería, Spain
| | - Lola Rueda-Ruzafa
- Department of Functional Biology and Health Sciences, Faculty of Biology- CINBIO, University of Vigo, Vigo, Pontevedra, Spain
| | - Miguel Rodriguez-Arrastia
- Faculty of Health Sciences, Pre-Department of Nursing; Research Group CYS, Faculty of Health Sciences, Jaume I University, Castello de la Plana, Spain
| | - Pablo Roman
- Department of Nursing Science, Physiotherapy and Medicine, University of Almería, Almería, Spain
| |
Collapse
|
22
|
Ambron E, Buxbaum LJ, Miller A, Stoll H, Kuchenbecker KJ, Coslett HB. Virtual Reality Treatment Displaying the Missing Leg Improves Phantom Limb Pain: A Small Clinical Trial. Neurorehabil Neural Repair 2021; 35:1100-1111. [PMID: 34704486 DOI: 10.1177/15459683211054164] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND Phantom limb pain (PLP) is a common and in some cases debilitating consequence of upper- or lower-limb amputation for which current treatments are inadequate. OBJECTIVE This small clinical trial tested whether game-like interactions with immersive VR activities can reduce PLP in subjects with transtibial lower-limb amputation. METHODS Seven participants attended 5-7 sessions in which they engaged in a visually immersive virtual reality experience that did not require leg movements (Cool! TM), followed by 10-12 sessions of targeted lower-limb VR treatment consisting of custom games requiring leg movement. In the latter condition, they controlled an avatar with 2 intact legs viewed in a head-mounted display (HTC Vive TM). A motion-tracking system mounted on the intact and residual limbs controlled the movements of both virtual extremities independently. RESULTS All participants except one experienced a reduction of pain immediately after VR sessions, and their pre session pain levels also decreased over the course of the study. At a group level, PLP decreased by 28% after the treatment that did not include leg movements and 39.6% after the games requiring leg motions. Both treatments were successful in reducing PLP. CONCLUSIONS This VR intervention appears to be an efficacious treatment for PLP in subjects with lower-limb amputation.
Collapse
Affiliation(s)
- Elisabetta Ambron
- Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.,University of Delaware, Newark, DE, USA
| | - Laurel J Buxbaum
- Moss Rehabilitation Research Institute, Elkins Park, Philadelphia, PA, USA.,Thomas Jefferson University, Philadelphia, PA, USA
| | - Alexander Miller
- Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Harrison Stoll
- Moss Rehabilitation Research Institute, Elkins Park, Philadelphia, PA, USA
| | | | - H Branch Coslett
- Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
23
|
Raffin E. The various forms of sensorimotor plasticity following limb amputation and their link with rehabilitation strategies. Rev Neurol (Paris) 2021; 177:1112-1120. [PMID: 34657732 DOI: 10.1016/j.neurol.2021.09.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/06/2021] [Accepted: 09/21/2021] [Indexed: 12/31/2022]
Abstract
Limb amputation is characterized by complex and intermingled brain reorganization processes combining sensorimotor deprivation induced by the loss of the limb per se, and compensatory behaviors, such as the over-use of the intact or remaining limb. While a large body of evidence documents sensorimotor representation plasticity following arm amputation, less investigations have been performed to fully understand the use-dependent plasticity phenomenon and the role of behavioral compensation in brain reorganization. In this article, I will review the findings on sensorimotor plasticity after limb amputation, focusing on these two aspects: sensorimotor deprivation and adaptive patterns of limb usage, and describe the models that attempt to link these reorganizational processes with phantom limb pain. Two main models have been proposed: the maladaptive plasticity model which states that the reorganization of the adjacent cortical territories into the representation of the missing limb is proportional to phantom pain intensity, and the persistent representation model, which rather suggests that the intensity of residual brain activity associated with phantom hand movements scales with phantom limb pain intensity. I will finally illustrate how this fundamental research helps designing new therapeutic strategies for phantom plain relief.
Collapse
Affiliation(s)
- E Raffin
- Defitech Chair in Clinical Neuroengineering, École Polytechnique Fédérale de Lausanne, Center for Neuroprosthetics and Brain Mind Institute, EPFL, UPHUMMEL lab, Swiss Federal Institute of Technology (EPFL), Campus Biotech, Room H4.3.132.084, Chemin des Mines 9, 1202 Geneva, Switzerland; Defitech Chair in Clinical Neuroengineering, Center for Neuroprosthetics and Brain Mind Institute, Clinique Romande de Readaptation (CRR), EPFL Valais, Sion, Switzerland.
| |
Collapse
|
24
|
Kikkert S, Pfyffer D, Verling M, Freund P, Wenderoth N. Finger somatotopy is preserved after tetraplegia but deteriorates over time. eLife 2021; 10:e67713. [PMID: 34665133 PMCID: PMC8575460 DOI: 10.7554/elife.67713] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 10/18/2021] [Indexed: 12/12/2022] Open
Abstract
Previous studies showed reorganised and/or altered activity in the primary sensorimotor cortex after a spinal cord injury (SCI), suggested to reflect abnormal processing. However, little is known about whether somatotopically specific representations can be activated despite reduced or absent afferent hand inputs. In this observational study, we used functional MRI and a (attempted) finger movement task in tetraplegic patients to characterise the somatotopic hand layout in primary somatosensory cortex. We further used structural MRI to assess spared spinal tissue bridges. We found that somatotopic hand representations can be activated through attempted finger movements in the absence of sensory and motor hand functioning, and no spared spinal tissue bridges. Such preserved hand somatotopy could be exploited by rehabilitation approaches that aim to establish new hand-brain functional connections after SCI (e.g. neuroprosthetics). However, over years since SCI the hand representation somatotopy deteriorated, suggesting that somatotopic hand representations are more easily targeted within the first years after SCI.
Collapse
Affiliation(s)
- Sanne Kikkert
- Neural Control of Movement Laboratory, Department of Health Sciences and Technology, ETH ZürichZürichSwitzerland
- Spinal Cord Injury Center, Balgrist University Hospital, University of ZürichZürichSwitzerland
| | - Dario Pfyffer
- Spinal Cord Injury Center, Balgrist University Hospital, University of ZürichZürichSwitzerland
| | - Michaela Verling
- Neural Control of Movement Laboratory, Department of Health Sciences and Technology, ETH ZürichZürichSwitzerland
| | - Patrick Freund
- Spinal Cord Injury Center, Balgrist University Hospital, University of ZürichZürichSwitzerland
- Department of Brain Repair and Rehabilitation, UCL Institute of Neurology, University College LondonLondonUnited Kingdom
- Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, University College LondonLondonUnited Kingdom
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
| | - Nicole Wenderoth
- Neural Control of Movement Laboratory, Department of Health Sciences and Technology, ETH ZürichZürichSwitzerland
| |
Collapse
|
25
|
Gunduz ME, Pacheco-Barrios K, Bonin Pinto C, Duarte D, Vélez FGS, Gianlorenco ACL, Teixeira PEP, Giannoni-Luza S, Crandell D, Battistella LR, Simis M, Fregni F. Effects of Combined and Alone Transcranial Motor Cortex Stimulation and Mirror Therapy in Phantom Limb Pain: A Randomized Factorial Trial. Neurorehabil Neural Repair 2021; 35:704-716. [PMID: 34060934 PMCID: PMC10042175 DOI: 10.1177/15459683211017509] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Phantom limb pain (PLP) is a frequent complication in amputees, which is often refractory to treatments. We aim to assess in a factorial trial the effects of transcranial direct current stimulation (tDCS) and mirror therapy (MT) in patients with traumatic lower limb amputation; and whether the motor cortex plasticity changes drive these results. In this large randomized, blinded, 2-site, sham-controlled, 2 × 2 factorial trial, 112 participants with traumatic lower limb amputation were randomized into treatment groups. The interventions were active or covered MT for 4 weeks (20 sessions, 15 minutes each) combined with 2 weeks of either active or sham tDCS (10 sessions, 20 minutes each) applied to the contralateral primary motor cortex. The primary outcome was PLP changes on the visual analogue scale at the end of interventions (4 weeks). Motor cortex excitability and cortical mapping were assessed by transcranial magnetic stimulation (TMS). We found no interaction between tDCS and MT groups (F = 1.90, P = .13). In the adjusted models, there was a main effect of active tDCS compared to sham tDCS (beta coefficient = -0.99, P = .04) on phantom pain. The overall effect size was 1.19 (95% confidence interval: 0.90, 1.47). No changes in depression and anxiety were found. TDCS intervention was associated with increased intracortical inhibition (coefficient = 0.96, P = .02) and facilitation (coefficient = 2.03, P = .03) as well as a posterolateral shift of the center of gravity in the affected hemisphere. MT induced no motor cortex plasticity changes assessed by TMS. These findings indicate that transcranial motor cortex stimulation might be an affordable and beneficial PLP treatment modality.
