1
|
Chandimali N, Bak SG, Park EH, Cheong SH, Park SI, Lee SJ. 3D bioprinting: Advancing the future of food production layer by layer. Food Chem 2025; 471:142828. [PMID: 39798378 DOI: 10.1016/j.foodchem.2025.142828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 12/09/2024] [Accepted: 01/07/2025] [Indexed: 01/15/2025]
Abstract
3D bioprinting is an advanced manufacturing technique that involves the precise layer-by-layer deposition of biomaterials, such as cells, growth factors, and biomimetic scaffolds, to create three-dimensional living structures. It essentially combines the complexity of biology with the principles of 3D printing, making it possible to fabricate complex biological structures with extreme control and accuracy. This review discusses how 3D bioprinting is developing as an essential step in the creation of alternative food such as cultured meat and seafood. In light of the growing global issues associated with food sustainability and the ethical challenges raised by conventional animal agriculture, 3D bioprinting is emerging as a key technology that will transform food production in the years to come. This paper also addresses in detail each of the components that make up bioprinting systems, such as the bioinks and scaffolds used, the various types of bioprinter models, and the software systems that control the production process. It offers a thorough examination of the processes involved in printing diverse food items using bioprinting. Beyond the scope of this conversation, 3D bioprinting, which provides superior precision and scalability in tissue engineering, is a crucial node in the broader system of cultured meat and seafood production. But like any emerging technology, 3D bioprinting has its limitations. In light of this, this study emphasizes the necessity of ongoing research and development to advance bioprinting towards widespread use and, ultimately, promote a more resilient, ethical, and sustainable food supply system.
Collapse
Affiliation(s)
- Nisansala Chandimali
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea; Department of Applied Biotechnology, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Seon-Gyeong Bak
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea
| | - Eun Hyun Park
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea; Department of Veterinary Pathology, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Sun Hee Cheong
- Department of Marine Bio Food Science, Chonnam National University, Yeosu 59626, Republic of Korea
| | - Sang-Ik Park
- Department of Veterinary Pathology, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Seung-Jae Lee
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea; Department of Applied Biotechnology, University of Science and Technology (UST), Daejeon 34113, Republic of Korea.
| |
Collapse
|
2
|
McAnulty MJ, Plumier BM, Miller AL, Tomasula PM. Effect of pH adjustments on a novel micellar casein-based edible 3-dimensional printing formulation. J Dairy Sci 2025; 108:3314-3323. [PMID: 39947605 DOI: 10.3168/jds.2024-25768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 01/03/2025] [Indexed: 04/20/2025]
Abstract
Three-dimensional (3D) food printing holds the potential to help reduce food waste by precise portion control and use of materials that are produced in excess or are otherwise discarded. This relatively new technology is likely to undergo decreases in equipment costs. To take advantage of such prospects, we developed a novel micellar casein-based edible 3D printing formulation. Our formulation relies on a highly concentrated micellar casein solution (27.75%, wt/wt, final) along with pH adjustments (3.5, 4.0, 4.8, 6.7, 7.2, and 8.2) at chilled temperature (4-9°C) to avoid premature aggregation. In comparison to the natural pH of 6.7, both alkalinization and acidification past the isoelectric point of 4.6 enhanced both elastic and viscous moduli that enable for shape retention during and after extrusion from a 3D food printer. However, alkalinization led to smaller increases in the viscous modulus and did not lead to the shape retention that acidification to 4.0 or 3.5 does. Both acidification and alkalinization also resulted in rougher surface textures compared with the formulation at pH 6.7. Whereas the pH 4.8 formulation had inferior shape retention qualities compared with those at the other pH values tested, it had optimized water resilience, defined here as minimized swelling and dissolution of dried structures placed in water. Overall, we present a novel casein-based 3D printing formulation that could be printed while chilled, and with properties that could be modified by pH adjustments.
Collapse
Affiliation(s)
- Michael J McAnulty
- Dairy and Functional Foods Research Unit, Eastern Regional Research Center, Agricultural Research Services, U. S. Department of Agriculture, Wyndmoor, PA 19038.
| | - Benjamin M Plumier
- Dairy and Functional Foods Research Unit, Eastern Regional Research Center, Agricultural Research Services, U. S. Department of Agriculture, Wyndmoor, PA 19038
| | - Amanda L Miller
- Dairy and Functional Foods Research Unit, Eastern Regional Research Center, Agricultural Research Services, U. S. Department of Agriculture, Wyndmoor, PA 19038
| | - Peggy M Tomasula
- Dairy and Functional Foods Research Unit, Eastern Regional Research Center, Agricultural Research Services, U. S. Department of Agriculture, Wyndmoor, PA 19038
| |
Collapse
|
3
|
Li X, Huang M, Chen D, Xiao E, Li Y. Effect of Non-Meat Protein Addition on the 3D Printing Performance of Chicken Meat. Foods 2025; 14:1015. [PMID: 40232119 PMCID: PMC11941609 DOI: 10.3390/foods14061015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 02/26/2025] [Accepted: 03/14/2025] [Indexed: 04/16/2025] Open
Abstract
In this study, three types of non-meat proteins, including soybean protein, wheat gluten, and whey protein, were used as additives to improve the 3D printing performance of chicken meat. The effects of non-meat proteins on rheological behavior, textural properties, moisture characteristics, and the microstructure of gels were investigated. Chicken meat paste without non-meat proteins added was taken as a control. Rheological results showed that the addition of non-meat proteins increased the apparent viscosity and the storage modulus of chicken meat paste. Textural properties of gels, including hardness, chewiness, cohesiveness, springiness, and resilience were also improved. The microstructure of gels with non-meat protein addition became denser and more compact, with improved connectivity. Nuclear magnetic resonance showed that the signals of bound water, immobilized water, and free water moved to the left towards lower relaxation time (p < 0.05) and part of immobile water and free water changed to bound water. The samples containing 15% soybean protein exhibited good shape-forming and shape-keeping capacities. There was an obvious increase in hardness (1991.40 ± 88.22 g), springiness (0.92 ± 0.00), cohesiveness (0.72 ± 0.01), gumminess (1299.14 ± 21.21), and resilience (0.34 ± 0.01) in these samples. The cooking loss of samples containing 15% soybean protein was 2.46 ± 0.36%, which was significantly lower than that of other treatments (p < 0.05). In summary, 15% soybean protein-added samples showed great potential for 3D printing.
