1
|
Trewby W, Tavakol M, Voïtchovsky K. Local mapping of the nanoscale viscoelastic properties of fluid membranes by AFM nanorheology. Nat Commun 2025; 16:3842. [PMID: 40268953 PMCID: PMC12019565 DOI: 10.1038/s41467-025-59260-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 04/15/2025] [Indexed: 04/25/2025] Open
Abstract
Biological membranes are intrinsically dynamic entities that continually adapt their biophysical properties and molecular organisation to support cellular function. Current microscopy techniques can derive high-resolution structural information of labelled molecules but quantifying the associated viscoelastic behaviour with nanometre precision remains challenging. Here, we develop an approach based on atomic force microscopy in conjunction with fast nano-actuators to map the viscoelastic response of unlabelled supported membranes with nanometre spatial resolution. On fluid membranes, we show that the method can quantify local variations in the molecular mobility of the lipids and derive a diffusion coefficient. We confirm our experimental approach with molecular dynamics simulations, also highlighting the role played by the water at the interface with the membrane on the measurement. Probing ternary model bilayers reveals spatial correlations in the local diffusion over distances of ≈20 nm within liquid disordered domains. This lateral correlation is enhanced in native bovine lens membranes, where the inclusion of protein-rich domains induces four-fold variations in the diffusion coefficient across < 100 nm of the fluid regions, consistent with biological function. Our findings suggest that diffusion is highly localised in fluid biomembranes.
Collapse
Affiliation(s)
- William Trewby
- Physics Department, Durham University, South Road, Durham, UK.
- London Centre for Nanotechnology, University College London, London, UK.
| | - Mahdi Tavakol
- Physics Department, Durham University, South Road, Durham, UK
- Department of Engineering Science, University of Oxford, Parks Road, Oxford, UK
| | | |
Collapse
|
2
|
Yoda T. Materials evaluation using cell-sized liposomes. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:5509-5518. [PMID: 39109603 DOI: 10.1039/d4ay00803k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Cell membranes play a vital role in delineating the internal cellular environment from the external surroundings, going beyond mere compartmentalization. Researchers have delved into the structural organization, properties, and functional roles of biological membranes, paving the way for their application in substance identification, detection, and quantification. This review introduces various studies and their implications for future research. It underscores the advantages of employing cell-sized liposomes, which enable real-time observation for rapid detection and analysis of diverse materials. The utility of cell-sized liposomes extends to their size, dynamic shape changes, and phase-separation, offering valuable insights into the evaluation of targeted materials.
Collapse
Affiliation(s)
- Tsuyoshi Yoda
- Industrial Research Institute, Aomori Prefectural Industrial Technology Research Center, 221-10 Yamaguchi Nogi, Aomori City, Aomori, 030-0142, Japan.
- The United Graduate School of Agricultural Sciences, Iwate University, 3-18-8, Ueda, Morioka City, Iwate 020-8550, Japan
| |
Collapse
|
3
|
Vashchenko OV, Berest VP, Sviechnikova LV, Kutsevol NV, Kasian NA, Sofronov DS, Skorokhod O. Modifying Membranotropic Action of Antimicrobial Peptide Gramicidin S by Star-like Polyacrylamide and Lipid Composition of Nanocontainers. Int J Mol Sci 2024; 25:8691. [PMID: 39201384 PMCID: PMC11354511 DOI: 10.3390/ijms25168691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/01/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
Gramicidin S (GS), one of the first discovered antimicrobial peptides, still shows strong antibiotic activity after decades of clinical use, with no evidence of resistance. The relatively high hemolytic activity and narrow therapeutic window of GS limit its use in topical applications. Encapsulation and targeted delivery may be the way to develop the internal administration of this drug. The lipid composition of membranes and non-covalent interactions affect GS's affinity for and partitioning into lipid bilayers as monomers or oligomers, which are crucial for GS activity. Using both differential scanning calorimetry (DSC) and FTIR methods, the impact of GS on dipalmitoylphosphatidylcholine (DPPC) membranes was tested. Additionally, the combined effect of GS and cholesterol on membrane characteristics was observed; while dipalmitoylphosphatydylglycerol (DPPG) and cerebrosides did not affect GS binding to DPPC membranes, cholesterol significantly altered the membrane, with 30% mol concentration being most effective in enhancing GS binding. The effect of star-like dextran-polyacrylamide D-g-PAA(PE) on GS binding to the membrane was tested, revealing that it interacted with GS in the membrane and significantly increased the proportion of GS oligomers. Instead, calcium ions affected GS binding to the membrane differently, with independent binding of calcium and GS and no interaction between them. This study shows how GS interactions with lipid membranes can be effectively modulated, potentially leading to new formulations for internal GS administration. Modified liposomes or polymer nanocarriers for targeted GS delivery could be used to treat protein misfolding disorders and inflammatory conditions associated with free-radical processes in cell membranes.
Collapse
Affiliation(s)
- Olga V. Vashchenko
- Institute for Scintillation Materials of NAS of Ukraine, 60 Nauky Ave., 61172 Kharkiv, Ukraine; (O.V.V.); (L.V.S.)
| | - Volodymyr P. Berest
- Department of Molecular and Medical Biophysics, V. N. Karazin Kharkiv National University, 4 Svobody Sq., 61022 Kharkiv, Ukraine
| | - Liliia V. Sviechnikova
- Institute for Scintillation Materials of NAS of Ukraine, 60 Nauky Ave., 61172 Kharkiv, Ukraine; (O.V.V.); (L.V.S.)
| | - Nataliya V. Kutsevol
- Research Department, Taras Shevchenko National University of Kyiv, 60 Volodymyrska St., 01601 Kyiv, Ukraine;
| | - Natalia A. Kasian
- Institute for Scintillation Materials of NAS of Ukraine, 60 Nauky Ave., 61172 Kharkiv, Ukraine; (O.V.V.); (L.V.S.)
| | - Dmitry S. Sofronov
- State Scientific Institution “Institute for Single Crystals” of NAS of Ukraine, 60 Nauky Ave., 61072 Kharkiv, Ukraine
| | - Oleksii Skorokhod
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Turin, Italy
| |
Collapse
|
4
|
Shimokawa N, Takagi M. Biomimetic Lipid Raft: Domain Stability and Interaction with Physiologically Active Molecules. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1461:15-32. [PMID: 39289271 DOI: 10.1007/978-981-97-4584-5_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The cell membrane, also called the plasma membrane, is the membrane on the cytoplasmic surface that separates the extracellular from the intracellular. It is thin, about 10 nm thick when viewed with an electron microscope, and is composed of two monolayers of phospholipid membranes (lipid bilayers) containing many types of proteins. It is now known that this cell membrane not only separates the extracellular from the intracellular, but is also involved in sensory stimuli such as pain, itching, sedation, and excitement. Since the "Fluid mosaic model" was proposed for cell membranes, molecules have been thought to be homogeneously distributed on the membrane surface. Later, at the end of the twentieth century, the existence of "Phase-separated microdomain structures" consisting of ordered phases rich in saturated lipids and cholesterol was suggested, and these were termed "Lipid rafts." A model in which lipid rafts regulate cell signaling has been proposed and is the subject of active research.This chapter first outlines the physicochemical properties and thermodynamic models of membrane phase separation (lipid rafts), which play an important role in cell signaling. Next, how physiologically active molecules such as local anesthetics, cooling agents (menthol), and warming agents (capsaicin) interact with artificial cell membranes will be presented.It is undeniable that the plasma membrane contains many channels and receptors that are involved in the propagation of sensory stimuli. At the same time, however, it is important to understand that the membrane exerts a significant influence on the intensity and propagation of these stimuli.
