1
|
Manzanares-Guzmán A, Alfonseca-Ladrón de Guevara AC, Reza-Escobar E, Burciaga-Flores M, Canales-Aguirre A, Esquivel-Solís H, Lugo-Fabres PH, Camacho-Villegas TA. Isolation and Characterization of the First Antigen-Specific EGFRvIII vNAR from Freshwater Stingray ( Potamotrygon spp.) as a Drug Carrier in Glioblastoma Cancer Cells. Int J Mol Sci 2025; 26:876. [PMID: 39940647 PMCID: PMC11817625 DOI: 10.3390/ijms26030876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/16/2025] [Accepted: 01/17/2025] [Indexed: 02/16/2025] Open
Abstract
Glioblastoma is the most common and highly malignant brain tumor in adults. New targeted therapeutic approaches are imperative. EGFRvIII has appealing therapeutic targets using monoclonal antibodies. Thus, endeavors toward developing new mAbs therapies for GBM capable of targeting the tumor EGFRvIII biomarker must prevail to improve the patient's prognosis. Here, we isolated and characterized an anti-EGFRvIII vNAR from a non-immune freshwater stingray mixed library, termed vNAR R426. The vNAR R426 and pEGFRvIII interaction was demonstrated by molecular docking and molecular dynamics, and the recognition of EGFRvIII in vitro was further confirmed by cell immunofluorescence staining. Moreover, the vNAR R426 was shown to be an effective cisplatin drug carrier in the U87-MG glioma cell line. The cisplatin-coupled vNAR demonstrated highly significant differences when compared to free CDDP at 72 h. Notably, the cisplatin-vNAR carrier achieved better efficacy in the U87-MG cell line. Thus, we described the vNAR R426 internalization by receptor-mediated endocytosis and the subsequent COPI-mediated nuclear translocation of EGFRvIII and highlighted the importance of this shuttle mechanism to enhance the targeted delivery of cisplatin within the glioma cell's nucleus and improved cytotoxic effect. In conclusion, vNAR R426 could be a potential therapeutic carrier for EGFRvIII-targeted glioblastoma and cancer therapies.
Collapse
Affiliation(s)
- Alejandro Manzanares-Guzmán
- Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara C.P. 44270, Jalisco, Mexico; (A.M.-G.); (A.C.A.-L.d.G.); (E.R.-E.); (A.C.-A.); (H.E.-S.)
| | - Andrea C. Alfonseca-Ladrón de Guevara
- Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara C.P. 44270, Jalisco, Mexico; (A.M.-G.); (A.C.A.-L.d.G.); (E.R.-E.); (A.C.-A.); (H.E.-S.)
| | - Elia Reza-Escobar
- Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara C.P. 44270, Jalisco, Mexico; (A.M.-G.); (A.C.A.-L.d.G.); (E.R.-E.); (A.C.-A.); (H.E.-S.)
| | - Mirna Burciaga-Flores
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México (CNyN-UNAM), Carretera Tijuana-Ensenada km107, Ensenada C.P. 22860, Baja California, Mexico;
| | - Alejandro Canales-Aguirre
- Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara C.P. 44270, Jalisco, Mexico; (A.M.-G.); (A.C.A.-L.d.G.); (E.R.-E.); (A.C.-A.); (H.E.-S.)
| | - Hugo Esquivel-Solís
- Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara C.P. 44270, Jalisco, Mexico; (A.M.-G.); (A.C.A.-L.d.G.); (E.R.-E.); (A.C.-A.); (H.E.-S.)
| | - Pavel H. Lugo-Fabres
- CONAHCYT-Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara C.P. 44270, Jalisco, Mexico;
| | - Tanya A. Camacho-Villegas
- Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara C.P. 44270, Jalisco, Mexico; (A.M.-G.); (A.C.A.-L.d.G.); (E.R.-E.); (A.C.-A.); (H.E.-S.)
| |
Collapse
|
2
|
Gong S, Liu B, Qiu J, Huang F, Thayumanavan S. Antibody-Directing Antibody Conjugates (ADACs) Enabled by Orthogonal Click Chemistry for Targeted Intracellular Delivery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402874. [PMID: 39162119 PMCID: PMC11581923 DOI: 10.1002/smll.202402874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/03/2024] [Indexed: 08/21/2024]
Abstract
Using orthogonal click chemistries for efficient nanoscale self-assembly, a new antibody-directing antibody conjugate (ADAC) nanogel is generated. In this system, one of the antibodies is displayed on the nanogel surface to specifically recognize cell-surface epitopes while the other antibody is encapsulated inside the nanogel core. The system is programmed to release the latter antibody in its functional form in the cytosolic environment of a specific cell to engage intracellular targets. ADACs offer a potential solution to harness the advantages seen with antibody-drug conjugates (ADCs) to deliver therapeutic cargos to specific tissues, but with the added capability of carrying biologics as the cargo. In this manuscript, this potential is demonstrated through delivery of antibodies against intracellular targets in specific cells. This platform offers new avenues for precise therapeutic interventions and the potential to address previously "undruggable" cellular targets.
Collapse
Affiliation(s)
- Shuai Gong
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA, 01003, USA
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Bin Liu
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Jingyi Qiu
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts Amherst, Amherst, MA, 01003, USA
- Department of Biomedical Engineering, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Fangying Huang
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - S Thayumanavan
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA, 01003, USA
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts Amherst, Amherst, MA, 01003, USA
- Department of Biomedical Engineering, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| |
Collapse
|
3
|
Yao JY, Liu T, Hu XR, Sheng H, Chen ZH, Zhao HY, Li XJ, Wang Y, Hao L. An insight into allele-selective approaches to lowering mutant huntingtin protein for Huntington's disease treatment. Biomed Pharmacother 2024; 180:117557. [PMID: 39405896 DOI: 10.1016/j.biopha.2024.117557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/30/2024] [Accepted: 10/08/2024] [Indexed: 11/14/2024] Open
Abstract
Huntington's disease (HD), a monogenic neurodegenerative disorder, stems from a CAG repeat expansion within the mutant huntingtin gene (HTT). This leads to a detrimental gain-of-function of the mutated huntingtin protein (mHTT). As of now, there exist no efficacious therapies to alter the disease progression. In view of the monogenetic mutation nature and an indispensable role of wild-type HTT in healthy neurodevelopment and cellular functions, the developing strategy of allele-selectively deleting/silencing mutant HTT as well as only inactivating mHTT without altering wild-type HTT or wild-type huntingtin protein (wtHTT) comes highly recommended, and may offer a promising treatment option for HD. Here, we reviewed the therapeutic approaches that allele-selective lowering mHTT expression by targeting only mutant HTT DNA, RNA and mHTT along with recent preclinical and clinical outcomes and challenges, in anticipation of some novel ideas to be introduced into HD therapeutic research.
Collapse
Affiliation(s)
- Jia-Yuan Yao
- The First Clinical College, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province 110122, PR China
| | - Ting Liu
- The Queen's University of Belfast Joint College, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province 110122, PR China
| | - Xin-Ru Hu
- The First Clinical College, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province 110122, PR China
| | - Hui Sheng
- Institute of Metal Research, Chinese Academy of Sciences, No. 72 Wenhua Road, Shenhe Area, Shenyang 110016, PR China
| | - Zi-Hao Chen
- The Queen's University of Belfast Joint College, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province 110122, PR China
| | - Hai-Yang Zhao
- Teaching Center for Basic Medical Experiment, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province 110122, PR China
| | - Xiao-Jia Li
- Teaching Center for Basic Medical Experiment, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province 110122, PR China.
| | - Yang Wang
- Department of Chemistry, School of Forensic Medicine, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province 110122, PR China; Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province 110122, PR China; China Medical University Center of Forensic Investigation, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province 110122, PR China.
| | - Liang Hao
- Department of Chemistry, School of Forensic Medicine, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province 110122, PR China; Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province 110122, PR China; China Medical University Center of Forensic Investigation, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province 110122, PR China.
| |
Collapse
|
4
|
Lasheen NN, Allam S, Elgarawany A, Aswa DW, Mansour R, Farouk Z. Limitations and potential strategies of immune checkpoint blockade in age-related neurodegenerative disorders. J Physiol Sci 2024; 74:46. [PMID: 39313800 PMCID: PMC11421184 DOI: 10.1186/s12576-024-00933-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 08/13/2024] [Indexed: 09/25/2024]
Abstract
Neurological disorders such as Alzheimer's disease (AD), and Parkinson's disease (PD) have no disease-modifying treatments, resulting in a global dementia crisis that affects more than 50 million people. Amyloid-beta (Aβ), tau, and alpha-synuclein (α-Syn) are three crucial proteins that are involved in the pathogenesis of these age-related neurodegenerative diseases. Only a few approved AD medications have been used in the clinic up to this point, and their results are only partial symptomatic alleviation for AD patients and cannot stop the progression of AD. Immunotherapies have attracted considerable interest as they target certain protein strains and conformations as well as promote clearance. Immunotherapies also have the potential to be neuroprotective: as they limit synaptic damage and spread of neuroinflammation by neutralizing extracellular protein aggregates. Lately, disease-modifying therapies (DMTs) that can alter the pathophysiology that underlies AD with anti-Aβ monoclonal antibodies (MAbs) (e.g., aducanumab, lecanemab, gantenerumab, donanemab, solanezumab, crenezumab, tilavonemab). Similarly, in Parkinson's disease (PD), DMTs utilizing anti-αSyn (MAbs) (e.g., prasinezumab, cinpanemab,) are progressively being developed and evaluated in clinical trials. These therapies are based on the hypothesis that both AD and PD may involve systemic impairments in cell-dependent clearance mechanisms of amyloid-beta (Aβ) and alpha-synuclein (αSyn), respectively, meaning the body's overall inability to effectively remove Aβ and αSyn due to malfunctioning cellular mechanisms. In this review we will provide possible evidence behind the use of immunotherapy with MAbs in AD and PD and highlight the recent clinical development landscape of anti-Aβ (MAbs) and anti-αSyn (MAbs) from these clinical trials in order to better investigate the therapeutic possibilities and adverse effects of these anti-Aβ and anti-αSyn MAbs on AD and PD.
Collapse
Affiliation(s)
- Noha N Lasheen
- Department of Basic Medical Sciences, Faculty of Medicine, Galala University, Suez, Egypt.
- Department of Physiology, Faculty of Medicine, Ain Shams University, Cairo, Egypt.
| | - Salma Allam
- Faculty of Medicine, Galala University, Galala City, Suez, Egypt
| | | | - Darin W Aswa
- Faculty of Medicine, Galala University, Galala City, Suez, Egypt
| | - Rana Mansour
- Faculty of Medicine, Galala University, Galala City, Suez, Egypt
| | - Ziad Farouk
- Faculty of Medicine, Galala University, Galala City, Suez, Egypt
| |
Collapse
|
5
|
Nair S, Jiang Y, Marchal IS, Chernobelsky E, Huang HW, Suh S, Pan R, Kong XP, Ryoo HD, Sigurdsson EM. Anti-tau single domain antibodies clear pathological tau and attenuate its toxicity and related functional defects. Cell Death Dis 2024; 15:543. [PMID: 39079958 PMCID: PMC11289317 DOI: 10.1038/s41419-024-06927-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 07/15/2024] [Accepted: 07/18/2024] [Indexed: 08/02/2024]
Abstract
Tauopathies are a group of neurodegenerative diseases characterized by the presence of tau inclusions. We have developed over fifty anti-tau single-domain antibodies (sdAbs) derived from phage display libraries of a llama immunized with recombinant and pathological tau immunogens. We examined the therapeutic potential of four of these sdAbs in a Drosophila tauopathy model following their transgenic expression either in all neurons or neuronal subtypes. Three of these sdAbs showed therapeutic potential in various assays, effectively clearing pathological tau and attenuating or preventing tau-induced phenotypes that typically manifest as defects in neuronal axonal transport, neurodegeneration, functional impairments, and shortened lifespan. Of these three, one sdAb was superior in every assay, which may at least in part be attributed to its tau-binding epitope. These findings support its development as a gene therapy for tauopathies.
