1
|
Liu L, Zhang J, Cui R, Wang N, Zhang Y, Liu L, Zhang X, Liu Q. SIRT1 and exercise-induced bone metabolism: a regulatory nexus. Front Cell Dev Biol 2025; 13:1522821. [PMID: 40206398 PMCID: PMC11979185 DOI: 10.3389/fcell.2025.1522821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 03/04/2025] [Indexed: 04/11/2025] Open
Abstract
Regular exercise positively influences bone health, enhances bone density and strength, and reduces the risk of osteoporosis. Silent information regulator of transcription 1 (SIRT1) is a deacetylase that plays a pivotal role in the regulation of various biological processes. In this review, we explore the role of SIRT1 in modulating bone metabolism in response to exercise. SIRT1 regulates crucial cellular processes, including inflammation, aging, autophagy, and oxidative stress, in bone cells such as bone marrow mesenchymal stem cells, osteoblasts, and osteoclasts, in response to exercise-induced stimuli. Notably, exercise influences bone metabolism by modulating muscle metabolism and neurotransmitters, with SIRT1 acting as a key mediator. A comprehensive understanding of SIRT1's regulatory mechanisms will facilitate a deeper exploration of the principles underlying exercise-induced improvements in bone metabolism, ultimately providing novel insights into the treatment of bone metabolic disorders.
Collapse
Affiliation(s)
- Lijie Liu
- Department of Rehabilitation, Jinqiu Hospital of Liaoning Province, Shenyang, China
| | - Jiale Zhang
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| | - Runhong Cui
- Department of Rehabilitation, Jinqiu Hospital of Liaoning Province, Shenyang, China
| | - Na Wang
- Department of Rehabilitation, Jinqiu Hospital of Liaoning Province, Shenyang, China
| | - Yun Zhang
- Department of Rehabilitation, Jinqiu Hospital of Liaoning Province, Shenyang, China
| | - Lifei Liu
- Department of Rehabilitation, Jinqiu Hospital of Liaoning Province, Shenyang, China
| | - Xinan Zhang
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| | - Qingfeng Liu
- Department of General Surgery, Jinqiu Hospital of Liaoning Province, Shenyang, China
| |
Collapse
|
2
|
Liu YJ, Sulc J, Auwerx J. Mitochondrial genetics, signalling and stress responses. Nat Cell Biol 2025; 27:393-407. [PMID: 40065146 DOI: 10.1038/s41556-025-01625-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/22/2025] [Indexed: 03/15/2025]
Abstract
Mitochondria are multifaceted organelles with crucial roles in energy generation, cellular signalling and a range of synthesis pathways. The study of mitochondrial biology is complicated by its own small genome, which is matrilineally inherited and not subject to recombination, and present in multiple, possibly different, copies. Recent methodological developments have enabled the analysis of mitochondrial DNA (mtDNA) in large-scale cohorts and highlight the far-reaching impact of mitochondrial genetic variation. Genome-editing techniques have been adapted to target mtDNA, further propelling the functional analysis of mitochondrial genes. Mitochondria are finely tuned signalling hubs, a concept that has been expanded by advances in methodologies for studying the function of mitochondrial proteins and protein complexes. Mitochondrial respiratory complexes are of dual genetic origin, requiring close coordination between mitochondrial and nuclear gene-expression systems (transcription and translation) for proper assembly and function, and recent findings highlight the importance of the mitochondria in this bidirectional signalling.
Collapse
Affiliation(s)
- Yasmine J Liu
- Laboratory of Integrative Systems Physiology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Jonathan Sulc
- Laboratory of Integrative Systems Physiology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Johan Auwerx
- Laboratory of Integrative Systems Physiology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
3
|
Liu H, Wang S, Wang J, Guo X, Song Y, Fu K, Gao Z, Liu D, He W, Yang LL. Energy metabolism in health and diseases. Signal Transduct Target Ther 2025; 10:69. [PMID: 39966374 PMCID: PMC11836267 DOI: 10.1038/s41392-025-02141-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/08/2024] [Accepted: 12/25/2024] [Indexed: 02/20/2025] Open
Abstract
Energy metabolism is indispensable for sustaining physiological functions in living organisms and assumes a pivotal role across physiological and pathological conditions. This review provides an extensive overview of advancements in energy metabolism research, elucidating critical pathways such as glycolysis, oxidative phosphorylation, fatty acid metabolism, and amino acid metabolism, along with their intricate regulatory mechanisms. The homeostatic balance of these processes is crucial; however, in pathological states such as neurodegenerative diseases, autoimmune disorders, and cancer, extensive metabolic reprogramming occurs, resulting in impaired glucose metabolism and mitochondrial dysfunction, which accelerate disease progression. Recent investigations into key regulatory pathways, including mechanistic target of rapamycin, sirtuins, and adenosine monophosphate-activated protein kinase, have considerably deepened our understanding of metabolic dysregulation and opened new avenues for therapeutic innovation. Emerging technologies, such as fluorescent probes, nano-biomaterials, and metabolomic analyses, promise substantial improvements in diagnostic precision. This review critically examines recent advancements and ongoing challenges in metabolism research, emphasizing its potential for precision diagnostics and personalized therapeutic interventions. Future studies should prioritize unraveling the regulatory mechanisms of energy metabolism and the dynamics of intercellular energy interactions. Integrating cutting-edge gene-editing technologies and multi-omics approaches, the development of multi-target pharmaceuticals in synergy with existing therapies such as immunotherapy and dietary interventions could enhance therapeutic efficacy. Personalized metabolic analysis is indispensable for crafting tailored treatment protocols, ultimately providing more accurate medical solutions for patients. This review aims to deepen the understanding and improve the application of energy metabolism to drive innovative diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Hui Liu
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shuo Wang
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jianhua Wang
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xin Guo
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yujing Song
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kun Fu
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhenjie Gao
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Danfeng Liu
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Wei He
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Lei-Lei Yang
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
4
|
Zubova AV, Groshkov AA, Berdnikov AK, Novikova SV, Rozanova NA, Nikolaeva LV, Salmin VV, Kolotyeva NA, Khaspekov LG, Salmina AB, Yurchenko SO, Illarioshkin SN. Evolution, Possibilities, and Prospects for Application of the Methods of Assessment of Pyridine Nucleotides Pool for Studying Mechanisms of Brain Plasticity in Normal and Pathological Conditions. BIOCHEMISTRY. BIOKHIMIIA 2025; 90:231-246. [PMID: 40254401 DOI: 10.1134/s0006297924604477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 12/27/2024] [Accepted: 01/16/2025] [Indexed: 04/22/2025]
Abstract
Nicotinamide adenine dinucleotide and its derivatives - NAD+, NADP+, NADH, NADPH - play an important role in cell metabolism, act as substrates or cofactors for a large number of enzymes involved in the DNA regulation of replication and repair, maintenance of calcium homeostasis in cells, biosynthetic processes, and energy production mechanisms. Changes in the ratio of oxidized and reduced forms of pyridine nucleotides accompanies development of oxidative and reductive stress that significantly contribute to the cell damage and induction of adaptive responses. Currently, a huge number of protocols aimed at quantitative or qualitative assessment of the pyridine nucleotide pool are in use, but all of them have their limitations associated with sample preparation processes, difficulties in the metabolite spectrum assessment, and complexity of data interpretation. Measuring pyridine nucleotide levels is relevant in the studies of pathophysiological regulatory mechanisms of the cell functional activity and intercellular communication. This is of particular relevance when studying the mechanisms of plasticity of the central nervous system in health and disease, since significant changes in the pools of pyridine nucleotides in cells are evident in neurodevelopmental disorders, neurodegeneration, and aging. Simple and reliable non-invasive methods for measuring levels of NAD+ and NADH are necessary to assess the brain cells metabolism with diagnostic and research purposes. The goal of this review is to conduct comparative analysis of the main methods for measuring the levels of oxidized and reduced pyridine nucleotides in cells and to identify key principles of their application for correct interpretation of the obtained data, including those used for studying central nervous system.