Collapse
Affiliation(s)
- Xin Li
- College of Food and Bioengineering, Wuhu Institute of Technology, Wuhu 241003, China; (X.L.); (Y.L.)
| | - Mingyuan Huang
- College of Food Engineering, Anhui Science and Technology University, Chuzhou 233100, China
| | - Dan Chen
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China;
| | - Enquan Xiao
- College of Life Science, Anhui Normal University, Wuhu 241008, China;
| | - Yuqing Li
- College of Food and Bioengineering, Wuhu Institute of Technology, Wuhu 241003, China; (X.L.); (Y.L.)
| |
Collapse
|
4
|
Lee JB, Yoon NY, Bae YJ, Kwon GY, Sohn SK, Lee HR, Kim HJ, Kim MJ, Park HE, Shim KB. Optimizing 3D Food Printing of Surimi via Regression Analysis: Physical Properties and Additive Formulations. Foods 2025; 14:889. [PMID: 40077594 PMCID: PMC11899386 DOI: 10.3390/foods14050889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/18/2025] [Accepted: 03/03/2025] [Indexed: 03/14/2025] Open
Abstract
This study aimed to optimize the three-dimensional (3D) printing parameters for surimi-based inks and investigate the effects of additives (starch, salt, and water) on the rheological and textural properties of surimi paste, aiming to develop a universal formulation applicable across three fish species: Alaska pollock, golden threadfin bream, and hairtail. By analyzing the hardness, adhesiveness, storage modulus (G'), and complex viscosity of the surimi inks, a formula was developed to identify the range of physical properties required for stable and precise 3D printing. The parameter windows to build a 3D structure with a 45° slope were as follows: hardness, 150-415 g/cm2, and adhesion, -300 to -115 g. Mixing surimi with additives such as water, salt, and starch to obtain the desired physical properties facilitated the printing of 3D surimi samples using a 3D food printer.
Collapse
Affiliation(s)
- Jong Bong Lee
- Department of Food Science and Technology, Pukyong National University, 45 Yongso-ro, Nam-Gu, Busan 48513, Republic of Korea; (J.B.L.); (Y.J.B.); (G.Y.K.); (S.K.S.); (H.R.L.); (H.J.K.); (M.J.K.); (H.E.P.)
| | - Na Young Yoon
- Food Safety and Processing Research Division, National Institute of Fisheries Science, Busan 46083, Republic of Korea;
| | - Yeon Joo Bae
- Department of Food Science and Technology, Pukyong National University, 45 Yongso-ro, Nam-Gu, Busan 48513, Republic of Korea; (J.B.L.); (Y.J.B.); (G.Y.K.); (S.K.S.); (H.R.L.); (H.J.K.); (M.J.K.); (H.E.P.)
| | - Ga Yeon Kwon
- Department of Food Science and Technology, Pukyong National University, 45 Yongso-ro, Nam-Gu, Busan 48513, Republic of Korea; (J.B.L.); (Y.J.B.); (G.Y.K.); (S.K.S.); (H.R.L.); (H.J.K.); (M.J.K.); (H.E.P.)
| | - Suk Kyung Sohn
- Department of Food Science and Technology, Pukyong National University, 45 Yongso-ro, Nam-Gu, Busan 48513, Republic of Korea; (J.B.L.); (Y.J.B.); (G.Y.K.); (S.K.S.); (H.R.L.); (H.J.K.); (M.J.K.); (H.E.P.)
| | - Hyo Rim Lee
- Department of Food Science and Technology, Pukyong National University, 45 Yongso-ro, Nam-Gu, Busan 48513, Republic of Korea; (J.B.L.); (Y.J.B.); (G.Y.K.); (S.K.S.); (H.R.L.); (H.J.K.); (M.J.K.); (H.E.P.)
| | - Hyeong Jun Kim
- Department of Food Science and Technology, Pukyong National University, 45 Yongso-ro, Nam-Gu, Busan 48513, Republic of Korea; (J.B.L.); (Y.J.B.); (G.Y.K.); (S.K.S.); (H.R.L.); (H.J.K.); (M.J.K.); (H.E.P.)
| | - Min Jae Kim
- Department of Food Science and Technology, Pukyong National University, 45 Yongso-ro, Nam-Gu, Busan 48513, Republic of Korea; (J.B.L.); (Y.J.B.); (G.Y.K.); (S.K.S.); (H.R.L.); (H.J.K.); (M.J.K.); (H.E.P.)
| | - Ha Eun Park
- Department of Food Science and Technology, Pukyong National University, 45 Yongso-ro, Nam-Gu, Busan 48513, Republic of Korea; (J.B.L.); (Y.J.B.); (G.Y.K.); (S.K.S.); (H.R.L.); (H.J.K.); (M.J.K.); (H.E.P.)
| | - Kil Bo Shim
- Department of Food Science and Technology, Pukyong National University, 45 Yongso-ro, Nam-Gu, Busan 48513, Republic of Korea; (J.B.L.); (Y.J.B.); (G.Y.K.); (S.K.S.); (H.R.L.); (H.J.K.); (M.J.K.); (H.E.P.)
| |
Collapse
|
5
|
Domżalska Z, Jakubczyk E. Characteristics of Food Printing Inks and Their Impact on Selected Product Properties. Foods 2025; 14:393. [PMID: 39941986 PMCID: PMC11817896 DOI: 10.3390/foods14030393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/21/2025] [Accepted: 01/23/2025] [Indexed: 02/16/2025] Open
Abstract
Three-dimensional printing, or additive manufacturing, produces three-dimensional objects using a digital model. Its utilisation has been observed across various industries, including the food industry. Technology offers a wide range of possibilities in this field, including creating innovative products with unique compositions, shapes, and textures. A significant challenge in 3D printing is the development of the optimal ink composition. These inks must possess the appropriate rheology and texture for printing and meet nutritional and sensory requirements. The rheological properties of inks play a pivotal role in the printing process, influencing the formation of stable structures. This article comprehensively characterises food inks, distinguishing two primary categories and their respective subgroups. The first category encompasses non-natively extrudable inks, including plant-based inks derived from fruits and vegetables and meat-based inks. The second category comprises natively extrudable inks, encompassing dairy-based, hydrogel-based, and confectionary-based inks. The product properties of rheology, texture, fidelity, and printing stability are then discussed. Finally, the innovative use of food inks is shown.
