1
|
Ai J, Duan X, Wang R, Chen P. Use of cellular free nucleic acids for diagnosis and treatment of inflammatory bowel disease. Chin Med J (Engl) 2025:00029330-990000000-01530. [PMID: 40287782 DOI: 10.1097/cm9.0000000000003547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Indexed: 04/29/2025] Open
Affiliation(s)
- Jing Ai
- Department of Gastroenterology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010000, China
| | - Xiaoyan Duan
- Department of Gastroenterology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010000, China
| | - Rui Wang
- Department of Hepatobiliary, Pancreatic and Splenic Surgery, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010000, China
| | - Ping Chen
- Department of Gastroenterology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010000, China
| |
Collapse
|
2
|
Kumar P, Kedia S, Ahuja V. Target potential of miRNAs in ulcerative colitis: what do we know? Expert Opin Ther Targets 2024; 28:829-841. [PMID: 39307951 DOI: 10.1080/14728222.2024.2408423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/17/2024] [Accepted: 09/20/2024] [Indexed: 09/27/2024]
Abstract
INTRODUCTION The global rise in ulcerative colitis (UC) incidence highlights the urgent need for enhanced diagnostic and therapeutic strategies. Recent advances in genome-wide association studies (GWAS) have identified genetic loci associated with UC, providing insights into the disease's molecular mechanisms, including immune modulation, mucosal defense, and epithelial barrier function. Despite these findings, many GWAS signals are located in non-coding regions and are linked to low risk, suggesting that protein-coding genes alone do not fully explain UC's pathophysiology. Emerging research emphasizes the potential of microRNAs (miRNAs) as biomarkers and therapeutic targets due to their crucial role in UC. This review explores the current understanding of miRNAs in UC, including their mechanisms of action and their potential as both biomarkers and therapeutic targets. The present review provides the latest update on their potential as a biomarker and therapeutic target. AREAS COVERED This review synthesizes an extensive literature search on miRNAs in UC, focusing on their roles in the mucosal barrier, innate and adaptive immunity, and their potential applications as biomarkers and therapeutic modalities. EXPERT OPINION While miRNAs present promising opportunities as biomarkers and novel therapeutic agents in UC, challenges in validation, specificity, delivery, and clinical application need to be addressed through rigorous, large-scale studies.
Collapse
Affiliation(s)
- Peeyush Kumar
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical sciences, New Delhi, India
| | - Saurabh Kedia
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical sciences, New Delhi, India
| | - Vineet Ahuja
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical sciences, New Delhi, India
| |
Collapse
|
3
|
Shumway AJ, Shanahan MT, Hollville E, Chen K, Beasley C, Villanueva JW, Albert S, Lian G, Cure MR, Schaner M, Zhu LC, Bantumilli S, Deshmukh M, Furey TS, Sheikh SZ, Sethupathy P. Aberrant miR-29 is a predictive feature of severe phenotypes in pediatric Crohn's disease. JCI Insight 2024; 9:e168800. [PMID: 38385744 PMCID: PMC10967384 DOI: 10.1172/jci.insight.168800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 01/10/2024] [Indexed: 02/23/2024] Open
Abstract
Crohn's disease (CD) is a chronic inflammatory gut disorder. Molecular mechanisms underlying the clinical heterogeneity of CD remain poorly understood. MicroRNAs (miRNAs) are important regulators of gut physiology, and several have been implicated in the pathogenesis of adult CD. However, there is a dearth of large-scale miRNA studies for pediatric CD. We hypothesized that specific miRNAs uniquely mark pediatric CD. We performed small RNA-Seq of patient-matched colon and ileum biopsies from treatment-naive pediatric patients with CD (n = 169) and a control cohort (n = 108). Comprehensive miRNA analysis revealed 58 miRNAs altered in pediatric CD. Notably, multinomial logistic regression analysis revealed that index levels of ileal miR-29 are strongly predictive of severe inflammation and stricturing. Transcriptomic analyses of transgenic mice overexpressing miR-29 show a significant reduction of the tight junction protein gene Pmp22 and classic Paneth cell markers. The dramatic loss of Paneth cells was confirmed by histologic assays. Moreover, we found that pediatric patients with CD with elevated miR-29 exhibit significantly lower Paneth cell counts, increased inflammation scores, and reduced levels of PMP22. These findings strongly indicate that miR-29 upregulation is a distinguishing feature of pediatric CD, highly predictive of severe phenotypes, and associated with inflammation and Paneth cell loss.
Collapse
Affiliation(s)
| | - Michael T. Shanahan
- Department of Biomedical Sciences, Cornell University, Ithaca, New York, USA
| | | | - Kevin Chen
- Center for Gastrointestinal Biology and Disease
- Department of Genetics
| | | | | | - Sara Albert
- Department of Biomedical Sciences, Cornell University, Ithaca, New York, USA
| | - Grace Lian
- Center for Gastrointestinal Biology and Disease
| | | | | | - Lee-Ching Zhu
- Department of Pathology and Laboratory Medicine, and
| | | | | | - Terrence S. Furey
- Center for Gastrointestinal Biology and Disease
- Department of Genetics
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Shehzad Z. Sheikh
- Center for Gastrointestinal Biology and Disease
- Department of Genetics
| | - Praveen Sethupathy
- Department of Biomedical Sciences, Cornell University, Ithaca, New York, USA
| |
Collapse
|
4
|
Chang X, Song YH, Xia T, He ZX, Zhao SB, Wang ZJ, Gu L, Li ZS, Xu C, Wang SL, Bai Y. Macrophage-derived exosomes promote intestinal mucosal barrier dysfunction in inflammatory bowel disease by regulating TMIGD1 via mircroRNA-223. Int Immunopharmacol 2023; 121:110447. [PMID: 37301121 DOI: 10.1016/j.intimp.2023.110447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023]
Abstract
BACKGROUND & AIM Exosomes are effective mediators of cell-to-cell interactions and transport several regulatory molecules, including microRNAs (miRNAs), involved in diverse fundamental biological processes. The role of macrophage-derived exosomes in the development of inflammatory bowel disease (IBD) has not been previously reported. This study investigated specific miRNAs in macrophage-derived exosomes in IBD and their molecular mechanism. METHODS A dextran sulfate sodium (DSS)-induced IBD mouse model was established. The culture supernatant of murine bone marrow-derived macrophages (BMDMs) cultured with or without lipopolysaccharide (LPS) was used for isolating exosomes, which were subjected to miRNA sequencing. Lentiviruses were used to alter miRNA expression and investigate the role of macrophage-derived exosomal miRNAs. Both mouse and human organoids were co-cultured with macrophages in a Transwell system to model cellular IBD in vitro. RESULTS LPS-induced macrophages released exosomes containing various miRNAs and exacerbated IBD. Based on miRNA sequencing of macrophage-derived exosomes, miR-223 was selected for further analysis. Exosomes with upregulated miR-223 expression contributed to the exacerbation of intestinal barrier dysfunction in vivo, which was further verified using both mouse and human colon organoids. Furthermore, time-dependent analysis of the mRNAs in DSS-induced colitis mouse tissue and miR-223 target gene prediction were performed to select the candidate gene, resulting in the identification of the barrier-related factor Tmigd1. CONCLUSION Macrophage-derived exosomal miR-223 has a novel role in the progression of DSS-induced colitis by inducing intestinal barrier dysfunction through the inhibition of TMIGD1.
Collapse
Affiliation(s)
- Xin Chang
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China; Department of Gastroenterology, the General Hospital of Central Theater Command, Wuhan, China
| | - Yi-Hang Song
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Tian Xia
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Zi-Xuan He
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Sheng-Bing Zhao
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Zhi-Jie Wang
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Lun Gu
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Zhao-Shen Li
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Can Xu
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China.
| | - Shu-Ling Wang
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China.
| | - Yu Bai
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China.
| |
Collapse
|
5
|
Alfaifi J, Germain A, Heba AC, Arnone D, Gailly L, Ndiaye NC, Viennois E, Caron B, Peyrin-Biroulet L, Dreumont N. Deep Dive Into MicroRNAs in Inflammatory Bowel Disease. Inflamm Bowel Dis 2023; 29:986-999. [PMID: 36545755 DOI: 10.1093/ibd/izac250] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Indexed: 06/02/2023]
Abstract
Inflammatory bowel disease (IBD), which includes ulcerative colitis and Crohn's disease, is thought to develop in genetically predisposed individuals as a consequence of complex interactions between dysregulated inflammatory stimuli, immunological responses, and environmental factors. The pathogenesis of IBD has yet to be fully understood. The global increase in the incidence of IBD suggests a gap in the current understanding of the disease. The development of a new diagnostic tool for inflammatory bowel disease that is both less invasive and more cost-effective would allow for better management of this condition. MicroRNAs (miRNAs) are a class of noncoding RNAs with important roles as posttranscriptional regulators of gene expression, which has led to new insights into understanding IBD. Using techniques such as microarrays and real-time polymerase chain reactions, researchers have investigated the patterns in which patients with Crohn's disease and ulcerative colitis show alterations in the expression of miRNA in tissue, blood, and feces. These miRNAs are found to be differentially expressed in IBD and implicated in its pathogenesis through alterations in autophagy, intestinal barrier, and immune homeostasis. In this review, we discuss the miRNA expression profiles associated with IBD in tissue, peripheral blood, and feces and provide an overview of the miRNA mechanisms involved in IBD.
Collapse
Affiliation(s)
- Jaber Alfaifi
- Department of Hepatobiliary, Colorectal, and Digestive Surgery, Nancy University Hospital, University of Lorraine, Nancy, France
- NGERE (Nutrition-Genetics and Exposure to Environmental Risks), INSERM, University of Lorraine, Nancy, France
| | - Adeline Germain
- Department of Hepatobiliary, Colorectal, and Digestive Surgery, Nancy University Hospital, University of Lorraine, Nancy, France
- NGERE (Nutrition-Genetics and Exposure to Environmental Risks), INSERM, University of Lorraine, Nancy, France
| | - Anne-Charlotte Heba
- NGERE (Nutrition-Genetics and Exposure to Environmental Risks), INSERM, University of Lorraine, Nancy, France
| | - Djésia Arnone
- NGERE (Nutrition-Genetics and Exposure to Environmental Risks), INSERM, University of Lorraine, Nancy, France
| | - Laura Gailly
- NGERE (Nutrition-Genetics and Exposure to Environmental Risks), INSERM, University of Lorraine, Nancy, France
| | - Ndeye Coumba Ndiaye
- NGERE (Nutrition-Genetics and Exposure to Environmental Risks), INSERM, University of Lorraine, Nancy, France
| | - Emilie Viennois
- INSERM U1149, Center of Research on Inflammation, Université de Paris, Paris, France
| | - Bénédicte Caron
- NGERE (Nutrition-Genetics and Exposure to Environmental Risks), INSERM, University of Lorraine, Nancy, France
- Department of Gastroenterology, Nancy University Hospital, University of Lorraine, Nancy, France
| | - Laurent Peyrin-Biroulet
- NGERE (Nutrition-Genetics and Exposure to Environmental Risks), INSERM, University of Lorraine, Nancy, France
- Department of Gastroenterology, Nancy University Hospital, University of Lorraine, Nancy, France
| | - Natacha Dreumont
- NGERE (Nutrition-Genetics and Exposure to Environmental Risks), INSERM, University of Lorraine, Nancy, France
| |
Collapse
|
6
|
Yarani R, Shojaeian A, Palasca O, Doncheva NT, Jensen LJ, Gorodkin J, Pociot F. Differentially Expressed miRNAs in Ulcerative Colitis and Crohn’s Disease. Front Immunol 2022; 13:865777. [PMID: 35734163 PMCID: PMC9208551 DOI: 10.3389/fimmu.2022.865777] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 04/13/2022] [Indexed: 12/14/2022] Open
Abstract
Differential microRNA (miRNA or miR) regulation is linked to the development and progress of many diseases, including inflammatory bowel disease (IBD). It is well-established that miRNAs are involved in the differentiation, maturation, and functional control of immune cells. miRNAs modulate inflammatory cascades and affect the extracellular matrix, tight junctions, cellular hemostasis, and microbiota. This review summarizes current knowledge of differentially expressed miRNAs in mucosal tissues and peripheral blood of patients with ulcerative colitis and Crohn’s disease. We combined comprehensive literature curation with computational meta-analysis of publicly available high-throughput datasets to obtain a consensus set of miRNAs consistently differentially expressed in mucosal tissues. We further describe the role of the most relevant differentially expressed miRNAs in IBD, extract their potential targets involved in IBD, and highlight their diagnostic and therapeutic potential for future investigations.
Collapse
Affiliation(s)
- Reza Yarani
- Translational Type 1 Diabetes Research, Department of Clinical Research, Steno Diabetes Center Copenhagen, Gentofte, Denmark
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA, United States
- *Correspondence: Reza Yarani, ; Flemming Pociot,
| | - Ali Shojaeian
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Oana Palasca
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
- Center for Non-Coding RNA in Technology and Health, University of Copenhagen, Copenhagen, Denmark
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nadezhda T. Doncheva
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
- Center for Non-Coding RNA in Technology and Health, University of Copenhagen, Copenhagen, Denmark
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lars Juhl Jensen
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
- Center for Non-Coding RNA in Technology and Health, University of Copenhagen, Copenhagen, Denmark
| | - Jan Gorodkin
- Center for Non-Coding RNA in Technology and Health, University of Copenhagen, Copenhagen, Denmark
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Flemming Pociot
- Translational Type 1 Diabetes Research, Department of Clinical Research, Steno Diabetes Center Copenhagen, Gentofte, Denmark
- Center for Non-Coding RNA in Technology and Health, University of Copenhagen, Copenhagen, Denmark
- Copenhagen Diabetes Research Center, Department of Pediatrics, Herlev University Hospital, Herlev, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- *Correspondence: Reza Yarani, ; Flemming Pociot,
| |
Collapse
|
7
|
Sun L, Han Y, Wang H, Liu H, Liu S, Yang H, Ren X, Fang Y. MicroRNAs as potential biomarkers for the diagnosis of inflammatory bowel disease: a systematic review and meta-analysis. J Int Med Res 2022; 50:3000605221089503. [PMID: 35443818 PMCID: PMC9047851 DOI: 10.1177/03000605221089503] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Objective The clinical importance of aberrantly expressed microRNAs (miRNAs) in
diagnosing inflammatory bowel disease (IBD) has not been well established,
so was investigated in this systematic review and meta-analysis. Methods Articles in online databases from inception to March 17, 2021 were retrieved.