Collapse
Affiliation(s)
- Anna V Zubova
- Research Center of Neurology, Moscow, 125367, Russia.
| | | | | | - Svetlana V Novikova
- Research Center of Neurology, Moscow, 125367, Russia
- Bauman Moscow State Technical University, Moscow, 105005, Russia
| | - Natalia A Rozanova
- Research Center of Neurology, Moscow, 125367, Russia
- Bauman Moscow State Technical University, Moscow, 105005, Russia
| | | | - Vladimir V Salmin
- Bauman Moscow State Technical University, Moscow, 105005, Russia
- Moscow Institute of Physics and Technology, Dolgoprudny, 141701, Russia
| | - Nataliya A Kolotyeva
- Research Center of Neurology, Moscow, 125367, Russia
- Bauman Moscow State Technical University, Moscow, 105005, Russia
| | | | - Alla B Salmina
- Research Center of Neurology, Moscow, 125367, Russia
- Bauman Moscow State Technical University, Moscow, 105005, Russia
- Krasnoyarsk State Medical University, Krasnoyarsk, 660022, Russia
| | | | | |
Collapse
|
5
|
Chourasia S, Petucci C, Shoffler C, Abbasian D, Wang H, Han X, Sivan E, Brandis A, Mehlman T, Malitsky S, Itkin M, Sharp A, Rotkopf R, Dassa B, Regev L, Zaltsman Y, Gross A. MTCH2 controls energy demand and expenditure to fuel anabolism during adipogenesis. EMBO J 2025; 44:1007-1038. [PMID: 39753955 PMCID: PMC11832942 DOI: 10.1038/s44318-024-00335-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 11/11/2024] [Accepted: 11/19/2024] [Indexed: 02/19/2025] Open
Abstract
Mitochondrial carrier homolog 2 (MTCH2) is a regulator of apoptosis, mitochondrial dynamics, and metabolism. Loss of MTCH2 results in mitochondrial fragmentation, an increase in whole-body energy utilization, and protection against diet-induced obesity. In this study, we used temporal metabolomics on HeLa cells to show that MTCH2 deletion results in a high ATP demand, an oxidized cellular environment, and elevated utilization of lipids, amino acids, and carbohydrates, accompanied by a decrease in several metabolites. Lipidomics analysis revealed a strategic adaptive reduction in membrane lipids and an increase in storage lipids in MTCH2 knockout cells. Importantly, MTCH2 knockout cells showed an increase in mitochondrial oxidative function, which may explain the higher energy demand. Interestingly, this imbalance in energy metabolism and reductive potential triggered by MTCH2-deletion prevents NIH3T3L1 preadipocytes from differentiating into mature adipocytes, an energy consuming reductive biosynthetic process. In summary, the loss of MTCH2 leads to increased mitochondrial oxidative activity and energy demand, creating a catabolic and oxidative environment that fails to fuel the anabolic processes required for lipid accumulation and adipocyte differentiation.
Collapse
Affiliation(s)
- Sabita Chourasia
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, 76100, Rehovot, Israel.
| | - Christopher Petucci
- Metabolomics Core, Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Clarissa Shoffler
- Metabolomics Core, Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Dina Abbasian
- Metabolomics Core, Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Hu Wang
- Barshop Institute for Longevity and Aging Studies, and Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Xianlin Han
- Barshop Institute for Longevity and Aging Studies, and Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Ehud Sivan
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Alexander Brandis
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Tevie Mehlman
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Sergey Malitsky
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Maxim Itkin
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Ayala Sharp
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Ron Rotkopf
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Bareket Dassa
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Limor Regev
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Yehudit Zaltsman
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Atan Gross
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, 76100, Rehovot, Israel.
| |
Collapse
|
6
|
Zhu Z, Lei M, Guo R, Xu Y, Zhao Y, Wei C, Yang Q, Sun Y. Nicotinamide riboside supplementation ameliorates ovarian dysfunction in a PCOS mouse model. J Ovarian Res 2025; 18:9. [PMID: 39833950 PMCID: PMC11749135 DOI: 10.1186/s13048-025-01596-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 01/09/2025] [Indexed: 01/22/2025] Open
Abstract
Polycystic ovary syndrome (PCOS) is the leading cause of anovulatory infertility among women of reproductive age, yet the range of effective treatment options remains limited. Our previous study revealed that reduced levels of nicotinamide adenine dinucleotide (NAD+) in ovarian granulosa cells (GCs) of women with PCOS resulted in the accumulation of reactive oxygen species (ROS) and mitochondrial dysfunction. However, it is still uncertain whether increasing NAD+ levels in the ovaries could improve ovarian function in PCOS. In this study, we demonstrated that supplementation with the NAD+ precursor nicotinamide riboside (NR) prevented the decrease in ovarian NAD+ levels, normalized estrous cycle irregularities, and enhanced ovulation potential in dehydroepiandrosterone (DHEA)-induced PCOS mice. Moreover, NR supplementation alleviated ovarian fibrosis and enhanced mitochondrial function in ovarian stromal cells of PCOS mice. Furthermore, NR supplementation improved oocyte quality in PCOS mice, as evidenced by reduced abnormal mitochondrial clustering, enhanced mitochondrial membrane potential, decreased ROS levels, reduced spindle abnormality rates, and increased early embryonic development potential in fertilized oocytes. These findings suggest that supplementing with NAD+ precursors could be a promising therapeutic strategy for addressing ovarian infertility associated with PCOS.
Collapse
Affiliation(s)
- Zhenye Zhu
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Min Lei
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ruizhi Guo
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yining Xu
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanqing Zhao
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chenlu Wei
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qingling Yang
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Yingpu Sun
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
7
|
Kolotyeva NA, Groshkov AA, Rozanova NA, Berdnikov AK, Novikova SV, Komleva YK, Salmina AB, Illarioshkin SN, Piradov MA. Pathobiochemistry of Aging and Neurodegeneration: Deregulation of NAD+ Metabolism in Brain Cells. Biomolecules 2024; 14:1556. [PMID: 39766263 PMCID: PMC11673498 DOI: 10.3390/biom14121556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/25/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025] Open
Abstract
NAD+ plays a pivotal role in energy metabolism and adaptation to external stimuli and stressful conditions. A significant reduction in intracellular NAD+ levels is associated with aging and contributes to the development of chronic cardiovascular, neurodegenerative, and metabolic diseases. It is of particular importance to maintain optimal levels of NAD+ in cells with high energy consumption, particularly in the brain. Maintaining the tissue level of NAD+ with pharmacological tools has the potential to slow down the aging process, to prevent the development of age-related diseases. This review covers key aspects of NAD+ metabolism in terms of brain metabolic plasticity, including NAD+ biosynthesis and degradation in different types of brain cells, as well as its contribution to the development of neurodegeneration and aging, and highlights up-to-date approaches to modulate NAD+ levels in brain cells.
