1
|
Baba WN, Khan H, Nazir A, Maqsood S. Innovative use of camel whey proteins, quercetin, and starch as ternary complexes for emulsion stabilization at the Micro and Nano scale. Food Chem 2025; 473:142880. [PMID: 39914139 DOI: 10.1016/j.foodchem.2025.142880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 01/01/2025] [Accepted: 01/10/2025] [Indexed: 02/26/2025]
Abstract
Protein-polyphenol and polysaccharide complexes have gained ample research interest as natural emulsifiers. Covalent camel whey protein-quercetin (WQ) conjugates and their non-covalent complexes (WQS) with starch would enhance the stabilization of micron (ME) and nano-size emulsions (NE). Fabrication of WQ conjugates and WQS complexes was followed by their characterization using spectroscopic and electrophoretic techniques. Emulsions stabilized by these compounds were evaluated through microscopy, droplet size analysis, rheology, and oxidative stability assays. Production method and WQS incorporation were considered as variables in the experimental design. Results showed that WQ-conjugate-stabilized emulsions exhibited superior stability compared to control, regardless of the production method. WQS incorporation improved stability, especially in nano emulsions. Covalent-WQ-conjugates outperformed WQS in stabilizing micron emulsions. Starch concentration influenced oxidative stability, with higher concentrations in ternary complexes correlating with decreased stability. These findings underscore the potential of WQ covalent conjugates and WQS ternary complexes to enhance camel whey proteins' emulsifying properties for functional foods.
Collapse
Affiliation(s)
- Waqas N Baba
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| | - Hina Khan
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| | - Akmal Nazir
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain 15551, United Arab Emirates.
| | - Sajid Maqsood
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain 15551, United Arab Emirates.
| |
Collapse
|
2
|
Muhammad Z, Ramzan R, Abdullah, Abbas HMK, Sun W, Zhang G. Integrating the modified amphiphilic Eleocharis tuberosa starch to stabilize curcuminoid-enriched Pickering emulsions for enhanced bioavailability, thermal stability, and retention of the hydrophobic bioactive compound. Carbohydr Polym 2025; 352:123199. [PMID: 39843101 DOI: 10.1016/j.carbpol.2024.123199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/25/2024] [Accepted: 12/28/2024] [Indexed: 01/24/2025]
Abstract
The study involves the modification of a non-conventional starch isolated from the under-utilized variety of Chinese water chestnut (CWC (Eleocharis tuberosa) and integrating it to fabricate stabilized and curcumin-enriched Pickering emulsions with enhanced bioavailability, thermal stability, and retention of encapsulated curcumin. A time-efficient, semi-dried esterification method was used to prepare modified amphiphilic starches using 3, 6, or 9 % (w/v) octenyl succinic anhydride (OSA) and characterized through degree of substitution (DS), contact angle, particle size, scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and in-vitro digestibility. Moreover, Pickering emulsions were formulated using CWCS-OSA at 3 %, 6 %, or 9 % concentrations to serve as a carrier for curcumin to improve its water solubility and storage stability. The research investigated Pickering emulsions' encapsulation efficiency, curcumin retention, emulsifying properties, micromorphology, temperature stability, and bioaccessibility. Results showed that CWCS-OSA, with an OSA concentration between 3 % and 9 %, exhibited a degree of substitution (DS) ranging from 0.017 to 0.031 and an expansion in contact angle from 68.36o to 85.45o. CWCS-9%OSA showed the highest encapsulation efficiency at 89.4 % and maintained an emulsification index above 80 % during a 10-day storage period. A significantly higher bio-accessibility (41.26 ± 1.34 %) of curcumin in Pickering emulsions stabilized with CWCS-9%OSA than in the bulk oil system (19.53 ± 1.62 %). This study highlights the potential of chemically modified amphiphilic starch from an underutilized variety of CWCS (Eleocharis tuberosa) to produce the stabilized Pickering emulsion gels as a stable and effective carrier for unstable hydrophobic polyphenolic compounds by enhancing their bioavailability in the foods and pharmaceutics.
Collapse
Affiliation(s)
- Zafarullah Muhammad
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, Anhui-, China; Wuhu Green Food Industrial Research Institute Co., Ltd., Wuhu 241000, Anhui- China
| | - Rabia Ramzan
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, Anhui-, China
| | - Abdullah
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | | | - Wu Sun
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, Anhui-, China
| | - Guoqiang Zhang
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, Anhui-, China; Wuhu Green Food Industrial Research Institute Co., Ltd., Wuhu 241000, Anhui- China.
| |
Collapse
|
3
|
Hashemi N, Tsochatzis E, Rasmussen MK, Corredig M. An in vitro study of oral bioavailability of lupin stabilized nanocarriers for curcumin. Food Chem 2025; 468:142384. [PMID: 39667234 DOI: 10.1016/j.foodchem.2024.142384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/17/2024] [Accepted: 12/03/2024] [Indexed: 12/14/2024]
Abstract
In this study, the bioaccessibility and bioavailability of curcumin encapsulated into different lupin protein isolate-based carriers was evaluated by coupling an in vitro gastrointestinal digestion (INFOGEST) with an in vitro co-culture absorption model, Caco-2/HT29-MTX, consisting of both absorptive and mucus producing cells. A targeted ultrahigh-performance quadrupole time-of-flight mass spectrometry (UHPLC-QTOF-MS) method was applied to monitor the fate of curcumin post digestion and absorption, specifically analyzing the apical, cellular, and basolateral fractions. Lupin protein nanoparticles, obtained by desolvation, protected curcumin from degradation better than oil in water (O/W) emulsions stabilized with lupin protein isolate. A recovery of 70 % of initial curcumin was found in the whole digesta of nanoparticles, whereas the emulsion systems displayed ≤35 % recovery. Interestingly, unlike in the case of emulsions, where curcumin was found in the micellar phase, most of the curcumin in the digesta of nanoparticles was recovered in the insoluble phase, highlighting the influence of the matrix structure in ensuring bioaccessibility of bioactive components. Regardless of the treatment, curcumin was not detected in the basolateral compartment, after absorption and transport through the in vitro cell monolayer model. However, a noteworthy proportion of curcumin, 54 % for protein nanoparticles and ≤ 24 % for emulsions, was retrieved within the cell monolayer. Non-targeted metabolomics analysis revealed the presence of a range of curcumin metabolites in the basolateral fraction and showed distinct profiles depending on the type (structure) of the delivery systems. The study highlights the critical need for thorough research into the behavior of bioactive compounds within the gut and emphasizes the necessity for future studies aimed at gaining a deeper understanding of the impact of the food matrix. Such insights are vital for enhancing and optimizing the delivery of bioactive compounds from complex food sources.
Collapse
Affiliation(s)
- Negin Hashemi
- Department of Food Science, Aarhus University, Agro Food Park 48, 8200 Aarhus N, Denmark.
| | - Emmanouil Tsochatzis
- Department of Food Science, Aarhus University, Agro Food Park 48, 8200 Aarhus N, Denmark
| | | | - Milena Corredig
- Department of Food Science, Aarhus University, Agro Food Park 48, 8200 Aarhus N, Denmark
| |
Collapse
|
4
|
Ye T, Chen Q, Yang S, Liu H, Zhou Y, Feng Y, Li J, Wang Y, Yu G, Dai J. Host-guest interfacial recognition of alginate-based β-cyclodextrin/dendrobine supra-amphiphiles reinforced the physicochemical stability and sustained-release properties of Pickering emulsions. Int J Biol Macromol 2025; 306:141746. [PMID: 40049470 DOI: 10.1016/j.ijbiomac.2025.141746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/26/2025] [Accepted: 03/03/2025] [Indexed: 03/10/2025]
Abstract
Achieving high bioavailability of dendrobine (DDB) necessitates the development of simplified available and efficient delivery systems. Pickering emulsions (PEs) derived from biomass represent a promising option. However, the physicochemical properties of PEs interfacial films were insufficient to prevent DDB leakage, thereby reducing bioavailability. Herein, a supramolecular host-guest interfacial recognition strategy was proposed in-situ between amphipathic sodium alginate-functionalized cyclodextrin (SAE-CD) and hydrophobic DDB at oil-water interface, further forming the SAE-based supra-amphiphiles to efficient stabilize the high internal phase Pickering emulsions (HIPPEs) with gel-like characteristics. A multiscale methodology was empolyed to investigate the interfacial assembly behavior and emulsification properties of supra-amphiphilic SAE-CD/DDB interfacial system, focusing on molecular interactions, interfacial adsorption, and overall stability. Notably, the SAE-CD/DDB-based supramolecular assembly/disassembly behaviors could be self-adjusted for regulating the aggregation particle size and thickness of interfacial self-assembled films. The SAE-CD/DDB co-stabilized HIPPEs exhibited favorable drug release capabilities, enabling sustained effects of DDB. Overall, the SAE-CD/DDB co-stabilized HIPPEs demonstrated excellent properties in terms of stability, drug loading capacity, and sustained release performance, highlighting their potential for in oral delivery and sustained-release systems.