Collapse
Affiliation(s)
- Naofumi Shimokawa
- School of Materials Science, Japan Advanced Institute of Science and Technology, Nomi, Ishikawa, Japan
| | - Masahiro Takagi
- School of Materials Science, Japan Advanced Institute of Science and Technology, Nomi, Ishikawa, Japan.
| |
Collapse
|
5
|
Ito H, Shimokawa N, Higuchi Y. Lateral Transport of Domains in Anionic Lipid Bilayer Membranes under DC Electric Fields: A Coarse-Grained Molecular Dynamics Study. J Phys Chem B 2023; 127:8860-8868. [PMID: 37801068 DOI: 10.1021/acs.jpcb.3c04351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Dynamic lateral transport of lipids, proteins, and self-assembled structures in biomembranes plays a crucial role in diverse cellular processes. In this study, we perform coarse-grained molecular dynamics simulations on a vesicle composed of a binary mixture of neutral and anionic lipids to investigate the lateral transport of individual lipid molecules and the self-assembled lipid domains upon an applied direct current (DC) electric field. Under the potential force of the electric field, a phase-separated domain rich in anionic lipids is trapped in the opposite direction of the electric field. The subsequent reversal of the electric field induces unidirectional domain motion. During the domain motion, the domain size remains constant, but a considerable amount of the anionic lipids is exchanged between the anionic-lipid-rich domain and the surrounding bulk. While the speed of the domain motion (collective lipid motion) shows a significant positive correlation with the electric field strength, the exchange of anionic lipids between the domain and bulk (individual lipid motion) exhibits no clear correlation with the field strength. The mean velocity field of the lipids surrounding the domain displays a two-dimensional (2D) source dipole. We revealed that the balance between the potential force of the applied electric field and the quasi-2D hydrodynamic frictional force well explains the dependence of the domain motions on the electric field strengths. The present results provide insight into the hierarchical dynamic responses of self-assembled lipid domains to the applied electric field and contribute to controlling the lateral transportation of lipids and membrane inclusions.
Collapse
Affiliation(s)
- Hiroaki Ito
- Department of Physics, Graduate School of Science, Chiba University, Chiba 263-8522, Japan
| | - Naofumi Shimokawa
- School of Materials Science, Japan Advanced Institute of Science and Technology, Ishikawa 923-1292, Japan
| | - Yuji Higuchi
- Research Institute for Information Technology, Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
6
|
Wang Y, Majd S. Charged Lipids Modulate the Phase Separation in Multicomponent Membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:11371-11378. [PMID: 37485979 DOI: 10.1021/acs.langmuir.3c01199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Phase separation in lipid membranes controls the organization of membrane components and thus regulates membrane-mediated processes. Membrane phase behavior is influenced by the molecular properties of its components and their relative concentrations. Charged lipid species are among the most essential components of lipid membranes, and their impact on the membrane phase behavior is yet to be fully understood. Aiming to provide insight into this impact, this paper investigates how the presence and amount of anionic and cationic lipids affect the phase behavior of multicomponent membranes. Membranes of ternary composition DOPC:DPPC:Chol with two distinct molar ratios were used to test the hypothesis that inclusion of charged lipids with saturated tails, beyond a certain concentration, would impede phase separation in an otherwise phase-separating membrane. Fluorescence microscopy examination of electroformed giant liposomes revealed that when more than half of DOPC in the examined mixtures was replaced with DOPA or DOTAP, phase separation in liposomes was somewhat suppressed, and this effect increased with increasing charged lipid content. This effect depended on the membrane surface charge density as the half-maximal effect was observed at around 0.0072 C Å-2 in all examined cases. The phase-separation suppressing effect of DOPA was neutralized when oppositely charged lipid DOTAP was included in the mixture. Likewise, presence of divalent cation Ca2+ in the solution neutralized the impact of negatively charged DOPA. These results underline the detrimental influence of surface charge density on membrane phase behavior. More importantly, these findings suggest that the charged lipid content in membranes may be a regulator of their phase behavior and open new opportunities for the design of synthetic lipid membranes.
Collapse
Affiliation(s)
- Yifei Wang
- Department of Biomedical Engineering, University of Houston, 3551 Cullen Boulevard, Houston, Texas 77204, United States
| | - Sheereen Majd
- Department of Biomedical Engineering, University of Houston, 3551 Cullen Boulevard, Houston, Texas 77204, United States
| |
Collapse
|
7
|
Higuchi Y, Bohinc K, Reščič J, Shimokawa N, Ito H. Coarse-grained molecular dynamics simulation of cation distribution profiles on negatively charged lipid membranes during phase separation. SOFT MATTER 2023; 19:3640-3651. [PMID: 37162535 DOI: 10.1039/d3sm00222e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Revealing the ion distributions on a charged lipid membrane in aqueous solution under the influence of long-range interactions is essential for understanding the origin of the stability of the bilayer structure and the interaction between biomembranes and various electrolytes. However, the ion distributions and their dynamics associated with the phase separation process of the lipid bilayer membrane are still unclear. We perform coarse-grained molecular dynamics simulations to reveal the Na+ and Cl- distributions on charged phospholipid bilayer membranes during phase separation. During the phase separation, cations closely follow the position of negatively charged lipids on a microsecond timescale and are rapidly redistributed parallel to the lipid bilayer. In the homogenous mixture of zwitterionic and negatively charged lipids, cations weakly follow negatively charged lipids, indicating the strong interaction between cations and negatively charged lipids. We also compare cation concentrations as a function of surface charge density obtained by our simulation with those obtained by a modified Poisson-Boltzmann theory. Including the ion finite size makes the statistical results consistent, suggesting the importance of the ion-ion interactions in aqueous solution. Our simulation results advance our understanding of ion distribution during phase separation.
Collapse
Affiliation(s)
- Yuji Higuchi
- Research Institute for Information Technology, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
| | - Klemen Bohinc
- Faculty of Health Sciences, University of Ljubljana, Zdravstvena 5, SI 1000 Ljubljana, Slovenia
| | - Jurij Reščič
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Vecna pot 113, 1000 Ljubljana, Slovenia
| | - Naofumi Shimokawa
- School of Materials Science, Japan Advanced Institute of Science and Technology, Ishikawa 923-1292, Japan
| | - Hiroaki Ito
- Department of Physics, Graduate School of Science, Chiba University, Chiba 263-8522, Japan
| |
Collapse
|
8
|
Shimokawa N, Hamada T. Physical Concept to Explain the Regulation of Lipid Membrane Phase Separation under Isothermal Conditions. Life (Basel) 2023; 13:life13051105. [PMID: 37240749 DOI: 10.3390/life13051105] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/21/2023] [Accepted: 04/22/2023] [Indexed: 05/28/2023] Open
Abstract
Lateral phase separation within lipid bilayer membranes has attracted considerable attention in the fields of biophysics and cell biology. Living cells organize laterally segregated compartments, such as raft domains in an ordered phase, and regulate their dynamic structures under isothermal conditions to promote cellular functions. Model membrane systems with minimum components are powerful tools for investigating the basic phenomena of membrane phase separation. With the use of such model systems, several physicochemical characteristics of phase separation have been revealed. This review focuses on the isothermal triggering of membrane phase separation from a physical point of view. We consider the free energy of the membrane that describes lateral phase separation and explain the experimental results of model membranes to regulate domain formation under isothermal conditions. Three possible regulation factors are discussed: electrostatic interactions, chemical reactions and membrane tension. These findings may contribute to a better understanding of membrane lateral organization within living cells that function under isothermal conditions and could be useful for the development of artificial cell engineering.
