1
|
Aguilar-Bañuelos JA, Bernal-Hernández YY, Medina-Díaz IM, Ruiz-Arias MA, Herrera-Moreno JF, Barrón-Vivanco BS, González-Arias CA, Agraz-Cibrián JM, Zambrano-Zaragoza JF, Verdín-Betancourt FA, Ruiz NP, Flores-Alfaro E, Rojas-García AE. Environmental exposure to pesticides is associated with oxidative stress, oxidative DNA damage, and elevated interleukin-8 in a child population. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2025; 114:104656. [PMID: 39978743 DOI: 10.1016/j.etap.2025.104656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 02/07/2025] [Accepted: 02/09/2025] [Indexed: 02/22/2025]
Abstract
Pesticide exposure can cause various adverse effects in humans, with children being particularly susceptible. Such exposure leads to neurological, immunological, respiratory, and genetic damage, primarily by generating reactive oxygen species (ROS). The increase in ROS induces lipid peroxidation (LPO) and the formation of hydroxyl radicals, which generate DNA adducts. This study involved children aged 6-12 from three communities: two in an agricultural region (communities A and B) and one reference population (community C). The objective was to evaluate lipid peroxidation through malondialdehyde (MDA) levels, the content of 8-hydroxy-2'-deoxyguanosine (8-OHdG) adducts, and the concentrations of the cytokines IL-6, IL-8, IL-10, and TNF-α in children environmentally exposed to pesticides. Anthropometric measurements were taken from the study population. Dialkylphosphates (DAP) in urine were determined by gas chromatography and mass spectrometry. Plasma concentrations of MDA and pro-inflammatory cytokines (IL-6, IL-8, TNF-α) and the anti-inflammatory cytokine (IL-10) were quantified using biochemical assays and urinary concentrations of 8-OHdG. The findings showed that DAP, MDA, and 8-OHdG concentrations in communities A and B increased significantly compared with community C. Additionally, IL-8 exhibited a significant increase in community A compared to community C, while no significant differences were observed for IL-6, IL-10, and TNF-α. Higher pesticide exposure is linked to oxidative stress, DNA damage and inflammation, key indicators of chronic diseases. In conclusion, this study provides evidence linking environmental pesticide exposure in agricultural communities to increased oxidative stress and inflammatory responses in children.
Collapse
Affiliation(s)
- José Antonio Aguilar-Bañuelos
- Programa de Maestría y Doctorado en Ciencias Biológico Agropecuarias, Área de Ciencias Ambientales, Universidad Autónoma de Nayarit, Nayarit, Mexico; Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Ciudad de la Cultura s/n. Col. Centro, Tepic, Nayarit C.P. 63000, Mexico
| | - Yael Yvette Bernal-Hernández
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Ciudad de la Cultura s/n. Col. Centro, Tepic, Nayarit C.P. 63000, Mexico
| | - Irma Martha Medina-Díaz
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Ciudad de la Cultura s/n. Col. Centro, Tepic, Nayarit C.P. 63000, Mexico
| | - Miguel Alfonso Ruiz-Arias
- Programa de Maestría y Doctorado en Ciencias Biológico Agropecuarias, Área de Ciencias Ambientales, Universidad Autónoma de Nayarit, Nayarit, Mexico; Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Ciudad de la Cultura s/n. Col. Centro, Tepic, Nayarit C.P. 63000, Mexico
| | - José Francisco Herrera-Moreno
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Ciudad de la Cultura s/n. Col. Centro, Tepic, Nayarit C.P. 63000, Mexico; Secretaría de Ciencia, Humanidades, Tecnología e Innovación (SECIHTI), Padrón de Investigadoras e Investigadores por México, Mexico
| | - Briscia Socorro Barrón-Vivanco
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Ciudad de la Cultura s/n. Col. Centro, Tepic, Nayarit C.P. 63000, Mexico
| | - Cyndia Azucena González-Arias
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Ciudad de la Cultura s/n. Col. Centro, Tepic, Nayarit C.P. 63000, Mexico
| | - Juan Manuel Agraz-Cibrián
- Unidad Académica de Ciencias Químico Biológicas y Farmacéuticas, Universidad Autónoma de Nayarit, Ciudad de la Cultura s/n. Col. Centro, Tepic, Nayarit C.P. 63000, Mexico
| | - José Francisco Zambrano-Zaragoza
- Unidad Académica de Ciencias Químico Biológicas y Farmacéuticas, Universidad Autónoma de Nayarit, Ciudad de la Cultura s/n. Col. Centro, Tepic, Nayarit C.P. 63000, Mexico
| | | | - Néstor Ponce Ruiz
- Unidad Especializada de Ciencias Ambientales, CENITT, Av. Emilio M. González S/N. Ciudad del Conocimiento, Tepic, Nayarit, Mexico
| | - Eugenia Flores-Alfaro
- Facultad de Ciencias Químico-Biológicas, Laboratorio de Epidemiología Clínica y Molecular, Universidad Autónoma De Guerrero, Guerrero, Mexico
| | - Aurora Elizabeth Rojas-García
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Ciudad de la Cultura s/n. Col. Centro, Tepic, Nayarit C.P. 63000, Mexico.