Random effects meta-analysis was used to obtain sensitivity, specificity,
positive (PLRs) and negative likelihood ratios (NLRs), diagnostic odds
ratios (DORs), and areas under the curve (AUC) with 95% confidence intervals
(CI) for IBD diagnosis. Results Of 117 studies reporting altered miRNA expression in IBD included in the
systematic review, 15 involving 937 patients with IBD and 707 controls, 22
miRNAs, and two miRNA panels were eligible for meta-analysis. Pooled
analyses showed a moderate diagnostic accuracy for miRNAs in the IBD
diagnosis, with a sensitivity of 0.80 (95% CI: 0.79–0.82), specificity of
0.84 (95% CI: 0.82–0.86), DOR of 21.19 (95% CI: 13.90–32.31), and AUC of
0.89. Subgroup analyses revealed a better performance in patients with
ulcerative colitis (AUC, 0.93) than Crohn’s disease (AUC, 0.84). Consistent
upregulation of miR-21, miR-16, and miR-192 in blood with a high-moderate
diagnostic accuracy was found in at least two studies. Conclusions These findings suggest miRNAs are credible diagnostic biomarkers in IBD.
Collapse
Affiliation(s)
- Lina Sun
- Xi'an Children's Hospital, Shaanxi Research Institute for Pediatric Diseases, The Affiliated Children's Hospital of Xi'an Jiaotong University and National Regional Medical Center for Children (Northwest), Xi'an 710003, China
| | - Yanan Han
- Xi'an Children's Hospital, Shaanxi Research Institute for Pediatric Diseases, The Affiliated Children's Hospital of Xi'an Jiaotong University and National Regional Medical Center for Children (Northwest), Xi'an 710003, China
| | - Hua Wang
- Xi'an Children's Hospital, Shaanxi Research Institute for Pediatric Diseases, The Affiliated Children's Hospital of Xi'an Jiaotong University and National Regional Medical Center for Children (Northwest), Xi'an 710003, China
| | - Huanyu Liu
- Xi'an Children's Hospital, Shaanxi Research Institute for Pediatric Diseases, The Affiliated Children's Hospital of Xi'an Jiaotong University and National Regional Medical Center for Children (Northwest), Xi'an 710003, China
| | - Shan Liu
- Xi'an Children's Hospital, Shaanxi Research Institute for Pediatric Diseases, The Affiliated Children's Hospital of Xi'an Jiaotong University and National Regional Medical Center for Children (Northwest), Xi'an 710003, China
| | - Hongbin Yang
- Xi'an Children's Hospital, Shaanxi Research Institute for Pediatric Diseases, The Affiliated Children's Hospital of Xi'an Jiaotong University and National Regional Medical Center for Children (Northwest), Xi'an 710003, China
| | - Xiaoxia Ren
- Xi'an Children's Hospital, Shaanxi Research Institute for Pediatric Diseases, The Affiliated Children's Hospital of Xi'an Jiaotong University and National Regional Medical Center for Children (Northwest), Xi'an 710003, China
| | - Ying Fang
- Xi'an Children's Hospital, Shaanxi Research Institute for Pediatric Diseases, The Affiliated Children's Hospital of Xi'an Jiaotong University and National Regional Medical Center for Children (Northwest), Xi'an 710003, China
| |
Collapse
|
8
|
Li T, Liu W, Hui W, Shi T, Liu H, Feng Y, Gao F. Integrated Analysis of Ulcerative Colitis Revealed an Association between PHLPP2 and Immune Infiltration. DISEASE MARKERS 2022; 2022:4983471. [PMID: 35308140 PMCID: PMC8931176 DOI: 10.1155/2022/4983471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/08/2022] [Accepted: 02/17/2022] [Indexed: 02/07/2023]
Abstract
Ulcerative colitis (UC) is a progressive intestine inflammatory disease that is prone to recur. Herein, we utilize microarray technology and bioinformatics to reveal the underlying pathogenesis of UC and provide novel markers. Colonic biopsies were taken from eight UC patients and eight healthy controls. Three differentially expressed miRNAs (DEMIs) and 264 differentially expressed genes (DEGs) were screened using mRNA and miRNA microarray. Most DEGs were significantly associated with immune response and were markedly enriched in the IL-17 signaling pathway. Among the target genes of DEMIs, PHLPP2 overlapped with DEGs and the downregulation of PHLPP2 group was mainly involved in the epithelial-mesenchymal transition. PHLPP2 was downregulated in UC patients, which was validated in 5 GEO datasets and qRT-PCR. The ROC curve demonstrated that PHLPP2 has a perfect ability to distinguish UC patients from healthy controls. Moreover, PHLPP2 was low expression in patients with active UC. CIBERSORT algorithm indicated that the abundance of gamma delta T cells (P = 0.04), M0 macrophages (P = 0.01), and activated mast cells (P < 0.01) was significantly greater than that of the control group. The Spearman correlation analysis showed that PHLPP2 was positively correlated with the proportion of activated NK cells (rho = 0.62, P = 0.013) and Tregs (rho = 0.55, P = 0.03), but negatively correlated with those of activated mast cells (rho = -0.8, P < 0.01) and macrophages (rho = -0.73, P < 0.01). These results indicate that PHLPP2 is associated with immune cells in the pathogenesis of UC, as well as provide new prospects and future directions of investigation.
Collapse
Affiliation(s)
- Ting Li
- Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Weidong Liu
- Department of Gastroenterology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
- Xinjiang Clinical Research Center for Digestive Diseases, China
| | - Wenjia Hui
- Department of Gastroenterology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
- Xinjiang Clinical Research Center for Digestive Diseases, China
| | - Tian Shi
- Department of Gastroenterology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
- Xinjiang Clinical Research Center for Digestive Diseases, China
| | - Huan Liu
- Department of Gastroenterology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
- Xinjiang Clinical Research Center for Digestive Diseases, China
| | - Yan Feng
- Department of Gastroenterology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
- Xinjiang Clinical Research Center for Digestive Diseases, China
| | - Feng Gao
- Xinjiang Medical University, Urumqi, Xinjiang, China
- Department of Gastroenterology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
- Xinjiang Clinical Research Center for Digestive Diseases, China
| |
Collapse
|
9
|
Gong L, Xiao J, Yi J, Xiao J, Lu F, Liu X. Immunomodulatory Effect of Serum Exosomes From Crohn Disease on Macrophages via Let-7b-5p/TLR4 Signaling. Inflamm Bowel Dis 2022; 28:96-108. [PMID: 34106260 DOI: 10.1093/ibd/izab132] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND Exosomes are extensively reported to be strongly associated with many immunologic diseases, including Crohn disease (CD). Meanwhile, the dysfunction of macrophage activation has been proposed to be critical for the pathogenesis of CD. However, it is an unsettled issue whether serum exosomes from CD could activate macrophages and participate in its pathogenesis. Our study intended to clarify the role of CD-derived exosomes on macrophages to elucidate a novel mechanism and possible diagnostic and therapeutic strategies. METHODS Serum exosomes were isolated and identified. Functional assays in vitro were performed on Raw264.7 macrophages, followed by exosomal microRNA (miRNA) profiling and bioinformatics analyses via high-throughput sequencing. In animal experiments, exosomes were intraperitoneally injected into dextran sulfate sodium-induced colitis. RESULTS In vitro CD-derived exosomes induced proinflammatory cytokine expression and increased macrophage counts. Meanwhile, the intervention of exosomes from CD with epithelial cells led to increased permeability of the intestinal epithelial barrier. In vivo, CD-derived exosomes could circulate into the intestinal mucosa and significantly aggravate colitis. Furthermore, CD changed the miRNA profile of exosomes and further analysis revealed a differential expression of let-7b-5p. Mechanistically, the let-7b-5p/TLR4 pathway was recognized as a potential contributor to macrophage activation and inflammatory response. Furthermore, serum exosome-mediated let-7b-5p mimic delivery alleviated colitis significantly. CONCLUSIONS Our study indicated that serum exosomes can circulate into the intestinal mucosa to aggravate colitis by regulating macrophage activation and epithelial barrier function. In addition, CD showed altered exosomal miRNA profiles. Furthermore, serum exosome-mediated let-7b-5p-mimic delivery may significantly alleviate colitis, providing potential novel insight into an exosome-based strategy for the diagnosis and treatment of CD.
Collapse
Affiliation(s)
- Lingqi Gong
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, Hunan Province,China.,Hunan International Scientific and Technological Cooperation Base of Artificial Intelligence Computer Aided Diagnosis and Treatment for Digestive Disease, Changsha, Hunan Province, China
| | - Jintao Xiao
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, Hunan Province,China.,Hunan International Scientific and Technological Cooperation Base of Artificial Intelligence Computer Aided Diagnosis and Treatment for Digestive Disease, Changsha, Hunan Province, China
| | - Jun Yi
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, Hunan Province,China.,Hunan International Scientific and Technological Cooperation Base of Artificial Intelligence Computer Aided Diagnosis and Treatment for Digestive Disease, Changsha, Hunan Province, China
| | - Junbo Xiao
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, Hunan Province,China.,Hunan International Scientific and Technological Cooperation Base of Artificial Intelligence Computer Aided Diagnosis and Treatment for Digestive Disease, Changsha, Hunan Province, China
| | - Fanggen Lu
- Department of Gastroenterology, the Second Xiangya Hospital, Central South University, Changsha, Hunan Province,China
| | - Xiaowei Liu
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, Hunan Province,China.,Hunan International Scientific and Technological Cooperation Base of Artificial Intelligence Computer Aided Diagnosis and Treatment for Digestive Disease, Changsha, Hunan Province, China
| |
Collapse
|
10
|
Bermick J, Schaller M. Epigenetic regulation of pediatric and neonatal immune responses. Pediatr Res 2022; 91:297-327. [PMID: 34239066 DOI: 10.1038/s41390-021-01630-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/01/2021] [Accepted: 06/09/2021] [Indexed: 02/06/2023]
Abstract
Epigenetic regulation of transcription is a collective term that refers to mechanisms known to regulate gene transcription without changing the underlying DNA sequence. These mechanisms include DNA methylation and histone tail modifications which influence chromatin accessibility, and microRNAs that act through post-transcriptional gene silencing. Epigenetics is known to regulate a variety of biological processes, and the role of epigtenetics in immunity and immune-mediated diseases is becoming increasingly recognized. While DNA methylation is the most widely studied, each of these systems play an important role in the development and maintenance of appropriate immune responses. There is clear evidence that epigenetic mechanisms contribute to developmental stage-specific immune responses in a cell-specific manner. There is also mounting evidence that prenatal exposures alter epigenetic profiles and subsequent immune function in exposed offspring. Early life exposures that are associated with poor long-term health outcomes also appear to impact immune specific epigenetic patterning. Finally, each of these epigenetic mechanisms contribute to the pathogenesis of a wide variety of diseases that manifest during childhood. This review will discuss each of these areas in detail. IMPACT: Epigenetics, including DNA methylation, histone tail modifications, and microRNA expression, dictate immune cell phenotypes. Epigenetics influence immune development and subsequent immune health. Prenatal, perinatal, and postnatal exposures alter immune cell epigenetic profiles and subsequent immune function. Numerous pediatric-onset diseases have an epigenetic component. Several successful strategies for childhood diseases target epigenetic mechanisms.
Collapse
Affiliation(s)
- Jennifer Bermick
- Department of Pediatrics, Division of Neonatology, University of Iowa, Iowa City, IA, USA. .,Iowa Inflammation Program, University of Iowa, Iowa City, IA, USA.
| | - Matthew Schaller
- Department of Pulmonary, Critical Care & Sleep Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
11
|
Quaglio AEV, Santaella FJ, Rodrigues MAM, Sassaki LY, Di Stasi LC. MicroRNAs expression influence in ulcerative colitis and Crohn's disease: A pilot study for the identification of diagnostic biomarkers. World J Gastroenterol 2021; 27:7801-7812. [PMID: 34963743 PMCID: PMC8661377 DOI: 10.3748/wjg.v27.i45.7801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/14/2021] [Accepted: 11/20/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Inflammatory bowel disease (IBD) comprises two distinct diseases, Crohn's disease (CD) and ulcerative colitis (UC), both of which are chronic, relapsing inflammatory disorders of the gastrointestinal tract with a mostly unknown etiology. The incidence and prevalence of IBD are continually increasing, indicating the need for further studies to investigate the genetic determinants of these diseases. Since microRNAs (miRNAs) regulate protein translation via complementary binding to mRNA, discovering differentially expressed miRNAs (DE) in UC or CD patients could be important for diagnostic biomarker identification, assisting in the appropriate disease differentiation progressing the understanding of IBD pathogenesis. AIM To determine the miRNA expression profile in UC and CD patients and the potential pathophysiological contributions of differentially expressed miRNA. METHODS A total of 20 formalin-fixed paraffin-embedded colonic samples were collected from the Pathology Department of Botucatu Medical School at São Paulo State University (Unesp). The diagnosis of UC or CD was based on clinical, endoscopic, radiologic, and histological criteria and confirmed by histopathological analysis at the time of selection. The TaqMan™ Array Human MicroRNA A+B Cards Set v3.0 (Applied Biosystems™) platform was used to analyze 754 miRNAs. Targets of DE-miRNAs were predicted using miRNA Data Integration Portal (mirDIP) and the miRNA Target Interaction database (MiRTarBase). All statistical analyses were conducted using GraphPad Prism software. Parametric and nonparametric data were analyzed using t-tests and Mann-Whitney U tests, respectively. RESULTS The results showed that of the 754 miRNAs that were initially evaluated, 643 miRNAs were found to be expressed in at least five of the patients who were diagnosed with either CD or UC; the remaining 111 miRNAs were not considered to be expressed in these patients. The expression levels of 28 miRNAs were significantly different between the CD and UC patients (P ≤ 0.05); 13 miRNAs demonstrated a fold-change in expression level greater than 1. Five miRNAs with a downregulated expression were selected for enrichment analysis. The miRNAs whose expression levels were significantly lower in UC patients than in CD patients were enriched in certain signaling pathways that were mostly correlated with cancer-related processes and respective biomarkers. CONCLUSION MiRNAs could be used to differentiate UC from CD, and differently expressed miRNAs could help explain the distinct pathophysiology of each disease.