Collapse
Affiliation(s)
| | - Ewa Jakubczyk
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences, 02-776 Warsaw, Poland;
| |
Collapse
|
6
|
Liu Y, Chen K, Zeng Q, Wang P, Zhang Y. The impact of dietary fibers on the construction and molecular network of extrusion-based 3D-printed chicken noodles: Unlocking the potential of specialized functional food. Food Chem 2025; 463:141065. [PMID: 39236380 DOI: 10.1016/j.foodchem.2024.141065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/09/2024] [Accepted: 08/28/2024] [Indexed: 09/07/2024]
Abstract
3D printing technology is promising in creating specialized functional foods, such as high-protein and high dietary fiber noodles. In this study, chicken breast-based noodles with varying proportions of oat bran and konjac flour were developed. The research analyzed the physicochemical, digestive properties, and 3D printability of these chicken-based doughs and noodles. The results indicated that the inclusion of fiber-rich flours notably enhanced dough viscosity and viscoelasticity. However, exceeding 4 % konjac flour negatively affected cooking quality and texture due to its strong water absorption capacity. The experimental group with fiber-rich flours exhibited prolonged starch/protein digestion time compared to the Control group. The increased ability to bind water in the fiber rich formula likely restricted water mobility, affecting mass transition in the "water channel". Notably, chicken noodles fortified with 6 % oat bran and 2 % konjac flour displayed the highest 3D printability. These results offer valuable insights for the industry in selecting appropriate dietary fiber sources for the development of nutritionally balanced 3D-printed meal options.
Collapse
Affiliation(s)
- Yi Liu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Kexian Chen
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Qinglin Zeng
- FooodLab (Hangzhou) Technology Co., Ltd, Hangzhou 310024, PR China
| | - Pengrui Wang
- FooodLab (Hangzhou) Technology Co., Ltd, Hangzhou 310024, PR China
| | - Yue Zhang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China.
| |
Collapse
|
7
|
Bao H, Wang Y, Huang Y, Zhang Y, Dai H. The Beneficial Role of Polysaccharide Hydrocolloids in Meat Products: A Review. Gels 2025; 11:55. [PMID: 39852026 PMCID: PMC11764839 DOI: 10.3390/gels11010055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/05/2025] [Accepted: 01/07/2025] [Indexed: 01/26/2025] Open
Abstract
Polysaccharide hydrocolloids have garnered increasing attention from consumers, experts, and food processing industries due to their advantages of abundant resources, favorable thickening properties, emulsification stability, biocompatibility, biodegradability, and high acceptance as food additives. This review focuses on the application of polysaccharide hydrocolloids and their beneficial roles in meat products by focusing on several commonly used polysaccharides (i.e., cellulose, chitosan, starch, sodium alginate, pectin, and carrageenan). Firstly, the recent advancements of polysaccharide hydrocolloids used in meat products are briefly introduced, along with their structure and potential application prospects. Then, the beneficial roles of polysaccharide hydrocolloids in meat products are comprehensively summarized and highlighted, including retarding lipid and protein oxidation, enhancing nutritional properties, improving texture and color quality, providing antibacterial activity, monitoring freshness, acting as a cryoprotectant, improving printability, and ensuring security. Finally, the challenges and opportunities of polysaccharide hydrocolloids in meat products are also introduced.
Collapse
Affiliation(s)
- Hanxiao Bao
- College of Food Science, Southwest University, Chongqing 400715, China; (H.B.); (Y.W.); (Y.Z.)
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Yuxi Wang
- College of Food Science, Southwest University, Chongqing 400715, China; (H.B.); (Y.W.); (Y.Z.)
| | - Yue Huang
- Chongqing Sericulture Science and Technology Research Institute, Chongqing 400700, China
| | - Yuhao Zhang
- College of Food Science, Southwest University, Chongqing 400715, China; (H.B.); (Y.W.); (Y.Z.)
| | - Hongjie Dai
- College of Food Science, Southwest University, Chongqing 400715, China; (H.B.); (Y.W.); (Y.Z.)
| |
Collapse
|
8
|
Liao W, Shi Y, Li Z, Yin X. Advances in 3D printing combined with tissue engineering for nerve regeneration and repair. J Nanobiotechnology 2025; 23:5. [PMID: 39754257 PMCID: PMC11697815 DOI: 10.1186/s12951-024-03052-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 11/29/2024] [Indexed: 01/06/2025] Open
Abstract
The repair of nerve damage has long posed a challenge owing to limited self-repair capacity and the highly differentiated nature of nerves. While new therapeutic and pharmacologic interventions have emerged in neurology, their regenerative efficacy remains limited. Tissue engineering offers a promising avenue for overcoming the limitations of conventional treatments and increasing the outcomes of regenerative repair. By implanting scaffolds into damaged nerve tissue sites, the repair and functional reconstruction of nerve injuries can be significantly facilitated. The integration of three-dimensional (3D) printing technology introduces a novel approach for accurate simulation and scalably fabricating neural tissue structures. Tissue-engineered scaffolds developed through 3D printing technology are expected to be a viable therapeutic option for nerve injuries, with broad applicability and continued development. This review systematically examines recent advances in 3D printing and tissue engineering for nerve regeneration and repair. It details the basic principles and construction strategies of neural tissue engineering and explores the crucial role of 3D printing technology. Additionally, it elucidates specific applications and technical challenges associated with this integrated approach, thereby providing valuable insights into innovative strategies and pragmatic implementation within this field.
Collapse
Affiliation(s)
- Weifang Liao
- Department of Medical Laboratory, Affiliated Hospital of Jiujiang University, Jiujiang, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, China
| | - Yuying Shi
- Department of Medical Laboratory, Affiliated Hospital of Jiujiang University, Jiujiang, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, China
| | - Zuguang Li
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoping Yin
- Department of Neurology, Affiliated Hospital of Jiujiang University, No. 57 East Xunyang Road, Jiujiang, Jiangxi, 332005, China.