Collapse
Affiliation(s)
- Sudershana Nair
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY, USA
| | - Yixiang Jiang
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Isabella S Marchal
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY, USA
| | - Elizabeth Chernobelsky
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY, USA
| | - Huai-Wei Huang
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY, USA
| | - Sarah Suh
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY, USA
| | - Ruimin Pan
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA
| | - Xiang-Peng Kong
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA
| | - Hyung Don Ryoo
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY, USA.
| | - Einar M Sigurdsson
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA.
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
6
|
Manzanares-Guzmán A, Lugo-Fabres PH, Camacho-Villegas TA. vNARs as Neutralizing Intracellular Therapeutic Agents: Glioblastoma as a Target. Antibodies (Basel) 2024; 13:25. [PMID: 38534215 DOI: 10.3390/antib13010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/03/2024] [Accepted: 03/08/2024] [Indexed: 03/28/2024] Open
Abstract
Glioblastoma is the most prevalent and fatal form of primary brain tumors. New targeted therapeutic strategies for this type of tumor are imperative given the dire prognosis for glioblastoma patients and the poor results of current multimodal therapy. Previously reported drawbacks of antibody-based therapeutics include the inability to translocate across the blood-brain barrier and reach intracellular targets due to their molecular weight. These disadvantages translate into poor target neutralization and cancer maintenance. Unlike conventional antibodies, vNARs can permeate tissues and recognize conformational or cryptic epitopes due to their stability, CDR3 amino acid sequence, and smaller molecular weight. Thus, vNARs represent a potential antibody format to use as intrabodies or soluble immunocarriers. This review comprehensively summarizes key intracellular pathways in glioblastoma cells that induce proliferation, progression, and cancer survival to determine a new potential targeted glioblastoma therapy based on previously reported vNARs. The results seek to support the next application of vNARs as single-domain antibody drug-conjugated therapies, which could overcome the disadvantages of conventional monoclonal antibodies and provide an innovative approach for glioblastoma treatment.
Collapse
Affiliation(s)
- Alejandro Manzanares-Guzmán
- Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara 44270, Mexico
| | - Pavel H Lugo-Fabres
- Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCYT)-Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara 44270, Mexico
| | - Tanya A Camacho-Villegas
- Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCYT)-Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara 44270, Mexico
| |
Collapse
|
7
|
Bennett SJ, Yalcin D, Privatt SR, Ngalamika O, Lidenge SJ, West JT, Wood C. Antibody profiling and predictive modeling discriminate between Kaposi sarcoma and asymptomatic KSHV infection. PLoS Pathog 2024; 20:e1012023. [PMID: 38381773 PMCID: PMC10911871 DOI: 10.1371/journal.ppat.1012023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/04/2024] [Accepted: 02/02/2024] [Indexed: 02/23/2024] Open
Abstract
Protein-level immunodominance patterns against Kaposi sarcoma-associated herpesvirus (KSHV), the aetiologic agent of Kaposi sarcoma (KS), have been revealed from serological probing of whole protein arrays, however, the epitopes that underlie these patterns have not been defined. We recently demonstrated the utility of phage display in high-resolution linear epitope mapping of the KSHV latency-associated nuclear antigen (LANA/ORF73). Here, a VirScan phage immunoprecipitation and sequencing approach, employing a library of 1,988 KSHV proteome-derived peptides, was used to quantify the breadth and magnitude of responses of 59 sub-Saharan African KS patients and 22 KSHV-infected asymptomatic individuals (ASY), and ultimately to support an application of machine-learning-based predictive modeling using the peptide-level responses. Comparing anti-KSHV antibody repertoire revealed that magnitude, not breadth, increased in KS. The most targeted epitopes in both KS and ASY were in the immunodominant proteins, notably, K8.129-56 and ORF65140-168, in addition to LANA. Finally, using unbiased machine-learning-based predictive models, reactivity to a subset of 25 discriminative peptides was demonstrated to successfully classify KS patients from asymptomatic individuals. Our study provides the highest resolution mapping of antigenicity across the entire KSHV proteome to date, which is vital to discern mechanisms of viral pathogenesis, to define prognostic biomarkers, and to design effective vaccine and therapeutic strategies. Future studies will investigate the diagnostic, prognostic, and therapeutic potential of the 25 discriminative peptides.
Collapse
Affiliation(s)
- Sydney J. Bennett
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
- Department of Interdisciplinary Oncology, Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Dicle Yalcin
- Department of Interdisciplinary Oncology, Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Sara R. Privatt
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
- Department of Interdisciplinary Oncology, Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Owen Ngalamika
- Dermatology and Venereology Section, University Teaching Hospital, University of Zambia School of Medicine, Lusaka, Zambia
| | - Salum J. Lidenge
- Ocean Road Cancer Institute, Dar es Salaam, Tanzania
- Department of Clinical Oncology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - John T. West
- Department of Interdisciplinary Oncology, Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Charles Wood
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
- Department of Interdisciplinary Oncology, Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
| |
Collapse
|
8
|
Smyth P, Ferguson L, Burrows JF, Burden RE, Tracey SR, Herron ÚM, Kovaleva M, Williams R, Porter AJ, Longley DB, Barelle CJ, Scott CJ. Evaluation of variable new antigen receptors (vNARs) as a novel cathepsin S (CTSS) targeting strategy. Front Pharmacol 2023; 14:1296567. [PMID: 38116078 PMCID: PMC10728302 DOI: 10.3389/fphar.2023.1296567] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/16/2023] [Indexed: 12/21/2023] Open
Abstract
Aberrant activity of the cysteine protease Cathepsin S (CTSS) has been implicated across a wide range of pathologies. Notably in cancer, CTSS has been shown to promote tumour progression, primarily through facilitating invasion and migration of tumour cells and augmenting angiogenesis. Whilst an attractive therapeutic target, more efficacious CTSS inhibitors are required. Here, we investigated the potential application of Variable New Antigen Receptors (vNARs) as a novel inhibitory strategy. A panel of potential vNAR binders were identified following a phage display panning process against human recombinant proCTSS. These were subsequently expressed, purified and binding affinity confirmed by ELISA and SPR based approaches. Selected lead clones were taken forward and were shown to inhibit CTSS activity in recombinant enzyme activity assays. Further assessment demonstrated that our lead clones functioned by a novel inhibitory mechanism, by preventing the activation of proCTSS to the mature enzyme. Moreover, using an intrabody approach, we exhibited the ability to express these clones intracellularly and inhibit CTSS activity whilst lead clones were also noted to impede cell invasion in a tumour cell invasion assay. Collectively, these findings illustrate a novel mechanistic approach for inhibiting CTSS activity, with anti-CTSS vNAR clones possessing therapeutic potential in combating deleterious CTSS activity. Furthermore, this study exemplifies the potential of vNARs in targeting intracellular proteins, opening a range of previously "undruggable" targets for biologic-based therapy.
Collapse
Affiliation(s)
- P. Smyth
- Patrick G. Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast, United Kingdom
| | | | - J. F. Burrows
- School of Pharmacy, Queen’s University Belfast, Belfast, United Kingdom
| | - R. E. Burden
- School of Pharmacy, Queen’s University Belfast, Belfast, United Kingdom
| | - S. R. Tracey
- Patrick G. Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast, United Kingdom
| | - Ú. M. Herron
- Patrick G. Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast, United Kingdom
| | | | - R. Williams
- Patrick G. Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast, United Kingdom
| | - A. J. Porter
- Elasmogen Ltd., Aberdeen, United Kingdom
- Scottish Biologics Facility, Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, United Kingdom
| | - D. B. Longley
- Patrick G. Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast, United Kingdom
| | | | - C. J. Scott
- Patrick G. Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast, United Kingdom
| |
Collapse
|
9
|
Qian L, Lin X, Gao X, Khan RU, Liao JY, Du S, Ge J, Zeng S, Yao SQ. The Dawn of a New Era: Targeting the "Undruggables" with Antibody-Based Therapeutics. Chem Rev 2023. [PMID: 37186942 DOI: 10.1021/acs.chemrev.2c00915] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The high selectivity and affinity of antibodies toward their antigens have made them a highly valuable tool in disease therapy, diagnosis, and basic research. A plethora of chemical and genetic approaches have been devised to make antibodies accessible to more "undruggable" targets and equipped with new functions of illustrating or regulating biological processes more precisely. In this Review, in addition to introducing how naked antibodies and various antibody conjugates (such as antibody-drug conjugates, antibody-oligonucleotide conjugates, antibody-enzyme conjugates, etc.) work in therapeutic applications, special attention has been paid to how chemistry tools have helped to optimize the therapeutic outcome (i.e., with enhanced efficacy and reduced side effects) or facilitate the multifunctionalization of antibodies, with a focus on emerging fields such as targeted protein degradation, real-time live-cell imaging, catalytic labeling or decaging with spatiotemporal control as well as the engagement of antibodies inside cells. With advances in modern chemistry and biotechnology, well-designed antibodies and their derivatives via size miniaturization or multifunctionalization together with efficient delivery systems have emerged, which have gradually improved our understanding of important biological processes and paved the way to pursue novel targets for potential treatments of various diseases.
Collapse
Affiliation(s)
- Linghui Qian
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Xuefen Lin
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Xue Gao
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Rizwan Ullah Khan
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Jia-Yu Liao
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Shubo Du
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Jingyan Ge
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Su Zeng
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Shao Q Yao
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544
| |
Collapse
|
10
|
Chernov KG, Manoilov KY, Oliinyk OS, Shcherbakova DM, Verkhusha VV. Photodegradable by Yellow-Orange Light degFusionRed Optogenetic Module with Autocatalytically Formed Chromophore. Int J Mol Sci 2023; 24:6526. [PMID: 37047499 PMCID: PMC10095432 DOI: 10.3390/ijms24076526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/26/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Optogenetic systems driven by yellow-orange light are required for the simultaneous regulation of several cellular processes. We have engineered the red fluorescent protein FusionRed into a 26 kDa monomeric optogenetic module, called degFusionRed. Unlike other fluorescent protein-based optogenetic domains, which exhibit light-induced self-inactivation by generating reactive oxygen species, degFusionRed undergoes proteasomal degradation upon illumination with 567 nm light. Similarly to the parent protein, degFusionRed has minimal absorbance at 450 nm and above 650 nm, making it spectrally compatible with blue and near-infrared-light-controlled optogenetic tools. The autocatalytically formed chromophore provides degFusionRed with an additional advantage over most optogenetic tools that require the binding of the exogenous chromophores, the amount of which varies in different cells. The degFusionRed efficiently performed in the engineered light-controlled transcription factor and in the targeted photodegradation of the protein of interest, demonstrating its versatility as the optogenetic module of choice for spectral multiplexed interrogation of various cellular processes.