Collapse
Affiliation(s)
- Naofumi Shimokawa
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi 923-1292, Ishikawa, Japan
| | - Tsutomu Hamada
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi 923-1292, Ishikawa, Japan
| |
Collapse
|
9
|
Saha T, Heuer A, Galic M. Systematic analysis of curvature-dependent lipid dynamics in a stochastic 3D membrane model. SOFT MATTER 2023; 19:1330-1341. [PMID: 36692259 DOI: 10.1039/d2sm01260j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
To minimize the free energy of the system, lipid membranes display curvature-dependent rearrangements at the local and global scale. The optimal membrane shape is generally approximated by averaging the curvature preference of individual lipids across the whole surface. Potential stress due to imperfections in lipid packing caused by local lipid inhomogeneities, however, is frequently neglected. Here, we developed a stochastic 3D membrane model to investigate the relevance of this parameter for shape-dependent lipid and membrane dynamics. A systematic analysis of the discretized Helfrich type Hamiltonian indicates that stress-energy arising from imperfections in packing is analogous to van der Waals interactions, jointly determining membrane shape and localization of curvature-sensitive lipids based on their relative strengths. Insights from this work can be used to characterize natural and design synthetic agents for membrane-shape changes.
Collapse
Affiliation(s)
- Tanumoy Saha
- Institute of Medical Physics and Biophysics, University of Muenster, Germany.
- Cells in Motion' Interfaculty Centre, University of Muenster, Germany.
- CIM-IMPRS Graduate School, Muenster, Germany
| | - Andreas Heuer
- Cells in Motion' Interfaculty Centre, University of Muenster, Germany.
- Institute of Physical Chemistry, University of Muenster, Germany
| | - Milos Galic
- Institute of Medical Physics and Biophysics, University of Muenster, Germany.
- Cells in Motion' Interfaculty Centre, University of Muenster, Germany.
| |
Collapse
|
10
|
Yoda T. Charged Lipids Influence Phase Separation in Cell-Sized Liposomes Containing Cholesterol or Ergosterol. MEMBRANES 2022; 12:membranes12111121. [PMID: 36363676 PMCID: PMC9697951 DOI: 10.3390/membranes12111121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/06/2022] [Accepted: 11/07/2022] [Indexed: 05/14/2023]
Abstract
Positively charged ion species and charged lipids play specific roles in biochemical processes, especially those involving cell membranes. The cell membrane and phase separation domains are attractive research targets to study signal transduction. The phase separation structure and functions of cell-sized liposomes containing charged lipids and cholesterol have been investigated earlier, and the domain structure has also been studied in a membrane model, containing the yeast sterol ergosterol. The present study investigates phase-separated domain structure alterations in membranes containing charged lipids when cholesterol is substituted with ergosterol. This study finds that ergosterol increases the homogeneity of membranes containing charged lipids. Cholesterol-containing membranes are more sensitive to a charged state, and ergosterol-containing liposomes show lower responses to charged lipids. These findings may improve our understanding of the differences in both yeast and mammalian cells, as well as the interactions of proteins with lipids during signal transduction.
Collapse
Affiliation(s)
- Tsuyoshi Yoda
- Hachinohe Industrial Research Institute, Aomori Prefectural Industrial Technology Research Center, 1-4-43 Kita-inter-kogyodanchi, Hachinohe City 039-2245, Aomori, Japan; ; Tel.: +81-178-21-2100
- The United Graduate School of Agricultural Sciences, Iwate University, 3-18-8 Ueda, Morioka City 020-8550, Iwate, Japan
| |
Collapse
|
11
|
Yoda T. The Flavonoid Molecule Procyanidin Reduces Phase Separation in Model Membranes. MEMBRANES 2022; 12:943. [PMID: 36295702 PMCID: PMC9609489 DOI: 10.3390/membranes12100943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/19/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Procyanidin extracted from fruits, such as apples, has been shown to improve lipid metabolization. Recently, studies have revealed that procyanidin interacts with lipid molecules in membranes to enhance lipid metabolism; however, direct evidence of the interaction between procyanidin and lipid membranes has not been demonstrated. In this study, the phase behaviors and changes in the membrane fluidity of cell-sized liposomes containing apple procyanidin, procyanidin B2 (PB2), were demonstrated for the first time. Phase separation in 1,2-Dioleoyl-sn-glycero-3-phosphocholine (DOPC)/1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC)/cholesterol ternary membranes significantly decreased after the addition of PB2. The prospect of applying procyanidin content measurements, using the results of this study, to commercial apple juice was also assessed. Specifically, the PB2 concentrations were 50%, 33%, and 0% for pure apple juice, 2-fold diluted apple juice, and pure water, respectively. The results of the actual juice were correlated with PB2 concentrations and phase-separated liposomes ratios, as well as with the results of experiments involving pure chemicals. In conclusion, the mechanism through which procyanidin improves lipid metabolism through the regulation of membrane fluidity was established.
Collapse
Affiliation(s)
- Tsuyoshi Yoda
- Hachinohe Industrial Research Institute, Aomori Prefectural Industrial Technology Research Center, 1-4-43 Kita-inter-kogyodanchi, Hachinohe City 039-2245, Japan; ; Tel.: +81-178-21-2100
- The United Graduate School of Agricultural Sciences, Iwate University, 3-18-8 Ueda, Morioka City 020-8550, Japan
| |
Collapse
|
12
|
Bohinc K, Špadina M, Reščič J, Shimokawa N, Spada S. Influence of Charge Lipid Head Group Structures on Electric Double Layer Properties. J Chem Theory Comput 2021; 18:448-460. [PMID: 34937343 PMCID: PMC8757465 DOI: 10.1021/acs.jctc.1c00800] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
In this study we
derived a model for a multicomponent lipid monolayer
in contact with an aqueous solution by means of a generalized classical
density functional theory and Monte Carlo simulations. Some of the
important biological lipid systems were studied as monolayers composed
of head groups with different shapes and charge distributions. Starting
from the free energy of the system, which includes the electrostatic
interactions, additional internal degrees of freedom are included
as positional and orientational entropic contributions to the free
energy functional. The calculus of variation was used to derive Euler–Lagrange
equations, which were solved numerically by the finite element method.
The theory and Monte Carlo simulations predict that there are mainly
two distinct regions of the electric double layer: (1) the interfacial
region, with thickness less than or equal to the length of the fully
stretched conformation of the lipid head group, and (2) the outside
region, which follows the usual screening of the interface. In the
interfacial region, the electric double layer is strongly perturbed,
and electrostatic profiles and ion distributions have functionality
distinct to classical mean-field theories. Based purely on Coulomb
interactions, the theory suggests that the dominant effect on the
lipid head group conformation is from the charge density of the interface
and the structured lipid mole fraction in the monolayer, rather than
the salt concentration in the system.