| |
Collapse
|
2
|
Teixeira JRDS, Souza AMD, Macedo-Sampaio JVD, Tavares LADM, Pereira BF, Medeiros SRBD, Luchiari AC. Chronic exposure to low concentration of diflubenzuron and pyriproxyfen induces brain oxidative stress and inflammation and alters locomotion in zebrafish (Danio rerio). ENVIRONMENTAL RESEARCH 2025; 264:120278. [PMID: 39489275 DOI: 10.1016/j.envres.2024.120278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/14/2024] [Accepted: 10/30/2024] [Indexed: 11/05/2024]
Abstract
Diflubenzuron (DFB1) and pyriproxyfen (PPF) are pesticides widely used in agriculture and urban environments to control insect actions. The aim of this study was to evaluate the effects of chronic 30-day exposure to DFB (0.025 and 0.125 mg/L) and PPF (0.379 and 0.758 mg/L) on the behavior of juvenile zebrafish (Danio rerio). Fish were exposed to insecticides from early stage (4 h post fertilization) to 30 days post fertilization (dpf). At 45 dpf, fish were evaluated in the novel tank test, social behavior test, and mirror aggressive test. Brain gene expression related to oxidative stress and inflammation was also evaluated. DFB reduced locomotor parameters in the novel tank and aggression tests, while it induced to hyperactivity in the social behavior test. PPF reduced anxiety-like behavior, measured by the time spent in risky areas of the novel tank, and reduced aggression against the mirror image. There was a significant reduction in mRNA levels of the nfe2l2 gene (∼0.54 fold downregulated) and increase in levels of cat (PPF ∼1.8 fold change), gsr (PPF ∼1.5 fold change), gpx1a (PPF ∼1.6 and DFB 1.1 fold change), tnf-α (PPF 1.9 and DFB 2.2 fold change), and il-6 (PPF ∼1.2 and DFB 2.3 fold change). These endpoints are indicative of the threatening effects of insecticides to aquatic organisms and the need for alternative methods to control pests by using less harmful and safer substances for animal and human well-being, as well as for the environment.
Collapse
Affiliation(s)
- Júlia Robert de Sousa Teixeira
- FishLab, Department of Physiology and Behavior, Federal University of Rio Grande do Norte, Natal, Brazil; Graduate Program in Psychobiology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Augusto Monteiro de Souza
- FishLab, Department of Physiology and Behavior, Federal University of Rio Grande do Norte, Natal, Brazil; Department of Cell Biology and Genetics, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | | | | | - Bruno Fiorelini Pereira
- Department of Biology, Federal University of São Paulo (UNIFESP), Diadema, São Paulo, SP, Brazil; Laboratory of Molecular and Translational Endocrinology, Division of Endocrinology, Department of Medicine, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil
| | | | - Ana Carolina Luchiari
- FishLab, Department of Physiology and Behavior, Federal University of Rio Grande do Norte, Natal, Brazil; Graduate Program in Psychobiology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil.
| |
Collapse
|
3
|
Dahiya P, Kumari S, Behl M, Kashyap A, Kumari D, Thakur K, Devi M, Kumari N, Kaushik N, Walia A, Bhatt AK, Bhatia RK. Guardians of the Gut: Harnessing the Power of Probiotic Microbiota and Their Exopolysaccharides to Mitigate Heavy Metal Toxicity in Human for Better Health. Probiotics Antimicrob Proteins 2024; 16:1937-1953. [PMID: 38733461 DOI: 10.1007/s12602-024-10281-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2024] [Indexed: 05/13/2024]
Abstract
Heavy metal pollution is a significant global health concern, posing risks to both the environment and human health. Exposure to heavy metals happens through various channels like contaminated water, food, air, and workplaces, resulting in severe health implications. Heavy metals also disrupt the gut's microbial balance, leading to dysbiosis characterized by a decrease in beneficial microorganisms and proliferation in harmful ones, ultimately exacerbating health problems. Probiotic microorganisms have demonstrated their ability to adsorb and sequester heavy metals, while their exopolysaccharides (EPS) exhibit chelating properties, aiding in mitigating heavy metal toxicity. These beneficial microorganisms aid in restoring gut integrity through processes like biosorption, bioaccumulation, and biotransformation of heavy metals. Incorporating probiotic strains with high affinity for heavy metals into functional foods and supplements presents a practical approach to mitigating heavy metal toxicity while enhancing gut health. Utilizing probiotic microbiota and their exopolysaccharides to address heavy metal toxicity offers a novel method for improving human health through modulation of the gut microbiome. By combining probiotics and exopolysaccharides, a distinctive strategy emerges for mitigating heavy metal toxicity, highlighting promising avenues for therapeutic interventions and health improvements. Further exploration in this domain could lead to groundbreaking therapies and preventive measures, underscoring probiotic microbiota and exopolysaccharides as natural and environmentally friendly solutions to heavy metal toxicity. This, in turn, could enhance public health by safeguarding the gut from environmental contaminants.
Collapse
Affiliation(s)
- Pushpak Dahiya
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla, 171005, Himachal Pradesh, India
| | - Sangeeta Kumari
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla, 171005, Himachal Pradesh, India
| | - Manya Behl
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla, 171005, Himachal Pradesh, India
| | - Aakash Kashyap
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla, 171005, Himachal Pradesh, India
| | - Deeksha Kumari
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla, 171005, Himachal Pradesh, India
| | - Kalpana Thakur
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla, 171005, Himachal Pradesh, India
| | - Mamta Devi
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla, 171005, Himachal Pradesh, India
| | - Neelam Kumari
- Department of Biosciences, Himachal Pradesh University, Summer Hill, Shimla, 171005, Himachal Pradesh, India
| | - Neelam Kaushik
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla, 171005, Himachal Pradesh, India
| | - Abhishek Walia
- Department of Microbiology, College of Basic Sciences, CSK HPKV, Palampur, HP, 176062, India
| | - Arvind Kumar Bhatt
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla, 171005, Himachal Pradesh, India
| | - Ravi Kant Bhatia
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla, 171005, Himachal Pradesh, India.