Collapse
Affiliation(s)
- Tong Ye
- School of Pharmacy, Anhui University of Chinese Medicine, 350 Longzihu Road, Hefei 230012, Anhui Province, China
| | - Qile Chen
- School of Pharmacy, Anhui University of Chinese Medicine, 350 Longzihu Road, Hefei 230012, Anhui Province, China
| | - Shujuan Yang
- School of Pharmacy, Anhui University of Chinese Medicine, 350 Longzihu Road, Hefei 230012, Anhui Province, China
| | - Haifang Liu
- School of Pharmacy, Anhui University of Chinese Medicine, 350 Longzihu Road, Hefei 230012, Anhui Province, China
| | - Yan Zhou
- School of Pharmacy, Anhui University of Chinese Medicine, 350 Longzihu Road, Hefei 230012, Anhui Province, China
| | - Yuhong Feng
- School of Pharmacy, Anhui University of Chinese Medicine, 350 Longzihu Road, Hefei 230012, Anhui Province, China
| | - Jiacheng Li
- School of Pharmacy, Anhui University of Chinese Medicine, 350 Longzihu Road, Hefei 230012, Anhui Province, China
| | - Yujuan Wang
- School of Pharmacy, Anhui University of Chinese Medicine, 350 Longzihu Road, Hefei 230012, Anhui Province, China
| | - Gaobo Yu
- School of Pharmacy, Anhui University of Chinese Medicine, 350 Longzihu Road, Hefei 230012, Anhui Province, China.
| | - Jun Dai
- School of Pharmacy, Anhui University of Chinese Medicine, 350 Longzihu Road, Hefei 230012, Anhui Province, China.
| |
Collapse
|
5
|
Rosalina R, Weerapreeyakul N, Sutthanut K, Kamwilaisak K, Sakonsinsiri C. Nanocellulose-based Pickering emulsion of sesamolin manifested increased anticancer activity and necrosis in human colon cancer (HCT116) cells. Int J Biol Macromol 2025; 292:139225. [PMID: 39732237 DOI: 10.1016/j.ijbiomac.2024.139225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/16/2024] [Accepted: 12/24/2024] [Indexed: 12/30/2024]
Abstract
Sesamolin possesses limited aqueous solubility, a drawback for biological activity study in cancer cell models. This study aimed to enhance sesamolin's ability to fight cancer, as it is a bioactive compound with low water solubility found in sesame. We developed different Pickering emulsion delivery systems and tested their anticancer effects on various cancer cell types. Sesamolin was incorporated into either sesame or olive oil and subsequently formulated as oil in water (o/w) Pickering emulsions stabilized by the carboxylated cellulose nanocrystal (cCNC). The anticancer activity was determined based on cell viability and the induction of cell death mechanisms. The results demonstrated a synergistic effect of the components in the emulsion, including sesamolin, sesame oil, and olive oil, and a decrease in HCT116 viability in a concentration-dependent manner and selectively on cancer cells compared to non-cancerous Vero cells. The primary mode of cell death was predominantly ROS-induced necrosis, with no change in caspase 3/7 activity, indicating the absence of apoptosis. This study first presents the necrotic cell death mechanism induced by sesamolin. The findings reveal that the cCNC emulsion delivery system is safe and appropriate for transporting lipophilic chemicals and can overcome solubility limitations.
Collapse
Affiliation(s)
- Reny Rosalina
- Graduate School (Biomedical Sciences Program), Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Natthida Weerapreeyakul
- Division of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; Human High Performance and Health Promotion Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Khaetthareeya Sutthanut
- Division of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; Human High Performance and Health Promotion Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Khanita Kamwilaisak
- Department of Chemical Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Chadamas Sakonsinsiri
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
6
|
Liu Z, Lee YY, Tan CP, Wang Y, Qiu C. Improved solubility and bioavailability of cyclolinopeptides by diacylglycerol in the β-cyclodextrin Pickering emulsions. Food Chem 2025; 464:141553. [PMID: 39406140 DOI: 10.1016/j.foodchem.2024.141553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/26/2024] [Accepted: 10/04/2024] [Indexed: 11/21/2024]
Abstract
Cyclolinopeptides (CLs) have anti-inflammatory, anti-osteoporosis, and anti-tumor effects, however, low water and oil solubility greatly limit their application. Herein, CLs-loaded β-cyclodextrin (β-CD) emulsions were prepared with different oil phases. The in vitro digestibility, cellular absorption, and anti-inflammatory effects were evaluated. Camellia oil diacylglycerol (CO DAG) showed enhanced dissolving ability for CLs due to high polarity. β-CD formed inclusion complexes with DAG through hydrogen bond and the emulsions showed smaller size and higher physical stability with 50 % (w/w) oil. The in vitro digestibility of the DAG emulsion was increased and the CLs' bioavailability was 13.6-fold higher than CLs in oil. The CLs-loaded Pickering emulsion digesta exhibited a higher nitric oxides (NO) inhibition rate (58.62 %) and Caco-2 cell penetration (3.09 × 10-6 cm/s). Therefore, emulsion formulated with β-cyclodextrin and DAG can effectively improve the solubility and bioavailability of CLs, which has significant potential for application in functional foods and pharmaceutical industry.
Collapse
Affiliation(s)
- Zhongbo Liu
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Yee Ying Lee
- School of Science, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia
| | - Chin Ping Tan
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43300, Selangor, Malaysia
| | - Yong Wang
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China.
| | - Chaoying Qiu
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
7
|
Chai T, Zhang M, Wang S, Feng J, Feng X, Shao S, Lu C, Jin G. Based on sodium alginate coatings and dendritic copolymeric modification of curcumin delivery system: pH-sensitive nanospheres and strong tumor cytotoxicity. Int J Biol Macromol 2025; 284:137962. [PMID: 39603291 DOI: 10.1016/j.ijbiomac.2024.137962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 11/11/2024] [Accepted: 11/21/2024] [Indexed: 11/29/2024]
Abstract
This study aims to construct a novel drug delivery strategy to address the poor bioavailability and biostability of curcumin. A curcumin delivery strategy, basing on post-polymerization modification of poly(2-vinyl-4,4-dimethyl azlactone) to obtain conjugates of curcumin and dendritic polymers, combined with sodium alginate coating is reported. The curcumin-polymer conjugates were shown to have good fluorescence properties with fluorescence quantum yields of 0.486 and 0.470, respectively. The composites were characterized as spherical nanoparticles with a desirable particle size of 221.7 nm and massive negatively charged surfaces. These aesthetic properties make it an acceptable drug delivery and release vehicle. In vitro release experiments showed that release of curcumin from the conjugates was controllable and acid-sensitive, which is expected to guide delivery targeting to cancer sites. In addition, biodistribution studies of the gastrointestinal tract of mice showed high levels of exposure. The results of cell imaging showed that conjugates have strong permeability to cancer cell membranes. They have been shown to have strong targeting and inhibitory effects on a variety of cancer cells, with an inhibition rate of up to about 90 %. Therefore, such novel vector designs show great potential in drug delivery mechanism research and cancer therapy.
Collapse
Affiliation(s)
- Tiantian Chai
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Mengtong Zhang
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Shuo Wang
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Jiankang Feng
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Xibing Feng
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Shihe Shao
- Department of Gastroenterology, Yixing Hospital affiliated to Jiangsu University, Yixing 214200, PR China.
| | - Chichong Lu
- Department of Chemistry, School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, PR China.
| | - Guofan Jin
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China.
| |
Collapse
|
8
|
Hu Z, Wei X, Liu X, Bai W, Zeng X. Effect of starch categories and mass ratio of TA/starch on the emulsifying performance and stability of emulsions stabilized by tannic acid-starch complexes. Int J Biol Macromol 2024; 280:136345. [PMID: 39374717 DOI: 10.1016/j.ijbiomac.2024.136345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/28/2024] [Accepted: 10/04/2024] [Indexed: 10/09/2024]
Abstract
This study compounded natural corn starch (CS), mung bean starch (MBS) and potato starch (PS) with tannic acid (TA) to stabilize O/W Pickering emulsion. The effect of TA/starch mass ratio (0-0.25) and three starch categories on particle properties, emulsifying properties, lipid oxidation, freeze-thaw stability, emulsion powder and digestive properties were comprehensibly investigated. In detail, the TA/starch complexes size increased gradually (91.14 nm-200.87 nm) and the hydrophobicity first increased and then decreased (TA/CS > TA/MBS > TA/PS) with increasing TA/starch mass ratio. In addition, the emulsifying ability of TA/starch complexes also increased first and then decreased with increasing mass ratio, especially TA/CS system was the best, which was the same as the hydrophobicity conclusion (θow = 80.46°). Moreover, four starch-based emulsion application characteristics were further evaluated to reveal interface structure. Compared to CS and PS system, TA/MBS emulsion had stronger ability to resist the oil oxidation (TBA = 2.54 μg/mL), destruction of ice crystal (whiter emulsion powder) and digestive enzymes (FFAs = 75.33 %). It mainly attributed to the crosslinking network structure and the highest surface load of TA/MBS complexes. This study would provide new ideas for the design and application of emulsifying properties and emulsion stability.
Collapse
Affiliation(s)
- Ziqing Hu
- College of Light Industry and Food Science, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China; Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Guangzhou, Guangdong 510225, China
| | - Xianling Wei
- College of Light Industry and Food Science, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China; Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Guangzhou, Guangdong 510225, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou, Guangdong 510225, China.
| | - Xiaoyan Liu
- College of Light Industry and Food Science, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou, Guangdong 510225, China; Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - Weidong Bai
- College of Light Industry and Food Science, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China; Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Guangzhou, Guangdong 510225, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou, Guangdong 510225, China; Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - Xiaofang Zeng
- College of Light Industry and Food Science, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China; Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Guangzhou, Guangdong 510225, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou, Guangdong 510225, China; Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| |
Collapse
|
9
|
Vital N, Gramacho AC, Silva M, Cardoso M, Alvito P, Kranendonk M, Silva MJ, Louro H. Challenges of the Application of In Vitro Digestion for Nanomaterials Safety Assessment. Foods 2024; 13:1690. [PMID: 38890918 PMCID: PMC11171843 DOI: 10.3390/foods13111690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/17/2024] [Accepted: 05/23/2024] [Indexed: 06/20/2024] Open
Abstract
Considering the increase in the production and use of nanomaterials (NM) in food/feed and food contact materials, novel strategies for efficient and sustainable hazard characterization, especially in the early stages of NM development, have been proposed. Some of these strategies encompass the utilization of in vitro simulated digestion prior to cytotoxic and genotoxic assessment. This entails exposing NM to fluids that replicate the three successive phases of digestion: oral, gastric, and intestinal. Subsequently, the resulting digestion products are added to models of intestinal cells to conduct toxicological assays, analyzing multiple endpoints. Nonetheless, exposure of intestinal cells to the digested products may induce cytotoxicity effects, thereby posing a challenge to this strategy. The aim of this work was to describe the challenges encountered with the in vitro digestion INFOGEST 2.0 protocol when using the digestion product in toxicological studies of NM, and the adjustments implemented to enable its use in subsequent in vitro biological assays with intestinal cell models. The adaptation of the digestion fluids, in particular the reduction of the final bile concentration, resulted in a reduced toxic impact of digestion products.