Collapse
Affiliation(s)
- Klemen Bohinc
- Faculty of Health Sciences, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Mario Špadina
- Faculty of Health Sciences, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Jurij Reščič
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia
| | - Naofumi Shimokawa
- Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Simone Spada
- National Institute of Oceanography and Applied Geophysics - OGS, 34010 Trieste, Italy
| |
Collapse
|
13
|
Guo J, Ito H, Higuchi Y, Bohinc K, Shimokawa N, Takagi M. Three-Phase Coexistence in Binary Charged Lipid Membranes in a Hypotonic Solution. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:9683-9693. [PMID: 34288679 DOI: 10.1021/acs.langmuir.1c00967] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
We investigated the phase separation of dioleoylphosphatidylserine (DOPS) and dipalmitoylphosphatidylcholine (DPPC) in giant unilamellar vesicles in a hypotonic solution using fluorescence and confocal laser scanning microscopy. Although phase separation in charged lipid membranes is generally suppressed by the electrostatic repulsion between the charged headgroups, osmotic stress can promote the formation of charged lipid domains. Interestingly, we observed a three-phase coexistence even in the DOPS/DPPC binary lipid mixtures. The three phases were DPPC-rich, dissociated DOPS-rich, and nondissociated DOPS-rich phases. The two forms of DOPS were found to coexist owing to the ionization of the DOPS headgroup, such that the system could be regarded as quasi-ternary. The three formed phases with differently ionized DOPS domains were successfully identified experimentally by monitoring the adsorption of positively charged particles. In addition, coarse-grained molecular dynamics simulations confirmed the stability of the three-phase coexistence. Attraction mediated by hydrogen bonding between protonated DOPS molecules and reduction of the electrostatic interactions at the domain boundaries stabilized the three-phase coexistence.
Collapse
Affiliation(s)
- Jingyu Guo
- School of Materials Science, Japan Advanced Institute of Science and Technology, Ishikawa 923-1292, Japan
| | - Hiroaki Ito
- Department of Physics, Chiba University, Chiba 263-8522, Japan
| | - Yuji Higuchi
- Institute for Solid State Physics, The University of Tokyo, Chiba 227-8581, Japan
| | - Klemen Bohinc
- Faculty of Health Sciences, University of Ljubljana, Ljubljana SI-1000, Slovenia
| | - Naofumi Shimokawa
- School of Materials Science, Japan Advanced Institute of Science and Technology, Ishikawa 923-1292, Japan
| | - Masahiro Takagi
- School of Materials Science, Japan Advanced Institute of Science and Technology, Ishikawa 923-1292, Japan
| |
Collapse
|
14
|
Shimokawa N, Ito H, Higuchi Y. Coarse-grained molecular dynamics simulation for uptake of nanoparticles into a charged lipid vesicle dominated by electrostatic interactions. Phys Rev E 2019; 100:012407. [PMID: 31499808 DOI: 10.1103/physreve.100.012407] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Indexed: 06/10/2023]
Abstract
We use a coarse-grained molecular dynamics simulation to investigate the interaction between neutral or charged nanoparticles (NPs) and a vesicle consisting of neutral and negatively charged lipids. We focus on the interaction strengths of hydrophilic and hydrophobic attraction and electrostatic interactions between a lipid molecule and an NP. A neutral NP passes through the lipid membrane when the hydrophobic interaction is sufficiently strong. As the valence of the positively charged NP increases, the membrane permeation speed of the NP is increased compared with the neutral NP and charged lipids are accumulated around the charged NP. A charged NP with a high valence passes through the lipid membrane via a transient channel formed by charged lipids or transportlike endocytosis. These permeation processes can be classified based on analyses of the density correlation function. When the nonelectrostatic interaction parameters are large enough, a negatively charged NP can be adsorbed on the membrane and a neutral lipid-rich region is formed directly below the NP. The NP is spontaneously incorporated into the vesicle under various conditions and the incorporation is mediated by the membrane curvature. We reveal how the NP's behavior depends on the NP valence, size, and the nonelectrostatic interaction parameters.
Collapse
Affiliation(s)
- Naofumi Shimokawa
- School of Materials Science, Japan Advanced Institute of Science and Technology, Ishikawa 923-1292, Japan
| | - Hiroaki Ito
- Department of Mechanical Engineering, Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan
| | - Yuji Higuchi
- Institute for Solid State Physics, University of Tokyo, Chiba 227-8581, Japan
| |
Collapse
|
15
|
Dimova R. Giant Vesicles and Their Use in Assays for Assessing Membrane Phase State, Curvature, Mechanics, and Electrical Properties. Annu Rev Biophys 2019; 48:93-119. [DOI: 10.1146/annurev-biophys-052118-115342] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Giant unilamellar vesicles represent a promising and extremely useful model biomembrane system for systematic measurements of mechanical, thermodynamic, electrical, and rheological properties of lipid bilayers as a function of membrane composition, surrounding media, and temperature. The most important advantage of giant vesicles over other model membrane systems is that the membrane responses to external factors such as ions, (macro)molecules, hydrodynamic flows, or electromagnetic fields can be directly observed under the microscope. Here, we briefly review approaches for giant vesicle preparation and describe several assays used for deducing the membrane phase state and measuring a number of material properties, with further emphasis on membrane reshaping and curvature.
Collapse
Affiliation(s)
- Rumiana Dimova
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424 Potsdam, Germany
| |
Collapse
|
16
|
Hishida M, Yanagisawa R, Yamamura Y, Saito K. Phase separation of a ternary lipid vesicle including n-alkane: Rugged vesicle and bilayer flakes formed by separation between highly rigid and flexible domains. J Chem Phys 2019; 150:064904. [PMID: 30769992 DOI: 10.1063/1.5080177] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
We investigate the phase separation of a ternary lipid bilayer including n-alkane and construct the ternary phase diagram. When a certain proportion of a long n-alkane is mixed with a binary mixture of lipids, which exhibit the disordered liquid-crystalline phase and the ordered gel phase at room temperature, we observed the characteristic morphology of bilayers with phase separation. The ordered bilayer forms flat and rigid domains, which is connected or rimmed with flexible domains in the disordered phase. The asymmetric emergence of the phase separation region close to the ordered phase side is interpreted based on the almost equal distribution of the n-alkane to the ordered and disordered phase domains.
Collapse
Affiliation(s)
- Mafumi Hishida
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
| | - Ryuta Yanagisawa
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
| | - Yasuhisa Yamamura
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
| | - Kazuya Saito
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
| |
Collapse
|
17
|
Kimble-Hill AC, Petrache HI, Seifert S, Firestone MA. Reorganization of Ternary Lipid Mixtures of Nonphosphorylated Phosphatidylinositol Interacting with Angiomotin. J Phys Chem B 2018; 122:8404-8415. [PMID: 29877706 PMCID: PMC6351316 DOI: 10.1021/acs.jpcb.7b12641] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Phosphatidylinositol (PI) lipids are necessary for many cellular signaling pathways of membrane associated proteins, such as angiomotin (Amot). The Amot family regulates cellular polarity, growth, and migration. Given the low concentration of PI lipids in these membranes, it is likely that such protein-membrane interactions are stabilized by lipid domains or small lipid clusters. By small-angle X-ray scattering, we show that nonphosphorylated PI lipids induce lipid demixing in ternary mixtures of phosphatidylcholine (PC) and phosphatidylethanolamine (PE), likely because of preferential interactions between the head groups of PE and PI. These results were obtained in the presence of buffer containing tris(hydroxymethyl)aminomethane, 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid, NaCl, ethylenediaminetetraacetic acid, dithiothreitol, and benzamidine at pH 8.0 that in previous work showed an ability to cause PC to phase separate but are necessary to stabilize Amot for in vitro experimentation. Collectively, this provided a framework for determining the effect of Amot on lipid organization. Using fluorescence spectroscopy, we were able to show that the association of Amot with this lipid platform causes significant reorganization of the lipid into a more homogenous structure. This reorganization mechanism could be the basis for Amot membrane association and fusogenic activity previously described in the literature and should be taken into consideration in future protein-membrane interaction studies.