Collapse
|
8
|
Li L, Ge Z, Liu S, Zheng K, Li Y, Chen K, Fu Y, Lei X, Cui Z, Wang Y, Huang J, Liu Y, Duan M, Sun Z, Chen J, Li L, Shen P, Wang G, Chen J, Li R, Li C, Yang Z, Ning Y, Luo A, Chen B, Seim I, Liu X, Wang F, Yao Y, Guo F, Yang M, Liu CH, Fan G, Wang L, Yang D, Zhang L. Multi-omics landscape and molecular basis of radiation tolerance in a tardigrade. Science 2024; 386:eadl0799. [PMID: 39446960 DOI: 10.1126/science.adl0799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 09/05/2024] [Indexed: 10/26/2024]
Abstract
Tardigrades are captivating organisms known for their resilience in extreme environments, including ultra-high-dose radiation, but the underlying mechanisms of this resilience remain largely unknown. Using genome, transcriptome, and proteome analysis of Hypsibius henanensis sp. nov., we explored the molecular basis contributing to radiotolerance in this organism. A putatively horizontally transferred gene, DOPA dioxygenase 1 (DODA1), responds to radiation and confers radiotolerance by synthesizing betalains-a type of plant pigment with free radical-scavenging properties. A tardigrade-specific radiation-induced disordered protein, TRID1, facilitates DNA damage repair through a mechanism involving phase separation. Two mitochondrial respiratory chain complex assembly proteins, BCS1 and NDUFB8, accumulate to accelerate nicotinamide adenine dinucleotide (NAD+) regeneration for poly(adenosine diphosphate-ribosyl)ation (PARylation) and subsequent poly(adenosine diphosphate-ribose) polymerase 1 (PARP1)-mediated DNA damage repair. These three observations expand our understanding of mechanisms of tardigrade radiotolerance.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Inge Seim
- Marine Mammal and Marine Bioacoustics Laboratory, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572006, China
| | | | | | | | | | | | | | | | | | | | - Lingqiang Zhang
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| |
Collapse
|
9
|
Hajka D, Budziak B, Rakus D, Gizak A. Neuronal extracellular vesicles influence the expression, degradation and oligomeric state of fructose 1,6-bisphosphatase 2 in astrocytes affecting their glycolytic capacity. Sci Rep 2024; 14:20932. [PMID: 39251668 PMCID: PMC11385182 DOI: 10.1038/s41598-024-71560-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 08/29/2024] [Indexed: 09/11/2024] Open
Abstract
Fructose 1,6-bisphosphatase 2 (Fbp2) is a regulatory enzyme of gluco- and glyconeogenesis which, in the course of evolution, acquired non-catalytic functions. Fbp2 promotes cell survival during calcium stress, regulates glycolysis via inhibition of Hif-1α activity, and is indispensable for the formation of long-term potentiation in hippocampus. In hippocampal astrocytes, the amount of Fbp2 protein is reduced by signals delivered in neuronal extracellular vesicles (NEVs) through an unknown mechanism. The physiological role of Fbp2 (determined by its subcellular localization/interactions) depends on its oligomeric state and thus, we asked whether the cargo of NEVs is sufficient to change also the ratio of Fbp2 dimer/tetramer and, consequently, influence astrocyte basal metabolism. We found that the NEVs cargo reduced the Fbp2 mRNA level, stimulated the enzyme degradation and affected the cellular titers of different oligomeric forms of Fbp2. This was accompanied with increased glucose uptake and lactate release by astrocytes. Our results revealed that neuronal signals delivered to astrocytes in NEVs provide the necessary balance between enzymatic and non-enzymatic functions of Fbp2, influencing not only its amount but also subcellular localization. This may allow for the metabolic adjustments and ensure protection of mitochondrial membrane potential during the neuronal activity-related increase in astrocytic [Ca2+].
Collapse
Affiliation(s)
- Daria Hajka
- Department of Molecular Physiology and Neurobiology, University of Wrocław, 50-335, Wrocław, Poland
- Łukasiewicz Research Network - PORT Polish Center for Technology Development, 54-006, Wrocław, Poland
| | - Bartosz Budziak
- Department of Molecular Physiology and Neurobiology, University of Wrocław, 50-335, Wrocław, Poland
| | - Dariusz Rakus
- Department of Molecular Physiology and Neurobiology, University of Wrocław, 50-335, Wrocław, Poland
| | - Agnieszka Gizak
- Department of Molecular Physiology and Neurobiology, University of Wrocław, 50-335, Wrocław, Poland.
| |
Collapse
|
10
|
Lee M, Yoo JH, Kim I, Kang S, Lee W, Kim S, Han KS. The compartment-specific manipulation of the NAD +/NADH ratio affects the metabolome and the function of glioblastoma. Sci Rep 2024; 14:20575. [PMID: 39232046 PMCID: PMC11375122 DOI: 10.1038/s41598-024-71462-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 08/28/2024] [Indexed: 09/06/2024] Open
Abstract
Glioblastoma multiforme (GBM) is the most aggressive type of cancer in the brain and has an inferior prognosis because of the lack of suitable medicine, largely due to its tremendous invasion. GBM has selfish metabolic pathways to promote migration, invasion, and proliferation compared to normal cells. Among various metabolic pathways, NAD (nicotinamide adenine dinucleotide) is essential in generating ATP and is used as a resource for cancer cells. LbNOX (Lactobacillus brevis NADH oxidase) is an enzyme that can directly manipulate the NAD+/NADH ratio. In this study, we found that an increased NAD+/NADH ratio by LbNOX or mitoLbNOX reduced intracellular glutamate and calcium responses and reduced invasion capacity in GBM. However, the invasion was not affected in GBM by rotenone, an ETC (Electron Transport Chain) complex I inhibitor, or nicotinamide riboside, a NAD+ precursor, suggesting that the crucial factor is the NAD+/NADH ratio rather than the absolute quantity of ATP or NAD+ for the invasion of GBM. To develop a more accurate and effective GBM treatment, our findings highlight the importance of developing a new medicine that targets the regulation of the NAD+/NADH ratio, given the current lack of effective treatment options for this brain cancer.
Collapse
Affiliation(s)
- Myunghoon Lee
- Department of Biological Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Jae Hong Yoo
- Department of Biological Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Inseo Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Sinbeom Kang
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Wonsik Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Sungjin Kim
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon, 34134, Republic of Korea.
| | - Kyung-Seok Han
- Department of Biological Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
11
|
Lane AN, Higashi RM, Fan TWM. Challenges of Spatially Resolved Metabolism in Cancer Research. Metabolites 2024; 14:383. [PMID: 39057706 PMCID: PMC11278851 DOI: 10.3390/metabo14070383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/28/2024] [Accepted: 07/07/2024] [Indexed: 07/28/2024] Open
Abstract
Stable isotope-resolved metabolomics comprises a critical set of technologies that can be applied to a wide variety of systems, from isolated cells to whole organisms, to define metabolic pathway usage and responses to perturbations such as drugs or mutations, as well as providing the basis for flux analysis. As the diversity of stable isotope-enriched compounds is very high, and with newer approaches to multiplexing, the coverage of metabolism is now very extensive. However, as the complexity of the model increases, including more kinds of interacting cell types and interorgan communication, the analytical complexity also increases. Further, as studies move further into spatially resolved biology, new technical problems have to be overcome owing to the small number of analytes present in the confines of a single cell or cell compartment. Here, we review the overall goals and solutions made possible by stable isotope tracing and their applications to models of increasing complexity. Finally, we discuss progress and outstanding difficulties in high-resolution spatially resolved tracer-based metabolic studies.
Collapse
Affiliation(s)
- Andrew N. Lane
- Department of Toxicology and Cancer Biology and Markey Cancer Center, University of Kentucky, 789 S. Limestone St., Lexington, KY 40536, USA; (R.M.H.); (T.W.-M.F.)
| | | | | |
Collapse
|
12
|
Molnar N, Miskolci V. Imaging immunometabolism in situ in live animals. IMMUNOMETABOLISM (COBHAM, SURREY) 2024; 6:e00044. [PMID: 39296471 PMCID: PMC11406703 DOI: 10.1097/in9.0000000000000044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
Immunometabolism is a rapidly developing field that holds great promise for diagnostic and therapeutic benefits to human diseases. The field has emerged based on seminal findings from in vitro and ex vivo studies that established the fundamental role of metabolism in immune cell effector functions. Currently, the field is acknowledging the necessity of investigating cellular metabolism within the natural context of biological processes. Examining cells in their native microenvironment is essential not only to reveal cell-intrinsic mechanisms but also to understand how cross-talk between neighboring cells regulates metabolism at the tissue level in a local niche. This necessity is driving innovation and advancement in multiple imaging-based technologies to enable analysis of dynamic intracellular metabolism at the single-cell level, with spatial and temporal resolution. In this review, we tally the currently available imaging-based technologies and explore the emerging methods of Raman and autofluorescence lifetime imaging microscopy, which hold significant potential and offer broad applications in the field of immunometabolism.
