1
|
Le Hingrat Q, Sette P, Xu C, Rahmberg AR, Tarnus L, Annapureddy H, Kleinman A, Brocca-Cofano E, Sivanandham R, Sivanandham S, He T, Capreri DJ, Ma D, Estes JD, Brenchley JM, Apetrei C, Pandrea I. Prolonged experimental CD4 + T-cell depletion does not cause disease progression in SIV-infected African green monkeys. Nat Commun 2023; 14:979. [PMID: 36813761 PMCID: PMC9946951 DOI: 10.1038/s41467-023-36379-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 01/23/2023] [Indexed: 02/24/2023] Open
Abstract
CD4+ T-cell depletion is a hallmark of HIV infection, leading to impairment of cellular immunity and opportunistic infections, but its contribution to SIV/HIV-associated gut dysfunction is unknown. Chronically SIV-infected African Green Monkeys (AGMs) partially recover mucosal CD4+ T-cells, maintain gut integrity and do not progress to AIDS. Here we assess the impact of prolonged, antibody-mediated CD4 + T-cell depletion on gut integrity and natural history of SIV infection in AGMs. All circulating CD4+ T-cells and >90% of mucosal CD4+ T-cells are depleted. Plasma viral loads and cell-associated viral RNA in tissues are lower in CD4+-cell-depleted animals. CD4+-cell-depleted AGMs maintain gut integrity, control immune activation and do not progress to AIDS. We thus conclude that CD4+ T-cell depletion is not a determinant of SIV-related gut dysfunction, when gastrointestinal tract epithelial damage and inflammation are absent, suggesting that disease progression and resistance to AIDS are independent of CD4+ T-cell restoration in SIVagm-infected AGMs.
Collapse
Affiliation(s)
- Quentin Le Hingrat
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.,Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Paola Sette
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.,Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Cuiling Xu
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.,Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Andrew R Rahmberg
- Barrier Immunity Section, Lab of Viral Diseases, Division of Intramural Research, NIAID, NIH, Bethesda, MD, USA
| | - Lilas Tarnus
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.,Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Haritha Annapureddy
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Adam Kleinman
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Egidio Brocca-Cofano
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ranjit Sivanandham
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sindhuja Sivanandham
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tianyu He
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Daniel J Capreri
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Dongzhu Ma
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.,Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jacob D Estes
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Portland, OR, USA.,Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Jason M Brenchley
- Barrier Immunity Section, Lab of Viral Diseases, Division of Intramural Research, NIAID, NIH, Bethesda, MD, USA
| | - Cristian Apetrei
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ivona Pandrea
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA. .,Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
2
|
Associations between NK Cells in Different Immune Organs and Cellular SIV DNA and RNA in Regional HLADR - CD4 + T Cells in Chronically SIV mac239-Infected, Treatment-Naïve Rhesus Macaques. Viruses 2022; 14:v14112513. [PMID: 36423122 PMCID: PMC9697022 DOI: 10.3390/v14112513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/10/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
With the development of NK cell-directed therapeutic strategies, the actual effect of NK cells on the cellular SIV DNA levels of the virus in SIV-infected macaques in vivo remains unclear. In this study, five chronically SIVmac239-infected, treatment-naïve rhesus macaques were euthanized, and the blood, spleen, pararectal/paracolonic lymph nodes (PaLNs), and axillary lymph nodes (ALNs) were collected. The distributional, phenotypic, and functional profiles of NK cells were detected by flow cytometry. The highest frequency of NK cells was found in PBMC, followed by the spleen, while only 0~0.5% were found in LNs. Peripheral NK cells also exhibited higher cytotoxic potential (CD56- CD16+ NK subsets) and IFN-γ-producing capacity but low PD-1 and Tim-3 levels than those in the spleen and LNs. Our results demonstrated a significant positive correlation between the frequency of NK cells and the ratios of cellular SIV DNA/RNA in HLADR- CD4+ T cells (r = 0.6806, p < 0.001) in SIV-infected macaques, despite no discrepancies in the cellular SIV DNA or RNA levels that were found among the blood, spleen, and LNs. These findings showed a profile of NK cell frequencies and NK cytotoxicity levels in different immune organs from chronically SIVmac239-infected, treatment-naïve rhesus macaques. It was suggested that NK cell frequencies could be closely related to SIV DNA/RNA levels, which could affect the transcriptional activity of SIV proviruses. However, the cytotoxicity effect of NK cells on the latent SIV viral load in LNs could be limited due to the sparse abundance of NK cells in LNs. The development of NK cell-directed treatment approaches aiming for HIV clearance remains challenging.
