1
|
Farhangnia I, Bigham-Sadegh A, Tabatabaei Naeini A, Sharifi Yazdi H. Comparative effectiveness of bone, cartilage and osteochondral xenograft (calf fetal) on healing of the critical bone defect in a rabbit model. Injury 2025; 56:112347. [PMID: 40294452 DOI: 10.1016/j.injury.2025.112347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 03/25/2025] [Accepted: 04/13/2025] [Indexed: 04/30/2025]
Abstract
Finding a suitable replacement tissue for bone loss in comminuted fractures and bone tumors with large bone defect or for treatment of delayed unions and non-unions is still the main challenge for orthopedic surgeons. The present study has been designed in vivo to evaluate the effects of xenogenic calf fetal bone and cartilage grafts in treatment of experimental critical bone defect in a rabbit model. 30 native male rabbits, 12 months old, weighing 3.0±0.5 kg were used in this study. Rabbits were randomly divided into five groups of six (negative control (NC), osteochondral group (OstCar), bone group (Ost), cartilage group (Car), and positive control (PC)). In the NC group the created empty space was left intact. In the OstCar group the osteochondral fragment of the same size as the expulsion was inserted into place. In the Ost group, the bone fragment of the fetal calf replaced the extracted bone fragment from the radius bone. The created defects were filled in 6 rabbits of the Car group with cartilage fragments of the fetal calf. In the PC group, after separating the fragment of radius bone midsection and removing from the site, it was re-placed at the site. This study investigated three types of replacement tissue for the missing bone and compared the results of radiology, CT scan, biomechanics and histopathology evaluations with positive and negative control groups. In conclusion, this study demonstrated that the calf's fetal bone fragment could promote bone regeneration in the long bone defects like the autograft in the rabbit model.
Collapse
Affiliation(s)
- Iman Farhangnia
- Department of Clinical Science, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Amin Bigham-Sadegh
- Department of Clinical Science, School of Veterinary Medicine, Shiraz University, Shiraz, Iran.
| | | | - Hassan Sharifi Yazdi
- Department of Clinical Science, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| |
Collapse
|
2
|
Puthillam U, Selvam RE. A numerical study on mechanical and permeability properties of novel design additive manufactured Titanium based metal matrix composite bone scaffold for bone tissue engineering. J Biomater Appl 2025:8853282251333237. [PMID: 40233186 DOI: 10.1177/08853282251333237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
A novel design was developed for extrusion based additive manufacturing (robocasting) of bone scaffolds and a numerical study was carried out to find the optimal design to develop a bone scaffold for critical bone defect treatments. Initially, Representative Volume Analysis (RVE) analysis was carried out to predict the Young's modulus (E) of Titanium + Calcium Silicate and Titanium + Hydroxyapatite composites. The RVE analysis outputs were used to find out the E value of various bone scaffold designs and material compositions. The novel stepped design could be used to tailor the mechanical and biological properties of the scaffold by altering the contact support area between strands and changing the pore size, shape and orientation to control the permeability and nutrient transportation. The test revealed that some of the designed scaffolds are suitable for developing scaffolds for cortical bone defects as the E value lies between 10 and 30 GPa. The CFD analysis indicated that some designs do not possess the permeability required for a scaffold to aid nutrient transportation which is ideally between 1.5 × 10-9 and 5 × 10-8 m2. A sample model was printed and sintered in an argon atmosphere using a microwave furnace to check the feasibility of the process.
Collapse
Affiliation(s)
- Umanath Puthillam
- School of Mechanical Engineering, Vellore Institute of Technology (VIT), Vellore, India
| | - Renold Elsen Selvam
- School of Mechanical Engineering, Vellore Institute of Technology (VIT), Vellore, India
| |
Collapse
|
3
|
Parsaei H, Gorgich EAC, Eateghadi A, Tavakoli N, Ground M, Hosseini S. Acceleration of bone healing by a growth factor-releasing allo-hybrid graft. Tissue Cell 2025; 93:102740. [PMID: 39864209 DOI: 10.1016/j.tice.2025.102740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 01/05/2025] [Accepted: 01/10/2025] [Indexed: 01/28/2025]
Abstract
INTRODUCTION Human amniotic membrane (hAM) has a highly biocompatible natural scaffold that is abundant in several extracellular matrix (ECM) components, including but not limited to platelet-derived growth factor (PDGF), transforming growth factor (TGF), and fibroblast growth factor (FGF). In our study, we have focused on a mixture of hAM and demineralized bone matrix (DBM) as an allo-hybrid graft to deliver it into the site of bone defect to decrease bone remodeling time. METHODS Allo-hybrid grafts were prepared by coating the jelly made of decellularized and lyophilized hAM (AMJ) on the surface of DBM and subsequently underwent in vitro studies, such as alkaline phosphatase activity, MTT assay, and SEM analysis. Twenty-four male rats were included in the study, and after creating calvarial defects, rats were divided into four groups: DBM implanted, allo-hybrid implanted, AMJ injection, and a negative control (NC). Bone regeneration was assessed using computed tomography (CT scan) and histological analysis at 1, 2, and 3 months after surgery. RESULTS CT scan analysis clearly showed improved new bone growth in the allo-hybrid group compared to the NC group. Also, the Hounsfield unit of the allo-hybrid group (774.91 ± 47.8) after 90 days confirms CT scans. Histological staining revealed immature bone in allo-hybrid and DBM groups, along with the creation of a medullary cavity and bone marrow two months after surgery. Three months after surgery, the allo-hybrid group showed signs of new, mature bone, while no sign of healing could be seen in the NC group at any time points. Over a 90-day period, the allo-hybrid group recovered the bone defect area near 90 %. It is relatively twice as much as AMJ group. CONCLUSION Histological properties of bone defects and bone regeneration can both be improved by allo-hybrid grafts coated with AMJ.
Collapse
Affiliation(s)
- Houman Parsaei
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | | | - Abdollsamad Eateghadi
- Department of Biology and Anatomical Sciences, School of Medicine Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Narjes Tavakoli
- School of Industrial Design, College of Fine Arts, University of Tehran, Tehran 1415564583, Iran
| | - Marcus Ground
- Department of Medicine, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - SeyedJamal Hosseini
- Biomedical Engineering Department, Amirkabir University of Technology, Tehran 159163-4311, Iran.
| |
Collapse
|
4
|
Tanideh N, Sarikhani M, Emami M, Alipanah M, Mohammadi Y, Mokhtarzadegan M, Jamshidzadeh A, Zare S, Daneshi S, Feiz A, Irajie C, Iraji A. Fabrication of porous collagen-stem cells-dexamethasone scaffold as a novel approach for regeneration of mandibular bone defect. Oral Maxillofac Surg 2025; 29:65. [PMID: 40072639 DOI: 10.1007/s10006-025-01353-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 02/13/2025] [Indexed: 03/18/2025]
Abstract
BACKGROUND Bone defects, particularly in the mandible, pose significant clinical challenges due to the limited regenerative capacity. Effective bone tissue engineering requires biomaterials that promote both osteogenesis and angiogenesis. This study developed an optimized collagen-nano hydroxyapatite scaffold loaded with dexamethasone and stem cells to enhance bone regeneration. METHODS The scaffold was fabricated using the freeze-dryer method. Characterization was performed using Fourier Transform Infrared Spectroscopy (FTIR), energy-dispersive X-ray (EDX) analysis, and scanning electron microscopy (SEM). Wharton's jelly-derived mesenchymal stem cells (WJ-MSCs) were incorporated into the scaffold, and in vitro and in vivo assessments were conducted. RESULTS FTIR and EDX analyses confirmed the successful incorporation of nano-hydroxyapatite and dexamethasone. SEM revealed an interconnected porous structure with an average pore size of 28.55 µm. The scaffold loaded with WJ-MSCs significantly enhanced osteocyte and osteoblast populations, leading to improved mandibular bone formation. Histopathological evaluations demonstrated superior osteogenesis and angiogenesis. CONCLUSION The developed porous nanohybrid scaffold shows potential as a promising biomaterial for bone tissue engineering applications.
Collapse
Affiliation(s)
- Nader Tanideh
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mobina Sarikhani
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mina Emami
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Yasaman Mohammadi
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Akram Jamshidzadeh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shahrokh Zare
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sajad Daneshi
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Feiz
- Department of Material Science and Engineering, Shiraz University, Shiraz, Iran
| | - Cambyz Irajie
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Aida Iraji
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Research Center for Traditional Medicine and History of Medicine, Department of Persian Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
5
|
Hoveidaei AH, Sadat-Shojai M, Nabavizadeh SS, Niakan R, Shirinezhad A, MosalamiAghili S, Tabaie S. Clinical challenges in bone tissue engineering - A narrative review. Bone 2025; 192:117363. [PMID: 39638083 DOI: 10.1016/j.bone.2024.117363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/23/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
Bone tissue engineering (BTE) has emerged as a promising approach to address large bone defects caused by trauma, infections, congenital malformations, and tumors. This review focuses on scaffold design, cell sources, growth factors, and vascularization strategies, highlighting their roles in developing effective treatments. We explore the complexities of balancing mechanical properties, porosity, and biocompatibility in scaffold materials, alongside optimizing mesenchymal stem cell delivery methods. The critical role of growth factors in bone regeneration and the need for controlled release systems are discussed. Vascularization remains a significant hurdle, with strategies such as angiogenic factors, co-culture systems, and bioprinting under investigation. Mechanical challenges, tissue responses, and inflammation management are examined, alongside gene therapy's potential for enhancing osteogenesis and angiogenesis via both viral and non-viral delivery methods. The review emphasizes the impact of patient-specific factors on bone healing outcomes and the importance of personalized approaches. Future directions are described, emphasizing the necessity of interdisciplinary cooperation to advance the field of BTE and convert laboratory results into clinically feasible solutions.
Collapse
Affiliation(s)
- Amir Human Hoveidaei
- International Center for Limb Lengthening, Rubin Institute for Advanced Orthopedics, Sinai Hospital of Baltimore, Baltimore, MD, USA.
| | - Mehdi Sadat-Shojai
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz, Iran.
| | - Sara S Nabavizadeh
- Otolaryngology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Niakan
- Student Research Committee, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | | | - Sean Tabaie
- Department of Orthopaedic Surgery, Nationwide Children's Hospital, Columbus, OH, USA
| |
Collapse
|
6
|
Chen J. Comparative Insights into Bone Substitutes for Two-Stage Maxillary Sinus Floor Elevation: A Bayesian Network Approach. Tissue Eng Part C Methods 2025; 31:130-141. [PMID: 40062553 DOI: 10.1089/ten.tec.2025.0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025] Open
Abstract
To investigate the histomorphometric performance of two-stage maxillary sinus floor elevation (TMSFE) with various bone substitutes in the treatment of atrophic posterior maxilla. Four databases (PubMed, Embase, Web of Science, and The Cochrane Library) were searched from the beginning of database establishment to August 8, 2023. The included articles were limited to the English language. A systematic search was performed to identify randomized controlled trials assessing the histological performance of various biomaterials in TMSFE with a follow-up of 5-8 months. The main outcome was an area of new bone, and an additional outcome was residual graft material. Extracted data were analyzed by using a Bayesian approach (the Markov chain Monte Carlo) to establish ranks of various biomaterials in R language. Finally, the search identified 22 studies that reported 22 trials on bone area (17 kinds of biomaterials) and 12 studies on residual graft materials (12 kinds of biomaterials) after the exclusion of one study disconnected from the network plot. No local inconsistency could be found in studies regarding bone formation, while no closed loop was detected in residual graft material. The top 3 probabilities of biomaterials in terms of bone formation were Allograft + Xenograft (AG + X) (87.14%), X + Polymer (75.69%), and Autogenous Bone + Bioactive Glass (AB + BG) (71.44%). AG + X had the highest probability (87.14%) of being the most optimal treatment for bone formation. Biphasic calcium phosphate + Fibrin sealant (BCP + FS) was ranked as the slowest absorbing biomaterial (78.27%) in TMSFE. Within the limitations of the current network meta-analysis, AG + X may represent an optimal biomaterial for bone formation in TMSFE. The use of X in combination with other biomaterials demonstrates superior osteogenic effects in TMSFE. BCP + FS exhibited strong mechanical properties during a short-term observational period. The present findings suggest that AB is not the only feasible standard for bone grafts.
Collapse
Affiliation(s)
- Jiayi Chen
- Department of Stomatology, Suzhou Wujiang District Hospital of Traditional Chinese Medicine, Suzhou, China
| |
Collapse
|
7
|
Kalle F, Stadler VP, Brach JK, Grote VF, Pohl C, Schulz K, Seidenstuecker M, Jonitz-Heincke A, Bader R, Mlynski R, Strüder D. High hydrostatic pressure treatment for advanced tissue grafts in reconstructive head and neck surgery. J Biomed Mater Res A 2025; 113:e37791. [PMID: 39295278 DOI: 10.1002/jbm.a.37791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/19/2024] [Accepted: 08/23/2024] [Indexed: 09/21/2024]
Abstract
The increasing importance of regenerative medicine has resulted in a growing need for advanced tissue replacement materials in head and neck surgery. Allo- and xenogenic graft processing is often time-consuming and can deteriorate the extracellular matrix (ECM). High hydrostatic pressure (HHP)-treatment could allow specific devitalization while retaining the essential properties of the ECM. Porcine connective tissue and cartilage were HHP-treated at 100-400 MPa for 10 min. Structural modifications following HHP-exposure were examined using electron microscopy, while devitalization was assessed through metabolism and cell death analyses. Furthermore, ECM alterations and decellularization were evaluated by histology, biomechanical testing, and DNA content analysis. Additionally, the inflammatory potential of HHP-treated tissue was evaluated in vivo using a dorsal skinfold chamber in a mouse model. The devitalization effects of HHP were dose-dependent, with a threshold identified at 200 MPa for fibroblasts and chondrocytes. At this pressure level, HHP induced structural alterations in cells, with a shift toward late-stage apoptosis. HHP-treatment preserved ECM structure and biomechanical properties, but did not remove cell debris from the tissue. This study observed a pressure-dependent increase of markers suggesting the occurrence of immunogenic cell death. In vivo investigations revealed an absence of inflammatory responses to HHP-treated tissue, indicating a favorable biological response to HHP. In conclusion, application of HHP devitalizes fibroblasts and chondrocytes at 200 MPa while retaining the essential properties of the ECM. Prospectively, HHP may simplify the preparation of allo- and xenogenic tissue replacement materials and increase the availability of grafts in head and neck surgery.