Collapse
Affiliation(s)
- Nicole Molnar
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers Health, Rutgers University, Newark, NJ, USA
- Center for Cell Signaling, Rutgers Health, Rutgers University, Newark, NJ, USA
- Center for Immunity and Inflammation, Rutgers Health, Rutgers University, Newark, NJ, USA
| | - Veronika Miskolci
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers Health, Rutgers University, Newark, NJ, USA
- Center for Cell Signaling, Rutgers Health, Rutgers University, Newark, NJ, USA
- Center for Immunity and Inflammation, Rutgers Health, Rutgers University, Newark, NJ, USA
| |
Collapse
|
13
|
Slama N, Abdellatif A, Bahria K, Gasmi S, Khames M, Hadji A, Birkmayer G, Oumouna M, Amrani Y, Benachour K. NADH Intraperitoneal Injection Prevents Lung Inflammation in a BALB/C Mice Model of Cigarette Smoke-Induced Chronic Obstructive Pulmonary Disease. Cells 2024; 13:881. [PMID: 38786103 PMCID: PMC11120028 DOI: 10.3390/cells13100881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/04/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
Cigarette smoke is one of the main factors in Chronic Obstructive Pulmonary Disease (COPD), a respiratory syndrome marked by persistent respiratory symptoms and increasing airway obstruction. Perturbed NAD+/NADH levels may play a role in various diseases, including lung disorders like COPD. In our study, we investigated the preventive effect of NADH supplementation in an experimental model of COPD induced by cigarette smoke extract (CSE). N = 64 mice randomly distributed in eight groups were injected with NADH (two doses of 100 mg/kg or 200 mg/kg) or dexamethasone (2 mg/kg) before being exposed to CSE for up to 9 weeks. Additionally, NADH supplementation preserved lung antioxidant defenses by preventing the functional loss of key enzymes such as superoxide dismutase (SOD), glutathione peroxidase (GPX), catalase, and the expression levels of glutathione (GSH) (n = 4, p < 0.001). It also reduced oxidative damage markers, such as malondialdehyde (MDA) and nitrites (n = 4, p < 0.001). A marked increase in tissue myeloperoxidase activity was assessed (MPO), confirming neutrophils implication in the inflammatory process. The latter was significantly ameliorated in the NADH-treated groups (p < 0.001). Finally, NADH prevented the CSE-induced secretion of cytokines such as Tumor Necrosis Factor alpha (TNF-α), IL-17, and IFN-y (n = 4, p < 0.001). Our study shows, for the first time, the clinical potential of NADH supplementation in preventing key features of COPD via its unique anti-inflammatory and antioxidant properties.
Collapse
Affiliation(s)
- Nada Slama
- Laboratory of Experimental Biology and Pharmacology, Faculty of Sciences, Dr. Yahia Fares University, Medea 26000, Algeria; (N.S.); (A.A.); (K.B.); (S.G.); (M.K.); (A.H.); (M.O.)
| | - Amina Abdellatif
- Laboratory of Experimental Biology and Pharmacology, Faculty of Sciences, Dr. Yahia Fares University, Medea 26000, Algeria; (N.S.); (A.A.); (K.B.); (S.G.); (M.K.); (A.H.); (M.O.)
| | - Karima Bahria
- Laboratory of Experimental Biology and Pharmacology, Faculty of Sciences, Dr. Yahia Fares University, Medea 26000, Algeria; (N.S.); (A.A.); (K.B.); (S.G.); (M.K.); (A.H.); (M.O.)
| | - Sara Gasmi
- Laboratory of Experimental Biology and Pharmacology, Faculty of Sciences, Dr. Yahia Fares University, Medea 26000, Algeria; (N.S.); (A.A.); (K.B.); (S.G.); (M.K.); (A.H.); (M.O.)
| | - Maamar Khames
- Laboratory of Experimental Biology and Pharmacology, Faculty of Sciences, Dr. Yahia Fares University, Medea 26000, Algeria; (N.S.); (A.A.); (K.B.); (S.G.); (M.K.); (A.H.); (M.O.)
| | - Abderrahmene Hadji
- Laboratory of Experimental Biology and Pharmacology, Faculty of Sciences, Dr. Yahia Fares University, Medea 26000, Algeria; (N.S.); (A.A.); (K.B.); (S.G.); (M.K.); (A.H.); (M.O.)
| | - George Birkmayer
- Department of Medical Chemistry, University of Graz, 8020 Graz, Austria
- Birkmayer Laboratories, 1090 Vienna, Austria
| | - Mustapha Oumouna
- Laboratory of Experimental Biology and Pharmacology, Faculty of Sciences, Dr. Yahia Fares University, Medea 26000, Algeria; (N.S.); (A.A.); (K.B.); (S.G.); (M.K.); (A.H.); (M.O.)
| | - Yassine Amrani
- Department of Respiratory Sciences, Institute of Lung Health and NIHR Leicester BRC-Respiratory, Glenfield Hospital, University of Leicester, Leicester LE1 7RH, UK;
| | - Karine Benachour
- Laboratory of Experimental Biology and Pharmacology, Faculty of Sciences, Dr. Yahia Fares University, Medea 26000, Algeria; (N.S.); (A.A.); (K.B.); (S.G.); (M.K.); (A.H.); (M.O.)
| |
Collapse
|
14
|
Patel R, Cooper DE, Kadakia KT, Allen A, Duan L, Luo L, Williams NT, Liu X, Locasale JW, Kirsch DG. Targeting glutamine metabolism improves sarcoma response to radiation therapy in vivo. Commun Biol 2024; 7:608. [PMID: 38769385 PMCID: PMC11106276 DOI: 10.1038/s42003-024-06262-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 04/29/2024] [Indexed: 05/22/2024] Open
Abstract
Diverse tumor metabolic phenotypes are influenced by the environment and genetic lesions. Whether these phenotypes extend to rhabdomyosarcoma (RMS) and how they might be leveraged to design new therapeutic approaches remains an open question. Thus, we utilized a Pax7Cre-ER-T2/+; NrasLSL-G12D/+; p53fl/fl (P7NP) murine model of sarcoma with mutations that most frequently occur in human embryonal RMS. To study metabolism, we infuse 13C-labeled glucose or glutamine into mice with sarcomas and show that sarcomas consume more glucose and glutamine than healthy muscle tissue. However, we reveal a marked shift from glucose consumption to glutamine metabolism after radiation therapy (RT). In addition, we show that inhibiting glutamine, either through genetic deletion of glutaminase (Gls1) or through pharmacological inhibition of glutaminase, leads to significant radiosensitization in vivo. This causes a significant increase in overall survival for mice with Gls1-deficient compared to Gls1-proficient sarcomas. Finally, Gls1-deficient sarcomas post-RT elevate levels of proteins involved in natural killer cell and interferon alpha/gamma responses, suggesting a possible role of innate immunity in the radiosensitization of Gls1-deficient sarcomas. Thus, our results indicate that glutamine contributes to radiation response in a mouse model of RMS.
Collapse
Affiliation(s)
- Rutulkumar Patel
- Department of Radiation Oncology, Baylor College of Medicine, 7200 Cambridge St, Houston, TX, 77030, USA
| | - Daniel E Cooper
- Department of Radiation Oncology, Duke University, Box 3085, Duke Cancer Center, Medicine Circle, Durham, NC, 27710, USA
| | - Kushal T Kadakia
- Department of Radiation Oncology, Duke University, Box 3085, Duke Cancer Center, Medicine Circle, Durham, NC, 27710, USA
| | - Annamarie Allen
- Department of Pharmacology and Cancer Biology, Duke University, Box 3813, 308 Research Drive, Durham, NC, 27710, USA
| | - Likun Duan
- Department of Pharmacology and Cancer Biology, Duke University, Box 3813, 308 Research Drive, Durham, NC, 27710, USA
- Department of Molecular and Structural Biochemistry, NC State University, Box 7622, 128 Polk Hall, Raleigh, NC, 27695, USA
| | - Lixia Luo
- Department of Radiation Oncology, Duke University, Box 3085, Duke Cancer Center, Medicine Circle, Durham, NC, 27710, USA
| | - Nerissa T Williams
- Department of Radiation Oncology, Duke University, Box 3085, Duke Cancer Center, Medicine Circle, Durham, NC, 27710, USA
| | - Xiaojing Liu
- Department of Molecular and Structural Biochemistry, NC State University, Box 7622, 128 Polk Hall, Raleigh, NC, 27695, USA
| | - Jason W Locasale
- Department of Pharmacology and Cancer Biology, Duke University, Box 3813, 308 Research Drive, Durham, NC, 27710, USA
- Department of Molecular and Structural Biochemistry, NC State University, Box 7622, 128 Polk Hall, Raleigh, NC, 27695, USA
| | - David G Kirsch
- Department of Radiation Oncology, Duke University, Box 3085, Duke Cancer Center, Medicine Circle, Durham, NC, 27710, USA.
