1
|
Hakimiha N, Jahani Sherafat S, Laakso EL, Fekrazad R. Photobiomodulation and the oral-gut microbiome axis: therapeutic potential and challenges. Front Med (Lausanne) 2025; 12:1555704. [PMID: 40270495 PMCID: PMC12014685 DOI: 10.3389/fmed.2025.1555704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Accepted: 03/31/2025] [Indexed: 04/25/2025] Open
Abstract
This Perspective article explores the challenges associated with the direct application of photobiomodulation (PBM) to the gut and presents a novel hypothesis for indirect gut health modulation through oral microbiome alteration. Given the difficulties in delivering PBM effectively to deep gastrointestinal tissues, an alternative approach involves targeting the oral microbiome, which has a demonstrated relationship with the gut microbiome. Research indicates that PBM applied to the oral cavity could selectively alter microbial composition. This alteration may, via the oral-gut microbiome axis, indirectly impact gut health. This hypothesis, supported by preliminary studies, suggests that oral PBM could offer a promising non-invasive strategy for managing gut-related disorders. Furthermore, there may be a link between the oral microbiome and brain diseases. Given the proximity to the brain, PBM-induced changes in the oral microbiota could indirectly help prevent neurological disorders. However, further investigation is necessary to comprehensively elucidate the underlying mechanisms and therapeutic implications of this approach.
Collapse
Affiliation(s)
- Neda Hakimiha
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Somayeh Jahani Sherafat
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - E-Liisa Laakso
- Mater Research Institute, University of Queensland, South Brisbane, QLD, Australia
- School of Health Sciences and Social Work, Griffith University, Brisbane, QLD, Australia
| | - Reza Fekrazad
- Radiation Sciences Research Center (RSRC), AJA University of Medical Sciences, Tehran, Iran
- International Network for Photo Medicine and Photo Dynamic Therapy (INPMPDT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
2
|
Pimenta M, Alexa M, Mabandza DB, Dulaurent S, Huynh BT, Gaschet M, Opatowski L, Breurec S, Ploy MC, Dagot C. Wastewater-based AMR surveillance associated with tourism on a Caribbean island (Guadeloupe). J Glob Antimicrob Resist 2025; 43:27-34. [PMID: 40154781 DOI: 10.1016/j.jgar.2025.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 02/23/2025] [Accepted: 03/22/2025] [Indexed: 04/01/2025] Open
Abstract
OBJECTIVES Antimicrobial resistance (AMR) is a major public health concern worldwide. International travel is a risk factor for acquiring antibiotic-resistant bacteria (ARB) and antibiotic-resistance genes (ARGs). Therefore, understanding the transmission of ARB and ARGs is instrumental in tackling AMR. This longitudinal study aimed to assess the benefit of wastewater monitoring in Guadeloupe to evaluate the role of tourism in the spread of AMR. METHODS A wastewater-based surveillance (WBS) study was conducted to monitor AMR in Guadeloupe in 2022 during dry and wet seasons. We characterized the resistome, microbiome and exposome of water samples collected in wastewater treatment facilities of two cities with different levels of tourism activities, in the content of aircraft toilets, and the pumping station receiving effluents from hotels. RESULTS The results show that the WBS approach facilitates the differentiation of various untreated effluents concerning exposome, microbiome, and resistome, offering insights into AMR dissemination. Additionally, the findings reveal that microbiome and exposome are comparable across sites and seasons, while resistome characterisation at specific locations may be pertinent for health surveillance. The microbiome of aircraft was predominantly composed of anaerobic bacteria from human intestinal microbiota, whereas the other locations exhibited a blend of human and environmental bacteria. Notably, individuals arriving by air have not introduced clinically significant resistance genes. Exposome compounds have been shown to influence the resistome's variance. CONCLUSIONS Clear differences were seen between the aircraft and the local sampling sites, indicating that the contribution of tourism to the observed resistance in Guadeloupe is not significant.