Collapse
Affiliation(s)
- Nádia Vital
- National Institute of Health Dr. Ricardo Jorge (INSA), Department of Human Genetics, 1649-016 Lisbon, Portugal
- NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal;
- Centre for Toxicogenomics and Human Health (ToxOmics), NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
| | - Ana Catarina Gramacho
- National Institute of Health Dr. Ricardo Jorge (INSA), Department of Human Genetics, 1649-016 Lisbon, Portugal
| | - Mafalda Silva
- National Institute of Health Dr. Ricardo Jorge (INSA), Department of Food and Nutrition, 1649-016 Lisbon, Portugal
- REQUIMTE/LAQV, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Maria Cardoso
- National Institute of Health Dr. Ricardo Jorge (INSA), Department of Human Genetics, 1649-016 Lisbon, Portugal
| | - Paula Alvito
- National Institute of Health Dr. Ricardo Jorge (INSA), Department of Food and Nutrition, 1649-016 Lisbon, Portugal
- CESAM—Centre for Environmental and Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Michel Kranendonk
- NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal;
- Centre for Toxicogenomics and Human Health (ToxOmics), NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
| | - Maria João Silva
- National Institute of Health Dr. Ricardo Jorge (INSA), Department of Human Genetics, 1649-016 Lisbon, Portugal
- Centre for Toxicogenomics and Human Health (ToxOmics), NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
| | - Henriqueta Louro
- National Institute of Health Dr. Ricardo Jorge (INSA), Department of Human Genetics, 1649-016 Lisbon, Portugal
- Centre for Toxicogenomics and Human Health (ToxOmics), NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
| |
Collapse
|
10
|
Lee MH, Kim HD, Jang YJ. Delivery systems designed to enhance stability and suitability of lipophilic bioactive compounds in food processing: A review. Food Chem 2024; 437:137910. [PMID: 37931451 DOI: 10.1016/j.foodchem.2023.137910] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 10/17/2023] [Accepted: 10/29/2023] [Indexed: 11/08/2023]
Abstract
Lipophilic compounds, such as flavors, fat-soluble vitamins, and hydrophobic nutrients possess vital properties including antioxidant effects, functional attributes, and nutritional value that can improve human health. However, their susceptibility to environmental factors including heat, pH changes, and ionic strength encountered during food processing poses significant challenges. To address these issues, diverse bioactive delivery systems have been developed. This review explores delivery systems designed to optimize the stability and suitability of lipophilic bioactive compounds in food processing. Extensive literature analysis reveals that tailoring delivery systems with various biopolymers can protect bioactives through steric hindrance and formation of thick interfacial layers on the emulsion surfaces. Thus, the access of oxygen, prooxidants, and free radicals at the emulsion interface could be inhibited, resulting in enhanced processing suitability of bioactives as well as chemical stability under diverse environmental conditions. The insights presented in this review hold immense value for the food and beverage industries.
Collapse
Affiliation(s)
- Min Hyeock Lee
- Department of Food Science and Biotechnology, Kyung Hee University, 1732, Deogyeong-daero, Giheung-gu, Yongin 17104, Republic of Korea.
| | - Hyeong Do Kim
- Department of Food Science and Biotechnology, Kyung Hee University, 1732, Deogyeong-daero, Giheung-gu, Yongin 17104, Republic of Korea
| | - Yun Jae Jang
- Department of Food Science and Biotechnology, Kyung Hee University, 1732, Deogyeong-daero, Giheung-gu, Yongin 17104, Republic of Korea
| |
Collapse
|
11
|
Liu Y, Zhang C, Cheng L, Wang H, Lu M, Xu H. Enhancing both oral bioavailability and anti-ischemic stroke efficacy of ginkgolide B by preparing nanocrystals self-stabilized Pickering nano-emulsion. Eur J Pharm Sci 2024; 192:106620. [PMID: 37871688 DOI: 10.1016/j.ejps.2023.106620] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/11/2023] [Accepted: 10/20/2023] [Indexed: 10/25/2023]
Abstract
Ginkgolide B (GB), which has been demonstrated as the most efficacious naturally occurring platelet-activating factor (PAF) antagonist, is extensively utilized for the management of cardiovascular and cerebrovascular ailments. Nevertheless, its limited oral bioavailability is hindered by its low solubility in gastric acid and inadequate stability in intestinal fluid, thereby constraining its practical application. This study aimed to develop GB nanocrystals (GB-NCs) and GB nanocrystals self-stabilized Pickering nano-emulsion (GB-NSSPNE) using a miniaturized wet bead milling method. Comparative evaluations were conducted in vivo and in vitro to assess their effectiveness. The findings revealed that GB-NSSPNE, with its intact nanoparticle slow release and absorption, was more effective in enhancing the oral bioavailability of GB compared to the rapid release and absorption of GB-NCs. This finding suggests a potential novel strategy for the oral delivery of GB.
Collapse
Affiliation(s)
- Yun Liu
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, No. 77, Life One Road DD port, Dalian 116600, China
| | - Chungang Zhang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, No. 77, Life One Road DD port, Dalian 116600, China; Department of Pharmacy, Changzhi Medical College, Changzhi, China; Key Laboratory of Ministry of Education, Traditional Chinese Medicine Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, China; Qimeng Co., LTD, Chifeng, China
| | - Lan Cheng
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, No. 77, Life One Road DD port, Dalian 116600, China.
| | - Hongxin Wang
- Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Meili Lu
- Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Hengyu Xu
- Medical Mass Spectrometry Technology Innovation Center of Liaoning Province, Shenyang Harmony Health Medical Laboratory, Shenyang, Liaoning Province, China
| |
Collapse
|
12
|
Tavasoli S, Maghsoudlou Y, Shahiri Tabarestani H, Mahdi Jafari S. Changes in emulsifying properties of caseinate-Soy soluble polysaccharides conjugates by ultrasonication. ULTRASONICS SONOCHEMISTRY 2023; 101:106703. [PMID: 38016333 PMCID: PMC10711224 DOI: 10.1016/j.ultsonch.2023.106703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/21/2023] [Accepted: 11/17/2023] [Indexed: 11/30/2023]
Abstract
This research aimed to assess the impact of ultrasonication on the emulsifying ability of a conjugate system composed of sodium caseinate and soluble soy polysaccharides. The study analyzed the characteristics of the particles and evaluated the emulsions produced using nanoconjugates. The results showed that ultrasonication improved the contact angle (63.7°) and decreased particle size (75 nm), resulting in more effective emulsifying efficiency. At a 2 % concentration of the nanoconjugates, stable emulsions with a 50 % oil content were successfully formed through complete coverage of the droplets' surface, and no oil release was observed. Moreover, the emulsions' creaming index remained below 25 % even after 60 days of storage. The stability of the nanoconjugate-based emulsions depended on the concentration of nanoconjugates, with an optimal concentration of 4 %. These findings suggest that the nanoconjugates have great potential as a natural stabilizer for emulsion-based products.
Collapse
Affiliation(s)
- Sedighe Tavasoli
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Yahya Maghsoudlou
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
| | - Hoda Shahiri Tabarestani
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Seid Mahdi Jafari
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran
| |
Collapse
|
13
|
Vale M, Marques AC. Mechanistic Study of the Formation of Multicomponent Oxide Porous Microspheres (MICROSCAFS ®) by Cryo-Scanning Electron Microscopy. Gels 2023; 9:704. [PMID: 37754386 PMCID: PMC10529508 DOI: 10.3390/gels9090704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/19/2023] [Accepted: 08/29/2023] [Indexed: 09/28/2023] Open
Abstract
Multicomponent oxide microspheres with interconnected macroporosity (MICROSCAFS®) are new materials with great potential as support materials for photocatalysis, optimized for real life applications and for other uses that are still being explored. They are obtained from an adapted sol-gel process combined with phase separation phenomena that occur within the water droplets of an emulsion. We present here a methodology based on cryogenic scanning electron microscopy (cryo-SEM) that allows, with minimal specimen preparation, the direct and in situ visualization of 'wet' alkoxide-derived microstructures, for the mechanistic study of the complex process of MICROSCAFS® generation. It is simultaneously combined with energy dispersive X-ray spectroscopy (EDS) to visualize phase separation phenomena and study the chemical elemental composition at specific regions of the sample and reaction times.