Collapse
|
3
|
NK cell spatial dynamics and IgA responses in gut-associated lymphoid tissues during SIV infections. Commun Biol 2022; 5:674. [PMID: 35798936 PMCID: PMC9262959 DOI: 10.1038/s42003-022-03619-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 06/22/2022] [Indexed: 11/18/2022] Open
Abstract
HIV infection induces tissue damage including lymph node (LN) fibrosis and intestinal epithelial barrier disruption leading to bacterial translocation and systemic inflammation. Natural hosts of SIV, such as African Green Monkeys (AGM), do not display tissue damage despite high viral load in blood and intestinal mucosa. AGM mount a NK cell-mediated control of SIVagm replication in peripheral LN. We analyzed if NK cells also control SIVagm in mesenteric (mes) LN and if this has an impact on gut humoral responses and the production of IgA known for their anti-inflammatory role in the gut. We show that CXCR5 + NK cell frequencies increase in mesLN upon SIVagm infection and that NK cells migrate into and control viral replication in B cell follicles (BCF) of mesLN. The proportion of IgA+ memory B cells were increased in mesLN during SIVagm infection in contrast to SIVmac infection. Total IgA levels in gut remained normal during SIVagm infection, while strongly decreased in intestine of chronically SIVmac-infected macaques. Our data suggest an indirect impact of NK cell-mediated viral control in mesLN during SIVagm infection on preserved BCF function and IgA production in intestinal tissues. Differences between pathogenic and non-pathogenic SIV infections are investigated, in terms of NK cell location, function and IgA responses in gut associated lymphoid tissues (mesenteric lymph nodes, jejunum, ileon, colon).
Collapse
|
4
|
Jones R, Manickam C, Ram DR, Kroll K, Hueber B, Woolley G, Shah SV, Smith S, Varner V, Reeves RK. Systemic and mucosal mobilization of granulocyte subsets during lentiviral infection. Immunology 2021; 164:348-357. [PMID: 34037988 PMCID: PMC8442246 DOI: 10.1111/imm.13376] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/28/2021] [Accepted: 04/28/2021] [Indexed: 11/30/2022] Open
Abstract
Granulocytes mediate broad immunoprotection through phagocytosis, extracellular traps, release of cytotoxic granules, antibody effector functions and recruitment of other immune cells against pathogens. However, descriptions of granulocytes in HIV infection and mucosal tissues are limited. Our goal was to characterize granulocyte subsets in systemic, mucosal and lymphoid tissues during lentiviral infection using the rhesus macaque (RM) model. Mononuclear cells from jejunum, colon, cervix, vagina, lymph nodes, spleen, liver and whole blood from experimentally naïve and chronically SHIVsf162p3-infected RM were analysed by microscopy and polychromatic flow cytometry. Granulocytes were identified using phenotypes designed specifically for RM: eosinophils-CD45+ CD66+ CD49d+ ; neutrophils-CD45+ CD66+ CD14+ ; and basophils-CD45+ CD123+ FcRε+ . Nuclear visualization with DAPI staining and surface marker images by ImageStream (cytometry/microscopy) further confirmed granulocytic phenotypes. Flow cytometric data showed that all RM granulocytes expressed CD32 (FcRγII) but did not express CD16 (FcRγIII). Additionally, constitutive expression of CD64 (FcRγI) on neutrophils and FcRε on basophils indicates the differential expression of Fc receptors on granulocyte subsets. Granulocytic subsets in naïve whole blood ranged from 25·4% to 81·5% neutrophils, 0·59% to 13·3% eosinophils and 0·059% to 1·8% basophils. Interestingly, elevated frequencies of circulating neutrophils, colorectal neutrophils and colorectal eosinophils were all observed in chronic lentiviral disease. Conversely, circulating basophils, jejunal eosinophils, vaginal neutrophils and vaginal eosinophils of SHIVsf162p3-infected RM declined in frequency. Overall, our data suggest modulation of granulocytes in chronic lentiviral infection, most notably in the gastrointestinal mucosae where a significant inflammation and disruption occurs in lentivirus-induced disease. Furthermore, granulocytes may migrate to inflamed tissues during infection and could serve as targets of immunotherapeutic intervention.