Collapse
Affiliation(s)
- Mélanie Pimenta
- INSERM, CHU Limoges, RESINFIT, U1092, University of Limoges, Limoges, France
| | - Maria Alexa
- Institut Pasteur, Université Paris-Cité, Epidemiology and Modelling of Antibiotic Evasion (EMAE), France; Anti-infective Evasion and Pharmacoepidemiology Team, CESP, Université Paris-Saclay, UVSQ, INSERM, Montigny-le-Bretonneux, France
| | - Degrâce Batantou Mabandza
- Transmission, Reservoir and Diversity of Pathogens Unit, Pasteur Institute of Guadeloupe, Pointe-à-Pitre, France
| | - Sylvain Dulaurent
- Department of Pharmacology, Toxicology and Pharmacovigilance, Limoges University Hospital, Limoges, France
| | - Bich-Tram Huynh
- Institut Pasteur, Université Paris-Cité, Epidemiology and Modelling of Antibiotic Evasion (EMAE), France; Anti-infective Evasion and Pharmacoepidemiology Team, CESP, Université Paris-Saclay, UVSQ, INSERM, Montigny-le-Bretonneux, France
| | - Margaux Gaschet
- INSERM, CHU Limoges, RESINFIT, U1092, University of Limoges, Limoges, France
| | - Lulla Opatowski
- Institut Pasteur, Université Paris-Cité, Epidemiology and Modelling of Antibiotic Evasion (EMAE), France; Anti-infective Evasion and Pharmacoepidemiology Team, CESP, Université Paris-Saclay, UVSQ, INSERM, Montigny-le-Bretonneux, France
| | - Sébastien Breurec
- Transmission, Reservoir and Diversity of Pathogens Unit, Pasteur Institute of Guadeloupe, Pointe-à-Pitre, France; Faculty of Medicine Hyacinthe Bastaraud, University of Antilles, Pointe-à-Pitre, France; Centre for Clinical Investigation 1424, INSERM, Pointe-à-Pitre/Les Abymes, France; Laboratory of clinical microbiology, University hospital Center of Guadeloupe, Pointe-à-Pitre/Les Abymes, France
| | - Marie-Cécile Ploy
- INSERM, CHU Limoges, RESINFIT, U1092, University of Limoges, Limoges, France
| | - Christophe Dagot
- INSERM, CHU Limoges, RESINFIT, U1092, University of Limoges, Limoges, France.
| |
Collapse
|
3
|
Tamai S, Okuno M, Ogura Y, Suzuki Y. Genetic diversity of dissolved free extracellular DNA compared to intracellular DNA in wastewater treatment plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 970:178989. [PMID: 40048953 DOI: 10.1016/j.scitotenv.2025.178989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/20/2025] [Accepted: 02/24/2025] [Indexed: 03/17/2025]
Abstract
Dissolved free extracellular DNA (free-exDNA) coexists with intracellular DNA (inDNA) in aquatic environments. Free-exDNA can be taken up by bacteria through transformation, and wastewater treatment plants (WWTPs) are positioned as potential hot spots for genetic contamination. However, studies comparing the composition of free-exDNA and inDNA is limited. This study employed colloidal adsorption and foam concentration method to recover free-exDNA from different WWTP stages and compared its diversity with inDNA via metagenomic analysis. Free-exDNA concentrations were observed to increase after chlorination. Genetic analysis revealed a higher abundance of specific genes following chlorination, suggesting that free-exDNA in effluent originated from bacterial death in secondary treated water. This result indicates that free-exDNA, which increases due to chlorination, is subsequently released into the catchment. Additionally, several high-risk antibiotic-resistance genes (ARGs) were detected that colocalized with mobile genetic elements. These ARGs were expected to have a high potential for gene transfer via transformation, and the risk was highlighted. Overall, these findings deepen our understanding of horizontal gene transfer risks in WWTPs.