Collapse
Affiliation(s)
| | - Kyrylo Yu. Manoilov
- Department of Genetics and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Olena S. Oliinyk
- Medicum, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | - Daria M. Shcherbakova
- Department of Genetics and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Vladislav V. Verkhusha
- Medicum, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
- Department of Genetics and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
11
|
Targeting the Inside of Cells with Biologicals: Toxin Routes in a Therapeutic Context. BioDrugs 2023; 37:181-203. [PMID: 36729328 PMCID: PMC9893211 DOI: 10.1007/s40259-023-00580-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2023] [Indexed: 02/03/2023]
Abstract
Numerous toxins translocate to the cytosol in order to fulfil their function. This demonstrates the existence of routes for proteins from the extracellular space to the cytosol. Understanding these routes is relevant to multiple aspects related to therapeutic applications. These include the development of anti-toxin treatments, the potential use of toxins as shuttles for delivering macromolecular cargo to the cytosol or the use of drugs based on toxins. Compared with other strategies for delivery, such as chemicals as carriers for macromolecular delivery or physical methods like electroporation, toxin routes present paths into the cell that potentially cause less damage and can be specifically targeted. The efficiency of delivery via toxin routes is limited. However, low-delivery efficiencies can be entirely sufficient, if delivered cargoes possess an amplification effect or if very few molecules are sufficient for inducing the desired effects. This is known for example from RNA-based vaccines that have been developed during the coronavirus disease 2019 pandemic as well as for other approved RNA-based drugs, which elicited the desired effect despite their typically low delivery efficiencies. The different mechanisms by which toxins enter cells may have implications for their technological utility. We review the mechanistic principles of the translocation pathway of toxins from the extracellular space to the cytosol, the delivery efficiencies, and therapeutic strategies or applications that exploit toxin routes for intracellular delivery.
Collapse
|
12
|
Cabello-Alemán L. Future directions in cancer immunotherapy with monoclonal antibodies. RESEARCH RESULTS IN PHARMACOLOGY 2022. [DOI: 10.3897/rrpharmacology.8.85918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Introduction: Cancer immunotherapy with monoclonal antibodies (mAbs) has become a therapy with great potential nowadays. It is based on the affinity of antibodies to bind to specific molecules, thus inhibiting the growth and spread of cancer. There is a wide variety of mAbs with differentiated mechanisms and enormous clinical benefits. However, different immunotherapeutic alternatives have emerged due to their limitations, such as the long duration of organ toxicity and the inability to penetrate intracellularly. This mini-review will discuss the emerging alternatives of cancer immunotherapies based on mAbs.
Bispecific antibodies (BsAbs): Antibodies designed to bind to two epitopes of an antigen.
Antibody fragments: Fragments of the Fab region generated from the variable region of IgG and IgM and a scFv.
Antibody-drug conjugates (ADCs): Administration of mAbs and a toxin of high specificity for a tumour target.
Nanobodies (or nanocomponents): Small fragments of antibody heavy chain.
Intrabodies (or intracellular antibodies): Antibodies that are expressed intracellularly and synthesised inside cells by retroviral delivery systems.
Stereospecific and catalytic mAbs: Antibodies that recognise the 3D configurations of target molecules.
Combination immunotherapies: Therapies that combine cytokines with tumour-targeted mAbs.
Small molecule immunotherapeutics: Small molecule drugs that can stimulate intracellular pathways primarily involved in immune cell checkpoints and bind to mAb-like targets.
Conclusion: These new varieties of immunotherapy present significant advantages, but future research should continue to improve their efficacy and safety and identify new biomarkers.
Graphical abstract:
Collapse
|
13
|
Deiman FE, Bomer N, van der Meer P, Grote Beverborg N. Review: Precision Medicine Approaches for Genetic Cardiomyopathy: Targeting Phospholamban R14del. Curr Heart Fail Rep 2022; 19:170-179. [PMID: 35699837 PMCID: PMC9329159 DOI: 10.1007/s11897-022-00558-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/19/2022] [Indexed: 11/30/2022]
Abstract
PURPOSE OF REVIEW Heart failure is a syndrome with poor prognosis and no curative options for the majority of patients. The standard one-size-fits-all-treatment approach, targeting neurohormonal dysregulations, helps to modulate symptoms of heart failure, but fails to address the cause of the problem. Precision medicine aims to go beyond symptom modulation and targets pathophysiological mechanisms that underlie disease. In this review, an overview of how precision medicine can be approached as a treatment strategy for genetic heart disease will be discussed. PLN R14del, a genetic mutation known to cause cardiomyopathy, will be used as an example to describe the potential and pitfalls of precision medicine. RECENT FINDINGS PLN R14del is characterized by several disease hallmarks including calcium dysregulation, metabolic dysfunction, and protein aggregation. The identification of disease-related biological pathways and the effective targeting using several modalities, including gene silencing and signal transduction modulation, may eventually provide novel treatments for genetic heart disease. We propose a workflow on how to approach precision medicine in heart disease. This workflow focuses on deep phenotyping of patient derived material, including in vitro disease modeling. This will allow identification of therapeutic targets and disease modifiers, to be used for the identification of novel biomarkers and the development of precision medicine approaches for genetic cardiomyopathies.
Collapse
Affiliation(s)
- Frederik E Deiman
- Department of Cardiology, University Medical Center Groningen, University of Groningen, UMCG Post-zone AB43, PO Box 30.001, 9700 RB, Groningen, The Netherlands
| | - Nils Bomer
- Department of Cardiology, University Medical Center Groningen, University of Groningen, UMCG Post-zone AB43, PO Box 30.001, 9700 RB, Groningen, The Netherlands
| | - Peter van der Meer
- Department of Cardiology, University Medical Center Groningen, University of Groningen, UMCG Post-zone AB43, PO Box 30.001, 9700 RB, Groningen, The Netherlands
| | - Niels Grote Beverborg
- Department of Cardiology, University Medical Center Groningen, University of Groningen, UMCG Post-zone AB43, PO Box 30.001, 9700 RB, Groningen, The Netherlands.
| |
Collapse
|
14
|
Optogenetic technologies in translational cancer research. Biotechnol Adv 2022; 60:108005. [PMID: 35690273 DOI: 10.1016/j.biotechadv.2022.108005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 05/07/2022] [Accepted: 06/04/2022] [Indexed: 11/23/2022]
Abstract
Gene and cell therapies are widely recognized as future cancer therapeutics but poor controllability limits their clinical applications. Optogenetics, the use of light-controlled proteins to precisely spatiotemporally regulate the activity of genes and cells, opens up new possibilities for cancer treatment. Light of specific wavelength can activate the immune response, oncolytic activity and modulate cell signaling in tumor cells non-invasively, in dosed manner, with tissue confined action and without side effects of conventional therapies. Here, we review optogenetic approaches in cancer research, their clinical potential and challenges of incorporating optogenetics in cancer therapy. We critically discuss beneficial combinations of optogenetic technologies with therapeutic nanobodies, T-cell activation and CAR-T cell approaches, genome editors and oncolytic viruses. We consider viral vectors and nanoparticles for delivering optogenetic payloads and activating light to tumors. Finally, we highlight herein the prospects for integrating optogenetics into immunotherapy as a novel, fast, reversible and safe approach to cancer treatment.
Collapse
|
15
|
Tian Y, Tirrell MV, LaBelle JL. Harnessing the Therapeutic Potential of Biomacromolecules through Intracellular Delivery of Nucleic Acids, Peptides, and Proteins. Adv Healthc Mater 2022; 11:e2102600. [PMID: 35285167 PMCID: PMC9232950 DOI: 10.1002/adhm.202102600] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 02/09/2022] [Indexed: 12/19/2022]
Abstract
Biomacromolecules have long been at the leading edge of academic and pharmaceutical drug development and clinical translation. With the clinical advances of new therapeutics, such as monoclonal antibodies and nucleic acids, the array of medical applications of biomacromolecules has broadened considerably. A major on-going effort is to expand therapeutic targets within intracellular locations. Owing to their large sizes, abundant charges, and hydrogen-bond donors and acceptors, advanced delivery technologies are required to deliver biomacromolecules effectively inside cells. In this review, strategies used for the intracellular delivery of three major forms of biomacromolecules: nucleic acids, proteins, and peptides, are highlighted. An emphasis is placed on synthetic delivery approaches and the major hurdles needed to be overcome for their ultimate clinical translation.
Collapse
Affiliation(s)
- Yu Tian
- Pritzker School of Molecular EngineeringThe University of Chicago5640 S Ellis AveChicagoIL60637USA
| | - Matthew V. Tirrell
- Pritzker School of Molecular EngineeringThe University of Chicago5640 S Ellis AveChicagoIL60637USA
| | - James L. LaBelle
- Department of Pediatrics, Section of Hematology/OncologyThe University of Chicago900 E 57th StChicagoIL60637USA
| |
Collapse
|
16
|
Blocking phospholamban with VHH intrabodies enhances contractility and relaxation in heart failure. Nat Commun 2022; 13:3018. [PMID: 35641497 PMCID: PMC9156741 DOI: 10.1038/s41467-022-29703-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 03/28/2022] [Indexed: 12/19/2022] Open
Abstract
The dysregulated physical interaction between two intracellular membrane proteins, the sarco/endoplasmic reticulum Ca2+ ATPase and its reversible inhibitor phospholamban, induces heart failure by inhibiting calcium cycling. While phospholamban is a bona-fide therapeutic target, approaches to selectively inhibit this protein remain elusive. Here, we report the in vivo application of intracellular acting antibodies (intrabodies), derived from the variable domain of camelid heavy-chain antibodies, to modulate the function of phospholamban. Using a synthetic VHH phage-display library, we identify intrabodies with high affinity and specificity for different conformational states of phospholamban. Rapid phenotypic screening, via modified mRNA transfection of primary cells and tissue, efficiently identifies the intrabody with most desirable features. Adeno-associated virus mediated delivery of this intrabody results in improvement of cardiac performance in a murine heart failure model. Our strategy for generating intrabodies to investigate cardiac disease combined with modified mRNA and adeno-associated virus screening could reveal unique future therapeutic opportunities. Here the authors use modified RNA and VHH libraries to generate intrabodies that target dysregulated interactions between two calcium handling proteins in failing cardiomyocytes. Heart specific expression of the intrabodies in a murine heart failure model results in improved cardiac function.
Collapse
|
17
|
Kong Y, Zeng K, Zhang Y, Shao J, Yan J, Liao JY, Wang W, Dai X, Weng Q, Yao SQ, Zeng S, Qian L. In vivo targeted delivery of antibodies into cancer cells with pH-responsive cell-penetrating poly(disulfide)s. Chem Commun (Camb) 2022; 58:1314-1317. [PMID: 35005760 DOI: 10.1039/d1cc06840g] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Cell-penetrating poly(disulfide)s (CPDs) are promising vehicles for cytosolic delivery of proteins. However, currently available arginine-rich CPD has rarely been reported for systemic delivery due to its "always" positive charge. Herein, we developed pH-responsive CPDIMD that executes tumor targeting delivery via protonation of imidazole groups within the acidic tumor microenvironment.
Collapse
Affiliation(s)
- Yulong Kong
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China.
| | - Kui Zeng
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China.
| | - Ying Zhang
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China.
| | - Jinning Shao
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China.
| | - Jiaqi Yan
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China.
| | - Jia-Yu Liao
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China.
| | - Wenchao Wang
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China.
| | - Xiaoyang Dai
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China.
| | - Qinjie Weng
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China.
| | - Shao Q Yao
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| | - Su Zeng
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China.
| | - Linghui Qian
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
18
|
Serumula W, Fernandez G, Gonzalez VM, Parboosing R. Anti-HIV Aptamers: Challenges and Prospects. Curr HIV Res 2022; 20:7-19. [PMID: 34503417 DOI: 10.2174/1570162x19666210908114825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 08/06/2021] [Accepted: 08/11/2021] [Indexed: 02/08/2023]
Abstract
Human Immunodeficiency Virus (HIV) infection continues to be a significant health burden in many countries around the world. Current HIV treatment through a combination of different antiretroviral drugs (cART) effectively suppresses viral replication, but drug resistance and crossresistance are significant challenges. This has prompted the search for novel targets and agents, such as nucleic acid aptamers. Nucleic acid aptamers are oligonucleotides that attach to the target sites with high affinity and specificity. This review provides a target-by-target account of research into anti-HIV aptamers and summarises the challenges and prospects of this therapeutic strategy, specifically in the unique context of HIV infection.