Collapse
Affiliation(s)
- Rhianna Jones
- Center for Virology and Vaccine ResearchBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMAUSA
| | - Cordelia Manickam
- Center for Virology and Vaccine ResearchBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMAUSA
| | - Daniel R. Ram
- Center for Virology and Vaccine ResearchBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMAUSA
| | - Kyle Kroll
- Center for Virology and Vaccine ResearchBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMAUSA
| | - Brady Hueber
- Center for Virology and Vaccine ResearchBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMAUSA
| | - Griffin Woolley
- Center for Virology and Vaccine ResearchBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMAUSA
| | - Spandan V. Shah
- Center for Virology and Vaccine ResearchBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMAUSA
| | - Scott Smith
- Center for Virology and Vaccine ResearchBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMAUSA
| | - Valerie Varner
- Center for Virology and Vaccine ResearchBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMAUSA
| | - R. Keith Reeves
- Center for Virology and Vaccine ResearchBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMAUSA
- Ragon Institute of Massachusetts General Hospital, MIT, and HarvardCambridgeMAUSA
- Division of Innate and Comparative Immunology, Center for Human Systems ImmunologyDuke University School of MedicineDurhamNCUSA
| |
Collapse
|
5
|
Interests of the Non-Human Primate Models for HIV Cure Research. Vaccines (Basel) 2021; 9:vaccines9090958. [PMID: 34579195 PMCID: PMC8472852 DOI: 10.3390/vaccines9090958] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/19/2021] [Accepted: 08/24/2021] [Indexed: 12/17/2022] Open
Abstract
Non-human primate (NHP) models are important for vaccine development and also contribute to HIV cure research. Although none of the animal models are perfect, NHPs enable the exploration of important questions about tissue viral reservoirs and the development of intervention strategies. In this review, we describe recent advances in the use of these models for HIV cure research and highlight the progress that has been made as well as limitations using these models. The main NHP models used are (i) the macaque, in which simian immunodeficiency virus (SIVmac) infection displays similar replication profiles as to HIV in humans, and (ii) the macaque infected by a recombinant virus (SHIV) consisting of SIVmac expressing the HIV envelope gene serving for studies analyzing the impact of anti-HIV Env broadly neutralizing antibodies. Lessons for HIV cure that can be learned from studying the natural host of SIV are also presented here. An overview of the most promising and less well explored HIV cure strategies tested in NHP models will be given.
Collapse
|
6
|
Huot N, Rascle P, Planchais C, Contreras V, Passaes C, Le Grand R, Beignon AS, Kornobis E, Legendre R, Varet H, Saez-Cirion A, Mouquet H, Jacquelin B, Müller-Trutwin M. CD32 +CD4 + T Cells Sharing B Cell Properties Increase With Simian Immunodeficiency Virus Replication in Lymphoid Tissues. Front Immunol 2021; 12:695148. [PMID: 34220857 PMCID: PMC8242952 DOI: 10.3389/fimmu.2021.695148] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 05/25/2021] [Indexed: 11/16/2022] Open
Abstract
CD4 T cell responses constitute an important component of adaptive immunity and are critical regulators of anti-microbial protection. CD4+ T cells expressing CD32a have been identified as a target for HIV. CD32a is an Fcγ receptor known to be expressed on myeloid cells, granulocytes, B cells and NK cells. Little is known about the biology of CD32+CD4+ T cells. Our goal was to understand the dynamics of CD32+CD4+ T cells in tissues. We analyzed these cells in the blood, lymph nodes, spleen, ileum, jejunum and liver of two nonhuman primate models frequently used in biomedical research: African green monkeys (AGM) and macaques. We studied them in healthy animals and during viral (SIV) infection. We performed phenotypic and transcriptomic analysis at different stages of infection. In addition, we compared CD32+CD4+ T cells in tissues with well-controlled (spleen) and not efficiently controlled (jejunum) SIV replication in AGM. The CD32+CD4+ T cells more frequently expressed markers associated with T cell activation and HIV infection (CCR5, PD-1, CXCR5, CXCR3) and had higher levels of actively transcribed SIV RNA than CD32-CD4+T cells. Furthermore, CD32+CD4+ T cells from lymphoid tissues strongly expressed B-cell-related transcriptomic signatures, and displayed B cell markers at the cell surface, including immunoglobulins CD32+CD4+ T cells were rare in healthy animals and blood but increased strongly in tissues with ongoing viral replication. CD32+CD4+ T cell levels in tissues correlated with viremia. Our results suggest that the tissue environment induced by SIV replication drives the accumulation of these unusual cells with enhanced susceptibility to viral infection.