- Department of Pharmacology and Cancer Biology, Duke University, Box 3813, 308 Research Drive, Durham, NC, 27710, USA.
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, 610 University Avenue, Toronto, ON, M5G 2M9, Canada.
- Department of Radiation Oncology, University of Toronto, 149 College Street, Suite 504, Toronto, ON, M5T 1P5, Canada.
- Department of Medical Biophysics, University of Toronto, 101 College Street, Room 15-701, Toronto, ON, M5G 1L7, Canada.
| |
Collapse
|
15
|
Kinnunen PC, Humphries BA, Luker GD, Luker KE, Linderman JJ. Characterizing heterogeneous single-cell dose responses computationally and experimentally using threshold inhibition surfaces and dose-titration assays. NPJ Syst Biol Appl 2024; 10:42. [PMID: 38637530 PMCID: PMC11026493 DOI: 10.1038/s41540-024-00369-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 04/08/2024] [Indexed: 04/20/2024] Open
Abstract
Single cancer cells within a tumor exhibit variable levels of resistance to drugs, ultimately leading to treatment failures. While tumor heterogeneity is recognized as a major obstacle to cancer therapy, standard dose-response measurements for the potency of targeted kinase inhibitors aggregate populations of cells, obscuring intercellular variations in responses. In this work, we develop an analytical and experimental framework to quantify and model dose responses of individual cancer cells to drugs. We first explore the connection between population and single-cell dose responses using a computational model, revealing that multiple heterogeneous populations can yield nearly identical population dose responses. We demonstrate that a single-cell analysis method, which we term a threshold inhibition surface, can differentiate among these populations. To demonstrate the applicability of this method, we develop a dose-titration assay to measure dose responses in single cells. We apply this assay to breast cancer cells responding to phosphatidylinositol-3-kinase inhibition (PI3Ki), using clinically relevant PI3Kis on breast cancer cell lines expressing fluorescent biosensors for kinase activity. We demonstrate that MCF-7 breast cancer cells exhibit heterogeneous dose responses with some cells requiring over ten-fold higher concentrations than the population average to achieve inhibition. Our work reimagines dose-response relationships for cancer drugs in an emerging paradigm of single-cell tumor heterogeneity.
Collapse
Affiliation(s)
- Patrick C Kinnunen
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Brock A Humphries
- Department of Radiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Gary D Luker
- Department of Radiology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Kathryn E Luker
- Department of Radiology, University of Michigan, Ann Arbor, MI, 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jennifer J Linderman
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA.
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
16
|
Song A, Zhao N, Hilpert DC, Perry C, Baur JA, Wallace DC, Schaefer PM. Visualizing subcellular changes in the NAD(H) pool size versus redox state using fluorescence lifetime imaging microscopy of NADH. Commun Biol 2024; 7:428. [PMID: 38594590 PMCID: PMC11004000 DOI: 10.1038/s42003-024-06123-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 03/29/2024] [Indexed: 04/11/2024] Open
Abstract
NADH autofluorescence imaging is a promising approach for visualizing energy metabolism at the single-cell level. However, it is sensitive to the redox ratio and the total NAD(H) amount, which can change independently from each other, for example with aging. Here, we evaluate the potential of fluorescence lifetime imaging microscopy (FLIM) of NADH to differentiate between these modalities.We perform targeted modifications of the NAD(H) pool size and ratio in cells and mice and assess the impact on NADH FLIM. We show that NADH FLIM is sensitive to NAD(H) pool size, mimicking the effect of redox alterations. However, individual components of the fluorescence lifetime are differently impacted by redox versus pool size changes, allowing us to distinguish both modalities using only FLIM. Our results emphasize NADH FLIM's potential for evaluating cellular metabolism and relative NAD(H) levels with high spatial resolution, providing a crucial tool for our understanding of aging and metabolism.
Collapse
Affiliation(s)
- Angela Song
- Center for Mitochondrial and Epigenomic Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Nicole Zhao
- Center for Mitochondrial and Epigenomic Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Diana C Hilpert
- Department of Biological Sciences, Dartmouth College, Hanover, NH, USA
| | - Caroline Perry
- Department of Physiology and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joseph A Baur
- Department of Physiology and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Douglas C Wallace
- Center for Mitochondrial and Epigenomic Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Patrick M Schaefer
- Center for Mitochondrial and Epigenomic Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| |
Collapse
|
17
|
Martínez-Rojas MÁ, Balcázar H, González-Soria I, González-Rivera JM, Rodríguez-Vergara ME, Velazquez-Villegas LA, León-Contreras JC, Pérez-Villalva R, Correa F, Rosetti F, Bobadilla NA. Transient inhibition of sodium-glucose cotransporter 2 after ischemia/reperfusion injury ameliorates chronic kidney disease. JCI Insight 2024; 9:e173675. [PMID: 38516890 PMCID: PMC11063941 DOI: 10.1172/jci.insight.173675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 02/08/2024] [Indexed: 03/23/2024] Open
Abstract
Sodium-glucose cotransporter 2 (SGLT2) inhibitor, dapagliflozin (Dapa), exhibited nephroprotective effects in patients with chronic kidney disease (CKD). We assessed the efficacy of short-term Dapa administration following acute kidney injury (AKI) in preventing CKD. Male Wistar rats were randomly assigned to Sham surgery, bilateral ischemia for 30 minutes (abbreviated as IR), and IR + Dapa groups. Daily treatment with Dapa was initiated just 24 hours after IR and maintained for only 10 days. Initially, rats were euthanized at this point to study early renal repair. After severe AKI, Dapa promptly restored creatinine clearance (CrCl) and significantly reduced renal vascular resistance compared with the IR group. Furthermore, Dapa effectively reversed the mitochondrial abnormalities, including increased fission, altered mitophagy, metabolic dysfunction, and proapoptotic signaling. To study this earlier, another set of rats was studied just 5 days after AKI. Despite persistent renal dysfunction, our data reveal a degree of mitochondrial protection. Remarkably, a 10-day treatment with Dapa demonstrated effectiveness in preventing CKD transition in an independent cohort monitored for 5 months after AKI. This was evidenced by improvements in proteinuria, CrCl, glomerulosclerosis, and fibrosis. Our findings underscore the potential of Dapa in preventing maladaptive repair following AKI, emphasizing the crucial role of early intervention in mitigating AKI long-term consequences.