Collapse
Affiliation(s)
- Muhammed Enes Gunduz
- Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, USA.,Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Kevin Pacheco-Barrios
- Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, USA.,Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Universidad San Ignacio de Loyola, Lima, Peru
| | - Camila Bonin Pinto
- Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, USA.,Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Northwestern University, Chicago, IL, USA
| | - Dante Duarte
- Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, USA.,Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,McMaster University, Hamilton, Ontario, Canada
| | - Faddi Ghassan Saleh Vélez
- Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, USA.,Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,University of Chicago Medical Center, University of Chicago Pritzker School of Medicine, Chicago, IL, USA
| | - Anna Carolyna Lepesteur Gianlorenco
- Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, USA.,Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Federal University of Sao Carlos, Sao Carlos, Brazil
| | - Paulo Eduardo Portes Teixeira
- Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, USA.,Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Stefano Giannoni-Luza
- Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, USA.,Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - David Crandell
- Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | - Felipe Fregni
- Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, USA.,Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
26
|
Fuchs X, Diers M, Trojan J, Kirsch P, Milde C, Bekrater-Bodmann R, Rance M, Foell J, Andoh J, Becker S, Flor H. Phantom limb pain after unilateral arm amputation is associated with decreased heat pain thresholds in the face. Eur J Pain 2021; 26:114-132. [PMID: 34288253 DOI: 10.1002/ejp.1842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND The mechanisms underlying chronic phantom limb pain (PLP) are complex and insufficiently understood. Altered sensory thresholds are often associated with chronic pain but quantitative sensory testing (QST) in PLP has so far been inconclusive due to large methodological variation between studies and small sample sizes. METHODS In this study, we applied QST in 37 unilateral upper-limb amputees (23 with and 14 without PLP) and 19 healthy controls. We assessed heat pain (HPT), pressure pain, warmth detection and two-point discrimination thresholds at the residual limb, a homologous point and the thenar of the intact limb as well as both corners of the mouth. RESULTS We did not find significant differences in any of the thresholds between the groups. However, PLP intensity was negatively associated with HPT at all measured body sites except for the residual limb, indicating lower pain thresholds with higher PLP levels. Correlations between HPT and PLP were strongest in the contralateral face (r = -0.65, p < 0.001). Facial HPT were specifically associated with PLP, independent of residual limb pain (RLP) and various other covariates. HPT at the residual limb, however, were significantly associated with RLP, but not with PLP. CONCLUSION We conclude that the association between PLP and, especially facial, HPT could be related to central mechanisms. SIGNIFICANCE Phantom limb pain (PLP) is still poorly understood. We show that PLP intensity is associated with lower heat pain thresholds, especially in the face. This finding could be related to central nervous changes in PLP.
Collapse
Affiliation(s)
- Xaver Fuchs
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Biopsychology and Cognitive Neuroscience, Faculty of Psychology and Sports Science, Bielefeld University, Bielefeld, Germany
| | - Martin Diers
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Department of Psychosomatic Medicine and Psychotherapy, LWL University Hospital, Ruhr University Bochum, Bochum, Germany
| | - Jörg Trojan
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Pinar Kirsch
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Christopher Milde
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Department of Psychology, University of Koblenz-Landau, Landau, Germany
| | - Robin Bekrater-Bodmann
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Mariela Rance
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut, USA
| | - Jens Foell
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Department of Psychology, Florida State University, Tallahassee, Florida, USA
| | - Jamila Andoh
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Department of Psychiatry and Psychotherapy, Medical Faculty Mannheim, Central Institute of Mental Health, University of Heidelberg, Heidelberg, Germany
| | - Susanne Becker
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Integrative Spinal Research, Research Chiropractic, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Herta Flor
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
27
|
van den Boom M, Miller KJ, Gregg NM, Ojeda Valencia G, Lee KH, Richner TJ, Ramsey NF, Worrell GA, Hermes D. Typical somatomotor physiology of the hand is preserved in a patient with an amputated arm: An ECoG case study. Neuroimage Clin 2021; 31:102728. [PMID: 34182408 PMCID: PMC8253998 DOI: 10.1016/j.nicl.2021.102728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 04/17/2021] [Accepted: 05/10/2021] [Indexed: 12/03/2022]
Abstract
Electrophysiological signals in the human motor system may change in different ways after deafferentation, with some studies emphasizing reorganization while others propose retained physiology. Understanding whether motor electrophysiology is retained over longer periods of time can be invaluable for patients with paralysis (e.g. ALS or brainstem stroke) when signals from sensorimotor areas may be used for communication or control over neural prosthetic devices. In addition, a maintained electrophysiology can potentially benefit the treatment of phantom limb pains through prolonged use of these signals in a brain-machine interface (BCI). Here, we were presented with the unique opportunity to investigate the physiology of the sensorimotor cortex in a patient with an amputated arm using electrocorticographic (ECoG) measurements. While implanted with an ECoG grid for clinical evaluation of electrical stimulation for phantom limb pain, the patient performed attempted finger movements with the contralateral (lost) hand and executed finger movements with the ipsilateral (healthy) hand. The electrophysiology of the sensorimotor cortex contralateral to the amputated hand remained very similar to that of hand movement in healthy people, with a spatially focused increase of high-frequency band (65-175 Hz; HFB) power over the hand region and a distributed decrease in low-frequency band (15-28 Hz; LFB) power. The representation of the three different fingers (thumb, index and little) remained intact and HFB patterns could be decoded using support vector learning at single-trial classification accuracies of >90%, based on the first 1-3 s of the HFB response. These results indicate that hand representations are largely retained in the motor cortex. The intact physiological response of the amputated hand, the high distinguishability of the fingers and fast temporal peak are encouraging for neural prosthetic devices that target the sensorimotor cortex.
Collapse
Affiliation(s)
- Max van den Boom
- Department of Physiology and Biomedical Engineering, Mayo Clinic Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA; Department of Neurology & Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands.
| | - Kai J Miller
- Department of Neurosurgery, Mayo Clinic Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Nicholas M Gregg
- Department of Neurology, Mayo Clinic Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Gabriela Ojeda Valencia
- Department of Physiology and Biomedical Engineering, Mayo Clinic Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Kendall H Lee
- Department of Neurosurgery, Mayo Clinic Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Thomas J Richner
- Department of Neurosurgery, Mayo Clinic Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Nick F Ramsey
- Department of Neurology & Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Greg A Worrell
- Department of Neurology, Mayo Clinic Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Dora Hermes
- Department of Physiology and Biomedical Engineering, Mayo Clinic Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.
| |
Collapse
|
28
|
Therrien AS, Howard C, Buxbaum LJ. Aberrant activity in an intact residual muscle is associated with phantom limb pain in above-knee amputees. J Neurophysiol 2021; 125:2135-2143. [PMID: 33949884 DOI: 10.1152/jn.00482.2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Many individuals who undergo limb amputation experience persistent phantom limb pain (PLP), but the underlying mechanisms of PLP are unknown. The traditional hypothesis was that PLP resulted from maladaptive plasticity in sensorimotor cortex that degrades the neural representation of the missing limb. However, a recent study of individuals with upper limb amputations has shown that PLP is correlated with aberrant electromyographic (EMG) activity in residual muscles, posited to reflect a retargeting of efferent projections from a preserved representation of a missing limb. Here, we assessed EMG activity in a residual thigh muscle (vastus lateralis, VL) in patients with transfemoral amputations during cyclical movements of a phantom foot. VL activity on the amputated side was compared to that recorded on patients' intact side while they moved both the phantom and intact feet synchronously. VL activity in the patient group was also compared to a sample of control participants with no amputation. We show that phantom foot movement is associated with greater VL activity in the amputated leg than that seen in the intact leg as well as that exhibited by controls. The magnitude of residual VL activity was also positively related to ratings of PLP. These results show that phantom limb movement is associated with aberrant activity in a residual muscle after lower-limb amputation and provide evidence of a positive relationship between this activity and phantom limb pain.NEW & NOTEWORTHY This study is the first to assess residual muscle activity during movement of a phantom limb in individuals with lower limb amputations. We find that phantom foot movement is associated with aberrant recruitment of a residual thigh muscle and that this aberrant activity is related to phantom limb pain.