Collapse
Affiliation(s)
- Ann C. Kimble-Hill
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, MS 4053, 635 Barnhill Dr., Indianapolis, Indiana 46202, United States
| | - Horia I. Petrache
- Department of Physics, Indiana University Purdue University Indianapolis, LD 154, 402 N. Blackford Street, Indianapolis, Indiana 46202, United States
| | - Soenke Seifert
- X-Ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Millicent A. Firestone
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, MPA-CINT, MS K771, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
18
|
Nobeyama T, Mori M, Shigyou K, Takata K, Pandian GN, Sugiyama H, Murakami T. Colloidal Stability of Lipid/Protein-Coated Nanomaterials in Salt and Sucrose Solutions. ChemistrySelect 2018. [DOI: 10.1002/slct.201801180] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Tomohiro Nobeyama
- Graduate School of Engineering; Toyama Prefectural University, 5180 Kurokawa; Toyama 939-0393 Japan
| | - Megumi Mori
- Faculty of Agriculture; Kyoto University, Sakyo-ku; Kyoto 606-8502 Japan
| | - Kazuki Shigyou
- School of Material Science; Japan Advanced Institute Science and Technology 1-1 Asahidai; Ishikawa 923-1212 Japan
| | - Koji Takata
- Toyama Industry Technology Center, 383 Takada; Toyama 930-0866 Japan
| | - Ganesh N. Pandian
- Institute for Integrated Cell-Material Sciences; Kyoto University, Yoshida-honmachi, Sakyo-ku; Kyoto 606-8501 Japan
| | - Hiroshi Sugiyama
- Institute for Integrated Cell-Material Sciences; Kyoto University, Yoshida-honmachi, Sakyo-ku; Kyoto 606-8501 Japan
- Graduate School of Science; Kyoto University, Sakyo-ku; Kyoto 606-8502 Japan
| | - Tatsuya Murakami
- Graduate School of Engineering; Toyama Prefectural University, 5180 Kurokawa; Toyama 939-0393 Japan
- Institute for Integrated Cell-Material Sciences; Kyoto University, Yoshida-honmachi, Sakyo-ku; Kyoto 606-8501 Japan
| |
Collapse
|
19
|
Yousefpour A, Amjad-Iranagh S, Goharpey F, Modarress H. Effect of drug amlodipine on the charged lipid bilayer cell membranes DMPS and DMPS + DMPC: a molecular dynamics simulation study. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2018; 47:939-950. [PMID: 29971510 DOI: 10.1007/s00249-018-1317-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 05/19/2018] [Accepted: 06/26/2018] [Indexed: 01/03/2023]
Abstract
In this work, the effects of the anti-hypertensive drug amlodipine in native and PEGylated forms on the malfunctioning of negatively charged lipid bilayer cell membranes constructed from DMPS or DMPS + DMPC were studied by molecular dynamics simulation. The obtained results indicate that amlodipine alone aggregates and as a result its diffusion into the membrane is retarded. In addition, due to their large size aggregates of the drug can damage the cell, rupturing the cell membrane. It is shown that PEGylation of amlodipine prevents this aggregation and facilitates its diffusion into the lipid membrane. The interaction of the drug with negatively charged membranes in the presence of an aqueous solution of NaCl, as the medium, is investigated and its effects on the membrane are considered by evaluating the structural properties of the membrane such as area per lipid, thickness, lipid chain order and electrostatic potential difference between bulk solution and lipid bilayer surface. The effect of these parameters on the diffusion of the drug into the cell is critically examined and discussed.
Collapse
Affiliation(s)
- Abbas Yousefpour
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), 424 Hafez Ave, Tehran, P.O. Box 15875-4413, Iran
| | - Sepideh Amjad-Iranagh
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), 424 Hafez Ave, Tehran, P.O. Box 15875-4413, Iran
| | - Fatemeh Goharpey
- Department of Polymer Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Hamid Modarress
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), 424 Hafez Ave, Tehran, P.O. Box 15875-4413, Iran.
| |
Collapse
|
20
|
Yu Q, Sun J, Huang S, Chang H, Bai Q, Chen YX, Liang D. Inward Budding and Endocytosis of Membranes Regulated by de Novo Designed Peptides. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:6183-6193. [PMID: 29733597 DOI: 10.1021/acs.langmuir.8b00882] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Protein-mediated endocytosis of membrane is a key event in biological system. The mechanism, however, is still not clear. Using a de novo designed bola-type peptide KKKLLLLLLLLKKK (K3L8K3) as a protein mimic, we studied how it induced giant unilamellar vesicle (GUV) to form inward buds or endocytosis at varying conditions. Results show that the inward budding is initiated as the charged lipids are neutralized by K3L8K3, which results in a negative spontaneous curvature. If the charged lipids have unsaturated tails, the buddings are slim fibrils, which can further wrap into a spherical structure. In the case of saturated charged lipids, the buddings are rigid tubules, stable in the studied time period. The unsaturated lipid to saturated lipid ratio in the mother membrane is another key parameter governing the shape and dynamics of the buds. A complete endocytosis is observed when K3L8K3 is attached with a hydrophobic moiety, suggesting that hydrophobic interaction helps the buds to detach from the mother membrane. The molecules in the surrounding medium, such as negatively charged oligonucleotides, are engulfed into the GUV via endocytosis pathway induced by K3L8K3. Our study provides a novel strategy for illustrating the endocytosis mechanism by using peptides of simple sequence.
Collapse
|
21
|
Ito H, Higuchi Y, Shimokawa N. Coarse-grained molecular dynamics simulation of binary charged lipid membranes: Phase separation and morphological dynamics. Phys Rev E 2016; 94:042611. [PMID: 27841477 DOI: 10.1103/physreve.94.042611] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Indexed: 06/06/2023]
Abstract
Biomembranes, which are mainly composed of neutral and charged lipids, exhibit a large variety of functional structures and dynamics. Here, we report a coarse-grained molecular dynamics (MD) simulation of the phase separation and morphological dynamics in charged lipid bilayer vesicles. The screened long-range electrostatic repulsion among charged head groups delays or inhibits the lateral phase separation in charged vesicles compared with neutral vesicles, suggesting the transition of the phase-separation mechanism from spinodal decomposition to nucleation or homogeneous dispersion. Moreover, the electrostatic repulsion causes morphological changes, such as pore formation, and further transformations into disk, string, and bicelle structures, which are spatiotemporally coupled to the lateral segregation of charged lipids. Based on our coarse-grained MD simulation, we propose a plausible mechanism of pore formation at the molecular level. The pore formation in a charged-lipid-rich domain is initiated by the prior disturbance of the local molecular orientation in the domain.