Collapse
Affiliation(s)
- William Serumula
- Department of Virology, National Health Laboratory Service, University of KwaZulu-Natal, c/o Inkosi Albert Luthuli Central Hospital, 5th Floor Laboratory Building, 800 Bellair Road, Mayville, Durban 4091, South Africa
| | - Geronimo Fernandez
- Departamento de Bioquímica-Investigación, Aptus Biotech SL, Avda. Cardenal Herrera Oria, 298-28035 Madrid. Spain
| | - Victor M Gonzalez
- Departamento de Bioquímica-Investigación, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS)-Hospital Ramón y Cajal, 28034 Madrid, Spain
| | - Raveen Parboosing
- Department of Virology, National Health Laboratory Service, University of KwaZulu-Natal, c/o Inkosi Albert Luthuli Central Hospital, 5th Floor Laboratory Building, 800 Bellair Road, Mayville, Durban 4091, South Africa
| |
Collapse
|
19
|
Asaadi Y, Jouneghani FF, Janani S, Rahbarizadeh F. A comprehensive comparison between camelid nanobodies and single chain variable fragments. Biomark Res 2021; 9:87. [PMID: 34863296 PMCID: PMC8642758 DOI: 10.1186/s40364-021-00332-6] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/22/2021] [Indexed: 12/24/2022] Open
Abstract
By the emergence of recombinant DNA technology, many antibody fragments have been developed devoid of undesired properties of natural immunoglobulins. Among them, camelid heavy-chain variable domains (VHHs) and single-chain variable fragments (scFvs) are the most favored ones. While scFv is used widely in various applications, camelid antibodies (VHHs) can serve as an alternative because of their superior chemical and physical properties such as higher solubility, stability, smaller size, and lower production cost. Here, these two counterparts are compared in structure and properties to identify which one is more suitable for each of their various therapeutic, diagnosis, and research applications.
Collapse
Affiliation(s)
- Yasaman Asaadi
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Fatemeh Fazlollahi Jouneghani
- Department of Cell & Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Sara Janani
- Department of Cell & Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Fatemeh Rahbarizadeh
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
- Research and Development Center of Biotechnology, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
20
|
Akkapeddi P, Teng KW, Koide S. Monobodies as tool biologics for accelerating target validation and druggable site discovery. RSC Med Chem 2021; 12:1839-1853. [PMID: 34820623 PMCID: PMC8597423 DOI: 10.1039/d1md00188d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/26/2021] [Indexed: 12/21/2022] Open
Abstract
Despite increased investment and technological advancement, new drug approvals have not proportionally increased. Low drug approval rates, particularly for new targets, are linked to insufficient target validation at early stages. Thus, there remains a strong need for effective target validation techniques. Here, we review the use of synthetic binding proteins as tools for drug target validation, with focus on the monobody platform among several advanced synthetic binding protein platforms. Monobodies with high affinity and high selectivity can be rapidly developed against challenging targets, such as KRAS mutants, using protein engineering technologies. They have strong tendency to bind to functional sites and thus serve as drug-like molecules, and they can serve as targeting ligands for constructing bio-PROTACs. Genetically encoded monobodies are effective "tool biologics" for validating intracellular targets. They promote crystallization and help reveal the atomic structures of the monobody-target interface, which can inform drug design. Using case studies, we illustrate the potential of the monobody technology in accelerating target validation and small-molecule drug discovery.
Collapse
Affiliation(s)
- Padma Akkapeddi
- Perlmutter Cancer Center, New York University Langone Medical Center New York NY USA
| | - Kai Wen Teng
- Perlmutter Cancer Center, New York University Langone Medical Center New York NY USA
| | - Shohei Koide
- Perlmutter Cancer Center, New York University Langone Medical Center New York NY USA
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine New York NY USA
| |
Collapse
|
21
|
Le Saux S, Aubert-Pouëssel A, Mohamed KE, Martineau P, Guglielmi L, Devoisselle JM, Legrand P, Chopineau J, Morille M. Interest of extracellular vesicles in regards to lipid nanoparticle based systems for intracellular protein delivery. Adv Drug Deliv Rev 2021; 176:113837. [PMID: 34144089 DOI: 10.1016/j.addr.2021.113837] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/04/2021] [Accepted: 06/12/2021] [Indexed: 12/14/2022]
Abstract
Compared to chemicals that continue to dominate the overall pharmaceutical market, protein therapeutics offer the advantages of higher specificity, greater activity, and reduced toxicity. While nearly all existing therapeutic proteins were developed against soluble or extracellular targets, the ability for proteins to enter cells and target intracellular compartments can significantly broaden their utility for a myriad of exiting targets. Given their physical, chemical, biological instability that could induce adverse effects, and their limited ability to cross cell membranes, delivery systems are required to fully reveal their biological potential. In this context, as natural protein nanocarriers, extracellular vesicles (EVs) hold great promise. Nevertheless, if not present naturally, bringing an interest protein into EV is not an easy task. In this review, we will explore methods used to load extrinsic protein into EVs and compare these natural vectors to their close synthetic counterparts, liposomes/lipid nanoparticles, to induce intracellular protein delivery.
Collapse
|
22
|
Manoilov KY, Verkhusha VV, Shcherbakova DM. A guide to the optogenetic regulation of endogenous molecules. Nat Methods 2021; 18:1027-1037. [PMID: 34446923 DOI: 10.1038/s41592-021-01240-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 07/09/2021] [Indexed: 12/26/2022]
Abstract
Genetically encoded tools for the regulation of endogenous molecules (RNA, DNA elements and protein) are needed to study and control biological processes with minimal interference caused by protein overexpression and overactivation of signaling pathways. Here we focus on light-controlled optogenetic tools (OTs) that allow spatiotemporally precise regulation of gene expression and protein function. To control endogenous molecules, OTs combine light-sensing modules from natural photoreceptors with specific protein or nucleic acid binders. We discuss OT designs and group OTs according to the principles of their regulation. We outline characteristics of OT performance, discuss considerations for their use in vivo and review available OTs and their applications in cells and in vivo. Finally, we provide a brief outlook on the development of OTs.
Collapse
Affiliation(s)
- Kyrylo Yu Manoilov
- Department of Anatomy and Structural Biology and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Vladislav V Verkhusha
- Department of Anatomy and Structural Biology and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA. .,Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland. .,Science Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Russia.
| | - Daria M Shcherbakova
- Department of Anatomy and Structural Biology and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
23
|
Abstract
RAS proteins represent critical drivers of tumor development and thus are the focus of intense efforts to pharmacologically inhibit these proteins in human cancer. Although recent success has been attained in developing clinically efficacious inhibitors to KRASG12C, there remains a critical need for developing approaches to inhibit additional mutant RAS proteins. A number of anti-RAS biologics have been developed which reveal novel and potentially therapeutically targetable vulnerabilities in oncogenic RAS. This review will discuss the growing field of anti-RAS biologics and potential development of these reagents into new anti-RAS therapies.
Collapse
Affiliation(s)
- Michael Whaby
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| | - Imran Khan
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States; Ralph H. Johnson VA Medical Center, Charleston, SC, United States
| | - John P O'Bryan
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States; Ralph H. Johnson VA Medical Center, Charleston, SC, United States.
| |
Collapse
|
24
|
Chen YH, Yu SJ, Wu KJ, Wang YS, Tsai HM, Liao LW, Chen S, Hsieh W, Chen H, Hsu SC, Chen ML, Hoffer BJ, Wang Y. Downregulation of α-Synuclein Protein Levels by an Intracellular Single-Chain Antibody. JOURNAL OF PARKINSONS DISEASE 2021; 10:573-590. [PMID: 32176654 DOI: 10.3233/jpd-191787] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Accumulation of α-synuclein (αSyn) in the dopaminergic neurons is a common pathology seen in patients with Parkinson's disease (PD). Overproduction of αSyn potentiates the formation of oligomeric αSyn aggregates and enhances dopaminergic neuron degeneration. Downregulating intracellular monomeric αSyn prevents the formation of αSyn oligomers and is a potential therapeutic strategy to attenuate the progression of PD. OBJECTIVE The purpose of this study is to investigate the efficacy of gene delivery of αSyn-specific single-chain antibodies in vitro and in vivo. METHODS AND RESULTS The plasmids for αSyn and selective antibodies (NAC32, D10, and VH14) were constructed and were transfected to HEK293 and SH-SY5Y cells. Co-expression of αSyn with NAC32, but not D10 or VH14, profoundly downregulated αSyn protein, but not αSyn mRNA levels in these cells. The interaction of αSyn and NAC32 antibody was next examined in vivo. Adeno-associated virus (AAV)-αSyn combined with AAV-NAC32 or AAV-sc6H4 (a negative control virus) were stereotactically injected into the substantia nigra of adult rats. AAV-NAC32 significantly reduced AAV-encoded αSyn levels in the substantia nigra and striatum and increased tyrosine hydroxylase immunoreactivity in the striatum. Also, in the animals injected with AAV-NAC32 alone, endogenous αSyn protein levels were significantly downregulated in the substantia nigra. CONCLUSION Our data suggest that AAV-mediated gene transfer of NAC32 is a feasible approach for reducing the expression of target αSyn protein in brain.
Collapse
Affiliation(s)
- Yun-Hsiang Chen
- Department of Life Science, Fu-Jen Catholic University, New Taipei City, Taiwan
| | - Seong-Jin Yu
- Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan, Taiwan
| | - Kuo-Jen Wu
- Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan, Taiwan
| | - Yu-Syuan Wang
- Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan, Taiwan
| | - Ho-Min Tsai
- Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan, Taiwan
| | - Li-Wen Liao
- Department of Life Science, Fu-Jen Catholic University, New Taipei City, Taiwan
| | - Shuchun Chen
- Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan, Taiwan.,Graduate Institute of Applied Science and Engineering, Fu-Jen Catholic University, New Taipei City, Taiwan
| | - Wei Hsieh
- Department of Life Science, Fu-Jen Catholic University, New Taipei City, Taiwan.,Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan, Taiwan
| | - Hsi Chen
- Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan, Taiwan
| | - Shu-Ching Hsu
- Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,PhD Program in Tissue Engineering and Regenerative Medicine, National Chung Hsing University, Taichung City, Taiwan
| | - Mao-Liang Chen
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzy Chi Medical Foundation, New Taipei City, Taiwan
| | - Barry J Hoffer
- Department of Neurosurgery, Case Western Reserve University, School of Medicine, Cleveland, OH, USA
| | - Yun Wang
- Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan, Taiwan
| |
Collapse
|
25
|
Sun S, Ding Z, Yang X, Zhao X, Zhao M, Gao L, Chen Q, Xie S, Liu A, Yin S, Xu Z, Lu X. Nanobody: A Small Antibody with Big Implications for Tumor Therapeutic Strategy. Int J Nanomedicine 2021; 16:2337-2356. [PMID: 33790553 PMCID: PMC7997558 DOI: 10.2147/ijn.s297631] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/16/2021] [Indexed: 12/15/2022] Open
Abstract
The development of monoclonal antibody treatments for successful tumor-targeted therapies took several decades. However, the efficacy of antibody-based therapy is still confined and desperately needs further improvement. Nanobodies are the recombinant variable domains of heavy-chain-only antibodies, with many unique properties such as small size (~15kDa), excellent solubility, superior stability, ease of manufacture, quick clearance from blood, and deep tissue penetration, which gain increasing acceptance as therapeutical tools and are considered also as building blocks for chimeric antigen receptors as well as for targeted drug delivery. Thus, one of the promising novel developments that may address the deficiency of monoclonal antibody-based therapies is the utilization of nanobodies. This article provides readers the significant factors that the structural and biochemical properties of nanobodies and the research progress on nanobodies in the fields of tumor treatment, as well as their application prospect.