Collapse
Affiliation(s)
- Nicolas Huot
- Institut Pasteur, Unité HIV, Inflammation et Persistance, Paris, France
| | - Philippe Rascle
- Institut Pasteur, Unité HIV, Inflammation et Persistance, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Cyril Planchais
- Institut Pasteur, INSERM U1222, Laboratoire d'Immunologie Humorale, Paris, France
| | - Vanessa Contreras
- CEA-Université Paris Sud-Inserm, U1184, IDMIT Department, IBFJ, Fontenay-aux-Roses, France
| | - Caroline Passaes
- Institut Pasteur, Unité HIV, Inflammation et Persistance, Paris, France
| | - Roger Le Grand
- CEA-Université Paris Sud-Inserm, U1184, IDMIT Department, IBFJ, Fontenay-aux-Roses, France
| | - Anne-Sophie Beignon
- CEA-Université Paris Sud-Inserm, U1184, IDMIT Department, IBFJ, Fontenay-aux-Roses, France
| | - Etienne Kornobis
- Hub de Bioinformatique et Biostatistique - Département Biologie Computationnelle, Institut Pasteur, Paris, France.,Plate-forme Technologique Biomics - Centre de Ressources et Recherches Technologiques (C2RT), Institut Pasteur, Paris, France
| | - Rachel Legendre
- Hub de Bioinformatique et Biostatistique - Département Biologie Computationnelle, Institut Pasteur, Paris, France.,Plate-forme Technologique Biomics - Centre de Ressources et Recherches Technologiques (C2RT), Institut Pasteur, Paris, France
| | - Hugo Varet
- Hub de Bioinformatique et Biostatistique - Département Biologie Computationnelle, Institut Pasteur, Paris, France.,Plate-forme Technologique Biomics - Centre de Ressources et Recherches Technologiques (C2RT), Institut Pasteur, Paris, France
| | - Asier Saez-Cirion
- Institut Pasteur, Unité HIV, Inflammation et Persistance, Paris, France
| | - Hugo Mouquet
- Institut Pasteur, INSERM U1222, Laboratoire d'Immunologie Humorale, Paris, France
| | | | | |
Collapse
|
7
|
Tice C, McDevitt J, Langford D. Astrocytes, HIV and the Glymphatic System: A Disease of Disrupted Waste Management? Front Cell Infect Microbiol 2020; 10:523379. [PMID: 33134185 PMCID: PMC7550659 DOI: 10.3389/fcimb.2020.523379] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 08/19/2020] [Indexed: 12/17/2022] Open
Abstract
The discovery of the glial-lymphatic or glymphatic fluid clearance pathway in the rodent brain led researchers to search for a parallel system in humans and to question the implications of this pathway in neurodegenerative diseases. Magnetic resonance imaging studies revealed that several features of the glymphatic system may be present in humans. In both rodents and humans, this pathway promotes the exchange of interstitial fluid (ISF) and cerebrospinal fluid (CSF) through the arterial perivascular spaces into the brain parenchyma. This process is facilitated in part by aquaporin-4 (AQP4) water channels located primarily on astrocytic end feet that abut cerebral endothelial cells of the blood brain barrier. Decreased expression or mislocalization of AQP4 from astrocytic end feet results in decreased interstitial flow, thereby, promoting accumulation of extracellular waste products like hyperphosphorylated Tau (pTau). Accumulation of pTau is a neuropathological hallmark in Alzheimer's disease (AD) and is accompanied by mislocalization of APQ4 from astrocyte end feet to the cell body. HIV infection shares many neuropathological characteristics with AD. Similar to AD, HIV infection of the CNS contributes to abnormal aging with altered AQP4 localization, accumulation of pTau and chronic neuroinflammation. Up to 30% of people with HIV (PWH) suffer from HIV-associated neurocognitive disorders (HAND), and changes in AQP4 may be clinically important as a contributor to cognitive disturbances. In this review, we provide an overview and discussion of the potential contributions of NeuroHIV to glymphatic system functions by focusing on astrocytes and AQP4. Although HAND encompasses a wide range of neurocognitive impairments and levels of neuroinflammation vary among and within PWH, the potential contribution of disruption in AQP4 may be clinically important in some cases. In this review we discuss implications for possible AQP4 disruption on NeuroHIV disease trajectory and how HIV may influence AQP4 function.
Collapse
Affiliation(s)
- Caitlin Tice
- Department of Neuroscience, Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Jane McDevitt
- Department of Kinesiology, College of Public Health at Temple University, Philadelphia, PA, United States
| | - Dianne Langford
- Department of Neuroscience, Lewis Katz School of Medicine, Philadelphia, PA, United States
| |
Collapse
|
8
|
Ward AR, Mota TM, Jones RB. Immunological approaches to HIV cure. Semin Immunol 2020; 51:101412. [PMID: 32981836 DOI: 10.1016/j.smim.2020.101412] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 09/10/2020] [Indexed: 02/07/2023]
Abstract
Combination antiretroviral therapy (ART) to treat human immunodeficiency virus (HIV) infection has proven remarkably successful - for those who can access and afford it - yet HIV infection persists indefinitely in a reservoir of cells, despite effective ART and despite host antiviral immune responses. An HIV cure is therefore the next aspirational goal and challenge, though approaches differ in their objectives - with 'functional cures' aiming for durable viral control in the absence of ART, and 'sterilizing cures' aiming for the more difficult to realize objective of complete viral eradication. Mechanisms of HIV persistence, including viral latency, anatomical sequestration, suboptimal immune functioning, reservoir replenishment, target cell-intrinsic immune resistance, and, potentially, target cell distraction of immune effectors, likely need to be overcome in order to achieve a cure. A small fraction of people living with HIV (PLWH) naturally control infection via immune-mediated mechanisms, however, providing both sound rationale and optimism that an immunological approach to cure is possible. Herein we review up to date knowledge and emerging evidence on: the mechanisms contributing to HIV persistence, as well as potential strategies to overcome these barriers; promising immunological approaches to achieve viral control and elimination of reservoir-harboring cells, including harnessing adaptive immune responses to HIV and engineered therapies, as well as enhancers of their functions and of complementary innate immune functioning; and combination strategies that are most likely to succeed. Ultimately, a cure must be safe, effective, durable, and, eventually, scalable in order to be widely acceptable and available.