Collapse
Affiliation(s)
- Hiroaki Ito
- Department of Mechanical Engineering, Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan
| | - Yuji Higuchi
- Institute for Materials Research, Tohoku University, Miyagi 980-8577, Japan
| | - Naofumi Shimokawa
- School of Materials Science, Japan Advanced Institute of Science and Technology, Ishikawa 923-1292, Japan
| |
Collapse
|
22
|
Solution Asymmetry and Salt Expand Fluid-Fluid Coexistence Regions of Charged Membranes. Biophys J 2016; 110:2581-2584. [PMID: 27288275 PMCID: PMC4919722 DOI: 10.1016/j.bpj.2016.05.028] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 04/26/2016] [Accepted: 05/16/2016] [Indexed: 01/08/2023] Open
Abstract
Liquid-liquid phase separation in giant unilamellar vesicles (GUVs) leads to the formation of intramembrane domains. To mimic charged biological membranes, we studied phase separation and domain formation in GUVs of ternary lipid mixtures composed of egg sphingomyelin, cholesterol, and the negatively charged lipid dioleoylphosphatidylglycerol. The GUVs were exposed to solutions of sucrose and high-saline buffer. The phase diagram was determined using epifluorescence microscopy for vesicle populations with symmetric and asymmetric solution compositions across the membranes. Trans-membrane solution asymmetry was found to affect the membrane phase state. Furthermore, compared to the case of salt-free conditions, the phase diagram in the presence of high-saline buffer (both symmetrically or asymmetrically present across the membrane) was found to exhibit a significantly extended region of liquid-ordered and liquid-disordered coexistence. These observations were confirmed on single GUVs using microfluidics and confocal microscopy. Moreover, we found that the miscibility temperatures markedly increased for vesicles in the presence of symmetric and asymmetric salt solutions. Our results demonstrate a substantial effect of salt and solution asymmetry on the phase behavior of charged membranes, which has direct implications for protein adsorption onto these membranes and for the repartitioning of proteins within the membrane domains.
Collapse
|
23
|
Shimokawa N, Himeno H, Hamada T, Takagi M, Komura S, Andelman D. Phase Diagrams and Ordering in Charged Membranes: Binary Mixtures of Charged and Neutral Lipids. J Phys Chem B 2016; 120:6358-67. [DOI: 10.1021/acs.jpcb.6b03102] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Naofumi Shimokawa
- School
of Materials Science, Japan Advanced Institute of Science and Technology, Ishikawa 923-1292, Japan
| | - Hiroki Himeno
- Health
Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Kagawa 761-0395, Japan
| | - Tsutomu Hamada
- School
of Materials Science, Japan Advanced Institute of Science and Technology, Ishikawa 923-1292, Japan
| | - Masahiro Takagi
- School
of Materials Science, Japan Advanced Institute of Science and Technology, Ishikawa 923-1292, Japan
| | - Shigeyuki Komura
- Department
of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - David Andelman
- School
of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact
Sciences, Tel Aviv University, Ramat Aviv 69978, Tel Aviv, Israel
| |
Collapse
|
24
|
Smolentsev N, Lütgebaucks C, Okur HI, de Beer AGF, Roke S. Intermolecular Headgroup Interaction and Hydration as Driving Forces for Lipid Transmembrane Asymmetry. J Am Chem Soc 2016; 138:4053-60. [DOI: 10.1021/jacs.5b11776] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Nikolay Smolentsev
- Laboratory for Fundamental
BioPhotonics (LBP), Institute of Bioengineering (IBI), and Institute
of Materials Science (IMX), School of Engineering (STI), and Lausanne
Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Cornelis Lütgebaucks
- Laboratory for Fundamental
BioPhotonics (LBP), Institute of Bioengineering (IBI), and Institute
of Materials Science (IMX), School of Engineering (STI), and Lausanne
Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Halil I. Okur
- Laboratory for Fundamental
BioPhotonics (LBP), Institute of Bioengineering (IBI), and Institute
of Materials Science (IMX), School of Engineering (STI), and Lausanne
Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Alex G. F. de Beer
- Laboratory for Fundamental
BioPhotonics (LBP), Institute of Bioengineering (IBI), and Institute
of Materials Science (IMX), School of Engineering (STI), and Lausanne
Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Sylvie Roke
- Laboratory for Fundamental
BioPhotonics (LBP), Institute of Bioengineering (IBI), and Institute
of Materials Science (IMX), School of Engineering (STI), and Lausanne
Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
25
|
Himeno H, Ito H, Higuchi Y, Hamada T, Shimokawa N, Takagi M. Coupling between pore formation and phase separation in charged lipid membranes. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:062713. [PMID: 26764733 DOI: 10.1103/physreve.92.062713] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Indexed: 06/05/2023]
Abstract
We investigated the effect of charge on the membrane morphology of giant unilamellar vesicles (GUVs) composed of various mixtures containing charged lipids. We observed the membrane morphologies by fluorescent and confocal laser microscopy in lipid mixtures consisting of a neutral unsaturated lipid [dioleoylphosphatidylcholine (DOPC)], a neutral saturated lipid [dipalmitoylphosphatidylcholine (DPPC)], a charged unsaturated lipid [dioleoylphosphatidylglycerol (DOPG((-)))], a charged saturated lipid [dipalmitoylphosphatidylglycerol (DPPG((-)))], and cholesterol (Chol). In binary mixtures of neutral DOPC-DPPC and charged DOPC-DPPG((-))), spherical vesicles were formed. On the other hand, pore formation was often observed with GUVs consisting of DOPG((-))) and DPPC. In a DPPC-DPPG((-)))-Chol ternary mixture, pore-formed vesicles were also frequently observed. The percentage of pore-formed vesicles increased with the DPPG((-))) concentration. Moreover, when the head group charges of charged lipids were screened by the addition of salt, pore-formed vesicles were suppressed in both the binary and ternary charged lipid mixtures. We discuss the mechanisms of pore formation in charged lipid mixtures and the relationship between phase separation and the membrane morphology. Finally, we reproduce the results seen in experimental systems by using coarse-grained molecular dynamics simulations.
Collapse
Affiliation(s)
- Hiroki Himeno
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
- Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Takamatsu 761-0395, Japan
| | - Hiroaki Ito
- Department of Physics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Yuji Higuchi
- Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
| | - Tsutomu Hamada
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Naofumi Shimokawa
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Masahiro Takagi
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| |
Collapse
|
26
|
Hishida M, Endo A, Nakazawa K, Yamamura Y, Saito K. Effect of n-alkanes on lipid bilayers depending on headgroups. Chem Phys Lipids 2015; 188:61-7. [PMID: 25957868 DOI: 10.1016/j.chemphyslip.2015.05.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 04/28/2015] [Accepted: 05/04/2015] [Indexed: 10/23/2022]
Abstract
Phase behavior and structural properties were examined for phospholipid bilayers having different headgroups (DMPC, DMPS and DMPE) with added n-alkanes to study effect of flexible additives. Change in the temperatures of main transition of the lipid/alkane mixtures against the length of added alkanes depends largely on the headgroup. Theoretical analysis of the change of the temperature of transition indicates that the headgroup dependence is dominantly originated in the strong dependence of total enthalpy on the headgroups. The results of X-ray diffraction show that the enthalpic stabilization due to enhanced packing of acyl chains of the lipid by alkanes in the gel phase causes the headgroup-dependent change in the phase transition behavior. The enhanced packing in the gel phase also leads to easy emergence of the subgel phase with very short relaxation time at room temperature in the DMPE-based bilayers.
Collapse
Affiliation(s)
- Mafumi Hishida
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
| | - Asami Endo
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
| | - Koyomi Nakazawa
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
| | - Yasuhisa Yamamura
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
| | - Kazuya Saito
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan.
| |
Collapse
|
27
|
Shimokawa N, Nagata M, Takagi M. Physical properties of the hybrid lipid POPC on micrometer-sized domains in mixed lipid membranes. Phys Chem Chem Phys 2015. [DOI: 10.1039/c5cp03377b] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In a DPPC/DOPC/POPC ternary mixture, hybrid lipids are localized at the solid-ordered domain boundary. On the other hand, in a DPPC/DOPC/POPC/Chol four-component mixture, they are included in the liquid-ordered domain and disturb the chain ordering of lipids in the domain.