Collapse
Affiliation(s)
- Friederike Kalle
- Department of Otorhinolaryngology, Head and Neck Surgery "Otto Körner", Rostock University Medical Center, Rostock, Germany
| | - Valentin Paul Stadler
- Department of Otorhinolaryngology, Head and Neck Surgery "Otto Körner", Rostock University Medical Center, Rostock, Germany
| | - Julia Kristin Brach
- Department of Otorhinolaryngology - Head and Neck Surgery, RWTH Aachen University Hospital, Aachen, Germany
| | - Vivica Freiin Grote
- Research Laboratory for Biomechanics and Implant Technology, Department of Orthopedics, Rostock University Medical Center, Rostock, Germany
| | - Christopher Pohl
- Department of General Surgery, Visceral, Thoracic and Vascular Surgery, University Medical Center Greifswald, Greifswald, Germany
| | - Karoline Schulz
- Medical Biology and Electron Microscopy Center, Rostock University Medical Center, Rostock, Germany
| | - Michael Seidenstuecker
- G.E.R.N. Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Medical Center-Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Anika Jonitz-Heincke
- Research Laboratory for Biomechanics and Implant Technology, Department of Orthopedics, Rostock University Medical Center, Rostock, Germany
| | - Rainer Bader
- Research Laboratory for Biomechanics and Implant Technology, Department of Orthopedics, Rostock University Medical Center, Rostock, Germany
| | - Robert Mlynski
- Department of Otorhinolaryngology, Head and Neck Surgery "Otto Körner", Rostock University Medical Center, Rostock, Germany
| | - Daniel Strüder
- Department of Otorhinolaryngology, Head and Neck Surgery "Otto Körner", Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
8
|
Wa Q, Luo Y, Tang Y, Song J, Zhang P, Linghu X, Lin S, Li G, Wang Y, Wen Z, Huang S, Xu W. Mesoporous bioactive glass-enhanced MSC-derived exosomes promote bone regeneration and immunomodulation in vitro and in vivo. J Orthop Translat 2024; 49:264-282. [PMID: 39524151 PMCID: PMC11550139 DOI: 10.1016/j.jot.2024.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/08/2024] [Accepted: 09/23/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Exosomes produced by mesenchymal stem cells (MSCs) have vascular generative properties and are considered new effective candidates for the treatment of bone defects as alternatives to cell therapy. Improving the pro-regenerative function and efficacy of exosomes has been a popular research topic in the field of orthopaedics. METHODS We prepared mesoporous bioactive glass (mBG) microspheres via the template method. The ionic products of mBGs used to treat MSCs were extracted, and the effects of exosomes secreted by MSCs on osteoblast (OB) and macrophage (MP) behaviour and bone defect repair were observed in vivo (Micro-CT, H&E, Masson, and immunofluorescence staining for BMP2, COL1, VEGF, CD31, CD163, and iNOS). RESULTS The mBG spheres were successfully prepared, and the Exo-mBG were isolated and extracted. Compared with those in the blank and Exo-Con groups, the proliferation and osteogenic differentiation of OBs in the Exo-mBG group were significantly greater. For example, on Day 7, OPN gene expression in the Ctrl-Exo group was 3.97 and 2.83 times greater than that in the blank and Exo-mBG groups, respectively. In a cranial defect rat model, Exo-mBG promoted bone tissue healing and angiogenesis, increased M2 macrophage polarisation and inhibited M1 macrophage polarisation, as verified by micro-CT, H&E staining, Masson staining and immunofluorescence staining. These effects may be due to the combination of a higher silicon concentration and a higher calcium-to-phosphorus ratio in the mBG ionic products. CONCLUSION This study provides insights for the application of exosomes in cell-free therapy and a new scientific basis and technical approach for the utilisation of MSC-derived exosomes in bone defect repair. THE TRANSLATIONAL POTENTIAL OF THIS ARTICLE Our study demonstrated that exosomes produced by mBG-stimulated MSCs have excellent in vitro and in vivo bone-enabling and immunomodulatory functions and provides insights into the use of exosomes in clinical cell-free therapies.
Collapse
Affiliation(s)
- Qingde Wa
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China. Intersection of Xinlong Avenue and Xinpu Avenue, Honghuagang District, Zunyi, Guizhou, 563000, China
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, No.10 Shiliugang Road, Jianghai Avenue Central, Haizhu District, Guangzhou, Guangdong, 510316, China
| | - Yongxiang Luo
- Marshall Biomedical Engineering Laboratory, Shenzhen University, No. 3688 Nanhai Avenue, Nanshan District, Shenzhen, Guangdong, 518060, China
| | - Yubo Tang
- Department of Pharmacy, The First Affiliated Hospital of Sun Yat-sen University, No.58 Zhongshan Second Road, Guangzhou, Guangdong, 510080, China
| | - Jiaxiang Song
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China. Intersection of Xinlong Avenue and Xinpu Avenue, Honghuagang District, Zunyi, Guizhou, 563000, China
| | - Penghui Zhang
- Department of Orthopaedics, Seventh Affiliated Hospital of Sun Yat-sen University, No. 628, Zhenyuan Road, Xinhu Street, Guangming District, Shenzhen, Guangdong, 518107, China
| | - Xitao Linghu
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China. Intersection of Xinlong Avenue and Xinpu Avenue, Honghuagang District, Zunyi, Guizhou, 563000, China
| | - Sien Lin
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
- Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Gang Li
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
- Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Yixiao Wang
- Department of Orthopaedic Surgery, The Third Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China, No. 98 Fenghuang North Road, Huichuan District, Zunyi City, Guizhou, 563002, China
| | - Zhenyu Wen
- Zunyi Medical University, No. 1 Campus, Xinpu New District, Zunyi City, Guizhou, 563000, China
| | - Shuai Huang
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Guangzhou Medical University, No. 250 Changgang East Road, Haizhu District, Guangzhou, Guangdong, 510260, China
| | - Weikang Xu
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, No.10 Shiliugang Road, Jianghai Avenue Central, Haizhu District, Guangzhou, Guangdong, 510316, China
- National Engineering Research Center for Healthcare Devices, Guangdong Key Lab of Medical Electronic Instruments and Polymer Material Products, Guangdong Institute of Medical Instruments, No. 1307 Guangzhou Avenue Central, Tianhe District, Guangzhou, Guangdong, 510500, China
- Guangdong Chinese Medicine Intelligent Diagnosis and Treatment Engineering Technology Research Center, No. 10 Shiliugang Road, Jianghai Avenue Central, Haizhu District, Guangzhou, Guangdong, 510316, China
| |
Collapse
|
9
|
Evrard R, Manon J, Maistriaux L, Fievé L, Darius T, Cornu O, Lengelé B, Schubert T. Enhancing the biological integration of massive bone allografts: A porcine preclinical in vivo pilot-study. Bone 2024; 187:117213. [PMID: 39084545 DOI: 10.1016/j.bone.2024.117213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/02/2024] [Accepted: 07/23/2024] [Indexed: 08/02/2024]
Abstract
Critical bone loss can have several origins: infections, tumors or trauma. Therefore, massive bone allograft can be a solution for limb salvage. Such a biological reconstruction should have the ideal biomechanical qualities. However, their complication rate remains too high. Perfusion-decellularization of massive allografts could promote the vitality of these grafts, thereby improving their integration and bone remodeling. Three perfusion-decellularized massive bone allografts were compared to 3 fresh frozen massive bone allografts in a preclinical in vivo porcine study using an orthopedic surgery model. Three pigs each underwent a critical diaphyseal femoral defects followed by an allogeneic intercalary femoral graft on their both femurs (one decellularized and one conventional fresh frozen as "native") to reconstruct the defect. Clinical imaging was performed over 3 months of follow-up. The grafts were then explanted and examined by non-decalcified histology, fluoroscopic microscopy and immunohistochemistry. Bone consolidation was achieved in both groups at the same time. However, the volume of bone callus appeared to be greater in the decellularized group. Histology demonstrated a superior bone remodeling in the decellularized group, with a higher number of osteoclasts (p < 0.001) and larger areas of osteoid matrix and newly formed bone as compared to the "native" group. Immunohistochemistry showed a superior vitality and remodeling in both the cortical and medullary cavities for osteocalcin (p < 0.001), Ki67 (p < 0.001), CD3 (p < 0.001) and α-SMA (p < 0.001) as compared the "native" group. Three months after implantation, the decellularized grafts were proven to be biologically more active compared to native grafts. Fluoroscopic microscopy revealed more ossification fronts in the depth of the decellularized grafts (p = 0.021). This pilot study provides the first in vivo demonstration on the enhanced biological capacities of massive bone allograft decellularized by perfusion as compared to conventional massive bone allografts.
Collapse
Affiliation(s)
- Robin Evrard
- Institut de Recherche Expérimentale et Clinique, Neuro Musculo-Skeletal Lab, Université Catholique de Louvain, Avenue E. Mounier, 52-B1.52.04 - 1200, Bruxelles, Belgium; Institut de Recherche Expérimentale et Clinique, Pôle Chirurgie Expérimentale et Transplantation, Université Catholique de Louvain, Avenue E. Mounier, 52-B1.52.04 - 1200, Bruxelles, Belgium; Service de Chirurgie Orthopédique et Traumatologique, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10-1200, Bruxelles, Belgium; Unité de Thérapie Tissulaire et Cellulaire de l'Appareil Locomoteur, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10-1200, Bruxelles, Belgium.
| | - Julie Manon
- Institut de Recherche Expérimentale et Clinique, Neuro Musculo-Skeletal Lab, Université Catholique de Louvain, Avenue E. Mounier, 52-B1.52.04 - 1200, Bruxelles, Belgium; Service de Chirurgie Orthopédique et Traumatologique, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10-1200, Bruxelles, Belgium; Institut de Recherche Expérimentale et Clinique, Pôle Morphologie, Université Catholique de Louvain, Avenue E. Mounier, 52-B1.52.04 - 1200, Bruxelles, Belgium; Unité de Thérapie Tissulaire et Cellulaire de l'Appareil Locomoteur, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10-1200, Bruxelles, Belgium
| | - Louis Maistriaux
- Institut de Recherche Expérimentale et Clinique, Pôle Chirurgie Expérimentale et Transplantation, Université Catholique de Louvain, Avenue E. Mounier, 52-B1.52.04 - 1200, Bruxelles, Belgium; Institut de Recherche Expérimentale et Clinique, Pôle Morphologie, Université Catholique de Louvain, Avenue E. Mounier, 52-B1.52.04 - 1200, Bruxelles, Belgium
| | - Lies Fievé
- Institut de Recherche Expérimentale et Clinique, Pôle Morphologie, Université Catholique de Louvain, Avenue E. Mounier, 52-B1.52.04 - 1200, Bruxelles, Belgium
| | - Tom Darius
- Institut de Recherche Expérimentale et Clinique, Pôle Chirurgie Expérimentale et Transplantation, Université Catholique de Louvain, Avenue E. Mounier, 52-B1.52.04 - 1200, Bruxelles, Belgium; Département de Chirurgie, Chirurgie abdominale et unité de transplantation, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10-1200, Bruxelles, Belgium
| | - Olivier Cornu
- Institut de Recherche Expérimentale et Clinique, Neuro Musculo-Skeletal Lab, Université Catholique de Louvain, Avenue E. Mounier, 52-B1.52.04 - 1200, Bruxelles, Belgium; Service de Chirurgie Orthopédique et Traumatologique, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10-1200, Bruxelles, Belgium; Unité de Thérapie Tissulaire et Cellulaire de l'Appareil Locomoteur, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10-1200, Bruxelles, Belgium
| | - Benoit Lengelé
- Institut de Recherche Expérimentale et Clinique, Pôle Morphologie, Université Catholique de Louvain, Avenue E. Mounier, 52-B1.52.04 - 1200, Bruxelles, Belgium; Service de Chirurgie Plastique, Reconstructrice et Esthétique, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10-1200, Bruxelles, Belgium
| | - Thomas Schubert
- Institut de Recherche Expérimentale et Clinique, Neuro Musculo-Skeletal Lab, Université Catholique de Louvain, Avenue E. Mounier, 52-B1.52.04 - 1200, Bruxelles, Belgium; Service de Chirurgie Orthopédique et Traumatologique, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10-1200, Bruxelles, Belgium; Unité de Thérapie Tissulaire et Cellulaire de l'Appareil Locomoteur, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10-1200, Bruxelles, Belgium
| |
Collapse
|
10
|
Potes MDA, Mitra I, Hanson K, Camilleri ET, Gaihre B, Shafi M, Hamouda A, Lu L, Elder BD. Biodegradable poly(caprolactone fumarate) 3D printed scaffolds for segmental bone defects within the Masquelet technique. J Orthop Res 2024; 42:1974-1983. [PMID: 38522018 PMCID: PMC11931734 DOI: 10.1002/jor.25839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/21/2024] [Accepted: 03/08/2024] [Indexed: 03/25/2024]
Abstract
Segmental bone defects, often clinically treated with nondegradable poly(methylmethacrylate) (PMMA) in multistage surgeries, present a significant clinical challenge. Our study investigated the efficacy of 3D printed biodegradable polycaprolactone fumarate (PCLF)/PCL spacers in a one-stage surgical intervention for these defects, focusing on early bone regeneration influenced by spacer porosities. We compared nonporous PCLF/PCL and PMMA spacers, conventionally molded into cylinders, with porous PCLF/PCL spacers, 3D printed to structurally mimic segmental defects in rat femurs for a 4-week implantation study. Histological analysis, including tissue staining and immunohistochemistry with bone-specific antibodies, was conducted for histomorphometry evaluation. The PCLF/PCL spacers demonstrated compressive properties within 6 ± 0.5 MPa (strength) and 140 ± 15 MPa (modulus). Both porous PCLF/PCL and Nonporous PMMA formed collagen-rich membranes (PCLF/PCL: 92% ± 1.3%, PMMA: 86% ± 1.5%) similar to those induced in the Masquelet technique, indicating PCLF/PCL's potential for one-stage healing. Immunohistochemistry confirmed biomarkers for tissue regeneration, underscoring PCLF/PCL's regenerative capabilities. This research highlights PCLF/PCL scaffolds' ability to induce membrane formation in critical-sized segmental bone defects, supporting their use in one-stage surgery. Both solid and porous PCLF/PCL spacers showed adequate compressive properties, with the porous variants exhibiting BMP-2 expression and woven bone formation, akin to clinical standard PMMA. Notably, the early ossification of the membrane into the pores of porous scaffolds suggests potential for bone interlocking and regeneration, potentially eliminating the need for a second surgery required for PMMA spacers. The biocompatibility and biodegradability of PCLF/PCL make them promising alternatives for treating critical bone defects, especially in vulnerable patient groups.
Collapse
Affiliation(s)
- Maria D. Astudillo Potes
- Mayo Clinic Alix School of Medicine, Rochester, Minnesota, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, Minnesota, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Indranath Mitra
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Kari Hanson
- Department of Neurological Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Emily T. Camilleri
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Bipin Gaihre
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Mahnoor Shafi
- Department of Neurological Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Lichun Lu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Benjamin D. Elder
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
- Department of Neurological Surgery, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
11
|
Han D, Wang W, Gong J, Ma Y, Li Y. Collagen-hydroxyapatite based scaffolds for bone trauma and regeneration: recent trends and future perspectives. Nanomedicine (Lond) 2024; 19:1689-1709. [PMID: 39163266 PMCID: PMC11389751 DOI: 10.1080/17435889.2024.2375958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/28/2024] [Indexed: 08/22/2024] Open
Abstract
Regenerative therapy, a key area of tissue engineering, holds promise for restoring damaged organs, especially in bone regeneration. Bone healing is natural to the body but becomes complex under stress and disease. Large bone deformities pose significant challenges in tissue engineering. Among various methods, scaffolds are attractive as they provide structural support and essential nutrients for cell adhesion and growth. Collagen and hydroxyapatite (HA) are widely used due to their biocompatibility and biodegradability. Collagen and nano-scale HA enhance cell adhesion and development. Thus, nano HA/collagen scaffolds offer potential solutions for bone regeneration. This review focuses on the use and production of nano-sized HA/collagen composites in bone regeneration.
Collapse
Affiliation(s)
- Dong Han
- Department of Trauma Orthopedics, Yantaishan Hospital, Yantai, 264000, China
| | - Weijiao Wang
- Department of Otolaryngology, Yantaishan Hospital, Yantai, 264000, China
| | - Jinpeng Gong
- Department of Trauma Orthopedics, Yantaishan Hospital, Yantai, 264000, China
| | - Yupeng Ma
- Department of Trauma Orthopedics, Yantaishan Hospital, Yantai, 264000, China
| | - Yu Li
- Department of Trauma Orthopedics, Yantaishan Hospital, Yantai, 264000, China
| |
Collapse
|
12
|
Waletzko-Hellwig J, Sass JO, Bader R, Frerich B, Dau M. Evaluation of Integrity of Allogeneic Bone Processed with High Hydrostatic Pressure: A Pilot Animal Study. Biomater Res 2024; 28:0067. [PMID: 39148817 PMCID: PMC11325089 DOI: 10.34133/bmr.0067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 07/29/2024] [Indexed: 08/17/2024] Open
Abstract
Processing of bone allografts with strong acids and γ-sterilization results in decreased biomechanical properties and reduction in osteogenecity and osteoconductivity. High hydrostatic pressure (HHP) treatment could be a gentle alternative to processing techniques usually applied. HHP is known to induce devitalization of cancellous bone while preserving biomechanical stability and molecules that induce cell differentiation. Here, a specific HHP protocol for devitalization of cancellous bone was applied to rabbit femoral bone. Allogeneic bone cylinders were subsequently implanted into a defect in the lateral condyles of rabbit femora and were compared to autologous bone grafts. Analysis of bone integration 4 and 12 weeks postoperatively revealed no differences between autografts and HHP-treated allografts regarding the expression of genes characteristic for bone remodeling, showing expression niveous comparable to original bone cylinder. Furthermore, biomechanical properties were evaluated 12 weeks postoperatively. Autografts and HHP-treated allografts both showed a yield strength ranging between 2 and 2.5 MPa and an average bone mass density of 250 mg/cm2. Furthermore, histological analysis of the region of interest revealed a rate of 5 to 10% BPM-2 and approximately 40% osteocalcin-positive staining, with no marked differences between allografts and autografts demonstrating comparable matrix deposition in the graft region. A suitable graft integrity was pointed out by μCT imaging in both groups, supporting the biomechanical data. In summary, the integrity of HHP-treated cancellous bone allografts showed similar results to untreated autografts. Hence, HHP treatment may represent a gentle and effective alternative to existing processing techniques for bone allografts.