Collapse
Affiliation(s)
- Ana Elisa Valencise Quaglio
- Laboratory of Phytomedicines, Pharmacology and Biotechnology (PhytoPharmaTec), Department of Biophysics and Pharmacology, São Paulo State University (Unesp), Institute of Biosciences, Botucatu 18618-689, São Paulo, Brazil
| | - Felipe Jose Santaella
- Department of Pathology, Botucatu Medical School, Sao Paulo State University (Unesp), Botucatu 18618-687, São Paulo, Brazil
| | | | - Ligia Yukie Sassaki
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (Unesp), Botucatu 18618-687, São Paulo, Brazil
| | - Luiz Claudio Di Stasi
- Laboratory of Phytomedicines, Pharmacology and Biotechnology (PhytoPharmaTec), Department of Biophysics and Pharmacology, São Paulo State University (Unesp), Institute of Biosciences, Botucatu 18618-689, São Paulo, Brazil
| |
Collapse
|
12
|
Role of microRNAs in the Pathophysiology of Ulcerative Colitis. IMMUNO 2021. [DOI: 10.3390/immuno1040039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Ulcerative colitis (UC) is an intractable disorder characterized by a chronic inflammation of the colon. Studies have identified UC as a multifactorial disorder affected by both genetic and environmental factors; however, the precise mechanism remains unclear. Recent advances in the field of microRNA (miRNA) research have identified an association between this small non-coding RNA in the pathophysiology of UC and altered miRNA expression profiles in patients with UC. Nevertheless, the roles of individual miRNAs are uncertain due to heterogeneity in both research samples and clinical backgrounds. In this review, we focus on miRNA expression in colonic mucosa where inflammation occurs in UC and discuss the potential roles of individual miRNAs in disease development, outlining the pathophysiology of UC.
Collapse
|
13
|
The Impact of MicroRNAs during Inflammatory Bowel Disease: Effects on the Mucus Layer and Intercellular Junctions for Gut Permeability. Cells 2021; 10:cells10123358. [PMID: 34943865 PMCID: PMC8699384 DOI: 10.3390/cells10123358] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 12/15/2022] Open
Abstract
Research on inflammatory bowel disease (IBD) has produced mounting evidence for the modulation of microRNAs (miRNAs) during pathogenesis. MiRNAs are small, non-coding RNAs that interfere with the translation of mRNAs. Their high stability in free circulation at various regions of the body allows researchers to utilise miRNAs as biomarkers and as a focus for potential treatments of IBD. Yet, their distinct regulatory roles at the gut epithelial barrier remain elusive due to the fact that there are several external and cellular factors contributing to gut permeability. This review focuses on how miRNAs may compromise two components of the gut epithelium that together form the initial physical barrier: the mucus layer and the intercellular epithelial junctions. Here, we summarise the impact of miRNAs on goblet cell secretion and mucin structure, along with the proper function of various junctional proteins involved in paracellular transport, cell adhesion and communication. Knowledge of how this elaborate network of cells at the gut epithelial barrier becomes compromised as a result of dysregulated miRNA expression, thereby contributing to the development of IBD, will support the generation of miRNA-associated biomarker panels and therapeutic strategies that detect and ameliorate gut permeability.
Collapse
|
14
|
Grillo TG, Quaglio AEV, Beraldo RF, Lima TB, Baima JP, Di Stasi LC, Sassaki LY. MicroRNA expression in inflammatory bowel disease-associated colorectal cancer. World J Gastrointest Oncol 2021; 13:995-1016. [PMID: 34616508 PMCID: PMC8465441 DOI: 10.4251/wjgo.v13.i9.995] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 05/30/2021] [Accepted: 07/27/2021] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are non-coding RNA molecules composed of 19-25 nucleotides that regulate gene expression and play a central role in the regulation of several immune-mediated disorders, including inflammatory bowel diseases (IBD). IBD, represented by ulcerative colitis and Crohn's disease, is characterized by chronic intestinal inflammation associated with an increased risk of colorectal cancer (CRC). CRC is one of the most prevalent tumors in the world, and its main risk factors are obesity, physical inactivity, smoking, alcoholism, advanced age, and some eating habits, in addition to chronic intestinal inflammatory processes and the use of immunosuppressants administered to IBD patients. Recent studies have identified miRNAs associated with an increased risk of developing CRC in this population. The identification of miRNAs involved in this tumorigenic process could be useful to stratify cancer risk development for patients with IBD and to monitor and assess prognosis. Thus, the present review aimed to summarize the role of miRNAs as biomarkers for the diagnosis and prognosis of IBD-associated CRC. In the future, therapies based on miRNA modulation could be used both in clinical practice to achieve remission of the disease and restore the quality of life for patients with IBD, and to identify the patients with IBD at high risk for tumor development.
Collapse
Affiliation(s)
- Thais Gagno Grillo
- Department of Internal Medicine, São Paulo State University (Unesp), Medical School, Botucatu 18618-686, São Paulo, Brazil
| | - Ana Elisa Valencise Quaglio
- Department of Biophysics and Pharmacology, São Paulo State University (Unesp), Institute of Biosciences, Botucatu 18618-689, São Paulo, Brazil
| | - Rodrigo Fedatto Beraldo
- Department of Internal Medicine, São Paulo State University (Unesp), Medical School, Botucatu 18618-686, São Paulo, Brazil
| | - Talles Bazeia Lima
- Department of Internal Medicine, São Paulo State University (Unesp), Medical School, Botucatu 18618-686, São Paulo, Brazil
| | - Julio Pinheiro Baima
- Department of Internal Medicine, São Paulo State University (Unesp), Medical School, Botucatu 18618-686, São Paulo, Brazil
| | - Luiz Claudio Di Stasi
- Department of Biophysics and Pharmacology, São Paulo State University (Unesp), Institute of Biosciences, Botucatu 18618-689, São Paulo, Brazil
| | - Ligia Yukie Sassaki
- Department of Internal Medicine, São Paulo State University (Unesp), Medical School, Botucatu 18618-686, São Paulo, Brazil
| |
Collapse
|
15
|
Jung H, Kim JS, Lee KH, Tizaoui K, Terrazzino S, Cargnin S, Smith L, Koyanagi A, Jacob L, Li H, Hong SH, Yon DK, Lee SW, Kim MS, Wasuwanich P, Karnsakul W, Shin JI, Kronbichler A. Roles of microRNAs in inflammatory bowel disease. Int J Biol Sci 2021; 17:2112-2123. [PMID: 34131410 PMCID: PMC8193269 DOI: 10.7150/ijbs.59904] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 05/08/2021] [Indexed: 12/12/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory disease of the gastrointestinal tract that mainly affects young people. IBD is associated with various gastrointestinal symptoms, and thus, affects the quality of life of patients. Currently, the pathogenesis of IBD is poorly understood. Although intestinal bacteria and host immune response are thought to be major factors in its pathogenesis, a sufficient explanation of their role in its pathophysiologic mechanism has not been presented. MicroRNAs (miRNAs), which are small RNA molecules that regulate gene expression, have gained attention as they are known to participate in the molecular interactions of IBD. Recent studies have confirmed the important role of miRNAs in targeting certain molecules in signaling pathways that regulate the homeostasis of the intestinal barrier, inflammatory reactions, and autophagy of the intestinal epithelium. Several studies have identified the specific miRNAs associated with IBD from colon tissues or serum samples of IBD patients and have attempted to use them as useful diagnostic biomarkers. Furthermore, some studies have attempted to treat IBD through intracolonic administration of specific miRNAs in the form of nanoparticle. This review summarizes the latest findings on the role of miRNAs in the pathogenesis, diagnosis, and treatment of IBD.
Collapse
Affiliation(s)
- HyunTaek Jung
- Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jae Seok Kim
- Department of Nephrology, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Keum Hwa Lee
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kalthoum Tizaoui
- Laboratory Microorganisms and Active Biomolecules, Sciences Faculty of Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Salvatore Terrazzino
- Department of Pharmaceutical Sciences and Interdepartmental Research Center of Pharmacogenetics and Pharmacogenomics (CRIFF), University of Piemonte Orientale, Novara, Italy
| | - Sarah Cargnin
- Department of Pharmaceutical Sciences and Interdepartmental Research Center of Pharmacogenetics and Pharmacogenomics (CRIFF), University of Piemonte Orientale, Novara, Italy
| | - Lee Smith
- The Cambridge Centre for Sport and Exercise Science, Anglia Ruskin University, Cambridge, CB1 1PT, UK
| | - Ai Koyanagi
- Research and Development Unit, Parc Sanitari Sant Joan de Déu, CIBERSAM, 08830 Barcelona, Spain.,ICREA, Pg. Lluis Companys 23, 08010 Barcelona, Spain
| | - Louis Jacob
- Research and Development Unit, Parc Sanitari Sant Joan de Déu, CIBERSAM, 08830 Barcelona, Spain.,Faculty of Medicine, University of Versailles Saint-Quentin-en-Yvelines, 78000 Versailles, France
| | - Han Li
- University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Sung Hwi Hong
- Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Dong Keon Yon
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Seung Won Lee
- Department of Data Science, Sejong University College of Software Convergence, Seoul, Republic of Korea
| | - Min Seo Kim
- Korea University, College of Medicine, Seoul, Republic of Korea
| | - Paul Wasuwanich
- University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Wikrom Karnsakul
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Jae Il Shin
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Andreas Kronbichler
- Department of Internal Medicine IV (Nephrology and Hypertension), Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
16
|
Jabandziev P, Kakisaka T, Bohosova J, Pinkasova T, Kunovsky L, Slaby O, Goel A. MicroRNAs in Colon Tissue of Pediatric Ulcerative Pancolitis Patients Allow Detection and Prognostic Stratification. J Clin Med 2021; 10:1325. [PMID: 33806966 PMCID: PMC8005023 DOI: 10.3390/jcm10061325] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/15/2021] [Accepted: 03/18/2021] [Indexed: 12/12/2022] Open
Abstract
Prevalence of inflammatory bowel disease has been on the rise in recent years, especially in pediatric populations. This study aimed to provide precise identification and stratification of pediatric patients with diagnosed ulcerative colitis (UC) according to the severity of their condition and the prediction for standard treatment according to the specific expression of candidate miRNAs. We enrolled consecutive, therapeutically naïve, pediatric UC patients with confirmed pancolitis. We examined formalin-fixed paraffin-embedded specimens of colonic tissue for the expression of 10 selected candidate miRNAs. We performed receiver operating characteristic curve analysis, using area under the curve and a logistic regression model to evaluate the diagnostic and predictive power of the miRNA panels. Sixty patients were included in the final analysis. As a control group, 18 children without macroscopic and microscopic signs of inflammatory bowel disease were examined. The combination of three candidate miRNAs (let-7i-5p, miR-223-3p and miR-4284) enabled accurate detection of pediatric UC patients and controls. A panel of four candidate miRNAs (miR-375-3p, miR-146a-5p, miR-223-3p and miR-200b-3p) was associated with severity of UC in pediatric patients and a combination of three miRNAs (miR-21-5p, miR-192-5p and miR-194-5p) was associated with early relapse of the disease. Nine patients out of the total were diagnosed with primary sclerosing cholangitis (PSC) simultaneously with ulcerative colitis. A panel of 6 candidate miRNAs (miR-142-3p, miR-146a-5p, miR-223-3p, let-7i-5p, miR-192-5p and miR-194-5p) identified those patients with PSC. Specific combinations of miRNAs are promising tools for potential use in precise disease identification and severity and prognostic stratification in pediatric patients with ulcerative pancolitis.
Collapse
Affiliation(s)
- Petr Jabandziev
- Department of Pediatrics, University Hospital Brno, Faculty of Medicine, Masaryk University, 613 00 Brno, Czech Republic; (P.J.); (T.P.)
- Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic; (J.B.); (O.S.)
| | - Tatsuhiko Kakisaka
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA;
| | - Julia Bohosova
- Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic; (J.B.); (O.S.)
| | - Tereza Pinkasova
- Department of Pediatrics, University Hospital Brno, Faculty of Medicine, Masaryk University, 613 00 Brno, Czech Republic; (P.J.); (T.P.)
- Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic; (J.B.); (O.S.)
| | - Lumir Kunovsky
- Department of Gastroenterology and Internal Medicine, University Hospital Brno, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic;
- Department of Surgery, University Hospital Brno, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic
| | - Ondrej Slaby
- Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic; (J.B.); (O.S.)
- Department of Biology, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic
| | - Ajay Goel
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA;
| |
Collapse
|
17
|
Malham M, James JP, Jakobsen C, Hoegdall E, Holmstroem K, Wewer V, Nielsen BS, Riis LB. Mucosal microRNAs relate to age and severity of disease in ulcerative colitis. Aging (Albany NY) 2021; 13:6359-6374. [PMID: 33647883 PMCID: PMC7993741 DOI: 10.18632/aging.202715] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 01/25/2021] [Indexed: 12/12/2022]
Abstract
Despite significant evidence that the expression of several microRNAs (miRNAs) impacts disease activity in patients with ulcerative colitis (UC), it remains unknown if the more severe disease phenotype seen in pediatric onset UC can be explained by an altered miRNA expression. In this study, we assessed the relationship between miRNA expression, age, and disease severity in pediatric and adult patients with UC. Using RT-qPCR, we analyzed the expression of miR-21, miR-31, miR-126, miR-142 and miR-155 in paraffin embedded rectum biopsies from 30 pediatric and 30 adult-onset UC patients. We found that lesions from adult patients had significantly higher expression levels of miR-21 compared to pediatric patients and that the expression levels of miR-31 (all patients) and miR-155 (pediatric patients only) correlated inversely with histological assessed disease severity. Using in situ hybridization followed by image analysis, the expression level estimates of miR-21 and miR-126 correlated with histological assessed disease severity. In conclusion, we found that the expression of miRNAs depends on the age of the patient and/or the severity of the disease, suggesting that miRNAs may contribute to the regulation of inflammation in UC and could be useful biomarkers in the surveillance of disease severity.