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, China.
| |
Collapse
|
9
|
Lee SY, Lee DY, Mariano E, Park J, Han D, Choi Y, Kim JS, Park JW, Namkung S, Venter C, Hur SJ. Cutting-Edge Technologies of Meat Analogs: A Review. Food Sci Anim Resour 2025; 45:223-242. [PMID: 39840249 PMCID: PMC11743842 DOI: 10.5851/kosfa.2024.e129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 12/02/2024] [Accepted: 12/02/2024] [Indexed: 01/23/2025] Open
Abstract
This study was conducted to investigate the recent research trends of alternative protein foods being developed to replace traditional livestock foods and thus determine the current state of the technology and the potential for industrialization. The results of this study showed that the technology related to cultured meat has not yet reached industrialization. However, serum-free media development, technologies to improve culture efficiency, and technologies to improve taste and flavor are being researched. In addition, the research on improving the production efficiency of cultured meat is increasingly expanding from using muscle satellite cells obtained from animal muscles to research on cell lines or immortalized cell lines. Edible insect-derived proteins have a wide range of food applications, and researchers are actively working on utilizing their functional properties. Plant-derived protein materials are also being studied to improve the flavor and texture of plant-based meat products to make them more similar to traditional livestock foods, as well as to remove allergens. In conclusion, despite ongoing technological development, the industrialization of cultured meat is expected to take some time. There is a growing body of research on the types, functionalities, extraction, and texturizing technologies of plant-derived, mycoprotein, or insect-derived ingredients for formulating meat alternative products, and it is expected that improved products will continue to enter the market. Although animal product substitutes are not expected to significantly replace traditional livestock products, continuous improvement research will contribute to the expansion of the alternative protein food market.
Collapse
Affiliation(s)
- Seung Yun Lee
- Division of Animal Science, Institute of Agriculture & Life Science, Gyeongsang National University, Jinju 52828, Korea
| | - Da Young Lee
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Ermie Mariano
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Jinmo Park
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Dahee Han
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Yeongwoo Choi
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Jin Soo Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Ji Won Park
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Seok Namkung
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Colin Venter
- Department Physiological Sciences, Stellenbosch University, Matieland 7602, South Africa
| | - Sun Jin Hur
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| |
Collapse
|
10
|
Choi HY, Lim EJ, Kim HY. A Review on the Application of Animal-Based Materials Using Three-Dimensional (3D) Printing and Protein Restructuring Technologies. Food Sci Anim Resour 2025; 45:282-302. [PMID: 39840247 PMCID: PMC11743844 DOI: 10.5851/kosfa.2024.e132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/26/2024] [Accepted: 12/04/2024] [Indexed: 01/23/2025] Open
Abstract
Production of alternative proteins is crucial for the development of future protein resources. This study explored the creation of sustainable animal resources by combining extrusion molding and three-dimensional (3D) printing technologies. Extrusion effectively organizes vegetable proteins at high temperatures and pressures to replicate meat-like textures, and high-moisture extrusion successfully mimics the fiber structure of conventional meat. However, many meat analogs products still differ from conventional meat in terms of sensory properties such as texture, juiciness, and flavor, indicating the need for quality improvement. Researchers have leveraged 3D printing technology to incorporate fat analogs and enhance the appearance and texture through muscle fiber simulation. This technology allows for precise arrangement of muscle fibers, formation of adipose tissue, and marbling, thereby improving the overall sensory experience. By combining extrusion and 3D printing, we can enhance the nutritional and organoleptic qualities of meat analogs, ultimately meeting consumer expectations and achieving a balance between plant- and animal-based materials.
Collapse
Affiliation(s)
- Hyung-Youn Choi
- Food Standard Research Center, Food Industry Research Division, Korea Food Research Institute, Wanju 55365, Korea
- Department of Animal Resources Science, Kongju National University, Yesan 32439, Korea
| | - Eun-Jin Lim
- Department of Geography Education, Kongju National University, Gongju 32588, Korea
| | - Hack-Youn Kim
- Department of Animal Resources Science, Kongju National University, Yesan 32439, Korea
- Resource Science Research Institute, Kongju National University, Yesan 32439, Korea
| |
Collapse
|
11
|
Ghosheh M, Ehrlich A, Fischer A, Pasitka L, Cohen M, Nahmias Y. Metamaterial-based injection molding for the cost-effective production of whole cuts. Nat Commun 2024; 15:10767. [PMID: 39737916 DOI: 10.1038/s41467-024-54939-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 11/22/2024] [Indexed: 01/01/2025] Open
Abstract
The escalating global demand for meat products has intensified ecological concerns, underscoring the need for sustainable meat alternatives. Although current methods effectively imitate ground meat, mimicking whole cuts, which constitute 54% of the global market, remains challenging due to the lack of scalable technology. Injection molding is a massively scalable manufacturing technology developed for the polymer industry. Here, we introduce two injectable metamaterials: a thermally irreversible fat composite we named proteoleogel, and a multi-scaled meat analog produced by low-temperature extrusion. Viscoelastic screening of plant proteins identifies mung bean for its ability to stabilize complex oleogel structures, mimicking the mechanics of adipose tissue. Mechanical analysis reveals that low-temperature extrusion produces microscale isotropic fibers and mesoscale anisotropic structures mimicking muscle and fascia. These metamaterials can be injection-molded into various whole cuts, from chops to T-bones. Blinded taste tests indicate a 43% preference for our plant-based steak analog. Moreover, technical economic analysis shows injection molding is more cost-effective than 3D printing, costing $9/kg compared to $38/kg. This research represents a step in sustainable food production, offering cost-effective and scalable solutions for the entire meat market.
Collapse
Affiliation(s)
- Mohammad Ghosheh
- Alexander Grass Center for Bioengineering, The Hebrew University of Jerusalem, Jerusalem, Israel
- The Rachel and Selim Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Avner Ehrlich
- Alexander Grass Center for Bioengineering, The Hebrew University of Jerusalem, Jerusalem, Israel
- The Rachel and Selim Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Amit Fischer
- Department of Biological Chemistry, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Laura Pasitka
- Alexander Grass Center for Bioengineering, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Merav Cohen
- Alexander Grass Center for Bioengineering, The Hebrew University of Jerusalem, Jerusalem, Israel
- The Rachel and Selim Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Genetics, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yaakov Nahmias
- Alexander Grass Center for Bioengineering, The Hebrew University of Jerusalem, Jerusalem, Israel.
- The Rachel and Selim Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel.