Collapse
Affiliation(s)
- Soichiro Tamai
- Department of Environment and Resource Sciences, Interdisciplinary Graduate School of Agriculture and Engineering, University of Miyazaki, Gakuen Kibanadai-Nishi 1-1, Miyazaki 889-2192, Japan.
| | - Miki Okuno
- Division of Microbiology, Department of Infectious Medicine, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan.
| | - Yoshitoshi Ogura
- Division of Microbiology, Department of Infectious Medicine, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan.
| | - Yoshihiro Suzuki
- Department of Civil and Environmental Engineering, Faculty of Engineering, University of Miyazaki, Gakuen Kibanadai-Nishi 1-1, Miyazaki 889-2192, Japan.
| |
Collapse
|
4
|
Boutin S, Käding N, Belheouane M, Merker M, Rupp J, Nurjadi D. Towards unraveling antimicrobial resistance dynamics: a longitudinal exploration of rectal swab metagenomes. BMC Microbiol 2025; 25:150. [PMID: 40097931 PMCID: PMC11912604 DOI: 10.1186/s12866-025-03874-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 03/06/2025] [Indexed: 03/19/2025] Open
Abstract
The increasing prevalence of antimicrobial resistance (AMR) poses significant challenges in clinical settings. In particular, early screening and detection of colonization by multidrug-resistant organisms (MDROs) in patients at admission is crucial. In this context, the clinical use of metagenomics (mNGS) holds promise for fast and untargeted diagnostic methods. Here, we aimed to evaluate the long-term stability of the rectal microbiome and the diagnostic accuracy of mNGS in comparison to culture and whole-genome sequencing (WGS) of MDROs. We analyzed rectal swabs from 26 patients with two consecutive admissions over a four-year period. The detected antimicrobial resistance genes and assembled metagenomes were compared to those obtained via classical culture-based antimicrobial susceptibility testing and WGS of isolated MDROs. Our results showed that the rectal microbiome is variable during the two timepoints, highlighting the variability in the niche. Nevertheless, we also observed strong co-occurrence of taxa, suggesting that the rectal swab microbiome is also a regulated environment with cooperative biotic interactions. In total, we isolated and sequenced 6 MDROs from 6 patients at individual timepoints. Almost all AMR genes from the genomes of the isolates (median: 100%, range: 84.6-100%) could be detected by mNGS of the rectal swabs at the time of isolation of the MDRO but not at the time of culture negativity. In addition, we detected AMR genes and potentially pathogenic species in patients with negative cultures. In conclusion, our study showed that, in principle, mNGS of rectal swabs can detect clinically relevant AMR profiles. However, the cooccurrence of AMR genes and potentially-pathogenic species does not always correlate with culture-based diagnostic results but rather indicates a potential risk of horizontal AMR gene transfer. However, it is unclear whether the observed discrepancies are due to transient or locally confined colonization of MDROs, limits of detection, or variability of the sampling method and specimens.
Collapse
Affiliation(s)
- Sébastien Boutin
- Institute of Medical Microbiology, University of Lübeck and University Hospital Schleswig-Holstein Campus Lübeck, Lübeck, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Lübeck, Borstel, Germany
- Airway Research Center North (ARCN), German Center for Lung Research (DZL), Lübeck, Germany
| | - Nadja Käding
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Lübeck, Borstel, Germany
- Infectious Diseases Clinic, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Meriem Belheouane
- Evolution of the Resistome, Research Center Borstel, Borstel, Germany
| | - Matthias Merker
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Lübeck, Borstel, Germany
- Evolution of the Resistome, Research Center Borstel, Borstel, Germany
| | - Jan Rupp
- Institute of Medical Microbiology, University of Lübeck and University Hospital Schleswig-Holstein Campus Lübeck, Lübeck, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Lübeck, Borstel, Germany
- Infectious Diseases Clinic, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Dennis Nurjadi
- Institute of Medical Microbiology, University of Lübeck and University Hospital Schleswig-Holstein Campus Lübeck, Lübeck, Germany.