Collapse
Affiliation(s)
- Mikkel Malham
- The Pediatric Department, Copenhagen University Hospital, Hvidovre 2650, Denmark.,The Pediatric Department, Holbaek Hospital, Holbaek 4300, Denmark
| | - Jaslin P James
- Department of Pathology, Copenhagen University Hospital, Herlev 2730, Denmark.,Biomedical Technology, Bioneer A/S, Hoersholm 2970, Denmark
| | - Christian Jakobsen
- The Pediatric Department, Copenhagen University Hospital, Hvidovre 2650, Denmark
| | - Estrid Hoegdall
- Department of Pathology, Copenhagen University Hospital, Herlev 2730, Denmark
| | - Kim Holmstroem
- Biomedical Technology, Bioneer A/S, Hoersholm 2970, Denmark
| | - Vibeke Wewer
- The Pediatric Department, Copenhagen University Hospital, Hvidovre 2650, Denmark
| | - Boye S Nielsen
- Biomedical Technology, Bioneer A/S, Hoersholm 2970, Denmark
| | - Lene B Riis
- Department of Pathology, Copenhagen University Hospital, Herlev 2730, Denmark
| |
Collapse
|
18
|
Shentova-Eneva R, Velikova T. Laboratory Assessment of Disease Activity in Pediatric Patients with Inflammatory Bowel Disease: What’s New? GASTROENTEROLOGY INSIGHTS 2020; 11:58-71. [DOI: 10.3390/gastroent11020009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Laboratory tests are an integral part of both the diagnostic and follow-up algorithm of patients with inflammatory bowel disease (IBD). Their advantages over other non-invasive methods for assessing disease activity are greater objectivity than clinical activity indices and imaging studies. This review aims to analyze shortly the most common laboratory tests used to assess disease activity in pediatric patients with IBD. In addition to the conventional blood and serum markers that are not specific for gut inflammation, although routinely used, we also reviewed the established fecal markers such as calprotectin, lactoferrin, M2-pyruvate kinase, osteoprotegerin, HMGB1, chitinase 3-like 1, and the promising non-coding microRNA. In conclusion, neither marker is unique to the pediatric IBD. More clinical data are required to assess biomarkers’ full potential for diagnosis, management, and follow-up of pediatric IBD patients.
Collapse
Affiliation(s)
- Rayna Shentova-Eneva
- Department of Gastroenterology and Hepatology, Medical Faculty, University Children’s Hospital “Professor Ivan Mitev”, Medical University, 16 Akademik Ivan Evstratiev Geshov Blvd, 1606 Sofia, Bulgaria
| | - Tsvetelina Velikova
- Clinical Immunology, Medical Faculty, University Hospital “Lozenetz,”, Sofia University St. Kliment Ohridski, Kozyak 1 Street, 1407 Sofia, Bulgaria
| |
Collapse
|
19
|
MiR-155/GSK-3β mediates anti-inflammatory effect of Chikusetsusaponin IVa by inhibiting NF-κB signaling pathway in LPS-induced RAW264.7 cell. Sci Rep 2020; 10:18303. [PMID: 33110183 PMCID: PMC7591521 DOI: 10.1038/s41598-020-75358-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 10/13/2020] [Indexed: 12/21/2022] Open
Abstract
It has been demonstrated that Chikusetsusaponin IVa (CsIVa) possesses abundant biological activities. Herein, using LPS to establish acute inflammation model of mouse liver and cell line inflammation model, we investigated whether miR-155/GSK-3β regulated NF-κB signaling pathway, and CsIVa exerted anti-inflammatory effects by regulating miR-155/GSK-3β signaling pathway. Our results showed that LPS induced high expression of miR-155 and miR-155 promoted macrophage activation through GSK-3β. In addition, CsIVa inhibited inflammatory responses in LPS-induced mouse liver and RAW264.7 cells. Furthermore, we demonstrated that CsIVa improved the inflammatory response in LPS-induced RAW264.7 cells by inhibiting miR-155, increasing GSK-3β expression, and inhibiting NF-κB signaling pathway. In conclusion, our study reveals that CsIVa suppresses LPS-triggered immune response by miR-155/GSK-3β-NF-κB signaling pathway.
Collapse
|
20
|
Dragoni G, Innocenti T, Galli A. Biomarkers of Inflammation in Inflammatory Bowel Disease: How Long before Abandoning Single-Marker Approaches? Dig Dis 2020; 39:190-203. [PMID: 32942275 DOI: 10.1159/000511641] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 09/16/2020] [Indexed: 02/02/2023]
Abstract
BACKGROUND Inflammatory bowel disease (IBD) is a chronically relapsing disease with a continuous need for proactive monitoring to decide appropriate treatments and follow-up strategies. To date, gastrointestinal endoscopy with histologic examination of biopsies and contrast-enhanced imaging are mandatory techniques for the diagnosis and the activity assessment of IBD. SUMMARY In recent decades, many research efforts in the IBD field have been placed on finding non-invasive and reliable biomarkers of disease burden that can be easily tested in body fluids without impacting the quality of life of patients. Unfortunately, the ideal biomarker is yet to be discovered and recent studies have investigated the possibility to increase the accuracy of such measurements by combining different markers. In this review, we provide an update about the current knowledge on biomarkers of intestinal inflammation in IBD, focussing on disease diagnosis, correlation with endoscopic findings, and prediction of relapse. We also summarize composite scores of clinical and laboratory markers that have been recently proposed in various scenarios of disease activity. Key Messages: To date, only C-reactive protein and faecal calprotectin can be considered reliable markers of disease activity with demonstrated utility in IBD management. The combination of different parameters has recently shown higher accuracy and might substitute single-marker approaches in the future of research and clinical practice.
Collapse
Affiliation(s)
- Gabriele Dragoni
- IBD Referral Center, Gastroenterology Department, Careggi University Hospital, Florence, Italy, .,Gastroenterology Research Unit, Department of Experimental and Clinical Biochemical Sciences "Mario Serio", University of Florence, Florence, Italy, .,Department of Medical Biotechnologies, University of Siena, Siena, Italy,
| | - Tommaso Innocenti
- IBD Referral Center, Gastroenterology Department, Careggi University Hospital, Florence, Italy.,Gastroenterology Research Unit, Department of Experimental and Clinical Biochemical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Andrea Galli
- Gastroenterology Research Unit, Department of Experimental and Clinical Biochemical Sciences "Mario Serio", University of Florence, Florence, Italy
| |
Collapse
|
21
|
Mortazavi-Jahromi SS, Aslani M, Mirshafiey A. A comprehensive review on miR-146a molecular mechanisms in a wide spectrum of immune and non-immune inflammatory diseases. Immunol Lett 2020; 227:8-27. [PMID: 32810557 DOI: 10.1016/j.imlet.2020.07.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/10/2020] [Accepted: 07/21/2020] [Indexed: 12/12/2022]
Abstract
MicroRNAs (miRNAs) are single-strand endogenous and non-coding RNA molecules with a length of about 22 nucleotides, which regulate genes expression, through modulating the translation and stability of their target mRNAs. miR-146a is one of the most studied miRNAs, due to its central role in immune system homeostasis and control of the innate and acquired immune responses. Accordingly, abnormal expression or function of miR-146a results in the incidence and progression of immune and non-immune inflammatory diseases. Its deregulated expression pattern and inefficient function have been reported in a wide spectrum of these illnesses. Based on the existing evidence, this miRNA qualifies as an ideal biomarker for diagnosis, prognosis, and activity evaluation of immune and non-immune inflammatory disorders. Moreover, much attention has recently been paid to therapeutic potential of miR-146a and several researchers have assessed the effects of different drugs on expression and function of this miRNA at diverse experimental, animal, besides human levels, reporting motivating results in the treatment of the diseases. Here, in this comprehensive review, we provide an overview of miR-146a role in the pathogenesis and progression of several immune and non-immune inflammatory diseases such as Rheumatoid arthritis, Systemic lupus erythematosus, Inflammatory bowel disease, Multiple sclerosis, Psoriasis, Graves' disease, Atherosclerosis, Hepatitis, Chronic obstructive pulmonary disease, etc., discuss about its eligibility for being a desirable biomarker for these disorders, and also highlight its therapeutic potential. Understanding these mechanisms underlies the selecting and designing the proper therapeutic targets and medications, which eventually facilitate the treatment process.
Collapse
Affiliation(s)
| | - Mona Aslani
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Mirshafiey
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
22
|
Jabandziev P, Bohosova J, Pinkasova T, Kunovsky L, Slaby O, Goel A. The Emerging Role of Noncoding RNAs in Pediatric Inflammatory Bowel Disease. Inflamm Bowel Dis 2020; 26:985-993. [PMID: 32009179 PMCID: PMC7301403 DOI: 10.1093/ibd/izaa009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Indexed: 12/19/2022]
Abstract
Prevalence of inflammatory bowel disease (IBD), a chronic inflammatory disorder of the gut, has been on the rise in recent years-not only in the adult population but also especially in pediatric patients. Despite the absence of curative treatments, current therapeutic options are able to achieve long-term remission in a significant proportion of cases. To this end, however, there is a need for biomarkers enabling accurate diagnosis, prognosis, and prediction of response to therapies to facilitate a more individualized approach to pediatric IBD patients. In recent years, evidence has continued to evolve concerning noncoding RNAs (ncRNAs) and their roles as integral factors in key immune-related cellular pathways. Specific deregulation patterns of ncRNAs have been linked to pathogenesis of various diseases, including pediatric IBD. In this article, we provide an overview of current knowledge on ncRNAs, their altered expression profiles in pediatric IBD patients, and how these are emerging as potentially valuable clinical biomarkers as we enter an era of personalized medicine.
Collapse
Affiliation(s)
- Petr Jabandziev
- Department of Pediatrics, University Hospital Brno, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Julia Bohosova
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Tereza Pinkasova
- Department of Pediatrics, University Hospital Brno, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Lumir Kunovsky
- Department of Gastroenterology and Internal Medicine, University Hospital Brno, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Department of Surgery, University Hospital Brno, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Ondrej Slaby
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Ajay Goel
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope Comprehensive Cancer Center, Duarte, California, USA
| |
Collapse
|
23
|
Yan H, Zhang X, Xu Y. Aberrant expression of miR-21 in patients with inflammatory bowel disease: A protocol for systematic review and meta analysis. Medicine (Baltimore) 2020; 99:e19693. [PMID: 32332611 PMCID: PMC7220677 DOI: 10.1097/md.0000000000019693] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND microRNAs have drawn more attention due to their function on the inflammatory process. The association between microRNA-21 (miR-21) expression and risk of inflammatory bowel diseases (IBD) remain inconclusive. This study was aimed to acquire a more exact estimation of this relationship. METHODS Relevant studies were identified through searching PubMed, Embase, Wanfang, and China National Knowledge Infrastructure database. Pooled standardized mean difference and 95% confidence intervals were calculated using a random-effect model. Publication bias test, sensitivity analysis and subgroup analysis were carried out. RESULTS A total of 20 relevant articles comprising 540 patients with ulcerative colitis (UC), 459 patients with Crohn disease (CD) and 511 non-IBD controls were included in this analysis. The expression of miR-21 was significantly increased in colon tissue of both UC and CD patients compared with non-IBD controls. However, there were no significant differences between patients with UC and CD. Moreover, increased miR-21 expression was associated with disease activity status in UC patients, but not in CD patients. CONCLUSIONS This meta-analysis demonstrates that the higher miR-21 expression in colon tissue is positively associated with the development of UC and CD, and miR-21 might serve as a disease marker of IBD.
Collapse
Affiliation(s)
- Huimin Yan
- Clinical Research Center, Shijiazhuang Fifth Hospital
| | - Xinyu Zhang
- Graduate College of Hebei Medical University, Hebei Medical University
| | - Yi Xu
- Department of Laboratory Medicine, Shijiazhuang Fifth Hospital, Shijiazhuang, Hebei, China
| |
Collapse
|
24
|
Konstantinidis AΟ, Pardali D, Adamama-Moraitou KK, Gazouli M, Dovas CI, Legaki E, Brellou GD, Savvas I, Jergens AE, Rallis TS, Allenspach K. Colonic mucosal and serum expression of microRNAs in canine large intestinal inflammatory bowel disease. BMC Vet Res 2020; 16:69. [PMID: 32087719 PMCID: PMC7035774 DOI: 10.1186/s12917-020-02287-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 02/13/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Canine inflammatory bowel disease (IBD) is a group of chronic gastrointestinal (GI) disorders of still largely unknown etiology. Canine IBD diagnosis is time-consuming and costly as other diseases with similar signs should be initially excluded. In human IBD microRNA (miR) expression changes have been reported in GI mucosa and blood. Thus, there is a possibility that miRs may provide insight into disease pathogenesis, diagnosis and even treatment of canine IBD. The aim of this study was to determine the colonic mucosal and serum relative expression of a miRs panel in dogs with large intestinal IBD and healthy control dogs. RESULTS Compared to healthy control dogs, dogs with large intestinal IBD showed significantly increased relative expression of miR-16, miR-21, miR-122 and miR-147 in the colonic mucosa and serum, while the relative expression of miR-185, miR-192 and miR-223 was significantly decreased. Relative expression of miR-146a was significantly increased only in the serum of dogs with large intestinal IBD. Furthermore, serum miR-192 and miR-223 relative expression correlated to disease activity and endoscopic score, respectively. CONCLUSION Our data suggest the existence of dysregulated miRs expression patterns in canine IBD and support the potential future use of serum miRs as useful noninvasive biomarkers.
Collapse
Affiliation(s)
- Alexandros Ο Konstantinidis
- Companion Animal Clinic (Medicine Unit), School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Dimitra Pardali
- Diagnostic Laboratory, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Katerina K Adamama-Moraitou
- Companion Animal Clinic (Medicine Unit), School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Maria Gazouli
- Laboratory of Biology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Chrysostomos I Dovas
- Diagnostic Laboratory, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Evangelia Legaki
- Laboratory of Biology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Georgia D Brellou
- Laboratory of Pathology, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ioannis Savvas
- Companion Animal Clinic (Anesthesia and Intensive Care Unit), School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Albert E Jergens
- Departments of Veterinary Clinical Sciences, Iowa State University College of Veterinary Medicine, Ames, IA, USA
| | - Timoleon S Rallis
- Companion Animal Clinic (Medicine Unit), School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Karin Allenspach
- Departments of Veterinary Clinical Sciences, Iowa State University College of Veterinary Medicine, Ames, IA, USA.
| |
Collapse
|
25
|
Verdier J, Breunig IR, Ohse MC, Roubrocks S, Kleinfeld S, Roy S, Streetz K, Trautwein C, Roderburg C, Sellge G. Faecal Micro-RNAs in Inflammatory Bowel Diseases. J Crohns Colitis 2020; 14:110-117. [PMID: 31209454 DOI: 10.1093/ecco-jcc/jjz120] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS Faecal biomarkers are used as indicators of disease activity in inflammatory bowel diseases [IBD], which include Crohn's disease [CD] and ulcerative colitis [UC]. Micro-RNAs [miRNAs] are small non-coding RNAs detectable in extracellular fluids and can be used as clinical biomarkers. The aim of this study was to determine if faecal miRNA composition is altered in IBD. METHODS More than 800 different human faecal miRNAs were measured in stool samples from control individuals and patients with active CD by using NanoString technology. Selected miRNAs were quantified by qRT-PCR in faeces, serum and intestinal tissue of controls [n = 23] and patients with inactive or active CD [n = 22, n = 22] or UC [n = 11, n = 24] as well as patients with Clostridium difficile infection [CDI, n = 8]. RESULTS In total, 150 miRNAs were significantly detected in faeces from controls and patients, and multivariate analyses showed that CD patients with high disease activities had a distinct miRNA profile and that miR-223 and miR-1246 were distinct from other faecal miRNAs. In a larger cohort, active UC patients displayed significantly higher levels of miR-223 and miR-1246 than controls while patients with CDI had higher levels of faecal miR-1246 but not miR-223. No differences were noted in serum samples. CONCLUSIONS To our knowledge, this is the first comprehensive screen of faecal miRNAs performed in IBD. Further investigation will aim to confirm these findings in a larger cohort and to understand the biological function and cellular sources of faecal miRNAs.