Collapse
|
14
|
Lv J, Zhou X, Wang W, Cheng Y, Wang F. Solubilization mechanism of self-assembled walnut protein nanoparticles and curcumin encapsulation. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:4908-4918. [PMID: 36929026 DOI: 10.1002/jsfa.12559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/20/2023] [Accepted: 03/16/2023] [Indexed: 06/08/2023]
Abstract
BACKGROUND Native walnut protein is an alkali-soluble protein that seriously limits the application of walnut protein. The pH-shifting method could improve the solubility of walnut proteins and enable the encapsulation of active ingredients. The present study aimed to prepare water-soluble nanoparticles of curcumin using walnut protein and evaluate the process of walnut protein self-assembly, interaction between walnut protein and curcumin, encapsulation properties, and stability of nanoparticles. RESULTS The solubility of native walnut protein was poor, but the solubility of walnut protein nanoparticles (WPNP) formed by walnut protein after pH-shifting significantly improved to 91.5 ± 1.2%. This is because, during the process of pH changing from 7 to 12 and back to 7, walnut protein first unfolded under alkaline conditions and then refolded under pH drive, finally forming an internal hydrophobic and external hydrophilic shell-core structures. The quenching type of walnut protein and curcumin was static quenching, and the quenching constant was 2.0 × 1014 mol-1 L-1 s-1 , indicating that the interaction between walnut protein and curcumin was non-covalent. Adding curcumin resulted in the formation of nanoparticles with small particle size compared with the no-load. The loading capacity of curcumin-loaded walnut protein nanoparticles (WPNP-C) was 222 mg g-1 walnut protein isolate. Under the same mass, the curcumin equivalent concentration in aqueous solution of WPNP-C was 17 000 times higher than that of the native curcumin. CONCLUSION The solubility of the self-assembled WPNP significantly increased after pH-shifting treatment. The walnut protein carrier could improve the stability of the encapsulated curcumin. Therefore, walnut proteins could be used as water-soluble carriers for hydrophobic drugs. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jiao Lv
- Department of Food Science and Engineering, College of Biological Sciences and Biotechnology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, China
- Department of Science and Engineering, Hebei Agricultural University, Cangzhou, China
| | - Xin Zhou
- Department of Food Science and Engineering, College of Biological Sciences and Biotechnology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, China
| | - Wenjie Wang
- Department of Food Science and Engineering, College of Biological Sciences and Biotechnology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, China
| | - Yifan Cheng
- Department of Food Science and Engineering, College of Biological Sciences and Biotechnology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, China
| | - Fengjun Wang
- Department of Food Science and Engineering, College of Biological Sciences and Biotechnology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, China
| |
Collapse
|
15
|
Omidian H, Wilson RL, Chowdhury SD. Enhancing Therapeutic Efficacy of Curcumin: Advances in Delivery Systems and Clinical Applications. Gels 2023; 9:596. [PMID: 37623051 PMCID: PMC10453486 DOI: 10.3390/gels9080596] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 08/26/2023] Open
Abstract
Curcumin, a potent active compound found in turmeric and Curcuma xanthorrhiza oil, possesses a wide range of therapeutic properties, including antibacterial, anti-inflammatory, antioxidant, and wound healing activities. However, its clinical effectiveness is hindered by its low bioavailability and rapid elimination from the body. To overcome these limitations, researchers have explored innovative delivery systems for curcumin. Some promising approaches include solid lipid nanoparticles, nanomicelle gels, and transdermal formulations for topical drug delivery. In the field of dentistry, curcumin gels have shown effectiveness against oral disorders and periodontal diseases. Moreover, Pickering emulsions and floating in situ gelling systems have been developed to target gastrointestinal health. Furthermore, curcumin-based systems have demonstrated potential in wound healing and ocular medicine. In addition to its therapeutic applications, curcumin also finds use as a food dye, contraception aid, corrosion-resistant coating, and environmentally friendly stain. This paper primarily focuses on the development of gel compositions of curcumin to address the challenges associated with its clinical use.
Collapse
Affiliation(s)
- Hossein Omidian
- Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA; (R.L.W.); (S.D.C.)
| | | | | |
Collapse
|
16
|
Wen C, Cao L, Yu Z, Liu G, Zhang J, Xu X. Advances in lipo-solubility delivery vehicles for curcumin: bioavailability, precise targeting, possibilities and challenges. Crit Rev Food Sci Nutr 2023; 64:10835-10854. [PMID: 37410019 DOI: 10.1080/10408398.2023.2229433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
BACKGROUND Curcumin (Cur) is a natural pigment containing a diketone structure, which has attracted extensive attention due to its strong functional activities. However, the low solubility and poor stability of Cur limit its low bioavailability and multi-function. It is essential to develop effective measures to improve the unfavorable nature of Cur and maximize its potential benefits in nutritional intervention. SCOPE AND APPROACH The focus of this review is to emphasize the construction of lipo-solubility delivery vehicles for Cur, including emulsion, nanoliposome and solid liposome. In addition, the potential benefits of vehicles-encapsulated Cur in the field of precise nutrition were summarized, including high targeting properties and multiple disease interventions. Further, the deficiencies and prospects of Cur encapsulated in vehicles for precise nutrition were discussed. KEY FINDINGS AND CONCLUSIONS The well-designed lipo-solubility delivery vehicles for Cur can improve its stability in food processing and the digestion in vivo. To meet the nutritional requirements of special people for Cur-based products, the improvement of the bioavailability by using delivery vehicles will provide a theoretical basis for the precise nutrition of Cur in functional food.
Collapse
Affiliation(s)
- Chaoting Wen
- College of Food Science and Engineering, Yangzhou University, Yang Zhou, China
| | - Liyan Cao
- College of Food Science and Engineering, Yangzhou University, Yang Zhou, China
| | - Zhenyue Yu
- College of Food Science and Engineering, Yangzhou University, Yang Zhou, China
| | - Guoyan Liu
- College of Food Science and Engineering, Yangzhou University, Yang Zhou, China
| | - Jixian Zhang
- College of Food Science and Engineering, Yangzhou University, Yang Zhou, China
| | - Xin Xu
- College of Food Science and Engineering, Yangzhou University, Yang Zhou, China
| |
Collapse
|
17
|
Burgos-Díaz C, Garrido-Miranda KA, Palacio DA, Chacón-Fuentes M, Opazo-Navarrete M, Bustamante M. Food-Grade Oil-in-Water (O/W) Pickering Emulsions Stabilized by Agri-Food Byproduct Particles. COLLOIDS AND INTERFACES 2023. [DOI: 10.3390/colloids7020027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
In recent years, emulsions stabilized by solid particles (known as Pickering emulsions) have gained considerable attention due to their excellent stability and for being environmentally friendly compared to the emulsions stabilized by synthetic surfactants. In this context, edible Pickering stabilizers from agri-food byproducts have attracted much interest because of their noteworthy benefits, such as easy preparation, excellent biocompatibility, and unique interfacial properties. Consequently, different food-grade particles have been reported in recent publications with distinct raw materials and preparation methods. Moreover, emulsions stabilized by solid particles can be applied in a wide range of industrial fields, such as food, biomedicine, cosmetics, and fine chemical synthesis. Therefore, this review aims to provide a comprehensive overview of Pickering emulsions stabilized by a diverse range of edible solid particles, specifically agri-food byproducts, including legumes, oil seeds, and fruit byproducts. Moreover, this review summarizes some aspects related to the factors that influence the stabilization and physicochemical properties of Pickering emulsions. In addition, the current research trends in applications of edible Pickering emulsions are documented. Consequently, this review will detail the latest progress and new trends in the field of edible Pickering emulsions for readers.
Collapse
|
18
|
Meng W, Sun H, Mu T, Garcia-Vaquero M. Chitosan-based Pickering emulsion: A comprehensive review on their stabilizers, bioavailability, applications and regulations. Carbohydr Polym 2023; 304:120491. [PMID: 36641178 DOI: 10.1016/j.carbpol.2022.120491] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/13/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022]
Abstract
BACKGROUND Chitosan-based particles are one of the most promising Pickering emulsions stabilizers due to its cationic properties, cost-effective, biocompatibility, biodegradability. However, there are currently no comprehensive reviews analyzing the role of chitosan to develop Pickering emulsions, and the bioavailability and multiple uses of these emulsions. SCOPE AND APPROACH This review firstly summarizes the types, preparation and functional properties of chitosan-based Pickering emulsion stabilizers, followed by in vivo and in vitro bioavailability, main regulations, and future application and trends. KEY FINDINGS AND CONCLUSIONS Stabilizers used in chitosan-based Pickering emulsions include 6 categories: chitosan self-aggregating particles and 5 types of composites (chitosan-protein, chitosan-polysaccharide, chitosan-fatty acid, chitosan-polyphenol, and chitosan-inorganic). Chitosan-based Pickering emulsions improved the bioavailability of different compounds compared to traditional emulsions. Current applications include hydrogels, microcapsules, food ingredients, bio-based films, cosmeceuticals, porous scaffolds, environmental protection agents, and interfacial catalysis systems. However, due to current limitations, more research and development are needed to be extensively explored to meet consumer demand, industrial manufacturing, and regulatory requirements. Thus, optimization of stabilizers, bioavailability studies, 3D4D printing, fat substitutes, and double emulsions are the main potential development trends or research gaps in the field which would contribute to increase adoption of these promising emulsions at industrial level.