Collapse
Affiliation(s)
- Adam R Ward
- Division of Infectious Diseases, Weill Cornell Medicine, New York, NY, USA; Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University, Washington, DC, USA; PhD Program in Epidemiology, The George Washington University, Washington, DC, USA
| | - Talia M Mota
- Division of Infectious Diseases, Weill Cornell Medicine, New York, NY, USA
| | - R Brad Jones
- Division of Infectious Diseases, Weill Cornell Medicine, New York, NY, USA; Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University, Washington, DC, USA.
| |
Collapse
|
9
|
Sharan R, Bucşan AN, Ganatra S, Paiardini M, Mohan M, Mehra S, Khader SA, Kaushal D. Chronic Immune Activation in TB/HIV Co-infection. Trends Microbiol 2020; 28:619-632. [PMID: 32417227 PMCID: PMC7390597 DOI: 10.1016/j.tim.2020.03.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/03/2020] [Accepted: 03/25/2020] [Indexed: 12/27/2022]
Abstract
HIV co-infection is the most critical risk factor for the reactivation of latent tuberculosis (TB) infection (LTBI). While CD4+ T cell depletion has been considered the major cause of HIV-induced reactivation of LTBI, recent work in macaques co-infected with Mycobacterium tuberculosis (Mtb)/simian immunodeficiency virus (SIV) suggests that cytopathic effects of SIV resulting in chronic immune activation and dysregulation of T cell homeostasis correlate with reactivation of LTBI. This review builds on compelling data that the reactivation of LTBI during HIV co-infection is likely to be driven by the events of HIV replication and therefore highlights the need to have optimum translational interventions directed at reactivation due to co-infection.
Collapse
Affiliation(s)
- Riti Sharan
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Allison N Bucşan
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Shashank Ganatra
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Mirko Paiardini
- Yerkes National Primate Research Center, Emory University School of Medicine, Atlanta, GA 30329, USA
| | - Mahesh Mohan
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Smriti Mehra
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA 70433, USA
| | - Shabaana A Khader
- Department of Molecular Microbiology, Washington University in St Louis School of Medicine, St Louis, MO 63110, USA
| | - Deepak Kaushal
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA.
| |
Collapse
|
10
|
Dorhoi A, Glaría E, Garcia-Tellez T, Nieuwenhuizen NE, Zelinskyy G, Favier B, Singh A, Ehrchen J, Gujer C, Münz C, Saraiva M, Sohrabi Y, Sousa AE, Delputte P, Müller-Trutwin M, Valledor AF. MDSCs in infectious diseases: regulation, roles, and readjustment. Cancer Immunol Immunother 2019; 68:673-685. [PMID: 30569204 PMCID: PMC11028159 DOI: 10.1007/s00262-018-2277-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 10/29/2018] [Indexed: 12/24/2022]
Abstract
Many pathogens, ranging from viruses to multicellular parasites, promote expansion of MDSCs, which are myeloid cells that exhibit immunosuppressive features. The roles of MDSCs in infection depend on the class and virulence mechanisms of the pathogen, the stage of the disease, and the pathology associated with the infection. This work compiles evidence supported by functional assays on the roles of different subsets of MDSCs in acute and chronic infections, including pathogen-associated malignancies, and discusses strategies to modulate MDSC dynamics to benefit the host.
Collapse
Affiliation(s)
- Anca Dorhoi
- Institute of Immunology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493, Greifswald, Insel Riems, Germany.
- Faculty of Mathematics and Natural Sciences, University of Greifswald, Greifswald, Germany.
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany.
| | - Estibaliz Glaría
- Nuclear Receptor Group, Department of Cell Biology, Physiology and Immunology, School of Biology, University of Barcelona, Av. Diagonal, 643, 3rd floor, 08028, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
| | | | | | - Gennadiy Zelinskyy
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Benoit Favier
- Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department, CEA, Université Paris Sud 11, INSERM U1184, IBJF, Fontenay-aux-Roses, France
| | - Anurag Singh
- University Children's Hospital and Interdisciplinary Center for Infectious Diseases, University of Tübingen, Tübingen, Germany
| | - Jan Ehrchen
- Department of Dermatology, University Hospital Münster, Münster, Germany
| | - Cornelia Gujer
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zurich, Switzerland
| | - Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zurich, Switzerland
| | - Margarida Saraiva
- i3S-Instituto de Investigação e Inovação em Saúde, Porto, Portugal
- IBMC, Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Yahya Sohrabi
- Molecular and Translational Cardiology, Department of Cardiovascular Medicine, University Hospital Münster, Münster, Germany
- Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Ana E Sousa
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Peter Delputte
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | | | - Annabel F Valledor
- Nuclear Receptor Group, Department of Cell Biology, Physiology and Immunology, School of Biology, University of Barcelona, Av. Diagonal, 643, 3rd floor, 08028, Barcelona, Spain.