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Lübeck, Borstel, Germany.
| |
Collapse
|
5
|
Almheiri RT, Hajjar B, Alkhaaldi SMI, Rabeh N, Aljoudi S, Abd-Elrahman KS, Hamdan H. Beyond weight loss: exploring the neurological ramifications of altered gut microbiota post-bariatric surgery. J Transl Med 2025; 23:223. [PMID: 39994634 PMCID: PMC11852891 DOI: 10.1186/s12967-025-06201-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 02/04/2025] [Indexed: 02/26/2025] Open
Abstract
This review discusses findings related to neurological disorders, gut microbiota, and bariatric surgery, focusing on neurotransmitters, neuroendocrine, the pathophysiology of bacteria contributing to disorders, and possible therapeutic interventions. Research on neurotransmitters suggests that their levels are heavily influenced by gut microbiota, which may link them to neurological disorders such as Alzheimer's disease, Parkinson's disease, Multiple sclerosis, Depression, and Autism spectrum disorder. The pathophysiology of bacteria that reach and influence the central nervous system has been documented. Trends in microbiota are often observed in specific neurological disorders, with a prominence of pro-inflammatory bacteria and a reduction in anti-inflammatory types. Furthermore, bariatric surgery has been shown to alter microbiota profiles similar to those observed in neurological disorders. Therapeutic interventions, including fecal microbiota transplants and probiotics, have shown potential to alleviate neurological symptoms. We suggest a framework for future studies that integrates knowledge from diverse research areas, employs rigorous methodologies, and includes long-trial clinical control groups.
Collapse
Affiliation(s)
- Rashed T Almheiri
- Department of Biological Sciences, College of Medicine and Health Sciences, Khalifa University, 127788, Abu Dhabi, United Arab Emirates
| | - Baraa Hajjar
- Department of Biological Sciences, College of Medicine and Health Sciences, Khalifa University, 127788, Abu Dhabi, United Arab Emirates
| | - Saif M I Alkhaaldi
- Department of Biological Sciences, College of Medicine and Health Sciences, Khalifa University, 127788, Abu Dhabi, United Arab Emirates
| | - Nadia Rabeh
- Department of Biological Sciences, College of Medicine and Health Sciences, Khalifa University, 127788, Abu Dhabi, United Arab Emirates
| | - Sara Aljoudi
- Department of Biological Sciences, College of Medicine and Health Sciences, Khalifa University, 127788, Abu Dhabi, United Arab Emirates
| | - Khaled S Abd-Elrahman
- Department of Anesthesiology, Pharmacology and Therapeutics, and Djavad Mowafaghian Center for Brain Health, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
- Department of Medical Sciences, College of Medicine and Health Science, Khalifa University, 127788, Abu Dhabi, United Arab Emirates.
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt.
| | - Hamdan Hamdan
- Department of Biological Sciences, College of Medicine and Health Sciences, Khalifa University, 127788, Abu Dhabi, United Arab Emirates.
- Healthcare Engineering Innovation Group (HEIG), Khalifa University of Science and Technology, 127788, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
6
|
Pribyl AL, Hugenholtz P, Cooper MA. A decade of advances in human gut microbiome-derived biotherapeutics. Nat Microbiol 2025; 10:301-312. [PMID: 39779879 DOI: 10.1038/s41564-024-01896-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 11/20/2024] [Indexed: 01/11/2025]
Abstract
Microbiome science has evolved rapidly in the past decade, with high-profile publications suggesting that the gut microbiome is a causal determinant of human health. This has led to the emergence of microbiome-focused biotechnology companies and pharmaceutical company investment in the research and development of gut-derived therapeutics. Despite the early promise of this field, the first generation of microbiome-derived therapeutics (faecal microbiota products) have only recently been approved for clinical use. Next-generation therapies based on readily culturable and as-yet-unculturable colonic bacterial species (with the latter estimated to comprise 63% of all detected species) have not yet progressed to pivotal phase 3 trials. This reflects the many challenges involved in developing a new class of drugs in an evolving field. Here we discuss the evolution of the live biotherapeutics field over the past decade, from the development of first-generation products to the emergence of rationally designed second- and third-generation live biotherapeutics. Finally, we present our outlook for the future of this field.
