1
|
Tomecka P, Karwowska A, Kuźnicki J, Skinderowicz K, Wojno A, Markut K, Typek P, Ciesielska U, Kulbacka J, Drąg-Zalesińska M. HPV Infection in Children and Adolescents-A Comprehensive Review. J Clin Med 2025; 14:2425. [PMID: 40217872 PMCID: PMC11989703 DOI: 10.3390/jcm14072425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 03/28/2025] [Accepted: 03/29/2025] [Indexed: 04/14/2025] Open
Abstract
Background: Human Papillomavirus (HPV) is a predominant and clinically significant virus affecting individuals of all ages, including children and adolescents. Despite its well-documented role in adult health, particularly in cervical cancer, HPV's impact on younger populations still remains underexplored. Methods: This review investigates the epidemiology, clinical manifestations, transmission pathways, and historical context of HPV in children and adolescents. Results: The study demonstrates a significant prevalence of HPV DNA within paediatric populations, with diverse clinical manifestations such as verruca vulgaris, anogenital warts, and Juvenile Recurrent Respiratory Papillomatosis, alongside substantiating vertical transmission from mother to infant. We also highlight ground-breaking research milestones, including improvements in genetic studies, the development of HPV vaccines, and ongoing investigations into infection dynamics, and long-term health outcomes. Conclusions: By synthesising existing knowledge, this review aims to enhance clinical decision-making, improve management strategies, and pave the way for future research in HPV-related paediatric diseases.
Collapse
Affiliation(s)
- Paulina Tomecka
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (P.T.); (A.K.); (J.K.); (K.S.); (A.W.); (K.M.); (P.T.)
| | - Anna Karwowska
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (P.T.); (A.K.); (J.K.); (K.S.); (A.W.); (K.M.); (P.T.)
| | - Jacek Kuźnicki
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (P.T.); (A.K.); (J.K.); (K.S.); (A.W.); (K.M.); (P.T.)
| | - Katarzyna Skinderowicz
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (P.T.); (A.K.); (J.K.); (K.S.); (A.W.); (K.M.); (P.T.)
| | - Aleksandra Wojno
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (P.T.); (A.K.); (J.K.); (K.S.); (A.W.); (K.M.); (P.T.)
| | - Kornelia Markut
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (P.T.); (A.K.); (J.K.); (K.S.); (A.W.); (K.M.); (P.T.)
| | - Paulina Typek
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (P.T.); (A.K.); (J.K.); (K.S.); (A.W.); (K.M.); (P.T.)
| | - Urszula Ciesielska
- Department of Human Morphology and Embryology, Division of Histology and Embryology, Faculty of Medicine, Wroclaw Medical University, T. Chalubińskiego 6a, 50-368 Wroclaw, Poland;
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211a, 50-556 Wroclaw, Poland
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, Santariškių g. 5, LT-08406 Vilnius, Lithuania
| | - Małgorzata Drąg-Zalesińska
- Department of Human Morphology and Embryology, Division of Histology and Embryology, Faculty of Medicine, Wroclaw Medical University, T. Chalubińskiego 6a, 50-368 Wroclaw, Poland;
| |
Collapse
|
2
|
Janiszewska J, Kostrzewska-Poczekaj M, Wierzbicka M, Brenner JC, Giefing M. HPV-driven oncogenesis-much more than the E6 and E7 oncoproteins. J Appl Genet 2025; 66:63-71. [PMID: 38907809 PMCID: PMC11761861 DOI: 10.1007/s13353-024-00883-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 05/30/2024] [Accepted: 06/04/2024] [Indexed: 06/24/2024]
Abstract
High-risk human papillomaviruses are well-established drivers of several cancer types including cervical, head and neck, penile as well as anal cancers. While the E6 and E7 viral oncoproteins have proven to be critical for malignant transformation, evidence is also beginning to emerge suggesting that both host pathways and additional viral genes may also be pivotal for malignant transformation. Here, we focus on the role of host APOBEC genes, which have an important role in molecular editing including in the response to the viral DNA and their role in HPV-driven carcinogenesis. Further, we also discuss data developed suggesting the existence of HPV-derived miRNAs in HPV + tumors and their potential role in regulating the host transcriptome. Collectively, while recent advances in these two areas have added complexity to the working model of papillomavirus-induced oncogenesis, these discoveries have also shed a light onto new areas of research that will be required to fully understand the process.
Collapse
Affiliation(s)
- J Janiszewska
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-479, Poznan, Poland
| | - M Kostrzewska-Poczekaj
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-479, Poznan, Poland
| | - M Wierzbicka
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-479, Poznan, Poland
- Research & Development Centre, Regional Specialist Hospital Wroclaw, Wroclaw, Poland
- Faculty of Medicine, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - J C Brenner
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - M Giefing
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-479, Poznan, Poland.
| |
Collapse
|
3
|
Yousaf S, Shehzadi A, Ahmad M, Asrar A, Ahmed I, Iqbal HM, Hussen Bule M. Recent advances in HPV biotechnology: understanding host-virus interactions and cancer progression - a review. Int J Surg 2024; 110:8025-8036. [PMID: 39806745 PMCID: PMC11634192 DOI: 10.1097/js9.0000000000002117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 09/29/2024] [Indexed: 01/12/2025]
Abstract
Cervical cancer ranks as the fourth most common cancer among women globally, posing a significant mortality risk. Persistent infection with high-risk human papillomavirus (HPV) is the primary instigator of cervical cancer development, often alongside coinfection with other viruses, precipitating various malignancies. This study aimed to explore recent biotechnological advances in understanding HPV infection dynamics, host interactions, and its role in oncogenesis. The gathered data shed light on HPV biology, host-virus interplay, viral coinfections, and cellular transformations leading to HPV-associated cancers. Recent years have seen the introduction of diverse vaccination strategies, including live attenuated, subunit, and DNA-based vaccines, complemented by innovative nanotechnology and plant-based products. Despite rich data addressing research inquiries, urgent calls echo for the implementation of contemporary screening and therapeutic modalities at clinical levels. Moreover, extensive public awareness campaigns are imperative to alleviate the burden of HPV-related diseases, emphasizing the necessity for proactive intervention strategies in combating this global health challenge.
Collapse
Affiliation(s)
- Saba Yousaf
- Department of Biochemistry, Enzyme Biotechnology Laboratory, University of Agriculture Faisalabad
| | - Anum Shehzadi
- Department of Biochemistry, Riphah International University, Faisalabad Campus
| | - Muhammad Ahmad
- Institute of Physiology and Pharmacology, Faculty of Veterinary Science, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Ahmad Asrar
- Federal Medical College, Pakistan Institute of Medical Sciences, Islamabad
| | - Ishtiaq Ahmed
- La Trobe Rural Health School, Albury-Wodonga Campus, La Trobe University, Victoria, Australia
| | - Hafiz M.N. Iqbal
- Facultad de Agronomía, Campus Ciencias Agropecuarias; Universidad Autónoma de Nuevo León, C.P., General Escobedo, Nuevo León, Mexico
| | - Mohammed Hussen Bule
- Department of Pharmacy, College of Medicine and Health Sciences, Ambo University, Ambo, Ethiopia
| |
Collapse
|
4
|
Wang R, Huang H, Yu C, Li X, Wang Y, Xie L. Current status and future directions for the development of human papillomavirus vaccines. Front Immunol 2024; 15:1362770. [PMID: 38983849 PMCID: PMC11231394 DOI: 10.3389/fimmu.2024.1362770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 06/11/2024] [Indexed: 07/11/2024] Open
Abstract
The development of human papillomavirus (HPV) vaccines has made substantive progress, as represented by the approval of five prophylactic vaccines since 2006. Generally, the deployment of prophylactic HPV vaccines is effective in preventing newly acquired infections and incidences of HPV-related malignancies. However, there is still a long way to go regarding the prevention of all HPV infections and the eradication of established HPV infections, as well as the subsequent progression to cancer. Optimizing prophylactic HPV vaccines by incorporating L1 proteins from more HPV subtypes, exploring adjuvants that reinforce cellular immune responses to eradicate HPV-infected cells, and developing therapeutic HPV vaccines used either alone or in combination with other cancer therapeutic modalities might bring about a new era getting closer to the vision to get rid of HPV infection and related diseases. Herein, we summarize strategies for the development of HPV vaccines, both prophylactic and therapeutic, with an emphasis on the selection of antigens and adjuvants, as well as implications for vaccine efficacy based on preclinical studies and clinical trials. Additionally, we outline current cutting-edge insights on formulation strategies, dosing schedules, and age expansion among HPV vaccine recipients, which might play important roles in addressing barriers to vaccine uptake, such as vaccine hesitancy and vaccine availability.
Collapse
Affiliation(s)
- Rui Wang
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing, China
| | - Hongpeng Huang
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing, China
| | - Chulin Yu
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing, China
| | - Xuefeng Li
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing, China
| | - Yang Wang
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing, China
| | - Liangzhi Xie
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing, China
- Cell Culture Engineering Center, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
5
|
Prabhakar AT, James CD, Youssef AH, Hossain RA, Hill RD, Bristol ML, Wang X, Dubey A, Karimi E, Morgan IM. A human papillomavirus 16 E2-TopBP1 dependent SIRT1-p300 acetylation switch regulates mitotic viral and human protein levels and activates the DNA damage response. mBio 2024; 15:e0067624. [PMID: 38722185 PMCID: PMC11237546 DOI: 10.1128/mbio.00676-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 03/27/2024] [Indexed: 05/21/2024] Open
Abstract
An interaction between human papillomavirus 16 (HPV16) E2 and the cellular proteins TopBP1 and BRD4 is required for E2 plasmid segregation function. The E2-TopBP1 interaction promotes increased mitotic E2 protein levels in U2OS and N/Tert-1 cells, as well as in human foreskin keratinocytes immortalized by HPV16 (HFK + HPV16). SIRT1 deacetylation reduces E2 protein stability and here we demonstrate that increased E2 acetylation occurs during mitosis in a TopBP1 interacting-dependent manner, promoting E2 mitotic stabilization. p300 mediates E2 acetylation and acetylation is increased due to E2 switching off SIRT1 function during mitosis in a TopBP1 interacting-dependent manner, confirmed by increased p53 stability and acetylation on lysine 382, a known target for SIRT1 deacetylation. SIRT1 can complex with E2 in growing cells but is unable to do so during mitosis due to the E2-TopBP1 interaction; SIRT1 is also unable to complex with p53 in mitotic E2 wild-type cells but can complex with p53 outside of mitosis. E2 lysines 111 and 112 are highly conserved residues across all E2 proteins and we demonstrate that K111 hyper-acetylation occurs during mitosis, promoting E2 interaction with Topoisomerase 1 (Top1). We demonstrate that K112 ubiquitination promotes E2 proteasomal degradation during mitosis. E2-TopBP1 interaction promotes mitotic acetylation of CHK2, promoting phosphorylation and activation of the DNA damage response (DDR). The results present a new model in which the E2-TopBP1 complex inactivates SIRT1 during mitosis, and activates the DDR. This is a novel mechanism of HPV16 activation of the DDR, a requirement for the viral life cycle. IMPORTANCE Human papillomaviruses (HPVs) are causative agents in around 5% of all human cancers. While there are prophylactic vaccines that will significantly alleviate HPV disease burden on future generations, there are currently no anti-viral strategies available for the treatment of HPV cancers. To generate such reagents, we must understand more about the HPV life cycle, and in particular about viral-host interactions. Here, we describe a novel mitotic complex generated by the HPV16 E2 protein interacting with the host protein TopBP1 that controls the function of the deacetylase SIRT1. The E2-TopBP1 interaction disrupts SIRT1 function during mitosis in order to enhance acetylation and stability of viral and host proteins. We also demonstrate that the E2-TopBP1 interaction activates the DDR. This novel complex is essential for the HPV16 life cycle and represents a novel anti-viral therapeutic target.
Collapse
Affiliation(s)
- Apurva T. Prabhakar
- Virginia Commonwealth University (VCU), Philips Institute for Oral Health Research, School of Dentistry, Richmond, Virginia, USA
| | - Claire D. James
- Virginia Commonwealth University (VCU), Philips Institute for Oral Health Research, School of Dentistry, Richmond, Virginia, USA
| | - Aya H. Youssef
- Virginia Commonwealth University (VCU), Philips Institute for Oral Health Research, School of Dentistry, Richmond, Virginia, USA
| | - Reafa A. Hossain
- Virginia Commonwealth University (VCU), Philips Institute for Oral Health Research, School of Dentistry, Richmond, Virginia, USA
| | - Ronald D. Hill
- Virginia Commonwealth University (VCU), Philips Institute for Oral Health Research, School of Dentistry, Richmond, Virginia, USA
| | - Molly L. Bristol
- Virginia Commonwealth University (VCU), Philips Institute for Oral Health Research, School of Dentistry, Richmond, Virginia, USA
- VCU Massey Cancer Center, Richmond, Viginia, USA
| | - Xu Wang
- Virginia Commonwealth University (VCU), Philips Institute for Oral Health Research, School of Dentistry, Richmond, Virginia, USA
| | - Aanchal Dubey
- Virginia Commonwealth University (VCU), Philips Institute for Oral Health Research, School of Dentistry, Richmond, Virginia, USA
| | - Elmira Karimi
- Virginia Commonwealth University (VCU), Philips Institute for Oral Health Research, School of Dentistry, Richmond, Virginia, USA
| | - Iain M. Morgan
- Virginia Commonwealth University (VCU), Philips Institute for Oral Health Research, School of Dentistry, Richmond, Virginia, USA
- VCU Massey Cancer Center, Richmond, Viginia, USA
| |
Collapse
|
6
|
Lulić L, Šimić I, Božinović K, Pešut E, Manojlović L, Grce M, Dediol E, Sabol I, Tomaić V. Moderate SCRIB Expression Levels Correlate with Worse Prognosis in OPSCC Patients Regardless of HPV Status. Cells 2024; 13:1002. [PMID: 38920638 PMCID: PMC11201649 DOI: 10.3390/cells13121002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/29/2024] [Accepted: 06/04/2024] [Indexed: 06/27/2024] Open
Abstract
Head and neck cancers rank as the sixth most prevalent cancers globally. In addition to traditional risk factors such as smoking and alcohol use, human papillomavirus (HPV) infections are becoming a significant causative agent of head and neck cancers, particularly among Western populations. Although HPV offers a significant survival benefit, the search for better biomarkers is still ongoing. In the current study, our objective was to investigate whether the expression levels of three PDZ-domain-containing proteins (SCRIB, NHERF2, and DLG1), known HPV E6 cellular substrates, influence the survival of HNSCC patients treated by primary surgery (n = 48). Samples were derived from oropharyngeal and oral cancers, and HPV presence was confirmed by PCR and p16 staining. Clinical and follow-up information was obtained from the hospital database and the Croatian Cancer registry up to November 2023. Survival was evaluated using the Kaplan-Meier method and Cox proportional hazard regression. The results were corroborated through the reanalysis of a comparable subset of TCGA cancer patients (n = 391). In conclusion, of the three targets studied, only SCRIB levels were found to be an independent predictor of survival in the Cox regression analysis, along with tumor stage. Further studies in a more typical Western population setting are needed since smoking and alcohol consumption are still prominent in the Croatian population, while the strongest association between survival and SCRIB levels was seen in HPV-negative cases.