- Department of Genetics, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
12
|
Lou X, Wang J, Kwang LG, Zhou H, Ong FYT, Ng S, Yu H. Perforated imprinting on high moisture meat analogue confers long range mechanical anisotropy resembling meat cuts. NPJ Sci Food 2024; 8:106. [PMID: 39706829 DOI: 10.1038/s41538-024-00344-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 11/14/2024] [Indexed: 12/23/2024] Open
Abstract
Meat cuts, when cooked and masticated, separate into fibrous structures because of the long-range mechanical anisotropy (LMA) exhibited by muscle fascicles, which is not fully recapitulated in alternative proteins produced using molecular alignment technology like high moisture extrusion. We have developed a scalable perforated micro-imprinting technology to greatly enhance LMA in high moisture meat analogue (HMMA). By imprinting 1 mm thick HMMA sheets with perforated patterns (optimized by AI), we observed up to 5 × more anisotropic separation of fibrous structures in a one-dimensional pulling LMA analysis, to match the fibrousness of the cooked chicken breast, duck breast, pork loin and beef loin. We stacked and bound imprinted sheets with transglutaminase (TG) to produce imprinted whole-cuts. Controlling fiber separation in the imprinted cuts achieved hardness ranging from 6578 g to 18467 g (2 cm × 2 cm × 1 cm, 50% strain), which matched meats from different species. Imprinted cuts improved meat-like fiber separation over HMMA when masticated, measured by Euclidean distances (0.057 and 0.106 respectively) to animal meat cuts on image features. In sensory evaluation, imprinted cuts improved consumer acceptance by 33.3% and meat-like fibrousness by 20%, by significantly enhancing the HMMA appearance, texture, and mouthfeel.
Collapse
Affiliation(s)
- Xuanming Lou
- Department of Physiology, The Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117593, Singapore
| | - Jiahao Wang
- Mechanobiology Institute, National University of Singapore, Singapore, 117411, Singapore
| | - Leng Gek Kwang
- Mechanobiology Institute, National University of Singapore, Singapore, 117411, Singapore
| | - Hanzhang Zhou
- Department of Physiology, The Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117593, Singapore
- Integrative Sciences and Engineering Programme (ISEP), NUS Graduate School, National University of Singapore, Singapore, 119077, Singapore
- Bioprocessing Technology Institute (BTI), A*STAR, 20 Biopolis Way, Singapore, 138668, Singapore
| | - Francesca Yi Teng Ong
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, 117583, Singapore
| | - Shengyong Ng
- Ants Innovate Pte. Ltd., #12-07 Suntec Tower One, Temasek Boulevard, Singapore, 038987, Singapore
| | - Hanry Yu
- Department of Physiology, The Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117593, Singapore.
- Mechanobiology Institute, National University of Singapore, Singapore, 117411, Singapore.
- Integrative Sciences and Engineering Programme (ISEP), NUS Graduate School, National University of Singapore, Singapore, 119077, Singapore.
- Bioprocessing Technology Institute (BTI), A*STAR, 20 Biopolis Way, Singapore, 138668, Singapore.
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, 117583, Singapore.
- Ants Innovate Pte. Ltd., #12-07 Suntec Tower One, Temasek Boulevard, Singapore, 038987, Singapore.
- Critical Analytics for Manufacturing Personalized Medicine (CAMP), Singapore-MIT Alliance for Research and Technology, Singapore, 138602, Singapore.
- Institute of Bioengineering & Bioimaging (IBB), A*STAR, Singapore, 138669, Singapore.
| |
Collapse
|
13
|
Miao D, Wu X, Zuo K, Chen J, Wang Y, Pu J, Yang H, Wang Z. Non-Targeted Metabolomics Analysis of Small Molecular Metabolites in Refrigerated Goose Breast Meat. Vet Sci 2024; 11:637. [PMID: 39728977 DOI: 10.3390/vetsci11120637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/03/2024] [Accepted: 12/05/2024] [Indexed: 12/28/2024] Open
Abstract
Poultry represents a rich source of multiple nutrients. Refrigeration is commonly employed for poultry preservation, although extended storage duration can adversely affect the meat quality. Current research on this topic has focused on the analysis of biochemical indices in chilled goose meat, with limited information on changes in metabolites that influence the quality of the meat during storage. This study used non-targeted metabolomics and the random forest algorithm to investigate metabolite changes in goose meat over an extended storage period. The results showed a significant change in the composition of the meat as the duration of storage increased, with the identification of 121 distinct metabolites. Further analysis identified 18 metabolites that could be used as indicators of the degradation of carbohydrates, amino acids, nucleotides, and lipids. These metabolites could be used as markers to monitor the deterioration process. These intermediate metabolites tended to be transformed into lower-level products involving pyruvate, acetyl coenzyme A, and fumaric acid, used in the tricarboxylic acid cycle, performing substance transformation. This comprehensive analysis of metabolites provides a valuable reference for monitoring the freshness of goose meat, potentially improving the safety of domestic poultry products.
Collapse
Affiliation(s)
- Dongzhi Miao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Xuebei Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Kui Zuo
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Jing Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Ying Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Junhua Pu
- Jiangsu Institute of Poultry Sciences, Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou 225009, China
| | - Haiming Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Zhiyue Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
14
|
Gurel M, Rathod N, Cabrera LY, Voyton S, Yeo M, Ozogul F, Ozbolat IT. A narrative review: 3D bioprinting of cultured muscle meat and seafood products and its potential for the food industry. Trends Food Sci Technol 2024; 152:104670. [PMID: 39309029 PMCID: PMC11412102 DOI: 10.1016/j.tifs.2024.104670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
The demand for meat and seafood products has been globally increasing for decades. To address the environmental, social, and economic impacts of this trend, there has been a surge in the development of three-dimensional (3D) food bioprinting technologies for lab-grown muscle food products and their analogues. This innovative approach is a sustainable solution to mitigate the environmental risks associated with climate change caused by the negative impacts of indiscriminative livestock production and industrial aquaculture. This review article explores the adoption of 3D bioprinting modalities to manufacture lab-grown muscle food products and their associated technologies, cells, and bioink formulations. Additionally, various processing techniques, governing the characteristics of bioprinted food products, nutritional compositions, and safety aspects as well as its relevant ethical and social considerations, were discussed. Although promising, further research and development is needed to meet standards and translate into several industrial areas, such as the food and renewable energy industries. In specific, optimization of animal cell culture conditions, development of serum-free media, and bioreactor design are essential to eliminate the risk factors but achieve the unique nutritional requirements and consumer acceptance. In short, the advancement of 3D bioprinting technologies holds great potential for transforming the food industry, but achieving widespread adoption will require continued innovation, rigorous research, and adherence to ethical standards to ensure safety, nutritional quality, and consumer acceptance.