Collapse
Affiliation(s)
- Julien Verdier
- Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, Germany.,INSERM, Sorbonne Universités, UPMC Univ Paris, AIM-Institute of Myology, Paris, France
| | | | - Margarete Clara Ohse
- Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Silvia Roubrocks
- Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Sandra Kleinfeld
- Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Sanchari Roy
- Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Konrad Streetz
- Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Christian Trautwein
- Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Christoph Roderburg
- Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Gernot Sellge
- Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| |
Collapse
|
26
|
Ding S, Liu G, Jiang H, Fang J. MicroRNA Determines the Fate of Intestinal Epithelial Cell Differentiation and Regulates Intestinal Diseases. Curr Protein Pept Sci 2019; 20:666-673. [PMID: 30678626 DOI: 10.2174/1389203720666190125110626] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 12/30/2018] [Accepted: 01/10/2019] [Indexed: 12/19/2022]
Abstract
The rapid self-renewal of intestinal epithelial cells enhances intestinal function, promotes the nutritional needs of animals and strengthens intestinal barrier function to resist the invasion of foreign pathogens. MicroRNAs (miRNAs) are a class of short-chain, non-coding RNAs that regulate stem cell proliferation and differentiation by down-regulating hundreds of conserved target genes after transcription via seed pairing to the 3' untranslated regions. Numerous studies have shown that miRNAs can improve intestinal function by participating in the proliferation and differentiation of different cell populations in the intestine. In addition, miRNAs also contribute to disease regulation and therefore not only play a vital role in the gastrointestinal disease management but also act as blood or tissue biomarkers of disease. As changes to the levels of miRNAs can change cell fates, miRNA-mediated gene regulation can be used to update therapeutic strategies and approaches to disease treatment.
Collapse
Affiliation(s)
- Sujuan Ding
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China.,Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan, China.,Academician Workstation of Hunan Baodong Farming Co., Ltd., Hunan 422001, China
| | - Gang Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China.,Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan, China
| | - Hongmei Jiang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China
| | - Jun Fang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China
| |
Collapse
|
27
|
Zhao H, Chen J, Chen J, Kong X, Zhu H, Zhang Y, Dong H, Wang J, Ren Q, Wang Q, Chen S, Deng Z, Chen Z, Cui Q, Zheng J, Lu J, Wang S, Tan J. miR-192/215-5p act as tumor suppressors and link Crohn's disease and colorectal cancer by targeting common metabolic pathways: An integrated informatics analysis and experimental study. J Cell Physiol 2019; 234:21060-21075. [PMID: 31020657 DOI: 10.1002/jcp.28709] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/02/2019] [Accepted: 04/11/2019] [Indexed: 12/25/2022]
Abstract
MicroRNAs have emerged as key regulators involved in a variety of biological processes. Previous studies have demonstrated that miR-192/215 participated in progression of Crohn's disease and colorectal cancer. However, their concrete relationships and regulation networks in diseases remain unclear. Here, we used bioinformatics methods to expound miR-192/215-5p macrocontrol regulatory networks shared by two diseases. For data mining and figure generation, several miRNA prediction tools, Human miRNA tissue atlas, FunRich, miRcancer, MalaCards, STRING, GEPIA, cBioPortal, GEO databases, Pathvisio, Graphpad Prism 6 software, etc . are extensively applied. miR-192/215-5p were specially distributed in colon tissues and enriched biological pathways were closely associated with human cancers. Emerging role of miR-192/215-5p and their common pathways in Crohn's disease and colorectal cancer was also analyzed. Based on results derived from multiple approaches, we identified the biological functions of miR-192/215-5p as a tumor suppressor and link Crohn's disease and colorectal cancer by targeting triglyceride synthesis and extracellular matrix remodeling pathways.
Collapse
Affiliation(s)
- Hu Zhao
- Department of Urology, Fujian Provincial Key Laboratory of Transplant Biology, 900 Hospital of the Joint Logistics Team, Xiamen University, Fuzhou, Fujian, China
| | - Junqiu Chen
- Department of Urology, Fujian Provincial Key Laboratory of Transplant Biology, 900 Hospital of the Joint Logistics Team, Xiamen University, Fuzhou, Fujian, China
| | - Jin Chen
- Department of Urology, Fujian Provincial Key Laboratory of Transplant Biology, 900 Hospital of the Joint Logistics Team, Xiamen University, Fuzhou, Fujian, China
| | - Xuhui Kong
- Department of Urology, Fujian Provincial Key Laboratory of Transplant Biology, 900 Hospital of the Joint Logistics Team, Xiamen University, Fuzhou, Fujian, China
| | - Hehuan Zhu
- Department of Urology, Fujian Provincial Key Laboratory of Transplant Biology, 900 Hospital of the Joint Logistics Team, Xiamen University, Fuzhou, Fujian, China
| | - Yongping Zhang
- Department of Neuro-oncology, University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Huiyue Dong
- Department of Urology, Fujian Provincial Key Laboratory of Transplant Biology, 900 Hospital of the Joint Logistics Team, Xiamen University, Fuzhou, Fujian, China
| | - Jie Wang
- Department of Urology, Fujian Provincial Key Laboratory of Transplant Biology, 900 Hospital of the Joint Logistics Team, Xiamen University, Fuzhou, Fujian, China
| | - Qun Ren
- Department of Urology, Fujian Provincial Key Laboratory of Transplant Biology, 900 Hospital of the Joint Logistics Team, Xiamen University, Fuzhou, Fujian, China
| | - Qinghua Wang
- Department of Urology, Fujian Provincial Key Laboratory of Transplant Biology, 900 Hospital of the Joint Logistics Team, Xiamen University, Fuzhou, Fujian, China
| | - Shushang Chen
- Department of Urology, Fujian Provincial Key Laboratory of Transplant Biology, 900 Hospital of the Joint Logistics Team, Xiamen University, Fuzhou, Fujian, China
| | - Zhen Deng
- Department of Urology, Fujian Provincial Key Laboratory of Transplant Biology, 900 Hospital of the Joint Logistics Team, Xiamen University, Fuzhou, Fujian, China
| | - Zhan Chen
- Department of Urology, Fujian Provincial Key Laboratory of Transplant Biology, 900 Hospital of the Joint Logistics Team, Xiamen University, Fuzhou, Fujian, China
| | - Qiang Cui
- Department of Urology, Fujian Provincial Key Laboratory of Transplant Biology, 900 Hospital of the Joint Logistics Team, Xiamen University, Fuzhou, Fujian, China
| | - Junqiong Zheng
- Department of Oncology, Longyan First Hospital, Affiliated to Fujian Medical University, Longyan, Fujian, China
| | - Jun Lu
- Department of Urology, Fujian Provincial Key Laboratory of Transplant Biology, 900 Hospital of the Joint Logistics Team, Xiamen University, Fuzhou, Fujian, China
| | - Shuiliang Wang
- Department of Urology, Fujian Provincial Key Laboratory of Transplant Biology, 900 Hospital of the Joint Logistics Team, Xiamen University, Fuzhou, Fujian, China
| | - Jianming Tan
- Department of Urology, Fujian Provincial Key Laboratory of Transplant Biology, 900 Hospital of the Joint Logistics Team, Xiamen University, Fuzhou, Fujian, China
| |
Collapse
|
28
|
Moein S, Vaghari-Tabari M, Qujeq D, Majidinia M, Nabavi SM, Yousefi B. MiRNAs and inflammatory bowel disease: An interesting new story. J Cell Physiol 2018; 234:3277-3293. [PMID: 30417350 DOI: 10.1002/jcp.27173] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 07/17/2018] [Indexed: 02/06/2023]
Abstract
Inflammatory bowel disease (IBD), as a chronic and recurrent inflammatory disorder, is caused by a dysregulated and aberrant immune response to exposed environmental factors in genetically susceptible individuals. Despite huge efforts in determining the molecular pathogenesis of IBD, an increasing worldwide incidence of IBD has been reported. MicroRNAs (miRNAs) are a set of noncoding RNA molecules that are about 22 nucleotides long, and these molecules are involved in the regulation of the gene expression. By clarifying the important role of miRNAs in a number of diseases, their role was also considered in IBD; numerous studies have been performed on this topic. In this review, we attempt to summarize a number of studies and discuss some of the recent developments in the roles of miRNAs in the pathophysiology, diagnosis, and treatment of IBD.
Collapse
Affiliation(s)
- Soheila Moein
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Biochemistry, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Mostafa Vaghari-Tabari
- Department of Biochemistry, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Durdi Qujeq
- Cellular and Molecular Biology Research Center (CMBRC), Health Research Institute, Babol University of Medical Sciences, Babol, Irantab.,Department of Clinical Biochemistry, Babol University of Medical Sciences, Babol, Iran
| | - Maryam Majidinia
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Bahman Yousefi
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
29
|
Porter RJ, Andrews C, Brice DP, Durum SK, McLean MH. Can We Target Endogenous Anti-inflammatory Responses as a Therapeutic Strategy for Inflammatory Bowel Disease? Inflamm Bowel Dis 2018; 24:2123-2134. [PMID: 30020451 PMCID: PMC6140439 DOI: 10.1093/ibd/izy230] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Indexed: 12/14/2022]
Abstract
Inflammatory bowel disease (IBD) describes chronic relapsing remitting inflammation of the gastrointestinal tract including ulcerative colitis and Crohn's disease. The prevalence of IBD is rising across the globe. Despite a growing therapeutic arsenal, current medical treatments are not universally effective, do not induce lasting remission in all, or are accompanied by short- and long-term adverse effects. Therefore, there is a clinical need for novel therapeutic strategies for IBD. Current treatments for IBD mainly manipulate the immune system for therapeutic gain by inhibiting pro-inflammatory activity. There is a robust endogenous immunoregulatory capacity within the repertoire of both innate and adaptive immune responses. An alternative treatment strategy for IBD is to hijack and bolster this endogenous capability for therapeutic gain. This review explores this hypothesis and presents current evidence for this therapeutic direction in immune cell function, cytokine biology, and alternative mechanisms of immunoregulation such as microRNA, oligonucleotides, and the endocannabinoid system.
Collapse
Affiliation(s)
- Ross John Porter
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Scotland, United Kingdom
| | - Caroline Andrews
- Laboratory of Molecular Immunoregulation, Cancer and Inflammation Program, National Cancer Institute, National Institutes of Health, Frederick, Maryland, USA
| | - Daniel Paul Brice
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Scotland, United Kingdom
| | - Scott Kenneth Durum
- Laboratory of Molecular Immunoregulation, Cancer and Inflammation Program, National Cancer Institute, National Institutes of Health, Frederick, Maryland, USA
| | - Mairi Hall McLean
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Scotland, United Kingdom,Address correspondence to: Mairi H. McLean, Institute of Medical Sciences, Foresterhill, Aberdeen, Scotland, UK, AB25 2ZD. E-mail:
| |
Collapse
|
30
|
Schönauen K, Le N, von Arnim U, Schulz C, Malfertheiner P, Link A. Circulating and Fecal microRNAs as Biomarkers for Inflammatory Bowel Diseases. Inflamm Bowel Dis 2018; 24:1547-1557. [PMID: 29668922 DOI: 10.1093/ibd/izy046] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND Assessment of the disease activity in inflammatory bowel disease (IBD) is essential for adequate treatment management and reliable noninvasive biomarkers for verification of mucosal healing are still needed. MicroRNAs (miRNAs) are differentially expressed in IBD and cancer. We aimed to evaluate the potential of circulating and fecal miRNAs as diagnostic biomarkers for IBD. METHODS In this proof-of-principle study we used 2 independent patient cohorts. Testing cohort (n = 96) included serum and fecal samples from controls (n = 35) and IBD patients (n = 61) including 43 patients with Crohn's disease (CD), 18 with ulcerative colitis (UC) with an active disease (n = 38), or in remission (n = 23). Validation cohort included fecal samples from patients with calprotectin/endoscopy-confirmed active disease (n = 30) or in remission (n = 15). Target-based approach (miR-16, miR-21, miR-155, and miR-223) has been used to evaluate miRNA expression. RESULTS Sera samples from IBD patients showed higher level of miR-16, miR-21, and miR-223, but not miR-155, compared to controls and was higher in CD than in UC patients. Much stronger miRNA expression changes were observed in feces from IBD patients for all studied miRNAs with highest expression of miR-155 and miR-223 in testing and validation cohorts. MiRNA expression correlated with clinical remission, however, only fecal but not circulating miRNAs, correlated with surrogate parameters such as fecal calprotectin or C-reactive protein. CONCLUSIONS Our data provide a novel evidence for differential expression level of fecal miRNAs in IBD. We demonstrate that miRNAs in feces correlate with disease activity and may be considered as potential tool for the further biomarker research in IBD. 10.1093/ibd/izy046_video1izy046.video15794822319001.