Collapse
Affiliation(s)
- Lucija Lulić
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia
| | - Ivana Šimić
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia
| | - Ksenija Božinović
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia
| | - Ena Pešut
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia
| | - Luka Manojlović
- Department of Pathology and Cytology, University Hospital Dubrava, 10000 Zagreb, Croatia
| | - Magdalena Grce
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia
| | - Emil Dediol
- Department of Maxillofacial Surgery, University Hospital Dubrava, 10000 Zagreb, Croatia
| | - Ivan Sabol
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia
| | - Vjekoslav Tomaić
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia
| |
Collapse
|
7
|
Lo Cigno I, Calati F, Girone C, Catozzo M, Gariglio M. High-risk HPV oncoproteins E6 and E7 and their interplay with the innate immune response: Uncovering mechanisms of immune evasion and therapeutic prospects. J Med Virol 2024; 96:e29685. [PMID: 38783790 DOI: 10.1002/jmv.29685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/22/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024]
Abstract
Human papillomaviruses (HPVs) are double-stranded DNA (dsDNA) tumor viruses causally associated with 5% of human cancers, comprising both anogenital and upper aerodigestive tract carcinomas. Despite the availability of prophylactic vaccines, HPVs continue to pose a significant global health challenge, primarily due to inadequate vaccine access and coverage. These viruses can establish persistent infections by evading both the intrinsic defenses of infected tissues and the extrinsic defenses provided by professional innate immune cells. Crucial for their evasion strategies is their unique intraepithelial life cycle, which effectively shields them from host detection. Thus, strategies aimed at reactivating the innate immune response within infected or transformed epithelial cells, particularly through the production of type I interferons (IFNs) and lymphocyte-recruiting chemokines, are considered viable solutions to counteract the adverse effects of persistent infections by these oncogenic viruses. This review focuses on the complex interplay between the high-risk HPV oncoproteins E6 and E7 and the innate immune response in epithelial cells and HPV-associated cancers. In particular, it details the molecular mechanisms by which E6 and E7 modulate the innate immune response, highlighting significant progress in our comprehension of these processes. It also examines forward-looking strategies that exploit the innate immune system to ameliorate existing anticancer therapies, thereby providing crucial insights into future therapeutic developments.
Collapse
Affiliation(s)
- Irene Lo Cigno
- Virology Unit, Department of Translational Medicine, Eastern Piedmont University, Novara, Italy
| | - Federica Calati
- Virology Unit, Department of Translational Medicine, Eastern Piedmont University, Novara, Italy
| | - Carlo Girone
- Virology Unit, Department of Translational Medicine, Eastern Piedmont University, Novara, Italy
| | - Marta Catozzo
- Virology Unit, Department of Translational Medicine, Eastern Piedmont University, Novara, Italy
| | - Marisa Gariglio
- Virology Unit, Department of Translational Medicine, Eastern Piedmont University, Novara, Italy
| |
Collapse
|
8
|
Janjua D, Thakur K, Aggarwal N, Chaudhary A, Yadav J, Chhokar A, Tripathi T, Joshi U, Senrung A, Bharti AC. Prognostic and therapeutic potential of STAT3: Opportunities and challenges in targeting HPV-mediated cervical carcinogenesis. Crit Rev Oncol Hematol 2024; 197:104346. [PMID: 38608913 DOI: 10.1016/j.critrevonc.2024.104346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/28/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024] Open
Abstract
Cervical cancer (CaCx) ranks as the fourth most prevalent cancer among women globally. Persistent infection of high-risk human papillomaviruses (HR-HPVs) is major etiological factor associated with CaCx. Signal Transducer and Activator of Transcription 3 (STAT3), a prominent member of the STAT family, has emerged as independent oncogenic driver. It is a target of many oncogenic viruses including HPV. How STAT3 influences HPV viral gene expression or gets affected by HPV is an area of active investigation. A better understanding of host-virus interaction will provide a prognostic and therapeutic window for CaCx control and management. In this comprehensive review, we delve into carcinogenic role of STAT3 in development of HPV-induced CaCx. With an emphasis on fascinating interplay between STAT3 and HPV genome, the review explores the diverse array of opportunities and challenges associated with this field to harness the prognostic and therapeutic potential of STAT3 in CaCx.
Collapse
Affiliation(s)
- Divya Janjua
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India
| | - Kulbhushan Thakur
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India
| | - Nikita Aggarwal
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India
| | - Apoorva Chaudhary
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India
| | - Joni Yadav
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India
| | - Arun Chhokar
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India; Department of Zoology, Deshbandhu College, University of Delhi, Delhi, India
| | - Tanya Tripathi
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India
| | - Udit Joshi
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India
| | - Anna Senrung
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India; Department of Zoology, Daulat Ram College, University of Delhi, Delhi, India
| | - Alok Chandra Bharti
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India.
| |
Collapse
|
9
|
Cuomo R, Rozen WM, Pentangelo P, Ceccaroni A, Alfano C, Seth I. Human Papillomavirus-Associated Giant Clear Cell Acanthoma and Squamous Cell Carcinoma: A Rare Case Report and Literature Review. J Clin Med 2024; 13:2482. [PMID: 38731009 PMCID: PMC11084788 DOI: 10.3390/jcm13092482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/13/2024] [Accepted: 04/21/2024] [Indexed: 05/13/2024] Open
Abstract
Clear cell acanthoma (CCA) and squamous cell carcinoma (SCC) represent distinct entities within dermatological oncology, each posing unique diagnostic and therapeutic challenges. CCA is a rare, benign epidermal growth, often not associated with human papillomavirus (HPV) infection, whereas SCC, a more aggressive form of skin cancer, has been linked to both ultraviolet (UV) exposure and HPV. Understanding the co-occurrence of these conditions in a single patient can enhance diagnostic accuracy and therapeutic outcomes. We report a 64-year-old male who underwent an operation for a verruciform lesion in the right groin, which was diagnosed as HPV-positive CCA alongside keratinised SCC. A literature search across January 2024 revealed limited evidence directly linking HPV to CCA, suggesting a need for further investigation. The speculative association between HPV and CCA warrants deeper exploration, especially considering the potential for HPV to contribute to lesion development through indirect mechanisms. The coexistence of CCA and SCC in an elderly patient presents a unique clinical scenario. This emphasises the need for vigilant diagnosis and tailored treatment strategies, highlighting the gap in understanding the pathogenesis of CCA, particularly its potential association with HPV. Further research is crucial for elucidating the complex interactions governing these conditions and for developing targeted interventions.
Collapse
Affiliation(s)
- Roberto Cuomo
- Plastic Surgery Unit, Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy
| | - Warren M. Rozen
- Department of Plastic Surgery, Peninsula Health, Melbourne, VIC 3199, Australia
| | - Paola Pentangelo
- Plastic Surgery Unit, Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Baronissi, Italy
| | - Alessandra Ceccaroni
- Plastic Surgery Unit, Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Baronissi, Italy
| | - Carmine Alfano
- Plastic Surgery Unit, Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Baronissi, Italy
| | - Ishith Seth
- Department of Plastic Surgery, Peninsula Health, Melbourne, VIC 3199, Australia
| |
Collapse
|
10
|
Conforti C, Retrosi C, Agozzino M, Dianzani C, Nardon E, Oliveri A, Azzalini E, Guida S, Pellacani G, Di Lella G, Rongioletti F, Zalaudek I, Bonin S. Unraveling the Complex Nexus of Human Papillomavirus (HPV) in Extragenital Keratinocyte Skin Tumors: A Comprehensive Analysis of Bowen's Disease and In Situ Squamous-Cell Carcinoma. J Clin Med 2024; 13:1091. [PMID: 38398404 PMCID: PMC10889444 DOI: 10.3390/jcm13041091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
This comprehensive study delves into the intricate landscape surrounding the role of human papillomavirus (HPV) in extragenital keratinocyte skin tumors, specifically exploring Bowen's disease (BD) and in situ squamous-cell carcinoma (iSCC). Through a multifaceted examination, this research study elucidates the nuanced interplay of HPV, gender dynamics, anatomical site variations, and potential implications for the etiopathogenesis of these malignancies.
Collapse
Affiliation(s)
- Claudio Conforti
- IDI-IRCCS, Dermatological Research Hospital, 00167 Rome, Italy; (C.C.); (C.R.); (G.D.L.)
| | - Chiara Retrosi
- IDI-IRCCS, Dermatological Research Hospital, 00167 Rome, Italy; (C.C.); (C.R.); (G.D.L.)
| | - Marina Agozzino
- Dermatology Clinic, Maggiore Hospital, Piazza Ospitale 1, 34125 Trieste, Italy; (M.A.)
| | - Caterina Dianzani
- Department of Plastic, Reconstructive and Cosmetic Surgery, Dermatology Section, Campus Bio-Medico University Hospital, 00128 Rome, Italy;
| | - Ermanno Nardon
- Department of Medical Sciences (DSM), University of Trieste, 34149 Trieste, Italy (A.O.); (E.A.); (S.B.)
| | - Anselmo Oliveri
- Department of Medical Sciences (DSM), University of Trieste, 34149 Trieste, Italy (A.O.); (E.A.); (S.B.)
| | - Eros Azzalini
- Department of Medical Sciences (DSM), University of Trieste, 34149 Trieste, Italy (A.O.); (E.A.); (S.B.)
| | - Stefania Guida
- Dermatology Clinic, IRCCS San Raffaele Hospital, Vita-Salute University, 20132 Milan, Italy;
| | - Giovanni Pellacani
- Dermatology Clinic, Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, 00196 Rome, Italy;
| | - Giovanni Di Lella
- IDI-IRCCS, Dermatological Research Hospital, 00167 Rome, Italy; (C.C.); (C.R.); (G.D.L.)
| | - Franco Rongioletti
- Dermatology Clinic, IRCCS San Raffaele Hospital, Vita-Salute University, 20132 Milan, Italy;
| | - Iris Zalaudek
- Dermatology Clinic, Maggiore Hospital, Piazza Ospitale 1, 34125 Trieste, Italy; (M.A.)
- Department of Medical Sciences (DSM), University of Trieste, 34149 Trieste, Italy (A.O.); (E.A.); (S.B.)
| | - Serena Bonin
- Department of Medical Sciences (DSM), University of Trieste, 34149 Trieste, Italy (A.O.); (E.A.); (S.B.)
| |
Collapse
|
11
|
Kushwah AS, Masood S, Mishra R, Banerjee M. Genetic and epigenetic alterations in DNA repair genes and treatment outcome of chemoradiotherapy in cervical cancer. Crit Rev Oncol Hematol 2024; 194:104240. [PMID: 38122918 DOI: 10.1016/j.critrevonc.2023.104240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/06/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023] Open
Abstract
Cervical cancer (CaCx) is the deadliest malignancy among women which is caused by human papillomavirus (HPV) and anthro-demographical/clinicopathological factors. HPV oncoproteins E6 and E7 target p53 and RB (retinoblastoma) protein degradation, Ataxia telangiectasia mutated (ATM), ATM-RAD3-related (ATR) inactivation and subsequent impairment of non-homologous end joining (NHEJ), homologous recombination, and base excision repair pathways. There is also an accumulation of genetic and epigenetic alterations in Tumor Growth Suppressors (TGS), oncogenes, and DNA repair genes leading to increased genome instability and CaCx development. These alterations might be responsible for differential clinical response to Cisplatin-based chemoradiotherapy (CRT) in patients. This review explores HPV-mediated DNA damage as a risk factor in CaCx development, the mechanistic role of genetic and epigenetic alterations in DNA repair genes and their association with CRT and outcome, It also explores new possibilities for the development of genetic and epigenetic-based biomarkers for diagnostic, prognostic, and molecular therapeutic interventions.
Collapse
Affiliation(s)
- Atar Singh Kushwah
- Department of Urology and Oncological Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave, New York 10029, NY, USA; Molecular & Human Genetics Laboratory, Department of Zoology, University of Lucknow, Lucknow 226007, Uttar Pradesh, India; Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Shireen Masood
- Molecular & Human Genetics Laboratory, Department of Zoology, University of Lucknow, Lucknow 226007, Uttar Pradesh, India
| | - Rajnikant Mishra
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Monisha Banerjee
- Molecular & Human Genetics Laboratory, Department of Zoology, University of Lucknow, Lucknow 226007, Uttar Pradesh, India.
| |
Collapse
|
12
|
Prabhakar AT, James CD, Youssef AH, Hossain RA, Hill RD, Bristol ML, Wang X, Dubey A, Morgan IM. A human papillomavirus 16 E2-TopBP1 dependent SIRT1-p300 acetylation switch regulates mitotic viral and human protein levels. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.15.575713. [PMID: 38293041 PMCID: PMC10827094 DOI: 10.1101/2024.01.15.575713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
An interaction between human papillomavirus 16 (HPV16) E2 and the cellular proteins TopBP1 and BRD4 is required for E2 plasmid segregation function. The E2-TopBP1 interaction promotes increased mitotic E2 protein levels in U2OS and N/Tert-1 cells, as well as in human foreskin keratinocytes immortalized by HPV16 (HFK+HPV16). SIRT1 deacetylation reduces E2 protein stability and here we demonstrate that increased E2 acetylation occurs during mitosis in a TopBP1 interacting dependent manner, promoting E2 mitotic stabilization. p300 mediates E2 acetylation and acetylation is increased due to E2 switching off SIRT1 function during mitosis in a TopBP1 interacting dependent manner, confirmed by increased p53 stability and acetylation on lysine 382, a known target for SIRT1 deacetylation. SIRT1 can complex with E2 in growing cells but is unable to do so during mitosis due to the E2-TopBP1 interaction; SIRT1 is also unable to complex with p53 in mitotic E2 wild type cells but can complex with p53 outside of mitosis. E2 lysines 111 and 112 are highly conserved residues across all E2 proteins and we demonstrate that K111 hyper-acetylation occurs during mitosis, promoting E2 interaction with Topoisomerase 1 (Top1). We also demonstrate that K112 ubiquitination promotes E2 proteasomal degradation during mitosis. The results present a model in which the E2-TopBP1 complex inactivates SIRT1 during mitosis and E2 acetylation on K111 by p300 increases, promoting interaction with Top1 that protects K112 from ubiquitination and therefore E2 proteasomal degradation. Importance Human papillomaviruses are causative agents in around 5% of all human cancers. While there are prophylactic vaccines that will significantly alleviate HPV disease burden on future generations, there are currently no anti-viral strategies available for the treatment of HPV cancers. To generate such reagents, we must understand more about the HPV life cycle, and in particular about viral-host interactions. Here we describe a novel mitotic complex generated by the HPV16 E2 protein interacting with the host protein TopBP1 that controls the function of the deacetylase SIRT1. The E2-TopBP1 interaction disrupts SIRT1 function during mitosis in order to enhance acetylation and stability of viral and host proteins. This novel complex is essential for the HPV16 life cycle and represents a novel anti-viral therapeutic target.