Collapse
Affiliation(s)
- Mediha Gurel
- Biotechnology Research and Application Center, Cukurova University, 01330, Adana, Turkey
- Electronic and Automation Department, Bitlis Eren University, Bitlis, 13000, Turkey
| | - Nikheel Rathod
- Department of Post Harvest Management of Meat, Poultry and Fish, Post-graduate Institute of Post-harvest Management (Dr. Balasaheb Sawant Konkan Krishi Vidyapeeth), Raigad, 402116, India
| | - Laura Y. Cabrera
- Rock Ethics Institute, Penn State University, University Park, 16802, USA
- Engineering Science and Mechanics Department, Penn State University, University Park, PA, 16802, USA
| | - Stephen Voyton
- Engineering Science and Mechanics Department, Penn State University, University Park, PA, 16802, USA
| | - Miji Yeo
- Engineering Science and Mechanics Department, Penn State University, University Park, PA, 16802, USA
- The Huck Institutes of the Life Sciences, Penn State University; University Park, PA, 16802, USA
| | - Fatih Ozogul
- Biotechnology Research and Application Center, Cukurova University, 01330, Adana, Turkey
| | - Ibrahim T. Ozbolat
- Engineering Science and Mechanics Department, Penn State University, University Park, PA, 16802, USA
- The Huck Institutes of the Life Sciences, Penn State University; University Park, PA, 16802, USA
- Department of Biomedical Engineering, Penn State University, University Park, PA 16802, USA
- Materials Research Institute, Penn State University, University Park, PA, 16802, USA
- Department of Neurosurgery, Pennsylvania State College of Medicine, Hershey, PA, 17033, USA
- Penn State Cancer Institute, Penn State University, Hershey, PA, 17033, USA
- Department of Medical Oncology, Cukurova University, Adana, 01130, Turkey
| |
Collapse
|
15
|
Wen L, He H, Liu Y, Wang W, Du P, Hu P, Cao J, Ma Y. Research progress on natural preservatives of meat and meat products: classifications, mechanisms and applications. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:7085-7095. [PMID: 38546416 DOI: 10.1002/jsfa.13495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/21/2024] [Accepted: 03/28/2024] [Indexed: 04/09/2024]
Abstract
Meat and meat products are highly susceptible to contamination by microorganisms and foodborne pathogens, which cause serious economic losses and health hazards. The large consumption and waste of meat and meat products means that there is a need for safe and effective preservation methods. Furthermore, toxicological aspects of chemical preservation techniques related to major health problems have sparked controversies and have prompted consumers and producers to turn to natural preservatives. Consequently, natural preservatives are being increasingly used to ensure the safety and quality of meat products as a result of customer preferences and biological efficacy. However, information on the current status of these preservatives is scattered and a comprehensive review is lacking. Here, we review current knowledge on the classification, mechanisms of natural preservatives and their applications in the preservation of meat and meat products, and also discuss the potential of natural preservatives to improve the safety of meat and meat products. The current status and the current research gaps in the extraction, application and controlled-release of natural antibacterial agents for meat preservation are also discussed in detail. This review may be useful to the development of efficient food preservation techniques in the meat industry. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lei Wen
- Shandong Provincial Key Laboratory of Agro-Products Processing Technology, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, China
- College of Life Sciences, Yantai University, Yantai, China
| | - Hongjun He
- College of Life Sciences, Yantai University, Yantai, China
| | - Yaobo Liu
- Shandong Provincial Key Laboratory of Agro-Products Processing Technology, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Weiting Wang
- Shandong Provincial Key Laboratory of Agro-Products Processing Technology, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Pengfei Du
- Shandong Provincial Key Laboratory of Agro-Products Processing Technology, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Peng Hu
- Shandong Provincial Key Laboratory of Agro-Products Processing Technology, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Jianfang Cao
- Shandong Provincial Key Laboratory of Agro-Products Processing Technology, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Yanli Ma
- Shandong Provincial Key Laboratory of Agro-Products Processing Technology, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, China
| |
Collapse
|
16
|
Mendoza MCO, Chico JCD, Ong AKS, Regayas RAM. Assessment of Health Values, Beliefs, Norms, and Behavior towards Consumption Intention of 3D-Bioprinted Meat. Foods 2024; 13:2662. [PMID: 39272426 PMCID: PMC11394225 DOI: 10.3390/foods13172662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/22/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
Continuous innovation in product development further enhances consumer appeal and contributes to a more sustainable and ethical food system. This study used the health belief model (HBM) and value-belief-norm (VBN) theory to investigate the customer perceptions of and intentions towards 3D-bioprinted meat. Specifically, this study examined consumer behavior factors using higher-order partial least squares structural equation modeling (PLS-SEM). Data were collected from 738 meat consumers through online survey questions, distributed among social groups and face-to-face distribution-limiting only to respondents who are familiar with 3D-bioprinted meats. Using a filtering question, only those who are familiar with and have knowledge of the topic were considered valid respondents. Based on the results, all variables under the integrated theories were deemed significant. Consumers' perceptions of 3D-bioprinted meat are also shaped by altruism, egoism, biospheric concern, and willingness to change. The findings revealed that buyers rationally choose benefits over social or personal values. The study emphasized educating consumers, being transparent about production, and constantly innovating for higher acceptance of 3D-bioprinted meat. In order to foster consumer confidence, it is essential to prioritize transparency in the production process, encompassing information regarding sourcing and manufacturing methods. Certifications that validate safety and quality standards serve to reinforce this notion. In addition, the implementation of competitive pricing strategies has the potential to enhance the accessibility of 3D-bioprinted meat, whereas industry partnerships can aid in distribution operations and improve market visibility-all of which extend the practical implications developed for this study. Moreover, the foundation of the integrated framework promotes its extension and application outside technology-based meat production. This could also be considered and utilized among other studies on developed food and food consumption.