Collapse
Affiliation(s)
- Janine Waletzko-Hellwig
- Department of Oral, Maxillofacial and Plastic Surgery, Rostock University Medical Center, 18057 Rostock, Germany
- Research Laboratory for Biomechanics and Implant Technology, Department of Orthopaedics, Rostock University Medical Center, 18057 Rostock, Germany
| | - Jan-Oliver Sass
- Research Laboratory for Biomechanics and Implant Technology, Department of Orthopaedics, Rostock University Medical Center, 18057 Rostock, Germany
| | - Rainer Bader
- Research Laboratory for Biomechanics and Implant Technology, Department of Orthopaedics, Rostock University Medical Center, 18057 Rostock, Germany
| | - Bernhard Frerich
- Department of Oral, Maxillofacial and Plastic Surgery, Rostock University Medical Center, 18057 Rostock, Germany
| | - Michael Dau
- Department of Oral, Maxillofacial and Plastic Surgery, Rostock University Medical Center, 18057 Rostock, Germany
| |
Collapse
|
13
|
Dorozhkin SV. Calcium Orthophosphate (CaPO4) Containing Composites for Biomedical Applications: Formulations, Properties, and Applications. JOURNAL OF COMPOSITES SCIENCE 2024; 8:218. [DOI: 10.3390/jcs8060218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
The goal of this review is to present a wide range of hybrid formulations and composites containing calcium orthophosphates (abbreviated as CaPO4) that are suitable for use in biomedical applications and currently on the market. The bioactive, biocompatible, and osteoconductive properties of various CaPO4-based formulations make them valuable in the rapidly developing field of biomedical research, both in vitro and in vivo. Due to the brittleness of CaPO4, it is essential to combine the desired osteologic properties of ceramic CaPO4 with those of other compounds to create novel, multifunctional bone graft biomaterials. Consequently, this analysis offers a thorough overview of the hybrid formulations and CaPO4-based composites that are currently known. To do this, a comprehensive search of the literature on the subject was carried out in all significant databases to extract pertinent papers. There have been many formulations found with different material compositions, production methods, structural and bioactive features, and in vitro and in vivo properties. When these formulations contain additional biofunctional ingredients, such as drugs, proteins, enzymes, or antibacterial agents, they offer improved biomedical applications. Moreover, a lot of these formulations allow cell loading and promote the development of smart formulations based on CaPO4. This evaluation also discusses basic problems and scientific difficulties that call for more investigation and advancements. It also indicates perspectives for the future.
Collapse
Affiliation(s)
- Sergey V. Dorozhkin
- Faculty of Physics, M.V. Lomonosov Moscow State University, Leninskie Gory 1-2, Moscow 119991, Russia
| |
Collapse
|
14
|
Zhang Z, Qiu X, Deng C. Application of biomimetic three-dimensional scaffolds in bone tissue repairing. Macromol Res 2024; 32:493-504. [DOI: 10.1007/s13233-024-00253-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/07/2024] [Accepted: 01/30/2024] [Indexed: 01/06/2025]
|
15
|
Hsieh MK, Wang CY, Kao FC, Su HT, Chen MF, Tsai TT, Lai PL. Local application of zoledronate inhibits early bone resorption and promotes bone formation. JBMR Plus 2024; 8:ziae031. [PMID: 38606146 PMCID: PMC11008729 DOI: 10.1093/jbmrpl/ziae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 02/14/2024] [Accepted: 03/03/2024] [Indexed: 04/13/2024] Open
Abstract
Nonunion resulting from early bone resorption is common after bone transplantation surgery. In these patients, instability or osteoporosis causes hyperactive catabolism relative to anabolism, leading to graft resorption instead of fusion. Systemic zoledronate administration inhibits osteoclastogenesis and is widely used to prevent osteoporosis; however, evidence on local zoledronate application is controversial due to osteoblast cytotoxicity, uncontrolled dosing regimens, and local release methods. We investigated the effects of zolendronate on osteoclastogenesis and osteogenesis and explored the corresponding signaling pathways. In vitro cytotoxicity and differentiation of MC3T3E1 cells, rat bone marrow stromal cells (BMSCs) and preosteoclasts (RAW264.7 cells) were evaluated with different zolendronate concentrations. In vivo bone regeneration ability was tested by transplanting different concentrations of zolendronate with β-tricalcium phosphate (TCP) bone substitute into rat femoral critical-sized bone defects. In vitro, zolendronate concentrations below 2.5 × 10-7 M did not compromise viability in the three cell lines and did not promote osteogenic differentiation in MC3T3E1 cells and BMSCs. In RAW264.7 cells, zoledronate inhibited extracellular regulated protein kinases and c-Jun n-terminal kinase signaling, downregulating c-Fos and NFATc1 expression, with reduced expression of fusion-related dendritic cell‑specific transmembrane protein and osteoclast-specific Ctsk and tartrate-resistant acid phosphatase (. In vivo, histological staining revealed increased osteoid formation and neovascularization and reduced fibrotic tissue with 500 μM and 2000 μM zolendronate. More osteoclasts were found in the normal saline group after 6 weeks, and sequential osteoclast formation occurred after zoledronate treatment, indicating inhibition of bone resorption during early callus formation without inhibition of late-stage bone remodeling. In vivo, soaking β-TCP artificial bone with 500 μM or 2000 μM zoledronate is a promising approach for bone regeneration, with potential applications in bone transplantation.
Collapse
Affiliation(s)
- Ming-Kai Hsieh
- Department of Orthopaedic Surgery, Spine Section, Chang Gung Memorial Hospital, Linkou, Taiwan and College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Chi-Yun Wang
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- International Ph.D. Program in Innovative Technology of Biomedical Engineering and Medical Devices, Ming Chi University of Technology, Taishan Dist, New Taipei City 243303, Taiwan
| | - Fu-Cheng Kao
- Department of Orthopaedic Surgery, Spine Section, Chang Gung Memorial Hospital, Linkou, Taiwan and College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Hui-Ting Su
- Department of Orthopaedic Surgery, Spine Section, Chang Gung Memorial Hospital, Linkou, Taiwan and College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Mei-Feng Chen
- Department of Orthopaedic Surgery, Spine Section, Chang Gung Memorial Hospital, Linkou, Taiwan and College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Tsung-Ting Tsai
- Department of Orthopaedic Surgery, Spine Section, Chang Gung Memorial Hospital, Linkou, Taiwan and College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Po-Liang Lai
- Department of Orthopaedic Surgery, Spine Section, Chang Gung Memorial Hospital, Linkou, Taiwan and College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| |
Collapse
|
16
|
Johansson L, Latorre JL, Liversain M, Thorel E, Raymond Y, Ginebra MP. Three-Dimensional Printed Patient-Specific Vestibular Augmentation: A Case Report. J Clin Med 2024; 13:2408. [PMID: 38673680 PMCID: PMC11051386 DOI: 10.3390/jcm13082408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/10/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Background: The anterior maxilla is challenging regarding aesthetic rehabilitation. Current bone augmentation techniques are complex and 3D-printed bioceramic bone grafts can simplify the intervention. Aim: A four-teeth defect in the anterior maxilla was reconstructed with a 3D-printed synthetic patient-specific bone graft in a staged approach for dental implant delivery. Methods: The bone graft was designed using Cone-Beam Computed Tomography (CBCT) images. The bone graft was immobilized with fixation screws. Bone augmentation was measured on CBCT images at 11 days and 8 and 13 months post-surgery. A biopsy sample was retrieved at reentry (10 months post-augmentation) and evaluated by histological and micro-computed tomography assessments. The definitive prosthesis was delivered 5 months post-reentry and the patient attended a visit 1-year post-loading. Results: A total bone width of 8 mm was achieved (3.7 mm horizontal bone gain). The reconstructed bone remained stable during the healing period and was sufficient for placing two dental implants (with an insertion torque > 35 N·cm). The fractions of new bone, bone graft, and soft tissue in the biopsy were 40.77%, 41.51%, and 17.72%, respectively. The histological assessment showed no signs of encapsulation, and mature bone was found in close contact with the graft, indicating adequate biocompatibility and suggesting osteoconductive properties of the graft. At 1-year post-loading, the soft tissues were healthy, and the dental implants were stable. Conclusions: The anterior maxilla's horizontal ridge can be reconstructed using a synthetic patient-specific 3D-printed bone graft in a staged approach for implant placement. The dental implants were stable and successful 1-year post-loading.
Collapse
Affiliation(s)
- Linh Johansson
- Biomaterials, Biomechanics and Tissue Engineering Group (BBT), Department of Materials Science and Engineering, Universitat Politècnica de Catalunya BarcelonaTech (UPC), Av. Eduard Maristany, 16, 08019 Barcelona, Spain;
- Barcelona Research Centre in Multiscale Science and Engineering, Escola d’Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de Catalunya (UPC), Av. Eduard Maristany, 10-14, 08019 Barcelona, Spain
- Biomedical Engineering Research Center (CREB), Universitat Politècnica de Catalunya (UPC), Av. Diagonal, 647, 08028 Barcelona, Spain
- Institut de Recerca Sant Joan de Déu (IRSJD), 39-57, 08950 Esplugues del Llobregat, Spain
- Mimetis Biomaterials S.L., Carrer de Cartagena, 245, 3E, 08025 Barcelona, Spain (Y.R.)
| | - Jose Luis Latorre
- Freelance Implantologist: Oris Dental Center, C. de Joan Güell, 108, 08028 Barcelona, Spain
| | - Margaux Liversain
- Mimetis Biomaterials S.L., Carrer de Cartagena, 245, 3E, 08025 Barcelona, Spain (Y.R.)
| | - Emilie Thorel
- Mimetis Biomaterials S.L., Carrer de Cartagena, 245, 3E, 08025 Barcelona, Spain (Y.R.)
| | - Yago Raymond
- Mimetis Biomaterials S.L., Carrer de Cartagena, 245, 3E, 08025 Barcelona, Spain (Y.R.)
| | - Maria-Pau Ginebra
- Biomaterials, Biomechanics and Tissue Engineering Group (BBT), Department of Materials Science and Engineering, Universitat Politècnica de Catalunya BarcelonaTech (UPC), Av. Eduard Maristany, 16, 08019 Barcelona, Spain;
- Barcelona Research Centre in Multiscale Science and Engineering, Escola d’Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de Catalunya (UPC), Av. Eduard Maristany, 10-14, 08019 Barcelona, Spain
- Biomedical Engineering Research Center (CREB), Universitat Politècnica de Catalunya (UPC), Av. Diagonal, 647, 08028 Barcelona, Spain
- Institute for Bioengineering of Catalonia (IBEC), BIST, Carrer Baldiri Reixac 10-12, 08028 Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
17
|
Hosseini S, Parsaei H, Moosavifar M, Tavakoli N, Ahadi R, Roshanbinfar K. Static magnetic field enhances the bone remodelling capacity of human demineralized bone matrix in a rat animal model of cranial bone defects. J Mater Chem B 2024; 12:3774-3785. [PMID: 38535706 DOI: 10.1039/d3tb02299d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
The regeneration of bone defects that exceed 2 cm is a challenge for the human body, necessitating interventional therapies. Demineralized bone matrices (DBM) derived from biological tissues have been employed for bone regeneration and possess notable osteoinductive and osteoconductive characteristics. Nevertheless, their efficiency in regenerating critically sized injuries is limited, and therefore additional signaling cues are required. Thanks to the piezoelectric properties of the bone, external physical stimulation is shown to accelerate tissue healing. We have implanted human DBM in critically sized cranial bone defects in rat animal models and exposed them to an external magnetic field (1 T) to enhance endogenous bone formation. Our in vitro experiments showed the superior cytocompatibility of DBM compared to cell culture plates. Furthermore, alkaline phosphatase activity after 14 days and Alizarin red staining at 28 days demonstrated differentiation of rat bone marrow mesenchymal stem cells into bone lineage on DBM. Computer tomography images together with histological analyses showed that implanting DBM in the injured rats significantly enhanced bone regeneration. Notably, combining DBM transplantation with a 2 h daily exposure to a 1 T magnetic field for 2 weeks (day 7 to 21 post-surgery) significantly improved bone regeneration compared to DBM transplantation alone. This research indicates that utilizing external magnetic stimulation significantly enhances the potential of bone allografts to regenerate critically sized bone defects.
Collapse
Affiliation(s)
- SeyedJamal Hosseini
- Biomedical Engineering Department, Amirkabir University of Technology, 159163-4311, Tehran, Iran
- Cellular and Molecular Research Center, Faculty of Medicine, Iran University of Medical Sciences, 1449614535, Tehran, Iran
| | - Houman Parsaei
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, 3513138111, Semnan, Iran
| | - MirJavad Moosavifar
- Biomedical Engineering Department, Amirkabir University of Technology, 159163-4311, Tehran, Iran
- Cellular and Molecular Research Center, Faculty of Medicine, Iran University of Medical Sciences, 1449614535, Tehran, Iran
- Institut für experimentelle molekulare Bildgebung, RWTH Aachen University, Aachen 52074, Germany
| | - Narjes Tavakoli
- School of Industrial Design, College of Fine Arts, University of Tehran, 1415564583, Tehran, Iran
| | - Reza Ahadi
- Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, 1449614535, Tehran, Iran
| | - Kaveh Roshanbinfar
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen 91058, Germany.
| |
Collapse
|
18
|
Bauso LV, La Fauci V, Longo C, Calabrese G. Bone Tissue Engineering and Nanotechnology: A Promising Combination for Bone Regeneration. BIOLOGY 2024; 13:237. [PMID: 38666849 PMCID: PMC11048357 DOI: 10.3390/biology13040237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024]
Abstract
Large bone defects are the leading contributor to disability worldwide, affecting approximately 1.71 billion people. Conventional bone graft treatments show several disadvantages that negatively impact their therapeutic outcomes and limit their clinical practice. Therefore, much effort has been made to devise new and more effective approaches. In this context, bone tissue engineering (BTE), involving the use of biomaterials which are able to mimic the natural architecture of bone, has emerged as a key strategy for the regeneration of large defects. However, although different types of biomaterials for bone regeneration have been developed and investigated, to date, none of them has been able to completely fulfill the requirements of an ideal implantable material. In this context, in recent years, the field of nanotechnology and the application of nanomaterials to regenerative medicine have gained significant attention from researchers. Nanotechnology has revolutionized the BTE field due to the possibility of generating nanoengineered particles that are able to overcome the current limitations in regenerative strategies, including reduced cell proliferation and differentiation, the inadequate mechanical strength of biomaterials, and poor production of extrinsic factors which are necessary for efficient osteogenesis. In this review, we report on the latest in vitro and in vivo studies on the impact of nanotechnology in the field of BTE, focusing on the effects of nanoparticles on the properties of cells and the use of biomaterials for bone regeneration.