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain.
| |
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW The article describes recent advances in understanding the causes and consequences of microbial translocation in HIV and simian immunodeficiency virus infections. RECENT FINDINGS Persistent microbial translocation contributes to aberrant immune activation in immunodeficiency lentiviral infections and thereby, pathogenesis and mortality. Efforts to delineate the circumstances surrounding translocation have benefited from use of simian immunodeficiency virus-infected nonhuman primates and highlight the overwhelming immunologic diversion caused by translocating microbes. The use of therapeutics aimed at reducing microbial translocation show promise and will benefit from continued research into the mechanisms that promote systemic microbial dissemination in treated and untreated infections. SUMMARY Insights into the source and identity of translocating microbes in lentiviral infections continue to enhance the development of adjunct therapeutics.
Collapse
|
12
|
Huot N, Bosinger SE, Paiardini M, Reeves RK, Müller-Trutwin M. Lymph Node Cellular and Viral Dynamics in Natural Hosts and Impact for HIV Cure Strategies. Front Immunol 2018; 9:780. [PMID: 29725327 PMCID: PMC5916971 DOI: 10.3389/fimmu.2018.00780] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 03/28/2018] [Indexed: 01/03/2023] Open
Abstract
Combined antiretroviral therapies (cARTs) efficiently control HIV replication leading to undetectable viremia and drastic increases in lifespan of people living with HIV. However, cART does not cure HIV infection as virus persists in cellular and anatomical reservoirs, from which the virus generally rebounds soon after cART cessation. One major anatomical reservoir are lymph node (LN) follicles, where HIV persists through replication in follicular helper T cells and is also trapped by follicular dendritic cells. Natural hosts of SIV, such as African green monkeys and sooty mangabeys, generally do not progress to disease although displaying persistently high viremia. Strikingly, these hosts mount a strong control of viral replication in LN follicles shortly after peak viremia that lasts throughout infection. Herein, we discuss the potential interplay between viral control in LNs and the resolution of inflammation, which is characteristic for natural hosts. We furthermore detail the differences that exist between non-pathogenic SIV infection in natural hosts and pathogenic HIV/SIV infection in humans and macaques regarding virus target cells and replication dynamics in LNs. Several mechanisms have been proposed to be implicated in the strong control of viral replication in natural host's LNs, such as NK cell-mediated control, that will be reviewed here, together with lessons and limitations of in vivo cell depletion studies that have been performed in natural hosts. Finally, we discuss the impact that these insights on viral dynamics and host responses in LNs of natural hosts have for the development of strategies toward HIV cure.
Collapse
Affiliation(s)
- Nicolas Huot
- HIV Inflammation and Persistence Unit, Institut Pasteur, Paris, France.,Vaccine Research Institute, Créteil, France
| | - Steven E Bosinger
- Yerkes National Primate Research Center, Emory University School of Medicine, Atlanta, GA, United States.,Yerkes Nonhuman Primate Genomics Core, Yerkes National Primate Research Center, Atlanta, GA, United States
| | - Mirko Paiardini
- Yerkes National Primate Research Center, Emory University School of Medicine, Atlanta, GA, United States
| | - R Keith Reeves
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center (BIDMC), Harvard Medical School, Boston, MA, United States.,Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, United States
| | - Michaela Müller-Trutwin
- HIV Inflammation and Persistence Unit, Institut Pasteur, Paris, France.,Vaccine Research Institute, Créteil, France
| |
Collapse
|
13
|
Noël N, Jacquelin B, Huot N, Goujard C, Lambotte O, Müller-Trutwin M. Interferon-associated therapies toward HIV control: The back and forth. Cytokine Growth Factor Rev 2018; 40:99-112. [PMID: 29555233 DOI: 10.1016/j.cytogfr.2018.03.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 03/08/2018] [Indexed: 02/07/2023]
Abstract
Human immunodeficiency virus (HIV) induces a persistent and incurable infection. However, the combined antiretroviral treatment (cART) has markedly changed the evolution of the infection and transformed a deadly disease into a manageable chronic infection. Withdrawal of cART generally leads though to resumption of the viral replication. The eradication of the virus from its cellular and anatomical reservoirs remains a goal-to-achieve for a cure. In this context, developing novel therapies contributing to this aim are an important field of research. Type I IFN has antiviral activity, which, before the presence of efficient anti-HIV drugs, has led to the testing of IFN-based therapeutic strategies during the early years of the pandemic. A historical overview of the results and its limitations that were put into light are reviewed here. In addition, several lessons could be drawn. For instance, the efficacy of the IFN-I depends on the timing of its administration and the context. Thus, the persistence of an endogenous IFN-signature, such as that generally observed in viremic patients, seems to be associated with a lower efficacy of IFN. Based on the lessons from previous trials, and in the context of cART and research for a cure, type I Interferon has regained interest and novel therapeutic approaches are currently tested in combination with cART, some with disappointing, other with encouraging results with regard to a reduction in the size of the HIV reservoir and/or delays in viral rebound after cessation of cART. Additional strategies are currently developed in addition to improve the antiviral function of the IFN-I, by using for instance other IFN subtypes than IFN-Iα2. In parallel, the development of innovative strategies aimed at counteracting the excessive activation of the IFN-pathways have been continued and their results are reviewed here as well. Altogether, the use of IFN-I in anti-HIV therapies has gone through distinct phases and many lessons could be drawn. Novel combinations are currently be tested that might provide interesting results.