Collapse
Affiliation(s)
- Katharina Schönauen
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University, Magdeburg, Germany
| | - Nha Le
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University, Magdeburg, Germany
- Gastroenterology Division, First Department of Internal Medicine, Semmelweis University, Budapest, Hungary
| | - Ulrike von Arnim
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University, Magdeburg, Germany
| | - Christian Schulz
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University, Magdeburg, Germany
- Department of Medicine II, Klinikum der Universität München (KUM), Grosshadern, Ludwig-Maximilians University, Munich, Germany
| | - Peter Malfertheiner
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University, Magdeburg, Germany
| | - Alexander Link
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University, Magdeburg, Germany
| |
Collapse
|
31
|
Sun CM, Wu J, Zhang H, Shi G, Chen ZT. Circulating miR-125a but not miR-125b is decreased in active disease status and negatively correlates with disease severity as well as inflammatory cytokines in patients with Crohn’s disease. World J Gastroenterol 2017; 23:7888-7898. [PMID: 29209130 PMCID: PMC5703918 DOI: 10.3748/wjg.v23.i44.7888] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 09/12/2017] [Accepted: 09/26/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To determine the association of circulating miR-125a/b expression with the risk and disease severity of Crohn’s disease (CD), and with inflammatory cytokines.
METHODS Plasma samples were collected from patients with active CD (A-CD), or CD in remission (R-CD) and from healthy controls (HCs). The levels of the inflammatory cytokines interleukin-17 (IL-17), tumour necrosis factor-α (TNF-α), and interferon-γ (IFN-γ) were measured by enzyme-linked immunosorbent assay. The expression of miR-125a/b was assessed by quantitative polymerase chain reaction (qPCR).
RESULTS Twenty-nine A-CD patients, 37 R-CD patients, and 37 HCs were included in the study. Plasma miR-125a expression was decreased in A-CD patients compared with that in R-CD patients (P < 0.001) and HCs (P < 0.001). miR-125a expression levels enabled the differentiation of A-CD from R-CD patients [area under curve (AUC) = 0.854] and from HCs (AUC = 0.780), whereas miR-125b expression did not. miR-125a was negatively correlated with C-reaction protein (CRP) (P = 0.017), erythrocyte sedimentation rate (ESR) (P = 0.026), Crohn’s disease activity index (CDAI) (P = 0.003), IL-17 (P = 0.015), and TNF-α (P = 0.004) in A-CD patients. Furthermore, miR-125a was negatively associated with CRP (P = 0.038) and CDAI (P = 0.021) in R-CD patients. Regarding miR-125b, no association with CRP, CDAI, IL-17, TNF-α, or IFN-γ was found in A-CD or in R-CD patients. miR-125a levels gradually increased in A-CD patients who achieved clinical remission (P = 0.009) after 3-mo treatment, whereas they remained unchanged among patients who failed to achieve remission. No changes in miR-125b expression were detected in remission or non-remission patients after treatment.
CONCLUSION Circulating miR-125a but not miR-125b is decreased in patients with active disease status and negatively correlates with disease severity and inflammatory cytokines in patients with CD.
Collapse
Affiliation(s)
- Chen-Ming Sun
- Department of Gastroenterology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, Hubei Province, China
| | - Jie Wu
- Department of Gastroenterology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, Hubei Province, China
| | - Heng Zhang
- Department of Gastroenterology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, Hubei Province, China
| | - Gan Shi
- Department of Gastroenterology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, Hubei Province, China
| | - Zhi-Tao Chen
- Department of Gastroenterology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, Hubei Province, China
| |
Collapse
|
32
|
Wu LY, Ma XP, Shi Y, Bao CH, Jin XM, Lu Y, Zhao JM, Zhou CL, Chen D, Liu HR. Alterations in microRNA expression profiles in inflamed and noninflamed ascending colon mucosae of patients with active Crohn's disease. J Gastroenterol Hepatol 2017; 32:1706-1715. [PMID: 28261881 DOI: 10.1111/jgh.13778] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 01/30/2017] [Accepted: 02/17/2017] [Indexed: 12/19/2022]
Abstract
BACKGROUND AND AIM The microRNA (miRNA) expression profiles of the terminal ileum, sigmoid colon, and rectal mucosa of adult patients with active Crohn's disease (CD) have been previously reported. The purpose of this study was to identify dysregulated miRNAs in the mucosa of the ascending colon. METHODS Biopsy tissue samples were taken from the mucosae of inflammatory (iCD) or noninflammatory (niCD) areas of the ascending colons of adult patients with active CD. miRNA and mRNA expression profiles were detected using microarray analyses. miRNAs and messenger RNAs (mRNAs) demonstrating significant differences were validated via quantitative real-time polymerase chain reaction. Luciferase reporter genes were used to measure two miRNAs inhibition of potential target genes in human 293T cells in vitro. RESULTS Compared with the healthy control group, the ascending colon miRNA expression profiles revealed that 43 miRNAs were significantly upregulated and 35 were downregulated in the iCD group. The mRNA expression profiles indicated that 3370 transcripts were significantly differentially expressed in the ascending colon, with 2169 upregulated and 1201 downregulated mRNAs in the iCD group, and only 20 miRNAs demonstrated significant differential expression in the niCD group. In contrast, nearly 100 miRNAs significantly varied between the iCD and niCD groups. Finally, luciferase reporter gene assays showed that hsa-miR-16-1 directly regulated the human C10orf54 gene and that they were negatively correlated. CONCLUSIONS Our results indicated that the differentially expressed miRNAs and mRNAs were related to immune inflammation and intestinal flora. The data provide preliminary evidence that the occurrence of CD involves the inhibition of C10orf54 expression by hsa-miR-16-1.
Collapse
Affiliation(s)
- Lu Yi Wu
- Qigong Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiao Peng Ma
- Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yin Shi
- Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chun Hui Bao
- Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiao Ming Jin
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Yuan Lu
- Department of Mechanics and Engineering Science, Fudan University, Shanghai, China
| | - Ji Meng Zhao
- Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ci Li Zhou
- Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dai Chen
- Novel Bioinformatics Company, Ltd., Shanghai, China
| | - Hui Rong Liu
- Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
33
|
Baldassarre A, Felli C, Prantera G, Masotti A. Circulating microRNAs and Bioinformatics Tools to Discover Novel Diagnostic Biomarkers of Pediatric Diseases. Genes (Basel) 2017; 8:genes8090234. [PMID: 28925938 PMCID: PMC5615367 DOI: 10.3390/genes8090234] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 09/08/2017] [Accepted: 09/12/2017] [Indexed: 12/17/2022] Open
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that regulate gene expression at the post-transcriptional level. Current studies have shown that miRNAs are also present in extracellular spaces, packaged into various membrane-bound vesicles, or associated with RNA-binding proteins. Circulating miRNAs are highly stable and can act as intercellular messengers to affect many physiological processes. MicroRNAs circulating in body fluids have generated strong interest in their potential use as clinical biomarkers. In fact, their remarkable stability and the relative ease of detection make circulating miRNAs ideal tools for rapid and non-invasive diagnosis. This review summarizes recent insights about the origin, functions and diagnostic potential of extracellular miRNAs by especially focusing on pediatric diseases in order to explore the feasibility of alternative sampling sources for the development of non-invasive pediatric diagnostics. We will also discuss specific bioinformatics tools and databases for circulating miRNAs focused on the identification and discovery of novel diagnostic biomarkers of pediatric diseases.
Collapse
Affiliation(s)
| | - Cristina Felli
- Bambino Gesù Children's Hospital-IRCCS, Research Laboratories, 00146 Rome, Italy.
| | - Giorgio Prantera
- Department of Ecology and Biology, Università della Tuscia, 01100 Viterbo, Italy.
| | - Andrea Masotti
- Bambino Gesù Children's Hospital-IRCCS, Research Laboratories, 00146 Rome, Italy.
| |
Collapse
|
34
|
Zhou M, He J, Shen Y, Zhang C, Wang J, Chen Y. New Frontiers in Genetics, Gut Microbiota, and Immunity: A Rosetta Stone for the Pathogenesis of Inflammatory Bowel Disease. BIOMED RESEARCH INTERNATIONAL 2017; 2017:8201672. [PMID: 28831399 PMCID: PMC5558637 DOI: 10.1155/2017/8201672] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 06/03/2017] [Accepted: 07/03/2017] [Indexed: 02/07/2023]
Abstract
Inflammatory bowel disease (IBD), which encompasses ulcerative colitis (UC) and Crohn's disease (CD), is a complicated, uncontrolled, and multifactorial disorder characterized by chronic, relapsing, or progressive inflammatory conditions that may involve the entire gastrointestinal tract. The protracted nature has imposed enormous economic burdens on patients with IBD, and the treatment is far from optimal due to the currently limited comprehension of IBD pathogenesis. In spite of the exact etiology still remaining an enigma, four identified components, including personal genetic susceptibility, external environment, internal gut microbiota, and the host immune response, are responsible for IBD pathogenesis, and compelling evidence has suggested that IBD may be triggered by aberrant and continuing immune responses to gut microbiota in genetically susceptibility individuals. The past decade has witnessed the flourishing of research on genetics, gut microbiota, and immunity in patients with IBD. Therefore, in this review, we will comprehensively exhibit a series of novel findings and update the major advances regarding these three fields. Undoubtedly, these novel findings have opened a new horizon and shed bright light on the causality research of IBD.
Collapse
Affiliation(s)
- Mingxia Zhou
- Department of Gastroenterology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Jing He
- Department of General Surgery, Huashan Hospital of Fudan University, Shanghai 200040, China
| | - Yujie Shen
- Department of Gastroenterology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Cong Zhang
- Department of Gastroenterology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Jiazheng Wang
- Department of Gastroenterology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Yingwei Chen
- Department of Gastroenterology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
- Shanghai Institute for Pediatric Research, Shanghai 200092, China
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai 200092, China
| |
Collapse
|
35
|
Palmieri O, Creanza TM, Bossa F, Latiano T, Corritore G, Palumbo O, Martino G, Biscaglia G, Scimeca D, Carella M, Ancona N, Andriulli A, Latiano A. Functional Implications of MicroRNAs in Crohn's Disease Revealed by Integrating MicroRNA and Messenger RNA Expression Profiling. Int J Mol Sci 2017; 18:E1580. [PMID: 28726756 PMCID: PMC5536068 DOI: 10.3390/ijms18071580] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Revised: 07/12/2017] [Accepted: 07/16/2017] [Indexed: 12/11/2022] Open
Abstract
Crohn's disease (CD) is a debilitating inflammatory bowel disease (IBD) that emerges due to the influence of genetic and environmental factors. microRNAs (miRNAs) have been identified in the tissue and sera of IBD patients and may play an important role in the induction of IBD. Our study aimed to identify differentially expressed miRNAs and miRNAs with the ability to alter transcriptome activity by comparing inflamed tissue samples with their non-inflamed counterparts. We studied changes in miRNA-mRNA interactions associated with CD by examining their differential co-expression relative to normal mucosa from the same patients. Correlation changes between the two conditions were incorporated into scores of predefined gene sets to identify biological processes with altered miRNA-mediated control. Our study identified 28 miRNAs differentially expressed (p-values < 0.01), of which 14 are up-regulated. Notably, our differential co-expression analysis highlights microRNAs (i.e., miR-4284, miR-3194 and miR-21) that have known functional interactions with key mechanisms implicated in IBD. Most of these miRNAs cannot be detected by differential expression analysis that do not take into account miRNA-mRNA interactions. The identification of differential miRNA-mRNA co-expression patterns will facilitate the investigation of the miRNA-mediated molecular mechanisms underlying CD pathogenesis and could suggest novel drug targets for validation.
Collapse
Affiliation(s)
- Orazio Palmieri
- IRCCS 'Casa Sollievo della Sofferenza', Division of Gastroenterology, 71013 San Giovanni Rotondo, Italy.
| | - Teresa Maria Creanza
- Institute of Intelligent Systems for Automation, National Research Council, CNR-ISSIA, 70126 Bari, Italy.
- Center for Complex Systems in Molecular Biology and Medicine, University of Turin, 10124 Turin, Italy.
| | - Fabrizio Bossa
- IRCCS 'Casa Sollievo della Sofferenza', Division of Gastroenterology, 71013 San Giovanni Rotondo, Italy.
| | - Tiziana Latiano
- IRCCS 'Casa Sollievo della Sofferenza', Division of Gastroenterology, 71013 San Giovanni Rotondo, Italy.
| | - Giuseppe Corritore
- IRCCS 'Casa Sollievo della Sofferenza', Division of Gastroenterology, 71013 San Giovanni Rotondo, Italy.
| | - Orazio Palumbo
- IRCCS 'Casa Sollievo della Sofferenza', Division of Medical Genetics, 71013 San Giovanni Rotondo, Italy.
| | - Giuseppina Martino
- IRCCS 'Casa Sollievo della Sofferenza', Division of Gastroenterology, 71013 San Giovanni Rotondo, Italy.
| | - Giuseppe Biscaglia
- IRCCS 'Casa Sollievo della Sofferenza', Division of Gastroenterology, 71013 San Giovanni Rotondo, Italy.
| | - Daniela Scimeca
- IRCCS 'Casa Sollievo della Sofferenza', Division of Gastroenterology, 71013 San Giovanni Rotondo, Italy.
| | - Massimo Carella
- IRCCS 'Casa Sollievo della Sofferenza', Division of Medical Genetics, 71013 San Giovanni Rotondo, Italy.
| | - Nicola Ancona
- Institute of Intelligent Systems for Automation, National Research Council, CNR-ISSIA, 70126 Bari, Italy.
| | - Angelo Andriulli
- IRCCS 'Casa Sollievo della Sofferenza', Division of Gastroenterology, 71013 San Giovanni Rotondo, Italy.
| | - Anna Latiano
- IRCCS 'Casa Sollievo della Sofferenza', Division of Gastroenterology, 71013 San Giovanni Rotondo, Italy.
| |
Collapse
|
36
|
Cao B, Zhou X, Ma J, Zhou W, Yang W, Fan D, Hong L. Role of MiRNAs in Inflammatory Bowel Disease. Dig Dis Sci 2017; 62:1426-1438. [PMID: 28391412 DOI: 10.1007/s10620-017-4567-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 04/01/2017] [Indexed: 12/12/2022]
Abstract
Inflammatory bowel diseases (IBD), mainly including Crohn's disease and ulcerative colitis, are characterized by chronic inflammation of the gastrointestinal tract. Despite improvements in detection, drug treatment and surgery, the pathogenesis of IBD has not been clarified. A number of miRNAs have been found to be involved in the initiation, development and progression of IBD, and they may have the potential to be used as biomarkers and therapeutic targets. Here, we have summarized the recent advances about the roles of miRNAs in IBD and analyzed the contribution of miRNAs to general diagnosis, differential diagnosis and activity judgment of IBD. Furthermore, we have also elaborated the promising role of miRNAs in IBD-related cancer prevention and prognosis prediction.