Collapse
|
13
|
Ullah MI, Mikhailova MV, Alkhathami AG, Carbajal NC, Zuta MEC, Rasulova I, Najm MAA, Abosoda M, Alsalamy A, Deorari M. Molecular pathways in the development of HPV-induced oropharyngeal cancer. Cell Commun Signal 2023; 21:351. [PMID: 38098017 PMCID: PMC10722793 DOI: 10.1186/s12964-023-01365-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 10/25/2023] [Indexed: 12/17/2023] Open
Abstract
Oropharyngeal cancer, a subset of head and neck cancer, is increasingly recognized as a unique clinical entity primarily influenced by high-risk human papillomavirus (HPV) infections, particularly HPV-16. This review delves into the viral life cycle of HPV-16 and its interactions with host cells, with a specific focus on the crucial roles played by the viral oncoproteins E6 and E7. These oncoproteins drive cellular proliferation by targeting critical tumor suppressor proteins like p53 and Rb, resulting in uncontrolled cell growth and genomic instability. Furthermore, the significance of epigenetic modifications induced by HPV-16 and their implications is important for cancer progression. This comprehensive review provides valuable insights into the intricate molecular landscape of HPV-induced oropharyngeal cancer, shedding light on the development of targeted therapies and preventive strategies for this emerging global health concern. Video Abstract.
Collapse
Affiliation(s)
- Muhammad Ikram Ullah
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka-72388, Aljouf, Saudi Arabia
| | - Maria V Mikhailova
- Department of Prosthetic Dentistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia.
| | - Ali G Alkhathami
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Nestor Cuba Carbajal
- Doctor en Gestión Pública y Gobernabilidad, Docente en La Universidad Norbert Wiener, Lima, Perú.
| | | | - Irodakhon Rasulova
- School of Humanities, Natural & Social Sciences, New Uzbekistan University, 54 Mustaqillik Ave, 100007, Tashkent, Uzbekistan
- Department of Public Health, Tashkent Pediatric Medical Institute, Bogishamol Street 223, Tashkent, Uzbekistan
| | - Mazin A A Najm
- Pharmaceutical Chemistry Department, College of Pharmacy, Al-Ayen University, Thi-Qar, Nasiriyah, Iraq
| | - Munther Abosoda
- College of Pharmacy, the Islamic University, Najaf, Iraq
- College of Pharmacy, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Pharmacy, the Islamic University of Babylon, Hillah, Iraq
| | - Ali Alsalamy
- College of Pharmacy, Imam Ja'afar Al-Sadiq University, Al-Muthanna, 66002, Iraq
| | - Mahamedha Deorari
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| |
Collapse
|
14
|
Chowdhary S, Deka R, Panda K, Kumar R, Solomon AD, Das J, Kanoujiya S, Gupta AK, Sinha S, Ruokolainen J, Kesari KK, Gupta PK. Recent Updates on Viral Oncogenesis: Available Preventive and Therapeutic Entities. Mol Pharm 2023; 20:3698-3740. [PMID: 37486263 PMCID: PMC10410670 DOI: 10.1021/acs.molpharmaceut.2c01080] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 07/25/2023]
Abstract
Human viral oncogenesis is a complex phenomenon and a major contributor to the global cancer burden. Several recent findings revealed cellular and molecular pathways that promote the development and initiation of malignancy when viruses cause an infection. Even, antiviral treatment has become an approach to eliminate the viral infections and prevent the activation of oncogenesis. Therefore, for a better understanding, the molecular pathogenesis of various oncogenic viruses like, hepatitis virus, human immunodeficiency viral (HIV), human papillomavirus (HPV), herpes simplex virus (HSV), and Epstein-Barr virus (EBV), could be explored, especially, to expand many potent antivirals that may escalate the apoptosis of infected malignant cells while sparing normal and healthy ones. Moreover, contemporary therapies, such as engineered antibodies antiviral agents targeting signaling pathways and cell biomarkers, could inhibit viral oncogenesis. This review elaborates the recent advancements in both natural and synthetic antivirals to control viral oncogenesis. The study also highlights the challenges and future perspectives of using antivirals in viral oncogenesis.
Collapse
Affiliation(s)
- Shivam Chowdhary
- Department
of Industrial Microbiology, Sam Higginbottom
University of Agriculture, Technology and Sciences, Prayagraj 211007, Uttar Pradesh India
| | - Rahul Deka
- Department
of Bioengineering and Biotechnology, Birla
Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India
| | - Kingshuk Panda
- Department
of Applied Microbiology, Vellore Institute
of Technology, Vellore 632014, Tamil Nadu, India
| | - Rohit Kumar
- Department
of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Greater Noida 201310, Uttar Pradesh, India
| | - Abhishikt David Solomon
- Department
of Molecular & Cellular Engineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj 211007, Uttar Pradesh, India
| | - Jimli Das
- Centre
for
Biotechnology and Bioinformatics, Dibrugarh
University, Assam 786004, India
| | - Supriya Kanoujiya
- School
of
Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Ashish Kumar Gupta
- Department
of Biophysics, All India Institute of Medical
Sciences, New Delhi 110029, India
| | - Somya Sinha
- Department
of Biotechnology, Graphic Era Deemed to
Be University, Dehradun 248002, Uttarakhand, India
| | - Janne Ruokolainen
- Department
of Applied Physics, School of Science, Aalto
University, 02150 Espoo, Finland
| | - Kavindra Kumar Kesari
- Department
of Applied Physics, School of Science, Aalto
University, 02150 Espoo, Finland
- Division
of Research and Development, Lovely Professional
University, Phagwara 144411, Punjab, India
| | - Piyush Kumar Gupta
- Department
of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Greater Noida 201310, Uttar Pradesh, India
- Department
of Biotechnology, Graphic Era Deemed to
Be University, Dehradun 248002, Uttarakhand, India
- Faculty
of Health and Life Sciences, INTI International
University, Nilai 71800, Malaysia
| |
Collapse
|
15
|
Du Y, Hu Z, Luo Y, Wang HY, Yu X, Wang RF. Function and regulation of cGAS-STING signaling in infectious diseases. Front Immunol 2023; 14:1130423. [PMID: 36825026 PMCID: PMC9941744 DOI: 10.3389/fimmu.2023.1130423] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 01/24/2023] [Indexed: 02/10/2023] Open
Abstract
The efficacious detection of pathogens and prompt induction of innate immune signaling serve as a crucial component of immune defense against infectious pathogens. Over the past decade, DNA-sensing receptor cyclic GMP-AMP synthase (cGAS) and its downstream signaling adaptor stimulator of interferon genes (STING) have emerged as key mediators of type I interferon (IFN) and nuclear factor-κB (NF-κB) responses in health and infection diseases. Moreover, both cGAS-STING pathway and pathogens have developed delicate strategies to resist each other for their survival. The mechanistic and functional comprehension of the interplay between cGAS-STING pathway and pathogens is opening the way for the development and application of pharmacological agonists and antagonists in the treatment of infectious diseases. Here, we briefly review the current knowledge of DNA sensing through the cGAS-STING pathway, and emphatically highlight the potent undertaking of cGAS-STING signaling pathway in the host against infectious pathogenic organisms.
Collapse
Affiliation(s)
- Yang Du
- Department of Medicine, and Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Research Center of Medical Sciences, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Zhiqiang Hu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Yien Luo
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Helen Y. Wang
- Department of Medicine, and Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Department of Pediatrics, Children’s Hospital, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Xiao Yu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Lab of Single Cell Technology and Application, Southern Medical University, Guangzhou, Guangdong, China
| | - Rong-Fu Wang
- Department of Medicine, and Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Department of Pediatrics, Children’s Hospital, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
16
|
Borgogna C, Martuscelli L, Olivero C, Lo Cigno I, De Andrea M, Caneparo V, Boldorini R, Patel G, Gariglio M. Enhanced Spontaneous Skin Tumorigenesis and Aberrant Inflammatory Response to UVB Exposure in Immunosuppressed Human Papillomavirus Type 8‒Transgenic Mice. J Invest Dermatol 2022; 143:740-750.e4. [PMID: 36481357 DOI: 10.1016/j.jid.2022.10.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 10/09/2022] [Accepted: 10/24/2022] [Indexed: 12/12/2022]
Abstract
Human papillomaviruses (HPVs) from the beta genus are commensal viruses of the skin usually associated with asymptomatic infection in the general population. However, in individuals with specific genetic backgrounds, such as patients with epidermodysplasia verruciformis, or those with immune defects, such as organ transplant recipients, they are functionally involved in sunlight-induced skin cancer development, mainly keratinocyte carcinoma. Despite their well-established protumorigenic role, the cooperation between β-HPV infection, impaired host immunosurveillance, and UVB exposure has never been formally shown in animal models. In this study, by crossing skin-specific HPV8-transgenic mice with Rag2-deficient mice, we have generated a preclinical mouse model, named Rag2‒/‒:K14-HPV8. These mice display an unhealthy skin phenotype and spontaneously develop papilloma-like lesions spreading to the entire skin much more rapidly compared with Rag2+/+:K14-HPV8 mice. Exposure to low doses of UVB radiation is sufficient to trigger severe skin inflammation in Rag2‒/‒:K14-HPV8 but not in Rag2+/+:K14-HPV8 mice. Their inflamed skin very much resembled that observed in cutaneous field cancerization in organ transplant recipients, showing high levels of UVB-damaged cells, enhanced production of proinflammatory cytokines, and mast cell recruitment to the dermis. Overall, this immunocompromised HPV8-transgenic mouse model shows that the coexistence of immune defects, β-HPV, and UVB exposure promotes skin cancer development.
Collapse
Affiliation(s)
- Cinzia Borgogna
- Virology Unit, Department of Translational Medicine, Novara Medical School, Novara, Italy
| | - Licia Martuscelli
- Virology Unit, Department of Translational Medicine, Novara Medical School, Novara, Italy
| | - Carlotta Olivero
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Irene Lo Cigno
- Virology Unit, Department of Translational Medicine, Novara Medical School, Novara, Italy
| | - Marco De Andrea
- Virology Unit, Department of Public Health and Pediatric Sciences, Turin Medical School, Turin, Italy; Center for Translational Research on Autoimmune and Allergic Disease (CAAD), Novara Medical School, Novara, Italy
| | - Valeria Caneparo
- Virology Unit, Department of Translational Medicine, Novara Medical School, Novara, Italy; Center for Translational Research on Autoimmune and Allergic Disease (CAAD), Novara Medical School, Novara, Italy
| | - Renzo Boldorini
- Pathology Unit, Department of Health Sciences, Novara Medical School, Novara, Italy
| | - Girish Patel
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Marisa Gariglio
- Virology Unit, Department of Translational Medicine, Novara Medical School, Novara, Italy; Center for Translational Research on Autoimmune and Allergic Disease (CAAD), Novara Medical School, Novara, Italy.
| |
Collapse
|
17
|
Fontan CT, Prabhakar AT, Wang X, Karimi E, Bristol ML, James CD, Morgan IM. Human papillomavirus 16 E2 blocks cellular senescence in response to activation of the DNA damage response. Virology 2022; 575:54-62. [PMID: 36058086 PMCID: PMC10715573 DOI: 10.1016/j.virol.2022.08.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 11/21/2022]
Abstract
Following infection by HPV16, the viral proteins E1 and E2 induce viral genome replication in association with host factors. Here we demonstrate that E2 also plays a role in promoting short-term cellular proliferation in the presence of an active DDR. Cisplatin treatment of E2 expressing cells results in short-term proliferation likely due to a block of cellular senescence and apoptosis. However, long-term growth of E2 expressing cells following cisplatin treatment is attenuated due to an accumulation of DNA damage. We discuss a possible role for this E2 function during the viral life cycle. It is also notable that E2 expressing HPV16 positive cancers have a better clinical outcome than non-E2 expressing tumors. While there are a variety of reasons for the better outcome of patients with E2 expressing tumors, this report suggests that E2 regulation of the DNA damage response may be a contributory factor.