Collapse
Affiliation(s)
| | - Cortney Howard
- Duke Center for Cognitive Neuroscience, Duke Universitygrid.26009.3d, Durham, North Carolina
| | - Laurel J Buxbaum
- Moss Rehabilitation Research Institute, Elkins Park, Pennsylvania.,Department of Rehabilitation Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
29
|
Jiang S, Zheng K, Wang W, Pei Y, Qiu E, Zhu G. Phantom Limb Pain and Sensations in Chinese Malignant Tumor Amputees: A Retrospective Epidemiological Study. Neuropsychiatr Dis Treat 2021; 17:1579-1587. [PMID: 34045860 PMCID: PMC8149272 DOI: 10.2147/ndt.s299771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 04/06/2021] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE Phantom limb pain (PLP) was a common problem in malignant tumor amputees that can cause considerable suffering. The purposes of this study were to determine the incidence and factors associated with the occurrence of post-operation PLP, stump limb pain (SLP), and phantom limb sensations (PLS) in tumor amputees within the first month after surgery. Additionally, differences in phantom phenomena between upper and lower extremities were investigated. METHODS In total, 162 amputees participated in this retrospective study who underwent malignant limb amputation between 2012 and 2019. Clinical characteristics were collected from medical records and reconfirmed by telephone interviews. A numerical rating scale (NRS) was used to quantitate phantom phenomena. We used analysis of variance and non-parametric statistics for categorical variables and ordinal variables separately. RESULTS In the first month after malignant amputation, the incidence of PLP was 54.3%, that of PLS was 65.4%, and that of SLP was 32.7%. The duration of preoperative pain and amputation level was significantly different for the incidence of acute PLP. Further subgroup analysis of amputation level showed that patients whose amputation level was below the wrist and ankle joints had a significantly reduced incidence of PLP (p<0.0083 in Bonferroni test). Binary logistics regression analysis determined that amputation level was the primary risk factor for the incidence of PLP. Factors related to the severity of postoperative PLP also included amputation level, preoperative pain, and amputation times. By comparing the differences between upper and lower limbs after amputation, we found that the incidence of PLS was higher after lower limb amputation, but there was no significant difference in the incidence of PLP and SLP. Preoperative experience of chemotherapy was not a risk factor for PLP. CONCLUSION Proximal amputation and long-term preoperative pain seemed to count more for PLP incidence. Further research may be required to individually determine factors associated with the occurrence and chronicity of phantom phenomena.
Collapse
Affiliation(s)
- Shuang Jiang
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, 110001, People's Republic of China.,Department of Pain Medicine (Psychology Clinic), Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, People's Republic of China
| | - Ke Zheng
- Department of Bone and Soft Tissue Tumor Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, People's Republic of China
| | - Wei Wang
- Department of Bone and Soft Tissue Tumor Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, People's Republic of China
| | - Yi Pei
- Department of Bone and Soft Tissue Tumor Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, People's Republic of China
| | - Enduo Qiu
- Department of Bone and Soft Tissue Tumor Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, People's Republic of China
| | - Gang Zhu
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, 110001, People's Republic of China.,Central Laboratory, The First Affiliated Hospital of China Medical University, Shenyang, 110001, People's Republic of China
| |
Collapse
|
30
|
Balakhanlou E, Webster J, Borgia M, Resnik L. Frequency and Severity of Phantom Limb Pain in Veterans with Major Upper Limb Amputation: Results of a National Survey. PM R 2020; 13:827-835. [DOI: 10.1002/pmrj.12485] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 08/20/2020] [Accepted: 08/31/2020] [Indexed: 12/26/2022]
Affiliation(s)
- Ellie Balakhanlou
- School of Medicine at Virginia Commonwealth University Richmond VA USA
| | - Joseph Webster
- School of Medicine at Virginia Commonwealth University Richmond VA USA
- Hunter Homes McGuire Veterans Affairs Medical Center Richmond VA USA
| | - Matthew Borgia
- Research Department Providence VA Medical Center Providence RI USA
| | - Linda Resnik
- Research Department Providence VA Medical Center Providence RI USA
- Health Services, Policy and Practice Brown University Providence RI USA
| |
Collapse
|
31
|
Tong X, Wang X, Cai Y, Gromala D, Williamson O, Fan B, Wei K. "I Dreamed of My Hands and Arms Moving Again": A Case Series Investigating the Effect of Immersive Virtual Reality on Phantom Limb Pain Alleviation. Front Neurol 2020; 11:876. [PMID: 32982914 PMCID: PMC7477390 DOI: 10.3389/fneur.2020.00876] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 07/09/2020] [Indexed: 01/18/2023] Open
Abstract
Phantom limb pain (PLP) is a type of chronic pain that follows limb amputation, brachial plexus avulsion injury, or spinal cord injury. Treating PLP is a well-known challenge. Currently, virtual reality (VR) interventions are attracting increasing attention because they show promising analgesic effects. However, most previous studies of VR interventions were conducted with a limited number of patients in a single trial. Few studies explored questions such as how multiple VR sessions might affect pain over time, or if a patient's ability to move their phantom limb may affect their PLP. Here we recruited five PLP patients to practice two motor tasks for multiple VR sessions over 6 weeks. In VR, patients “inhabit” a virtual body or avatar, and the movements of their intact limbs are mirrored in the avatar, providing them with the illusion that their limbs respond as if they were both intact and functional. We found that repetitive exposure to our VR intervention led to reduced pain and improvements in anxiety, depression, and a sense of embodiment of the virtual body. Importantly, we also found that their ability to move their phantom limbs improved as quantified by shortened motor imagery time with the impaired limb. Although the limited sample size prevents us from performing a correlational analysis, our findings suggest that providing PLP patients with sensorimotor experience for the impaired limb in VR appears to offer long-term benefits for patients and that these benefits may be related to changes in their control of the phantom limbs' movement.