Collapse
Affiliation(s)
- Shuyang Sun
- International Nanobody Research Center, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
- School of Stomatology, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| | - Ziqiang Ding
- International Nanobody Research Center, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| | - Xiaomei Yang
- International Nanobody Research Center, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
- School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| | - Xinyue Zhao
- International Nanobody Research Center, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
- School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| | - Minlong Zhao
- International Nanobody Research Center, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
- School of Stomatology, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| | - Li Gao
- International Nanobody Research Center, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
- School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| | - Qu Chen
- International Nanobody Research Center, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
- School of Stomatology, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| | - Shenxia Xie
- International Nanobody Research Center, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
- Department of Pharmacology, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| | - Aiqun Liu
- International Nanobody Research Center, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| | - Shihua Yin
- International Nanobody Research Center, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| | - Zhiping Xu
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, QLD, 4072, Australia
| | - Xiaoling Lu
- International Nanobody Research Center, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
- School of Stomatology, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| |
Collapse
|
26
|
Hu S, Xiong H, Kang X, Wang S, Zhang T, Yuan Q, Tian D. Preparation and functional evaluation of monoclonal antibodies targeting Hepatitis B Virus Polymerase. Virulence 2021; 12:188-194. [PMID: 33356842 PMCID: PMC7834045 DOI: 10.1080/21505594.2020.1869391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
HBV pol plays a critical role in the replication of hepatitis B virus (HBV). Previous studies conducted on HBV pol have produced limited evidence on HBV pol expression due to the lack of effective detection methods. The present study used the HBV pol (159–406 aa) protein as a target to screen for specific monoclonal antibodies that recognize HBV pol and subsequently evaluate their diagnostic and therapeutic value. Four antibodies (P3, P5, P12, P20) against HBV pol were obtained. Among them, the P20 antibody indicated optimal binding with HBV pol as demonstrated by Western blotting (WB) in a cell model transfected with the HBV genome. We also expressed P5 and P12 antibodies in mouse liver cells by transfection and the results indicated significant antiviral effects caused by these two antibodies especially P12. In summary, the present study established an antibody which was denoted P20. This antibody can be used to detect HBV pol expression by four HBV genomes via WB analysis. In addition, the antibody denoted P12 could exert antiviral effects via intracellular expression, which may provide a promising approach for the treatment of chronic hepatitis B.
Collapse
Affiliation(s)
- Song Hu
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei Province, China
| | - Hualong Xiong
- School of Life Science & School of Public Health; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University , Xiamen, China
| | - Xiaozhen Kang
- School of Life Science & School of Public Health; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University , Xiamen, China
| | - Shaojuan Wang
- School of Life Science & School of Public Health; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University , Xiamen, China
| | - Tianying Zhang
- School of Life Science & School of Public Health; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University , Xiamen, China
| | - Quan Yuan
- School of Life Science & School of Public Health; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University , Xiamen, China
| | - Deying Tian
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei Province, China
| |
Collapse
|
27
|
Mir MA, Mehraj U, Sheikh BA, Hamdani SS. Nanobodies: The "Magic Bullets" in therapeutics, drug delivery and diagnostics. Hum Antibodies 2020; 28:29-51. [PMID: 31322555 DOI: 10.3233/hab-190390] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Antibodies represent a well-established class of clinical diagnostics for medical applications as well as essential research and biotechnological tools. Although both polyclonal and monoclonal antibodies are indispensable reagents in basic research and diagnostics but both of them have their limitations. Hence, there is urgent need to develop strategies aimed at production of alternative scaffolds and recombinant antibodies of smaller dimensions that could be easily produced, selected and manipulated. Unlike conventional antibodies, members of Camelidae and sharks produce antibodies composed only of heavy chains with small size, high solubility, thermal stability, refolding capacity and good tissue penetration in vivo. The discovery of these naturally occurring antibodies having only heavy-chain in Camelidae family and their further development into small recombinant nanobodies represents an attractive alternative in drug delivery, diagnostics and imaging. Nanobody derivatives are soluble, stable, versatile, have unique refolding capacities, reduced aggregation tendencies and high-target binding capabilities. They can be genetically customized to target enzymes, transmembrane proteins or molecular interactions. Their ability to recognize recessed antigenic sites has been attributed to their smaller size and the ability of the extended CDR3 loop to quickly penetrate into such epitopes. With the advent of molecular engineering and phage display technology, they can be of potential use in molecular imaging, drug delivery and therapeutics for several major diseases. In this review we present the recent advances in nanobodies for modulating immune functions, for targeting cancers, viruses, toxins and microbes as well as their utility as diagnostic and biosensor tools.
Collapse
|
28
|
Zhang C, Ötjengerdes RM, Roewe J, Mejias R, Marschall ALJ. Applying Antibodies Inside Cells: Principles and Recent Advances in Neurobiology, Virology and Oncology. BioDrugs 2020; 34:435-462. [PMID: 32301049 PMCID: PMC7391400 DOI: 10.1007/s40259-020-00419-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
To interfere with cell function, many scientists rely on methods that target DNA or RNA due to the ease with which they can be applied. Proteins are usually the final executors of function but are targeted only indirectly by these methods. Recent advances in targeted degradation of proteins based on proteolysis-targeting chimaeras (PROTACs), ubiquibodies, deGradFP (degrade Green Fluorescent Protein) and other approaches have demonstrated the potential of interfering directly at the protein level for research and therapy. Proteins can be targeted directly and very specifically by antibodies, but using antibodies inside cells has so far been considered to be challenging. However, it is possible to deliver antibodies or other proteins into the cytosol using standard laboratory equipment. Physical methods such as electroporation have been demonstrated to be efficient and validated thoroughly over time. The expression of intracellular antibodies (intrabodies) inside cells is another way to interfere with intracellular targets at the protein level. Methodological strategies to target the inside of cells with antibodies, including delivered antibodies and expressed antibodies, as well as applications in the research areas of neurobiology, viral infections and oncology, are reviewed here. Antibodies have already been used to interfere with a wide range of intracellular targets. Disease-related targets included proteins associated with neurodegenerative diseases such as Parkinson's disease (α-synuclein), Alzheimer's disease (amyloid-β) or Huntington's disease (mutant huntingtin [mHtt]). The applications of intrabodies in the context of viral infections include targeting proteins associated with HIV (e.g. HIV1-TAT, Rev, Vif, gp41, gp120, gp160) and different oncoviruses such as human papillomavirus (HPV), hepatitis B virus (HBV), hepatitis C virus (HCV) and Epstein-Barr virus, and they have been used to interfere with various targets related to different processes in cancer, including oncogenic pathways, proliferation, cell cycle, apoptosis, metastasis, angiogenesis or neo-antigens (e.g. p53, human epidermal growth factor receptor-2 [HER2], signal transducer and activator of transcription 3 [STAT3], RAS-related RHO-GTPase B (RHOB), cortactin, vascular endothelial growth factor receptor 2 [VEGFR2], Ras, Bcr-Abl). Interfering at the protein level allows questions to be addressed that may remain unanswered using alternative methods. This review addresses why direct targeting of proteins allows unique insights, what is currently feasible in vitro, and how this relates to potential therapeutic applications.
Collapse
Affiliation(s)
- Congcong Zhang
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt am Main, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rina M Ötjengerdes
- Hannover Medical School (MHH), Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Julian Roewe
- German Cancer Consortium (DKTK) Clinical Cooperation Unit (CCU) Neuroimmunology and Brain TumorImmunology (D170), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rebeca Mejias
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Andrea L J Marschall
- Technische Universität Braunschweig, Institute of Biochemistry, Biotechnology and Bioinformatics, Brunswick, Germany.
| |
Collapse
|
29
|
Kwon S, Iba M, Kim C, Masliah E. Immunotherapies for Aging-Related Neurodegenerative Diseases-Emerging Perspectives and New Targets. Neurotherapeutics 2020; 17:935-954. [PMID: 32347461 PMCID: PMC7222955 DOI: 10.1007/s13311-020-00853-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Neurological disorders such as Alzheimer's disease (AD), Lewy body dementia (LBD), frontotemporal dementia (FTD), and vascular dementia (VCID) have no disease-modifying treatments to date and now constitute a dementia crisis that affects 5 million in the USA and over 50 million worldwide. The most common pathological hallmark of these age-related neurodegenerative diseases is the accumulation of specific proteins, including amyloid beta (Aβ), tau, α-synuclein (α-syn), TAR DNA-binding protein 43 (TDP43), and repeat-associated non-ATG (RAN) peptides, in the intra- and extracellular spaces of selected brain regions. Whereas it remains controversial whether these accumulations are pathogenic or merely a byproduct of disease, the majority of therapeutic research has focused on clearing protein aggregates. Immunotherapies have garnered particular attention for their ability to target specific protein strains and conformations as well as promote clearance. Immunotherapies can also be neuroprotective: by neutralizing extracellular protein aggregates, they reduce spread, synaptic damage, and neuroinflammation. This review will briefly examine the current state of research in immunotherapies against the 3 most commonly targeted proteins for age-related neurodegenerative disease: Aβ, tau, and α-syn. The discussion will then turn to combinatorial strategies that enhance the effects of immunotherapy against aggregating protein, followed by new potential targets of immunotherapy such as aging-related processes.
Collapse
Affiliation(s)
- Somin Kwon
- Laboratory of Neurogenetics, Molecular Neuropathology Section, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Michiyo Iba
- Laboratory of Neurogenetics, Molecular Neuropathology Section, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Changyoun Kim
- Laboratory of Neurogenetics, Molecular Neuropathology Section, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Eliezer Masliah
- Laboratory of Neurogenetics, Molecular Neuropathology Section, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA.
- Division of Neuroscience, National Institute on Aging/National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
30
|
Ferrantelli F, Chiozzini C, Leone P, Manfredi F, Federico M. Engineered Extracellular Vesicles/Exosomes as a New Tool against Neurodegenerative Diseases. Pharmaceutics 2020; 12:E529. [PMID: 32526949 PMCID: PMC7357062 DOI: 10.3390/pharmaceutics12060529] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/02/2020] [Accepted: 06/06/2020] [Indexed: 12/11/2022] Open
Abstract
Neurodegenerative diseases are commonly generated by intracellular accumulation of misfolded/aggregated mutated proteins. These abnormal protein aggregates impair the functions of mitochondria and induce oxidative stress, thereby resulting in neuronal cell death. In turn, neuronal damage induces chronic inflammation and neurodegeneration. Thus, reducing/eliminating these abnormal protein aggregates is a priority for any anti-neurodegenerative therapeutic approach. Although several antibodies against mutated neuronal proteins have been already developed, how to efficiently deliver them inside the target cells remains an unmet issue. Extracellular vesicles/exosomes incorporating intrabodies against the pathogenic products would be a tool for innovative therapeutic approaches. In this review/perspective article, we identify and describe the major molecular targets associated with neurodegenerative diseases, as well as the antibodies already developed against them. Finally, we propose a novel targeting strategy based on the endogenous engineering of extracellular vesicles/exosomes constitutively released by cells of the central nervous system.