Collapse
Affiliation(s)
- Christian T Fontan
- Virginia Commonwealth University (VCU), Philips Institute for Oral Health Research, School of Dentistry, Richmond, Virginia, USA
| | - Apurva T Prabhakar
- Virginia Commonwealth University (VCU), Philips Institute for Oral Health Research, School of Dentistry, Richmond, Virginia, USA
| | - Xu Wang
- Virginia Commonwealth University (VCU), Philips Institute for Oral Health Research, School of Dentistry, Richmond, Virginia, USA
| | - Elmira Karimi
- Virginia Commonwealth University (VCU), Philips Institute for Oral Health Research, School of Dentistry, Richmond, Virginia, USA
| | - Molly L Bristol
- Virginia Commonwealth University (VCU), Philips Institute for Oral Health Research, School of Dentistry, Richmond, Virginia, USA
| | - Claire D James
- Virginia Commonwealth University (VCU), Philips Institute for Oral Health Research, School of Dentistry, Richmond, Virginia, USA
| | - Iain M Morgan
- Virginia Commonwealth University (VCU), Philips Institute for Oral Health Research, School of Dentistry, Richmond, Virginia, USA; VCU Massey Cancer Center, Richmond, Virginia, USA.
| |
Collapse
|
18
|
Ferraz MVF, Viana IFT, Coêlho DF, da Cruz CHB, de Arruda Lima M, de Luna Aragão MA, Lins RD. Association strength of E6 to E6AP/p53 complex correlates with HPV‐mediated oncogenesis risk. Biopolymers 2022; 113:e23524. [DOI: 10.1002/bip.23524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/26/2022] [Accepted: 08/01/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Matheus Vitor Ferreira Ferraz
- Aggeu Magalhães Institute Oswaldo Cruz Foundation Recife Brazil
- Department of Fundamental Chemistry Federal University of Pernambuco Recife Brazil
| | | | - Danilo Fernandes Coêlho
- Aggeu Magalhães Institute Oswaldo Cruz Foundation Recife Brazil
- Department of Fundamental Chemistry Federal University of Pernambuco Recife Brazil
| | | | | | | | - Roberto Dias Lins
- Aggeu Magalhães Institute Oswaldo Cruz Foundation Recife Brazil
- Department of Fundamental Chemistry Federal University of Pernambuco Recife Brazil
| |
Collapse
|
19
|
Yu X, Xu J, Xu D, Bi X, Wang H, Lu Y, Cao M, Wang W, Xu Z, Zheng D, Chen L, Zhang X, Zheng S, Li K. Comprehensive Analysis of the Carcinogenic Process, Tumor Microenvironment, and Drug Response in HPV-Positive Cancers. Front Oncol 2022; 12:842060. [PMID: 35392231 PMCID: PMC8980807 DOI: 10.3389/fonc.2022.842060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/23/2022] [Indexed: 12/30/2022] Open
Abstract
Human papillomavirus (HPV) is a common virus, and about 5% of all cancers worldwide is caused by persistent high-risk HPV infections. Here, we reported a comprehensive analysis of the molecular features for HPV-related cancer types using TCGA (The Cancer Genome Atlas) data with HPV status. We found that the HPV-positive cancer patients had a unique oncogenic process, tumor microenvironment, and drug response compared with HPV-negative patients. In addition, HPV improved overall survival for the four cancer types, namely, cervical squamous cell carcinoma (CESC), head and neck squamous cell carcinoma (HNSC), stomach adenocarcinoma (STAD), and uterine corpus endometrial carcinoma (UCEC). The stronger activity of cell-cycle pathways and lower driver gene mutation rates were observed in HPV-positive patients, which implied the different carcinogenic processes between HPV-positive and HPV-negative groups. The increased activities of immune cells and differences in metabolic pathways helped explain the heterogeneity of prognosis between the two groups. Furthermore, we constructed HPV prediction models for different cancers by the virus infection score (VIS) which was linearly correlated with HPV load and found that VIS was associated with drug response. Altogether, our study reveals that HPV-positive cancer patients have unique molecular characteristics which help the development of precision medicine in HPV-positive cancers.
Collapse
Affiliation(s)
- Xiaorong Yu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Jiankai Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Dahua Xu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering and Cancer Institute of the First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Xiaoman Bi
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering and Cancer Institute of the First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Hong Wang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering and Cancer Institute of the First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Yanda Lu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering and Cancer Institute of the First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Meng Cao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Wenxiang Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Zhizhou Xu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering and Cancer Institute of the First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Dehua Zheng
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering and Cancer Institute of the First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Liyang Chen
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering and Cancer Institute of the First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Xiaodian Zhang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering and Cancer Institute of the First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Shaojiang Zheng
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering and Cancer Institute of the First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Kongning Li
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering and Cancer Institute of the First Affiliated Hospital, Hainan Medical University, Haikou, China
| |
Collapse
|
20
|
Bogdanova A, Andrawos C, Constantinou C. Cervical cancer, geographical inequalities, prevention and barriers in resource depleted countries (Review). Oncol Lett 2022; 23:113. [PMID: 35251344 PMCID: PMC8850967 DOI: 10.3892/ol.2022.13233] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/25/2022] [Indexed: 11/06/2022] Open
Affiliation(s)
- Anna Bogdanova
- Department of Basic and Clinical Sciences, University of Nicosia Medical School, CY‑1700 Nicosia, Republic of Cyprus
| | - Charles Andrawos
- Department of Basic and Clinical Sciences, University of Nicosia Medical School, CY‑1700 Nicosia, Republic of Cyprus
| | - Constantina Constantinou
- Department of Basic and Clinical Sciences, University of Nicosia Medical School, CY‑1700 Nicosia, Republic of Cyprus
| |
Collapse
|
21
|
Mirza S, Kalluchi A, Raza M, Saleem I, Mohapatra B, Pal D, Ouellette MM, Qiu F, Yu L, Lobanov A, Zheng ZM, Zhang Y, Alsaleem MA, Rakha EA, Band H, Rowley MJ, Band V. Ecdysoneless Protein Regulates Viral and Cellular mRNA Splicing to Promote Cervical Oncogenesis. Mol Cancer Res 2021; 20:305-318. [PMID: 34670863 DOI: 10.1158/1541-7786.mcr-21-0567] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/10/2021] [Accepted: 10/12/2021] [Indexed: 11/16/2022]
Abstract
High-risk human papillomaviruses (HPV), exemplified by HPV16/18, are causally linked to human cancers of the anogenital tract, skin, and upper aerodigestive tract. Previously, we identified Ecdysoneless (ECD) protein, the human homolog of the Drosophila ecdysoneless gene, as a novel HPV16 E6-interacting protein. Here, we show that ECD, through its C-terminal region, selectively binds to high-risk but not to low-risk HPV E6 proteins. We demonstrate that ECD is overexpressed in cervical and head and neck squamous cell carcinoma (HNSCC) cell lines as well as in tumor tissues. Using The Cancer Genome Atlas dataset, we show that ECD mRNA overexpression predicts shorter survival in patients with cervical and HNSCC. We demonstrate that ECD knockdown in cervical cancer cell lines led to impaired oncogenic behavior, and ECD co-overexpression with E7 immortalized primary human keratinocytes. RNA-sequencing analyses of SiHa cells upon ECD knockdown showed to aberrations in E6/E7 RNA splicing, as well as RNA splicing of several HPV oncogenesis-linked cellular genes, including splicing of components of mRNA splicing machinery itself. Taken together, our results support a novel role of ECD in viral and cellular mRNA splicing to support HPV-driven oncogenesis. IMPLICATIONS: This study links ECD overexpression to poor prognosis and shorter survival in HNSCC and cervical cancers and identifies a critical role of ECD in cervical oncogenesis through regulation of viral and cellular mRNA splicing.
Collapse
Affiliation(s)
- Sameer Mirza
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska
| | - Achyuth Kalluchi
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska
| | - Mohsin Raza
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska
| | - Irfana Saleem
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Bhopal Mohapatra
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska
| | - Dhananjaya Pal
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska
| | - Michel M Ouellette
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Fang Qiu
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska
- Department of Biostatistics, College of Public Health, University of Nebraska Medical Center, Omaha, Nebraska
| | - Lulu Yu
- Tumor Virus RNA Biology Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland
| | - Alexei Lobanov
- CCR Collaborative Bioinformatics Resource (CCBR), National Cancer Institute, Bethesda, Maryland
| | - Zhi-Ming Zheng
- Tumor Virus RNA Biology Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland
| | - Ying Zhang
- Northshore University Health System, Chicago, Illinois
| | - Mansour A Alsaleem
- Department of Pathology, School of Medicine, University of Nottingham, Nottingham, United Kingdom
- Department of Applied Medical Sciences, Onizah Community College, Qassim University, Qassim, Saudi Arabia
| | - Emad A Rakha
- Department of Pathology, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Hamid Band
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska.
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska
| | - M Jordan Rowley
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska.
| | - Vimla Band
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska.
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
22
|
Harris HK, Lee C, Sideridis GD, Barbaresi WJ, Harstad E. Identifying Subgroups of Toddlers with DSM-5 Autism Spectrum Disorder Based on Core Symptoms. J Autism Dev Disord 2021; 51:4471-4485. [PMID: 33507459 DOI: 10.1007/s10803-021-04879-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2021] [Indexed: 12/01/2022]
Abstract
The objective of this study was to identify subgroups of toddlers with DSM-5 ASD based on core ASD symptoms using a person-based analytical framework. This is a retrospective study of 500 toddlers (mean age 26 months, 79% male) with DSM-5 ASD. Data were analyzed using latent class analyses in which profiles were formed based on ASD symptomatology. Social communication (SC) symptoms favored a three-class solution, while restricted/repetitive behaviors (RRBs) favored a two-class solution. Classes with higher consistency of SC deficits were younger, with lower developmental functioning. The class with more RRBs was older, with higher functioning. If confirmed in other populations, these classes may more precisely characterize subgroups within the heterogeneous group of toddlers at time of ASD diagnosis.
Collapse
Affiliation(s)
- Holly K Harris
- Division of Developmental Medicine, Massachusetts and Harvard Medical School, Boston Children's Hospital, Fegan 10, 300 Longwood Avenue, Boston, MA, 02115, USA.,Department of Pediatrics, Baylor College of Medicine and Meyer Center for Developmental Pediatrics, Texas Children's Hospital, Houston, TX, USA
| | - Collin Lee
- Division of Developmental Medicine, Massachusetts and Harvard Medical School, Boston Children's Hospital, Fegan 10, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Georgios D Sideridis
- Division of Developmental Medicine, Massachusetts and Harvard Medical School, Boston Children's Hospital, Fegan 10, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - William J Barbaresi
- Division of Developmental Medicine, Massachusetts and Harvard Medical School, Boston Children's Hospital, Fegan 10, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Elizabeth Harstad
- Division of Developmental Medicine, Massachusetts and Harvard Medical School, Boston Children's Hospital, Fegan 10, 300 Longwood Avenue, Boston, MA, 02115, USA.
| |
Collapse
|
23
|
Abstract
Human Papillomavirus (HPV) is the causative agent in the majority of anal, head and neck, oral, oropharyngeal, penile, vaginal, vulvar, and cervical cancers. Cervical cancer is the fourth most common cancer among women worldwide. Of all diagnosed human malignant neoplasms, approximately 4.5% are attributable to HPV, including cervical, anal cancers, vaginal, vulvar, penile, and oropharyngeal cancers. Over 182 HPV types have been identified and sequenced to date however, only certain types of HPV are more frequent in malignant lesions and considered to be a major risk factor in the development of some cancers. Because most HPV infections are transient, and an individual's immunocompetent may clear the infection, HPV infection has received little attention from clinicians, the general public, or policy makers. This lack of attention may underpin a deadly and increasing problem because each newly acquired infection has the potential to persist and become an incurable, lifelong affliction. In addition, no successful treatment of HPV infection currently exists despite the great strides toward understanding the mechanisms underlying HPV pathogenesis. Moreover, ample research has proven that the use of prophylactic vaccines, such as Gardasil and Cervarix, have led to documented progress in decreasing the burden of HPV infection, however not all countries introduced a government-funded National HPV Vaccination Program to protect young men and women. This chapter summarizes the HPV infection, detection and prevention. We also shed light on non-cervical HPV-related cancers, which is rapidly increasing in more developed countries toward cervical cancer.
Collapse
|
24
|
Variations of Histone Acetyltransferase 300 in Patients with Human Papillomavirus Type 6-Associated Anogenital Warts. MEDICAL LABORATORY JOURNAL 2020. [DOI: 10.52547/mlj.14.6.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
25
|
Abstract
Head and neck squamous cell carcinoma (HNSCC) associated with high-risk human papilloma virus (HPV) infection is a growing clinical problem. The WEE1 kinase inhibitor AZD1775 (WEE1i) overrides cell cycle checkpoints and is being studied in HNSCC regimens. We show that the HPV16 E6/E7 oncoproteins sensitize HNSCC cells to single-agent WEE1i treatment through activation of a FOXM1-CDK1 circuit that drives mitotic gene expression and DNA damage. An isogenic cell system indicated that E6 largely accounts for these phenotypes in ways that extend beyond p53 inactivation. A targeted genomic analysis implicated FOXM1 signaling downstream of E6/E7 expression and analyses of primary tumors and The Cancer Genome Atlas (TCGA) data revealed an activated FOXM1-directed promitotic transcriptional signature in HPV+ versus HPV- HNSCCs. Finally, we demonstrate the causality of FOXM1 in driving WEE1i sensitivity. These data suggest that elevated basal FOXM1 activity predisposes HPV+ HNSCC to WEE1i-induced toxicity and provide mechanistic insights into WEE1i and HPV+ HNSCC therapies.
Collapse
|
26
|
Kirschberg M, Heuser S, Marcuzzi GP, Hufbauer M, Seeger JM, Đukić A, Tomaić V, Majewski S, Wagner S, Wittekindt C, Würdemann N, Klussmann JP, Quaas A, Kashkar H, Akgül B. ATP synthase modulation leads to an increase of spare respiratory capacity in HPV associated cancers. Sci Rep 2020; 10:17339. [PMID: 33060693 PMCID: PMC7567072 DOI: 10.1038/s41598-020-74311-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 09/30/2020] [Indexed: 12/19/2022] Open
Abstract
Mucosal and skin cancers are associated with infections by human papillomaviruses (HPV). The manner how viral oncoproteins hijack the host cell metabolism to meet their own energy demands and how this may contribute to tumorigenesis is poorly understood. We now show that the HPV oncoprotein E7 of HPV8, HPV11 and HPV16 directly interact with the beta subunit of the mitochondrial ATP-synthase (ATP5B), which may therefore represent a conserved feature across different HPV genera. By measuring both glycolytic and mitochondrial activity we observed that the association of E7 with ATP5B was accompanied by reduction of glycolytic activity. Interestingly, there was a drastic increase in spare mitochondrial respiratory capacity in HPV8-E7 and an even more profound increase in HPV16-E7 expressing cells. In addition, we could show that ATP5B levels were unchanged in betaHPV positive skin cancers. However, comparing HPV-positive and HPV-negative oropharyngeal squamous cell carcinomas (OPSCC) we noticed that, while ATP5B expression levels did not correlate with patient overall survival in HPV-negative OPSCC, there was a strong correlation within the HPV16-positive OPSCC patient group. These novel findings provide evidence that HPV targets the host cell energy metabolism important for viral life cycle and HPV-mediated tumorigenesis.