Collapse
Affiliation(s)
- Naofumi Shimokawa
- School of Materials Science
- Japan Advanced Institute of Science and Technology
- Nomi City
- Japan
| | - Mariko Nagata
- School of Materials Science
- Japan Advanced Institute of Science and Technology
- Nomi City
- Japan
| | - Masahiro Takagi
- School of Materials Science
- Japan Advanced Institute of Science and Technology
- Nomi City
- Japan
| |
Collapse
|
28
|
Yoshida K, Takashima A, Nishio I. Effect of dibucaine hydrochloride on raft-like lipid domains in model membrane systems. MEDCHEMCOMM 2015. [DOI: 10.1039/c5md00108k] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
To clarify the biophysical and/or physicochemical mechanism of anaesthesia, we investigated the influence of dibucaine hydrochloride (DC·HCl), a local anaesthetic, on raft-like domains in ternary liposomes composed of dioleoylphosphatidylcholine (DOPC), dipalmitoylphosphatidylcholine (DPPC) and cholesterol (Chol).
Collapse
Affiliation(s)
- Kazunari Yoshida
- New Industry Creation Hatchery Center
- Tohoku University
- 6-6-10 Aoba
- Aoba-ku
- Japan
| | - Akito Takashima
- Department of Physics and Mathematics
- College of Science and Engineering
- Aoyama Gakuin University
- 5-10-1 Fuchinobe
- Sagamihara
| | - Izumi Nishio
- Department of Physics and Mathematics
- College of Science and Engineering
- Aoyama Gakuin University
- 5-10-1 Fuchinobe
- Sagamihara
| |
Collapse
|
29
|
Plaunt AJ, Harmatys KM, Hendrie KA, Musso AJ, Smith BD. Chemically triggered release of 5-aminolevulinic acid from liposomes. RSC Adv 2014; 4:57983-57990. [PMID: 25414791 PMCID: PMC4233679 DOI: 10.1039/c4ra10340h] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
5-Aminolevulinic acid (5-ALA), a prodrug of Protoporphyrin IX (PpIX), is used for photodynamic therapy of several medical conditions, and as an adjunct for fluorescence guided surgery. The clinical problem of patient photosensitivity after systemic administration could likely be ameliorated if the 5-ALA was delivered more selectivity to the treatment site. Liposomal formulations are inherently attractive as targeted delivery vehicles but it is hard to regulate the spatiotemporal release of aqueous contents from a liposome. Here, we demonstrate chemically triggered leakage of 5-ALA from stealth liposomes in the presence of cell culture. The chemical trigger is a zinc(II)-dipicolylamine (ZnBDPA) coordination complex that selectively targets liposome membranes containing a small amount of anionic phosphatidylserine. Systematic screening of several ZnBDPA complexes uncovered a compound with excellent performance in biological media. Cell culture studies showed triggered release of 5-ALA from stealth liposomes followed by uptake into neighboring mammalian cells and intracellular biosynthesis to form fluorescent PpIX.
Collapse
Affiliation(s)
- Adam J Plaunt
- Department of Chemistry and Biochemistry, 236 Nieuwland Science Hall, University of Notre Dame, Notre Dame, 46556 IN, USA
| | - Kara M Harmatys
- Department of Chemistry and Biochemistry, 236 Nieuwland Science Hall, University of Notre Dame, Notre Dame, 46556 IN, USA
| | - Kyle A Hendrie
- Department of Chemistry and Biochemistry, 236 Nieuwland Science Hall, University of Notre Dame, Notre Dame, 46556 IN, USA
| | - Anthony J Musso
- Department of Chemistry and Biochemistry, 236 Nieuwland Science Hall, University of Notre Dame, Notre Dame, 46556 IN, USA
| | - Bradley D Smith
- Department of Chemistry and Biochemistry, 236 Nieuwland Science Hall, University of Notre Dame, Notre Dame, 46556 IN, USA
| |
Collapse
|
30
|
Himeno H, Shimokawa N, Komura S, Andelman D, Hamada T, Takagi M. Charge-induced phase separation in lipid membranes. SOFT MATTER 2014; 10:7959-67. [PMID: 25154325 DOI: 10.1039/c4sm01089b] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Phase separation in lipid bilayers that include negatively charged lipids is examined experimentally. We observed phase-separated structures and determined the membrane miscibility temperatures in several binary and ternary lipid mixtures of unsaturated neutral lipid, dioleoylphosphatidylcholine (DOPC), saturated neutral lipid, dipalmitoylphosphatidylcholine (DPPC), unsaturated charged lipid, dioleoylphosphatidylglycerol (DOPG((-))), saturated charged lipid, dipalmitoylphosphatidylglycerol (DPPG((-))), and cholesterol. In binary mixtures of saturated and unsaturated charged lipids, the combination of the charged head with the saturation of the hydrocarbon tail is a dominant factor in the stability of membrane phase separation. DPPG((-)) enhances phase separation, while DOPG((-)) suppresses it. Furthermore, the addition of DPPG((-)) to a binary mixture of DPPC/cholesterol induces phase separation between DPPG((-))-rich and cholesterol-rich phases. This indicates that cholesterol localization depends strongly on the electric charge on the hydrophilic head group rather than on the ordering of the hydrocarbon tails. Finally, when DPPG((-)) was added to a neutral ternary system of DOPC/DPPC/cholesterol (a conventional model of membrane rafts), a three-phase coexistence was produced. We conclude by discussing some qualitative features of the phase behaviour in charged membranes using a free energy approach.
Collapse
Affiliation(s)
- Hiroki Himeno
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan.
| | | | | | | | | | | |
Collapse
|
31
|
Pataraia S, Liu Y, Lipowsky R, Dimova R. Effect of cytochrome c on the phase behavior of charged multicomponent lipid membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:2036-45. [DOI: 10.1016/j.bbamem.2014.04.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 04/14/2014] [Accepted: 04/18/2014] [Indexed: 11/25/2022]
|
32
|
Yoshida K, Horii K, Fujii Y, Nishio I. Real-time observation of liposome bursting induced by acetonitrile. Chemphyschem 2014; 15:2909-12. [PMID: 25065500 DOI: 10.1002/cphc.201402333] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 06/22/2014] [Indexed: 01/26/2023]
Abstract
We show the bursting process of dioleoylphosphatidylcholine (DOPC) liposomes in response to the addition of acetonitrile, a small toxic molecule widely used in the fields of chemistry and industry. The percentage of destroyed liposomes is reduced upon decreasing the acetonitrile fraction in the aqueous solution and vesicle bursting is not observed at volume ratios of 4:6 and below. This indicates that a high fraction of acetonitrile causes the bursting of liposomes, and it is proposed that this occurs through insertion of the molecules into outer leaflet of the lipid bilayer. The elapsed time between initial addition of acetonitrile and liposome bursting at each vesicle is also measured and demonstrated to be dependent on the volume fraction of acetonitrile and the vesicle size.
Collapse
Affiliation(s)
- Kazunari Yoshida
- Department of Physics and Mathematics, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5258 (Japan).
| | | | | | | |
Collapse
|
33
|
Komura S, Andelman D. Physical aspects of heterogeneities in multi-component lipid membranes. Adv Colloid Interface Sci 2014; 208:34-46. [PMID: 24439258 DOI: 10.1016/j.cis.2013.12.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Accepted: 12/07/2013] [Indexed: 01/08/2023]
Abstract
Ever since the raft model for biomembranes has been proposed, the traditional view of biomembranes based on the fluid-mosaic model has been altered. In the raft model, dynamical heterogeneities in multi-component lipid bilayers play an essential role. Focusing on the lateral phase separation of biomembranes and vesicles, we review some of the most relevant research conducted over the last decade. We mainly refer to those experimental works that are based on physical chemistry approach, and to theoretical explanations given in terms of soft matter physics. In the first part, we describe the phase behavior and the conformation of multi-component lipid bilayers. After formulating the hydrodynamics of fluid membranes in the presence of the surrounding solvent, we discuss the domain growth-law and decay rate of concentration fluctuations. Finally, we review several attempts to describe membrane rafts as two-dimensional microemulsion.