Collapse
Affiliation(s)
- Xin Tong
- School of Interactive Arts and Technology, Simon Fraser University, Surrey, BC, Canada
| | | | - Yiyang Cai
- Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Diane Gromala
- School of Interactive Arts and Technology, Simon Fraser University, Surrey, BC, Canada
| | - Owen Williamson
- School of Interactive Arts and Technology, Simon Fraser University, Surrey, BC, Canada.,Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Bifa Fan
- China-Japan Friendship Hospital, Beijing, China
| | - Kunlin Wei
- Motor Control Lab, School of Psychological and Cognitive Sciences, Peking University, Beijing, China
| |
Collapse
|
32
|
Makin TR, Flor H. Brain (re)organisation following amputation: Implications for phantom limb pain. Neuroimage 2020; 218:116943. [PMID: 32428706 PMCID: PMC7422832 DOI: 10.1016/j.neuroimage.2020.116943] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 05/10/2020] [Accepted: 05/11/2020] [Indexed: 12/11/2022] Open
Abstract
Following arm amputation the region that represented the missing hand in primary somatosensory cortex (S1) becomes deprived of its primary input, resulting in changed boundaries of the S1 body map. This remapping process has been termed 'reorganisation' and has been attributed to multiple mechanisms, including increased expression of previously masked inputs. In a maladaptive plasticity model, such reorganisation has been associated with phantom limb pain (PLP). Brain activity associated with phantom hand movements is also correlated with PLP, suggesting that preserved limb functional representation may serve as a complementary process. Here we review some of the most recent evidence for the potential drivers and consequences of brain (re)organisation following amputation, based on human neuroimaging. We emphasise other perceptual and behavioural factors consequential to arm amputation, such as non-painful phantom sensations, perceived limb ownership, intact hand compensatory behaviour or prosthesis use, which have also been related to both cortical changes and PLP. We also discuss new findings based on interventions designed to alter the brain representation of the phantom limb, including augmented/virtual reality applications and brain computer interfaces. These studies point to a close interaction of sensory changes and alterations in brain regions involved in body representation, pain processing and motor control. Finally, we review recent evidence based on methodological advances such as high field neuroimaging and multivariate techniques that provide new opportunities to interrogate somatosensory representations in the missing hand cortical territory. Collectively, this research highlights the need to consider potential contributions of additional brain mechanisms, beyond S1 remapping, and the dynamic interplay of contextual factors with brain changes for understanding and alleviating PLP.
Collapse
Affiliation(s)
- Tamar R Makin
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom; Wellcome Centre for Human Neuroimaging, University College London, London, UK.
| | - Herta Flor
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Department of Psychology, School of Social Sciences, University of Mannheim, Germany; Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| |
Collapse
|
33
|
Candido Santos L, Gushken F, Gadotti GM, Dias BDF, Marinelli Pedrini S, Barreto MESF, Zippo E, Pinto CB, Piza PVDT, Fregni F. Intracortical Inhibition in the Affected Hemisphere in Limb Amputation. Front Neurol 2020; 11:720. [PMID: 32849197 PMCID: PMC7406670 DOI: 10.3389/fneur.2020.00720] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 06/12/2020] [Indexed: 12/18/2022] Open
Abstract
Phantom limb pain (PLP) affects up to 80% of amputees. Despite the lack of consensus about the etiology and pathophysiology of phantom experiences, previous evidence pointed out the role of changes in motor cortex excitability as an important factor associated with amputation and PLP. In this systematic review, we investigated changes in intracortical inhibition as indexed by transcranial magnetic stimulation (TMS) in amputees and its relationship to pain. Four electronic databases were screened to identify studies using TMS to measure cortical inhibition, such as short intracortical inhibition (SICI), long intracortical inhibition (LICI) and cortical silent period (CSP). Seven articles were included and evaluated cortical excitability comparing the affected hemisphere with the non-affected hemisphere or with healthy controls. None of them correlated cortical disinhibition and clinical parameters, such as the presence or intensity of PLP. However, most studies showed decreased SICI in amputees affected hemisphere. These results highlight that although SICI seems to be changed in the affected hemisphere in amputees, most of the studies did not investigate its clinical correlation. Thus, the question of whether they are a valid diagnostic marker remains unanswered. Also, the results were highly variable for both measurements due to the heterogeneity of study designs and group comparisons in each study. Although these results underscore the role of inhibitory networks after amputation, more studies are needed to investigate the role of a decreased inhibitory drive in the motor cortex to the cause and maintenance of PLP.
Collapse
Affiliation(s)
- Ludmilla Candido Santos
- Laboratory of Neuromodulation & Center for Clinical Research Learning, Department of Physical Medicine and Rehabilitation, Harvard Medical School, Spaulding Rehabilitation Hospital, Boston, MA, United States
| | | | | | | | | | | | - Emanuela Zippo
- Faculdade Israelita de Ciências da Saúde, São Paulo, Brazil
| | - Camila Bonin Pinto
- Laboratory of Neuromodulation & Center for Clinical Research Learning, Department of Physical Medicine and Rehabilitation, Harvard Medical School, Spaulding Rehabilitation Hospital, Boston, MA, United States
| | | | - Felipe Fregni
- Laboratory of Neuromodulation & Center for Clinical Research Learning, Department of Physical Medicine and Rehabilitation, Harvard Medical School, Spaulding Rehabilitation Hospital, Boston, MA, United States
| |
Collapse
|
34
|
Adaptive analysis of cortical plasticity with fMRI in full face and arm transplants. Brain Imaging Behav 2020; 15:1788-1801. [DOI: 10.1007/s11682-020-00374-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
35
|
Pacheco-Barrios K, Pinto CB, Saleh Velez FG, Duarte D, Gunduz ME, Simis M, Lepesteur Gianlorenco AC, Barouh JL, Crandell D, Guidetti M, Battistella L, Fregni F. Structural and functional motor cortex asymmetry in unilateral lower limb amputation with phantom limb pain. Clin Neurophysiol 2020; 131:2375-2382. [PMID: 32828040 DOI: 10.1016/j.clinph.2020.06.024] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 04/27/2020] [Accepted: 06/01/2020] [Indexed: 10/23/2022]
Abstract
OBJECTIVE The role of motor cortex reorganization in the development and maintenance of phantom limb pain (PLP) is still unclear. This study aims to evaluate neurophysiological and structural motor cortex asymmetry in patients with PLP and its relationship with pain intensity. METHODS Cross-sectional analysis of an ongoing randomized-controlled trial. We evaluated the motor cortex asymmetry through two techniques: i) changes in cortical excitability indexed by transcranial magnetic stimulation (motor evoked potential, paired-pulse paradigms and cortical mapping), and ii) voxel-wise grey matter asymmetry analysis by brain magnetic resonance imaging. RESULTS We included 62 unilateral traumatic lower limb amputees with a mean PLP of 5.9 (SD = 1.79). We found, in the affected hemisphere, an anterior shift of the hand area center of gravity (23 mm, 95% CI 6 to 38, p = 0.005) and a disorganized and widespread representation. Regarding voxel-wise grey matter asymmetry analysis, data from 21 participants show a loss of grey matter volume in the motor area of the affected hemisphere. This asymmetry seems negatively associated with time since amputation. For TMS data, only the ICF ratio is negatively correlated with PLP intensity (r = -0.25, p = 0.04). CONCLUSION There is an asymmetrical reorganization of the motor cortex in patients with PLP, characterized by a disorganized, widespread, and shifted hand cortical representation and a loss in grey matter volume in the affected hemisphere. This reorganization seems to reduce across time since amputation. However, it is not associated with pain intensity. SIGNIFICANCE These findings are significant to understand the role of the motor cortex reorganization in patients with PLP, showing that the pain intensity may be related with other neurophysiological factors, not just cortical reorganization.
Collapse
Affiliation(s)
- K Pacheco-Barrios
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Universidad San Ignacio de Loyola, Vicerrectorado de Investigación, Unidad de Investigación para la Generación y Síntesis de Evidencias en Salud, Lima, Peru
| | - C B Pinto
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - F G Saleh Velez
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; University of Chicago Medical Center, Department of Neurology, University of Chicago, Chicago, IL, USA
| | - D Duarte
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Psychiatry and Behavioural Neurosciences, McMaster University, Canada
| | - M E Gunduz
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - M Simis
- Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - A C Lepesteur Gianlorenco
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - J L Barouh
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - D Crandell
- Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, USA
| | - M Guidetti
- Università degli Studi di Milano, Dipartimento di scienze della Salute, "Aldo Ravelli" Center for Neurotechnolgy and Experimental Brain Therapeutics, Milano, Italy
| | - L Battistella
- Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - F Fregni
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
36
|
Assessment of cortical reorganization and preserved function in phantom limb pain: a methodological perspective. Sci Rep 2020; 10:11504. [PMID: 32661345 PMCID: PMC7359300 DOI: 10.1038/s41598-020-68206-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 06/19/2020] [Indexed: 02/07/2023] Open
Abstract
Phantom limb pain (PLP) has been associated with reorganization in primary somatosensory cortex (S1) and preserved S1 function. Here we examined if methodological differences in the assessment of cortical representations might explain these findings. We used functional magnetic resonance imaging during a virtual reality movement task, analogous to the classical mirror box task, in twenty amputees with and without PLP and twenty matched healthy controls. We assessed the relationship between task-related activation maxima and PLP intensity in S1 and motor cortex (M1) in individually-defined or group-conjoint regions of interest (ROI) (overlap of task-related activation between the groups). We also measured cortical distances between both locations and correlated them with PLP intensity. Amputees compared to controls showed significantly increased activation in M1, S1 and S1M1 unrelated to PLP. Neural activity in M1 was positively related to PLP intensity in amputees with PLP when a group-conjoint ROI was chosen. The location of activation maxima differed between groups in S1 and M1. Cortical distance measures were unrelated to PLP. These findings suggest that sensory and motor maps differentially relate to PLP and that methodological differences might explain discrepant findings in the literature.