Collapse
Affiliation(s)
- Matthias Kirschberg
- Institute of Virology, University of Cologne, Medical Faculty and University Hospital Cologne, Fürst-Pückler-Str. 56, 50935, Cologne, Germany
| | - Sandra Heuser
- Institute of Virology, University of Cologne, Medical Faculty and University Hospital Cologne, Fürst-Pückler-Str. 56, 50935, Cologne, Germany
| | - Gian Paolo Marcuzzi
- Institute of Virology, University of Cologne, Medical Faculty and University Hospital Cologne, Fürst-Pückler-Str. 56, 50935, Cologne, Germany
| | - Martin Hufbauer
- Institute of Virology, University of Cologne, Medical Faculty and University Hospital Cologne, Fürst-Pückler-Str. 56, 50935, Cologne, Germany
| | - Jens Michael Seeger
- Institute for Medical Microbiology, Immunology and Hygiene (IMMIH), CECAD Research Center, University of Cologne, Cologne, Germany
| | - Anamaria Đukić
- Division of Molecular Medicine, Ruđer Bošković Institute, Zagreb, Croatia
| | - Vjekoslav Tomaić
- Division of Molecular Medicine, Ruđer Bošković Institute, Zagreb, Croatia
| | - Slawomir Majewski
- Department of Dermatology and Venereology, Medical University of Warsaw, Warsaw, Poland
| | - Steffen Wagner
- Department of Otorhinolaryngology, Head and Neck Surgery, Justus-Liebig University, Giessen, Germany
| | - Claus Wittekindt
- Department of Otorhinolaryngology, Head and Neck Surgery, Justus-Liebig University, Giessen, Germany
| | - Nora Würdemann
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical Faculty, University of Cologne, Cologne, Germany
| | - Jens Peter Klussmann
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical Faculty, University of Cologne, Cologne, Germany
| | - Alexander Quaas
- Institute of Pathology, University Hospital Cologne, Cologne, Germany
| | - Hamid Kashkar
- Institute for Medical Microbiology, Immunology and Hygiene (IMMIH), CECAD Research Center, University of Cologne, Cologne, Germany
| | - Baki Akgül
- Institute of Virology, University of Cologne, Medical Faculty and University Hospital Cologne, Fürst-Pückler-Str. 56, 50935, Cologne, Germany.
| |
Collapse
|
27
|
Das D, Bristol ML, Pichierri P, Morgan IM. Using a Human Papillomavirus Model to Study DNA Replication and Repair of Wild Type and Damaged DNA Templates in Mammalian Cells. Int J Mol Sci 2020; 21:E7564. [PMID: 33066318 PMCID: PMC7589113 DOI: 10.3390/ijms21207564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/06/2020] [Accepted: 10/12/2020] [Indexed: 12/13/2022] Open
Abstract
Human papillomaviruses have 8kbp DNA episomal genomes that replicate autonomously from host DNA. During initial infection, the virus increases its copy number to 20-50 copies per cell, causing torsional stress on the replicating DNA. This activates the DNA damage response (DDR) and HPV replicates its genome, at least in part, using homologous recombination. An active DDR is on throughout the HPV life cycle. Two viral proteins are required for replication of the viral genome; E2 binds to 12bp palindromic sequences around the A/T rich origin of replication and recruits the viral helicase E1 via a protein-protein interaction. E1 forms a di-hexameric complex that replicates the viral genome in association with host factors. Transient replication assays following transfection with E1-E2 expression plasmids, along with an origin containing plasmid, allow monitoring of E1-E2 replication activity. Incorporating a bacterial lacZ gene into the origin plasmid allows for the determination of replication fidelity. Here we describe how we exploited this system to investigate replication and repair in mammalian cells, including using damaged DNA templates. We propose that this system has the potential to enhance the understanding of cellular components involved in DNA replication and repair.
Collapse
Affiliation(s)
- Dipon Das
- Department of Oral and Craniofacial Molecular Biology, VCU Philips Institute for Oral Health Research, Virginia Commonwealth University School of Dentistry, Richmond, VA 23298, USA; (D.D.); (M.L.B.)
| | - Molly L. Bristol
- Department of Oral and Craniofacial Molecular Biology, VCU Philips Institute for Oral Health Research, Virginia Commonwealth University School of Dentistry, Richmond, VA 23298, USA; (D.D.); (M.L.B.)
| | - Pietro Pichierri
- Department of Environment and Health, Istituto Superiore di Sanita’, 00161 Rome, Italy;
| | - Iain M. Morgan
- Department of Oral and Craniofacial Molecular Biology, VCU Philips Institute for Oral Health Research, Virginia Commonwealth University School of Dentistry, Richmond, VA 23298, USA; (D.D.); (M.L.B.)
- VCU Massey Cancer Center, Richmond, VA 23298, USA
| |
Collapse
|
28
|
James CD, Das D, Bristol ML, Morgan IM. Activating the DNA Damage Response and Suppressing Innate Immunity: Human Papillomaviruses Walk the Line. Pathogens 2020; 9:E467. [PMID: 32545729 PMCID: PMC7350329 DOI: 10.3390/pathogens9060467] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/08/2020] [Accepted: 06/10/2020] [Indexed: 12/25/2022] Open
Abstract
Activation of the DNA damage response (DDR) by external agents can result in DNA fragments entering the cytoplasm and activating innate immune signaling pathways, including the stimulator of interferon genes (STING) pathway. The consequences of this activation can result in alterations in the cell cycle including the induction of cellular senescence, as well as boost the adaptive immune response following interferon production. Human papillomaviruses (HPV) are the causative agents in a host of human cancers including cervical and oropharyngeal; HPV are responsible for around 5% of all cancers. During infection, HPV replication activates the DDR in order to promote the viral life cycle. A striking feature of HPV-infected cells is their ability to continue to proliferate in the presence of an active DDR. Simultaneously, HPV suppress the innate immune response using a number of different mechanisms. The activation of the DDR and suppression of the innate immune response are essential for the progression of the viral life cycle. Here, we describe the mechanisms HPV use to turn on the DDR, while simultaneously suppressing the innate immune response. Pushing HPV from this fine line and tipping the balance towards activation of the innate immune response would be therapeutically beneficial.
Collapse
Affiliation(s)
- Claire D. James
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University (VCU), Richmond, VA 23298, USA; (C.D.J.); (D.D.); (M.L.B.)
| | - Dipon Das
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University (VCU), Richmond, VA 23298, USA; (C.D.J.); (D.D.); (M.L.B.)
| | - Molly L. Bristol
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University (VCU), Richmond, VA 23298, USA; (C.D.J.); (D.D.); (M.L.B.)
| | - Iain M. Morgan
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University (VCU), Richmond, VA 23298, USA; (C.D.J.); (D.D.); (M.L.B.)
- VCU Massey Cancer Center, Richmond, VA 23298, USA
| |
Collapse
|
29
|
Post-Treatment HPV Surface Brushings and Risk of Relapse in Oropharyngeal Carcinoma. Cancers (Basel) 2020; 12:cancers12051069. [PMID: 32344907 PMCID: PMC7281576 DOI: 10.3390/cancers12051069] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/19/2020] [Accepted: 04/23/2020] [Indexed: 01/30/2023] Open
Abstract
Human papillomavirus (HPV)-positive oropharyngeal squamous cell carcinoma (OPSCC) is a distinct subtype of head and neck cancer. Here, we investigated how frequently brushing remained high-risk (hr)-HPV positive after treatment and whether patients with positive post-treatment brushings have a higher recurrence rate. Following the end of treatment of patients with initially hr-HPV positive OPSCC, surface brushings from the previous tumor site were performed and tested for hr-HPV DNA. Of 62 patients with initially hr-HPV DNA-positive OPSCC, seven patients remained hr-HPV-DNA positive at post-treatment follow-up. Of the seven hr-HPV-positive patients at follow-up, five had a tumor relapse or tumor progression, of whom three died. The majority of patients (55/62) was HPV-negative following treatment. All HPV-negative patients remained free of disease (p = 0.0007). In this study, all patients with recurrence were hr-HPV-positive with the same genotype as that before treatment. In patients who were hr-HPV negative after treatment, no recurrence was observed.
Collapse
|
30
|
del-Rosal-Jurado A, Romero-Galisteo R, Trinidad-Fernández M, González-Sánchez M, Cuesta-Vargas A, Ruiz-Muñoz M. Therapeutic Physical Exercise Post-Treatment in Breast Cancer: A Systematic Review of Clinical Practice Guidelines. J Clin Med 2020; 9:E1239. [PMID: 32344683 PMCID: PMC7230832 DOI: 10.3390/jcm9041239] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/06/2020] [Accepted: 04/22/2020] [Indexed: 02/06/2023] Open
Abstract
Advances achieved in diagnosis and improvements in treatment for breast cancer have resulted in a favourable survival rate. Therapeutic physical exercise (TPE) is presented as an intervention strategy that seeks to improve the functional capabilities of the subject. To analyse if clinical practice guidelines recommend therapeutic physical exercise to reduce the adverse effects of treatment in breast cancer survivors, and on what level of scientific evidence are these recommendations based. This systematic review was prepared by searching nine electronic databases to identify eligible studies. Thirteen met the criteria for inclusion. The Appraisal of Guidelines for Research and Evaluation (AGREE II) scale was used to analyse the quality of Clinical Practice Guideline (CPGs). The percentages obtained ranged between 30.07% and 75.70%. Specifically, the highest degree of evidence could be found in the application of TPE to offset adverse effects leading to effects such as: an increase in the quality of life, fatigue reduction, and reduction in body weight alterations. TPE is presented as an optimal intervention strategy to alleviate the negative effects that patients with breast cancer suffer as a result of the treatments received. The level of evidence that supports this claim is very strong for the majority of the side effects analysed. However, this evidence is not always included in the clinical practice guidelines.
Collapse
Affiliation(s)
- Alicia del-Rosal-Jurado
- Department of Physiotherapy, Institute of Biomedicine of Málaga (IBIMA), Clinimetric Group (F-14), Chair of Physiotherapy and Disability, Faculty of Health Sciences, Andalucía Tech, University of Málaga, 29071 Málaga, Spain; (A.d.-R.-J.); (M.T.-F.); (A.C.-V.)
| | - Rita Romero-Galisteo
- Department of Physiotherapy, Faculty of Health Sciences, Andalucía Tech, University of Málaga, 29071 Málaga, Spain
| | - Manuel Trinidad-Fernández
- Department of Physiotherapy, Institute of Biomedicine of Málaga (IBIMA), Clinimetric Group (F-14), Chair of Physiotherapy and Disability, Faculty of Health Sciences, Andalucía Tech, University of Málaga, 29071 Málaga, Spain; (A.d.-R.-J.); (M.T.-F.); (A.C.-V.)
| | - Manuel González-Sánchez
- Department of Physiotherapy, Institute of Biomedicine of Málaga (IBIMA), Clinimetric Group (F-14), Chair of Physiotherapy and Disability, Faculty of Health Sciences, Andalucía Tech, University of Málaga, 29071 Málaga, Spain; (A.d.-R.-J.); (M.T.-F.); (A.C.-V.)
| | - Antonio Cuesta-Vargas
- Department of Physiotherapy, Institute of Biomedicine of Málaga (IBIMA), Clinimetric Group (F-14), Chair of Physiotherapy and Disability, Faculty of Health Sciences, Andalucía Tech, University of Málaga, 29071 Málaga, Spain; (A.d.-R.-J.); (M.T.-F.); (A.C.-V.)
- School of Clinical Sciences of the Faculty of Health, Queensland University of Technology, Brisbane, QLD 4059, Australia
| | - Maria Ruiz-Muñoz
- Department of Nursing, Institute of Biomedicine of Málaga (IBIMA), Clinimetric Group (F-14), Chair of Physiotherapy and Disability, Faculty of Health Sciences, Andalucía Tech, University of Málaga, 29071 Málaga, Spain;
| |
Collapse
|
31
|
Subversion of Host Innate Immunity by Human Papillomavirus Oncoproteins. Pathogens 2020; 9:pathogens9040292. [PMID: 32316236 PMCID: PMC7238203 DOI: 10.3390/pathogens9040292] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 12/19/2022] Open
Abstract
The growth of human papillomavirus (HPV)-transformed cells depends on the ability of the viral oncoproteins E6 and E7, especially those from high-risk HPV16/18, to manipulate the signaling pathways involved in cell proliferation, cell death, and innate immunity. Emerging evidence indicates that E6/E7 inhibition reactivates the host innate immune response, reversing what until then was an unresponsive cellular state suitable for viral persistence and tumorigenesis. Given that the disruption of distinct mechanisms of immune evasion is an attractive strategy for cancer therapy, the race is on to gain a better understanding of E6/E7-induced immune escape and cancer progression. Here, we review recent literature on the interplay between E6/E7 and the innate immune signaling pathways cGAS/STING/TBK1, RIG-I/MAVS/TBK1, and Toll-like receptors (TLRs). The overall emerging picture is that E6 and E7 have evolved broad-spectrum mechanisms allowing for the simultaneous depletion of multiple rather than single innate immunity effectors. The cGAS/STING/TBK1 pathway appears to be the most heavily impacted, whereas the RIG-I/MAVS/TBK1, still partially functional in HPV-transformed cells, can be activated by the powerful RIG-I agonist M8, triggering the massive production of type I and III interferons (IFNs), which potentiates chemotherapy-mediated cell killing. Overall, the identification of novel therapeutic targets to restore the innate immune response in HPV-transformed cells could transform the way HPV-associated cancers are treated.
Collapse
|
32
|
Van Arsdale A, Patterson NE, Maggi EC, Agoni L, Van Doorslaer K, Harmon B, Nevadunsky N, Kuo DY, Einstein MH, Lenz J, Montagna C. Insertional oncogenesis by HPV70 revealed by multiple genomic analyses in a clinically HPV-negative cervical cancer. Genes Chromosomes Cancer 2020; 59:84-95. [PMID: 31407403 PMCID: PMC6916423 DOI: 10.1002/gcc.22799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 08/05/2019] [Accepted: 08/09/2019] [Indexed: 12/21/2022] Open
Abstract
Cervical carcinogenesis, the second leading cause of cancer death in women worldwide, is caused by multiple types of human papillomaviruses (HPVs). To investigate a possible role for HPV in a cervical carcinoma that was HPV-negative by PCR testing, we performed HPV DNA hybridization capture plus massively parallel sequencing. This detected a subgenomic, URR-E6-E7-E1 segment of HPV70 DNA, a type not generally associated with cervical cancer, inserted in an intron of the B-cell lymphoma/leukemia 11B (BCL11B) gene in the human genome. Long range DNA sequencing confirmed the virus and flanking BCL11B DNA structures including both insertion junctions. Global transcriptomic analysis detected multiple, alternatively spliced, HPV70-BCL11B, fusion transcripts with fused open reading frames. The insertion and fusion transcripts were present in an intraepithelial precursor phase of tumorigenesis. These results suggest oncogenicity of HPV70, identify novel BCL11B variants with potential oncogenic implications, and underscore the advantages of thorough genomic analyses to elucidate insights into HPV-associated tumorigenesis.