Collapse
Affiliation(s)
- Weihao Meng
- Laboratory of Food Chemistry and Nutrition Science, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No.2 Yuan Ming Yuan West Road, Haidian District, 5109, Beijing 100193, PR China; Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, No.2 Yuan Ming Yuan West Road, Haidian District, 5109, Beijing 100193, PR China; School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Hongnan Sun
- Laboratory of Food Chemistry and Nutrition Science, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No.2 Yuan Ming Yuan West Road, Haidian District, 5109, Beijing 100193, PR China; Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, No.2 Yuan Ming Yuan West Road, Haidian District, 5109, Beijing 100193, PR China.
| | - Taihua Mu
- Laboratory of Food Chemistry and Nutrition Science, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No.2 Yuan Ming Yuan West Road, Haidian District, 5109, Beijing 100193, PR China; Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, No.2 Yuan Ming Yuan West Road, Haidian District, 5109, Beijing 100193, PR China.
| | - Marco Garcia-Vaquero
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
19
|
Yang D, Feng Y, Yao X, Zhao B, Li D, Liu N, Fang Y, Midgley A, Liu D, Katsuyoshi N. Recent advances in bioactive nanocrystal-stabilized Pickering emulsions: Fabrication, characterization, and biological assessment. Compr Rev Food Sci Food Saf 2023; 22:946-970. [PMID: 36546411 DOI: 10.1111/1541-4337.13096] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 10/07/2022] [Accepted: 12/01/2022] [Indexed: 12/24/2022]
Abstract
Numerous literatures have shown the advantages of Pickering emulsion (PE) for the delivery of bioactive ingredients in the fields of food, medicine, and cosmetics, among others. On this basis, the multi-loading mode of bioactives (internal phase encapsulation and/or loading at the interface) in small molecular bioactives nanocrystal-stabilized PE (BNC-PE) enables them higher loading efficiencies, controlled release, and synergistic or superimposed effects. Therefore, BNC-PE offers an efficacious delivery system. In this review, we briefly summarize BNC-PE fabrication and characterization, with a focus on the processes of possible evolution and absorption of differentially applied BNC-PE when interacting with the body. In addition, methods of monitoring changes and absorption of BNC-PE in vivo, from the nanomaterial perspective, are also introduced. The purpose of this review is to provide an accessible and comprehensive methodology for the characterization and evaluation of BNC-PE after formulation and preparation, especially in relation to biological assessment and detailed mechanisms throughout the absorption process of BNC-PE in vivo.
Collapse
Affiliation(s)
- Dan Yang
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, China
- School of Biomedical and Pharmaceutical Science, Shaanxi University of Science and Technology, Xi'an, Shaanxi, China
| | - Yuqi Feng
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, China
- School of Biomedical and Pharmaceutical Science, Shaanxi University of Science and Technology, Xi'an, Shaanxi, China
| | - Xiaolin Yao
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, China
- School of Biomedical and Pharmaceutical Science, Shaanxi University of Science and Technology, Xi'an, Shaanxi, China
| | - Baofu Zhao
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, China
- School of Biomedical and Pharmaceutical Science, Shaanxi University of Science and Technology, Xi'an, Shaanxi, China
| | - Dan Li
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, China
- School of Biomedical and Pharmaceutical Science, Shaanxi University of Science and Technology, Xi'an, Shaanxi, China
| | - Ning Liu
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, China
- School of Biomedical and Pharmaceutical Science, Shaanxi University of Science and Technology, Xi'an, Shaanxi, China
| | - Yapeng Fang
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Adam Midgley
- Key Laboratory of Bioactive Materials (MoE), College of Life Sciences, Nankai University, Tianjin, China
| | - Dechun Liu
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Nishinari Katsuyoshi
- Glyn O. Phillips Hydrocolloid Research Centre, School of Bioengineering and Food Science, Hubei University of Technology, Wuhan, China
| |
Collapse
|
20
|
Zhang M, Li X, Zhou L, Chen W, Marchioni E. Protein-Based High Internal Phase Pickering Emulsions: A Review of Their Fabrication, Composition and Future Perspectives in the Food Industry. Foods 2023; 12:482. [PMID: 36766011 PMCID: PMC9914728 DOI: 10.3390/foods12030482] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/05/2023] [Accepted: 01/12/2023] [Indexed: 01/22/2023] Open
Abstract
Protein-based high internal phase Pickering emulsions (HIPEs) are emulsions using protein particles as a stabilizer in which the volume fraction of the dispersed phase exceeds 74%. Stabilizers are irreversibly adsorbed at the interface of the oil phase and water phase to maintain the droplet structure. Protein-based HIPEs have shown great potential for a variety of fields, including foods, due to the wide range of materials, simple preparation, and good biocompatibility. This review introduces the preparation routes of protein-based HIPEs and summarizes and classifies the preparation methods of protein stabilizers according to their formation mechanism. Further outlined are the types and properties of protein stabilizers used in the present studies, the composition of the oil phase, the encapsulating substances, and the properties of the constituted protein-based HIPEs. Finally, future development of protein-based HIPEs was explored, such as the development of protein-based stabilizers, the improvement of emulsification technology, and the quality control of stabilizers and protein-based HIPEs.
Collapse
Affiliation(s)
- Minghao Zhang
- National Demonstration Center for Experimental Ethnopharmacology Education, School of Pharmaceutical Sciences, South-Central MinZu University, Wuhan 430074, China
| | - Xiang Li
- National Demonstration Center for Experimental Ethnopharmacology Education, School of Pharmaceutical Sciences, South-Central MinZu University, Wuhan 430074, China
| | - Li Zhou
- National Demonstration Center for Experimental Ethnopharmacology Education, School of Pharmaceutical Sciences, South-Central MinZu University, Wuhan 430074, China
| | - Weilin Chen
- National Demonstration Center for Experimental Ethnopharmacology Education, School of Pharmaceutical Sciences, South-Central MinZu University, Wuhan 430074, China
| | - Eric Marchioni
- Inst Pluridisciplinaire Hubert Curien, CNRS, Equipe Chim Analyt Mol Bioact & Pharmacognoise, UMR 7178, UDS, F-67400 Illkirch Graffenstaden, France
| |
Collapse
|
21
|
Patel AS, Balasubramaniam SL, Nayak B, Camire ME. Lauric acid adsorbed cellulose nanocrystals reduced the in vitro gastrointestinal digestion of oil-water pickering emulsions. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
22
|
Encapsulation of indole-3-carbinol in Pickering emulsions stabilized by OSA-modified high amylose corn starch: Preparation, characterization and storage stability properties. Food Chem 2022; 386:132846. [PMID: 35381538 DOI: 10.1016/j.foodchem.2022.132846] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 10/27/2021] [Accepted: 03/27/2022] [Indexed: 11/24/2022]
Abstract
The stability of hydrophobic bioactive compound indole-3-carbinol (I3C) is a challenge for application. In this work, Pickering emulsions were prepared to encapsulate I3C. As the emulsifier, high amylose corn starch was pretreated by acid hydrolysis, afterwards modified by different concentrations of octenyl succinic anhydride (OSA), and their emulsions were evaluated. The XRD, SEM and FTIR results indicated the successful modification. ζ-potential, mean droplet size and emulsification index (EI) of the emulsions confirmed that modified starch with a higher degree of substitution (DS) was more effective for enhancing the storage stability. The results of encapsulation efficiency (EE) and retention degree of I3C after 14 d also proved the assumption. Moreover, the Pickering emulsions protected I3C against ultraviolet light and achieved controlled release in vitro. The food-grade Pickering emulsion loading I3C is promising to be used as a nutrient or dietary supplement for food applications.
Collapse
|
23
|
Zheng W, Zhang H, Wang J, Wang J, Yan L, Liu C, Zheng L. Pickering emulsion hydrogel based on alginate-gellan gum with carboxymethyl chitosan as a pH-responsive controlled release delivery system. Int J Biol Macromol 2022; 216:850-859. [PMID: 35914551 DOI: 10.1016/j.ijbiomac.2022.07.223] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 07/23/2022] [Accepted: 07/27/2022] [Indexed: 11/05/2022]
Abstract
Pickering emulsion hydrogels (PEHs) were developed as a pH-responsive, controlled-release delivery system to address the limitations of Pickering emulsions in some harsh processing or gastrointestinal conditions. Specifically, the PEHs were fabricated based on alginate and various concentrations of gellan gum (GG) with carboxymethyl chitosan (CMCS) matrix. The encapsulation efficiency (EE), Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) results proved the successful encapsulation. Furthermore, the hydrogels remained stable in the presence of destabilizing ions (Na+ or phosphate ions) and high osmotic pressure mediums. The texture profile analysis (TPA) characteristics and Young's modulus of the 0.8 % GG (w/v) PEHs were superior to the others. The PEHs prevented the emulsions from being released at pH 2.0, while the emulsions were entirely released at pH 7.4 in vitro, with the rate of release controlled by CMCS and the degree by GG concentration. This work facilitates the delivery of Pickering emulsions with excellent stability and pH-responsive controlled release for hydrophobic actives in food applications.
Collapse
Affiliation(s)
- Wenxiu Zheng
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Huizhe Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Ju Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Jinjin Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Ling Yan
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Changhong Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei 230009, China.
| | - Lei Zheng
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei 230009, China.
| |
Collapse
|
24
|
Gastrointestinal Fate and Fatty Acid Release of Pickering Emulsions Stabilized by Mixtures of Plant Protein Microgels + Cellulose Particles: an In Vitro Static Digestion Study. FOOD BIOPHYS 2022. [DOI: 10.1007/s11483-022-09756-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AbstractThe present study aims to investigate the in vitro intestinal digestion fate of Pickering emulsions with complex dual particle interfaces. Pickering oil-in-water emulsions (PPM-E) stabilized by plant (pea) protein-based microgels (PPM), as well as PPM-E where the interface was additionally covered by cellulose nanocrystals (CNC), were designed at acidic pH (pH 3.0). The gastrointestinal fate of the PPM-E and free fatty acid (FFA) release, was tested via the INFOGEST static in vitro digestion model and data was fitted using theoretical models. Lipid digestion was also monitored using lipase alone bypassing the gastric phase to understand the impact of proteolysis on FFA release. Coalescence was observed in the PPM-stabilized emulsions in the gastric phase, but not in those co-stabilized by CNC. However, coalescence occurred during the intestinal digestion stage, irrespective of the CNC concentration added (1–3 wt % CNC). The presence of CNC lowered the lipolysis kinetics but raised the extent of FFA release as compared to in its absence (p < 0.05), due to lower levels of gastric coalescence, i.e., a higher interfacial area. The trends were similar when just lipase was added with no prior gastric phase, although the extent and rate of FFA release was reduced in all emulsions, highlighting the importance of prior proteolysis in lipolysis of such systems. In summary, an electrostatically self-assembled interfacial structure of two types of oppositely-charged particles (at gastric pH) might be a useful strategy to enable enhanced delivery of lipophilic compounds that require protection in the stomach but release in the intestines.