Collapse
Affiliation(s)
- Bo Cao
- The First Brigade of Student, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Xin Zhou
- The First Brigade of Student, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Jiaojiao Ma
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Wei Zhou
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Wanli Yang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Daiming Fan
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Liu Hong
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
37
|
Wang X, Suofu Y, Akpinar B, Baranov SV, Kim J, Carlisle DL, Zhang Y, Friedlander RM. Systemic antimiR-337-3p delivery inhibits cerebral ischemia-mediated injury. Neurobiol Dis 2017; 105:156-163. [PMID: 28461247 DOI: 10.1016/j.nbd.2017.04.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 04/20/2017] [Accepted: 04/27/2017] [Indexed: 11/15/2022] Open
Abstract
Modulation of miRNA expression has been shown to be beneficial in the context of multiple diseases. The purpose of this study was to determine if an inhibitor of miR-337-3p is neuroprotective for hypoxic injury after tail vein injection. We evaluated miR-337-3p expression levels and in brain tissue in vivo before and after permanent middle cerebral artery occlusion (pMCAO) in mice. Subsequently, a custom locked nucleic acid (LNA) antimir-337-3p oligonucleotide was developed and tested in vitro after induction of oxygen glucose-deprivation (OGD) and in vivo by injection into the mouse tail vein for 3 consecutive days before pMCAO. Ischemic lesion volume was measured by TTC staining. We show that systemically administered LNA antimir-337-3p crosses the blood brain-brain-barrier (BBB), penetrates into neurosn, downregulates endogenous miR-337-3p expression and reduces ischemic brain injury. The findings support the use of similar antimir-LNA constructs as novel therapies in neurological disease.
Collapse
Affiliation(s)
- Xiaomin Wang
- Department of Neurological Surgery, Neuroapoptosis Laboratory, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, United States
| | - Yalikun Suofu
- Department of Neurological Surgery, Neuroapoptosis Laboratory, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, United States
| | - Berkcan Akpinar
- Department of Neurological Surgery, Neuroapoptosis Laboratory, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, United States
| | - Sergei V Baranov
- Department of Neurological Surgery, Neuroapoptosis Laboratory, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, United States
| | - Jinho Kim
- Department of Neurological Surgery, Neuroapoptosis Laboratory, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, United States
| | - Diane L Carlisle
- Department of Neurological Surgery, Neuroapoptosis Laboratory, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, United States
| | - Yu Zhang
- Department of Neurological Surgery, Neuroapoptosis Laboratory, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, United States.
| | - Robert M Friedlander
- Department of Neurological Surgery, Neuroapoptosis Laboratory, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, United States.
| |
Collapse
|
38
|
Identification of Circulating MicroRNA Signatures in Crohn's Disease Using the Nanostring nCounter Technology. Inflamm Bowel Dis 2016; 22:2063-9. [PMID: 27542126 DOI: 10.1097/mib.0000000000000883] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Current clinical indices, such as Harvey-Bradshaw index, are often inadequate for the assessment of disease activity in Crohn's disease (CD). Alternative methods including imaging modalities and laboratory markers, such as C-reactive protein (CRP), are routinely applied to assess disease activity. However, laboratory markers poorly reflect the actual disease activity. Consequently, novel biomarkers represent a clinical necessity for CD patient management. We hypothesized that circulating serum-derived microRNAs may be used as diagnosis and disease activity monitoring tools of CD patients. METHODS To test this hypothesis, we performed microRNA expression profiling through Nanostring nCounter technology in blood serum samples of CD patients and healthy control subjects. Harvey-Bradshaw index score was used to capture clinical disease activity; CRP was measured as part of standard clinical practice. The expression profile of circulating microRNAs and the levels of CRP correlated with Harvey-Bradshaw index. RESULTS We identified a signature of 10 circulating microRNAs that are differentially expressed in CD patients compared with healthy control subjects. Two of these microRNAs (hsa-miR-1286 and hsa-miR-1273d) correlated with CD disease activity and exhibited higher correlation values compared with CRP. Further analysis revealed distinct microRNA signatures between CD patients with ileal and colonic involvement. CONCLUSIONS Circulating microRNAs show superior value as diagnostic and disease activity markers in comparison to traditional methods. Circulating microRNAs could improve CD patient management, if applied in combination with current state-of-the-art diagnostic and disease activity assessment modalities.
Collapse
|
39
|
Szűcs D, Béres NJ, Rokonay R, Boros K, Borka K, Kiss Z, Arató A, Szabó AJ, Vannay &A, Sziksz E, Bereczki C, Veres G. Increased duodenal expression of miR-146a and -155 in pediatric Crohn’s disease. World J Gastroenterol 2016; 22:6027-6035. [PMID: 27468194 PMCID: PMC4948267 DOI: 10.3748/wjg.v22.i26.6027] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 06/02/2016] [Accepted: 06/15/2016] [Indexed: 02/06/2023] Open
Abstract
AIM: To evaluate the role of microRNA (miR)-146a, -155 and -122 in the duodenal mucosa of pediatric patients with Crohn’s disease (CD) and the effect of transforming growth factor-β (TGF-β) on these miRs in duodenal epithelial and fibroblast cells.
METHODS: Formalin-fixed, paraffin-embedded biopsies derived from the macroscopically inflamed (CD inflamed: n = 10) and intact (CD intact: n = 10) duodenal mucosa of pediatric CD patients and control children (C: n = 10) were examined. Expression of miR-146a, -155 and -122 was determined by real-time polymerase-chain reaction (PCR). The expression of the above miRs was investigated in recombinant human TGF-β (1 nmol/L, 24 h) or vehicle treated small intestinal epithelial cells (CCL-241) and primary duodenal fibroblast cells derived from healthy children as well.
RESULTS: Expression of miR-146a was significantly higher in the inflamed duodenal mucosa compared to the intact duodenal mucosa of children with CD (CD inflamed: 3.21 ± 0.50 vs CD intact: 0.62 ± 0.26, P≤ 0.01) and to the control group (CD inflamed: 3.21 ± 0.50 vs C: 1.00 ± 0.33, P≤ 0.05). The expression of miR-155 was significantly increased in the inflamed region of the duodenum compared to the control group (CD inflamed: 4.87 ± 1.02 vs Control: 1.00 ± 0.40, P≤ 0.001). The expression of miR-122 was unchanged in the inflamed or intact mucosa of CD patients compared to controls. TGF-β treatment significantly decreased the expression of miR-155 in small intestinal epithelial cells (TGF-β: 0.7 ± 0.083 vs Control: 1 ± 0.09, P≤ 0.05) and also the expression of miR-146a (TGF-β: 0.67 ± 0.04 vs Control: 1 ± 0.15, P≤ 0.01) and miR-155 (TGF-β: 0.72 ± 0.09 vs Control: 1 ± 0.06, P≤ 0.05) in primary duodenal fibroblasts compared to corresponding vehicle treated controls. TGF-β treatment did not influence the expression of miR-122.
CONCLUSION: The elevated expression of miR-146a and -155 in the inflamed duodenal mucosa of CD patients suggests the role of these miRs in the pathomechanism of inflammatory bowel disease. Anti-inflammatory TGF-β plays an important role in the regulation of the expression of these miRs.
Collapse
|
40
|
Abstract
PURPOSE OF REVIEW MicroRNAs (miRNAs), small noncoding RNA molecules of approximately 22 nucleotides, have emerged as critical mediators of gene expression. As the dysregulation of gene expression can have far reaching impact on health and disease, miRNAs are being examined as potent new mediators of disease as either biomarkers or potential therapeutic targets. The purpose of this review is to evaluate the contribution of miRNAs to inflammatory bowel disease (IBD) pathophysiology. RECENT FINDINGS Recent studies have evaluated the expression of miRNAs in tissue and body fluid specimens from patients with the main subtypes of IBD - Crohn's disease and ulcerative colitis. Unique miRNA expression patterns that may distinguish IBD subtypes have been uncovered. SUMMARY Significant progress has been made in illuminating the complex interactive networks of miRNAs and gene targets in IBD. The potential use of miRNAs as disease biomarkers or therapeutics shows promise. However, there are still significant hurdles to overcome before miRNA-based therapeutics and diagnostics will be of clinical utility.
Collapse
|
41
|
Béres NJ, Szabó D, Kocsis D, Szűcs D, Kiss Z, Müller KE, Lendvai G, Kiss A, Arató A, Sziksz E, Vannay Á, Szabó AJ, Veres G. Role of Altered Expression of miR-146a, miR-155, and miR-122 in Pediatric Patients with Inflammatory Bowel Disease. Inflamm Bowel Dis 2016; 22:327-35. [PMID: 26752469 DOI: 10.1097/mib.0000000000000687] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Evidence suggests the central role of tumor necrosis factor (TNF)-α in the pathomechanism of inflammatory bowel disease (IBD); however, its effect on epigenetic factors, including small non-coding microRNAs (miRs), is less known. Our present aim was the comparative investigation of the expression of TNF-α and immune response-related miRs in children with Crohn's disease (CD) and ulcerative colitis (UC). METHODS Fresh-frozen (FF) and formalin-fixed, paraffin-embedded (FFPE) biopsies were used to analyze the expression of miR-146a, -155, -122, and TNF-α by real-time reverse transcription polymerase chain reaction in macroscopically inflamed (CD: 12 FFPE and 24 FF; UC: 10 FF) and intact (CD: 12 FFPE; 14 FF) colonic biopsies of children with IBD and controls (16 FFPE; 23 FF). The expression of miR-146a, -155, and -122 was also determined in TNF-α-treated HT-29 colonic epithelial cells. RESULTS Increased expression of TNF-α was observed in the colonic mucosa of children with CD and UC in comparison with controls. Expression of miR-146a and -155 was higher in the inflamed mucosa of children with CD and UC than in the intact mucosa. Expression of miR-122 elevated in the macroscopically intact colonic regions of CD compared with controls and patients with UC. In HT-29 cells, TNF-α treatment increased the expression of miR-146a and -155, but not that of miR-122. CONCLUSIONS Our results showed altered expression of miR-146a, -155, and -122 in the colonic mucosa of children with IBD and in TNF-α-treated colonic epithelial cells. Our data suggest the TNF-α-related involvement of these miRs in the pathogenesis of IBD.
Collapse
Affiliation(s)
- Nóra J Béres
- *1st Department of Pediatrics, Semmelweis University, Budapest, Hungary; †2nd Department of Internal Medicine, Semmelweis University, Budapest, Hungary; ‡Department of Pediatrics and Pediatric Health Care Center, University of Szeged, Szeged, Hungary; §2nd Department of Pathology, Semmelweis University, Budapest, Hungary; ‖MTA-SE, Tumor Progression Research Group, Budapest, Hungary; and ¶MTA-SE, Pediatrics and Nephrology Research Group, Budapest, Hungary
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Pierdomenico M, Cesi V, Cucchiara S, Vitali R, Prete E, Costanzo M, Aloi M, Oliva S, Stronati L. NOD2 Is Regulated By Mir-320 in Physiological Conditions but this Control Is Altered in Inflamed Tissues of Patients with Inflammatory Bowel Disease. Inflamm Bowel Dis 2016; 22:315-26. [PMID: 26752466 DOI: 10.1097/mib.0000000000000659] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Large evidence supports the role of microRNAs as new important inflammatory mediators by regulating both the adaptive and innate immunity. In the present study, we speculated that miR-320 controls NOD2 (nucleotide-binding oligomerization domain) expression, because it contains multiple binding sites in the 3'-untranslated region of the gene. NOD2, the first gene associated to increased susceptibility to Crohn's disease, is a cytosolic receptor that senses wall peptides of bacteria and promotes their clearance through initiation of a proinflammatory transcriptional program. This study aims at demonstrating that NOD2 is a target of miR-320 as well as investigating the role of inflammation in modulating the miR-320 control on NOD2 expression and analyzing miR-320 expression in intestinal biopsies of children with inflammatory bowel disease. METHODS The colonic adenocarcinoma cell line HT29 was used to assess the miR-320-mediated regulation of NOD2 expression. MiR-320 and NOD2 expression were analyzed in mucosal samples of 40 children with inflammatory bowel disease. RESULTS During inflammation, NOD2 expression is inversely correlated with miR-320 expression in vitro and ex vivo. Exogenous miR-320 transfection in HT29 cells leads to a significant decrease of NOD2 expression, whereas the miR-320 inhibitor transfection leads to increase of NOD2 expression, nuclear translocation of nuclear factor κB, and activation of downstream cytokines. CONCLUSIONS We show for the first time that NOD2 expression is under the control of miR-320. We also show in vitro and ex vivo that inflammation induces a decrease of miR-320 and the latter correlates negatively with NOD2 expression.
Collapse
Affiliation(s)
- Maria Pierdomenico
- *Department of Radiation Biology and Human Health, ENEA, Rome, Italy; and †Department of Pediatrics and Infantile Neuropsychiatry, Pediatric Gastroenterology and Liver Unit, Sapienza University of Rome, Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Liao XJ, Mao WM, Wang Q, Yang GG, Wu WJ, Shao SX. MicroRNA-24 inhibits serotonin reuptake transporter expression and aggravates irritable bowel syndrome. Biochem Biophys Res Commun 2015; 469:288-93. [PMID: 26631964 DOI: 10.1016/j.bbrc.2015.11.102] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 11/23/2015] [Indexed: 12/18/2022]
Abstract
Irritable bowel syndrome (IBS) is a common chronic functional gastrointestinal disorder. MicroRNAs (miRNAs) have been widely demonstrated to take part in various physiological and pathological processes. In the present study, the role of miR-24 in the pathogenesis of IBS and the potential mechanism in this process were evaluated. Human intestinal mucosa epithelial cells of colon from IBS patients and healthy subjects were collected. An IBS mouse model was established with the induction of trinitro-benzene-sulfonic acid (TNBS). The expression levels of miR-24 and serotonin reuptake transporter (SERT) were analyzed using Real-time PCR and western blot in both human specimen and mice. miR-24 was upregulated in IBS patients and mice intestinal mucosa epithelial cells. Luciferase reporter assay showed that SERT was a potential target gene of miR-24. The treatment of miR-24 inhibitor increased pain threshold and nociceptive threshold levels and reduced MPO activity in proximal colon of IBS mice, and up-regulated the mRNA and protein expression levels of SERT in intestinal mucosa epithelial cells. miR-24 played a role in the pathogenesis of IBS probably through regulating SERT expression.