Collapse
Affiliation(s)
- Anne Van Arsdale
- Department of Obstetrics & Gynecology and Women's HealthAlbert Einstein College of Medicine, Yeshiva UniversityBronxNew York
| | - Nicole E. Patterson
- Department of GeneticsAlbert Einstein College of Medicine, Yeshiva UniversityBronxNew York
| | - Elaine C. Maggi
- Department of GeneticsAlbert Einstein College of Medicine, Yeshiva UniversityBronxNew York
| | - Lorenzo Agoni
- Department of Women's and Children's HealthObstetrics & Gynecology Unit, Fondazione Poliambulanza Istituto OspedalieroBresciaItaly
| | - Koenraad Van Doorslaer
- School of Animal and Comparative Biomedical SciencesCollege of Agriculture and Life Sciences BIO5 Institute University of ArizonaTusconArizonaUSA
| | - Bryan Harmon
- Department of PathologyAlbert Einstein College of Medicine, Yeshiva UniversityBronxNew York
| | - Nicole Nevadunsky
- Department of Obstetrics & Gynecology and Women's HealthAlbert Einstein College of Medicine, Yeshiva UniversityBronxNew York
| | - Dennis Y.S. Kuo
- Department of Obstetrics & Gynecology and Women's HealthAlbert Einstein College of Medicine, Yeshiva UniversityBronxNew York
| | - Mark H. Einstein
- Department of Obstetrics, Gynecology, and Women's HealthRutgers New Jersey Medical SchoolNewarkNew Jersey
| | - Jack Lenz
- Department of GeneticsAlbert Einstein College of Medicine, Yeshiva UniversityBronxNew York
| | - Cristina Montagna
- Department of GeneticsAlbert Einstein College of Medicine, Yeshiva UniversityBronxNew York
- Department of PathologyAlbert Einstein College of Medicine, Yeshiva UniversityBronxNew York
| |
Collapse
|
33
|
Lo Cigno I, Calati F, Borgogna C, Zevini A, Albertini S, Martuscelli L, De Andrea M, Hiscott J, Landolfo S, Gariglio M. Human Papillomavirus E7 Oncoprotein Subverts Host Innate Immunity via SUV39H1-Mediated Epigenetic Silencing of Immune Sensor Genes. J Virol 2020; 94:e01812-19. [PMID: 31776268 PMCID: PMC6997746 DOI: 10.1128/jvi.01812-19] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 11/20/2019] [Indexed: 12/23/2022] Open
Abstract
Subversion of innate immunity by oncoviruses, such as human papillomavirus (HPV), favors carcinogenesis because the mechanism(s) of viral immune evasion can also hamper cancer immunosurveillance. Previously, we demonstrated that high-risk (hr) HPVs trigger simultaneous epigenetic silencing of multiple effectors of innate immunity to promote viral persistence. Here, we expand on those observations and show that the HPV E7 oncoprotein upregulates the H3K9-specific methyltransferase, whose action shuts down the host innate immune response. Specifically, we demonstrate that SUV39H1 contributes to chromatin repression at the promoter regions of the viral nucleic acid sensors RIG-I and cGAS and the adaptor molecule STING in HPV-transformed cells. Inhibition of SUV39H1 leads to transcriptional activation of these genes, especially RIG-I, followed by increased beta interferon (IFN-β) and IFN-λ1 production after poly(dA·dT) or RIG-I agonist M8 transfection. Collectively, our findings provide new evidence that the E7 oncoprotein plays a central role in dampening host innate immunity and raise the possibility that targeting the downstream effector SUV39H1 or the RIG-I pathway is a viable strategy to treat viral and neoplastic disease.IMPORTANCE High-risk HPVs are major viral human carcinogens responsible for approximately 5% of all human cancers. The growth of HPV-transformed cells depends on the ability of viral oncoproteins to manipulate a variety of cellular circuits, including those involved in innate immunity. Here, we show that one of these strategies relies on E7-mediated transcriptional activation of the chromatin repressor SUV39H1, which then promotes epigenetic silencing of RIG-I, cGAS, and STING genes, thereby shutting down interferon secretion in HPV-transformed cells. Pharmacological or genetic inhibition of SUV39H1 restored the innate response in HPV-transformed cells, mostly through activation of RIG-I signaling. We also show that IFN production upon transfection of poly(dA·dT) or the RIG-I agonist M8 predominantly occurs through RIG-I signaling. Altogether, the reversible nature of the modifications associated with E7-mediated SUV39H1 upregulation provides a rationale for the design of novel anticancer and antiviral therapies targeting these molecules.
Collapse
Affiliation(s)
- Irene Lo Cigno
- University of Piemonte Orientale Medical School, Department of Translational Medicine, Molecular Virology Unit, Novara, Italy
| | - Federica Calati
- University of Piemonte Orientale Medical School, Department of Translational Medicine, Molecular Virology Unit, Novara, Italy
| | - Cinzia Borgogna
- University of Piemonte Orientale Medical School, Department of Translational Medicine, Molecular Virology Unit, Novara, Italy
| | | | - Silvia Albertini
- University of Piemonte Orientale Medical School, Department of Translational Medicine, Molecular Virology Unit, Novara, Italy
| | - Licia Martuscelli
- University of Piemonte Orientale Medical School, Department of Translational Medicine, Molecular Virology Unit, Novara, Italy
| | - Marco De Andrea
- Center for Translational Research on Autoimmune and Allergic Disease-CAAD, Novara, Italy
- University of Turin Medical School, Department of Public Health and Pediatric Sciences, Viral Pathogenesis Unit, Turin, Italy
| | - John Hiscott
- Istituto Pasteur-Fondazione Cenci Bolognetti, Rome, Italy
| | - Santo Landolfo
- University of Turin Medical School, Department of Public Health and Pediatric Sciences, Viral Pathogenesis Unit, Turin, Italy
| | - Marisa Gariglio
- University of Piemonte Orientale Medical School, Department of Translational Medicine, Molecular Virology Unit, Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Disease-CAAD, Novara, Italy
| |
Collapse
|
34
|
From squamous intraepithelial lesions to cervical cancer: Circulating microRNAs as potential biomarkers in cervical carcinogenesis. Biochim Biophys Acta Rev Cancer 2019; 1872:188306. [DOI: 10.1016/j.bbcan.2019.08.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 08/01/2019] [Indexed: 02/06/2023]
|
35
|
Stukan AI, Chukhray OY, Porkhanov VA, Bodnya VN. [Association of the expression of p53 and p16INK4A with the clinical and morphological characteristicsof patients with head and neck squamous cell cancer]. Arkh Patol 2019; 81:12-18. [PMID: 31317926 DOI: 10.17116/patol20198103112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To identify the expression of the molecular markers p53 and p16INK4A in head and neck squamous cell carcinoma (HNSCC) and to assess their impact on its clinical and morphological characteristics and overall survival (OS) rates in patients with HNSCC. MATERIAL AND METHODS Histological blocks were immunohistochemically studied using anti-p16 and p53 monoclonal antibodies in Krasnodar Clinical Oncology Dispensary One in 2011 to 2016. Overexpression of p16INK4A was established in the presence of 3 and 4 staining points (nuclear and/or cytoplasmic staining in 40% or more tumor cells). That of p53 was determined in the presence of nuclear staining (3+) in more than 50% of tumor cells. RESULTS Overexpression of p16 was found in 15 (27%) patients (9 (60%) men and 6 (40%) women). The p16-positive tumor status was associated with the female sex (p=0.023), which was characteristic of tonsil cancer (p<0.001) and represented by the nonkeratinizing type (p=0.008). Overexpression of p16 was associated with more frequent regional lymph node metastases (p=0.029). Overexpression of p53 was related to G2 tumor (p=0.021) and expression of p53 was less than 50% associated with tongue body cancer (p=0.004). Kaplan-Meier analysis showed that the 3-year OS in p16-positive HNSCC patients was significantly higher than that in p16-negative ones (p=0.048). Significantly higher OS rates were observed in p16-positive HNSCC patients than in p16INK4A-negative ones for Stage III-IV (p=0.021). OS rates in HNSCC patients with co-expression of p16INK4A (3 and 4 points) and p53 (3+) were significantly higher than in the absence of a combination of these molecular markers (p=0.049). At the same time, OS in HNSCC patients with co-expression of p16INK4A (3 and 4 points), p53 (3+) was significantly higher than in the absence of a set of these molecular markers for stage III-IV (p=0.01). OS in patients with Stages I-II HNNSCC and co-expression of p16INK4A (3 and 4 points) and p53 (3+) did not significantly differ from that in the absence of a set of these molecular markers (p=0.960). CONCLUSION Overexpression of p16INK4A (3 and 4 points) can be used as a prognostic marker to divide patients into subgroups with different clinical and morphological characteristics. The data on the correlation of p53 overexpression as a marker of mutations in the TP53 gene are contradictory and the study has not revealed the worst overall survival rates. A set of markers for the expression of p16 (≥40%) and p53 (≥50%) has been proposed for use as a favorable prognostic sign.
Collapse
Affiliation(s)
- A I Stukan
- Clinical Oncology Dispensary One, Ministry of Health of the Krasnodar Territory, Krasnodar, Russia; Department of Oncology with Course of Thoracic Surgery, Faculty for Advanced Training and Professional Retraining of Specialists, Kuban State Medical University, Ministry of Health of Russia, Krasnodar, Russia
| | - O Yu Chukhray
- Clinical Oncology Dispensary One, Ministry of Health of the Krasnodar Territory, Krasnodar, Russia
| | - V A Porkhanov
- Department of Oncology with Course of Thoracic Surgery, Faculty for Advanced Training and Professional Retraining of Specialists, Kuban State Medical University, Ministry of Health of Russia, Krasnodar, Russia; Prof. S.V. Ochapovsky Territorial Clinical Hospital One, Research Institute, Ministry of Health of the Krasnodar Territory, Krasnodar, Russia
| | - V N Bodnya
- Department of Oncology with Course of Thoracic Surgery, Faculty for Advanced Training and Professional Retraining of Specialists, Kuban State Medical University, Ministry of Health of Russia, Krasnodar, Russia; Prof. S.V. Ochapovsky Territorial Clinical Hospital One, Research Institute, Ministry of Health of the Krasnodar Territory, Krasnodar, Russia
| |
Collapse
|
36
|
Taghizadeh E, Jahangiri S, Rostami D, Taheri F, Renani PG, Taghizadeh H, Gheibi Hayat SM. Roles of E6 and E7 Human Papillomavirus Proteins in Molecular Pathogenesis of Cervical Cancer. Curr Protein Pept Sci 2019; 20:926-934. [PMID: 31244421 DOI: 10.2174/1389203720666190618101441] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 05/11/2019] [Accepted: 05/26/2019] [Indexed: 01/07/2023]
Abstract
Human papillomavirus (HPV) cancers are expected to be major global health concerns in the upcoming decades. The growth of HPV-positive cancer cells depends on the consistent expression of oncoprotein which has been poorly taken into account in the cellular communication. Among them, E6/E7 oncoproteins are attractive therapeutic targets as their inhibition rapidly leads to the onset of aging in HPV-positive cancer cells. This cellular response is associated with the regeneration of p53, pRb anti-proliferative proteins as well as the mTOR signaling pathway; hence, the identification of involved and application of E6/E7 inhibitors can lead to new therapeutic strategies. In the present review, we focused on the pathogenicity of E6/E7 Proteins of human papillomavirus and their roles associated with the cervical cancer.
Collapse
Affiliation(s)
- Eskandar Taghizadeh
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Sepideh Jahangiri
- Genetics department, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Daryoush Rostami
- Department of School Allied, Zabol University of Medical Sciences, Zabol, Iran
| | - Forough Taheri
- Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | | | - Hassan Taghizadeh
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Seyed Mohammad Gheibi Hayat
- Department of Medical Genetics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
37
|
The Formation and Therapeutic Update of Tumor-Associated Macrophages in Cervical Cancer. Int J Mol Sci 2019; 20:ijms20133310. [PMID: 31284453 PMCID: PMC6651300 DOI: 10.3390/ijms20133310] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/01/2019] [Accepted: 07/03/2019] [Indexed: 12/15/2022] Open
Abstract
Both clinicopathological and experimental studies have suggested that tumor-associated macrophages (TAMs) play a key role in cervical cancer progression and are associated with poor prognosis in the respects of tumor cell proliferation, invasion, angiogenesis, and immunosuppression. Therefore, having a clear understanding of TAMs is essential in treating this disease. In this review, we will discuss the origins and categories of macrophages, the molecules responsible for forming and reeducating TAMs in cervical cancer (CC), the biomarkers of macrophages and the therapy development targeting TAMs in CC research.
Collapse
|
38
|
Akgül B, Kirschberg M, Storey A, Hufbauer M. Human papillomavirus type 8 oncoproteins E6 and E7 cooperate in downregulation of the cellular checkpoint kinase-1. Int J Cancer 2019; 145:797-806. [PMID: 30786016 DOI: 10.1002/ijc.32223] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 02/05/2019] [Accepted: 02/12/2019] [Indexed: 12/22/2022]
Abstract
Human papillomavirus 8 (HPV8) is associated with the development of squamous cell carcinoma (SCC) of the skin. HPV-infected keratinocytes are able to override normal checkpoint control mechanisms and sustain cell cycle activity, allowing for synthesis of cellular proteins necessary for viral genome amplification. To study how HPV8 may disrupt cell cycle control, we analyzed the impact of HPV8 early gene expression on one of the key regulators of cell cycle and DNA damage response, checkpoint kinase-1 (CHK1). We found that expression of E1, E1̂E4, E2, E6 or E7 individually did not affect CHK1; however, keratinocytes expressing the complete early genome region (CER) of HPV8 showed a profound loss of CHK1 protein levels, that proved to be mediated by E6E7 co-expression. Neither CHK1 promoter regulation nor the ubiquitin-proteasome pathway are involved in HPV8-mediated CHK1 repression. However, CHK1 protein repression in organotypic skin cultures was paralleled by downregulation of the autophagy marker LC3B. Treatment of HPV8-CER expressing cells with the autophagy inhibitor Bafilomycin A1 rescued CHK1 expression and led to LC3B accumulation. Taken together, our data implicate that CHK1 autophagic degradation is enhanced by HPV8, which may contribute to the oncogenic potential of the virus.