Collapse
Affiliation(s)
- Luana Vittoria Bauso
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres, 31, 98168 Messina, Italy; (V.L.F.); (C.L.)
| | | | | | - Giovanna Calabrese
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres, 31, 98168 Messina, Italy; (V.L.F.); (C.L.)
| |
Collapse
|
19
|
Naruphontjirakul P, Li M, Boccaccini AR. Strontium and Zinc Co-Doped Mesoporous Bioactive Glass Nanoparticles for Potential Use in Bone Tissue Engineering Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:575. [PMID: 38607110 PMCID: PMC11013354 DOI: 10.3390/nano14070575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/20/2024] [Accepted: 03/25/2024] [Indexed: 04/13/2024]
Abstract
Mesoporous bioactive glass nanoparticles (MBGNs) have attracted significant attention as multifunctional nanocarriers for various applications in both hard and soft tissue engineering. In this study, multifunctional strontium (Sr)- and zinc (Zn)-containing MBGNs were successfully synthesized via the microemulsion-assisted sol-gel method combined with a cationic surfactant (cetyltrimethylammonium bromide, CTAB). Sr-MBGNs, Zn-MBGNs, and Sr-Zn-MBGNs exhibited spherical shapes in the nanoscale range of 100 ± 20 nm with a mesoporous structure. Sr and Zn were co-substituted in MBGNs (60SiO2-40CaO) to induce osteogenic potential and antibacterial properties without altering their size, morphology, negative surface charge, amorphous nature, mesoporous structure, and pore size. The synthesized MBGNs facilitated bioactivity by promoting the formation of an apatite-like layer on the surface of the particles after immersion in Simulated Body Fluid (SBF). The effect of the particles on the metabolic activity of human mesenchymal stem cells was concentration-dependent. The hMSCs exposed to Sr-MBGNs, Zn-MBGNs, and Sr-Zn-MBGNs at 200 μg/mL enhanced calcium deposition and osteogenic differentiation without osteogenic supplements. Moreover, the cellular uptake and internalization of Sr-MBGNs, Zn-MBGNs, and Sr-Zn-MBGNs in hMSCs were observed. These novel particles, which exhibited multiple functionalities, including promoting bone regeneration, delivering therapeutic ions intracellularly, and inhibiting the growth of Staphylococcus aureus and Escherichia coli, are potential nanocarriers for bone regeneration applications.
Collapse
Affiliation(s)
- Parichart Naruphontjirakul
- Biological Engineering Program, Faculty of Engineering, King Mongkut’s University of Technology Thonburi, Bangkok 10140, Thailand
| | - Meng Li
- Department of Materials Science and Engineering, Institute of Biomaterials, University of Erlangen-Nuremberg, 91058 Erlangen, Germany; (M.L.); (A.R.B.)
| | - Aldo R. Boccaccini
- Department of Materials Science and Engineering, Institute of Biomaterials, University of Erlangen-Nuremberg, 91058 Erlangen, Germany; (M.L.); (A.R.B.)
| |
Collapse
|
20
|
Wojcik T, Chai F, Hornez V, Raoul G, Hornez JC. Engineering Precise Interconnected Porosity in β-Tricalcium Phosphate (β-TCP) Matrices by Means of Top-Down Digital Light Processing. Biomedicines 2024; 12:736. [PMID: 38672092 PMCID: PMC11047908 DOI: 10.3390/biomedicines12040736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/06/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
This study evaluated the biocompatibility and accuracy of 3D-printed β-tricalcium phosphate (β-TCP) pure ceramic scaffolds. A specific shaping process associating a digital light processing (DLP) 3D printer and a heat treatment was developed to produce pure β-TCP scaffolds leaving no polymer binder residue. The β-TCP was characterised using X-ray diffraction, infrared spectroscopy and the detection of pollutants. The open porosity of produced matrices and their resorption were studied by hydrostatic weighing and calcium release measures. The biocompatibility of the printed matrices was evaluated by mean of osteoblast cultures. Finally, macroporous cubic matrices were produced. They were scanned using a micro-Computed Tomography scanner (micro-CT scan) and compared to their numeric models. The results demonstrated that DLP 3D printing with heat treatment produces pure β-TCP matrices with enhanced biocompatibility. They also demonstrated the printing accuracy of our technique, associating top-down DLP with the sintering of green parts. Thus, this production process is promising and will enable us to explore complex phosphocalcic matrices with a special focus on the development of a functional vascular network.
Collapse
Affiliation(s)
- Thomas Wojcik
- Univ. Lille, CHU Lille, INSERM, Department of Oral and Maxillofacial Surgery, U1008—Advanced Drug Delivery Systems, F-59000 Lille, France;
| | - Feng Chai
- Univ. Lille, CHU Lille, INSERM, U1008, F-59000 Lille, France;
| | | | - Gwenael Raoul
- Univ. Lille, CHU Lille, INSERM, Department of Oral and Maxillofacial Surgery, U1008—Advanced Drug Delivery Systems, F-59000 Lille, France;
| | - Jean-Christophe Hornez
- Département Matériaux et Procédés (DMP), Laboratoire de Matériaux Céramiques et de Mathématiques (CERAMATHS), Université Polytechnique Hauts-de-France, F-59600 Maubeuge, France;
| |
Collapse
|
21
|
Jo HM, Jang K, Shim KM, Bae C, Park JB, Kang SS, Kim SE. Application of modified porcine xenograft by collagen coating in the veterinary field: pre-clinical and clinical evaluations. Front Vet Sci 2024; 11:1373099. [PMID: 38566748 PMCID: PMC10985340 DOI: 10.3389/fvets.2024.1373099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
Introduction This study aimed to identify a collagen-coating method that does not affect the physicochemical properties of bone graft material. Based on this, we developed a collagen-coated porcine xenograft and applied it to dogs to validate its effectiveness. Methods Xenografts and collagen were derived from porcine, and the collagen coating was performed through N-ethyl-N'-(3- (dimethylamino)propyl) carbodiimide/N-hydroxysuccinimide (EDC/NHS) activation. The physicochemical characteristics of the developed bone graft material were verified through field emission scanning electron microscope (FE-SEM), brunauer emmett teller (BET), attenuated total reflectance-fourier transform infrared (ATR-FTIR), and water absorption test. Subsequently, the biocompatibility and bone healing effects were assessed using a rat calvarial defect model. Results The physicochemical test results confirmed that collagen coating increased bone graft materials' surface roughness and fluid absorption but did not affect their porous structure. In vivo evaluations revealed that collagen coating had no adverse impact on the bone healing effect of bone graft materials. After confirming the biocompatibility and effectiveness, we applied the bone graft materials in two orthopedic cases and one dental case. Notably, successful fracture healing was observed in both orthopedic cases. In the dental case, successful bone regeneration was achieved without any loss of alveolar bone. Discussion This study demonstrated that porcine bone graft material promotes bone healing in dogs with its hemostatic and cohesive effects resulting from the collagen coating. Bone graft materials with enhanced biocompatibility through collagen coating are expected to be widely used in veterinary clinical practice.
Collapse
Affiliation(s)
- Hyun Min Jo
- Department of Veterinary Surgery, College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, Gwangju, Republic of Korea
- Biomaterial R&BD Center, Chonnam National University, Gwangju, Republic of Korea
| | - Kwangsik Jang
- Department of Veterinary Surgery, College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, Gwangju, Republic of Korea
- Biomaterial R&BD Center, Chonnam National University, Gwangju, Republic of Korea
| | - Kyung Mi Shim
- Department of Veterinary Surgery, College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, Gwangju, Republic of Korea
- Biomaterial R&BD Center, Chonnam National University, Gwangju, Republic of Korea
| | - Chunsik Bae
- Department of Veterinary Surgery, College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, Gwangju, Republic of Korea
- Biomaterial R&BD Center, Chonnam National University, Gwangju, Republic of Korea
| | | | - Seong Soo Kang
- Department of Veterinary Surgery, College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, Gwangju, Republic of Korea
- Biomaterial R&BD Center, Chonnam National University, Gwangju, Republic of Korea
| | - Se Eun Kim
- Department of Veterinary Surgery, College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, Gwangju, Republic of Korea
- Biomaterial R&BD Center, Chonnam National University, Gwangju, Republic of Korea
| |
Collapse
|
22
|
Liu H, Li K, Guo B, Yuan Y, Ruan Z, Long H, Zhu J, Zhu Y, Chen C. Engineering an injectable gellan gum-based hydrogel with osteogenesis and angiogenesis for bone regeneration. Tissue Cell 2024; 86:102279. [PMID: 38007880 DOI: 10.1016/j.tice.2023.102279] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/10/2023] [Accepted: 11/19/2023] [Indexed: 11/28/2023]
Abstract
Injectable hydrogels are currently a topic of great interest in bone tissue engineering, which could fill irregular bone defects in a short time and avoid traditional major surgery. Herein, we developed an injectable gellan gum (GG)-based hydrogel for bone defect repair by blending nano-hydroxyapatite (nHA) and magnesium sulfate (MgSO4). In order to acquire an injectable GG-based hydrogel with superior osteogenesis, nHA were blended into GG solution with an optimized proportion. For the aim of endowing this hydrogel capable of angiogenesis, MgSO4 was also incorporated. Physicochemical evaluation revealed that GG-based hydrogel containing 5% nHA (w/v) and 2.5 mM MgSO4 (GG/5%nHA/MgSO4) had appropriate sol-gel transition time, showed a porosity-like structure, and could release magnesium ions for at least 14 days. Rheological studies showed that the GG/5%nHA/MgSO4 hydrogel had a stable structure and repeatable self-healing properties. In-vitro results determined that GG/5%nHA/MgSO4 hydrogel presented superior ability on stimulating bone marrow mesenchymal stem cells (BMSCs) to differentiate into osteogenic linage and human umbilical vein endothelial cells (HUVECs) to generate vascularization. In-vivo, GG/5%nHA/MgSO4 hydrogel was evaluated via a rat cranial defect model, as shown by better new bone formation and more neovascularization invasion. Therefore, the study demonstrated that the new injectable hydrogel, is a favorable bioactive GG-based hydrogel, and provides potential strategies for robust therapeutic interventions to improve the repair of bone defect.
Collapse
Affiliation(s)
- Hongbin Liu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha 410000, Hunan, China
| | - Kaihu Li
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha 410000, Hunan, China
| | - Bin Guo
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha 410000, Hunan, China
| | - Yuhao Yuan
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha 410000, Hunan, China
| | - Zhe Ruan
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha 410000, Hunan, China
| | - Haitao Long
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha 410000, Hunan, China
| | - Jianxi Zhu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha 410000, Hunan, China
| | - Yong Zhu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha 410000, Hunan, China.
| | - Can Chen
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha 410000, Hunan, China.
| |
Collapse
|
23
|
Pan Q, Zhang P, Xue F, Zhang J, Fan Z, Chang Z, Liang Z, Zhou G, Ren W. Subcutaneously Engineered Decalcified Bone Matrix Xenografts Promote Bone Repair by Regulating the Immune Microenvironment, Prevascularization, and Stem Cell Homing. ACS Biomater Sci Eng 2024; 10:515-524. [PMID: 38150512 DOI: 10.1021/acsbiomaterials.3c01331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Immunoregulatory and vascularized microenvironments play an important role in bone regeneration; however, the precise regulation for vascularization and inflammatory reactions remains elusive during bone repair. In this study, by means of subcutaneous preimplantation, we successfully constructed demineralized bone matrix (DBM) grafts with immunoregulatory and vascularized microenvironments. According to the current results, at the early time points (days 1 and 3), subcutaneously implanted DBM grafts recruited a large number of pro-inflammatory M1 macrophages with positive expression of CD68 and iNOS, while at the later time points (days 7 and 14), these inflammatory cells gradually subsided, accompanying increased presence of anti-inflammatory M2 macrophages with positive expression of CD206 and Arg-1, indicating a gradually enhanced anti-inflammatory microenvironment. At the same time, the gradually increased angiogenesis was observed in the DBM grafts with implantation time. In addition, the positive cells of CD105, CD73, and CD90 were observed in the inner region of the DBM grafts, implying the homing of mesenchymal stem cells. The repair results of cranial bone defects in a rat model further confirmed that the subcutaneous DBM xenografts at 7 days significantly improved bone regeneration. In summary, we developed a simple and novel strategy for bone regeneration mediated by anti-inflammatory microenvironment, prevascularization, and endogenous stem cell homing.
Collapse
Affiliation(s)
- Qingqing Pan
- Institutes of Health Central Plain, The Third Affiliated Hospital of Xinxiang Medical University, Clinical Medical Center of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang 453003, China
| | - Pei Zhang
- Institutes of Health Central Plain, The Third Affiliated Hospital of Xinxiang Medical University, Clinical Medical Center of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang 453003, China
| | - Fei Xue
- Institutes of Health Central Plain, The Third Affiliated Hospital of Xinxiang Medical University, Clinical Medical Center of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang 453003, China
| | - Jingxuan Zhang
- Institutes of Health Central Plain, The Third Affiliated Hospital of Xinxiang Medical University, Clinical Medical Center of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang 453003, China
| | - Zhenlin Fan
- Institutes of Health Central Plain, The Third Affiliated Hospital of Xinxiang Medical University, Clinical Medical Center of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang 453003, China
| | - Zhanyu Chang
- Institutes of Health Central Plain, The Third Affiliated Hospital of Xinxiang Medical University, Clinical Medical Center of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang 453003, China
| | - Zhuo Liang
- Institutes of Health Central Plain, The Third Affiliated Hospital of Xinxiang Medical University, Clinical Medical Center of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang 453003, China
| | - Guangdong Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Key Laboratory of Tissue Engineering, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Wenjie Ren
- Institutes of Health Central Plain, The Third Affiliated Hospital of Xinxiang Medical University, Clinical Medical Center of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang 453003, China
| |
Collapse
|
24
|
Nugraha AP, Yang H, Chen J, Yang K, Kraisintu P, Zaww K, Ma A, Wang R, Alhadi NEAM, Vanegas Sáenz JR, Hong G. β-Tricalcium Phosphate as Alveolar Bone Grafting in Cleft Lip/Palate: A Systematic Review. Dent J (Basel) 2023; 11:234. [PMID: 37886919 PMCID: PMC10606107 DOI: 10.3390/dj11100234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/27/2023] [Accepted: 09/21/2023] [Indexed: 10/28/2023] Open
Abstract
The aim of this systematic review is to describe and identify the prospects of β-Tricalcium Phosphate (β-TCP) as an alveolar bone grafting (ABG) material in cleft lip/palate (CL/P) or alveolar bone cleft defects. A systematic review protocol based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses 2020 (PRISMA 2020) was drafted. The literature search was conducted using MEDLINE/PubMed, Web of Science/ISI Web of Knowledge, Scopus, and the Cochrane Library, with English as the inclusion criterion and no publication year limits. The keywords yielded a total of 5824 publications. After removing duplicates and non-English articles, there were 3196 suitable articles available for evaluation. Subsequently, 1315 studies remained after reviewing titles and abstracts. Furthermore, 85 full articles were assessed for eligibility. After reading the complete texts of those papers, 20 were eventually selected that matched the inclusion requirements. Thirteen out of the twenty studies included in this systematic review were deemed to have a low risk of bias; one had a high risk of bias; and six had a moderate risk of bias due to not reporting randomization. β-TCP, when used as an ABG material, is biocompatible, visible, practical, offers a less invasive procedure, and does not interfere with orthodontic treatment. Synthetic β-TCP for ABG can be an alternative to autologous bone grafts under certain terms and conditions. The efficacy of β-TCP for ABG in CL/P or alveolar bone cleft defects can be enhanced through a tissue engineering approach that combines β-TCP with growth factors, mesenchymal stem cells, or other graft materials, along with modifications to β-TCP's physical properties.
Collapse
Affiliation(s)
- Alexander Patera Nugraha
- Division for Globalization Initiative, Liaison Center for Innovative Dentistry, Graduate School of Dentistry, Tohoku University, Sendai 9830865, Japan (G.H.)