Collapse
|
37
|
Münger M, Pinto CB, Pacheco-Barrios K, Duarte D, Gunduz ME, Simis M, Battistella LR, Fregni F. Protective and Risk Factors for Phantom Limb Pain and Residual Limb Pain Severity. Pain Pract 2020; 20:578-587. [PMID: 32176435 PMCID: PMC7363546 DOI: 10.1111/papr.12881] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 02/29/2020] [Accepted: 03/04/2020] [Indexed: 12/16/2022]
Abstract
INTRODUCTION The exact mechanisms underlying the development and maintenance of phantom limb pain (PLP) are still unclear. This study aimed to identify the factors affecting pain intensity in patients with chronic, lower limb, traumatic PLP. METHODS This is a cross-sectional analysis of patients with PLP. We assessed amputation-related and pain-related clinical and demographic variables. We used univariate and multivariate models to evaluate the associated factors modulating PLP and residual limb pain (RLP) intensity. RESULTS We included 71 unilateral traumatic lower limb amputees. Results showed that (1) amputation-related perceptions were experienced by a large majority of the patients with chronic PLP (sensations: 90.1%, n = 64; residual pain: 81.7%, n = 58); (2) PLP intensity has 2 significant protective factors (phantom limb movement and having effective treatment for PLP previously) and 2 significant risk factors (phantom limb sensation intensity and age); and (3) on the other hand, for RLP, risk factors are different: presence of pain before amputation and level of amputation (in addition to the same protective factors). CONCLUSION These results suggest different neurobiological mechanisms to explain PLP and RLP intensity. While PLP risk factors seem to be related to maladaptive plasticity, since phantom sensation and older age are associated with more pain, RLP risk factors seem to have components leading to neuropathic pain, such as the amount of neural lesion and previous history of chronic pain. Interestingly, the phantom movement appears to be protective for both phenomena.
Collapse
Affiliation(s)
- Marionna Münger
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Neuropsychology, Institute of Psychology, University of Zurich, 8050 Zurich, Switzerland
| | - Camila B. Pinto
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Kevin Pacheco-Barrios
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Boston, Massachusetts, USA
- Universidad San Ignacio de Loyola, Vicerrectorado de Investigación, Unidad de Investigación para la Generación y Síntesis de Evidencias en Salud. Lima, Peru
| | - Dante Duarte
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Muhamed Enes Gunduz
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Marcel Simis
- Department of Physical Medicine and Rehabilitation, Instituto de Reabilitação Lucy Montoro
| | | | - Felipe Fregni
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
38
|
Castellanos JP, Woolley C, Bruno KA, Zeidan F, Halberstadt A, Furnish T. Chronic pain and psychedelics: a review and proposed mechanism of action. Reg Anesth Pain Med 2020; 45:486-494. [PMID: 32371500 DOI: 10.1136/rapm-2020-101273] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/01/2020] [Accepted: 04/06/2020] [Indexed: 12/22/2022]
Abstract
The development of chronic pain is a complex mechanism that is still not fully understood. Multiple somatic and visceral afferent pain signals, when experienced over time, cause a strengthening of certain neural circuitry through peripheral and central sensitization, resulting in the physical and emotional perceptual chronic pain experience. The mind-altering qualities of psychedelics have been attributed, through serotonin 2A (5-HT2A) receptor agonism, to 'reset' areas of functional connectivity (FC) in the brain that play prominent roles in many central neuropathic states. Psychedelic substances have a generally favorable safety profile, especially when compared with opioid analgesics. Clinical evidence to date for their use for chronic pain is limited; however, several studies and reports over the past 50 years have shown potential analgesic benefit in cancer pain, phantom limb pain and cluster headache. While the mechanisms by which the classic psychedelics may provide analgesia are not clear, several possibilities exist given the similarity between 5-HT2A activation pathways of psychedelics and the nociceptive modulation pathways in humans. Additionally, the alterations in FC seen with psychedelic use suggest a way that these agents could help reverse the changes in neural connections seen in chronic pain states. Given the current state of the opioid epidemic and limited efficacy of non-opioid analgesics, it is time to consider further research on psychedelics as analgesics in order to improve the lives of patients with chronic pain conditions.
Collapse
Affiliation(s)
| | - Chris Woolley
- Anesthesia Pain, UC San Diego, La Jolla, California, USA
| | | | - Fadel Zeidan
- Anesthesia Pain, UC San Diego, La Jolla, California, USA
| | - Adam Halberstadt
- Department of Psychiatry, UC San Diego, La Jolla, California, USA
| | | |
Collapse
|
39
|
Gunduz ME, Pinto CB, Saleh Velez FG, Duarte D, Pacheco-Barrios K, Lopes F, Fregni F. Motor Cortex Reorganization in Limb Amputation: A Systematic Review of TMS Motor Mapping Studies. Front Neurosci 2020; 14:314. [PMID: 32372907 PMCID: PMC7187753 DOI: 10.3389/fnins.2020.00314] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 03/17/2020] [Indexed: 12/16/2022] Open
Abstract
Purpose: The purpose of this systematic review is to evaluate motor cortex reorganization in amputees as indexed by transcranial magnetic stimulation (TMS) cortical mapping and its relationship with phantom limb pain (PLP). Methods: Pubmed database were systematically searched. Three independent researchers screened the relevant articles, and the data of motor output maps, including the number of effective stimulation sites, center of gravity (CoG) shift, and their clinical correlations were extracted. We calculated a pooled CoG shift for motor cortex TMS mapping. Results: The search yielded 468 articles, 11 were included. Three studies performed correlation between the cortical changes and PLP intensity, and only one study compared cortical mapping changes between amputees with pain and without pain. Results showed (i) enlarged excitable area and a shift of CoG of neighboring areas toward the deafferented limb area; (ii) no correlation between motor cortex reorganization and level of pain and (iii) greater cortical reorganization in patients with PLP compared to amputation without pain. Conclusion: Our review supports the evidence for cortical reorganization in the affected hemisphere following an amputation. The motor cortex reorganization could be a potential clinical target for prevention and treatment response of PLP.