| |
Collapse
|
4
|
Fona CMT, Miranda AMM, Jesus MI, Silva VM, Rocha CCS, Costa ACG, Mendes RA. Biomarkers of Pesticide Exposure in a Traditional Brazilian Amazon Community. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:1396. [PMID: 39595663 PMCID: PMC11593667 DOI: 10.3390/ijerph21111396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/14/2024] [Accepted: 10/17/2024] [Indexed: 11/28/2024]
Abstract
In 2008, Brazil became the country with the highest pesticide use in the world, with over one billion liters of pesticides applied to crops in 2009. The impacts of these products on public health are wide-ranging. Vast territories are affected, involving different population groups, such as workers in various fields of activity, the population that consumes contaminated food, and people living around factories, such as traditional communities. This study aimed to assess human exposure to pesticides through epidemiological and laboratory data of residents of the Santo Antônio quilombola community in Concórdia do Pará, Amazon region, Brazil. Epidemiological data were collected using a semi-structured questionnaire, which included factors such as sex, age, length of residence, and level of exposure to pesticides. The modified Ellman method was used to assess the activity of cholinesterases, and flow cytometry was performed for cytokine analysis. Analysis of collected blood samples showed that, in most cases, there was no significant reduction in the activity of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) compared to other studies in the scientific literature. Meanwhile, there was an increase in the levels of IFN-γ cytokines, especially IL-6, in all groups. The findings of this study highlight the urgent need for a comprehensive monitoring program, considering that some conditions other than pesticide exposure can alter the activities of the biomarkers used in this study.
Collapse
Affiliation(s)
- Cristal M. T. Fona
- Postgraduate Program in Health Surveillance and Epidemiology, Evandro Chagas Institute, Ananindeua 67030-000, Brazil; (C.M.T.F.); (V.M.S.)
| | - Antonio M. M. Miranda
- Environment Section, Evandro Chagas Institute, Ananindeua 67030-000, Brazil; (A.M.M.M.); (M.I.J.); (C.C.S.R.); (A.C.G.C.)
| | - Maria I. Jesus
- Environment Section, Evandro Chagas Institute, Ananindeua 67030-000, Brazil; (A.M.M.M.); (M.I.J.); (C.C.S.R.); (A.C.G.C.)
| | - Viviane M. Silva
- Postgraduate Program in Health Surveillance and Epidemiology, Evandro Chagas Institute, Ananindeua 67030-000, Brazil; (C.M.T.F.); (V.M.S.)
| | - Cássia C. S. Rocha
- Environment Section, Evandro Chagas Institute, Ananindeua 67030-000, Brazil; (A.M.M.M.); (M.I.J.); (C.C.S.R.); (A.C.G.C.)
| | - Amilton C. G. Costa
- Environment Section, Evandro Chagas Institute, Ananindeua 67030-000, Brazil; (A.M.M.M.); (M.I.J.); (C.C.S.R.); (A.C.G.C.)
| | - Rosivaldo A. Mendes
- Environment Section, Evandro Chagas Institute, Ananindeua 67030-000, Brazil; (A.M.M.M.); (M.I.J.); (C.C.S.R.); (A.C.G.C.)
| |
Collapse
|
5
|
Rahmat NL, Zifruddin AN, Yusoff NS, Sulaiman S, Zainal Abidin CMR, Othman NW, Nor Muhammad NA, Hassan M. Transcriptome analysis reveals mechanisms of metabolic detoxification and immune responses following farnesyl acetate treatment in Metisa plana. Comput Biol Chem 2024; 112:108176. [PMID: 39181100 DOI: 10.1016/j.compbiolchem.2024.108176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/08/2024] [Accepted: 08/14/2024] [Indexed: 08/27/2024]
Abstract
Metisa plana is a widespread insect pest infesting oil palm plantations in Malaysia. Farnesyl acetate (FA), a juvenile hormone analogue, has been reported to exert in vitro and in vivo insecticidal activity against other insect pests. However, the insecticidal mechanism of FA on M. plana remains unclear. Therefore, this study aims to elucidate responsive genes in M. plana in response to FA treatment. The RNA-sequencing reads of FA-treated M. plana were de novo-assembled with existing raw reads from non-treated third instar larvae, and 55,807 transcripts were functionally annotated to multiple protein databases. Several insecticide detoxification-related genes were differentially regulated among the 321 differentially expressed transcripts. Cytochrome P450 monooxygenase, carboxylesterase, and ATP-binding cassette protein were upregulated, while peptidoglycan recognition protein was downregulated. Innate immune response genes, such as glutathione S-transferases, acetylcholinesterase, and heat shock protein, were also identified in the transcriptome. The findings signify that changes occurred in the insect's receptor and signaling, metabolic detoxification of insecticides, and immune responses upon FA treatment on M. plana. This valuable information on FA toxicity may be used to formulate more effective biorational insecticides for better M. plana pest management strategies in oil palm plantations.
Collapse
Affiliation(s)
- Nur Lina Rahmat
- Institute of Systems Biology, Universiti Kebangsaan Malaysia (UKM), Bangi, Selangor 43600 UKM, Malaysia
| | - Anis Nadyra Zifruddin
- Institute of Systems Biology, Universiti Kebangsaan Malaysia (UKM), Bangi, Selangor 43600 UKM, Malaysia
| | - Nur Syamimi Yusoff
- Institute of Systems Biology, Universiti Kebangsaan Malaysia (UKM), Bangi, Selangor 43600 UKM, Malaysia
| | - Suhaila Sulaiman
- Bioinformatics Unit, FGV R&D Sdn. Bhd., FGV Innovation Centre, PT23417 Lengkuk Teknologi,Bandar Enstek, Nilai, Negeri Sembilan 71760, Malaysia
| | | | - Nurul Wahida Othman
- Centre for Insect Systematics, Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi, Selangor 43600 UKM, Malaysia
| | - Nor Azlan Nor Muhammad
- Institute of Systems Biology, Universiti Kebangsaan Malaysia (UKM), Bangi, Selangor 43600 UKM, Malaysia; Bioinformatics and Molecular Simulations Group, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Maizom Hassan
- Institute of Systems Biology, Universiti Kebangsaan Malaysia (UKM), Bangi, Selangor 43600 UKM, Malaysia; Systems and Synthetic Biology Group, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia.