- Department of Orthodontics, Faculty of Dental Medicine, Universitas Airlangga, Surabaya 60132, Indonesia
| | - Hui Yang
- Division for Globalization Initiative, Liaison Center for Innovative Dentistry, Graduate School of Dentistry, Tohoku University, Sendai 9830865, Japan (G.H.)
| | - Junduo Chen
- Division for Globalization Initiative, Liaison Center for Innovative Dentistry, Graduate School of Dentistry, Tohoku University, Sendai 9830865, Japan (G.H.)
| | - Kunhua Yang
- Division for Globalization Initiative, Liaison Center for Innovative Dentistry, Graduate School of Dentistry, Tohoku University, Sendai 9830865, Japan (G.H.)
| | - Ploypim Kraisintu
- Division for Globalization Initiative, Liaison Center for Innovative Dentistry, Graduate School of Dentistry, Tohoku University, Sendai 9830865, Japan (G.H.)
| | - Kyaw Zaww
- Division for Globalization Initiative, Liaison Center for Innovative Dentistry, Graduate School of Dentistry, Tohoku University, Sendai 9830865, Japan (G.H.)
| | - Aobo Ma
- Division for Globalization Initiative, Liaison Center for Innovative Dentistry, Graduate School of Dentistry, Tohoku University, Sendai 9830865, Japan (G.H.)
| | - Ruixian Wang
- Division for Globalization Initiative, Liaison Center for Innovative Dentistry, Graduate School of Dentistry, Tohoku University, Sendai 9830865, Japan (G.H.)
| | - Nada Emad Alshafei Mohamed Alhadi
- Division for Globalization Initiative, Liaison Center for Innovative Dentistry, Graduate School of Dentistry, Tohoku University, Sendai 9830865, Japan (G.H.)
| | - Juan Ramón Vanegas Sáenz
- Division for Globalization Initiative, Liaison Center for Innovative Dentistry, Graduate School of Dentistry, Tohoku University, Sendai 9830865, Japan (G.H.)
| | - Guang Hong
- Division for Globalization Initiative, Liaison Center for Innovative Dentistry, Graduate School of Dentistry, Tohoku University, Sendai 9830865, Japan (G.H.)
| |
Collapse
|
25
|
DeMitchell-Rodriguez EM, Shen C, Nayak VV, Tovar N, Witek L, Torroni A, Yarholar LM, Cronstein BN, Flores RL, Coelho PG. Engineering 3D Printed Bioceramic Scaffolds to Reconstruct Critical-Sized Calvaria Defects in a Skeletally Immature Pig Model. Plast Reconstr Surg 2023; 152:270e-280e. [PMID: 36723712 PMCID: PMC11310574 DOI: 10.1097/prs.0000000000010258] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND Three-dimensional printed bioceramic scaffolds composed of 100% β-tricalcium phosphate augmented with dipyridamole (3DPBC-DIPY) can regenerate bone across critically sized defects in skeletally mature and immature animal models. Before human application, safe and effective bone formation should be demonstrated in a large translational animal model. This study evaluated the ability of 3DPBC-DIPY scaffolds to restore critically sized calvarial defects in a skeletally immature, growing minipig. METHODS Unilateral calvarial defects (~1.4 cm) were created in 6-week-old Göttingen minipigs ( n = 12). Four defects were filled with a 1000 μm 3DPBC-DIPY scaffold with a cap (a solid barrier on the ectocortical side of the scaffold to prevent soft-tissue infiltration), four defects were filled with a 1000 μm 3DPBC-DIPY scaffold without a cap, and four defects served as negative controls (no scaffold). Animals were euthanized 12 weeks postoperatively. Calvariae were subjected to micro-computed tomography, 3D reconstruction with volumetric analysis, qualitative histologic analysis, and nanoindentation. RESULTS Scaffold-induced bone growth was statistically greater than in negative controls ( P ≤ 0.001), and the scaffolds with caps produced significantly more bone generation compared with the scaffolds without caps ( P ≤ 0.001). Histologic analysis revealed woven and lamellar bone with haversian canals throughout the regenerated bone. Cranial sutures were observed to be patent, and there was no evidence of ectopic bone formation or excess inflammatory response. Reduced elastic modulus and hardness of scaffold-regenerated bone were found to be statistically equivalent to native bone ( P = 0.148 for reduced elastic modulus of scaffolds with and without caps and P = 0.228 and P = 0.902 for hardness of scaffolds with and without caps, respectively). CONCLUSION 3DPBC-DIPY scaffolds have the capacity to regenerate bone across critically sized calvarial defects in a skeletally immature translational pig model. CLINICAL RELEVANCE STATEMENT This study assessed the bone generative capacity of 3D-printed bioceramic scaffolds composed of 100% β-tricalcium phosphate and augmented with dipyridamole placed within critical-sized calvarial defects in a growing porcine model.
Collapse
Affiliation(s)
| | - Chen Shen
- Hansjörg Wyss Department of Plastic Surgery, New York University Grossman School of Medicine
| | - Vasudev Vivekanand Nayak
- Department of Mechanical and Aerospace Engineering, New York University Tandon School of Engineering
- Department of Biomaterials, New York University College of Dentistry
| | - Nick Tovar
- Department of Biomaterials, New York University College of Dentistry
| | - Lukasz Witek
- Department of Biomaterials, New York University College of Dentistry
- Department of Biomedical Engineering, New York University Tandon School of Engineering
| | - Andrea Torroni
- Hansjörg Wyss Department of Plastic Surgery, New York University Grossman School of Medicine
| | - Lauren M. Yarholar
- DeWitt Daughtry Family Department of Surgery, Division of Plastic Surgery, University of Miami Miller School of Medicine
| | | | - Roberto L. Flores
- Hansjörg Wyss Department of Plastic Surgery, New York University Grossman School of Medicine
| | - Paulo G. Coelho
- DeWitt Daughtry Family Department of Surgery, Division of Plastic Surgery, University of Miami Miller School of Medicine
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine
| |
Collapse
|
26
|
Maheshwari S, Taori T, Bajaj P, Reche A. Bicalcium Phosphate as an Asset in Regenerative Therapy. Cureus 2023; 15:e44079. [PMID: 37750142 PMCID: PMC10518049 DOI: 10.7759/cureus.44079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 08/24/2023] [Indexed: 09/27/2023] Open
Abstract
After a loss of a tooth, alveolar bone resorption is immutable, leaving the area devoid of sufficient bone quality and mass for a successful and satisfactory implant or any other dental treatment. To treat this problem of irreversible bone loss, bone grafting is the primary solution and a well-accepted technique. The use of bone grafting procedures has increased in recent years. This review is about the various bone grafting techniques and best-situated material available currently along with their trump cards and limitations. In the thorough discussion regarding bone grafting materials and their substitutes, one alloplastic material has shown unbeaten and the most satisfactory properties than any other material, "bicalcium phosphate" (BCP). BCP is a mixture of hydroxyapatite (HA) and beta-tricalcium phosphate (B-TCP) usually obtained through sintering calcium-deficient apatite (CDA) at or above 700°C or by other methods such as hydrolysis or precipitation. The review also shows comparative studies done to understand the effect, most adequate balance, and impact of ratios of HA/B-TCP on the properties, structure, and success rate of this material. The objective of the review is to enlighten the principal characteristic of the most likely used bone graft material presently, i.e., BCP. The most impeccable characteristic of BCP is its capability to osteointegrate, which results in a superior interface. This interface depicts a dynamic process that includes physicochemical reactions, crystal-protein interactions, cell and tissue colonization, and bone remodeling. BCP has certain essential properties that could be put forth as its advantage over any other substitute. These properties include bioactivity, osteointegration, osteoinduction, osteogenesis, and biodegradation, which are mostly governed by modifying the HA/B-TCP ratio. Other applications of BCP are feasible, such as in drug administration and scaffolds for tissue engineering.
Collapse
Affiliation(s)
- Shefali Maheshwari
- Department of Periodontics, Sharad Pawar Dental College and Hospital, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Tanishka Taori
- Department of Public Health Dentistry, Sharad Pawar Dental College and Hospital, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Pavan Bajaj
- Department of Periodontics, Sharad Pawar Dental College and Hospital, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Amit Reche
- Department of Public Health Dentistry, Sharad Pawar Dental College and Hospital, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
27
|
Martínez Cutillas A, Sanz-Serrano D, Oh S, Ventura F, Martínez de Ilarduya A. Synthesis of Functionalized Triblock Copolyesters Derived from Lactic Acid and Macrolactones for Bone Tissue Regeneration. Macromol Biosci 2023; 23:e2300066. [PMID: 37031382 DOI: 10.1002/mabi.202300066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/24/2023] [Indexed: 04/10/2023]
Abstract
Synthetic and functional grafts are a great alternative to conventional grafts. They can provide a physical support and the precise signaling for cells to heal damaged tissues. In this study, a novel RGD peptide end-functionalized poly(ethylene glycol)-b-poly(lactic acid)-b-poly(globalide)-b-poly(lactic acid)-b-poly(ethylene glycol) (RGD-PEG-PLA-PGl-PLA-PEG-RGD) is synthetized and used to prepare functional scaffolds. The PGl inner block is obtained by enzymatic ring-opening polymerization of globalide. The outer PLA blocks are obtained by ring-opening polymerization of both, l-lactide or a racemic mixture, initiated by the α-ω-telechelic polymacrolactone. The presence of PGl inner block enhances the toughness of PLA-based scaffolds, with an increase of the elongation at break up to 300% when the longer block of PGl is used. PLA-PGl-PLA copolymer is coupled with α-ω-telechelic PEG diacids by esterification reaction. PEGylation provides hydrophilic scaffolds as the contact angle is reduced from 114° to 74.8°. That difference improves the contact between the scaffolds and the culture media. Moreover, the scaffolds are functionalized with RGD peptides at the surface significantly enhancing the adhesion and proliferation of bone marrow-derived primary mesenchymal stem cells and MC3T3-E1 cell lines in vitro. These results place this multifunctional polymer as a great candidate for the preparation of temporary grafts.
Collapse
Affiliation(s)
- A Martínez Cutillas
- Artificial Nature S.L., Baldiri i Reixac 10, Barcelona, 08028, Spain
- Departament d'Enginyeria Química, Universitat Politècnica de Catalunya, ETSEIB, Diagonal 647, Barcelona, 08028, Spain
| | - D Sanz-Serrano
- Departament de Ciències Fisiològiques, Universitat de Barcelona, IDIBELL, L'Hospitalet de Llobregat, Barcelona, 08907, Spain
| | - S Oh
- Artificial Nature S.L., Baldiri i Reixac 10, Barcelona, 08028, Spain
| | - F Ventura
- Departament de Ciències Fisiològiques, Universitat de Barcelona, IDIBELL, L'Hospitalet de Llobregat, Barcelona, 08907, Spain
| | - A Martínez de Ilarduya
- Departament d'Enginyeria Química, Universitat Politècnica de Catalunya, ETSEIB, Diagonal 647, Barcelona, 08028, Spain
| |
Collapse
|
28
|
Huber T, Schwertner A, Breuer R, Charwat-Pessler CG, Rath B, Orthner E. Retrograde Drilling, Ossoscopy, and Autologous Bone Grafting: An Alternative Technique for Treatment of Osteochondral Lesion of the Talus Stage 2 and 3 in Adults. Foot Ankle Int 2023; 44:488-496. [PMID: 37208904 DOI: 10.1177/10711007231162825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
BACKGROUND Symptomatic osteochondral lesions of the talus (OLTs) often require surgical intervention. There are various surgical methods. A generally valid, stage-dependent therapeutic algorithm does not exist. The aim of our study is to show long- term results of an alternative technique that combines retrograde drilling, debridement performed under arthroscopic visualization, and autologous bone grafting. METHODS The surgical technique was performed in 24 patients with medial or lateral OLTs, and the data were analyzed retrospectively. In our technique, the affected subchondral bone was overdrilled retrogradely and resected under arthroscopic visualization (ossoscopy) without violating the cartilage. The resulting defect was filled with autologous bone from the medial tibia metaphysis. Outcome parameters were the numeric rating scale (NRS), the American Orthopaedic Foot & Ankle Society (AOFAS) ankle-hindfoot score, and range of motion (ROM). The Magnetic Resonance Observation of Cartilage Repair Tissue (MOCART) score was assessed and a possible correlation with the clinical outcome scores was calculated. Data concerning complication rates were also collected. RESULTS The mean surface size of the OLTs was 0.9 ± 0.3 cm2. The mean follow-up was 89 months. The AOFAS score improved significantly from 57.7 points preoperatively to 88.8 points at the final follow-up (P < .0001). The pain value measured by the NRS decreased significantly from 8 to a pain level of 2. ROM improved in 37.5% of the patients for dorsiflexion and 29.2% for plantarflexion. There were no significant correlations between the MOCART score and the AOFAS score or the pain value on NRS. CONCLUSION Retrograde drilling, ossoscopy, and autologous bone grafting for OLTs is a promising technique with good long-term results. The patients' satisfaction rate, especially in OLT stages 2 and 3, was excellent. LEVEL OF EVIDENCE Level IV, case series.
Collapse
Affiliation(s)
- Thorsten Huber
- Department of Orthopedics, Klinikum Wels-Grieskirchen, Wels, Austria
| | | | - Robert Breuer
- Department of Orthopedics, Klinikum Wels-Grieskirchen, Wels, Austria
| | | | - Björn Rath
- Department of Orthopedics, Klinikum Wels-Grieskirchen, Wels, Austria
| | | |
Collapse
|
29
|
Ferraz MP. Bone Grafts in Dental Medicine: An Overview of Autografts, Allografts and Synthetic Materials. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16114117. [PMID: 37297251 DOI: 10.3390/ma16114117] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023]
Abstract
This review provides an overview of various materials used in dentistry and oral and maxillofacial surgeries to replace or repair bone defects. The choice of material depends on factors such as tissue viability, size, shape, and defect volume. While small bone defects can regenerate naturally, extensive defects or loss or pathological fractures require surgical intervention and the use of substitute bones. Autologous bone, taken from the patient's own body, is the gold standard for bone grafting but has drawbacks such as uncertain prognosis, surgery at the donor site, and limited availability. Other alternatives for medium and small-sized defects include allografts (from human donors), xenografts (from animals), and synthetic materials with osteoconductive properties. Allografts are carefully selected and processed human bone materials, while xenografts are derived from animals and possess similar chemical composition to human bone. Synthetic materials such as ceramics and bioactive glasses are used for small defects but may lack osteoinductivity and moldability. Calcium-phosphate-based ceramics, particularly hydroxyapatite, are extensively studied and commonly used due to their compositional similarity to natural bone. Additional components, such as growth factors, autogenous bone, and therapeutic elements, can be incorporated into synthetic or xenogeneic scaffolds to enhance their osteogenic properties. This review aims to provide a comprehensive analysis of grafting materials in dentistry, discussing their properties, advantages, and disadvantages. It also highlights the challenges of analyzing in vivo and clinical studies to select the most suitable option for specific situations.
Collapse
Affiliation(s)
- Maria Pia Ferraz
- Departamento de Engenharia Metalúrgica e de Materiais, Faculdade de Engenharia da Universidade do Porto, 4200-465 Porto, Portugal
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4099-002 Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, 4099-002 Porto, Portugal
| |
Collapse
|
30
|
Cañas-Gutiérrez A, Toro L, Fornaguera C, Borrós S, Osorio M, Castro-Herazo C, Arboleda-Toro D. Biomineralization in Three-Dimensional Scaffolds Based on Bacterial Nanocellulose for Bone Tissue Engineering: Feature Characterization and Stem Cell Differentiation. Polymers (Basel) 2023; 15:polym15092012. [PMID: 37177163 PMCID: PMC10181035 DOI: 10.3390/polym15092012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/30/2023] [Accepted: 04/04/2023] [Indexed: 05/15/2023] Open
Abstract
Bacterial nanocellulose (BNC) has a negative surface charge in physiological environments, which allows the adsorption of calcium ions to initiate the nucleation of different calcium phosphate phases. The aim of this study was to investigate different methods of mineralization in three-dimensional microporous bacterial nanocellulose with the intention of mimicking the composition, structure, and biomechanical properties of natural bone. To generate the 3D microporous biomaterial, porogen particles were incorporated during BNC fermentation with the Komagataeibacter medellinensis strain. Calcium phosphates (CPs) were deposited onto the BNC scaffolds in five immersion cycles, alternating between calcium and phosphate salts in their insoluble forms. Scanning electron microscopy (SEM) showed that the scaffolds had different pore sizes (between 70 and 350 µm), and their porous interconnectivity was affected by the biomineralization method and time. The crystals on the BNC surface were shown to be rod-shaped, with a calcium phosphate ratio similar to that of immature bone, increasing from 1.13 to 1.6 with increasing cycle numbers. These crystals also increased in size with an increasing number of cycles, going from 25.12 to 35.9 nm. The main mineral phase observed with X-ray diffraction was octacalcium dihydrogen hexakis phosphate (V) pentahydrate (OCP). In vitro studies showed good cellular adhesion and high cell viability (up to 95%) with all the scaffolds. The osteogenic differentiation of human bone marrow mesenchymal stem cells on the scaffolds was evaluated using bone expression markers, including alkaline phosphatase, osteocalcin, and osteopontin. In conclusion, it is possible to prepare 3D BNC scaffolds with controlled microporosity that allow osteoblast adhesion, proliferation, and differentiation.