Collapse
Affiliation(s)
- Flavia Ferrantelli
- National Center for Global Health, Istituto Superiore Di Sanità (ISS), 00161 Rome, Italy; (C.C.); (P.L.); (F.M.)
| | | | | | | | - Maurizio Federico
- National Center for Global Health, Istituto Superiore Di Sanità (ISS), 00161 Rome, Italy; (C.C.); (P.L.); (F.M.)
| |
Collapse
|
31
|
Lin Y, Chen Z, Hu C, Chen ZS, Zhang L. Recent progress in antitumor functions of the intracellular antibodies. Drug Discov Today 2020; 25:1109-1120. [DOI: 10.1016/j.drudis.2020.02.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 02/10/2020] [Accepted: 02/20/2020] [Indexed: 02/07/2023]
|
32
|
Sabet NS, Atashbar S, Khanlou EM, Kahrizi F, Salimi A. Curcumin attenuates bevacizumab-induced toxicity via suppressing oxidative stress and preventing mitochondrial dysfunction in heart mitochondria. Naunyn Schmiedebergs Arch Pharmacol 2020; 393:1447-1457. [PMID: 32172286 DOI: 10.1007/s00210-020-01853-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 03/06/2020] [Indexed: 12/18/2022]
Abstract
Heart failure was subsequently noted in 2-4% of patients on bevacizumab (BEV). Whereas mitochondria play an important role in myocardial tissue homeostasis, deterioration in mitochondrial function will eventually lead to cardiomyocyte cell death and consequently cardiovascular dysfunction. Therefore, the aim of our study is to search the effects of BEV on isolated rat heart mitochondria and cardiomyocytes, and survey the effect of curcumin as a mitochondrial protective and cardioprotective agent. Rat heart mitochondria and cardiomyocytes were isolated from adult rat heart ventricular. By using biochemical and flow cytometry evaluations, the parameters of mitochondrial toxicity including succinate dehydrogenase (SDH) activity, mitochondrial swelling, mitochondrial membrane potential (MMP) collapse, reactive oxygen species (ROS) formation and lipid peroxidation (LP), and cellular assays such as cytotoxicity and MMP collapse were evaluated. Results revealed that BEV (up to 50 μg/ml) induced a concentration- and time-dependent rise in mitochondrial ROS formation, MMP collapse, mitochondrial swelling, LP, and inhibition of SDH in rat heart mitochondria. Our results showed that curcumin (10-100 μM) significantly ameliorated BEV-induced mitochondrial toxicities. Also, our results in cellular assays confirmed amelioration effect of curcumin against BEV toxicity. These results indicate that the cardiotoxic effects of BEV are associated with mitochondrial dysfunction and ROS formation, which finally ends in MMP collapse and mitochondrial swelling as the "point of no return" in the cascade of events leading to apoptosis. Also, results of this study suggest that probably the combination therapy of BEV and curcumin could decrease mitochondrial effects of this drug.
Collapse
Affiliation(s)
- Nima Shokouhi Sabet
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, P.O. Box: 56189-53141, Ardabil, Iran
| | - Saman Atashbar
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, P.O. Box: 56189-53141, Ardabil, Iran
| | - Elham Mohammad Khanlou
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, P.O. Box: 56189-53141, Ardabil, Iran
| | - Farzad Kahrizi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Damghan Islamic Azad University, Damghan, Iran
| | - Ahmad Salimi
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, P.O. Box: 56189-53141, Ardabil, Iran.
| |
Collapse
|
33
|
Seo Y, Lee Y, Kim M, Park H, Kwon MH. Assembly and Folding Properties of Cytosolic IgG Intrabodies. Sci Rep 2020; 10:2140. [PMID: 32034177 PMCID: PMC7005851 DOI: 10.1038/s41598-020-58798-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 01/21/2020] [Indexed: 11/15/2022] Open
Abstract
Intrabodies, antibodies expressed within cells, offer an interesting way to target intracellular molecules, making them potentially useful for biotechnology and medicine. However, it remains controversial whether full-size IgG intrabodies expressed in the reducing environment of the cytosol of mammalian cells are workable and structurally sound. Herein, we settle this issue with a systematic investigation of the structure and functionality of four chimeric IgG1s with distinct variable (V) domains but identical constant (C) domains. Full-size IgGs expressed in the cytosol of HEK293 cells were either assembly-competent or -incompetent, depending on the intrinsic properties of the V regions. Structural integrity of the C region is required for H:L association and the formation of a functional antigen-binding site. Partial intrachain disulfide bond formation occurs in both H and L chains of cytosolic IgG intrabodies, whereas interchain disulfide bond formation was absent and dispensable for functional assembly. IgG1s expressed in the cytosol and via the ER were shown to assemble differently. Our findings provide insight into the features and possible utilization of full-size IgGs as cytosolic antibodies in biotechnological and medical applications.
Collapse
Affiliation(s)
- Youngsil Seo
- Department of Biomedical Sciences, Graduate School, Ajou University, 206 World cup-ro, Yeongtong-gu, Suwon, 16499, Gyeonggi-do, South Korea.,Department of Microbiology, Ajou University School of Medicine, 206 World cup-ro, Yeongtong-gu, Suwon, 16499, Gyeonggi-do, South Korea
| | - Yeonjin Lee
- Department of Biomedical Sciences, Graduate School, Ajou University, 206 World cup-ro, Yeongtong-gu, Suwon, 16499, Gyeonggi-do, South Korea.,Department of Microbiology, Ajou University School of Medicine, 206 World cup-ro, Yeongtong-gu, Suwon, 16499, Gyeonggi-do, South Korea
| | - Minjae Kim
- Department of Biomedical Sciences, Graduate School, Ajou University, 206 World cup-ro, Yeongtong-gu, Suwon, 16499, Gyeonggi-do, South Korea.,Department of Microbiology, Ajou University School of Medicine, 206 World cup-ro, Yeongtong-gu, Suwon, 16499, Gyeonggi-do, South Korea
| | - Hyunjoon Park
- Department of Biomedical Sciences, Graduate School, Ajou University, 206 World cup-ro, Yeongtong-gu, Suwon, 16499, Gyeonggi-do, South Korea.,Department of Microbiology, Ajou University School of Medicine, 206 World cup-ro, Yeongtong-gu, Suwon, 16499, Gyeonggi-do, South Korea
| | - Myung-Hee Kwon
- Department of Biomedical Sciences, Graduate School, Ajou University, 206 World cup-ro, Yeongtong-gu, Suwon, 16499, Gyeonggi-do, South Korea. .,Department of Microbiology, Ajou University School of Medicine, 206 World cup-ro, Yeongtong-gu, Suwon, 16499, Gyeonggi-do, South Korea.
| |
Collapse
|
34
|
Optimizing intracellular antibodies (intrabodies/nanobodies) to treat neurodegenerative disorders. Neurobiol Dis 2020; 134:104619. [DOI: 10.1016/j.nbd.2019.104619] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/05/2019] [Accepted: 09/19/2019] [Indexed: 01/27/2023] Open
|
35
|
Redchuk TA, Karasev MM, Verkhusha PV, Donnelly SK, Hülsemann M, Virtanen J, Moore HM, Vartiainen MK, Hodgson L, Verkhusha VV. Optogenetic regulation of endogenous proteins. Nat Commun 2020; 11:605. [PMID: 32001718 PMCID: PMC6992714 DOI: 10.1038/s41467-020-14460-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 01/12/2020] [Indexed: 12/21/2022] Open
Abstract
Techniques of protein regulation, such as conditional gene expression, RNA interference, knock-in and knock-out, lack sufficient spatiotemporal accuracy, while optogenetic tools suffer from non-physiological response due to overexpression artifacts. Here we present a near-infrared light-activatable optogenetic system, which combines the specificity and orthogonality of intrabodies with the spatiotemporal precision of optogenetics. We engineer optically-controlled intrabodies to regulate genomically expressed protein targets and validate the possibility to further multiplex protein regulation via dual-wavelength optogenetic control. We apply this system to regulate cytoskeletal and enzymatic functions of two non-tagged endogenous proteins, actin and RAS GTPase, involved in complex functional networks sensitive to perturbations. The optogenetically-enhanced intrabodies allow fast and reversible regulation of both proteins, as well as simultaneous monitoring of RAS signaling with visible-light biosensors, enabling all-optical approach. Growing number of intrabodies should make their incorporation into optogenetic tools the versatile technology to regulate endogenous targets.
Collapse
Affiliation(s)
- Taras A Redchuk
- Medicum, Faculty of Medicine, University of Helsinki, Helsinki, 00290, Finland
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, 00790, Finland
| | - Maksim M Karasev
- Medicum, Faculty of Medicine, University of Helsinki, Helsinki, 00290, Finland
| | - Polina V Verkhusha
- Department of Anatomy and Structural Biology, and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Sara K Donnelly
- Department of Anatomy and Structural Biology, and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Maren Hülsemann
- Department of Anatomy and Structural Biology, and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Jori Virtanen
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, 00790, Finland
| | - Henna M Moore
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, 00790, Finland
| | - Maria K Vartiainen
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, 00790, Finland
| | - Louis Hodgson
- Department of Anatomy and Structural Biology, and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Vladislav V Verkhusha
- Medicum, Faculty of Medicine, University of Helsinki, Helsinki, 00290, Finland.
- Department of Anatomy and Structural Biology, and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| |
Collapse
|
36
|
Behring S, Hänsch R, Helmsing S, Schirrmann T, Schubert M. Screening for scFv-fragments that are stable and active in the cytosol. Hum Antibodies 2020; 28:149-157. [PMID: 32116242 DOI: 10.3233/hab-200402] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Intrabodies are antibodies that are not secreted but bind to their antigens inside the cell producing them. Intrabodies targeting antigens in the endoplasmatic reticulum were successfully used in vitro and in vivo. However, many target antigens interesting for research or therapy are located in the reducing environment of the cytosol, where correct folding and formation of disulfide bonds cannot be ensured. The majority of different scFv fragments, when expressed in the cytosol of the cell, do not fold correctly, are not stable or cannot bind their antigen. Such scFv antibodies are therefore not suited as intrabodies.In this study, we evaluated fast and simple screening methods to identify scFv fragments that are stable and functional in the cytosol. We analyzed various phage display derived human scFv antibodies recognizing extracellular signal-regulated kinase 2 (Erk2) for stability and antigen binding under reducing and non-reducing conditions. Further, we developed an assay allowing to measure the interaction of the scFv intrabodies with their antigen in the cytosol of in living cells, by using a Split-Luciferase (Split-Luc) assay. ScFv fragments showing antigen binding in the cytosol could successfully be identified.
Collapse
Affiliation(s)
- Stefanie Behring
- Technische Universität Braunschweig, Institute of Biochemistry, Biotechnology and Bioinformatics, Braunschweig, Germany
| | - Robert Hänsch
- Technische Universität Braunschweig, Institute of Biochemistry, Biotechnology and Bioinformatics, Braunschweig, Germany
- Technische Universität Braunschweig, Institute of Plant Biology, Braunschweig, Germany
| | - Saskia Helmsing
- Technische Universität Braunschweig, Institute of Biochemistry, Biotechnology and Bioinformatics, Braunschweig, Germany
| | - Thomas Schirrmann
- Technische Universität Braunschweig, Institute of Biochemistry, Biotechnology and Bioinformatics, Braunschweig, Germany
- Yumab GmbH, Braunschweig, Germany
| | - Maren Schubert
- Technische Universität Braunschweig, Institute of Biochemistry, Biotechnology and Bioinformatics, Braunschweig, Germany
| |
Collapse
|
37
|
Single-domain antibodies for functional targeting of the signaling scaffold Shoc2. Mol Immunol 2019; 118:110-116. [PMID: 31869742 DOI: 10.1016/j.molimm.2019.12.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/22/2019] [Accepted: 12/14/2019] [Indexed: 12/20/2022]
Abstract
The accurate transmission of signals by the canonical ERK1/2 kinase pathway critically relies on the proper assembly of an intricate multiprotein complex by the scaffold protein Shoc2. However, the details of the mechanism by which Shoc2 guides ERK1/2 signals are not clear, in part, due to the lack of research tools targeting specific protein binding moieties of Shoc2. We report generation and characterization of single domain antibodies against human Shoc2 using a universal synthetic library of humanized nanobodies. Our results identify eight synthetic single-domain antibodies and show that two evaluated antibodies have binding affinities to Shoc2 in the nanomolar range. High affinity antibodies were uniquely suited for the analysis of the Shoc2 complex assembly. Selected single-domain antibodies were also functional in intracellular assays. This study illustrates that Shoc2 single-domain antibodies can be used to understand functional mechanisms governing complex multiprotein signaling modules and have promise in application for therapies that require modulation of the ERK1/2-associated diseases.