| |
Collapse
|
6
|
Bhardwaj G, Riadi Y, Afzal M, Bansal P, Kaur H, Deorari M, Tonk RK, Almalki WH, Kazmi I, Alzarea SI, Kukreti N, Thangavelu L, Saleem S. The hidden threat: Environmental toxins and their effects on gut microbiota. Pathol Res Pract 2024; 255:155173. [PMID: 38364649 DOI: 10.1016/j.prp.2024.155173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/18/2024]
Abstract
The human gut microbiota (GM), which consists of a complex and diverse ecosystem of bacteria, plays a vital role in overall wellness. However, the delicate balance of this intricate system is being compromised by the widespread presence of environmental toxins. The intricate connection between contaminants in the environment and human well-being has garnered significant attention in recent times. Although many environmental pollutants and their toxicity have been identified and studied in laboratory settings and animal models, there is insufficient data concerning their relevance to human physiology. Consequently, research on the toxicity of environmental toxins in GM has gained prominence in recent years. Various factors, such as air pollution, chemicals, heavy metals, and pesticides, have a detrimental impact on the composition and functioning of the GM. This comprehensive review aims to comprehend the toxic effects of numerous environmental pollutants, including antibiotics, endocrine-disrupting chemicals, heavy metals, and pesticides, on GM by examining recent research findings. The current analysis concludes that different types of environmental toxins can lead to GM dysbiosis and have various potential adverse effects on the well-being of animals. We investigate the alterations to the GM composition induced by contaminants and their impact on overall well-being, providing a fresh perspective on research related to pollutant exposure.
Collapse
Affiliation(s)
- Gautam Bhardwaj
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar sector-3, M-B Road, New Delhi 110017, India
| | - Yassine Riadi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Pooja Bansal
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bengaluru, Karnataka 560069, India; Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan 303012, India
| | - Harpreet Kaur
- School of Basic & Applied Sciences, Shobhit University, Gangoh, Uttar Pradesh 247341, India; Department of Health & Allied Sciences, Arka Jain University, Jamshedpur, Jharkhand 831001, India
| | - Mahamedha Deorari
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Rajiv Kumar Tonk
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar sector-3, M-B Road, New Delhi 110017, India.
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21589 Jeddah, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, 72341 Sakaka, Aljouf, Saudi Arabia
| | - Neelima Kukreti
- School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India
| | - Lakshmi Thangavelu
- Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Shakir Saleem
- Department of Public Health. College of Health Sciences, Saudi Electronic University, Riyadh, Saudi Arabia.
| |
Collapse
|
7
|
Barranger A, Klopp C, Le Bot B, Saramito G, Dupont L, Llopis S, Wiegand C, Binet F. Insights into the molecular mechanisms of pesticide tolerance in the Aporrectodea caliginosa earthworm. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 319:120945. [PMID: 36572272 DOI: 10.1016/j.envpol.2022.120945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/09/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Diffuse pollution of the environment by pesticides has become a major soil threat to non-target organisms, such as earthworms for which declines have been reported. However some endogeic species are still abundant and persist in intensively cultivated fields, suggesting they become tolerant to long-term anthropogenic pressure. We thus considered the working hypothesis that populations of Aporrectodea caliginosa earthworms from conventionally managed fields developed a tolerance to pesticides compared with those from organically managed fields. To investigate this hypothesis, we studied earthworm populations of the same genetic lineage from soils that were either lowly or highly contaminated by pesticides to detect any constitutive expression of differentially expressed molecular pathways between these populations. Earthworm populations were then experimentally exposed to a fungicide-epoxiconazole-in the laboratory to identify different molecular responses when newly exposed to a pesticide. State-of-the-art omics technology (RNA sequencing) and bioinformatics were used to characterize molecular mechanisms of tolerance in a non-targeted way. Additional physiological traits (respirometry, growth, bioaccumulation) were monitored to assess tolerance at higher levels of biological organization. In the present study, we generated the de novo assembly transcriptome of A. caliginosa consisting of 64,556 contigs with N50 = 2862 pb. In total, 43,569 Gene Ontology terms were identified for 21,593 annotated sequences under the three main ontologies (biological processes, cellular components and molecular functions). Overall, we revealed that two same lineage populations of A. caliginosa earthworms, inhabiting similar pedo-climatic environment, have distinct gene expression pathways after they long-lived in differently managed agricultural soils with a contrasted pesticide exposure history for more than 22 years. The main difference was observed regarding metabolism, with upregulated pathways linked to proteolytic activities and the mitochondrial respiratory chain in the highly exposed population. This study improves our understanding of the long-term impact of chronic exposure of soil engineers to pesticide residues.