Collapse
Affiliation(s)
- Ana Cañas-Gutiérrez
- Research Group on New Materials (GINUMA), Faculty of Engineering, Universidad Pontificia Bolivariana, Circular 1 No. 70-01, Medellín 050031, Colombia
| | - Lenka Toro
- Biomedical Engineering Research Group (GIBEC), EIA University, Km 2 + 200 on the Way to the José María Córdova Airport, Alto de Las Palmas, Envigado 055428, Colombia
- Cancer Research Institute, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy of Sciences, 84505 Bratislava, Slovakia
| | - Cristina Fornaguera
- Grup d'Enginyeria de Materials (Gemat), Institut Químic de Sarrià (IQS), Universitat Ramon Llull (URL), Via Augusta 390, 08017 Barcelona, Spain
| | - Salvador Borrós
- Grup d'Enginyeria de Materials (Gemat), Institut Químic de Sarrià (IQS), Universitat Ramon Llull (URL), Via Augusta 390, 08017 Barcelona, Spain
| | - Marlon Osorio
- Research Group on New Materials (GINUMA), Faculty of Engineering, Universidad Pontificia Bolivariana, Circular 1 No. 70-01, Medellín 050031, Colombia
| | - Cristina Castro-Herazo
- Research Group on New Materials (GINUMA), Faculty of Engineering, Universidad Pontificia Bolivariana, Circular 1 No. 70-01, Medellín 050031, Colombia
| | - David Arboleda-Toro
- Group of Biosocial Studies of the Body-EBSC-, Faculty of Dentistry, Universidad de Antioquia Calle 64 No. 52-59, Medellín 050010, Colombia
| |
Collapse
|
31
|
De Mori A, Alasa UJ, Mühlhölzl A, Blunn G. Slipper Limpet ( Crepidula fornicata) Shells Support In Vitro Osteogenesis of Human Adipose-Derived Stem Cells. Mar Drugs 2023; 21:md21040248. [PMID: 37103387 PMCID: PMC10142914 DOI: 10.3390/md21040248] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/14/2023] [Accepted: 04/15/2023] [Indexed: 04/28/2023] Open
Abstract
This study aimed to investigate a cost-effective alternative to man-made calcium phosphate ceramics for treating bone defects. The slipper limpet is an invasive species in European coastal waters, and its shells composed of calcium carbonate could potentially be a cost-effective source of bone graft substitutes. This research analyzed the mantle of the slipper limpet (Crepidula fornicata) shells to enhance in vitro bone formation. Discs machined from the mantle of C. fornicata were analyzed using scanning electron microscopy with energy dispersive spectroscopy (SEM-EDS), X-ray crystallography (XRD), Fourier-transform infrared spectroscopy (FT-IR) and profilometry. Calcium release and bioactivity were also studied. Cell attachment, proliferation, and osteoblastic differentiation (RT-qPCR and alkaline phosphatase activity) were measured in human adipose-derived stem cells grown on the mantle surface. The mantle material was mainly composed of aragonite and showed a sustained Ca2+ release at physiological pH. In addition, apatite formation was observed in simulated body fluid after three weeks, and the materials supported osteoblastic differentiation. Overall, our findings suggest the mantle of C. fornicata shows potential as a material for fabricating bone graft substitutes and structural biomaterials for bone regeneration.
Collapse
Affiliation(s)
- Arianna De Mori
- School of Pharmacy and Biomedical Science, University of Portsmouth, St. Michael's Building, White Swan Road, Portsmouth PO1 2DT, UK
| | - Umoru Junior Alasa
- School of Pharmacy and Biomedical Science, University of Portsmouth, St. Michael's Building, White Swan Road, Portsmouth PO1 2DT, UK
| | - Alex Mühlhölzl
- Mikota Ltd., Pembroke Dock, Pembrokeshire, Wales SA72 6AE, UK
| | - Gordon Blunn
- School of Pharmacy and Biomedical Science, University of Portsmouth, St. Michael's Building, White Swan Road, Portsmouth PO1 2DT, UK
| |
Collapse
|
32
|
Montanhini P, Antunes BP, Pestilho JFC, Galia CR, Guedes A, Becker RG. Bovine Grafting: An Effective Alternative after Curettage of Benign Bone Tumors. Life (Basel) 2023; 13:789. [PMID: 36983944 PMCID: PMC10056842 DOI: 10.3390/life13030789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/11/2023] [Accepted: 03/12/2023] [Indexed: 03/17/2023] Open
Abstract
We retrospectively reviewed 28 patients (15 women and 13 men) with benign bone tumors or pseudotumors treated with curettage and filling with freeze-dried bovine bone graft Orthogen (Baumer S/A, São Paulo, Brazil). The aim of the study was to evaluate the rate of incorporation of Orthogen into the host bone, as well as to describe the outcomes of bone healing (quality, time, and complications). General characteristics, tumor volume, size, site, complications, percent filled, and healing quality at 6 and 12 months were assessed through radiographs. Mean patient age was 20.5 (range 4.7-75.1) years. The most common lesion type was simple bone cyst (12/28), and the most common sites were the tibia (7/28) and humerus (7/28). There were no postoperative pathologic fractures. Two cases (7.1%) of serous fluid leakage through the wound occurred. Mean cavity volume was 20.1 (range 2.7-101.4) cm3. At 6 and 12 months, 75% and 77.8% of cavities, respectively, showed complete bone healing. At 12 months, 81% of cavities filled >90% with graft showed complete bone healing vs. only 19% of those filled <90%. Filling with bovine bone graft resulted in few complications and excellent healing after curettage of benign bone tumors or pseudotumors. Complete healing occurred in most cases by 12 months. Cavities with a higher percentage of filling had a higher rate of complete radiographic incorporation.
Collapse
Affiliation(s)
- Priscilla Montanhini
- Hospital de Clínicas de Porto Alegre (HCPA), Rua Ramiro Barcelos, 2350, Porto Alegre 90035-903, RS, Brazil
- Hospital Moinhos de Vento (HMV), Rua Ramiro Barcelos, 910, Porto Alegre 90035-000, RS, Brazil
| | - Bruno P. Antunes
- Hospital de Clínicas de Porto Alegre (HCPA), Rua Ramiro Barcelos, 2350, Porto Alegre 90035-903, RS, Brazil
- Hospital Moinhos de Vento (HMV), Rua Ramiro Barcelos, 910, Porto Alegre 90035-000, RS, Brazil
| | | | - Carlos Roberto Galia
- Hospital de Clínicas de Porto Alegre (HCPA), Rua Ramiro Barcelos, 2350, Porto Alegre 90035-903, RS, Brazil
- Hospital Moinhos de Vento (HMV), Rua Ramiro Barcelos, 910, Porto Alegre 90035-000, RS, Brazil
| | - Alex Guedes
- Hospital Santa Izabel, Praça Conselheiro Almeida Couto, 500, Salvador 40050-410, BA, Brazil
| | - Ricardo Gehrke Becker
- Hospital de Clínicas de Porto Alegre (HCPA), Rua Ramiro Barcelos, 2350, Porto Alegre 90035-903, RS, Brazil
- Hospital Moinhos de Vento (HMV), Rua Ramiro Barcelos, 910, Porto Alegre 90035-000, RS, Brazil
- Instituto do Câncer Infantil do Rio Grande do Sul, Rua São Manoel, 850, Porto Alegre 90620-110, RS, Brazil
| |
Collapse
|
33
|
Kumawat VS, Bandyopadhyay-Ghosh S, Ghosh SB. An overview of translational research in bone graft biomaterials. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2023; 34:497-540. [PMID: 36124544 DOI: 10.1080/09205063.2022.2127143] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Natural bone healing is often inadequate to treat fractures with critical size bone defects and massive bone loss. Immediate surgical interventions through bone grafts have been found to be essential on such occasions. Naturally harvested bone grafts, although are the preferred choice of the surgeons; they suffer from serious clinical limitations, including disease transmission, donor site morbidity, limited supply of graft etc. Synthetic bone grafts, on the other hand, offer a more clinically appealing approach to decode the pathways of bone repair through use of tissue engineered biomaterials. This article critically retrospects the translational research on various engineered biomaterials towards bringing transformative changes in orthopaedic healthcare. The first section of the article discusses about composition and ultrastructure of bone along with the global perspectives on statistical escalation of bone fracture surgeries requiring use of bone grafts. The next section reviews the types, benefits and challenges of various natural and synthetic bone grafts. An overview of clinically relevant biomaterials from traditionally used metallic, bioceramic, and biopolymeric biomaterials to new generation composites have been summarised. Finally, this narrative review concludes with the discussion on the emerging trends and future perspectives of the promising bone grafts.
Collapse
Affiliation(s)
- Vijay Shankar Kumawat
- Engineered Biomedical Materials Research and Innovation Centre (EnBioMatRIC), Manipal University Jaipur, Jaipur, Rajasthan, India.,Department of Mechanical Engineering, Manipal University Jaipur, Jaipur, Rajasthan, India
| | - Sanchita Bandyopadhyay-Ghosh
- Engineered Biomedical Materials Research and Innovation Centre (EnBioMatRIC), Manipal University Jaipur, Jaipur, Rajasthan, India.,Department of Mechanical Engineering, Manipal University Jaipur, Jaipur, Rajasthan, India
| | - Subrata Bandhu Ghosh
- Engineered Biomedical Materials Research and Innovation Centre (EnBioMatRIC), Manipal University Jaipur, Jaipur, Rajasthan, India.,Department of Mechanical Engineering, Manipal University Jaipur, Jaipur, Rajasthan, India
| |
Collapse
|
34
|
Simple curettage and allogeneic cancellous bone chip impaction grafting in solitary enchondroma of the short tubular bones of the hand. Sci Rep 2023; 13:2081. [PMID: 36747044 PMCID: PMC9902569 DOI: 10.1038/s41598-023-29130-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/31/2023] [Indexed: 02/08/2023] Open
Abstract
Enchondroma is the most common bone tumor in the hand. While standard surgical procedure is intra-lesional excision and bone grafting, there is a dispute between allogeneic bone, autogenous bone, and synthetic bone substitute grafting. Diverse adjuvant treatments have been introduced to reduce recurrence, but results are mixed with controversies. Meanwhile, whether existing descriptive classification could predict treatment outcome remains unclear. Thus, we reviewed patients with solitary enchondroma of the hand who underwent simple curettage followed by allogeneic cancellous bone chip impaction grafting. Eighty-eight patients with more than 5 years of follow-up were enrolled. Demographic data, local recurrence, and complications were reviewed. Duration of consolidation and the difference according to Takigawa classification were assessed. Range of motion (ROM), and functional scores were also evaluated. There were 51 women and 37 men, with a mean age of 37.9 years. Mean follow-up was 10.2 years. Recurrence occurred only in one patient. There was no complication. Mean postoperative total active motions of fingers and thumb were 239° and 132.9°. Mean modified Disabilities of the Arm, Shoulder, Hand score, and Musculoskeletal Tumor Society Score were 1.63, and 99.2 at the last follow-up. Consolidation, ROM, and functional scores according to Takigawa classification showed no significant differences. This study suggests that simple curettage with impaction grafting of allogeneic cancellous bone chip is a feasible method for treating solitary enchondromas involving short tubular bone of the hand with good long-term outcomes. Postoperative recurrence and complication rates were very low. Radiographic and clinical results were good regardless of the previous radiological classification.
Collapse
|
35
|
Di Pompo G, Liguori A, Carlini M, Avnet S, Boi M, Baldini N, Focarete ML, Bianchi M, Gualandi C, Graziani G. Electrospun fibers coated with nanostructured biomimetic hydroxyapatite: A new platform for regeneration at the bone interfaces. BIOMATERIALS ADVANCES 2022; 144:213231. [PMID: 36495842 DOI: 10.1016/j.bioadv.2022.213231] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/18/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Reconstruction of gradient organic/inorganic tissues is a challenging task in orthopaedics. Indeed, to mimic tissue characteristics and stimulate bone regeneration at the interface, it is necessary to reproduce both the mineral and organic components of the tissue ECM, as well as the micro/nano-fibrous morphology. To address this goal, we propose here novel biomimetic patches obtained by the combination of electrospinning and nanostructured bone apatite. In particular, we deposited apatite on the electrospun fibers by Ionized Jet Deposition, a plasma-assisted technique that allows conformal deposition and the preservation in the coating of the target's stoichiometry. The damage to the substrate and fibrous morphology is a polymer-dependent aspect, that can be avoided by properly selecting the substrate composition and deposition parameters. In fact, all the tested polymers (poly(l-lactide), poly(D,l-lactide-co-glycolide, poly(ε-caprolactone), collagen) were effectively coated, and the morphological and thermal characterization revealed that poly(ε-caprolactone) suffered the least damage. The coating of collagen fibers, on the other hand, destroyed the fiber morphology and it could only be performed when collagen is blended with a more resistant synthetic polymer in the nanofibers. Due to the biomimetic composition and multiscale morphology from micro to nano, the poly(ε-caprolactone)-collagen biomimetic patches coated with bone apatite supported MSCs adhesion, patch colonization and early differentiation, while allowing optimal viability. The biomimetic coating allowed better scaffold colonization, promoting cell spreading on the fibers.