Collapse
|
38
|
Intrabody against prolyl hydroxylase 2 promotes angiogenesis by stabilizing hypoxia-inducible factor-1α. Sci Rep 2019; 9:11861. [PMID: 31413262 PMCID: PMC6694103 DOI: 10.1038/s41598-019-47891-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 07/25/2019] [Indexed: 12/21/2022] Open
Abstract
Hypoxia-inducible factor (HIF)-1α is a crucial transcription factor that regulates the expression of target genes involved in angiogenesis. Prolyl hydroxylase 2 (PHD2) dominantly hydroxylates two highly conserved proline residues of HIF-1α to promote its degradation. This study was designed to construct an intrabody against PHD2 that can inhibit PHD2 activity and promote angiogenesis. Single-chain variable fragment (scFv) against PHD2, INP, was isolated by phage display technique and was modified with an endoplasmic reticulum (ER) sequence to obtain ER-retained intrabody against PHD2 (ER-INP). ER-INP was efficiently expressed and bound to PHD2 in cells, significantly increased the levels of HIF-1α, and decreased hydroxylated HIF-1α in human embryonic kidney cell line (HEK293) cells and mouse mononuclear macrophage leukaemia cell line (RAW264.7) cells. ER-INP has shown distinct angiogenic activity both in vitro and in vivo, as ER-INP expression significantly promoted the migration and tube formation of human umbilical vein endothelial cells (HUVECs) and enhanced angiogenesis of chick chorioallantoic membranes (CAMs). Furthermore, ER-INP promoted distinct expression and secretion of a range of angiogenic factors. To the best of our knowledge, this is the first study to report an ER-INP intrabody enhancing angiogenesis by blocking PHD2 activity to increase HIF-1α abundance and activity. These results indicate that ER-INP may play a role in the clinical treatment of tissue injury and ischemic diseases in the future.
Collapse
|
39
|
de Souza AR, Yamin M, Gava D, Zanella JRC, Gatti MSV, Bonafe CFS, de Lima Neto DF. Porcine parvovirus VP1/VP2 on a time series epitope mapping: exploring the effects of high hydrostatic pressure on the immune recognition of antigens. Virol J 2019; 16:75. [PMID: 31159841 PMCID: PMC6547530 DOI: 10.1186/s12985-019-1165-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 04/17/2019] [Indexed: 11/24/2022] Open
Abstract
Porcine parvovirus (PPV) is a DNA virus that causes reproductive failure in gilts and sows, resulting in embryonic and fetal losses worldwide. Epitope mapping of PPV is important for developing new vaccines. In this study, we used spot synthesis analysis for epitope mapping of the capsid proteins of PPV (NADL-2 strain) and correlated the findings with predictive data from immunoinformatics. The virus was exposed to three conditions prior to inoculation in pigs: native (untreated), high hydrostatic pressure (350 MPa for 1 h) at room temperature and high hydrostatic pressure (350 MPa for 1 h) at − 18 °C, and was compared with a commercial vaccine produced using inactivated PPV. The screening of serum samples detected 44 positive spots corresponding to 20 antigenic sites. Each type of inoculated antigen elicited a distinct epitope set. In silico prediction located linear and discontinuous epitopes in B cells that coincided with several epitopes detected in spot synthesis of sera from pigs that received different preparations of inoculum. The conditions tested elicited antibodies against the VP1/VP2 antigen that differed in relation to the response time and the profile of structurally available regions that were recognized.
Collapse
Affiliation(s)
- Ancelmo Rabelo de Souza
- Departamento de Bioquímica e Biologia Tecidual, Universidade Estadual de Campimas (UNICAMP), Rua Monteiro Lobato, 255, Cidade Universitária Zeferino Vaz, Campinas, SP, 13083-862, Brazil
| | - Marriam Yamin
- Departamento de Bioquímica e Biologia Tecidual, Universidade Estadual de Campimas (UNICAMP), Rua Monteiro Lobato, 255, Cidade Universitária Zeferino Vaz, Campinas, SP, 13083-862, Brazil
| | - Danielle Gava
- Embrapa Suínos e Aves, Laboratório de Virologia de Suínos, Concórdia, SC, 89715-899, Brazil
| | | | - Maria Sílvia Viccari Gatti
- Departamento de Bioquímica e Biologia Tecidual, Universidade Estadual de Campimas (UNICAMP), Rua Monteiro Lobato, 255, Cidade Universitária Zeferino Vaz, Campinas, SP, 13083-862, Brazil
| | - Carlos Francisco Sampaio Bonafe
- Departamento de Bioquímica e Biologia Tecidual, Universidade Estadual de Campimas (UNICAMP), Rua Monteiro Lobato, 255, Cidade Universitária Zeferino Vaz, Campinas, SP, 13083-862, Brazil
| | - Daniel Ferreira de Lima Neto
- Departamento de Bioquímica e Biologia Tecidual, Universidade Estadual de Campimas (UNICAMP), Rua Monteiro Lobato, 255, Cidade Universitária Zeferino Vaz, Campinas, SP, 13083-862, Brazil. .,Departamento de Genética, Evolução e Bioagentes, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Rua Monteiro Lobato, 255, Cidade Universitária Zeferino Vaz, Campinas, SP, 13083-862, Brazil.
| |
Collapse
|
40
|
Singh K, Ejaz W, Dutta K, Thayumanavan S. Antibody Delivery for Intracellular Targets: Emergent Therapeutic Potential. Bioconjug Chem 2019; 30:1028-1041. [PMID: 30830750 PMCID: PMC6470022 DOI: 10.1021/acs.bioconjchem.9b00025] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Proteins have sparked fast growing interest as biological therapeutic agents for several diseases. Antibodies, in particular, carry an enormous potential as drugs owing to their remarkable target specificity and low immunogenicity. Although the market has numerous antibodies directed toward extracellular targets, their use in targeting therapeutically important intracellular targets is limited by their inability to cross cellular membrane. Realizing the potential for antibody therapy in disease treatment, progress has been made in the development of methods to deliver antibodies intracellularly. In this review, we address various platforms for delivery of antibodies and their merits and drawbacks.
Collapse
|
41
|
Heukers R, De Groof TW, Smit MJ. Nanobodies detecting and modulating GPCRs outside in and inside out. Curr Opin Cell Biol 2019; 57:115-122. [DOI: 10.1016/j.ceb.2019.01.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/29/2019] [Accepted: 01/31/2019] [Indexed: 12/19/2022]
|
42
|
De Groof TWM, Bobkov V, Heukers R, Smit MJ. Nanobodies: New avenues for imaging, stabilizing and modulating GPCRs. Mol Cell Endocrinol 2019; 484:15-24. [PMID: 30690070 DOI: 10.1016/j.mce.2019.01.021] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/22/2019] [Accepted: 01/22/2019] [Indexed: 12/30/2022]
Abstract
The family of G protein-coupled receptors (GPCRs) is the largest class of membrane proteins and an important drug target due to their role in many (patho)physiological processes. Besides small molecules, GPCRs can be targeted by biologicals including antibodies and antibody fragments. This review describes the use of antibodies and in particular antibody fragments from camelid-derived heavy chain-only antibodies (nanobodies/VHHs/sdAbs) for detecting, stabilizing, modulating and therapeutically targeting GPCRs. Altogether, it becomes increasingly clear that the small size, structure and protruding antigen-binding loops of nanobodies are favorable features for the development of selective and potent GPCRs-binding molecules. This makes them attractive tools to modulate GPCR activity but also as targeting modalities for GPCR-directed therapeutics. In addition, these antibody-fragments are important tools in the stabilization of particular conformations of these receptors. Lastly, nanobodies, in contrast to conventional antibodies, can also easily be expressed intracellularly which render nanobodies important tools for studying GPCR function. Hence, GPCR-targeting nanobodies are ideal modalities to image, stabilize and modulate GPCR function.
Collapse
Affiliation(s)
- Timo W M De Groof
- Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Division of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit, De Boelelaan 1108, 1081 HZ, Amsterdam, the Netherlands
| | - Vladimir Bobkov
- Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Division of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit, De Boelelaan 1108, 1081 HZ, Amsterdam, the Netherlands; Argenx BVBA, Industriepark Zwijnaarde 7, 9052, Zwijnaarde, Belgium
| | - Raimond Heukers
- Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Division of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit, De Boelelaan 1108, 1081 HZ, Amsterdam, the Netherlands; QVQ Holding B.V., Yalelaan 1, 3484 CL, Utrecht, the Netherlands
| | - Martine J Smit
- Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Division of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit, De Boelelaan 1108, 1081 HZ, Amsterdam, the Netherlands.
| |
Collapse
|
43
|
Denis HL, Lauruol F, Cicchetti F. Are immunotherapies for Huntington's disease a realistic option? Mol Psychiatry 2019; 24:364-377. [PMID: 29487401 DOI: 10.1038/s41380-018-0021-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 12/22/2017] [Accepted: 01/15/2018] [Indexed: 01/28/2023]
Abstract
There is compelling evidence that the pathophysiology of many neurodegenerative diseases includes dysregulation of the immune system, with some elements that precede disease onset. However, if these alterations are prominent, why have clinical trials targeting this system failed to translate into long-lasting meaningful benefits for patients? This review focuses on Huntington's disease, a genetic disorder marked by notable cerebral and peripheral inflammation. We summarize ongoing and completed clinical trials that have involved pharmacological approaches to inhibit various components of the immune system and their pre-clinical correlates. We then discuss new putative treatment strategies using more targeted immunotherapies such as vaccination and intrabodies and how these may offer new hope in the treatment of Huntington's disease as well as other neurodegenerative diseases.
Collapse
Affiliation(s)
- Hélèna L Denis
- Centre de Recherche du CHU de Québec, Université Laval, Québec, QC, G1V 4G2, Canada.,Département de Psychiatrie & Neurosciences, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Florian Lauruol
- Centre de Recherche du CHU de Québec, Université Laval, Québec, QC, G1V 4G2, Canada.,Département de Psychiatrie & Neurosciences, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Francesca Cicchetti
- Centre de Recherche du CHU de Québec, Université Laval, Québec, QC, G1V 4G2, Canada. .,Département de Psychiatrie & Neurosciences, Université Laval, Québec, QC, G1V 0A6, Canada.
| |
Collapse
|
44
|
Khodabakhsh F, Behdani M, Rami A, Kazemi-Lomedasht F. Single-Domain Antibodies or Nanobodies: A Class of Next-Generation Antibodies. Int Rev Immunol 2019; 37:316-322. [DOI: 10.1080/08830185.2018.1526932] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Farnaz Khodabakhsh
- Department of Genetics and Advanced Medical Technology, Medical Biotechnology Research Center, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Mahdi Behdani
- Venom & Biotherapeutics Molecules Lab., Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Abbas Rami
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - Fatemeh Kazemi-Lomedasht
- Venom & Biotherapeutics Molecules Lab., Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
45
|
Abstract
Monoclonal antibodies (mAbs) are immunoglobulins designed to target a specific epitope on an antigen. Immunoglobulins of identical amino-acid sequence were originally produced by hybridomas grown in culture and, subsequently, by recombinant DNA technology using mammalian cell expression systems. The antigen-binding region of the mAb is formed by the variable domains of the heavy and light chains and contains the complementarity-determining region that imparts the high specificity for the target antigen. The pharmacokinetics of mAbs involves target-mediated and non-target-related factors that influence their disposition.Preclinical safety evaluation of mAbs differs substantially from that of small molecular (chemical) entities. Immunogenicity of mAbs has implications for their pharmacokinetics and safety. Early studies of mAbs in humans require careful consideration of the most suitable study population, route/s of administration, starting dose, study design and the potential difference in pharmacokinetics in healthy subjects compared to patients expressing the target antigen.Of the ever-increasing diversity of therapeutic indications for mAbs, we have concentrated on two that have proved dramatically successful. The contribution that mAbs have made to the treatment of inflammatory conditions, in particular arthritides and inflammatory bowel disease, has been nothing short of revolutionary. Their benefit has also been striking in the treatment of solid tumours and, most recently, as immunotherapy for a wide variety of cancers. Finally, we speculate on the future with various new approaches to the development of therapeutic antibodies.