Collapse
Affiliation(s)
- Miguel Ángel Martínez-Rojas
- Unidad de Fisiología Molecular, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Departmento de Nefrología y Metabolismo Mineral
| | - Hiram Balcázar
- Unidad de Fisiología Molecular, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Departmento de Nefrología y Metabolismo Mineral
| | - Isaac González-Soria
- Unidad de Fisiología Molecular, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Departmento de Nefrología y Metabolismo Mineral
| | - Jesús Manuel González-Rivera
- Unidad de Fisiología Molecular, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Departmento de Nefrología y Metabolismo Mineral
| | - Mauricio E. Rodríguez-Vergara
- Unidad de Fisiología Molecular, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Departmento de Nefrología y Metabolismo Mineral
| | | | - Juan Carlos León-Contreras
- Departmento de Patología Experimental, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Rosalba Pérez-Villalva
- Unidad de Fisiología Molecular, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Departmento de Nefrología y Metabolismo Mineral
| | - Francisco Correa
- Departmento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Florencia Rosetti
- Departmento de Inmunología y Reumatología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Norma A. Bobadilla
- Unidad de Fisiología Molecular, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Departmento de Nefrología y Metabolismo Mineral
| |
Collapse
|
18
|
Brüll M, Geese N, Celardo I, Laumann M, Leist M. Preparation of Viable Human Neurites for Neurobiological and Neurodegeneration Studies. Cells 2024; 13:242. [PMID: 38334634 PMCID: PMC10854604 DOI: 10.3390/cells13030242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/10/2024] Open
Abstract
Few models allow the study of neurite damage in the human central nervous system. We used here dopaminergic LUHMES neurons to establish a culture system that allows for (i) the observation of highly enriched neurites, (ii) the preparation of the neurite fraction for biochemical studies, and (iii) the measurement of neurite markers and metabolites after axotomy. LUHMES-based spheroids, plated in culture dishes, extended neurites of several thousand µm length, while all somata remained aggregated. These cultures allowed an easy microscopic observation of live or fixed neurites. Neurite-only cultures (NOC) were produced by cutting out the still-aggregated somata. The potential application of such cultures was exemplified by determinations of their protein and RNA contents. For instance, the mitochondrial TOM20 protein was highly abundant, while nuclear histone H3 was absent. Similarly, mitochondrial-encoded RNAs were found at relatively high levels, while the mRNA for a histone or the neuronal nuclear marker NeuN (RBFOX3) were relatively depleted in NOC. Another potential use of NOC is the study of neurite degeneration. For this purpose, an algorithm to quantify neurite integrity was developed. Using this tool, we found that the addition of nicotinamide drastically reduced neurite degeneration. Also, the chelation of Ca2+ in NOC delayed the degeneration, while inhibitors of calpains had no effect. Thus, NOC proved to be suitable for biochemical analysis and for studying degeneration processes after a defined cut injury.
Collapse
Affiliation(s)
- Markus Brüll
- In Vitro Toxicology and Biomedicine, Department Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, 78457 Konstanz, Germany; (M.B.); (N.G.); (I.C.)
| | - Nils Geese
- In Vitro Toxicology and Biomedicine, Department Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, 78457 Konstanz, Germany; (M.B.); (N.G.); (I.C.)
| | - Ivana Celardo
- In Vitro Toxicology and Biomedicine, Department Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, 78457 Konstanz, Germany; (M.B.); (N.G.); (I.C.)
| | - Michael Laumann
- Electron Microscopy Centre, University of Konstanz, 78457 Konstanz, Germany;
| | - Marcel Leist
- In Vitro Toxicology and Biomedicine, Department Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, 78457 Konstanz, Germany; (M.B.); (N.G.); (I.C.)
- Center for Alternatives to Animal Testing in Europe (CAAT-Europe), University of Konstanz, 78457 Konstanz, Germany
| |
Collapse
|
19
|
Ritterhoff J, Tian R. Metabolic mechanisms in physiological and pathological cardiac hypertrophy: new paradigms and challenges. Nat Rev Cardiol 2023; 20:812-829. [PMID: 37237146 DOI: 10.1038/s41569-023-00887-x] [Citation(s) in RCA: 82] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/02/2023] [Indexed: 05/28/2023]
Abstract
Cardiac metabolism is vital for heart function. Given that cardiac contraction requires a continuous supply of ATP in large quantities, the role of fuel metabolism in the heart has been mostly considered from the perspective of energy production. However, the consequence of metabolic remodelling in the failing heart is not limited to a compromised energy supply. The rewired metabolic network generates metabolites that can directly regulate signalling cascades, protein function, gene transcription and epigenetic modifications, thereby affecting the overall stress response of the heart. In addition, metabolic changes in both cardiomyocytes and non-cardiomyocytes contribute to the development of cardiac pathologies. In this Review, we first summarize how energy metabolism is altered in cardiac hypertrophy and heart failure of different aetiologies, followed by a discussion of emerging concepts in cardiac metabolic remodelling, that is, the non-energy-generating function of metabolism. We highlight challenges and open questions in these areas and finish with a brief perspective on how mechanistic research can be translated into therapies for heart failure.
Collapse
Affiliation(s)
- Julia Ritterhoff
- Molecular and Translational Cardiology, Department of Internal Medicine III, Heidelberg University Hospital, Heidelberg, Germany.
- Mitochondria and Metabolism Center, Department of Anaesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA.
| | - Rong Tian
- Mitochondria and Metabolism Center, Department of Anaesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA.
| |
Collapse
|
20
|
Wu D, Sun Y, Gu Y, Zhu D. Cystathionine γ-lyase S-sulfhydrates SIRT1 to attenuate myocardial death in isoprenaline-induced heart failure. Redox Rep 2023; 28:2174649. [PMID: 36757027 PMCID: PMC9930813 DOI: 10.1080/13510002.2023.2174649] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
Abstract
OBJECTIVE Hydrogen sulfide (H2S), the third gasotransmitter, plays a critical role in protecting against heart failure. Sirtuin-1 (SIRT1) is a highly conserved histone deacetylase that has a protective role in the treatment of heart failure by regulating the deacetylation of some functional proteins. This study investigates the interaction between SIRT1 and H2S in heart failure and the underlying mechanisms. METHODS AND RESULTS Using endogenous H2S-generating enzyme cystathionine γ-lyase (CSE) knockout mice, we found that CSE deficiency aggravated isoprenaline-induced cardiac injury. Treatment with H2S attenuated atrial natriuretic peptide level, brain natriuretic peptide level, improved cardiac function. Moreover, H2S treatment potentiated myocardial SIRT1 expression. Silencing CSE abolished intracellular SIRT1 expression. Furthermore, CSE/ H2S S-sulfhydrated SIRT1 at its zinc finger domains and augmented its zinc ion binding activity to stabilize the alpha-helix structure. DISCUSSION In conclusion, these results uncover that a novel mechanism that CSE/H2S S-sulfhydrated SIRT1 to prevent heart dysfunction through modulating its activity.
Collapse
Affiliation(s)
- Dan Wu
- Department of Pharmacy, Tongji Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Yuanyuan Sun
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, People’s Republic of China
| | - Yijing Gu
- Department of Pharmacy, Tongji Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Deqiu Zhu
- Department of Pharmacy, Tongji Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China, Deqiu Zhu Department of Pharmacy, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, People’s Republic of China
| |
Collapse
|
21
|
Zagare A, Preciat G, Nickels SL, Luo X, Monzel AS, Gomez-Giro G, Robertson G, Jaeger C, Sharif J, Koseki H, Diederich NJ, Glaab E, Fleming RMT, Schwamborn JC. Omics data integration suggests a potential idiopathic Parkinson's disease signature. Commun Biol 2023; 6:1179. [PMID: 37985891 PMCID: PMC10662437 DOI: 10.1038/s42003-023-05548-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 11/06/2023] [Indexed: 11/22/2023] Open
Abstract
The vast majority of Parkinson's disease cases are idiopathic. Unclear etiology and multifactorial nature complicate the comprehension of disease pathogenesis. Identification of early transcriptomic and metabolic alterations consistent across different idiopathic Parkinson's disease (IPD) patients might reveal the potential basis of increased dopaminergic neuron vulnerability and primary disease mechanisms. In this study, we combine systems biology and data integration approaches to identify differences in transcriptomic and metabolic signatures between IPD patient and healthy individual-derived midbrain neural precursor cells. Characterization of gene expression and metabolic modeling reveal pyruvate, several amino acid and lipid metabolism as the most dysregulated metabolic pathways in IPD neural precursors. Furthermore, we show that IPD neural precursors endure mitochondrial metabolism impairment and a reduced total NAD pool. Accordingly, we show that treatment with NAD precursors increases ATP yield hence demonstrating a potential to rescue early IPD-associated metabolic changes.