Collapse
Affiliation(s)
- Nicolas Noël
- Institut Pasteur, Unité HIV, Inflammation & Persistence, Paris, France; Assistance Publique - Hopitaux de Paris, Service de Médecine Interne et Immunologie Clinique, Hopitaux Universitaires Paris Sud, Le Kremlin-Bicêtre, France; INSERM/CEA U1184, Immunologie des Maladies Virales et Autoimmunes, Le Kremlin Bicêtre, France; Faculté de Médecine Paris Sud, Le Kremlin-Bicêtre, France.
| | | | - Nicolas Huot
- Institut Pasteur, Unité HIV, Inflammation & Persistence, Paris, France
| | - Cécile Goujard
- Assistance Publique - Hopitaux de Paris, Service de Médecine Interne et Immunologie Clinique, Hopitaux Universitaires Paris Sud, Le Kremlin-Bicêtre, France; Faculté de Médecine Paris Sud, Le Kremlin-Bicêtre, France; CESP, INSERM U1018, Le Kremlin Bicêtre, France
| | - Olivier Lambotte
- Assistance Publique - Hopitaux de Paris, Service de Médecine Interne et Immunologie Clinique, Hopitaux Universitaires Paris Sud, Le Kremlin-Bicêtre, France; INSERM/CEA U1184, Immunologie des Maladies Virales et Autoimmunes, Le Kremlin Bicêtre, France; Faculté de Médecine Paris Sud, Le Kremlin-Bicêtre, France
| | | |
Collapse
|
14
|
Dorta-Estremera S, Nehete PN, Yang G, He H, Nehete BP, Shelton KK, Barry MA, Sastry KJ. Minimally invasive monitoring of CD4 T cells at multiple mucosal tissues after intranasal vaccination in rhesus macaques. PLoS One 2017; 12:e0188807. [PMID: 29220358 PMCID: PMC5722341 DOI: 10.1371/journal.pone.0188807] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 11/12/2017] [Indexed: 02/03/2023] Open
Abstract
Studies in nonhuman primates (NHP) for prospective immune cell monitoring subsequent to infection and/or vaccination usually rely on periodic sampling of the blood samples with only occasional collections of biopsies from mucosal tissues because of safety concerns and practical constraints. Here we present evidence in support of cytobrush sampling of oral, rectal, and genital mucosal tissues as a minimally invasive approach for the phenotypic analyses of different T cells subsets de novo as well as prospectively after intranasal immunization in rhesus macaques. Significant percentages of viable lymphocytes were obtained consistently from both naïve and chronically SIV-infected rhesus macaques. The percentages of CD3+ T cells in the blood were significantly higher compared to those in the mucosal tissues analyzed in the naïve animals, while in the SIV+ animals the CD3+ T cells were significantly elevated in the rectal tissues, relative to all other sites analyzed. In the naïve, but not SIV+ macaques, the rectal and vaginal mucosal tissues, compared to oral mucosa and blood, showed higher diversity and percentages of CD4+ T cells expressing the HIV entry co-receptor CCR5 and mucosal specific adhesion (CD103) as well as activation (HLA-DR) and proliferation (Ki67) markers. Sequential daily cytobrush sampling from the oral, rectal, and genital mucosal tissues was performed in SIV+ animals from an ongoing study where they were administered intranasal immunization with adenoviral vectored vaccines incorporating the green fluorescent protein (GFP) reporter gene. We detected a transient increase in GFP+ CD4 T cells in only oral mucosa suggesting limited mucosal trafficking. In general, CD4+ and CD8+ T cells expressing Ki67 transiently increased in all mucosal tissues, but those expressing the CCR5, HLA-DR, and CD103 markers exhibited minor changes. We propose the minimally invasive cytobrush sampling as a practical approach for effective and prospective immune monitoring of the oral-genital mucosal tissues in NHP.