Collapse
Affiliation(s)
- Muhammed Enes Gunduz
- Laboratory of Neuromodulation & Center for Clinical Research Learning, Department of Physical Medicine and Rehabilitation, Harvard Medical School, Spaulding Rehabilitation Hospital, Boston, MA, United States
| | - Camila Bonin Pinto
- Laboratory of Neuromodulation & Center for Clinical Research Learning, Department of Physical Medicine and Rehabilitation, Harvard Medical School, Spaulding Rehabilitation Hospital, Boston, MA, United States
| | - Faddi Ghassan Saleh Velez
- Laboratory of Neuromodulation & Center for Clinical Research Learning, Department of Physical Medicine and Rehabilitation, Harvard Medical School, Spaulding Rehabilitation Hospital, Boston, MA, United States
| | - Dante Duarte
- Laboratory of Neuromodulation & Center for Clinical Research Learning, Department of Physical Medicine and Rehabilitation, Harvard Medical School, Spaulding Rehabilitation Hospital, Boston, MA, United States
| | - Kevin Pacheco-Barrios
- Laboratory of Neuromodulation & Center for Clinical Research Learning, Department of Physical Medicine and Rehabilitation, Harvard Medical School, Spaulding Rehabilitation Hospital, Boston, MA, United States.,Unidad de Investigación Para la Generación y Síntesis de Evidencias en Salud, Universidad San Ignacio de Loyola, Lima, Peru
| | - Fernanda Lopes
- Laboratory of Neuromodulation & Center for Clinical Research Learning, Department of Physical Medicine and Rehabilitation, Harvard Medical School, Spaulding Rehabilitation Hospital, Boston, MA, United States
| | - Felipe Fregni
- Laboratory of Neuromodulation & Center for Clinical Research Learning, Department of Physical Medicine and Rehabilitation, Harvard Medical School, Spaulding Rehabilitation Hospital, Boston, MA, United States
| |
Collapse
|
40
|
Persic D, Thomas ME, Pelekanos V, Ryugo DK, Takesian AE, Krumbholz K, Pyott SJ. Regulation of auditory plasticity during critical periods and following hearing loss. Hear Res 2020; 397:107976. [PMID: 32591097 PMCID: PMC8546402 DOI: 10.1016/j.heares.2020.107976] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/15/2020] [Accepted: 04/14/2020] [Indexed: 02/07/2023]
Abstract
Sensory input has profound effects on neuronal organization and sensory maps in the brain. The mechanisms regulating plasticity of the auditory pathway have been revealed by examining the consequences of altered auditory input during both developmental critical periods—when plasticity facilitates the optimization of neural circuits in concert with the external environment—and in adulthood—when hearing loss is linked to the generation of tinnitus. In this review, we summarize research identifying the molecular, cellular, and circuit-level mechanisms regulating neuronal organization and tonotopic map plasticity during developmental critical periods and in adulthood. These mechanisms are shared in both the juvenile and adult brain and along the length of the auditory pathway, where they serve to regulate disinhibitory networks, synaptic structure and function, as well as structural barriers to plasticity. Regulation of plasticity also involves both neuromodulatory circuits, which link plasticity with learning and attention, as well as ascending and descending auditory circuits, which link the auditory cortex and lower structures. Further work identifying the interplay of molecular and cellular mechanisms associating hearing loss-induced plasticity with tinnitus will continue to advance our understanding of this disorder and lead to new approaches to its treatment. During CPs, brain plasticity is enhanced and sensitive to acoustic experience. Enhanced plasticity can be reinstated in the adult brain following hearing loss. Molecular, cellular, and circuit-level mechanisms regulate CP and adult plasticity. Plasticity resulting from hearing loss may contribute to the emergence of tinnitus. Modifying plasticity in the adult brain may offer new treatments for tinnitus.
Collapse
Affiliation(s)
- Dora Persic
- University of Groningen, University Medical Center Groningen, Groningen, Department of Otorhinolaryngology and Head/Neck Surgery, 9713, GZ, Groningen, the Netherlands
| | - Maryse E Thomas
- Eaton-Peabody Laboratories, Massachusetts Eye & Ear and Department of Otorhinolaryngology and Head/Neck Surgery, Harvard Medical School, Boston, MA, USA
| | - Vassilis Pelekanos
- Hearing Sciences, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, University Park, Nottingham, UK
| | - David K Ryugo
- Hearing Research, Garvan Institute of Medical Research, Sydney, NSW, 2010, Australia; School of Medical Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia; Department of Otolaryngology, Head, Neck & Skull Base Surgery, St Vincent's Hospital, Sydney, NSW, 2010, Australia
| | - Anne E Takesian
- Eaton-Peabody Laboratories, Massachusetts Eye & Ear and Department of Otorhinolaryngology and Head/Neck Surgery, Harvard Medical School, Boston, MA, USA
| | - Katrin Krumbholz
- Hearing Sciences, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, University Park, Nottingham, UK
| | - Sonja J Pyott
- University of Groningen, University Medical Center Groningen, Groningen, Department of Otorhinolaryngology and Head/Neck Surgery, 9713, GZ, Groningen, the Netherlands.
| |
Collapse
|
41
|
Maimon-Mor RO, Schone HR, Moran R, Brugger P, Makin TR. Motor control drives visual bodily judgements. Cognition 2020; 196:104120. [PMID: 31945591 PMCID: PMC7033558 DOI: 10.1016/j.cognition.2019.104120] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 10/28/2019] [Accepted: 10/29/2019] [Indexed: 11/17/2022]
Abstract
The 'embodied cognition' framework proposes that our motor repertoire shapes visual perception and cognition. But recent studies showing normal visual body representation in individuals born without hands challenges the contribution of motor control on visual body representation. Here, we studied hand laterality judgements in three groups with fundamentally different visual and motor hand experiences: two-handed controls, one-handers born without a hand (congenital one-handers) and one-handers with an acquired amputation (amputees). Congenital one-handers, lacking both motor and first-person visual information of their missing hand, diverged in their performance from the other groups, exhibiting more errors for their intact hand and slower reaction-times for challenging hand postures. Amputees, who have lingering non-visual motor control of their missing (phantom) hand, performed the task similarly to controls. Amputees' reaction-times for visual laterality judgements correlated positively with their phantom hand's motor control, such that deteriorated motor control associated with slower visual laterality judgements. Finally, we have implemented a computational simulation to describe how a mechanism that utilises a single hand representation in congenital one-handers as opposed to two in controls, could replicate our empirical results. Together, our findings demonstrate that motor control is a driver in making visual bodily judgments.
Collapse
Affiliation(s)
- Roni O Maimon-Mor
- Institute of Cognitive Neuroscience, University College London, London WC1N 3AZ, UK; WIN Centre, Nuffield Department of Clinical Neuroscience, University of Oxford, Headington, Oxford OX3 9DU, UK.
| | - Hunter R Schone
- Institute of Cognitive Neuroscience, University College London, London WC1N 3AZ, UK
| | - Rani Moran
- Max Planck University College London Centre for Computational Psychiatry and Ageing Research, University College London, London WC1B 5EH, UK
| | - Peter Brugger
- Department of Neurology, Neuropsychology Unit, University Hospital Zurich, Switzerland
| | - Tamar R Makin
- Institute of Cognitive Neuroscience, University College London, London WC1N 3AZ, UK; WIN Centre, Nuffield Department of Clinical Neuroscience, University of Oxford, Headington, Oxford OX3 9DU, UK
| |
Collapse
|
42
|
Virtual reality hand therapy: A new tool for nonopioid analgesia for acute procedural pain, hand rehabilitation, and VR embodiment therapy for phantom limb pain. J Hand Ther 2020; 33:254-262. [PMID: 32482376 PMCID: PMC7719341 DOI: 10.1016/j.jht.2020.04.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 04/09/2020] [Indexed: 02/03/2023]
Abstract
INTRODUCTION Affordable virtual reality (VR) technology is now widely available. Billions of dollars are currently being invested into improving and mass producing VR and augmented reality products. PURPOSE OF THE STUDY The purpose of the present study is to explore the potential of immersive VR to make physical therapy/occupational therapy less painful, more fun, and to help motivate patients to cooperate with their hand therapist. DISCUSSION The following topics are covered: a) psychological influences on pain perception, b) the logic of how VR analgesia works, c) evidence for reduction of acute procedural pain during hand therapy, d) recent major advances in VR technology, and e) future directions-immersive VR embodiment therapy for phantom limb (chronic) pain. CONCLUSION VR hand therapy has potential for a wide range of patient populations needing hand therapy, including acute pain and potentially chronic pain patients. Being in VR helps reduce the patients' pain, making it less painful for patients to move their hand/fingers during hand therapy, and gamified VR can help motivate the patient to perform therapeutic hand exercises, and make hand therapy more fun. In addition, VR camera-based hand tracking technology may be used to help therapists monitor how well patients are doing their hand therapy exercises, and to quantify whether adherence to treatment increases long-term functionality. Additional research and development into using VR as a tool for hand therapist is recommended for both acute pain and persistent pain patient populations.