Collapse
Affiliation(s)
| | - Philip Hugenholtz
- The University of Queensland, School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, Brisbane, Queensland, Australia.
| | | |
Collapse
|
7
|
Delgadillo DR, Borelli JL, Mayer EA, Labus JS, Cross MP, Pressman SD. Biological, environmental, and psychological stress and the human gut microbiome in healthy adults. Sci Rep 2025; 15:362. [PMID: 39747287 PMCID: PMC11695967 DOI: 10.1038/s41598-024-77473-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 10/22/2024] [Indexed: 01/04/2025] Open
Abstract
Emerging research suggests that the gut microbiome plays a crucial role in stress. We assess stress-microbiome associations in two samples of healthy adults across three stress domains (perceived stress, stressful life events, and biological stress /Respiratory Sinus Arrhythmia; RSA). Study 1 (n = 62; mean-age = 37.3 years; 68% female) and Study 2 (n = 74; mean-age = 41.6 years; female only) measured RSA during laboratory stressors and used 16S rRNA pyrosequencing to classify gut microbial composition from fecal samples. Phylogenetic Investigation of Communities by Reconstruction of Unobserved States was used to predict functional pathways of metagenomes. Results showed differences in beta diversity between high and low stressful life events groups across both studies. Study 1 revealed differences in beta diversity between high and low RSA groups. In Study 1, the low perceived stress group was higher in alpha diversity than the high perceived stress group. Levels of Clostridium were negatively associated with RSA in Study 1 and levels Escherichia/Shigella were positively associated with perceived stress in Study 2. Associations between microbial functional pathways (L-lysine production and formaldehyde absorption) and RSA are discussed. Findings suggest that certain features of the gut microbiome are differentially associated with each stress domain.
Collapse
Affiliation(s)
- Desiree R Delgadillo
- UCLA G. Oppenheimer Center for Neurobiology of Stress & Resilience, CHS 42-210 10833 Le Conte Avenue, Los Angeles, CA, 90095-7378, USA.
- UCLA Vatche and Tamar Manoukian Division of Digestive Diseases, Los Angeles, USA.
- David Geffen School of Medicine at UCLA, Health Sciences, Los Angeles, USA.
- UCLA Goodman Luskin Microbiome Center, Los Angeles, USA.
- University of California, Los Angeles, USA.
| | - Jessica L Borelli
- Department of Psychological Science, University of California, Irvine, USA
| | - Emeran A Mayer
- UCLA G. Oppenheimer Center for Neurobiology of Stress & Resilience, CHS 42-210 10833 Le Conte Avenue, Los Angeles, CA, 90095-7378, USA
- UCLA Vatche and Tamar Manoukian Division of Digestive Diseases, Los Angeles, USA
- David Geffen School of Medicine at UCLA, Health Sciences, Los Angeles, USA
- UCLA Goodman Luskin Microbiome Center, Los Angeles, USA
- University of California, Los Angeles, USA
| | - Jennifer S Labus
- UCLA G. Oppenheimer Center for Neurobiology of Stress & Resilience, CHS 42-210 10833 Le Conte Avenue, Los Angeles, CA, 90095-7378, USA
- UCLA Vatche and Tamar Manoukian Division of Digestive Diseases, Los Angeles, USA
- David Geffen School of Medicine at UCLA, Health Sciences, Los Angeles, USA
- UCLA Goodman Luskin Microbiome Center, Los Angeles, USA
- University of California, Los Angeles, USA
| | - Marie P Cross
- Department of Psychology, University of Pittsburgh, Pittsburgh, USA
| | - Sarah D Pressman
- Department of Psychological Science, University of California, Irvine, USA
| |
Collapse
|
8
|
Chandra M. Developmental Origins of Non-Communicable Chronic Diseases: Role of Fetal Undernutrition and Gut Dysbiosis in Infancy. CHILDREN (BASEL, SWITZERLAND) 2024; 11:1387. [PMID: 39594962 PMCID: PMC11592819 DOI: 10.3390/children11111387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 10/31/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024]
Abstract
There is an increasing prevalence of non-communicable chronic diseases (NCCDs) like obesity, metabolic syndrome, type 2 diabetes mellitus (T2DM), hypertension, allergic asthma, and neuro-developmental/psychiatric problems in many parts of the world. A suboptimal lifestyle as an adult is often blamed for the occurrence of NCCDs. This review discusses the developmental origin of health and disease theory and how suboptimal nutrition in intrauterine life and the establishment of a suboptimal gut microbiome during infancy can influence the predisposition to NCCDs.