Collapse
Affiliation(s)
- Baki Akgül
- Institute of Virology, University of Cologne, Faculty of Medicine, University Hospital of Cologne, Cologne, Germany
| | - Matthias Kirschberg
- Institute of Virology, University of Cologne, Faculty of Medicine, University Hospital of Cologne, Cologne, Germany
| | - Alan Storey
- Department of Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Martin Hufbauer
- Institute of Virology, University of Cologne, Faculty of Medicine, University Hospital of Cologne, Cologne, Germany
| |
Collapse
|
39
|
Voiculescu VM, Lisievici CV, Lupu M, Vajaitu C, Draghici CC, Popa AV, Solomon I, Sebe TI, Constantin MM, Caruntu C. Mediators of Inflammation in Topical Therapy of Skin Cancers. Mediators Inflamm 2019; 2019:8369690. [PMID: 30766448 PMCID: PMC6350587 DOI: 10.1155/2019/8369690] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 09/28/2018] [Accepted: 11/26/2018] [Indexed: 12/24/2022] Open
Abstract
Taking into consideration that the immune system plays a very important role in the development of melanoma and non-melanoma skin cancers, which have a high prevalence in immunosuppressed patients and after prolonged ultraviolet radiation, the interest in developing novel therapies, in particular targeting the inflammation in cancer, has increased in the past years. The latest data suggest that therapies such as imiquimod (IMQ), ingenol mebutate (IM), 5-fluorouracil (5-FU), retinoids, and nonsteroidal anti-inflammatory drugs (NSAIDs) have been used with success in the topical treatment of some cancers. Herein, we review the topical treatment targeting the inflammation in skin cancer and the mechanisms involved in these processes. Currently, various associations have shown a superior success rate than monotherapy, such as systemic acitretin and topical IMQ, topical 5-FU with tretinoin cream, or IMQ with checkpoint inhibitor cytotoxic T lymphocyte antigen 4. Novel therapies targeting Toll-like receptor-7 (TLR-7) with higher selectivity than IMQ are also of great interest.
Collapse
Affiliation(s)
- Vlad Mihai Voiculescu
- Department of Dermatology, “ELIAS” University Emergency Hospital, Bucharest, Romania
- Carol Davila University of Medicine and Pharmacy Bucharest, Romania, Bucharest, Romania
| | | | - Mihai Lupu
- Carol Davila University of Medicine and Pharmacy Bucharest, Romania, Bucharest, Romania
- Dermatology Clinic, MedAs Medical Center, Bucharest, Romania
| | - Cristina Vajaitu
- Department of Dermatology, “ELIAS” University Emergency Hospital, Bucharest, Romania
| | | | | | - Iulia Solomon
- Department of Dermatology, “ELIAS” University Emergency Hospital, Bucharest, Romania
| | - Teona Ioana Sebe
- Carol Davila University of Medicine and Pharmacy Bucharest, Romania, Bucharest, Romania
- The Clinic of Plastic Surgery Reconstructive Microsurgery, Emergency Hospital Bucharest, Romania
| | - Maria Magdalena Constantin
- Carol Davila University of Medicine and Pharmacy Bucharest, Romania, Bucharest, Romania
- 2nd Department of Dermatology, “Colentina” Clinical Hospital, Bucharest, Romania
| | - Constantin Caruntu
- Carol Davila University of Medicine and Pharmacy Bucharest, Romania, Bucharest, Romania
- Department of Dermatology, Prof. “N Paulescu” National Institute of Diabetes, Nutrition and Metabolic Diseases, Bucharest, Romania
| |
Collapse
|
40
|
Rader JS, Tsaih SW, Fullin D, Murray MW, Iden M, Zimmermann MT, Flister MJ. Genetic variations in human papillomavirus and cervical cancer outcomes. Int J Cancer 2019; 144:2206-2214. [PMID: 30515767 DOI: 10.1002/ijc.32038] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 11/27/2018] [Indexed: 12/12/2022]
Abstract
Cervical cancer is driven by persistent infection of human papillomavirus (HPV), which is influenced by HPV type and intratypic variants, yet the impact of HPV type and intratypic variants on patient outcomes is far less understood. Here, we examined the association of cervical cancer stage and survival with HPV type, clade, lineage, and intratypic variants within the HPV E6 locus. Of 1,028 HPV-positive cases recruited through the CerGE study, 301 were in-situ and 727 were invasive cervical cancer (ICC), with an average post-diagnosis follow-up of 4.8 years. HPV sequencing was performed using tumor-isolated DNA to assign HPV type, HPV 16 lineage, clade, and intratypic variants within the HPV 16 E6 locus, of which nonsynonomous variants were functionally annotated by molecular modeling. HPV 18-related types were more prevalent in ICC compared to in-situ disease and associated with significantly worse recurrence-free survival (RFS) compared to HPV 16-related types. The HPV 16 Asian American lineage D3 and Asian lineage A4 associated more frequently with ICC than with in situ disease and women with an intratypic HPV 16 lineage B exhibited a trend toward worse RFS than those with A, C, or D lineages. Participants with intratypic E6 variants predicted to stabilize the E6-E6AP-p53 complex had worse RFS. Variants within the highly immunogenic HPV 16 E6 region (E14-I34) were enriched in ICC compared to in-situ lesions but were not associated with survival. Collectively, our results suggest that cervical cancer outcome is associated with HPV variants that affect virus-host interactions.
Collapse
Affiliation(s)
- Janet S Rader
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Shirng-Wern Tsaih
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA.,Genomics Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Daniel Fullin
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Miriam W Murray
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Marissa Iden
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Michael T Zimmermann
- Genomics Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI, USA.,Medical College of Wisconsin, Clinical and Translational Sciences Institute, Milwaukee, WI, USA
| | - Michael J Flister
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA.,Genomics Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
41
|
Squarzanti DF, Sorrentino R, Landini MM, Chiesa A, Pinato S, Rocchio F, Mattii M, Penengo L, Azzimonti B. Human papillomavirus type 16 E6 and E7 oncoproteins interact with the nuclear p53-binding protein 1 in an in vitro reconstructed 3D epithelium: new insights for the virus-induced DNA damage response. Virol J 2018; 15:176. [PMID: 30445982 PMCID: PMC6240266 DOI: 10.1186/s12985-018-1086-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 10/22/2018] [Indexed: 12/28/2022] Open
Abstract
Background Despite vaccination and screening measures, anogenital cancer, mainly promoted by HPV16 oncoproteins, still represents the fourth tumor and the second cause of death among women. Cell replication fidelity is the result of the host DNA damage response (DDR). Unlike many DNA viruses that promote their life cycle through the DDR inactivation, HR-HPVs encourage cells proliferation despite the DDR turned on. Why and how it occurs has been only partially elucidated. During HPV16 infection, E6 links and degrades p53 via the binding to the E6AP LXXLL sequence; unfortunately, E6 direct role in the DDR response has not clearly identified yet. Similarly, E7 increases DDR by competing with E2F1-pRb interaction, thus leading to the inactivation of pRb, and promotion, E2F1 mediated, of DDR genes translation, by binding to the pRb-like proteins CBP/p300 and p107, that also harbour LXXLL sequence, and via the interaction and activation of several DDR proteins. Methods To gain information regarding E6 and E7 contribution in DDR activation, we produced an in vitro 3D HPV16-E6E7 infected epithelium, already consolidated study model for HPVs, and validated it by assessing H&E staining and BrdU, HPV16 DNA, E6E7 proteins and γH2A.X/53BP1 double-strand break (DSBs) sensors expression; then we made an immuno-colocalization of E6 and E7 with cyclin E2 and B1. Since 53BP1, like E6 and E7, also binds p53 and pRb, we supposed their possible direct binding. To explore this hypothesis, we performed a double immunofluorescence of E6 and E7 with 53BP1, a sequence analysis of 53BP1 within its BRCT2 domain and then an in situ PLA within CaSki, E6E7HPV16 NHEKs and the 3D model. Results The in vitro epithelium resembled the histology and the events typical of in vivo infected tissues. E6E7HPV16 were both expressed in basal and differentiated strata and induced H2A.X phosphorylation and 53BP1 increment into nuclear foci. After highlighting E6 and E7 co-expression with 53BP1 and a LKVLL sequence within the 53BP1 BRCT2 domain, we demonstrated the bindings via the PLA technique. Conclusions Our results reinforce E6 and E7 role in cellular function control providing potentially new insights into the activity of this tumor virus.
Collapse
Affiliation(s)
- Diletta Francesca Squarzanti
- Laboratory of applied Microbiology, Department of Health Sciences, University of Piemonte Orientale (UPO), Via Solaroli 17, 28100, Novara, Italy
| | - Rita Sorrentino
- Laboratory of Biomedical Materials, Department of Health Sciences, University of Piemonte Orientale (UPO), Novara, Italy
| | - Manuela Miriam Landini
- Laboratory of applied Microbiology, Department of Health Sciences, University of Piemonte Orientale (UPO), Via Solaroli 17, 28100, Novara, Italy
| | - Andrea Chiesa
- Laboratory of applied Microbiology, Department of Health Sciences, University of Piemonte Orientale (UPO), Via Solaroli 17, 28100, Novara, Italy
| | - Sabrina Pinato
- Laboratory of Molecular Biology, Department of Pharmaceutical Sciences, University of Piemonte Orientale (UPO), Novara, Italy
| | - Francesca Rocchio
- Laboratory of Molecular Biology, Department of Pharmaceutical Sciences, University of Piemonte Orientale (UPO), Novara, Italy
| | - Martina Mattii
- Laboratory of applied Microbiology, Department of Health Sciences, University of Piemonte Orientale (UPO), Via Solaroli 17, 28100, Novara, Italy
| | - Lorenza Penengo
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Barbara Azzimonti
- Laboratory of applied Microbiology, Department of Health Sciences, University of Piemonte Orientale (UPO), Via Solaroli 17, 28100, Novara, Italy. .,Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM, Firenze, Italy- Local Unit of Piemonte Orientale, UPO, Novara, Italy.
| |
Collapse
|
42
|
Krump NA, Liu W, You J. Mechanisms of persistence by small DNA tumor viruses. Curr Opin Virol 2018; 32:71-79. [PMID: 30278284 DOI: 10.1016/j.coviro.2018.09.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/07/2018] [Accepted: 09/14/2018] [Indexed: 12/13/2022]
Abstract
Virus infection contributes to nearly 15% of human cancers worldwide. Many of the oncogenic viruses tend to cause cancer in immunosuppressed individuals, but maintain asymptomatic, persistent infection for decades in the general population. In this review, we discuss the tactics employed by two small DNA tumor viruses, Human papillomavirus (HPV) and Merkel cell polyomavirus (MCPyV), to establish persistent infection. We will also highlight recent key findings as well as outstanding questions regarding the mechanisms by which HPV and MCPyV evade host immune control to promote their survival. Since persistent infection enables virus-induced tumorigenesis, identifying the mechanisms by which small DNA tumor viruses achieve latent infection may inform new approaches for preventing and treating their respective human cancers.
Collapse
Affiliation(s)
- Nathan A Krump
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Wei Liu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jianxin You
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
43
|
Georgescu SR, Mitran CI, Mitran MI, Caruntu C, Sarbu MI, Matei C, Nicolae I, Tocut SM, Popa MI, Tampa M. New Insights in the Pathogenesis of HPV Infection and the Associated Carcinogenic Processes: The Role of Chronic Inflammation and Oxidative Stress. J Immunol Res 2018; 2018:5315816. [PMID: 30225270 PMCID: PMC6129847 DOI: 10.1155/2018/5315816] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 08/08/2018] [Indexed: 11/17/2022] Open
Abstract
Human papillomavirus (HPV) is a small double-stranded DNA virus with tropism for epithelial cells. To this date, over 150 genotypes are known and are classified into two major groups, low-risk and high-risk strains, depending on the ability of the virus to induce malignant transformation. The host's immunity plays a central role in the course of the infection; therefore, it may not be clinically manifest or may produce various benign or malignant lesions. The pathogenic mechanisms are complex and incompletely elucidated. Recent research suggests the role of chronic inflammation and oxidative stress (OS) in the pathogenesis of HPV infection and the associated carcinogenic processes. Chronic inflammation induces OS, which in turn promotes the perpetuation of the inflammatory process resulting in the release of numerous molecules which cause cell damage. Reactive oxygen species exert a harmful effect on proteins, lipids, and nucleic acids. Viral oncogenes E5, E6, and E7 are involved in the development of chronic inflammation through various mechanisms. In addition, HPV may interfere with redox homeostasis of host cells, inducing OS which may be involved in the persistence of the infection and play a certain role in viral integration and promotion of carcinogenesis. Knowledge regarding the interplay between chronic inflammation and OS in the pathogenesis of HPV infection and HPV-induced carcinogenesis has important consequences on the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Simona Roxana Georgescu
- “Victor Babes” Clinical Hospital for Infectious Diseases, 281 Mihai Bravu, 030303 Bucharest, Romania
- “Carol Davila” University of Medicine and Pharmacy, 37 Dionisie Lupu, 020021 Bucharest, Romania
| | - Cristina Iulia Mitran
- “Victor Babes” Clinical Hospital for Infectious Diseases, 281 Mihai Bravu, 030303 Bucharest, Romania
- “Carol Davila” University of Medicine and Pharmacy, 37 Dionisie Lupu, 020021 Bucharest, Romania
| | - Madalina Irina Mitran
- “Victor Babes” Clinical Hospital for Infectious Diseases, 281 Mihai Bravu, 030303 Bucharest, Romania
- “Carol Davila” University of Medicine and Pharmacy, 37 Dionisie Lupu, 020021 Bucharest, Romania
| | - Constantin Caruntu
- “Carol Davila” University of Medicine and Pharmacy, 37 Dionisie Lupu, 020021 Bucharest, Romania
- “Prof. N. Paulescu” National Institute of Diabetes, Nutrition and Metabolic Diseases, 22-24 Gr. Manolescu, Bucharest 011233, Romania
| | - Maria Isabela Sarbu
- “Carol Davila” University of Medicine and Pharmacy, 37 Dionisie Lupu, 020021 Bucharest, Romania
| | - Clara Matei
- “Carol Davila” University of Medicine and Pharmacy, 37 Dionisie Lupu, 020021 Bucharest, Romania
| | - Ilinca Nicolae
- “Victor Babes” Clinical Hospital for Infectious Diseases, 281 Mihai Bravu, 030303 Bucharest, Romania
| | | | - Mircea Ioan Popa
- “Carol Davila” University of Medicine and Pharmacy, 37 Dionisie Lupu, 020021 Bucharest, Romania
- “Cantacuzino” National Medico-Military Institute for Research and Development, 103 Splaiul Independentei, 050096 Bucharest, Romania
| | - Mircea Tampa
- “Victor Babes” Clinical Hospital for Infectious Diseases, 281 Mihai Bravu, 030303 Bucharest, Romania
- “Carol Davila” University of Medicine and Pharmacy, 37 Dionisie Lupu, 020021 Bucharest, Romania
| |
Collapse
|
44
|
Beta and gamma human papillomaviruses in anal and genital sites among men: prevalence and determinants. Sci Rep 2018; 8:8241. [PMID: 29844517 PMCID: PMC5974254 DOI: 10.1038/s41598-018-26589-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 04/05/2018] [Indexed: 02/08/2023] Open
Abstract
Data regarding the anogenital distribution of and type-specific concordance for cutaneous β- and γ-HPV types in men who have sex with women is limited and geographically narrow. Knowledge of determinants of anogenital detection of cutaneous HPV types in different regions is needed for better understanding of the natural history and transmission dynamics of HPV, and its potential role in the development of anogenital diseases. Genital and anal canal samples obtained from 554 Russian men were screened for 43 β-HPVs and 29 γ-HPVs, using a multiplex PCR combined with Luminex technology. Both β- and γ-HPVs were more prevalent in the anal (22.8% and 14.1%) samples than in the genital (16.8% and 12.3%) samples. Low overall and type-specific concordance for β-HPVs (3.5% and 1.1%) and γ-HPVs (1.3% and 0.6%) were observed between genital and anal samples. HIV-positive men had higher anal β- (crude OR = 12.2, 95% CI: 5.3–28.1) and γ-HPV (crude OR = 7.2, 95% CI: 3.3–15.4) prevalence than HIV-negative men. Due to the lack of genital samples from the HIV-positive men, no comparison was possible for HIV status in genital samples. The lack of type-specific positive concordance between genital and anal sites for cutaneous β- and γ-HPV types in heterosexual men posits the needs for further studies on transmission routes to discriminate between contamination and true HPV infection. HIV-positive status may favor the anal acquisition or modify the natural history of cutaneous HPV types.