Collapse
|
34
|
Blosser MC, Starr JB, Turtle CW, Ashcraft J, Keller SL. Minimal effect of lipid charge on membrane miscibility phase behavior in three ternary systems. Biophys J 2014; 104:2629-38. [PMID: 23790371 DOI: 10.1016/j.bpj.2013.04.055] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2012] [Revised: 03/11/2013] [Accepted: 04/08/2013] [Indexed: 11/15/2022] Open
Abstract
Giant unilamellar vesicles composed of a ternary mixture of phospholipids and cholesterol exhibit coexisting liquid phases over a range of temperatures and compositions. A significant fraction of lipids in biological membranes are charged. Here, we present phase diagrams of vesicles composed of phosphatidylcholine (PC) lipids, which are zwitterionic; phosphatidylglycerol (PG) lipids, which are anionic; and cholesterol (Chol). Specifically, we use DiPhyPG-DPPC-Chol and DiPhyPC-DPPG-Chol. We show that miscibility in membranes containing charged PG lipids occurs over similarly high temperatures and broad lipid compositions as in corresponding membranes containing only uncharged lipids, and that the presence of salt has a minimal effect. We verified our results in two ways. First, we used mass spectrometry to ensure that charged PC/PG/Chol vesicles formed by gentle hydration have the same composition as the lipid stocks from which they are made. Second, we repeated the experiments by substituting phosphatidylserine for PG as the charged lipid and observed similar phenomena. Our results consistently support the view that monovalent charged lipids have only a minimal effect on lipid miscibility phase behavior in our system.
Collapse
Affiliation(s)
- Matthew C Blosser
- Departments of Chemistry and Physics, University of Washington, Seattle, Washington, USA
| | | | | | | | | |
Collapse
|
35
|
Caruso B, Villarreal M, Reinaudi L, Wilke N. Inter-Domain Interactions in Charged Lipid Monolayers. J Phys Chem B 2014; 118:519-29. [DOI: 10.1021/jp408053a] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Benjamín Caruso
- Centro de Investigaciones en Química Biológica de Córdoba
(CIQUIBIC), Dpto. de Química Biológica, and ‡Instituto de Investigaciones
en Físico-Química de Córdoba (INFIQC), Dpto.
de Matemática y Física, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Pabellón Argentina, Ciudad Universitaria, X5000HUA Córdoba, Argentina
| | - Marcos Villarreal
- Centro de Investigaciones en Química Biológica de Córdoba
(CIQUIBIC), Dpto. de Química Biológica, and ‡Instituto de Investigaciones
en Físico-Química de Córdoba (INFIQC), Dpto.
de Matemática y Física, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Pabellón Argentina, Ciudad Universitaria, X5000HUA Córdoba, Argentina
| | - Luis Reinaudi
- Centro de Investigaciones en Química Biológica de Córdoba
(CIQUIBIC), Dpto. de Química Biológica, and ‡Instituto de Investigaciones
en Físico-Química de Córdoba (INFIQC), Dpto.
de Matemática y Física, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Pabellón Argentina, Ciudad Universitaria, X5000HUA Córdoba, Argentina
| | - Natalia Wilke
- Centro de Investigaciones en Química Biológica de Córdoba
(CIQUIBIC), Dpto. de Química Biológica, and ‡Instituto de Investigaciones
en Físico-Química de Córdoba (INFIQC), Dpto.
de Matemática y Física, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Pabellón Argentina, Ciudad Universitaria, X5000HUA Córdoba, Argentina
| |
Collapse
|
36
|
Plaunt AJ, Courbanou MB, Cuison KD, Harmatys KM, Smith BD. Selective non-covalent triggered release from liposomes. Chem Commun (Camb) 2012; 48:8123-5. [PMID: 22772732 PMCID: PMC3417318 DOI: 10.1039/c2cc32962j] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A zinc(II)-dipicolylamine coordination complex selectively associates with anionic liposomes, including sterically protected PEGylated liposomes, and causes rapid leakage of encapsulated contents.
Collapse
Affiliation(s)
| | | | | | | | - Bradley D. Smith
- Department of Chemistry and Biochemistry, 236 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN, USA
| |
Collapse
|
37
|
Ito H, Yanagisawa M, Ichikawa M, Yoshikawa K. Emergence of a thread-like pattern with charged phospholipids on an oil/water interface. J Chem Phys 2012; 136:204903. [DOI: 10.1063/1.4722079] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
38
|
Wilke N, Maggio B. Electrostatic field effects on membrane domain segregation and on lateral diffusion. Biophys Rev 2011; 3:185-192. [PMID: 28510045 DOI: 10.1007/s12551-011-0057-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Accepted: 08/20/2011] [Indexed: 12/17/2022] Open
Abstract
Natural membranes are organized structures of neutral and charged molecules bearing dipole moments which generate local non-homogeneous electric fields. When subjected to such fields, the molecules experience net forces that can modify the lipid and protein organization, thus modulating cell activities and influencing (or even dominating) the biological functions. The energetics of electrostatic interactions in membranes is a long-range effect which can vary over distance within r-1 to r-3. In the case of a dipole interacting with a plane of dipoles, e.g. a protein interacting with a lipid domain, the interaction is stronger than two punctual dipoles and depends on the size of the domain. In this article, we review several contributions on how electrostatic interactions in the membrane plane can modulate the phase behavior, surface topography and mechanical properties in monolayers and bilayers.
Collapse
Affiliation(s)
- Natalia Wilke
- Centro de Investigaciones de Química Bológica de Córdoba (CIQUIBIC-CONICET), Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina. .,CIQUIBIC, Dpto. de Química Biológica, Fac. de Cs. Químicas, UNC, Pabellón Argentina, Ciudad Universitaria, X5000HUA, Córdoba, Argentina.
| | - Bruno Maggio
- Centro de Investigaciones de Química Bológica de Córdoba (CIQUIBIC-CONICET), Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
39
|
Shimokawa N, Komura S, Andelman D. Charged bilayer membranes in asymmetric ionic solutions: phase diagrams and critical behavior. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 84:031919. [PMID: 22060415 DOI: 10.1103/physreve.84.031919] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Indexed: 05/31/2023]
Abstract
We consider the phase separation in an asymmetrically charged lipid bilayer membrane consisting of neutral and negatively charged lipids that are in contact with in and out ionic solutions having different ionic strengths. The two asymmetric leaflets are coupled through electrostatic interactions. Based on a free-energy approach, the critical point and phase diagrams are calculated for different ionic strengths of the two solutions and coupling parameter. An increase of the coupling constant or asymmetry in the salt concentration between the in and out solutions yields a higher phase-separation temperature because of electrostatic interactions. As a consequence, the phase-coexistence region increases for strong screening (small Debye length). Finally, possible three-phase coexistence regions in the phase diagram are predicted.
Collapse
Affiliation(s)
- Naofumi Shimokawa
- Institute of Industrial Science, University of Tokyo, Tokyo 153-8505, Japan.
| | | | | |
Collapse
|