Collapse
Affiliation(s)
- Alise Zagare
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts-Fourneaux, 4362, Esch-sur-Alzette, Luxembourg
| | - German Preciat
- Metabolomics and Analytics Center, Leiden Academic Centre for Drug Research, Leiden University, 2300 RA, Leiden, The Netherlands
| | - Sarah L Nickels
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts-Fourneaux, 4362, Esch-sur-Alzette, Luxembourg
| | - Xi Luo
- School of Medicine, University of Galway, University Rd, Galway, Ireland
| | - Anna S Monzel
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts-Fourneaux, 4362, Esch-sur-Alzette, Luxembourg
| | - Gemma Gomez-Giro
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts-Fourneaux, 4362, Esch-sur-Alzette, Luxembourg
| | - Graham Robertson
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts-Fourneaux, 4362, Esch-sur-Alzette, Luxembourg
| | - Christian Jaeger
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts-Fourneaux, 4362, Esch-sur-Alzette, Luxembourg
| | - Jafar Sharif
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences (IMS), Kanagawa, 230-0045, Japan
| | - Haruhiko Koseki
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences (IMS), Kanagawa, 230-0045, Japan
| | - Nico J Diederich
- Centre Hospitalier de Luxembourg (CHL), 4, Rue Nicolas Ernest Barblé, L-1210, Luxembourg, Luxembourg
| | - Enrico Glaab
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts-Fourneaux, 4362, Esch-sur-Alzette, Luxembourg
| | - Ronan M T Fleming
- Metabolomics and Analytics Center, Leiden Academic Centre for Drug Research, Leiden University, 2300 RA, Leiden, The Netherlands
- School of Medicine, University of Galway, University Rd, Galway, Ireland
| | - Jens C Schwamborn
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts-Fourneaux, 4362, Esch-sur-Alzette, Luxembourg.
| |
Collapse
|
22
|
Shadiow J, Miranda ER, Perkins RK, Mazo CE, Lin Z, Lewis KN, Mey JT, Solomon TPJ, Haus JM. Exercise-induced changes to the fiber type-specific redox state in human skeletal muscle are associated with aerobic capacity. J Appl Physiol (1985) 2023; 135:508-518. [PMID: 37471216 PMCID: PMC10538995 DOI: 10.1152/japplphysiol.00662.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 06/23/2023] [Accepted: 07/07/2023] [Indexed: 07/22/2023] Open
Abstract
The benefits of exercise involve skeletal muscle redox state alterations of nicotinamide adenine dinucleotide (NAD) and flavin adenine dinucleotide (FAD). We determined the fiber-specific effects of acute exercise on the skeletal muscle redox state in healthy adults. Muscle biopsies were obtained from 19 participants (11 M, 8 F; 26 ± 4 yr) at baseline (fasted) and 30 min and 3 h after treadmill exercise at 80% maximal oxygen consumption (V̇o2max). Muscle samples were probed for autofluorescence of NADH (excitation at 340-360 nm) and oxidized flavoproteins (Fp; excitation at 440-470 nm) and subsequently, fiber typed to quantify the redox signatures of individual muscle fibers. Redox state was calculated as the oxidation-to-reduction redox ratio: Fp/(Fp + NADH). At baseline, pair-wise comparisons revealed that the redox ratio of myosin heavy chain (MHC) I fibers was 7.2% higher than MHC IIa (P = 0.023, 95% CI: 5.2, 9.2%) and the redox ratio of MHC IIa was 8.0% higher than MHC IIx (P = 0.035, 95% CI: 6.8, 9.2%). MHC I fibers also displayed greater NADH intensity than MHC IIx (P = 0.007) and greater Fp intensity than both MHC IIa (P = 0.019) and MHC IIx (P < 0.0001). Fp intensities increased in all fiber types (main effect, P = 0.039) but redox ratios did not change (main effect, P = 0.483) 30 min after exercise. The change in redox ratio was positively correlated with capillary density in MHC I (rho = 0.762, P = 0.037), MHC IIa fibers (rho = 0.881, P = 0.007), and modestly in MHC IIx fibers (rho = 0. 771, P = 0.103). These findings support the use of redox autofluorescence to interrogate skeletal muscle metabolism.NEW & NOTEWORTHY This study is the first to use autofluorescent imaging to describe differential redox states within human skeletal muscle fiber types with exercise. Our findings highlight an easy and efficacious technique for assessing skeletal muscle redox in humans.
Collapse
Affiliation(s)
- James Shadiow
- School of Kinesiology, University of Michigan, Ann Arbor, Michigan, United States
| | - Edwin R Miranda
- School of Kinesiology, University of Michigan, Ann Arbor, Michigan, United States
| | - Ryan K Perkins
- School of Kinesiology, University of Michigan, Ann Arbor, Michigan, United States
| | - Corey E Mazo
- School of Kinesiology, University of Michigan, Ann Arbor, Michigan, United States
| | - Zhen Lin
- School of Kinesiology, University of Michigan, Ann Arbor, Michigan, United States
| | - Kendell N Lewis
- School of Kinesiology, University of Michigan, Ann Arbor, Michigan, United States
| | - Jacob T Mey
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, Louisiana, United States
| | | | - Jacob M Haus
- School of Kinesiology, University of Michigan, Ann Arbor, Michigan, United States
| |
Collapse
|
23
|
Amemiya T, Shibata K, Yamaguchi T. Metabolic Oscillations and Glycolytic Phenotypes of Cancer Cells. Int J Mol Sci 2023; 24:11914. [PMID: 37569294 PMCID: PMC10419005 DOI: 10.3390/ijms241511914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/22/2023] [Accepted: 07/23/2023] [Indexed: 08/13/2023] Open
Abstract
Cancer cells show several metabolic phenotypes depending on the cancer types and the microenvironments in tumor tissues. The glycolytic phenotype is one of the hallmarks of cancer cells and is considered to be one of the crucial features of malignant cancers. Here, we show glycolytic oscillations in the concentrations of metabolites in the glycolytic pathway in two types of cancer cells, HeLa cervical cancer cells and DU145 prostate cancer cells, and in two types of cellular morphologies, spheroids and monolayers. Autofluorescence from nicotinamide adenine dinucleotide (NADH) in cells was used for monitoring the glycolytic oscillations at the single-cell level. The frequencies of NADH oscillations were different among the cellular types and morphologies, indicating that more glycolytic cancer cells tended to exhibit oscillations with higher frequencies than less glycolytic cells. A mathematical model for glycolytic oscillations in cancer cells reproduced the experimental results quantitatively, confirming that the higher frequencies of oscillations were due to the higher activities of glycolytic enzymes. Thus, glycolytic oscillations are expected as a medical indicator to evaluate the malignancy of cancer cells with glycolytic phenotypes.