Collapse
Affiliation(s)
- Gemma Di Pompo
- Biomedical Science and Technologies and Nanobiotechnology Lab, IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136 Bologna, Italy
| | - Anna Liguori
- Department of Chemistry "G. Ciamician" and INSTM UdR of Bologna, University of Bologna, via Selmi 2, 40126 Bologna, Italy
| | - Martina Carlini
- Department of Chemistry "G. Ciamician" and INSTM UdR of Bologna, University of Bologna, via Selmi 2, 40126 Bologna, Italy
| | - Sofia Avnet
- Department of Biomedical and Neuromotor Sciences, University of Bologna, via Massarenti 9, 40138 Bologna, Italy
| | - Marco Boi
- Biomedical Science and Technologies and Nanobiotechnology Lab, IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136 Bologna, Italy
| | - Nicola Baldini
- Biomedical Science and Technologies and Nanobiotechnology Lab, IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136 Bologna, Italy; Department of Biomedical and Neuromotor Sciences, University of Bologna, via Massarenti 9, 40138 Bologna, Italy
| | - Maria Letizia Focarete
- Department of Chemistry "G. Ciamician" and INSTM UdR of Bologna, University of Bologna, via Selmi 2, 40126 Bologna, Italy; Interdepartmental Center for Industrial Research on Health Sciences and Technologies, University of Bologna, Via Tolara di Sopra 41/E, 40064 Ozzano dell'Emilia, Italy
| | - Michele Bianchi
- Department of Life Sciences, Università di Modena e Reggio Emilia, via Campi 103, 41125 Modena, Italy
| | - Chiara Gualandi
- Department of Chemistry "G. Ciamician" and INSTM UdR of Bologna, University of Bologna, via Selmi 2, 40126 Bologna, Italy; Interdepartmental Center for Industrial Research on Health Sciences and Technologies, University of Bologna, Via Tolara di Sopra 41/E, 40064 Ozzano dell'Emilia, Italy; Interdepartmental Center for Industrial Research on Advanced Applications in Mechanical Engineering and Materials Technology, University of Bologna, Viale Risorgimento, 2, 40136 Bologna, Italy.
| | - Gabriela Graziani
- Biomedical Science and Technologies and Nanobiotechnology Lab, IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136 Bologna, Italy.
| |
Collapse
|
36
|
Gil LF, Nayak VV, Benalcázar Jalkh EB, Tovar N, Chiu KJ, Salas JC, Marin C, Bowers M, Freitas G, Mbe Fokam DC, Coelho PG, Witek L. Laddec® versus Bio-Oss®: The effect on the healing of critical-sized defect - Calvaria rabbit model. J Biomed Mater Res B Appl Biomater 2022; 110:2744-2750. [PMID: 35857711 DOI: 10.1002/jbm.b.35125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/18/2022] [Accepted: 06/25/2022] [Indexed: 12/15/2022]
Abstract
The aim of this study was to evaluate the in vivo performance of two different deproteinized bovine bone (DBB) grafting materials: DBBB (Bio-Oss®) and DBBL (Laddec®), for the regeneration of critically sized (8 mm) defects in rabbit's calvaria. Three round-shaped defects were surgically created in the calvaria of 13 New Zealand White rabbits proximal to the coronal suture in the parietal bone. Two of the defects were filled with one of the grafting materials while a third was left empty to serve as a negative control. Bone regeneration properties were evaluated at 4- and 8-weeks after implantation by means of histological and histomorphometrical analyses. Statistical analyses were performed through a mixed model analysis with fixed factors of time and material. Histological evaluation of the control group evidenced a lack of bridging bone formation across the defect sites at both evaluation time points. For the experimental groups, new bone formation was observed around the defect periphery and to progress radially inwards to the center of the defect site, regardless of the grafting material. Histomorphometric analyses at 4 weeks demonstrated higher amount of bone formation through the defect for DBBB group. However, at 8 weeks, DBBL and DBBB demonstrated osteoconductivity and low resorption rates with evidence of statistically similar bone regeneration through the complete boney defect. Finally, DBBB presented lower soft tissue migration within the defect when compared to DBBL at both evaluation time points. DBBB and DBBL presented similar bone regeneration performance and slow resorption rates. Although both materials promoted bone regeneration through the complete defect, DBBB presented lower soft tissue migration within the defects at 4- and 8-weeks.
Collapse
Affiliation(s)
- Luiz Fernando Gil
- Department of Morphological Sciences, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Vasudev Vivekanand Nayak
- Biomaterials Division - Department of Molecular Pathobiology, New York University College of Dentistry, New York, New York, USA.,Department of Mechanical and Aerospace Engineering, New York University Tandon School of Engineering, Brooklyn, New York, USA
| | - Ernesto B Benalcázar Jalkh
- Biomaterials Division - Department of Molecular Pathobiology, New York University College of Dentistry, New York, New York, USA.,Department of Prosthodontics and Periodontology, University of Sao Paulo - Bauru School of Dentistry, Bauru, São Paulo, Brazil
| | - Nick Tovar
- Biomaterials Division - Department of Molecular Pathobiology, New York University College of Dentistry, New York, New York, USA.,Department of Oral and Maxillofacial Surgery, Langone Medical Center and Bellevue Hospital Center, New York University, New York, New York, USA
| | - Kai-Jen Chiu
- Biomaterials Division - Department of Molecular Pathobiology, New York University College of Dentistry, New York, New York, USA
| | - Jaime Campos Salas
- Biomaterials Division - Department of Molecular Pathobiology, New York University College of Dentistry, New York, New York, USA
| | - Charles Marin
- Postgraduate Program in Dentistry, School of Health Sciences, UNIGRANRIO University, Duque de Caxias, Rio de Janeiro, Brazil
| | - Michelle Bowers
- Biomaterials Division - Department of Molecular Pathobiology, New York University College of Dentistry, New York, New York, USA
| | - Gileade Freitas
- Ribeirão Preto School of Dentistry (FORP), University of São Paulo, São Paulo, Brazil
| | - Dejolie Christelle Mbe Fokam
- Biomaterials Division - Department of Molecular Pathobiology, New York University College of Dentistry, New York, New York, USA
| | - Paulo G Coelho
- Biomaterials Division - Department of Molecular Pathobiology, New York University College of Dentistry, New York, New York, USA.,Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Lukasz Witek
- Biomaterials Division - Department of Molecular Pathobiology, New York University College of Dentistry, New York, New York, USA.,Department of Biomedical Engineering, New York University Tandon School of Engineering, Brooklyn, New York, USA
| |
Collapse
|
37
|
Arias-Betancur A, Badilla-Wenzel N, Astete-Sanhueza Á, Farfán-Beltrán N, Dias FJ. Carrier systems for bone morphogenetic proteins: An overview of biomaterials used for dentoalveolar and maxillofacial bone regeneration. JAPANESE DENTAL SCIENCE REVIEW 2022; 58:316-327. [PMID: 36281233 PMCID: PMC9587372 DOI: 10.1016/j.jdsr.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 09/14/2022] [Accepted: 10/11/2022] [Indexed: 11/27/2022] Open
Abstract
Different types of biomaterials have been used to fabricate carriers to deliver bone morphogenetic proteins (BMPs) in both dentoalveolar and maxillofacial bone regeneration procedures. Despite that absorbable collagen sponge (ACS) is considered the gold standard for BMP delivery, there is still some concerns regarding its use mainly due to its poor mechanical properties. To overcome this, novel systems are being developed, however, due to the wide variety of biomaterial combination, the heterogeneous assessment of newly formed tissue, and the intended clinical applications, there is still no consensus regarding which is more efficient in a particular clinical scenario. The combination of two or more biomaterials in different topological configurations has allowed specific controlled-release patterns for BMPs, improving their biological and mechanical properties compared with classical single-material carriers. However, more basic research is needed. Since the BMPs can be used in multiple clinical scenarios having different biological and mechanical needs, novel carriers should be developed in a context-specific manner. Thus, the purpose of this review is to gather current knowledge about biomaterials used to fabricate delivery systems for BMPs in both dentoalveolar and maxillofacial contexts. Aspects related with the biological, physical and mechanical characteristics of each biomaterial are also presented and discussed. Strategies for bone formation and regeneration are a major concern in dentistry. Topical delivery of bone morphogenetic proteins (BMPs) allows rapid bone formation. BMPs requires proper carrier system to allow controlled and sustained release. Carrier should also fulfill mechanical requirements of bone defect sites. By using complex composites, it would be possible to develop new carriers for BMPs.
Collapse
Affiliation(s)
- Alain Arias-Betancur
- Department of Integral Adult Dentistry, Research Centre for Dental Sciences (CICO-UFRO), Dental School-Facultad de Odontología, Universidad de La Frontera, Temuco 4811230, Chile
| | - Nicolás Badilla-Wenzel
- Dental School-Facultad de Odontología, Universidad de La Frontera, Temuco 4811230, Chile
| | - Álvaro Astete-Sanhueza
- Dental School-Facultad de Odontología, Universidad de La Frontera, Temuco 4811230, Chile
| | - Nicole Farfán-Beltrán
- Department of Integral Adult Dentistry, Research Centre for Dental Sciences (CICO-UFRO), Dental School-Facultad de Odontología, Universidad de La Frontera, Temuco 4811230, Chile.,Universidad Adventista de Chile, Chillán 3780000, Chile
| | - Fernando José Dias
- Department of Integral Adult Dentistry, Oral Biology Research Centre (CIBO-UFRO), Dental School-Facultad de Odontología, Universidad de La Frontera, Temuco 4811230, Chile
| |
Collapse
|
38
|
Yao H, Zhang L, Yan S, He Y, Zhu H, Li Y, Wang D, Yang K. Low-intensity pulsed ultrasound/nanomechanical force generators enhance osteogenesis of BMSCs through microfilaments and TRPM7. J Nanobiotechnology 2022; 20:378. [PMID: 35964037 PMCID: PMC9375242 DOI: 10.1186/s12951-022-01587-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 08/03/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Low-intensity pulsed ultrasound (LIPUS) has been reported to accelerate fracture healing, but the mechanism is unclear and its efficacy needs to be further optimized. Ultrasound in combination with functionalized microbubbles has been shown to induce local shear forces and controllable mechanical stress in cells, amplifying the mechanical effects of LIPUS. Nanoscale lipid bubbles (nanobubbles) have high stability and good biosafety. However, the effect of LIPUS combined with functionalized nanobubbles on osteogenesis has rarely been studied. RESULTS In this study, we report cyclic arginine-glycine-aspartic acid-modified nanobubbles (cRGD-NBs), with a particle size of ~ 500 nm, able to actively target bone marrow mesenchymal stem cells (BMSCs) via integrin receptors. cRGD-NBs can act as nanomechanical force generators on the cell membrane, and further enhance the BMSCs osteogenesis and bone formation promoted by LIPUS. The polymerization of actin microfilaments and the mechanosensitive transient receptor potential melastatin 7 (TRPM7) ion channel play important roles in BMSCs osteogenesis promoted by LIPUS/cRGD-NBs. Moreover, the mutual regulation of TRPM7 and actin microfilaments promote the effect of LIPUS/cRGD-NBs. The extracellular Ca2 + influx, controlled partly by TRPM7, could participated in the effect of LIPUS/cRGD-NBs on BMSCs. CONCLUSIONS The nanomechanical force generators cRGD-NBs could promote osteogenesis of BMSCs and bone formation induced by LIPUS, through regulation TRPM7, actin cytoskeleton, and intracellular calcium oscillations. This study provides new directions for optimizing the efficacy of LIPUS for fracture healing, and a theoretical basis for the further application and development of LIPUS in clinical practice.
Collapse
Affiliation(s)
- Huan Yao
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing, 400014, China.,Department of Ultrasound, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Liang Zhang
- Department of Ultrasound, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Shujin Yan
- Department of Ultrasound, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yiman He
- Department of Ultrasound, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Hui Zhu
- Department of Ultrasound, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yasha Li
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing, 400014, China
| | - Dong Wang
- Department of Ultrasound, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Ke Yang
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing, 400014, China.
| |
Collapse
|
39
|
Valizadeh N, Salehi R, Roshangar L, Agbolaghi S, Mahkam M. Towards osteogenic bioengineering of human dental pulp stem cells induced by incorporating
Prunus amygdalus dulcis
extract in
polycaprolactone‐gelatin
nanofibrous scaffold. J Appl Polym Sci 2022. [DOI: 10.1002/app.52848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Nasrin Valizadeh
- Chemistry Department, Science Faculty Azarbaijan Shahid Madani University Tabriz Iran
| | - Roya Salehi
- Drug Applied Research Center and Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences Tabriz University of Medical Sciences Tabriz Iran
| | - Leila Roshangar
- Stem Cell Research Center Tabriz University of Medical Sciences Tabriz Iran
| | - Samira Agbolaghi
- Chemical Engineering Department, Faculty of Engineering Azarbaijan Shahid Madani University Tabriz Iran
| | - Mehrdad Mahkam
- Chemistry Department, Science Faculty Azarbaijan Shahid Madani University Tabriz Iran
| |
Collapse
|
40
|
Wang J, He M, Du M, Zhu C, Jiang Y, Zhuang Y, Qi L, Liu Z, Li Y, Liu L, Feng G, Wang D, Zhang L. Three‐dimensional printing
hydrogel scaffold with bioactivity and shape‐adaptability for potential application in irregular bone defect regeneration. J Appl Polym Sci 2022. [DOI: 10.1002/app.52831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Jing Wang
- Analytical and Testing Center Sichuan University Chengdu China
| | - Meiling He
- Analytical and Testing Center Sichuan University Chengdu China
| | - Meixuan Du
- Analytical and Testing Center Sichuan University Chengdu China
| | - Ce Zhu
- Department of Orthopedic Surgery and Orthopedic Research Institute West China Hospital, Sichuan University Chengdu China
| | - Yuling Jiang
- Analytical and Testing Center Sichuan University Chengdu China
| | - Yi Zhuang
- Analytical and Testing Center Sichuan University Chengdu China
| | - Lin Qi
- Analytical and Testing Center Sichuan University Chengdu China
| | - Zheng Liu
- Analytical and Testing Center Sichuan University Chengdu China
| | - Yubao Li
- Analytical and Testing Center Sichuan University Chengdu China
| | - Limin Liu
- Department of Orthopedic Surgery and Orthopedic Research Institute West China Hospital, Sichuan University Chengdu China
| | - Ganjun Feng
- Department of Orthopedic Surgery and Orthopedic Research Institute West China Hospital, Sichuan University Chengdu China
| | - Danqing Wang
- Department of Obstetrics and Gynecology West China Second University Hospital, Sichuan University Chengdu China
| | - Li Zhang
- Analytical and Testing Center Sichuan University Chengdu China
| |
Collapse
|
41
|
Basanth A, Mayilswamy N, Kandasubramanian B. Bone regeneration by biodegradable polymers. POLYM-PLAST TECH MAT 2022. [DOI: 10.1080/25740881.2022.2029886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Affiliation(s)
- Abina Basanth
- Biopolymer Science, Cipet: Ipt, Hil Colony, Kochi, India
| | - Neelaambhigai Mayilswamy
- Department Of Metallurgical And Materials Engineering, Diat(D.U.), Ministry Of Defence, Girinagar, Pune, India
| | | |
Collapse
|
42
|
Bone Mineralization in Electrospun-Based Bone Tissue Engineering. Polymers (Basel) 2022; 14:polym14102123. [PMID: 35632005 PMCID: PMC9146582 DOI: 10.3390/polym14102123] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/15/2022] [Accepted: 05/20/2022] [Indexed: 02/06/2023] Open
Abstract
Increasing the demand for bone substitutes in the management of bone fractures, including osteoporotic fractures, makes bone tissue engineering (BTE) an ideal strategy for solving the constant shortage of bone grafts. Electrospun-based scaffolds have gained popularity in BTE because of their unique features, such as high porosity, a large surface-area-to-volume ratio, and their structural similarity to the native bone extracellular matrix (ECM). To imitate native bone mineralization through which bone minerals are deposited onto the bone matrix, a simple but robust post-treatment using a simulated body fluid (SBF) has been employed, thereby improving the osteogenic potential of these synthetic bone grafts. This study highlights recent electrospinning technologies that are helpful in creating more bone-like scaffolds, and addresses the progress of SBF development. Biomineralized electrospun bone scaffolds are also reviewed, based on the importance of bone mineralization in bone regeneration. This review summarizes the potential of SBF treatments for conferring the biphasic features of native bone ECM architectures onto electrospun-based bone scaffolds.
Collapse
|
43
|
The Application of an Allogenic Bone Screw for Stabilization of a Modified Chevron Osteotomy: A Prospective Analysis. J Clin Med 2022; 11:jcm11051384. [PMID: 35268475 PMCID: PMC8911083 DOI: 10.3390/jcm11051384] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 02/04/2023] Open
Abstract
Background: Distal first metatarsal osteotomies are commonly performed operative procedures for hallux valgus deformity, and usually involve fixation with a metal screw. However, various bioabsorbable osteosynthesis materials have been in use for a number of years. One recent innovation is the Shark Screw®, a human cortical bone allograft. This study aimed to evaluate the efficacy and safety of this allogeneic screw in the stabilization of Reversed L-Shaped osteotomy, a modified Chevron osteotomy. Methods: In a prospective study, 15 patients underwent a Reversed L-Shaped osteotomy stabilized with the allogenic bone screw Radiological data on osteointegration of the screw and correction of the intermetatarsal angle were recorded. Furthermore, each follow-up examination included the collection of clinical data, the American Orthopedic Foot and Ankle Society (AOFAS) score, evaluation of pain level, and patient’s overall satisfaction. Results: Full osseous fusion of the osteotomy was seen in all patients. The bone screws were radiographically integrated after approximately 6.5 (±2.6) months. Neither nonunion nor failure occurred in any of our cases. Furthermore, we did not find any potential graft reaction. The AOFAS score improved significantly from 51.6 (±15.2) points to 90.9 (±10.3) (p < 0.001). The preoperative hallux valgus angle and intermetatarsal angle decreased significantly from 24.8 (±4.9) degrees to 7.2 (±4.4) degrees (p < 0.001) and 12.6 (±3.2) degrees to 4.8 (±1.3) degrees (p < 0.001), respectively. Conclusions: With this study, we demonstrated the efficiency of the allogenic bone screw (Shark Screw®) in regard to clinical and radiological short-term outcomes.