Collapse
Affiliation(s)
- Audrey Barranger
- UMR CNRS ECOBIO 6553, Université de Rennes1, Campus de Beaulieu, 263 Avenue du Général Leclerc, 35042, Rennes, Cedex, France.
| | - Christophe Klopp
- UR INRAE 875 MIAT, GENOTOUL, 24 Chemin de Borde Rouge, 31326, Castanet-Tolosan, Cedex, France
| | - Barbara Le Bot
- Université de Rennes, EHESP, Inserm, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F 35000, Rennes, France
| | - Gaëlle Saramito
- Université de Rennes, EHESP, Inserm, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F 35000, Rennes, France
| | - Lise Dupont
- Université Paris Est Créteil (UPEC), Sorbonne Université, CNRS, INRAE, IRD, Institut d'Ecologie et des Sciences de l'Environnement de Paris, 94010, Créteil, Cedex, France
| | - Stéphanie Llopis
- UMR CNRS ECOBIO 6553, Université de Rennes1, Campus de Beaulieu, 263 Avenue du Général Leclerc, 35042, Rennes, Cedex, France
| | - Claudia Wiegand
- UMR CNRS ECOBIO 6553, Université de Rennes1, Campus de Beaulieu, 263 Avenue du Général Leclerc, 35042, Rennes, Cedex, France
| | - Françoise Binet
- UMR CNRS ECOBIO 6553, Université de Rennes1, Campus de Beaulieu, 263 Avenue du Général Leclerc, 35042, Rennes, Cedex, France
| |
Collapse
|
8
|
Costa C, Teodoro M, Giambò F, Catania S, Vivarelli S, Fenga C. Assessment of Mancozeb Exposure, Absorbed Dose, and Oxidative Damage in Greenhouse Farmers. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph191710486. [PMID: 36078202 PMCID: PMC9518406 DOI: 10.3390/ijerph191710486] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/19/2022] [Accepted: 08/20/2022] [Indexed: 05/28/2023]
Abstract
Mancozeb (MNZ) is a fungicide commonly employed in many countries worldwide. This study assesses MNZ absorption dynamics in 19 greenhouse farmers, specifically following dermal exposure, aiming to verify the efficacy of both preventive actions and protective equipment. For data collection, a multi-assessment approach was used, which included a survey to record study population features. MNZ exposure was assessed through the indirect measurement of ethylene thiourea (ETU), widely employed as an MNZ biomarker. The ETU concentration was measured with the patch method, detecting environmental ETU trapped in filter paper pads, applied both on skin and working clothes, during the 8 h work shift. Urine and serum end-of-shift samples were also collected to measure ETU concentrations and well-known oxidative stress biomarkers, respectively, namely reactive oxygen metabolites (ROMs), advanced oxidation protein products (AOPPs), and biological antioxidant potential (BAP). It was observed that levels of ETU absorbed and ETU excreted were positively correlated. Additionally, working clothes effectively protected workers from MNZ exposure. Moreover, following stratification of the samples based on the specific working duty (i.e., preparation and spreading of MNZ and manipulation of MNZ-treated seedlings), it was found that the spreading group had higher ETU-related risk, despite lower chronic exposure levels. AOPP and ROM serum levels were higher in MNZ-exposed subjects compared with non-exposed controls, whereas BAP levels were significantly lower. Such results support an increase in the oxidative stress upon 8 h MNZ exposure at work. In particular, AOPP levels demonstrated a potential predictive role, as suggested by the contingency analysis results. Overall, this study, although conducted in a small group, confirms that ETU detection in pads, as well as in urine, might enable assessment of the risk associated with MNZ exposure in greenhouse workers. Additionally, the measurement of circulating oxidative stress biomarkers might help to stratify exposed workers based on their sensitivity to MNZ. Pivotally, the combination of both ETU measurement and biological monitoring might represent a novel valuable combined approach for risk assessment in farmhouse workers exposed to pesticides. In the future, these observations will help to implement effective preventive strategies in the workplace for workers at higher risk, including greenhouse farmers who are exposed to pesticides daily, as well as to clarify the occupational exposure levels to ETU.
Collapse
Affiliation(s)
- Chiara Costa
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy
| | - Michele Teodoro
- Department of Biomedical and Dental Sciences, Morphological and Functional Imaging, Section of Occupational Medicine, University of Messina, 98125 Messina, Italy
| | - Federica Giambò
- Department of Biomedical and Dental Sciences, Morphological and Functional Imaging, Section of Occupational Medicine, University of Messina, 98125 Messina, Italy
| | - Stefania Catania
- Department of Biomedical and Dental Sciences, Morphological and Functional Imaging, Section of Occupational Medicine, University of Messina, 98125 Messina, Italy
| | - Silvia Vivarelli
- Department of Biomedical and Dental Sciences, Morphological and Functional Imaging, Section of Occupational Medicine, University of Messina, 98125 Messina, Italy
| | - Concettina Fenga
- Department of Biomedical and Dental Sciences, Morphological and Functional Imaging, Section of Occupational Medicine, University of Messina, 98125 Messina, Italy
| |
Collapse
|
9
|
Organophosphorus Pesticides as Modulating Substances of Inflammation through the Cholinergic Pathway. Int J Mol Sci 2022; 23:ijms23094523. [PMID: 35562914 PMCID: PMC9104626 DOI: 10.3390/ijms23094523] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 01/27/2023] Open
Abstract
Organophosphorus pesticides (OPs) are widespread insecticides used for pest control in agricultural activities and the control of the vectors of human and animal diseases. However, OPs’ neurotoxic mechanism involves cholinergic components, which, beyond being involved in the transmission of neuronal signals, also influence the activity of cytokines and other pro-inflammatory molecules; thus, acute and chronic exposure to OPs may be related to the development of chronic degenerative pathologies and other inflammatory diseases. The present article reviews and discusses the experimental evidence linking inflammatory process with OP-induced cholinergic dysregulation, emphasizing the molecular mechanisms related to the role of cytokines and cellular alterations in humans and other animal models, and possible therapeutic targets to inhibit inflammation.