Collapse
|
43
|
Leemhuis E, De Gennaro L, Pazzaglia M. Disconnected Body Representation: Neuroplasticity Following Spinal Cord Injury. J Clin Med 2019; 8:2144. [PMID: 31817187 PMCID: PMC6947607 DOI: 10.3390/jcm8122144] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 12/02/2019] [Accepted: 12/02/2019] [Indexed: 02/05/2023] Open
Abstract
Neuroplastic changes in somatotopic organization within the motor and somatosensory systems have long been observed. The interruption of afferent and efferent brain-body pathways promotes extensive cortical reorganization. Changes are majorly related to the typical homuncular organization of sensorimotor areas and specific "somatotopic interferences". Recent findings revealed a relevant peripheral contribution to the plasticity of body representation in addition to the role of sensorimotor cortices. Here, we review the ways in which structures and brain mechanisms react to missing or critically altered sensory and motor peripheral signals. We suggest that these plastic events are: (i) variably affected across multiple timescales, (ii) age-dependent, (iii) strongly related to altered perceptual sensations during and after remapping of the deafferented peripheral area, and (iv) may contribute to the appearance of secondary pathological conditions, such as allodynia, hyperalgesia, and neuropathic pain. Understanding the considerable complexity of plastic reorganization processes will be a fundamental step in the formulation of theoretical and clinical models useful for maximizing rehabilitation programs and resulting recovery.
Collapse
Affiliation(s)
- Erik Leemhuis
- Department of Psychology, University of Rome “La Sapienza”, Via dei Marsi 78, 00185 Rome, Italy;
- Istituto di Ricovero e Cura a Carattere Scientifico Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy
| | - Luigi De Gennaro
- Department of Psychology, University of Rome “La Sapienza”, Via dei Marsi 78, 00185 Rome, Italy;
- Istituto di Ricovero e Cura a Carattere Scientifico Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy
| | - Mariella Pazzaglia
- Department of Psychology, University of Rome “La Sapienza”, Via dei Marsi 78, 00185 Rome, Italy;
- Istituto di Ricovero e Cura a Carattere Scientifico Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy
| |
Collapse
|
44
|
Guemann M, Bouvier S, Halgand C, Paclet F, Borrini L, Ricard D, Lapeyre E, Cattaert D, Rugy AD. Effect of vibration characteristics and vibror arrangement on the tactile perception of the upper arm in healthy subjects and upper limb amputees. J Neuroeng Rehabil 2019; 16:138. [PMID: 31722740 PMCID: PMC6854744 DOI: 10.1186/s12984-019-0597-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 09/20/2019] [Indexed: 12/05/2022] Open
Abstract
Background Vibrotactile stimulation is a promising venue in the field of prosthetics to retrain sensory feedback deficits following amputation. Discrimination is well established at the forearm level but not at the upper arm level. Moreover, the effects of combining vibration characteristics such as duration and intensity has never been investigated. Method We conducted experiments on spatial discrimination (experiment 1) and tactile intensity perception (experiment 2), using 9 combinations of 3 intensities and 3 durations of vibror stimulations device. Those combinations were tested under 4 arrangements with an array of 6 vibrors. In both experiments, linear orientation aligned with the upper arm longitudinal axis were compared to circular orientation on the upper arm circumference. For both orientations, vibrors were placed either with 3cm space between the center of 2 vibrors or proportionally to the length or the circumference of the subject upper arm. Eleven heathy subjects underwent the 2 experiments and 7 amputees (humeral level) participated in the spatial discrimination task with the best arrangement found. Results Experiment 1 revealed that circular arrangements elicited better scores than the linear ones. Arrangements with vibrors spaced proportionally elicited better scores (up to 75% correct) than those with 3 cm spacing. Experiment 2, showed that the perceived intensity of the vibration increases with the intensity of the vibrors’ activation, but also with their duration of activation. The 7 patients obtained high scores (up to 91.67% correct) with the circular proportional (CP) arrangement. Discussion These results highlight that discrete and short vibrations can be well discriminated by healthy subjects and people with an upper limb amputation. These new characteristics of vibrations have great potential for future sensory substitution application in closed-loop prosthetic control.
Collapse
Affiliation(s)
- Matthieu Guemann
- Team HYBRID; INCIA laboratory, CNRS UMR 5287, University of Bordeaux, 146 rue Leo Saignat, Bordeaux, 33076, France.
| | | | - Christophe Halgand
- Team HYBRID; INCIA laboratory, CNRS UMR 5287, University of Bordeaux, 146 rue Leo Saignat, Bordeaux, 33076, France
| | - Florent Paclet
- Team HYBRID; INCIA laboratory, CNRS UMR 5287, University of Bordeaux, 146 rue Leo Saignat, Bordeaux, 33076, France
| | - Leo Borrini
- Departement of Rehabilitation at the Army instruction Hospital, 1 Rue du Lieutenant Raoul Batany, Clamart, 92190, France
| | - Damien Ricard
- Department of Neurology at the Army instruction Hospital, 1 Rue du Lieutenant Raoul Batany, Clamart, 92190, France
| | - Eric Lapeyre
- Departement of Rehabilitation at the Army instruction Hospital, 1 Rue du Lieutenant Raoul Batany, Clamart, 92190, France
| | - Daniel Cattaert
- Team HYBRID; INCIA laboratory, CNRS UMR 5287, University of Bordeaux, 146 rue Leo Saignat, Bordeaux, 33076, France
| | - Aymar de Rugy
- Team HYBRID; INCIA laboratory, CNRS UMR 5287, University of Bordeaux, 146 rue Leo Saignat, Bordeaux, 33076, France.,Centre for sensorimotor performance HMNS, University of Queensland, Brisbane, Australia
| |
Collapse
|
45
|
Valyear KF, Philip BA, Cirstea CM, Chen PW, Baune NA, Marchal N, Frey SH. Interhemispheric transfer of post-amputation cortical plasticity within the human somatosensory cortex. Neuroimage 2019; 206:116291. [PMID: 31639508 DOI: 10.1016/j.neuroimage.2019.116291] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/27/2019] [Accepted: 10/16/2019] [Indexed: 11/15/2022] Open
Abstract
Animal models reveal that deafferenting forelimb injuries precipitate reorganization in both contralateral and ipsilateral somatosensory cortices. The functional significance and duration of these effects are unknown, and it is unclear whether they also occur in injured humans. We delivered cutaneous stimulation during functional magnetic resonance imaging (fMRI) to map the sensory cortical representation of the intact hand and lower face in a group of chronic, unilateral, upper extremity amputees (N = 19) and healthy matched controls (N = 29). Amputees exhibited greater activity than controls within the deafferented former sensory hand territory (S1f) during stimulation of the intact hand, but not of the lower face. Despite this cortical reorganization, amputees did not differ from controls in tactile acuity on their intact hands. S1f responses during hand stimulation were unrelated to tactile acuity, pain, prosthesis usage, or time since amputation. These effects appeared specific to the deafferented somatosensory modality, as fMRI visual mapping paradigm failed to detect any differences between groups. We conclude that S1f becomes responsive to cutaneous stimulation of the intact hand of amputees, and that this modality-specific reorganizational change persists for many years, if not indefinitely. The functional relevance of these changes, if any, remains unknown.