Collapse
|
25
|
Chen H, Wang Z, Guo X, Yu S, Zhang T, Tang X, Yang Z, Meng H. Tannic Acid-Aminated Sugar Beet Pectin Nanoparticles as a Stabilizer of High-Internal-Phase Pickering Emulsions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:8052-8063. [PMID: 35732030 DOI: 10.1021/acs.jafc.1c04865] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Pickering stabilizers with additional antioxidant, photostabilizing, and metal-chelating properties are suitable for structuring multifunctional Pickering emulsion systems. Tannic acid (TA) is a potential material which when adsorbed onto the interface may impart antioxidant, UV-light-shielding, and chelating properties to Pickering stabilizers. Herein, we report a type of TA polyelectrolyte nanoparticles (NPs) fabricated following a complexation between TA and aminated sugar beet pectin (SBP-NH2). This study is geared toward investigating the performance of TA/SBP-NH2 NPs in stabilizing Pickering emulsions and protecting β-carotene from degradation. TA/SBP-NH2 NPs formed under optimum conditions had a mean diameter of 82 nm with a sphere-like shape. Because of their favorable surface wettability (91.2°), TA/SBP-NH2 NPs promoted formation of the low-, medium-, and high-internal-phase Pickering emulsions (HIPEs) in an oil volume fraction (φ)-dependent manner; the TA/SBP-NH2 NP-stabilized HIPE demonstrated viscoelastic properties increasing with the increasing concentration (c) of nanoparticles. Due to the excellent storage stability and UV light-absorbing capacity, the photostability of β-carotene was significantly improved by a TA/SBP-NH2 NP-stabilized HIPE (φ = 0.75; c = 3 mg/mL). Altogether, this study highlights that TA/SBP-NH2 NPs have potential applications in structuring Pickering emulsions with improved protective effects on loaded lipophilic compounds.
Collapse
Affiliation(s)
- Hualei Chen
- College of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Zhiming Wang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Xiaoming Guo
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Shujuan Yu
- College of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China
| | - Tao Zhang
- College of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xiangyi Tang
- College of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Zhanwei Yang
- College of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Hecheng Meng
- College of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China
| |
Collapse
|
26
|
Insights into whey protein-based carriers for targeted delivery and controlled release of bioactive components. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
27
|
Zhang M, Zhu J, Zhou L, Kan J, Zhao M, Huang R, Liu J, Marchioni E. Antarctic krill oil high internal phase Pickering emulsion stabilized by bamboo protein gels and the anti-inflammatory effect in vitro and in vivo. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
28
|
Rostamabadi MM, Falsafi SR, Nishinari K, Rostamabadi H. Seed gum-based delivery systems and their application in encapsulation of bioactive molecules. Crit Rev Food Sci Nutr 2022; 63:9937-9960. [PMID: 35587167 DOI: 10.1080/10408398.2022.2076065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Now-a-days, the food/pharma realm faces with great challenges for the application of bioactive molecules when applying them in free form due to their instability in vitro/in vivo. For promoting the biological and functional properties of bioactive molecules, efficient delivery systems have played a pivotal role offering a controlled delivery and improved bioavailability/solubility of bioactives. Among different carbohydrate-based delivery systems, seed gum-based vehicles (SGVs) have shown great promise, facilitating the delivery of a high concentration of bioactive at the site of action, a controlled payload release, and less bioactive loss. SGVs are potent structures to promote the bioavailability, beneficial properties, and in vitro/in vivo stability of bioactive components. Here, we offer a comprehensive overview of seed gum-based nano- and microdevices as delivery systems for bioactive molecules. We have a focus on structural/functional attributes and health-promoting benefits of seed gums, but also strategies involving modification of these biopolymers are included. Diverse SGVs (nano/microparticles, functional films, hydrogels/nanogels, particles for Pickering nanoemulsions, multilayer carriers, emulsions, and complexes/conjugates) are reviewed and important parameters for bioactive delivery are highlighted (e.g. bioactive-loading capacity, control of bioactive release, (bio)stability, and so on). Future challenges for these biopolymer-based carriers have also been discussed. HighlightsSeed gum-based polymers are promising materials to design different bioactive delivery systems.Seed gum-based delivery systems are particles, fibers, complexes, conjugates, hydrogels, etc.Seed gum-based vehicles are potent structures to promote the bioavailability, beneficial properties, and in vitro/in vivo stability of bioactive components.
Collapse
Affiliation(s)
- Mohammad Mahdi Rostamabadi
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Seid Reza Falsafi
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Katsuyoshi Nishinari
- Glyn O. Phillips Hydrocolloid Research Centre, Department of Bioengineering and Food Science, Hubei University of Technology, Wuhan, China
- Food Hydrocolloid International Science and Technology, Cooperation Base of Hubei Province, Hubei University of Technology, Wuhan, China
| | - Hadis Rostamabadi
- Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
29
|
Falsafi SR, Rostamabadi H, Samborska K, Mirarab S, Rashidinejhad A, Jafari SM. Protein-polysaccharide interactions for the fabrication of bioactive-loaded nanocarriers: Chemical conjugates and physical complexes. Pharmacol Res 2022; 178:106164. [PMID: 35272044 DOI: 10.1016/j.phrs.2022.106164] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/04/2022] [Accepted: 03/04/2022] [Indexed: 01/22/2023]
Abstract
As unique biopolymeric architectures, covalently and electrostatically protein-polysaccharide (PRO-POL) systems can be utilized for bioactive delivery by virtue of their featured structures and unique physicochemical attributes. PRO-POL systems (i. e, microscopic /nano-dimensional multipolymer particles, molecularly conjugated vehicles, hydrogels/nanogels/oleogels/emulgels, biofunctional films, multilayer emulsion-based delivery systems, particles for Pickering emulsions, and multilayer coated liposomal nanocarriers) possess a number of outstanding attributes, like biocompatibility, biodegradability, and bioavailability with low toxicity that qualify them as powerful agents for the delivery of different bioactive ingredients. To take benefits from these systems, an in-depth understanding of the chemical conjugates and physical complexes of the PRO-POL systems is crucial. In this review, we offer a comprehensive study concerning the unique properties of covalently/electrostatically PRO-POL systems and introduce emerging platforms to fabricate relevant nanocarriers for encapsulation of bioactive components along with a subsequent sustained/controlled release.
Collapse
Affiliation(s)
- Seid Reza Falsafi
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Hadis Rostamabadi
- Food Security Research Center, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran.
| | - Katarzyna Samborska
- Institute of Food Sciences, Warsaw University of Life Sciences WULS-SGGW, Warsaw, Poland
| | - Saeed Mirarab
- Sari Agricultural Sciences and Natural Resources University, Khazar Abad Road, P.O. Box 578, Sari, Iran
| | - Ali Rashidinejhad
- Riddet Institute, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - Seid Mahdi Jafari
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E-32004 Ourense, Spain.
| |
Collapse
|
30
|
Zhang W, Ge W, Li M, Li S, Jiang M, Zhang X, He G. Short review on liquid membrane technology and their applications in biochemical engineering. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2022.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
31
|
Zhong M, Sun Y, Sun Y, Song H, Zhang S, Qi B, Li Y. Sodium Dodecyl Sulfate-Dependent Disassembly and Reassembly of Soybean Lipophilic Protein Nanoparticles: An Environmentally Friendly Nanocarrier for Resveratrol. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:1640-1651. [PMID: 35023729 DOI: 10.1021/acs.jafc.1c06622] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The development of protein-based nanocarriers to improve the water solubility, stability, and bioavailability of hydrophobic or poorly soluble bioactive molecules has attracted increasing interest in the food and pharmaceutical industries. In this study, a network-like nanostructure of soybean lipophilic protein (LP) was obtained through sodium dodecyl sulfate (SDS)-dependent decomposition and recombination. This nanostructure served as an excellent nanocarrier for resveratrol (Res), a poorly soluble biologically active molecule. The structure of LP gradually decomposed into its independent subunits at SDS concentrations ≤5% (w/v). After the removal of SDS, the dissociated subunits partially reassembled into a fibrous network-like nanostructure in which the Res molecules were encapsulated, and they preferentially interacted with the hydrophobic subunits (α and α' subunits and the 24 kDa subunit) of the protein. This system exhibited a high encapsulation efficiency (95.93%), high water solubility (85.29%), extraordinary oxidation resistance (DPPH radical scavenging activity of 67.1%), and improved Res digestibility (78.7%).