Collapse
|
10
|
Alipanah H, Kabi Doraghi H, Sayadi M, Nematollahi A, Soltani Hekmat A, Nejati R. Subacute toxicity of chlorpyrifos on histopathological damages, antioxidant activity, and pro-inflammatory cytokines in the rat model. ENVIRONMENTAL TOXICOLOGY 2022; 37:880-888. [PMID: 34985812 DOI: 10.1002/tox.23451] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 12/08/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
Chlorpyrifos (CPF) is an extensively used organophosphorus pesticide for agricultural, industrial, and domestic purposes. Previous studies have reported the adverse effects of CPF, such as intoxication incidents, endocrine disruption, cardiovascular diseases, as well as histopathological and oxidative damage. The aims of the present study were to elucidate short time subacute toxicity of CPF in male rats. Sprague-Dawley male rats (n = 32) were divided into four groups (n = 8) and received CPF as 3.25 mg/kg body weight (b.w) (Group A), 6.75 mg/kg b.w (Group B), 13.5 mg/kg b.w (Group C), and corn oil (control or Group D) daily via gavage for 15 days. The rats were sacrificed and oxidative damages, pro-inflammatory cytokines (TNF-α, IL-1β), and histopathological changes were determined in the lung, liver, kidney, heart, and testis tissues as well as plasma. According to our result, administration of CPF caused a significant increase in malondialdehid level and catalase activity while a significant decrease in superoxide dismutase activity in all tissues. In addition, a significant decrease in TNF-α observed in all tissues and plasma duo to the CPF. Histopathological evaluation of CPF-treated samples revealed a dose-dependent tissue toxicity in the liver, heart, lung, and kidney with less sensitivity of testicular and kidney tissues. These results suggest the potential of CPF in inducing oxidative stress at low doses and short duration time with similar trends in different tissues. As well as, due to the effects of CPF on some pro-inflammatory mediators, more comprehensive studies are recommended.
Collapse
Affiliation(s)
- Hiva Alipanah
- Department of Physiology, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | | | - Mehran Sayadi
- Department of Food Safety and Hygiene, School of Health, Fasa University of Medical Sciences, Fasa, Iran
| | - Amene Nematollahi
- Department of Food Safety and Hygiene, School of Health, Fasa University of Medical Sciences, Fasa, Iran
| | - Ava Soltani Hekmat
- Department of Physiology, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Roghayeh Nejati
- Department of Food Safety and Hygiene, School of Health, Fasa University of Medical Sciences, Fasa, Iran
| |
Collapse
|
11
|
Lopes-Ferreira M, Maleski ALA, Balan-Lima L, Bernardo JTG, Hipolito LM, Seni-Silva AC, Batista-Filho J, Falcao MAP, Lima C. Impact of Pesticides on Human Health in the Last Six Years in Brazil. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19063198. [PMID: 35328887 PMCID: PMC8951416 DOI: 10.3390/ijerph19063198] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/26/2022] [Accepted: 01/28/2022] [Indexed: 12/15/2022]
Abstract
Every year, Brazil intensifies its activity in agriculture and, as a result, it has become one of the biggest consumers of pesticides in the world. The high rate of these substances raises environmental and human health concerns. Therefore, we collected papers from PubMed, Scopus, Scielo, and Web of Science databases, from 2015 to 2021. After a blind selection using the software Rayyan QCRI by two authors, 51 studies were included. Researchers from the South and the Southeast Brazilian regions contributed to most publications, from areas that concentrate agricultural commodity complexes. Among the pesticides described in the studies, insecticides, herbicides, and fungicides were the most frequent. The articles reported multiple toxic effects, particularly in rural workers. The results obtained can be used to direct policies to reduce the use of pesticides, and to protect the health of the population.
Collapse
Affiliation(s)
- Monica Lopes-Ferreira
- Immunoregulation Unit of the Laboratory of Applied Toxinology (CeTICs/FAPESP), Butantan Institute, Vital Brazil Avenue, 1500, Butantan, São Paulo 05503-009, Brazil; (A.L.A.M.); (L.B.-L.); (J.T.G.B.); (L.M.H.); (A.C.S.-S.); (J.B.-F.); (M.A.P.F.); (C.L.)
- Correspondence:
| | - Adolfo Luis Almeida Maleski
- Immunoregulation Unit of the Laboratory of Applied Toxinology (CeTICs/FAPESP), Butantan Institute, Vital Brazil Avenue, 1500, Butantan, São Paulo 05503-009, Brazil; (A.L.A.M.); (L.B.-L.); (J.T.G.B.); (L.M.H.); (A.C.S.-S.); (J.B.-F.); (M.A.P.F.); (C.L.)
- Post-Graduation Program of Toxinology, Butantan Institute, São Paulo 05503-009, Brazil
| | - Leticia Balan-Lima
- Immunoregulation Unit of the Laboratory of Applied Toxinology (CeTICs/FAPESP), Butantan Institute, Vital Brazil Avenue, 1500, Butantan, São Paulo 05503-009, Brazil; (A.L.A.M.); (L.B.-L.); (J.T.G.B.); (L.M.H.); (A.C.S.-S.); (J.B.-F.); (M.A.P.F.); (C.L.)
| | - Jefferson Thiago Gonçalves Bernardo
- Immunoregulation Unit of the Laboratory of Applied Toxinology (CeTICs/FAPESP), Butantan Institute, Vital Brazil Avenue, 1500, Butantan, São Paulo 05503-009, Brazil; (A.L.A.M.); (L.B.-L.); (J.T.G.B.); (L.M.H.); (A.C.S.-S.); (J.B.-F.); (M.A.P.F.); (C.L.)
| | - Lucas Marques Hipolito
- Immunoregulation Unit of the Laboratory of Applied Toxinology (CeTICs/FAPESP), Butantan Institute, Vital Brazil Avenue, 1500, Butantan, São Paulo 05503-009, Brazil; (A.L.A.M.); (L.B.-L.); (J.T.G.B.); (L.M.H.); (A.C.S.-S.); (J.B.-F.); (M.A.P.F.); (C.L.)
| | - Ana Carolina Seni-Silva
- Immunoregulation Unit of the Laboratory of Applied Toxinology (CeTICs/FAPESP), Butantan Institute, Vital Brazil Avenue, 1500, Butantan, São Paulo 05503-009, Brazil; (A.L.A.M.); (L.B.-L.); (J.T.G.B.); (L.M.H.); (A.C.S.-S.); (J.B.-F.); (M.A.P.F.); (C.L.)