Collapse
Affiliation(s)
- Stephanie Dorta-Estremera
- The University of Texas MD Anderson Cancer Center, Department of Immunology, Houston, TX, United States of America
| | - Pramod N. Nehete
- The University of Texas MD Anderson Cancer Center, Department of Veterinary Sciences, Bastrop, TX, United States of America
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, United States of America
| | - Guojun Yang
- The University of Texas MD Anderson Cancer Center, Department of Immunology, Houston, TX, United States of America
| | - Hong He
- The University of Texas MD Anderson Cancer Center, Department of Stem Cell Transplantation, Houston, TX, United States of America
| | - Bharti P. Nehete
- The University of Texas MD Anderson Cancer Center, Department of Veterinary Sciences, Bastrop, TX, United States of America
| | - Kathryn K. Shelton
- The University of Texas MD Anderson Cancer Center, Department of Veterinary Sciences, Bastrop, TX, United States of America
| | - Michael A. Barry
- Mayo Clinic, Department of Internal Medicine, Division of Infectious Diseases, Rochester, MN, United States of America
- Mayo Clinic, Department of Molecular Medicine, Rochester, MN, United States of America
- Mayo Clinic, Department of Immunology, Rochester, MN, United States of America
- Mayo Clinic, Translational Immunology Virology and Biodefense Program, Rochester, MN, United States of America
| | - K. Jagannadha Sastry
- The University of Texas MD Anderson Cancer Center, Department of Immunology, Houston, TX, United States of America
- The University of Texas MD Anderson Cancer Center, Department of Veterinary Sciences, Bastrop, TX, United States of America
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, United States of America
- * E-mail:
| |
Collapse
|
15
|
Natural killer cells migrate into and control simian immunodeficiency virus replication in lymph node follicles in African green monkeys. Nat Med 2017; 23:1277-1286. [PMID: 29035370 DOI: 10.1038/nm.4421] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 09/08/2017] [Indexed: 02/06/2023]
Abstract
Natural killer (NK) cells play an essential role in antiviral immunity, but knowledge of their function in secondary lymphoid organs is incomplete. Lymph node follicles constitute a major viral reservoir during infections with HIV-1 and simian immunodeficiency virus of macaques (SIVmac). In contrast, during nonpathogenic infection with SIV from African green monkeys (SIVagm), follicles remain generally virus free. We show that NK cells in secondary lymphoid organs from chronically SIVagm-infected African green monkeys (AGMs) were frequently CXCR5+ and entered and persisted in lymph node follicles throughout the follow-up (240 d post-infection). These follicles were strongly positive for IL-15, which was primarily presented in its membrane-bound form by follicular dendritic cells. NK cell depletion through treatment with anti-IL-15 monoclonal antibody during chronic SIVagm infection resulted in high viral replication rates in follicles and the T cell zone and increased viral DNA in lymph nodes. Our data suggest that, in nonpathogenic SIV infection, NK cells migrate into follicles and play a major role in viral reservoir control in lymph nodes.
Collapse
|
16
|
Ruffin N, Hani L, Seddiki N. From dendritic cells to B cells dysfunctions during HIV-1 infection: T follicular helper cells at the crossroads. Immunology 2017; 151:137-145. [PMID: 28231392 DOI: 10.1111/imm.12730] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 02/10/2017] [Accepted: 02/14/2017] [Indexed: 12/12/2022] Open
Abstract
T follicular helper (Tfh) cells are essential for B-cell differentiation and the subsequent antibody responses. Their numbers and functions are altered during human and simian immunodeficiency virus (HIV/SIV) infections. In lymphoid tissues, Tfh cells are present in germinal centre, where they are the main source of replicative HIV-1 and represent a major reservoir. Paradoxically, Tfh cell numbers are increased in chronically infected individuals. Understanding the fate of Tfh cells in the course of HIV-1 infection is essential for the design of efficient strategies toward a protective HIV vaccine or a cure. The purpose of this review is to summarize the recent advance in our understanding of Tfh cell dynamics during HIV/SIV infection. In particular, to explore the possible causes of their expansion in lymphoid tissues by discussing the impact of HIV-1 infection on dendritic cells, to identify the molecular players rendering Tfh cells highly susceptible to HIV-1 infection, and to consider the contribution of regulatory follicular T cells in shaping Tfh cell functions.
Collapse
Affiliation(s)
- Nicolas Ruffin
- Institut Curie, INSERM U932, PSL Research University, Paris, France
| | - Lylia Hani
- Vaccine Research Institute (VRI), Faculté de médecine, INSERM U955, Université Paris Est, Créteil Cedex, France
| | - Nabila Seddiki
- Vaccine Research Institute (VRI), Faculté de médecine, INSERM U955, Université Paris Est, Créteil Cedex, France
| |
Collapse
|