Collapse
Affiliation(s)
- Mingming Zhong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yufan Sun
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yuanda Sun
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Hanyu Song
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Shuang Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Baokun Qi
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
- National Research Center of Soybean Engineering and Technology, Harbin 150030, China
- Heilongjiang Green Food Science Research Institute, Harbin 150028, China
| | - Yang Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
- National Research Center of Soybean Engineering and Technology, Harbin 150030, China
- Heilongjiang Green Food Science Research Institute, Harbin 150028, China
| |
Collapse
|
32
|
Saffarionpour S, Diosady LL. Delivery of curcumin through colloidal systems and its applications in functional foods. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2021.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
33
|
Saffarionpour S, Diosady LL. Curcumin, a potent therapeutic nutraceutical and its enhanced delivery and bioaccessibility by pickering emulsions. Drug Deliv Transl Res 2022; 12:124-157. [PMID: 33677795 DOI: 10.1007/s13346-021-00936-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2021] [Indexed: 01/10/2023]
Abstract
Curcumin is a biomolecule with functional moieties, which contribute to its anti-inflammatory, anticancer, and antioxidant properties. It has shown several therapeutic effects on treating inflammatory and neurodegenerative diseases and contributes to the reduction of oxidative stress and damage to body tissues. However, its low solubility and fast metabolism limit its absorption in the gastrointestinal (GI) tract and lead to its low bioavailability. Preparation of Pickering emulsions stabilized with mineral or biopolymer-based nanoparticles can be an effective strategy for enhancing the stability of curcumin against degradation, increasing its bioaccessibility in the GI tract, and achieving its controlled release at various locations based on changes in environmental conditions. Various nanoparticles prepared from minerals, proteins, and polysaccharides show potential for stabilizing the curcumin-loaded emulsions, and their wettability can be altered through complexation and formation of hybrid nanoparticles. Stabilization of Pickering emulsions with polysaccharide-based nanoparticles and their complexes can enhance the stability of the curcumin against degradation. Moreover, various protein-based nanoparticles and their conjugated forms with other proteins or polysaccharides can enable the preparation of high internal phase Pickering emulsions (HIPEs) with concomitant higher loading and bioaccessibility of the curcumin molecule. In light of the several therapeutic properties of curcumin, this review article aims to highlight recent studies and the strategies used for the preparation of curcumin Pickering emulsions stabilized by various nanoparticles for enhancing its bioaccessibility during metabolism. These may be useful in pharmaceutical and food industries for drug development and delivery and fortification of food products with this nutraceutical component.
Collapse
Affiliation(s)
- Shima Saffarionpour
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada.
| | - Levente L Diosady
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
34
|
Science and Culture: Looking to 'junk' food to design healthier options. Proc Natl Acad Sci U S A 2021; 118:2116665118. [PMID: 34615714 DOI: 10.1073/pnas.2116665118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2021] [Indexed: 11/18/2022] Open
|
35
|
Verma K, Tarafdar A, Mishra V, Dilbaghi N, Kondepudi KK, Badgujar PC. Nanoencapsulated curcumin emulsion utilizing milk cream as a potential vehicle by microfluidization: Bioaccessibility, cytotoxicity and physico-functional properties. Food Res Int 2021; 148:110611. [PMID: 34507755 DOI: 10.1016/j.foodres.2021.110611] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 11/29/2022]
Abstract
Curcumin loaded milk cream emulsion was microfluidized at different pressures (50-200 MPa) and passes (1-4) using a full-factorial experimental design. Ultrasonicated and microfluidized emulsion was evaluated for particle size, morphological characteristics, antioxidant activity, rheological properties, bioaccessibility and cytotoxicity. Significant reduction was observed in the average particle size (358.2 nm) after microfluidization at 100 MPa/2nd pass. Transmission electron micrographs of the control (homogenized) and microfluidized (100 MPa/2nd pass) samples showed uniform distribution of fat globules in the microfluidized sample with partially dissolved curcumin particles (50-150 nm). Encapsulation efficiency of microfluidized emulsion was found to be significantly higher (97.88%) after processing as compared to control (91.21%). Two-fold (100%) increase in the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity and 25% increase in ferric-reducing antioxidant power (FRAP) was observed for microfluidized emulsions over control. Infrared spectrums of the emulsion exhibited shift in high intensity peaks indicating bond cleavage after microfluidization. After characterization, emulsions were subjected to in vitro digestion (oral, gastric and intestinal phase) to evaluate its bioaccessibility which was found to be remarkably increased by 30% after microfluidization. For assessing processing induced safety of the formulation, in vitro cytotoxicity of the microfluidized nanocurcumin emulsion was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay on HepG2 cells, wherein high % of cell viability (>93%) was seen even at a dose as high as 900 µg/mL revealing no toxic effect of the processing technique (microfluidization). This study highlights the efficacy of microfluidization as a technique and that of milk cream as an inexpensive, yet potential vehicle for generating stable and bio-accessible nano-curcumin emulsion.
Collapse
Affiliation(s)
- Kiran Verma
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Sonepat, Haryana 131 028, India
| | - Ayon Tarafdar
- Department of Food Engineering, National Institute of Food Technology Entrepreneurship and Management, Sonepat, Haryana 131 028, India; Livestock Production and Management Section, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243 122, India
| | - Vijendra Mishra
- Department of Basic and Applied Sciences, National Institute of Food Technology Entrepreneurship and Management, Sonepat, Haryana 131 028, India
| | - Neeraj Dilbaghi
- Department of Nano and Bio Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana 125 001, India
| | - Kanthi Kiran Kondepudi
- Food & Nutritional Biotechnology Division, Healthy Gut Research Group, National Agri-Food Biotechnology Institute, Mohali, Punjab 140306, India
| | - Prarabdh C Badgujar
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Sonepat, Haryana 131 028, India.
| |
Collapse
|
36
|
Bertsch P, Bergfreund J, Windhab EJ, Fischer P. Physiological fluid interfaces: Functional microenvironments, drug delivery targets, and first line of defense. Acta Biomater 2021; 130:32-53. [PMID: 34077806 DOI: 10.1016/j.actbio.2021.05.051] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 12/13/2022]
Abstract
Fluid interfaces, i.e. the boundary layer of two liquids or a liquid and a gas, play a vital role in physiological processes as diverse as visual perception, oral health and taste, lipid metabolism, and pulmonary breathing. These fluid interfaces exhibit a complex composition, structure, and rheology tailored to their individual physiological functions. Advances in interfacial thin film techniques have facilitated the analysis of such complex interfaces under physiologically relevant conditions. This allowed new insights on the origin of their physiological functionality, how deviations may cause disease, and has revealed new therapy strategies. Furthermore, the interactions of physiological fluid interfaces with exogenous substances is crucial for understanding certain disorders and exploiting drug delivery routes to or across fluid interfaces. Here, we provide an overview on fluid interfaces with physiological relevance, namely tear films, interfacial aspects of saliva, lipid droplet digestion and storage in the cell, and the functioning of lung surfactant. We elucidate their structure-function relationship, discuss diseases associated with interfacial composition, and describe therapies and drug delivery approaches targeted at fluid interfaces. STATEMENT OF SIGNIFICANCE: Fluid interfaces are inherent to all living organisms and play a vital role in various physiological processes. Examples are the eye tear film, saliva, lipid digestion & storage in cells, and pulmonary breathing. These fluid interfaces exhibit complex interfacial compositions and structures to meet their specific physiological function. We provide an overview on physiological fluid interfaces with a focus on interfacial phenomena. We elucidate their structure-function relationship, discuss diseases associated with interfacial composition, and describe novel therapies and drug delivery approaches targeted at fluid interfaces. This sets the scene for ocular, oral, or pulmonary surface engineering and drug delivery approaches.
Collapse
|
37
|
Murray BS, Ettelaie R, Sarkar A, Mackie AR, Dickinson E. The perfect hydrocolloid stabilizer: Imagination versus reality. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106696] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
38
|
Zheng J, Wang B, Xiang J, Yu Z. Controlled Release of Curcumin from HPMC (Hydroxypropyl Methyl Cellulose) Co-Spray-Dried Materials. Bioinorg Chem Appl 2021; 2021:7625585. [PMID: 34220997 PMCID: PMC8219442 DOI: 10.1155/2021/7625585] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 06/07/2021] [Indexed: 11/18/2022] Open
Abstract
In order to achieve the controlled release of curcumin, HPMC (hydroxypropyl methyl cellulose) was spray dried with curcumin and lactose. The spray-dried materials were pressed into tablets with a diameter of 8 mm, and their release characteristics in vitro were measured. In vitro experiments showed that the release of curcumin from the HPMC mixture was significantly slower due to the sustained-release property of HPMC as a typical excipient. The release profile of curcumin from the HPMC mixture was relatively stable for a controlled release. SEM images show that the HPMC co-spray-dried powders have crumpled surfaces due to the large molecular weight of HPMC. DSC, XRD, FTIR, N2 adsorption, and TGA have been measured for the spray-dried curcumin materials. This work indicates that HPMC can be used as a controlled-release excipient for curcumin preparations.
Collapse
Affiliation(s)
- Jiao Zheng
- Drug Clinical Trial Institution Department, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan 410000, China
| | - Bo Wang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410000, China
| | - Jia Xiang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410000, China
| | - Zhengyu Yu
- Faculty of Engneering and IT, University of Technology, Sydney, NSW 2007, Australia
| |
Collapse
|
39
|
Lai D, Zhou A, Tan BK, Tang Y, Sarah Hamzah S, Zhang Z, Lin S, Hu J. Preparation and photodynamic bactericidal effects of curcumin-β-cyclodextrin complex. Food Chem 2021; 361:130117. [PMID: 34058659 DOI: 10.1016/j.foodchem.2021.130117] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 05/08/2021] [Accepted: 05/12/2021] [Indexed: 10/21/2022]
Abstract
To overcome the poor water solubility of curcumin, a curcumin-β-cyclodextrin (Cur-β-CD) complex was prepared as a novel photosensitizer. Fourier-transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), and X-ray diffraction (XRD) were used to verify the formation of Cur-β-CD. Furthermore, the ROS generation capacity and photodynamic bactericidal effect were measured to confirm this Cur-β-CD complex kept photodynamic activity of curcumin. The result showed Cur-β-CD could effectively generate ROS upon blue-light irradiation. The plate count assay demonstrated Cur-β-CD complex possess desirable photodynamic antibacterial effect against food-borne pathogens including Staphylococcus aureus, Listeria monocytogenes and Escherichia coli. The cell morphology determined by scanning electron microscope (SEM) and transmission electron microscope (TEM) showed Cur-β-CD could cause cell deformation, surface collapse and cell structure damage of the bacteria, resulting in the leakage of cytoplasmic; while agarose gel electrophoresis and SDS-PAGE further illustrated the inactivation mechanisms by Cur-β-CD involve bacterial DNA damage and protein degradation.