- Post-Graduation Program of Toxinology, Butantan Institute, São Paulo 05503-009, Brazil
| | - Joao Batista-Filho
- Immunoregulation Unit of the Laboratory of Applied Toxinology (CeTICs/FAPESP), Butantan Institute, Vital Brazil Avenue, 1500, Butantan, São Paulo 05503-009, Brazil; (A.L.A.M.); (L.B.-L.); (J.T.G.B.); (L.M.H.); (A.C.S.-S.); (J.B.-F.); (M.A.P.F.); (C.L.)
- Post-Graduation Program of Toxinology, Butantan Institute, São Paulo 05503-009, Brazil
| | - Maria Alice Pimentel Falcao
- Immunoregulation Unit of the Laboratory of Applied Toxinology (CeTICs/FAPESP), Butantan Institute, Vital Brazil Avenue, 1500, Butantan, São Paulo 05503-009, Brazil; (A.L.A.M.); (L.B.-L.); (J.T.G.B.); (L.M.H.); (A.C.S.-S.); (J.B.-F.); (M.A.P.F.); (C.L.)
| | - Carla Lima
- Immunoregulation Unit of the Laboratory of Applied Toxinology (CeTICs/FAPESP), Butantan Institute, Vital Brazil Avenue, 1500, Butantan, São Paulo 05503-009, Brazil; (A.L.A.M.); (L.B.-L.); (J.T.G.B.); (L.M.H.); (A.C.S.-S.); (J.B.-F.); (M.A.P.F.); (C.L.)
| |
Collapse
|
12
|
Giambò F, Costa C, Teodoro M, Fenga C. Role-Playing Between Environmental Pollutants and Human Gut Microbiota: A Complex Bidirectional Interaction. Front Med (Lausanne) 2022; 9:810397. [PMID: 35252248 PMCID: PMC8888443 DOI: 10.3389/fmed.2022.810397] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 01/18/2022] [Indexed: 12/12/2022] Open
Abstract
There is a growing interest in the characterization of the involvement of toxicant and pollutant exposures in the development and the progression of several diseases such as obesity, diabetes, cancer, as well as in the disruption of the immune and reproductive homeostasis. The gut microbiota is considered a pivotal player against the toxic properties of chemicals with the establishment of a dynamic bidirectional relationship, underlining the toxicological significance of this mutual interplay. In fact, several environmental chemicals have been demonstrated to affect the composition, the biodiversity of the intestinal microbiota together with the underlining modulated metabolic pathways, which may play an important role in tailoring the microbiotype of an individual. In this review, we aimed to discuss the latest updates concerning the environmental chemicals–microbiota dual interaction, toward the identification of a distinctiveness of the gut microbial community, which, in turn, may allow to adopt personalized preventive strategies to improve risk assessment for more susceptible workers.
Collapse
Affiliation(s)
- Federica Giambò
- Occupational Medicine Section, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Chiara Costa
- Clinical and Experimental Medicine Department, University of Messina, Messina, Italy
| | - Michele Teodoro
- Occupational Medicine Section, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Concettina Fenga
- Occupational Medicine Section, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| |
Collapse
|
13
|
Rodrigues de Souza I, Savio de Araujo-Souza P, Morais Leme D. Genetic variants affecting chemical mediated skin immunotoxicity. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2022; 25:43-95. [PMID: 34979876 DOI: 10.1080/10937404.2021.2013372] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The skin is an immune-competent organ and this function may be impaired by exposure to chemicals, which may ultimately result in immune-mediated dermal disorders. Interindividual variability to chemical-induced skin immune reactions is associated with intrinsic individual characteristics and their genomes. In the last 30-40 years, several genes influencing susceptibility to skin immune reactions were identified. The aim of this review is to provide information regarding common genetic variations affecting skin immunotoxicity. The polymorphisms selected for this review are related to xenobiotic-metabolizing enzymes (CYPA1 and CYPB1 genes), antioxidant defense (GSTM1, GSTT1, and GSTP1 genes), aryl hydrocarbon receptor signaling pathway (AHR and ARNT genes), skin barrier function transepidermal water loss (FLG, CASP14, and SPINK5 genes), inflammation (TNF, IL10, IL6, IL18, IL31, and TSLP genes), major histocompatibility complex (MHC) and neuroendocrine system peptides (CALCA, TRPV1, ACE genes). These genes present variants associated with skin immune responses and diseases, as well as variants associated with protecting skin immune homeostasis following chemical exposure. The molecular and association studies focusing on these genetic variants may elucidate their functional consequences and contribution in the susceptibility to skin immunotoxicity. Providing information on how genetic variations affect the skin immune system may reduce uncertainties in estimating chemical hazards/risks for human health in the future.