Collapse
Affiliation(s)
- Mary Christy O Mendoza
- School of Industrial Engineering and Engineering Management, Mapúa University, 658 Muralla St., Intramuros, Manila 1002, Philippines
- School of Graduate Studies, Mapúa University, 658 Muralla St., Intramuros, Manila 1002, Philippines
| | - Jenn Christzel D Chico
- School of Industrial Engineering and Engineering Management, Mapúa University, 658 Muralla St., Intramuros, Manila 1002, Philippines
| | - Ardvin Kester S Ong
- School of Industrial Engineering and Engineering Management, Mapúa University, 658 Muralla St., Intramuros, Manila 1002, Philippines
| | - Rafael Alfredo M Regayas
- School of Industrial Engineering and Engineering Management, Mapúa University, 658 Muralla St., Intramuros, Manila 1002, Philippines
| |
Collapse
|
17
|
Park S, Hong Y, Park S, Kim W, Gwon Y, Sharma H, Jang KJ, Kim J. Engineering Considerations on Large-Scale Cultured Meat Production. TISSUE ENGINEERING. PART B, REVIEWS 2024; 30:423-435. [PMID: 38062728 DOI: 10.1089/ten.teb.2023.0184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
In recent decades, cultured meat has received considerable interest as a sustainable alternative to traditional meat products, showing promise for addressing the inherent problems associated with conventional meat production. However, current limitations on the scalability of production and extremely high production costs have prevented their widespread adoption. Therefore, it is important to develop novel engineering strategies to overcome the current limitations in large-scale cultured meat production. Such engineering considerations have the potential for advancements in cultured meat production by providing innovative and effective solutions to the prevailing challenges. In this review, we discuss how engineering strategies have been utilized to advance cultured meat technology by categorizing the production processes of cultured meat into three distinct steps: (1) cell preparation; (2) cultured meat fabrication; and (3) cultured meat maturation. For each step, we provide a comprehensive discussion of the recent progress and its implications. In particular, we focused on the engineering considerations involved in each step of cultured meat production, with specific emphasis on large-scale production.
Collapse
Affiliation(s)
- Sangbae Park
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, Republic of Korea
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, Republic of Korea
- Institute of Nano-Stem Cells Therapeutics, NANOBIOSYSTEM Co., Ltd, Gwangju, Republic of Korea
- Department of Biosystems Engineering, Seoul National University, Seoul, Republic of Korea
| | - Yeonggeol Hong
- Department of Bio-Systems Engineering, Institute of Smart Farm, Gyeongsang National University, Jinju, Republic of Korea
| | - Sunho Park
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, Republic of Korea
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, Republic of Korea
- Department of Bio-Industrial Machinery Engineering, Pusan National University, Miryang, Republic of Korea
| | - Woochan Kim
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, Republic of Korea
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, Republic of Korea
| | - Yonghyun Gwon
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, Republic of Korea
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, Republic of Korea
| | - Harshita Sharma
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, Republic of Korea
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, Republic of Korea
| | - Kyoung-Je Jang
- Department of Bio-Systems Engineering, Institute of Smart Farm, Gyeongsang National University, Jinju, Republic of Korea
- Institute of Agriculture & Life Science, Gyeongsang National University, Jinju, Republic of Korea
- Smart Farm Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - Jangho Kim
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, Republic of Korea
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, Republic of Korea
- Institute of Nano-Stem Cells Therapeutics, NANOBIOSYSTEM Co., Ltd, Gwangju, Republic of Korea
| |
Collapse
|
18
|
Kawecki NS, Chen KK, Smith CS, Xie Q, Cohen JM, Rowat AC. Scalable Processes for Culturing Meat Using Edible Scaffolds. Annu Rev Food Sci Technol 2024; 15:241-264. [PMID: 38211941 DOI: 10.1146/annurev-food-072023-034451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
There is increasing consumer demand for alternative animal protein products that are delicious and sustainably produced to address concerns about the impacts of mass-produced meat on human and planetary health. Cultured meat has the potential to provide a source of nutritious dietary protein that both is palatable and has reduced environmental impact. However, strategies to support the production of cultured meats at the scale required for food consumption will be critical. In this review, we discuss the current challenges and opportunities of using edible scaffolds for scaling up the production of cultured meat. We provide an overview of different types of edible scaffolds, scaffold fabrication techniques, and common scaffold materials. Finally, we highlight potential advantages of using edible scaffolds to advance cultured meat production by accelerating cell growth and differentiation, providing structure to build complex 3D tissues, and enhancing the nutritional and sensory properties of cultured meat.
Collapse
Affiliation(s)
- N Stephanie Kawecki
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, California, USA;
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California, USA
| | - Kathleen K Chen
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, California, USA;
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California, USA
| | - Corinne S Smith
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, California, USA;
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California, USA
| | - Qingwen Xie
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, California, USA;
| | - Julian M Cohen
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, California, USA;
| | - Amy C Rowat
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California, USA
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California, USA
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, California, USA;
- Broad Stem Cell Center, University of California, Los Angeles, Los Angeles, California, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
19
|
Dong N, Jiang B, Chang Y, Wang Y, Xue C. Integrated Omics Approach: Revealing the Mechanism of Auxenochlorella pyrenoidosa Protein Extract Replacing Fetal Bovine Serum for Fish Muscle Cell Culture. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6064-6076. [PMID: 38465450 DOI: 10.1021/acs.jafc.4c00624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
The process of producing cell-cultured meat involves utilizing a significant amount of culture medium, including fetal bovine serum (FBS), which represents a considerable portion of production expense while also raising environmental and safety concerns. This study demonstrated that supplementation with Auxenochlorella pyrenoidosa protein extract (APE) under low-serum conditions substantially increased Carassius auratus muscle (CAM) cell proliferation and heightened the expression of Myf5 compared to the absence of APE. An integrated intracellular metabolomics and proteomics analysis revealed a total of 13 and 67 differentially expressed metabolites and proteins, respectively, after supplementation with APE in the medium containing 5%FBS, modulating specific metabolism and signaling pathways, which explained the application of APE for passage cell culture under low-serum conditions. Further analysis revealed that the bioactive factors in the APE were protein components. Moreover, CAM cells cultured in reconstructed serum-free media containing APE, l-ascorbic acid, insulin, transferrin, selenium, and ethanolamine exhibited significantly accelerated growth in a scale-up culture. These findings suggest a promising alternative to FBS for fish muscle cell culture that can help reduce production costs and environmental impact in the production of cultured meat.