Collapse
Affiliation(s)
- Danning Lai
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China
| | - Arong Zhou
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China
| | - Bee K Tan
- Department of Cardiovascular Sciences and Diabetes Research Centre, University of Leicester, Leicester LE1 7RH, United Kingdom
| | - Yibin Tang
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China
| | - Siti Sarah Hamzah
- Institute for Medical Research, Ministry of Health Malaysia, Jalan Pahang, 50588 Kuala Lumpur, Malaysia
| | - Zhigang Zhang
- State Key Laboratory of Food Safety Technology for Meat Products, Xiamen 361100, China
| | - Shaoling Lin
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Jiamiao Hu
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
40
|
Ma JJ, Huang XN, Yin SW, Yu YG, Yang XQ. Bioavailability of quercetin in zein-based colloidal particles-stabilized Pickering emulsions investigated by the in vitro digestion coupled with Caco-2 cell monolayer model. Food Chem 2021; 360:130152. [PMID: 34034052 DOI: 10.1016/j.foodchem.2021.130152] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/17/2021] [Accepted: 05/15/2021] [Indexed: 10/21/2022]
Abstract
Protein-based Pickering emulsions have received considerable attention as nutraceutical vehicles. However, the oral bioavailability of nutraceuticals encapsulated in Pickering emulsions was not well established. In this work, a simulated gastrointestinal tract/Caco-2 cell culture model was applied to investigate the oral bioavailability of quercetin encapsulated in zein-based Pickering emulsions with quercetin in zein particles as the control. Pickering emulsions with shell (ZCP-QE) and core quercetin (ZCPE-Q) were constructed, and quercetin bioaccessibility, cell uptake and secretion, and the overall bioavailability were evaluated and compared. The overall oral bioavailability of quercetin was increased from 2.71% (bulk oil) to 38.18% (ZCPs-Q) and 18.97% (ZCPE-Q), particularly reached 41.22% for ZCP-QE. This work took new insights into the contributions of bioaccessibility and absorption (cell uptake plus secretion) to the overall oral bioavailability of quercetin. A schematic representation is proposed to relate the types of colloidal nanostructures in the digesta to the uptake, cell absorption, and overall oral bioavailability of quercetin. This study provided an attractive basis for identifying effective strategies to improve the oral bioavailability of hydrophobic nutraceuticals.
Collapse
Affiliation(s)
- Juan-Juan Ma
- Research and Development Center of Food Proteins, School of Food Science and Engineering and Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, PR China
| | - Xiao-Nan Huang
- Research and Development Center of Food Proteins, School of Food Science and Engineering and Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, PR China
| | - Shou-Wei Yin
- Research and Development Center of Food Proteins, School of Food Science and Engineering and Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, PR China; Sino-Singapore International Joint Research Institute, Guangzhou 510640, PR China.
| | - Yi-Gang Yu
- Research and Development Center of Food Proteins, School of Food Science and Engineering and Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, PR China.
| | - Xiao-Quan Yang
- Research and Development Center of Food Proteins, School of Food Science and Engineering and Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, PR China
| |
Collapse
|
41
|
Rheology, Microstructure, and Storage Stability of Emulsion-Filled Gels Stabilized Solely by Maize Starch Modified with Octenyl Succinylation and Pregelatinization. Foods 2021; 10:foods10040837. [PMID: 33921331 PMCID: PMC8069085 DOI: 10.3390/foods10040837] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/07/2021] [Accepted: 04/09/2021] [Indexed: 12/12/2022] Open
Abstract
We prepared emulsion-filled gels stabilized using octenyl succinic anhydride-modified and pregelatinized maize starch (OSA-PGS). The effect of the oil volume fraction (Φ, 0.05–0.20) and OSA-PGS concentration (3–10% w/v) on the rheological and microstructural properties of the emulsion-filled gels was evaluated. Confocal fluorescence images showed that OSA-PGS stabilized the emulsion, indicated by the formation of a thick layer surrounding the oil droplets, and simultaneously gelled the aqueous phase. All of the emulsions exhibited shear-thinning flow behavior, but only those with 10% w/v OSA-PGS were categorized as Herschel–Bulkley fluids. The rheological behavior of the emulsion-filled gels was significantly affected by both the OSA-PGS concentration and Φ. The mean diameters (D1,0, D3,2, and D4,3) of oil droplets with 10% w/v OSA-PGS were stable during 30 days of storage under ambient conditions, indicating good stability. These results provide a basis for the design of systems with potential applications within the food industry.
Collapse
|
42
|
|
43
|
Utilization of dried Japanese apricot and avocado fruit powders as an emulsifying agent: The importance of the powder-dispersed phase in emulsification. J FOOD ENG 2021. [DOI: 10.1016/j.jfoodeng.2020.110411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
44
|
Dupont H, Maingret V, Schmitt V, Héroguez V. New Insights into the Formulation and Polymerization of Pickering Emulsions Stabilized by Natural Organic Particles. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00225] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Hanaé Dupont
- Centre de Recherche Paul Pascal, CNRS, UMR 5031, Univ. Bordeaux, 115 avenue du Dr Albert Schweitzer, 33600 Pessac, France
- Laboratoire de Chimie des Polymères Organiques, CNRS, Bordeaux INP, UMR 5629, Bordeaux, Univ. Bordeaux, 16 Avenue Pey-Berland, F-33607 Pessac, France
| | - Valentin Maingret
- Centre de Recherche Paul Pascal, CNRS, UMR 5031, Univ. Bordeaux, 115 avenue du Dr Albert Schweitzer, 33600 Pessac, France
- Laboratoire de Chimie des Polymères Organiques, CNRS, Bordeaux INP, UMR 5629, Bordeaux, Univ. Bordeaux, 16 Avenue Pey-Berland, F-33607 Pessac, France
| | - Véronique Schmitt
- Centre de Recherche Paul Pascal, CNRS, UMR 5031, Univ. Bordeaux, 115 avenue du Dr Albert Schweitzer, 33600 Pessac, France
| | - Valérie Héroguez
- Laboratoire de Chimie des Polymères Organiques, CNRS, Bordeaux INP, UMR 5629, Bordeaux, Univ. Bordeaux, 16 Avenue Pey-Berland, F-33607 Pessac, France
| |
Collapse
|
45
|
Liu B, Liu B, Wang R, Li Y. α-Lactalbumin Self-Assembled Nanoparticles with Various Morphologies, Stiffnesses, and Sizes as Pickering Stabilizers for Oil-in-Water Emulsions and Delivery of Curcumin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:2485-2492. [PMID: 33555192 DOI: 10.1021/acs.jafc.0c06263] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
To systematically study the multiple effects of nanoparticles (NPs) on the stability, interfacial activity, and digestive properties of Pickering emulsions (PEs), various oil-in-water PEs were prepared by NPs based on the self-assembled α-lactalbumin-derived peptides with a variety of morphologies, stiffnesses, and sizes. We discovered that PEs stabilized by small-sized and soft nanospheres (NSs) exhibited the highest stability compared with other nanoparticles observed by Turbiscan during storage. Dilational interfacial rheological analysis demonstrated that a highly elastic interfacial film of the NSs had been formed by orderly packing at oil/water interfaces. Meanwhile, the most stable Pickering emulsion stabilized by NSs possessed the lowest lipid digestion rate. The tubular NPs distributed unevenly at the oil-water interfaces therefore showed lower interfacial activity. Harder NPs with lower flexibility showed a lower emulsion stability. Curcumin was loaded in PEs to further study the effect of bioavailability. Moreover, in vivo pharmacokinetic results revealed that Pickering emulsion stabilized by NSs showed the highest curcumin bioavailability, which was 5.37 times higher than unencapsulated curcumin. This study suggested that Pickering emulsion stabilized by NSs with the optimum stability was the most promising delivery system for hydrophobic bioactive ingredients.
Collapse
Affiliation(s)
- Bin Liu
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Bingxue Liu
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Ran Wang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yuan Li
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| |
Collapse
|
46
|
McClements DJ. Food hydrocolloids: Application as functional ingredients to control lipid digestion and bioavailability. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106404] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
47
|
Souza AG, Ferreira RR, Paula LC, Setz LF, Rosa DS. The effect of essential oil chemical structures on Pickering emulsion stabilized with cellulose nanofibrils. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114458] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
48
|
Wang L, Xia H, Han P, Cao R, Xu T, Li W, Zhang H, Zhang S. Synthesis of new PPG and study of heterogeneous combination flooding systems. J DISPER SCI TECHNOL 2020. [DOI: 10.1080/01932691.2020.1845719] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Lihui Wang
- School of Petroleum Engineering, Northeast Petroleum University, Heilongjiang, Daqing, China
| | - Huifen Xia
- School of Petroleum Engineering, Northeast Petroleum University, Heilongjiang, Daqing, China
| | - Peihui Han
- Research Institute of Exploration and Development of Daqing Oilfield Company Ltd, Heilongjiang, Daqing, China
| | - Ruibo Cao
- Research Institute of Exploration and Development of Daqing Oilfield Company Ltd, Heilongjiang, Daqing, China
| | - Tianhan Xu
- School of Petroleum Engineering, Northeast Petroleum University, Heilongjiang, Daqing, China
| | - Wenzhuo Li
- School of Petroleum Engineering, Northeast Petroleum University, Heilongjiang, Daqing, China
| | - Hongyu Zhang
- School of Petroleum Engineering, Northeast Petroleum University, Heilongjiang, Daqing, China
| | - Siqi Zhang
- School of Petroleum Engineering, Northeast Petroleum University, Heilongjiang, Daqing, China
| |
Collapse
|