Collapse
|
45
|
Abstract
Human papillomaviruses (HPVs) are an ancient group of viruses with small, double-stranded DNA circular genomes. They are species-specific and have a strict tropism for mucosal and cutaneous stratified squamous epithelial surfaces of the host. A subset of these viruses has been demonstrated to be the causative agent of several human cancers. Here, we review the biology, natural history, evolution and cancer association of the oncogenic HPVs.This article is part of the themed issue 'Human oncogenic viruses'.
Collapse
Affiliation(s)
- Alison A McBride
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
46
|
Olivero C, Lanfredini S, Borgogna C, Gariglio M, Patel GK. HPV-Induced Field Cancerisation: Transformation of Adult Tissue Stem Cell Into Cancer Stem Cell. Front Microbiol 2018; 9:546. [PMID: 29632522 PMCID: PMC5879094 DOI: 10.3389/fmicb.2018.00546] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 03/09/2018] [Indexed: 11/24/2022] Open
Abstract
Field cancerisation was originally described as a basis for multiple head and neck squamous cell carcinoma (HNSCC) and is a pre-malignant phenomenon that is frequently attributable to oncogenic human papillomavirus (HPV) infection. Our work on β-HPV-induced cutaneous squamous cell carcinomas identified a novel Lrig1+ hair follicle junctional zone keratinocyte stem cell population as the basis for field cancerisation. Herein, we describe the ability for HPV to infect adult tissue stem cells in order to establish persistent infection and induce their proliferation and displacement resulting in field cancerisation. By review of the HPV literature, we reveal how this mechanism is conserved as the basis of field cancerisation across many tissues. New insights have identified the capacity for HPV early region genes to dysregulate adult tissue stem cell self-renewal pathways ensuring that the expanded population preserve its stem cell characteristics beyond the stem cell niche. HPV-infected cells acquire additional transforming mutations that can give rise to intraepithelial neoplasia (IEN), from environmental factors such as sunlight or tobacco induced mutations in skin and oral cavity, respectively. With establishment of IEN, HPV viral replication is sacrificed with loss of the episome, and the tissue is predisposed to multiple cancer stem cell-driven carcinomas.
Collapse
Affiliation(s)
- Carlotta Olivero
- Virology Unit, Department of Translational Medicine, Novara Medical School, University of Eastern Piedmont, Novara, Italy.,European Cancer Stem Cell Research Institute, Cardiff School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Simone Lanfredini
- European Cancer Stem Cell Research Institute, Cardiff School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Cinzia Borgogna
- Virology Unit, Department of Translational Medicine, Novara Medical School, University of Eastern Piedmont, Novara, Italy
| | - Marisa Gariglio
- Virology Unit, Department of Translational Medicine, Novara Medical School, University of Eastern Piedmont, Novara, Italy
| | - Girish K Patel
- European Cancer Stem Cell Research Institute, Cardiff School of Biosciences, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
47
|
Chiang C, Pauli EK, Biryukov J, Feister KF, Meng M, White EA, Münger K, Howley PM, Meyers C, Gack MU. The Human Papillomavirus E6 Oncoprotein Targets USP15 and TRIM25 To Suppress RIG-I-Mediated Innate Immune Signaling. J Virol 2018; 92:e01737-17. [PMID: 29263274 PMCID: PMC5827370 DOI: 10.1128/jvi.01737-17] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 12/15/2017] [Indexed: 12/25/2022] Open
Abstract
Retinoic acid-inducible gene I (RIG-I) is a key pattern recognition receptor that senses viral RNA and interacts with the mitochondrial adaptor MAVS, triggering a signaling cascade that results in the production of type I interferons (IFNs). This signaling axis is initiated by K63-linked ubiquitination of RIG-I mediated by the E3 ubiquitin ligase TRIM25, which promotes the interaction of RIG-I with MAVS. USP15 was recently identified as an upstream regulator of TRIM25, stabilizing the enzyme through removal of degradative K48-linked polyubiquitin, ultimately promoting RIG-I-dependent cytokine responses. Here, we show that the E6 oncoprotein of human papillomavirus type 16 (HPV16) as well as of other HPV types form a complex with TRIM25 and USP15 in human cells. In the presence of E6, the K48-linked ubiquitination of TRIM25 was markedly increased, and in line with this, TRIM25 degradation was enhanced. Our results further showed that E6 inhibited the TRIM25-mediated K63-linked ubiquitination of RIG-I and its CARD-dependent interaction with MAVS. HPV16 E6, but not E7, suppressed the RIG-I-mediated induction of IFN-β, chemokines, and IFN-stimulated genes (ISGs). Finally, CRISPR-Cas9 gene targeting in human keratinocytes showed that the TRIM25-RIG-I-MAVS triad is important for eliciting an antiviral immune response to HPV16 infection. Our study thus identifies a novel immune escape mechanism that is conserved among different HPV strains and further indicates that the RIG-I signaling pathway plays an important role in the innate immune response to HPV infection.IMPORTANCE Persistent infection and tumorigenesis by HPVs are known to require viral manipulation of a variety of cellular processes, including those involved in innate immune responses. Here, we show that the HPV E6 oncoprotein antagonizes the activation of the cytoplasmic innate immune sensor RIG-I by targeting its upstream regulatory enzymes TRIM25 and USP15. We further show that the RIG-I signaling cascade is important for an antiviral innate immune response to HPV16 infection, providing evidence that RIG-I, whose role in sensing RNA virus infections has been well characterized, also plays a crucial role in the antiviral host response to small DNA viruses of the Papillomaviridae family.
Collapse
Affiliation(s)
- Cindy Chiang
- Department of Microbiology, The University of Chicago, Chicago, Illinois, USA
| | - Eva-Katharina Pauli
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Jennifer Biryukov
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Katharina F Feister
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Melissa Meng
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Elizabeth A White
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Karl Münger
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Peter M Howley
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Craig Meyers
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Michaela U Gack
- Department of Microbiology, The University of Chicago, Chicago, Illinois, USA
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
48
|
Tuna M, Amos CI. Next generation sequencing and its applications in HPV-associated cancers. Oncotarget 2018; 8:8877-8889. [PMID: 27784002 PMCID: PMC5352450 DOI: 10.18632/oncotarget.12830] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 10/14/2016] [Indexed: 12/18/2022] Open
Abstract
Approximately 18% of all human cancers have a viral etiology, and human papillomavirus (HPV) has been identified as one of the most prevalent viruses that plays causative role in nearly all cervical cancers and, in addition, in subset of head and neck, anal, penile and vulvar cancers. The recent introduction of next generation sequencing (NGS) and other omics approaches have resulted in comprehensive knowledge on the pathogenesis of HPV-driven tumors. Specifically, these approaches have provided detailed information on genomic HPV integration sites, disrupted genes and pathways, and common and distinct genetic and epigenetic alterations in different human HPV-associated cancers. This review focuses on HPV integration sites, its concomitantly disrupted genes and pathways and its functional consequences in both cervical and head and neck cancers. Integration of NGS data with other omics and clinical data is crucial to better understand the pathophysiology of each individual malignancy and, based on this, to select targets and to design effective personalized treatment options.
Collapse
Affiliation(s)
- Musaffe Tuna
- Department of Biomedical Data Science, Geisel School of Medicine, Dartmouth College, Lebanon
| | - Christopher I Amos
- Department of Biomedical Data Science, Geisel School of Medicine, Dartmouth College, Lebanon
| |
Collapse
|
49
|
Banerjee NS, Wang HK, Beadle JR, Hostetler KY, Chow LT. Evaluation of ODE-Bn-PMEG, an acyclic nucleoside phosphonate prodrug, as an antiviral against productive HPV infection in 3D organotypic epithelial cultures. Antiviral Res 2018; 150:164-173. [PMID: 29287913 PMCID: PMC5800947 DOI: 10.1016/j.antiviral.2017.12.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 12/15/2017] [Accepted: 12/19/2017] [Indexed: 12/22/2022]
Affiliation(s)
- N Sanjib Banerjee
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294-0005, USA.
| | - Hsu-Kun Wang
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294-0005, USA
| | - James R Beadle
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093-0676, USA
| | - Karl Y Hostetler
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093-0676, USA
| | - Louise T Chow
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294-0005, USA
| |
Collapse
|
50
|
Albertini S, Lo Cigno I, Calati F, De Andrea M, Borgogna C, Dell'Oste V, Landolfo S, Gariglio M. HPV18 Persistence Impairs Basal and DNA Ligand-Mediated IFN-β and IFN-λ 1 Production through Transcriptional Repression of Multiple Downstream Effectors of Pattern Recognition Receptor Signaling. THE JOURNAL OF IMMUNOLOGY 2018; 200:2076-2089. [PMID: 29386255 DOI: 10.4049/jimmunol.1701536] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 01/05/2018] [Indexed: 12/17/2022]
Abstract
Although it is clear that high-risk human papillomaviruses (HPVs) can selectively infect keratinocytes and persist in the host, it still remains to be unequivocally determined whether they can escape antiviral innate immunity by interfering with pattern recognition receptor (PRR) signaling. In this study, we have assessed the innate immune response in monolayer and organotypic raft cultures of NIKS cells harboring multiple copies of episomal HPV18 (NIKSmcHPV18), which fully recapitulates the persistent state of infection. We show for the first time, to our knowledge, that NIKSmcHPV18, as well as HeLa cells (a cervical carcinoma-derived cell line harboring integrated HPV18 DNA), display marked downregulation of several PRRs, as well as other PRR downstream effectors, such as the adaptor protein stimulator of IFN genes and the transcription factors IRF1 and 7. Importantly, we provide evidence that downregulation of stimulator of IFN genes, cyclic GMP-AMP synthase, and retinoic acid-inducible gene I mRNA levels occurs at the transcriptional level through a novel epigenetic silencing mechanism, as documented by the accumulation of repressive heterochromatin markers seen at the promoter region of these genes. Furthermore, stimulation of NIKSmcHPV18 cells with salmon sperm DNA or poly(deoxyadenylic-deoxythymidylic) acid, two potent inducers of PRR signaling, only partially restored PRR protein expression. Accordingly, the production of IFN-β and IFN-λ1 was significantly reduced in comparison with the parental NIKS cells, indicating that HPV18 exerts its immunosuppressive activity through downregulation of PRR signaling. Altogether, our findings indicate that high-risk human papillomaviruses have evolved broad-spectrum mechanisms that allow simultaneous depletion of multiple effectors of the innate immunity network, thereby creating an unreactive cellular milieu suitable for viral persistence.
Collapse
Affiliation(s)
- Silvia Albertini
- Virology Unit, Department of Translational Medicine, Novara Medical School, Novara 28100, Italy; and
| | - Irene Lo Cigno
- Virology Unit, Department of Translational Medicine, Novara Medical School, Novara 28100, Italy; and
| | - Federica Calati
- Virology Unit, Department of Translational Medicine, Novara Medical School, Novara 28100, Italy; and
| | - Marco De Andrea
- Virology Unit, Department of Translational Medicine, Novara Medical School, Novara 28100, Italy; and.,Viral Pathogenesis Unit, Department of Public Health and Pediatric Sciences, Turin Medical School, Turin 10126, Italy
| | - Cinzia Borgogna
- Virology Unit, Department of Translational Medicine, Novara Medical School, Novara 28100, Italy; and
| | - Valentina Dell'Oste
- Viral Pathogenesis Unit, Department of Public Health and Pediatric Sciences, Turin Medical School, Turin 10126, Italy
| | - Santo Landolfo
- Viral Pathogenesis Unit, Department of Public Health and Pediatric Sciences, Turin Medical School, Turin 10126, Italy
| | - Marisa Gariglio
- Virology Unit, Department of Translational Medicine, Novara Medical School, Novara 28100, Italy; and
| |
Collapse
|