Collapse
Affiliation(s)
- Nannan Dong
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Bingxue Jiang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Yaoguang Chang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Yanchao Wang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Changhu Xue
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| |
Collapse
|
20
|
Shi H, Zhang M, Mujumdar AS. 3D/4D printed super reconstructed foods: Characteristics, research progress, and prospects. Compr Rev Food Sci Food Saf 2024; 23:e13310. [PMID: 38369929 DOI: 10.1111/1541-4337.13310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/17/2024] [Accepted: 01/24/2024] [Indexed: 02/20/2024]
Abstract
Super reconstructed foods (SRFs) have characteristics beyond those of real system in terms of nutrition, texture, appearance, and other properties. As 3D/4D food printing technology continues to be improved in recent years, this layered manufacturing/additive manufacturing preparation technology based on food reconstruction has made it possible to continuously develop large-scale manufacture of SRFs. Compared with the traditional reconstructed foods, SRFs prepared using 3D/4D printing technologies are discussed comprehensively in this review. To meet the requirements of customers in terms of nutrition or other characteristics, multi-processing technologies are being combined with 3D/4D printing. Aspects of printing inks, product quality parameters, and recent progress in SRFs based on 3D/4D printing are assessed systematically and discussed critically. The potential for 3D/4D printed SRFs and the need for further research and developments in this area are presented and discussed critically. In addition to the natural materials which were initially suitable for 3D/4D printing, other derivative components have already been applied, which include hydrogels, polysaccharide-based materials, protein-based materials, and smart materials with distinctive characteristics. SRFs based on 3D/4D printing can retain the characteristics of deconstruction and reconstruction while also exhibiting quality parameters beyond those of the original material systems, such as variable rheological properties, on-demand texture, essential printability, improved microstructure, improved nutrition, and more appealing appearance. SRFs with 3D/4D printing are already widely used in foods such as simulated foods, staple foods, fermented foods, foods for people with special dietary needs, and foods made from food processingbyproducts.
Collapse
Affiliation(s)
- Hao Shi
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, Wuxi, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- China General Chamber of Commerce Key Laboratory on Fresh Food Processing & Preservation, Jiangnan University, Wuxi, Jiangsu, China
| | - Arun S Mujumdar
- Department of Bioresource Engineering, Macdonald Campus, McGill University, Quebec, Canada
| |
Collapse
|
21
|
Zhang F, Wang P, Huang M, Xu X. Modulating the properties of myofibrillar proteins-stabilized high internal phase emulsions using chitosan for enhanced 3D-printed foods. Carbohydr Polym 2024; 324:121540. [PMID: 37985113 DOI: 10.1016/j.carbpol.2023.121540] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/25/2023] [Accepted: 10/29/2023] [Indexed: 11/22/2023]
Abstract
The 3D printability of myofibrillar proteins (MP)-based high internal phase emulsions (HIPEs) is a concern. This study investigated the influence of chitosan (CS) concentrations (0-1.5 wt%) on the physicochemical properties, microstructure, rheological properties, and stability of MP-based HIPEs. Results showed that the interaction between MP and CS efficiently modulated the formation of HIPEs by modifying interfacial tension and network structure. The addition of CS (≤ 0.9 wt%, especially at 0.6 wt%) acted as a spatial barrier, filling the network between droplets, which triggered electrostatic repulsion between CS and MP particles, enhancing MP's interfacial adsorption capacity. Consequently, droplet sizes decreased, emulsion stability increased, and HIPEs became more stable during freeze-thaw cycles, centrifugation, and heat treatment. The rheological analysis further demonstrated that the low energy storage modulus (G', 330.7 Pa) of MP-based HIPEs exhibited sagging and deformation during the self-supporting phase. However, adding CS (0.6 wt%) significantly increased the G' (1034 Pa) of MP-based HIPEs. Conversely, increasing viscosity and spatial resistance attributed to CS (> 0.9 wt%) noticeably caused larger droplet sizes, thereby diminishing the printability of MP-based HIPEs. These findings provide a promising strategy for developing high-performance and consumer-satisfaction 3D printing inks using MP-stabilized HIPEs.
Collapse
Affiliation(s)
- Feiyu Zhang
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, National Center of Meat Quality and Safety Control, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Peng Wang
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, National Center of Meat Quality and Safety Control, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Mingyuan Huang
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, National Center of Meat Quality and Safety Control, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xinglian Xu
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, National Center of Meat Quality and Safety Control, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
22
|
Li N, Li H, Liu Z, Lv S, Xie S, Shi C, Wu Y. Preparation and Product Characterization of Microwaveable Food Using Lentinus edodes Protein through 3D Printing. Polymers (Basel) 2023; 15:3736. [PMID: 37765590 PMCID: PMC10534416 DOI: 10.3390/polym15183736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
The Lentinus edodes protein (LP) is a high-quality protein known for its well-balanced amino acid composition. In this study, we developed three-dimensional (3D)-printed microwaveable food using a combination of LP and potato flour, and optimized the formulation to achieve a ratio of LP: potato flour: xanthan gum: water = 2:8:1:23. The 3D-printed samples exhibited better shape, weight, and size compared to the molded samples after microwave treatment, with the most favorable microwave effect observed at a 90% filling ratio. The LP content affected the viscosity and retrogradation value of the LP-potato starch mixture. Microwave duration affected the surface hardness, interior softness, and moisture content of the product. The highest overall score of 8.295 points was obtained with a microwave processing duration of 2 min. This study lays a foundation for the development of LP-based 3D-printed food.
Collapse
Affiliation(s)
- Na Li
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China;
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (H.L.); (Z.L.); (S.L.); (S.X.); (C.S.)
| | - Hongbo Li
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (H.L.); (Z.L.); (S.L.); (S.X.); (C.S.)
| | - Zhenbin Liu
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (H.L.); (Z.L.); (S.L.); (S.X.); (C.S.)
| | - Shuang Lv
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (H.L.); (Z.L.); (S.L.); (S.X.); (C.S.)
| | - Suya Xie
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (H.L.); (Z.L.); (S.L.); (S.X.); (C.S.)
| | - Chunyang Shi
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (H.L.); (Z.L.); (S.L.); (S.X.); (C.S.)
| | - Yue Wu
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China;
| |
Collapse
|