Collapse
|
46
|
Slastnikova TA, Ulasov AV, Rosenkranz AA, Sobolev AS. Targeted Intracellular Delivery of Antibodies: The State of the Art. Front Pharmacol 2018; 9:1208. [PMID: 30405420 PMCID: PMC6207587 DOI: 10.3389/fphar.2018.01208] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 10/03/2018] [Indexed: 12/11/2022] Open
Abstract
A dominant area of antibody research is the extension of the use of this mighty experimental and therapeutic tool for the specific detection of molecules for diagnostics, visualization, and activity blocking. Despite the ability to raise antibodies against different proteins, numerous applications of antibodies in basic research fields, clinical practice, and biotechnology are restricted to permeabilized cells or extracellular antigens, such as membrane or secreted proteins. With the exception of small groups of autoantibodies, natural antibodies to intracellular targets cannot be used within living cells. This excludes the scope of a major class of intracellular targets, including some infamous cancer-associated molecules. Some of these targets are still not druggable via small molecules because of large flat contact areas and the absence of deep hydrophobic pockets in which small molecules can insert and perturb their activity. Thus, the development of technologies for the targeted intracellular delivery of antibodies, their fragments, or antibody-like molecules is extremely important. Various strategies for intracellular targeting of antibodies via protein-transduction domains or their mimics, liposomes, polymer vesicles, and viral envelopes, are reviewed in this article. The pitfalls, challenges, and perspectives of these technologies are discussed.
Collapse
Affiliation(s)
- Tatiana A. Slastnikova
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - A. V. Ulasov
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - A. A. Rosenkranz
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- Faculty of Biology, M. V. Lomonosov Moscow State University, Moscow, Russia
| | - A. S. Sobolev
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- Faculty of Biology, M. V. Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
47
|
Avril A. Therapeutic Antibodies for Biodefense. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1053:173-205. [PMID: 29549640 DOI: 10.1007/978-3-319-72077-7_9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Diseases can be caused naturally by biological agents such as bacteria, viruses and toxins (natural risk). However, such biological agents can be intentionally disseminated in the environment by a State (military context) or terrorists to cause diseases in a population or livestock, to destabilize a nation by creating a climate of terror, destabilizing the economy and undermining institutions. Biological agents can be classified according to the severity of illness they cause, its mortality and how easily the agent can be spread. The Centers for Diseases Control and Prevention (CDC) classify biological agents in three categories (A, B and C); Category A consists of the six pathogens most suitable for use as bioweapons (Bacillus anthracis, Yersinia pestis, Francisella tularensis, botulinum neurotoxins, smallpox and viral hemorrhagic fevers). Antibodies represent a perfect biomedical countermeasure as they present both prophylactic and therapeutic properties, act fast and are highly specific to the target. This review focuses on the main biological agents that could be used as bioweapons, the history of biowarfare and antibodies that have been developed to neutralize these agents.
Collapse
Affiliation(s)
- Arnaud Avril
- Département des maladies infectieuses, Unité biothérapies anti-infectieuses et immunité, Institut de Recherche Biomédical des Armées, Brétigny-sur-Orge, France.
| |
Collapse
|
48
|
Ng AWR, Tan PJ, Hoo WPY, Liew DS, Teo MYM, Siak PY, Ng SM, Tan EW, Abdul Rahim R, Lim RLH, Song AAL, In LLA. In silico-guided sequence modifications of K-ras epitopes improve immunological outcome against G12V and G13D mutant KRAS antigens. PeerJ 2018; 6:e5056. [PMID: 30042874 PMCID: PMC6055689 DOI: 10.7717/peerj.5056] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 06/03/2018] [Indexed: 12/30/2022] Open
Abstract
Background Somatic point substitution mutations in the KRAS proto-oncogene primarily affect codons 12/13 where glycine is converted into other amino acids, and are highly prevalent in pancreatic, colorectal, and non-small cell lung cancers. These cohorts are non-responsive to anti-EGFR treatments, and are left with non-specific chemotherapy regimens as their sole treatment options. In the past, the development of peptide vaccines for cancer treatment was reported to have poor AT properties when inducing immune responses. Utilization of bioinformatics tools have since become an interesting approach in improving the design of peptide vaccines based on T- and B-cell epitope predictions. Methods In this study, the region spanning exon 2 from the 4th to 18th codon within the peptide sequence of wtKRAS was chosen for sequence manipulation. Mutated G12V and G13D K-ras controls were generated in silico, along with additional single amino acid substitutions flanking the original codon 12/13 mutations. IEDB was used for assessing human and mouse MHC class I/II epitope predictions, as well as linear B-cell epitopes predictions, while RNA secondary structure prediction was performed via CENTROIDFOLD. A scoring and ranking system was established in order to shortlist top mimotopes whereby normalized and reducing weighted scores were assigned to peptide sequences based on seven immunological parameters. Among the top 20 ranked peptide sequences, peptides of three mimotopes were synthesized and subjected to in vitro and in vivo immunoassays. Mice PBMCs were treated in vitro and subjected to cytokine assessment using CBA assay. Thereafter, mice were immunized and sera were subjected to IgG-based ELISA. Results In silico immunogenicity prediction using IEDB tools shortlisted one G12V mimotope (68-V) and two G13D mimotopes (164-D, 224-D) from a total of 1,680 candidates. Shortlisted mimotopes were predicted to promote high MHC-II and -I affinities with optimized B-cell epitopes. CBA assay indicated that: 224-D induced secretions of IL-4, IL-5, IL-10, IL-12p70, and IL-21; 164-D triggered IL-10 and TNF-α; while 68-V showed no immunological responses. Specific-IgG sera titers against mutated K-ras antigens from 164-D immunized Balb/c mice were also elevated post first and second boosters compared to wild-type and G12/G13 controls. Discussion In silico-guided predictions of mutated K-ras T- and B-cell epitopes were successful in identifying two immunogens with high predictive scores, Th-bias cytokine induction and IgG-specific stimulation. Developments of such immunogens are potentially useful for future immunotherapeutic and diagnostic applications against KRAS(+) malignancies, monoclonal antibody production, and various other research and development initiatives.
Collapse
Affiliation(s)
- Allan Wee Ren Ng
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, Cheras, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Pei Jun Tan
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, Cheras, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Winfrey Pui Yee Hoo
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, Cheras, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Dek Shen Liew
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, Cheras, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Michelle Yee Mun Teo
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, Cheras, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Pui Yan Siak
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, Cheras, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Sze Man Ng
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, Cheras, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Ee Wern Tan
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, Cheras, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Raha Abdul Rahim
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Renee Lay Hong Lim
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, Cheras, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Adelene Ai Lian Song
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Lionel Lian Aun In
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, Cheras, Wilayah Persekutuan Kuala Lumpur, Malaysia
| |
Collapse
|
49
|
Antibody-Mediated Therapy against HIV/AIDS: Where Are We Standing Now? J Pathog 2018; 2018:8724549. [PMID: 29973995 PMCID: PMC6009031 DOI: 10.1155/2018/8724549] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 04/10/2018] [Accepted: 04/26/2018] [Indexed: 11/17/2022] Open
Abstract
Acquired immunodeficiency syndrome (AIDS) cases are on the rise globally. To date, there is still no effective measure to eradicate the causative agent, human immunodeficiency virus (HIV). Highly active antiretroviral therapy (HAART) is being used in HIV/AIDS management, but it results in long-term medication and has major drawbacks such as multiple side effects, high cost, and increasing the generation rate of escape mutants. In addition, HAART does not control HIV-related complications, and hence more medications and further management are required. With this, other alternatives are urgently needed. In the past, small-molecule inhibitors have shown potent antiviral effects, and some of them are now being evaluated in clinical trials. The challenges in developing these small molecules for clinical use include the off-target effect, poor stability, and low bioavailability. On the other hand, antibody-mediated therapy has emerged as an important therapeutic modality for anti-HIV therapeutics development. Many antiviral antibodies, namely, broad neutralizing antibodies (bnAbs) against multiple strains of HIV, have shown promising effects in vitro and in animal studies; further studies are ongoing in clinical trials to evaluate their uses in clinical applications. This short review aims to discuss the current development of therapeutic antibodies against HIV and the challenges in adopting them for clinical use.
Collapse
|
50
|
Kuchuk O, Tuccitto A, Citterio D, Huber V, Camisaschi C, Milione M, Vergani B, Villa A, Alison MR, Carradori S, Supuran CT, Rivoltini L, Castelli C, Mazzaferro V. pH regulators to target the tumor immune microenvironment in human hepatocellular carcinoma. Oncoimmunology 2018; 7:e1445452. [PMID: 29900055 PMCID: PMC5993489 DOI: 10.1080/2162402x.2018.1445452] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 02/16/2018] [Accepted: 02/20/2018] [Indexed: 01/11/2023] Open
Abstract
Interfering with tumor metabolism is an emerging strategy for treating cancers that are resistant to standard therapies. Featuring a rapid proliferation rate and exacerbated glycolysis, hepatocellular carcinoma (HCC) creates a highly hypoxic microenvironment with excessive production of lactic and carbonic acids. These metabolic conditions promote disease aggressiveness and cancer-related immunosuppression. The pH regulatory molecules work as a bridge between tumor cells and their surrounding milieu. Herein, we show that the pH regulatory molecules CAIX, CAXII and V-ATPase are overexpressed in the HCC microenvironment and that interfering with their pathways exerts antitumor activity. Importantly, the V-ATPase complex was expressed by M2-like tumor-associated macrophages. Blocking ex vivo V-ATPase activity established a less immune-suppressive tumor microenvironment and reversed the mesenchymal features of HCC. Thus, targeting the unique cross-talk between tumor cells and the tumor microenvironment played by pH regulatory molecules holds promise as a strategy to control HCC progression and to reduce the immunosuppressive pressure mediated by the hypoxic/acidic metabolism, particularly considering the potential combination of this strategy with emerging immune checkpoint-based immunotherapies.
Collapse
Affiliation(s)
- Olga Kuchuk
- Unit of Immunotherapy of Human Tumors, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.,Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Alessandra Tuccitto
- Unit of Immunotherapy of Human Tumors, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.,Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Davide Citterio
- Hepatology and Liver Transplantation Unit, Department of Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Veronica Huber
- Unit of Immunotherapy of Human Tumors, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.,Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Chiara Camisaschi
- Unit of Immunotherapy of Human Tumors, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.,Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Massimo Milione
- Anatomic Pathology, Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Barbara Vergani
- Consorzio MIA (Microscopy and Image Analysis), University of Milano-Bicocca, Milan, Italy
| | - Antonello Villa
- Consorzio MIA (Microscopy and Image Analysis), University of Milano-Bicocca, Milan, Italy
| | - Malcolm Ronald Alison
- Centre for Tumour Biology, Barts Cancer Institute, Charterhouse Square, London, EC1M 6BQ, United Kingdom
| | - Simone Carradori
- Department of Pharmacy, "G. D'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Claudiu T Supuran
- Polo Scientifico, Department of Pharmaceutical Sciences, Sesto Fiorentino, Firenze, Italy
| | - Licia Rivoltini
- Unit of Immunotherapy of Human Tumors, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.,Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Chiara Castelli
- Unit of Immunotherapy of Human Tumors, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.,Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Vincenzo Mazzaferro
- Hepatology and Liver Transplantation Unit, Department of Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.,University of Milan, Italy
| |
Collapse
|