Collapse
Affiliation(s)
- Kenneth F Valyear
- Department of Psychological Sciences, University of Missouri, Columbia, MO, USA; School of Psychology, Bangor University, Bangor, UK
| | - Benjamin A Philip
- Department of Psychological Sciences, University of Missouri, Columbia, MO, USA; Program in Occupational Therapy, Washington University School of Medicine, St. Louis, MO, USA
| | - Carmen M Cirstea
- Department of Physical Medicine and Rehabilitation, University of Missouri School of Medicine, Columbia, MO, USA
| | - Pin-Wei Chen
- Department of Psychological Sciences, University of Missouri, Columbia, MO, USA; Program in Occupational Therapy, Washington University School of Medicine, St. Louis, MO, USA
| | - Nathan A Baune
- Department of Psychological Sciences, University of Missouri, Columbia, MO, USA; Program in Occupational Therapy, Washington University School of Medicine, St. Louis, MO, USA
| | - Noah Marchal
- Department of Psychological Sciences, University of Missouri, Columbia, MO, USA; College of Engineering, University of Missouri, Columbia, MO, USA
| | - Scott H Frey
- Department of Psychological Sciences, University of Missouri, Columbia, MO, USA; Department of Physical Medicine and Rehabilitation, University of Missouri School of Medicine, Columbia, MO, USA.
| |
Collapse
|
46
|
Suppressing movements with phantom limbs and existing limbs evokes comparable electrophysiological inhibitory responses. Cortex 2019; 117:64-76. [DOI: 10.1016/j.cortex.2019.02.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 12/29/2018] [Accepted: 02/24/2019] [Indexed: 11/17/2022]
|
47
|
Abstract
PURPOSE OF REVIEW Phantom sensations are incompletely understood phenomena which take place following an amputation or deafferentation of a limb. They can present as kinetic, kinesthetic, or exteroceptive perceptions. It is estimated that phantom limb pain (PLP) affects anywhere from 40 to 80% of amputees. RECENT FINDINGS Psychiatric illnesses such as depression, anxiety, and mood disorders have higher prevalence in amputees than in the general population. Pharmacologic treatment has been used as first-line therapy for amputees suffering from PLP with agents including gabapentinoids, amitriptyline, and other tricyclic anti-depressants, opioids, and local anesthetics. Non-invasive treatment modalities exist for PLP including sensory motor training, mirror visual therapy, and non-invasive neuromodulation. Non-invasive neuromodulation includes interventions like transcutaneous electrical nerve stimulation (TENS) and transcranial magnetic stimulation. While many promising therapies for PLP exist, more clinical trials are required to determine the efficacy and protocols needed for maximum benefit in patients suffering from PLP.
Collapse
|
48
|
Bocci T, De Carolis G, Ferrucci R, Paroli M, Mansani F, Priori A, Valeriani M, Sartucci F. Cerebellar Transcranial Direct Current Stimulation (ctDCS) Ameliorates Phantom Limb Pain and Non-painful Phantom Limb Sensations. THE CEREBELLUM 2019; 18:527-535. [DOI: 10.1007/s12311-019-01020-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
49
|
Kikkert S, Mezue M, O'Shea J, Henderson Slater D, Johansen-Berg H, Tracey I, Makin TR. Neural basis of induced phantom limb pain relief. Ann Neurol 2019; 85:59-73. [PMID: 30383312 PMCID: PMC6492189 DOI: 10.1002/ana.25371] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 10/29/2018] [Accepted: 10/29/2018] [Indexed: 01/06/2023]
Abstract
OBJECTIVE Phantom limb pain (PLP) is notoriously difficult to treat, partly due to an incomplete understanding of PLP-related disease mechanisms. Noninvasive brain stimulation (NIBS) is used to modulate plasticity in various neuropathological diseases, including chronic pain. Although NIBS can alleviate neuropathic pain (including PLP), both disease and treatment mechanisms remain tenuous. Insight into the mechanisms underlying both PLP and NIBS-induced PLP relief is needed for future implementation of such treatment and generalization to related conditions. METHODS We used a within-participants, double-blind, and sham-controlled design to alleviate PLP via task-concurrent NIBS over the primary sensorimotor missing hand cortex (S1/M1). To specifically influence missing hand signal processing, amputees performed phantom hand movements during anodal transcranial direct current stimulation. Brain activity was monitored using neuroimaging during and after NIBS. PLP ratings were obtained throughout the week after stimulation. RESULTS A single session of intervention NIBS significantly relieved PLP, with effects lasting at least 1 week. PLP relief associated with reduced activity in the S1/M1 missing hand cortex after stimulation. Critically, PLP relief and reduced S1/M1 activity correlated with preceding activity changes during stimulation in the mid- and posterior insula and secondary somatosensory cortex (S2). INTERPRETATION The observed correlation between PLP relief and decreased S1/M1 activity confirms our previous findings linking PLP with increased S1/M1 activity. Our results further highlight the driving role of the mid- and posterior insula, as well as S2, in modulating PLP. Lastly, our novel PLP intervention using task-concurrent NIBS opens new avenues for developing treatment for PLP and related pain conditions. ANN NEUROL 2019;85:59-73.
Collapse
Affiliation(s)
- Sanne Kikkert
- Wellcome Centre for Integrative Neuroimaging, FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom.,Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, the Netherlands.,Neural Control of Movement Laboratory, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | - Melvin Mezue
- Wellcome Centre for Integrative Neuroimaging, FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Jacinta O'Shea
- Wellcome Centre for Integrative Neuroimaging, FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | | | - Heidi Johansen-Berg
- Wellcome Centre for Integrative Neuroimaging, FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Irene Tracey
- Wellcome Centre for Integrative Neuroimaging, FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Tamar R Makin
- Wellcome Centre for Integrative Neuroimaging, FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom.,Institute of Cognitive Neuroscience, University College London, London, United Kingdom.,Wellcome Centre for Human Neuroimaging, University College London, London, United Kingdom
| |
Collapse
|
50
|
Dubois JD, Poitras I, Voisin JIA, Mercier C. Effect of pain on deafferentation-induced modulation of somatosensory evoked potentials. PLoS One 2018; 13:e0206141. [PMID: 30346981 PMCID: PMC6197665 DOI: 10.1371/journal.pone.0206141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 10/08/2018] [Indexed: 11/18/2022] Open
Abstract
There is a large body of evidence showing substantial sensorimotor reorganizations after an amputation. These reorganizations are believed to contribute to the development of phantom limb pain, but alternatively, pain might influence the plasticity triggered by the deafferentation. The aim of this study was to test whether pain impacts on deafferentation-induced plasticity in the somatosensory pathways. Fifteen healthy subjects participated in 2 experimental sessions (Pain, No Pain) in which somatosensory evoked potentials (SSEPs) associated with electrical stimulation of the ulnar nerve were assessed before and after temporary ischemic deafferentation induced by inflation of a cuff around the wrist. In the Pain session capsaicin cream was applied on the dorsum of the hand 30 minutes prior to cuff inflation. Results show that pain decreased the amplitude of the N20 (main effect of condition, p = 0.033), with a similar trend for the P25. Temporary ischemic deafferentation had a significant effect on SSEPs (main effect of time), with an increase in the P25 (p = 0.013) and the P45 amplitude (p = 0.005), together with a reduction of the P90 amplitude (p = 0.002). Finally, a significant time x condition interaction, reflecting state-dependent plasticity, was found for the P90 only, the presence of pain decreasing the reduction of amplitude observed in response to deafferentation. In conclusion, these results show that nociceptive input can influence the plasticity induced by a deafferentation, which could be a contributing factor in the cortical somatosensory reorganization observed in chronic pain populations.
Collapse
Affiliation(s)
- Jean-Daniel Dubois
- Center for Interdisciplinary Research in Rehabilitation and Social Integration, Quebec City, Québec, Canada
- Department of Rehabilitation, Laval University, Pavillon Ferdinand-Vandry, Quebec City, Québec, Canada
| | - Isabelle Poitras
- Center for Interdisciplinary Research in Rehabilitation and Social Integration, Quebec City, Québec, Canada
- Department of Rehabilitation, Laval University, Pavillon Ferdinand-Vandry, Quebec City, Québec, Canada
| | - Julien I. A. Voisin
- Center for Interdisciplinary Research in Rehabilitation and Social Integration, Quebec City, Québec, Canada
- Department of Rehabilitation, Laval University, Pavillon Ferdinand-Vandry, Quebec City, Québec, Canada
| | - Catherine Mercier
- Center for Interdisciplinary Research in Rehabilitation and Social Integration, Quebec City, Québec, Canada
- Department of Rehabilitation, Laval University, Pavillon Ferdinand-Vandry, Quebec City, Québec, Canada
- * E-mail:
| |
Collapse
|