Collapse
Affiliation(s)
- Takashi Amemiya
- Graduate School of Environment and Information Sciences, Yokohama National University (YNU), 79-7 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan;
| | - Kenichi Shibata
- Graduate School of Environment and Information Sciences, Yokohama National University (YNU), 79-7 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan;
| | - Tomohiko Yamaguchi
- Meiji Institute for Advanced Study of Mathematical Sciences (MIMS), 4-21-1 Nakano, Nakano-ku, Tokyo 164-8525, Japan;
| |
Collapse
|
24
|
Wu W, Yuan S, Tang Y, Meng X, Peng M, Hu Z, Liu W. Effect of Exercise and Oral Niacinamide Mononucleotide on Improving Mitochondrial Autophagy in Alzheimer's Disease. Nutrients 2023; 15:2851. [PMID: 37447179 DOI: 10.3390/nu15132851] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/20/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Oral niacinamide mononucleotide (NMN) and aerobic exercise have been shown to enhance niacinamide adenine dinucleotide (NAD+) in the body. NAD+ plays a critical role in the body and can directly and indirectly affect many key cellular functions, including metabolic pathways, DNA repair, chromatin remodeling, cell aging, and immune cell function. It is noteworthy that the level of NAD+ decreases gradually with increasing age. Decreased levels of NAD+ have been causally associated with a number of diseases associated with aging, including cognitive decline, cancer, metabolic diseases, sarcopenia, and frailty. Many diseases related to aging can be slowed down or even reversed by restoring NAD+ levels. For example, oral NMN or exercise to increase NAD+ levels in APP/PS1 mice have been proven to improve mitochondrial autophagy, but currently, there is no regimen combining oral NMN with exercise. This review summarizes recent studies on the effect of oral NMN on the enhancement of NAD+ in vivo and the improvements in mitochondrial autophagy abnormalities in AD through aerobic exercise, focusing on (1) how oral NMN improves the internal NAD+ level; (2) how exercise regulates the content of NAD+ in the body; (3) the relationship between exercise activation of NAD+ and AMPK; (4) how SIRT1 is regulated by NAD+ and AMPK and activates PGC-1α to mediate mitochondrial autophagy through changes in mitochondrial dynamics. By summarizing the results of the above four aspects, and combined with the synthesis of NAD+ in vivo, we can infer how exercise elevates the level of NAD+ in vivo to mediate mitochondrial autophagy, so as to propose a new hypothesis that exercise interferes with Alzheimer's disease (AD).
Collapse
Affiliation(s)
- Weijia Wu
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
| | - Shunling Yuan
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
| | - Yingzhe Tang
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
| | - Xiangyuan Meng
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
| | - Mei Peng
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
| | - Zelin Hu
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
| | - Wenfeng Liu
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, Hunan Normal University, Changsha 410081, China
| |
Collapse
|
25
|
Gill EL, Wang J, Viaene AN, Master SR, Ganetzky RD. Methodologies in Mitochondrial Testing: Diagnosing a Primary Mitochondrial Respiratory Chain Disorder. Clin Chem 2023:7143230. [PMID: 37099687 DOI: 10.1093/clinchem/hvad037] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 03/03/2023] [Indexed: 04/28/2023]
Abstract
BACKGROUND Mitochondria are cytosolic organelles within most eukaryotic cells. Mitochondria generate the majority of cellular energy in the form of adenosine triphosphate (ATP) through oxidative phosphorylation (OxPhos). Pathogenic variants in mitochondrial DNA (mtDNA) and nuclear DNA (nDNA) lead to defects in OxPhos and physiological malfunctions (Nat Rev Dis Primer 2016;2:16080.). Patients with primary mitochondrial disorders (PMD) experience heterogeneous symptoms, typically in multiple organ systems, depending on the tissues affected by mitochondrial dysfunction. Because of this heterogeneity, clinical diagnosis is challenging (Annu Rev Genomics Hum Genet 2017;18:257-75.). Laboratory diagnosis of mitochondrial disease depends on a multipronged analysis that can include biochemical, histopathologic, and genetic testing. Each of these modalities has complementary strengths and limitations in diagnostic utility. CONTENT The primary focus of this review is on diagnosis and testing strategies for primary mitochondrial diseases. We review tissue samples utilized for testing, metabolic signatures, histologic findings, and molecular testing approaches. We conclude with future perspectives on mitochondrial testing. SUMMARY This review offers an overview of the current biochemical, histologic, and genetic approaches available for mitochondrial testing. For each we review their diagnostic utility including complementary strengths and weaknesses. We identify gaps in current testing and possible future avenues for test development.
Collapse
Affiliation(s)
- Emily L Gill
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Jing Wang
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Angela N Viaene
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Stephen R Master
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Rebecca D Ganetzky
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States
- Division of Human Genetics, Children's Hospital of Philadelphia, Mitochondrial Medicine Frontier Program, Philadelphia, PA, United States
- Department of Pediatrics, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
26
|
Walzik D, Jonas W, Joisten N, Belen S, Wüst RCI, Guillemin G, Zimmer P. Tissue-specific effects of exercise as NAD + -boosting strategy: Current knowledge and future perspectives. Acta Physiol (Oxf) 2023; 237:e13921. [PMID: 36599416 DOI: 10.1111/apha.13921] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/21/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023]
Abstract
Nicotinamide adenine dinucleotide (NAD+ ) is an evolutionarily highly conserved coenzyme with multi-faceted cell functions, including energy metabolism, molecular signaling processes, epigenetic regulation, and DNA repair. Since the discovery that lower NAD+ levels are a shared characteristic of various diseases and aging per se, several NAD+ -boosting strategies have emerged. Other than pharmacological and nutritional approaches, exercise is thought to restore NAD+ homeostasis through metabolic adaption to chronically recurring states of increased energy demand. In this review we discuss the impact of acute exercise and exercise training on tissue-specific NAD+ metabolism of rodents and humans to highlight the potential value as NAD+ -boosting strategy. By interconnecting results from different investigations, we aim to draw attention to tissue-specific alterations in NAD+ metabolism and the associated implications for whole-body NAD+ homeostasis. Acute exercise led to profound alterations of intracellular NAD+ metabolism in various investigations, with the magnitude and direction of changes being strongly dependent on the applied exercise modality, cell type, and investigated animal model or human population. Exercise training elevated NAD+ levels and NAD+ metabolism enzymes in various tissues. Based on these results, we discuss molecular mechanisms that might connect acute exercise-induced disruptions of NAD+ /NADH homeostasis to chronic exercise adaptions in NAD+ metabolism. Taking this hypothesis-driven approach, we hope to inspire future research on the molecular mechanisms of exercise as NAD+ -modifying lifestyle intervention, thereby elucidating the potential therapeutic value in NAD+ -related pathologies.
Collapse
Affiliation(s)
- David Walzik
- Division of Performance and Health (Sports Medicine), Institute for Sport and Sport Science, TU Dortmund University, Dortmund, Germany
| | - Wiebke Jonas
- Division of Performance and Health (Sports Medicine), Institute for Sport and Sport Science, TU Dortmund University, Dortmund, Germany
| | - Niklas Joisten
- Division of Performance and Health (Sports Medicine), Institute for Sport and Sport Science, TU Dortmund University, Dortmund, Germany
| | - Sergen Belen
- Department of Molecular and Cellular Sports Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne, Germany
| | - Rob C I Wüst
- Laboratory for Myology, Faculty of Behavioural and Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Gilles Guillemin
- Neuroinflammation Group, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Philipp Zimmer
- Division of Performance and Health (Sports Medicine), Institute for Sport and Sport Science, TU Dortmund University, Dortmund, Germany
| |
Collapse
|
27
|
Carpenter BJ, Dierickx P. Circadian cardiac NAD + metabolism, from transcriptional regulation to healthy aging. Am J Physiol Cell Physiol 2022; 323:C1168-C1176. [PMID: 36062878 PMCID: PMC9576174 DOI: 10.1152/ajpcell.00239.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/29/2022] [Accepted: 08/29/2022] [Indexed: 11/22/2022]
Abstract
Nicotinamide adenine dinucleotide (NAD+) is a critical redox factor and coenzyme with rhythmic availability, and reduced NAD+ levels are a common factor in many disease states, including risk factors associated with aging. Recent studies have expanded on the role of circadian rhythms and the core clock factors that maintain them in the regulation of NAD+ levels in the heart. This has revealed that NAD+ pools and their use are tightly linked to cardiac function, but also heart failure. The convergence of these fields, namely, clock regulation, heart disease, and NAD+ metabolism present a complex network ripe with potential scientific and clinical discoveries, given the growing number of animal models, recently developed technology, and opportunity for safe and accessible precursor supplementation. This review seeks to briefly present known information on circadian rhythms in the heart, connect that research to our understanding of cardiac NAD+ metabolism, and finally discuss potential future experiments to better understand interventional opportunities in cardiovascular health regarding these subjects.
Collapse
Affiliation(s)
- Bryce J Carpenter
- Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Pieterjan Dierickx
- Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- Cardiopulmonary Institute (CPI), Bad Nauheim, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim, Germany
| |
Collapse
|