Collapse
|
44
|
Treatment of Bone Defects Resulted after Excision of Enchondroma of the Hand in 15 Patients, Comparing the Techniques of Autologous Bone Graft, Injectable Bone Substitute and Spontaneous Healing. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12031300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background: Enchondroma is the most common benign bone tumor of the hand. Surgical excision of the tumor using curettage is the treatment of choice. The management of the resulting defects is still a controversial topic in the literature. Methods: This retrospective study includes 15 patients diagnosed with solitary enchondroma in the hand bones: eight cases with type A, three cases with type B and four cases with type D according to Takigawa classification. The aim of this study was to compare the course and outcome in the three patient groups treated by curettage associated with natural consolidation of the bone defect, autologous bone graft or injectable synthetic bone substitute in association with plate and screw osteosynthesis. Results: Outcomes were assessed using the DASH score (mean score 2.5) and TAM score (excellent in all patients) with no significant functional differences between the three groups. Defects managed with k-IBS® injectable bone substitute were associated with shorter operating time, simpler surgical technique and less postoperative pain assessed by VAS score. Conclusion: The use of k-IBS® bone substitute is efficient and less technically demanding than autologous bone grafting. The Takigawa classification could be a good indicator for treatment choice.
Collapse
|
45
|
Oliveira TM, Berti FCB, Gasoto SC, Schneider B, Stimamiglio MA, Berti LF. Calcium Phosphate-Based Bioceramics in the Treatment of Osteosarcoma: Drug Delivery Composites and Magnetic Hyperthermia Agents. FRONTIERS IN MEDICAL TECHNOLOGY 2022; 3:700266. [PMID: 35047940 PMCID: PMC8757807 DOI: 10.3389/fmedt.2021.700266] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 05/21/2021] [Indexed: 12/12/2022] Open
Abstract
The use of biomaterials in medicine is not recent, and in the last few decades, the research and development of biocompatible materials had emerged. Hydroxyapatite (HAp), a calcium phosphate that constitutes a large part of the inorganic composition of human bones and teeth, has been used as an interesting bioceramic material. Among its applications, HAp has been used to carry antitumor drugs, such as doxorubicin, cisplatin, and gemcitabine. Such HAp-based composites have an essential role in anticancer drug delivery systems, including the treatment of osteosarcoma. In addition, the association of this bioceramic with magnetic nanoparticles (MNPs) has also been used as an effective agent of local magnetic hyperthermia. Further, the combined approach of the aforementioned techniques (HAp scaffolds combined with anti-tumor drugs and MNPs) is also an attractive therapeutical alternative. Considering the promising role of the use of bioceramics in modern medicine, we proposed this review, presenting an updated perspective on the use of HAp in the treatment of cancer, especially osteosarcoma. Finally, after giving the current progress in this field, we highlight the urgent need for efforts to provide a better understanding of their potential applications.
Collapse
Affiliation(s)
- Tiê Menezes Oliveira
- Department of Mechanical Engineering, Postgraduate Program in Biomedical Engineering, Federal University of Technology Paraná, Curitiba, Brazil
| | | | - Sidney Carlos Gasoto
- Department of Mechanical Engineering, Postgraduate Program in Electrical Engineering and Industrial Informatics, Federal University of Technology Paraná, Curitiba, Brazil
| | - Bertoldo Schneider
- Department of Mechanical Engineering, Postgraduate Program in Electrical Engineering and Industrial Informatics, Federal University of Technology Paraná, Curitiba, Brazil
| | | | - Lucas Freitas Berti
- Department of Mechanical Engineering, Postgraduate Program in Biomedical Engineering, Federal University of Technology Paraná, Curitiba, Brazil
| |
Collapse
|
46
|
Mu Y, Shao A, Shi L, Du B, Zhang Y, Luo J, Xu L, Qu S. Immunological Risk Assessment of Xenogeneic Dural Patch by Comparing with Raw Material via GTKO Mice. BIOMED RESEARCH INTERNATIONAL 2022; 2022:7950834. [PMID: 35083333 PMCID: PMC8786519 DOI: 10.1155/2022/7950834] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 12/12/2021] [Accepted: 12/21/2021] [Indexed: 11/17/2022]
Abstract
OBJECTIVE In this study, α-Gal epitope-deficient (GGTA1 knockout (GTKO)) mice were used to assess the immunological risks of xenogeneic dural patch by comparing with raw material. METHODS The xenogeneic dural patch (T2) was prepared from bovine pericardium (T1, raw material) through decellularization and carboxymethyl chitosan (CMCS) coating. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) were used to characterize the collagen fibers and surface microstructural changes in the T1 and T2 samples. The remnant α-Gal epitopes and DNA of implants were detected by standardized method. T1 and T2 were implanted subcutaneously into GTKO mice for 4 and 12 weeks, respectively, and the negative control group (Con) was only performed sham operation. The total serum antibody, anti-Gal antibody, and splenic lymphocyte subtypes were analyzed by ELISA or flow cytometry, and histological analysis of implant-tissue was performed by H&E and Masson stain. RESULTS TEM and Sirius red staining showed that the collagen fibers in the dural patch were closely arranged, and SEM showed that a loose three-dimensional structure was successfully constructed on the surface of the dural patch after CMCS coating. The remnant DNA in T2 was 24.64 ± 8.73 ng/mg (dry weight), and clearance of α-Gal epitope was up to 99.83% compared to T1. The significant increases in serum total IgM, anti-Gal IgG, and anti-Gal IgM at 4 weeks and the significant changes in anti-Gal IgG and spleen lymphocyte at 12 weeks were observed in the T1 group, but no significant change was observed in the T2 group, compared to the control group. Histological semiquantitative analysis showed severe cell and tissue responses at 4 weeks and a moderate response at 12 weeks in the T1 group, while a moderate response at 4 weeks and a slight response at 12 weeks in the T2 group. CONCLUSIONS The results demonstrated that the xenogeneic dural patch has a lower and acceptable immunological risk compared to the raw material and control, respectively. On the other hand, it was suggested that GTKO mice are useful experimental model for immunological risk assessment of animal tissue-derived biomaterials.
Collapse
Affiliation(s)
- Yufeng Mu
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
- Institute for Medical Device Control, National Institutes for Food and Drug Control, Beijing 102629, China
| | - Anliang Shao
- Institute for Medical Device Control, National Institutes for Food and Drug Control, Beijing 102629, China
| | - Li Shi
- Shaanxi Bioregenerative Medicine Co., Ltd., Xi'an 710100, China
| | - Bin Du
- Shaanxi Bioregenerative Medicine Co., Ltd., Xi'an 710100, China
| | - Yongjie Zhang
- Shaanxi Bioregenerative Medicine Co., Ltd., Xi'an 710100, China
| | - Jie Luo
- Shaanxi Bioregenerative Medicine Co., Ltd., Xi'an 710100, China
| | - Liming Xu
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
- Institute for Medical Device Control, National Institutes for Food and Drug Control, Beijing 102629, China
| | - Shuxin Qu
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| |
Collapse
|
47
|
Li J, Zhang X, Udduttula A, Fan ZS, Chen JH, Sun AR, Zhang P. Microbial-Derived Polyhydroxyalkanoate-Based Scaffolds for Bone Tissue Engineering: Biosynthesis, Properties, and Perspectives. Front Bioeng Biotechnol 2022; 9:763031. [PMID: 34993185 PMCID: PMC8724543 DOI: 10.3389/fbioe.2021.763031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 11/17/2021] [Indexed: 01/15/2023] Open
Abstract
Polyhydroxyalkanoates (PHAs) are a class of structurally diverse natural biopolyesters, synthesized by various microbes under unbalanced culture conditions. PHAs as biomedical materials have been fabricated in various forms to apply to tissue engineering for the past years due to their excellent biodegradability, inherent biocompatibility, modifiable mechanical properties, and thermo-processability. However, there remain some bottlenecks in terms of PHA production on a large scale, the purification process, mechanical properties, and biodegradability of PHA, which need to be further resolved. Therefore, scientists are making great efforts via synthetic biology and metabolic engineering tools to improve the properties and the product yields of PHA at a lower cost for the development of various PHA-based scaffold fabrication technologies to widen biomedical applications, especially in bone tissue engineering. This review aims to outline the biosynthesis, structures, properties, and the bone tissue engineering applications of PHA scaffolds with different manufacturing technologies. The latest advances will provide an insight into future outlooks in PHA-based scaffolds for bone tissue engineering.
Collapse
Affiliation(s)
- Jian Li
- Shenzhen Engineering Research Center for Medical Bioactive Materials, Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xu Zhang
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, China.,Department of Chemical Engineering, Tsinghua University, Beijing, China
| | - Anjaneyulu Udduttula
- Shenzhen Engineering Research Center for Medical Bioactive Materials, Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zhi Shan Fan
- Shenzhen Engineering Research Center for Medical Bioactive Materials, Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jian Hai Chen
- Shenzhen Engineering Research Center for Medical Bioactive Materials, Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Antonia RuJia Sun
- Shenzhen Engineering Research Center for Medical Bioactive Materials, Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Peng Zhang
- Shenzhen Engineering Research Center for Medical Bioactive Materials, Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
48
|
Boffito M, Servello L, Arango-Ospina M, Miglietta S, Tortorici M, Sartori S, Ciardelli G, Boccaccini AR. Custom-Made Poly(urethane) Coatings Improve the Mechanical Properties of Bioactive Glass Scaffolds Designed for Bone Tissue Engineering. Polymers (Basel) 2021; 14:151. [PMID: 35012176 PMCID: PMC8747464 DOI: 10.3390/polym14010151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/17/2021] [Accepted: 12/23/2021] [Indexed: 12/03/2022] Open
Abstract
The replication method is a widely used technique to produce bioactive glass (BG) scaffolds mimicking trabecular bone. However, these scaffolds usually exhibit poor mechanical reliability and fast degradation, which can be improved by coating them with a polymer. In this work, we proposed the use of custom-made poly(urethane)s (PURs) as coating materials for 45S5 Bioglass®-based scaffolds. In detail, BG scaffolds were dip-coated with two PURs differing in their soft segment (poly(ε-caprolactone) or poly(ε-caprolactone)/poly(ethylene glycol) 70/30 w/w) (PCL-PUR and PCL/PEG-PUR) or PCL (control). PUR-coated scaffolds exhibited biocompatibility, high porosity (ca. 91%), and improved mechanical properties compared to BG scaffolds (2-3 fold higher compressive strength). Interestingly, in the case of PCL-PUR, compressive strength significantly increased by coating BG scaffolds with an amount of polymer approx. 40% lower compared to PCL/PEG-PUR- and PCL-coated scaffolds. On the other hand, PEG presence within PCL/PEG-PUR resulted in a fast decrease in mechanical reliability in an aqueous environment. PURs represent promising coating materials for BG scaffolds, with the additional pros of being ad-hoc customized in their physico-chemical properties. Moreover, PUR-based coatings exhibited high adherence to the BG surface, probably because of the formation of hydrogen bonds between PUR N-H groups and BG surface functionalities, which were not formed when PCL was used.
Collapse
Affiliation(s)
- Monica Boffito
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy; (L.S.); (S.M.); (M.T.); (S.S.); (G.C.)
| | - Lucia Servello
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy; (L.S.); (S.M.); (M.T.); (S.S.); (G.C.)
| | - Marcela Arango-Ospina
- Institute of Biomaterials, University of Erlangen-Nuremberg, Cauerstr. 6, 91058 Erlangen, Germany;
| | - Serena Miglietta
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy; (L.S.); (S.M.); (M.T.); (S.S.); (G.C.)
| | - Martina Tortorici
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy; (L.S.); (S.M.); (M.T.); (S.S.); (G.C.)
- Julius Wolff Institut, Charité—Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Susanna Sartori
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy; (L.S.); (S.M.); (M.T.); (S.S.); (G.C.)
| | - Gianluca Ciardelli
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy; (L.S.); (S.M.); (M.T.); (S.S.); (G.C.)
| | - Aldo R. Boccaccini
- Institute of Biomaterials, University of Erlangen-Nuremberg, Cauerstr. 6, 91058 Erlangen, Germany;
| |
Collapse
|
49
|
He XY, Yu HM, Lin S, Li YZ. Advances in the application of mesenchymal stem cells, exosomes, biomimetic materials, and 3D printing in osteoporosis treatment. Cell Mol Biol Lett 2021; 26:47. [PMID: 34775969 PMCID: PMC8591870 DOI: 10.1186/s11658-021-00291-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/02/2021] [Indexed: 01/01/2023] Open
Abstract
Owing to an increase in the aging population, osteoporosis has become a severe public health concern, with a high prevalence among the elderly and postmenopausal adults. Osteoporosis-related fracture is a major cause of morbidity and mortality in elderly and postmenopausal adults, posing a considerable socioeconomic burden. However, existing treatments can only slow down the process of osteoporosis, reduce the risk of fractures, and repair fractures locally. Therefore, emerging methods for treating osteoporosis, such as mesenchymal stem cell transplantation, exosome-driving drug delivery systems, biomimetic materials, and 3D printing technology, have received increasing research attention, with significant progress. Mesenchymal stem cells (MSCs) are pluripotent stem cells that can differentiate into different types of functional cells. Exosomes play a key role in regulating cell microenvironments through paracrine mechanisms. Bionic materials and 3D printed scaffolds are beneficial for the reconstruction and repair of osteoporotic bones and osteoporosis-related fractures. Stem cells, exosomes, and biomimetic materials represent emerging technologies for osteoporosis treatment. This review summarizes the latest developments in these three aspects.
Collapse
Affiliation(s)
- Xiao-Yu He
- Department of Orthopaedics, The Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian Province, China
| | - Hai-Ming Yu
- Department of Orthopaedics, The Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian Province, China.
| | - Shu Lin
- Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian Province, China. .,Diabetes and Metabolism Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW, 2010, Australia.
| | - Yi-Zhong Li
- Department of Orthopaedics, The Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian Province, China
| |
Collapse
|
50
|
Rahimnejad M, Rezvaninejad R, Rezvaninejad R, França R. Biomaterials in bone and mineralized tissue engineering using 3D printing and bioprinting technologies. Biomed Phys Eng Express 2021; 7. [PMID: 34438382 DOI: 10.1088/2057-1976/ac21ab] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/26/2021] [Indexed: 12/29/2022]
Abstract
This review focuses on recently developed printable biomaterials for bone and mineralized tissue engineering. 3D printing or bioprinting is an advanced technology to design and fabricate complex functional 3D scaffolds, mimicking native tissue forin vivoapplications. We categorized the biomaterials into two main classes: 3D printing and bioprinting. Various biomaterials, including natural, synthetic biopolymers and their composites, have been studied. Biomaterial inks or bioinks used for bone and mineralized tissue regeneration include hydrogels loaded with minerals or bioceramics, cells, and growth factors. In 3D printing, the scaffold is created by acellular biomaterials (biomaterial inks), while in 3D bioprinting, cell-laden hydrogels (bioinks) are used. Two main classes of bioceramics, including bioactive and bioinert ceramics, are reviewed. Bioceramics incorporation provides osteoconductive properties and induces bone formation. Each biopolymer and mineral have its advantages and limitations. Each component of these composite biomaterials provides specific properties, and their combination can ameliorate the mechanical properties, bioactivity, or biological integration of the 3D printed scaffold. Present challenges and future approaches to address them are also discussed.
Collapse
Affiliation(s)
- Maedeh Rahimnejad
- Biomedical Engineering Institute, Université de Montreal, Montreal, QC, Canada
| | - Raziyehsadat Rezvaninejad
- Department of Oral Medicine, Faculty of Dentistry, Hormozgan University of Medical Sciences, Hormozgan, Iran
| | | | - Rodrigo França
- Department of Restorative Dentistry, College of Dentistry, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|