Collapse
Affiliation(s)
| | | | - Daniela Morais Leme
- Graduate Program in Genetics, Department of Genetics, Federal University of Paraná (UFPR), Curitiba, Brazil
- National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Institute of Chemistry, Araraquara, Brazil
| |
Collapse
|
14
|
Jiang DL, Ding JH, Liu ZX, Shao ZM, Liang XH, Wang J, Wu FA, Sheng S. A role of peptidoglycan recognition protein in mediating insecticide detoxification in Glyphodes pyloalis. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2021; 108:e21842. [PMID: 34499777 DOI: 10.1002/arch.21842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 07/31/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
Glyphodes pyloalis Walker has become one of the most significant mulberry pests, and it has caused serious economic losses in major mulberry growing regions in China. Peptidoglycan recognition proteins (PGRPs) are responsible for initiating and regulating immune signalling pathways in insects. However, their roles responding to chemical pesticides is still less known. This study aimed to investigate the possible detoxication function of GpPGRP-S2 and GpPGRP-S3 in G. pyloalis in response to chlorfenapyr and phoxim. The chlorfenapyr and phoxim treatment significantly induced the expression level of GpPGRP-S3 at 48 h. In addition, the expression levels of GpPGRP-S2 and GpPGRP-S3 in the chlorfenapyr/phoxim treatment group were significantly higher in midgut than those in the control group at 48 h. The results of the survival experiment showed that silencing either GpPGRP-S2 or GpPGRP-S3 would not influence the survival rate of G. pyloalis which treated with phoxim, however, silencing GpPGRP-S2 or GpPGRP-S3 would cause G. pyloalis to be more easily killed by chlorfenapyr. The expression of carboxylesterase GpCXE1 was significantly induced by chlorfenapyr/phoxim treatment, while it was suppressed once silenced GpPGRP-S2 followed with chlorfenapyr treatment or silenced GpPGRP-S3 followed with phoxim treatment. These results might suggest that under the chlorfenapyr/phoxim treatment condition, the connection between GpPGRPs and detoxification genes in insect was induced to maintain physiological homeostasis; and these results may further enrich the mechanisms of insects challenged by insecticides.
Collapse
Affiliation(s)
- De-Lei Jiang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Jian-Hao Ding
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Zhi-Xiang Liu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Zuo-Ming Shao
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Xin-Hao Liang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Jun Wang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Science, Zhenjiang, China
| | - Fu-An Wu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Science, Zhenjiang, China
| | - Sheng Sheng
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Science, Zhenjiang, China
| |
Collapse
|
15
|
Briguglio G, Costa C, Teodoro M, Giambò F, Italia S, Fenga C. Women's health and night shift work: Potential targets for future strategies in breast cancer (Review). Biomed Rep 2021; 15:98. [PMID: 34667595 PMCID: PMC8517754 DOI: 10.3892/br.2021.1474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/12/2021] [Indexed: 11/18/2022] Open
Abstract
Breast cancer is the leading cause of cancer-associated amongst women worldwide. Several studies have shown that individual, environmental and occupational factors can serve an important role in the onset of breast cancer; although the majority of studies have demonstrated this association, and several studies have investigated the biological pathways, it is impossible to describe with certainty the causal relationship that involve circadian rhythm disruption and melatonin dysregulation with the oncogenic processes. Over the years, due to the introduction of more effective screening tools, an increase in the incidence of breast cancer as well as a decrease in the age at diagnosis has been witnessed. Subsequently, an increasing number of individuals have obtained care at a younger age, which has meant that after surgery and chemotherapy, these workers have had to return to work. In light of these paradigmatic changes, the aim of the present review was to identify potential targets for future organisational strategies that should be adopted in the workplace by occupational physicians, both for prevention and for the return-to-work process of working women who have suffered from breast cancer.
Collapse
Affiliation(s)
- Giusi Briguglio
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Occupational Medicine Section, University of Messina, I-98125 Messina, Italy
| | - Chiara Costa
- Department of Clinical and Experimental Medicine, University of Messina, I-98125 Messina, Italy
| | - Michele Teodoro
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Occupational Medicine Section, University of Messina, I-98125 Messina, Italy
| | - Federica Giambò
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Occupational Medicine Section, University of Messina, I-98125 Messina, Italy
| | - Sebastiano Italia
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Occupational Medicine Section, University of Messina, I-98125 Messina, Italy
| | - Concettina Fenga
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Occupational Medicine Section, University of Messina, I-98125 Messina, Italy
| |
Collapse
|
16
|
Giambò F, Teodoro M, Costa C, Fenga C. Toxicology and Microbiota: How Do Pesticides Influence Gut Microbiota? A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18115510. [PMID: 34063879 PMCID: PMC8196593 DOI: 10.3390/ijerph18115510] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/07/2021] [Accepted: 05/19/2021] [Indexed: 02/07/2023]
Abstract
In recent years, new targets have been included between the health outcomes induced by pesticide exposure. The gastrointestinal tract is a key physical and biological barrier and it represents a primary site of exposure to toxic agents. Recently, the intestinal microbiota has emerged as a notable factor regulating pesticides’ toxicity. However, the specific mechanisms related to this interaction are not well known. In this review, we discuss the influence of pesticide exposure on the gut microbiota, discussing the factors influencing gut microbial diversity, and we summarize the updated literature. In conclusion, more studies are needed to clarify the host–microbial relationship concerning pesticide exposure and to define new prevention interventions, such as the identification of biomarkers of mucosal barrier function.
Collapse
Affiliation(s)
- Federica Giambò
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Occupational Medicine Section, University of Messina, 98125 Messina, Italy; (F.G.); (M.T.); (C.F.)
| | - Michele Teodoro
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Occupational Medicine Section, University of Messina, 98125 Messina, Italy; (F.G.); (M.T.); (C.F.)
| | - Chiara Costa
- Clinical and Experimental Medicine Department, University of Messina, 98125 Messina, Italy
- Correspondence: ; Tel.: +39-090-2212052
| | - Concettina Fenga
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Occupational Medicine Section, University of Messina, 98125 Messina, Italy; (F.G.); (M.T.); (C.F.)
| |
Collapse
|
17
|
Maheshwari N, Mahmood R. 3,4-Dihydroxybenzaldehyde attenuates pentachlorophenol-induced cytotoxicity, DNA damage and collapse of mitochondrial membrane potential in isolated human blood cells. Drug Chem Toxicol 2020; 45:1225-1242. [DOI: 10.1080/01480545.2020.1811722] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Nikhil Maheshwari
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Riaz Mahmood
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| |
Collapse
|