Collapse
Affiliation(s)
- Xiu-Jun Liao
- Department of Colorectal Surgery, Hangzhou Third Hospital, Hangzhou, 310009, People's Republic of China.
| | - Wei-Ming Mao
- Department of Colorectal Surgery, Hangzhou Third Hospital, Hangzhou, 310009, People's Republic of China
| | - Qin Wang
- Department of Colorectal Surgery, Hangzhou Third Hospital, Hangzhou, 310009, People's Republic of China
| | - Guan-Gen Yang
- Department of Colorectal Surgery, Hangzhou Third Hospital, Hangzhou, 310009, People's Republic of China
| | - Wen-Jing Wu
- Department of Colorectal Surgery, Hangzhou Third Hospital, Hangzhou, 310009, People's Republic of China
| | - Shu-Xian Shao
- Department of Colorectal Surgery, Hangzhou Third Hospital, Hangzhou, 310009, People's Republic of China
| |
Collapse
|
44
|
|
45
|
Sparse Modeling Reveals miRNA Signatures for Diagnostics of Inflammatory Bowel Disease. PLoS One 2015; 10:e0140155. [PMID: 26466382 PMCID: PMC4605644 DOI: 10.1371/journal.pone.0140155] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 09/22/2015] [Indexed: 12/13/2022] Open
Abstract
The diagnosis of inflammatory bowel disease (IBD) still remains a clinical challenge and the most accurate diagnostic procedure is a combination of clinical tests including invasive endoscopy. In this study we evaluated whether systematic miRNA expression profiling, in conjunction with machine learning techniques, is suitable as a non-invasive test for the major IBD phenotypes (Crohn's disease (CD) and ulcerative colitis (UC)). Based on microarray technology, expression levels of 863 miRNAs were determined for whole blood samples from 40 CD and 36 UC patients and compared to data from 38 healthy controls (HC). To further discriminate between disease-specific and general inflammation we included miRNA expression data from other inflammatory diseases (inflammation controls (IC): 24 chronic obstructive pulmonary disease (COPD), 23 multiple sclerosis, 38 pancreatitis and 45 sarcoidosis cases) as well as 70 healthy controls from previous studies. Classification problems considering 2, 3 or 4 groups were solved using different types of penalized support vector machines (SVMs). The resulting models were assessed regarding sparsity and performance and a subset was selected for further investigation. Measured by the area under the ROC curve (AUC) the corresponding median holdout-validated accuracy was estimated as ranging from 0.75 to 1.00 (including IC) and 0.89 to 0.98 (excluding IC), respectively. In combination, the corresponding models provide tools for the distinction of CD and UC as well as CD, UC and HC with expected classification error rates of 3.1 and 3.3%, respectively. These results were obtained by incorporating not more than 16 distinct miRNAs. Validated target genes of these miRNAs have been previously described as being related to IBD. For others we observed significant enrichment for IBD susceptibility loci identified in earlier GWAS. These results suggest that the proposed miRNA signature is of relevance for the etiology of IBD. Its diagnostic value, however, should be further evaluated in large, independent, clinically well characterized cohorts.
Collapse
|
46
|
Ng PC, Chan KYY, Leung KT, Tam YH, Ma TPY, Lam HS, Cheung HM, Lee KH, To KF, Li K. Comparative MiRNA Expressional Profiles and Molecular Networks in Human Small Bowel Tissues of Necrotizing Enterocolitis and Spontaneous Intestinal Perforation. PLoS One 2015; 10:e0135737. [PMID: 26274503 PMCID: PMC4537110 DOI: 10.1371/journal.pone.0135737] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 07/26/2015] [Indexed: 12/14/2022] Open
Abstract
Background Necrotizing enterocolitis (NEC) and spontaneous intestinal perforation (SIP) are acute intestinal conditions which could result in mortality and severe morbidity in preterm infants. Our objective was to identify dysregulated micro-RNAs (miRNAs) in small bowel tissues of NEC and SIP, and their possible roles in disease pathophysiology. Methods We performed differential miRNA arrays on tissues of NEC (n = 4), SIP (n = 4) and surgical-control (Surg-CTL; n = 4), and validated target miRNAs by qPCR (n = 10 each group). The association of target miRNAs with 52 dysregulated mRNAs was investigated by bioinformatics on functional and base-pair sequence algorithms, and correlation in same tissue samples. Results We presented the first miRNA profiles of NEC, SIP and Surg-CTL intestinal tissues in preterm infants. Of 28 validated miRNAs, 21 were significantly different between NEC or SIP and Surg-CTL. Limited overlapping in the aberrant expression of miRNAs between NEC and SIP indicated their distinct molecular mechanisms. A proposed network of dysregulated miRNA/mRNA pairs in NEC suggested interaction at bacterial receptor TLR4 (miR-31, miR-451, miR-203, miR-4793-3p), mediated via key transcription factors NFKB2 (miR-203), AP-1/FOSL1 (miR-194-3p), FOXA1 (miR-21-3p, miR-431 and miR-1290) and HIF1A (miR-31), and extended downstream to pathways of angiogenesis, arginine metabolism, cell adhesion and chemotaxis, extracellular matrix remodeling, hypoxia/oxidative stress, inflammation and muscle contraction. In contrast, upregulation of miR-451 and miR-223 in SIP suggested modulation of G-protein-mediated muscle contraction. Conclusions The robust response of miRNA dysregulation in NEC and SIP, and concerted involvement of specific miRNAs in the molecular networks indicated their crucial roles in mucosa integrity and disease pathophysiology.
Collapse
Affiliation(s)
- Pak Cheung Ng
- Department of Paediatrics, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
- * E-mail:
| | - Kathy Yuen Yee Chan
- Department of Paediatrics, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
| | - Kam Tong Leung
- Department of Paediatrics, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
| | - Yuk Him Tam
- Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
| | - Terence Ping Yuen Ma
- Department of Paediatrics, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
| | - Hugh Simon Lam
- Department of Paediatrics, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
| | - Hon Ming Cheung
- Department of Paediatrics, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
| | - Kim Hung Lee
- Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
| | - Ka Fai To
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
| | - Karen Li
- Department of Paediatrics, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
| |
Collapse
|
47
|
Jiang W, Li X. Molecular Analysis of Inflammatory Bowel Disease: Clinically Useful Tools for Diagnosis, Response Prediction, and Monitoring of Targeted Therapy. Mol Diagn Ther 2015; 19:141-58. [DOI: 10.1007/s40291-015-0142-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
48
|
A microRNA signature in pediatric ulcerative colitis: deregulation of the miR-4284/CXCL5 pathway in the intestinal epithelium. Inflamm Bowel Dis 2015; 21:996-1005. [PMID: 25738378 PMCID: PMC4402238 DOI: 10.1097/mib.0000000000000339] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Twenty to 25% of the patients with inflammatory bowel disease (IBD) present the disease before the age of 18 to 20, with worse extent and severity, compared with adult-onset IBD. We sought to identify the differential expression of microRNAs in pediatric ulcerative colitis (UC) and their association with different clinical phenotypes. METHODS MicroRNA expression analysis was performed in colonic tissues derived from pediatric patients with UC and controls without IBD. MiR-4284 levels were verified by real-time quantitative polymerase chain reaction in 2 additional cohorts of pediatric patients with UC. Bioinformatics analysis was performed to predict the targets of miR-4284. In vitro experiments using luciferase reporter assays and real-time polymerase chain reaction evaluated the direct effect of miR-4284 on CXCL5 mRNA. In vivo experiments were performed in 2 mouse models of experimental colitis. RESULTS A 24-microRNA signature was identified in colonic tissues derived from pediatric patients with UC. The most downregulated microRNA in the tissue of pediatric patients UC, relative to non-IBD controls, was miR-4284. In situ hybridization revealed that miR-4284 is present in colonic epithelial cells, and its levels correlate with the disease activity. Furthermore, we found that miR-4284 regulates CXCL5 mRNA expression through binding to its 3'UTR. CXCL5 had increased mRNA levels in colonic tissue from pediatric patients with UC and correlated with disease activity. Furthermore, we found an inverse correlation between miR-4284 and CXCL5 levels in the colonic pediatric UC tissues and in 2 mouse models of experimental colitis. CONCLUSIONS Our data reveal a novel microRNA pediatric UC signature and provide evidence that miR-4284 directly regulates CXCL5 and correlates with the disease activity.
Collapse
|
49
|
Overexpression of miR-595 and miR-1246 in the sera of patients with active forms of inflammatory bowel disease. Inflamm Bowel Dis 2015; 21:520-30. [PMID: 25628040 DOI: 10.1097/mib.0000000000000285] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND MicroRNAs (miRNAs) are dysregulated in the inflammatory bowel diseases, Crohn's disease (CD) and ulcerative colitis (UC), which arise due to dysfunctional host-microbe interactions and impairment of the barrier function of the intestine. Here, we sought to determine whether circulating miRNAs are biomarkers of active colonic CD and UC and can provide insights into disease pathogenesis. Comparison was made with serum miRNAs in patients with rheumatoid arthritis (RA). METHODS Total serum RNA from patients with colonic CD, UC, and RA, and normal healthy adults was screened for disease-associated miRNAs by microarray analysis, with subsequent validation by quantitative reverse-transcription polymerase chain reaction. MiRNA targets were identified by luciferase reporter assays. RESULTS MiR-595 and miR-1246 were significantly upregulated in the sera of active colonic CD, UC, and RA patients, compared with healthy subjects; and in active colonic CD and UC compared with inactive disease. Luciferase reporter assays indicated that miR-595 inhibits the expression of neural cell adhesion molecule-1 and fibroblast growth factor receptor 2. CONCLUSIONS Serum miR-595 and miR-1246 are biomarkers of active CD, UC, and RA. These findings gain significance from reports that miR-595 impairs epithelial tight junctions, whereas miR-1246 indirectly activates the proinflammatory nuclear factor of activated T cells. miR-595 targets the cell adhesion molecule neural cell adhesion molecule-1, and fibroblast growth factor receptor 2, which plays a key role in the differentiation, protection, and repair of colonic epithelium, and maintenance of tight junctions. miR-595 and miR-1246 warrant testing as potential targets for therapeutic intervention in the treatment of inflammatory bowel disease.
Collapse
|
50
|
Chandra LC, Kumar V, Torben W, Vande Stouwe C, Winsauer P, Amedee A, Molina PE, Mohan M. Chronic administration of Δ9-tetrahydrocannabinol induces intestinal anti-inflammatory microRNA expression during acute simian immunodeficiency virus infection of rhesus macaques. J Virol 2015; 89:1168-81. [PMID: 25378491 PMCID: PMC4300675 DOI: 10.1128/jvi.01754-14] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 10/30/2014] [Indexed: 01/16/2023] Open
Abstract
UNLABELLED Recreational and medical use of cannabis among human immunodeficiency virus (HIV)-infected individuals has increased in recent years. In simian immunodeficiency virus (SIV)-infected macaques, chronic administration of Δ9-tetrahydrocannabinol (Δ9-THC) inhibited viral replication and intestinal inflammation and slowed disease progression. Persistent gastrointestinal disease/inflammation has been proposed to facilitate microbial translocation and systemic immune activation and promote disease progression. Cannabinoids including Δ9-THC attenuated intestinal inflammation in mouse colitis models and SIV-infected rhesus macaques. To determine if the anti-inflammatory effects of Δ9-THC involved differential microRNA (miRNA) modulation, we profiled miRNA expression at 14, 30, and 60 days postinfection (days p.i.) in the intestine of uninfected macaques receiving Δ9-THC (n=3) and SIV-infected macaques administered either vehicle (VEH/SIV; n=4) or THC (THC/SIV; n=4). Chronic Δ9-THC administration to uninfected macaques significantly and positively modulated intestinal miRNA expression by increasing the total number of differentially expressed miRNAs from 14 to 60 days p.i. At 60 days p.i., ∼28% of miRNAs showed decreased expression in the VEH/SIV group compared to none showing decrease in the THC/SIV group. Furthermore, compared to the VEH/SIV group, THC selectively upregulated the expression of miR-10a, miR-24, miR-99b, miR-145, miR-149, and miR-187, previously been shown to target proinflammatory molecules. NOX4, a potent reactive oxygen species generator, was confirmed as a direct miR-99b target. A significant increase in NOX4+ crypt epithelial cells was detected in VEH/SIV macaques compared to the THC/SIV group. We speculate that miR-99b-mediated NOX4 downregulation may protect the intestinal epithelium from oxidative stress-induced damage. These results support a role for differential miRNA induction in THC-mediated suppression of intestinal inflammation. Whether similar miRNA modulation occurs in other tissues requires further investigation. IMPORTANCE Gastrointestinal (GI) tract disease/inflammation is a hallmark of HIV/SIV infection. Previously, we showed that chronic treatment of SIV-infected macaques with Δ9-tetrahydrocannabinol (Δ9-THC) increased survival and decreased viral replication and infection-induced gastrointestinal inflammation. Here, we show that chronic THC administration to SIV-infected macaques induced an anti-inflammatory microRNA expression profile in the intestine at 60 days p.i. These included several miRNAs bioinformatically predicted to directly target CXCL12, a chemokine known to regulate lymphocyte and macrophage trafficking into the intestine. Specifically, miR-99b was significantly upregulated in THC-treated SIV-infected macaques and confirmed to directly target NADPH oxidase 4 (NOX4), a reactive oxygen species generator known to damage intestinal epithelial cells. Elevated miR-99b expression was associated with a significantly decreased number of NOX4+ epithelial cells in the intestines of THC-treated SIV-infected macaques. Overall, our results show that selective upregulation of anti-inflammatory miRNA expression contributes to THC-mediated suppression of gastrointestinal inflammation and maintenance of intestinal homeostasis.
Collapse
Affiliation(s)
- Lawrance C Chandra
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, Louisiana, USA
| | - Vinay Kumar
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, Louisiana, USA
| | - Workineh Torben
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, Louisiana, USA
| | - Curtis Vande Stouwe
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Peter Winsauer
- LSUHSC Alcohol and Drug Abuse Center, New Orleans, Louisiana, USA Department of Pharmacology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Angela Amedee
- LSUHSC Alcohol and Drug Abuse Center, New Orleans, Louisiana, USA Department of Microbiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Patricia E Molina
- LSUHSC Alcohol and Drug Abuse Center, New Orleans, Louisiana, USA Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Mahesh Mohan
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, Louisiana, USA
| |
Collapse
|