Collapse
Affiliation(s)
- Manju Chandra
- Division of Pediatric Nephrology, Department of Pediatrics, New York University Grossman Long Island School of Medicine, Mineola, NY 11501, USA
| |
Collapse
|
9
|
Cervantes-Monroy E, Zarzoza-Mendoza IC, Canizales-Quinteros S, Morán-Ramos S, Villa-Morales J, López-Contreras BE, Carmona-Sierra FV, Rodríguez-Cruz M. Influence of Early Life Factors on the Breast Milk and Fecal Microbiota of Mother-Newborn Dyads. Microorganisms 2024; 12:2142. [PMID: 39597531 PMCID: PMC11596411 DOI: 10.3390/microorganisms12112142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/05/2024] [Accepted: 08/12/2024] [Indexed: 11/29/2024] Open
Abstract
Maternal gut and breast milk (BM) are key in vertically transmission bacteria to infants, shaping their gut microbiota in early life. Although the establishment of early gut microbiota is known, the role of the combined influence of maternal factors and newborn characteristics is not explored. In this study, we aimed to assess the influence of maternal BMI and total body fat, age, delivery mode, and newborn sex on the diversity and composition of the BM and gut microbiota (GM) in mother-newborn dyads. In this cross-sectional study, of the 986 pregnant women candidates, 53 participated, and, finally, 40 mother-newborn dyads exclusively breastfeeding at 20-28 days postpartum were included. Metataxonomic profiling of DNA extracted from BM and fecal samples was conducted using 16S rRNA sequencing. Globally, the findings offer valuable insights that excessive adiposity, age, and C-section delivery influence a lower abundance of specific taxa in the BM, maternal gut, and gut of newborns. Also, the simultaneous analysis of maternal factors and newborn characteristics shows that maternal age and newborn sex explain an important variation in the microbiota composition. These results add to the understanding of the intricate interplay between maternal factors and the microbial communities that influence early-life gut and BM microbiota.
Collapse
Affiliation(s)
- Emmanuel Cervantes-Monroy
- Laboratorio de Nutrición Molecular, Unidad de Investigación Médica en Nutrición, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social (IMSS), Ciudad de México 06720, Mexico; (E.C.-M.); (I.C.Z.-M.); (J.V.-M.)
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México (UNAM), Unidad de Posgrado, Edificio D, 1° Piso. Circuito de Posgrados, Ciudad Universitaria, Ciudad de México 04510, Mexico
| | - Imelda C. Zarzoza-Mendoza
- Laboratorio de Nutrición Molecular, Unidad de Investigación Médica en Nutrición, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social (IMSS), Ciudad de México 06720, Mexico; (E.C.-M.); (I.C.Z.-M.); (J.V.-M.)
| | - Samuel Canizales-Quinteros
- Unidad de Genómica de Poblaciones Aplicada a la Salud, Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (S.C.-Q.); (S.M.-R.); (B.E.L.-C.)
- Instituto Nacional de Medicina Genómica (INMEGEN), Ciudad de México 14610, Mexico
| | - Sofia Morán-Ramos
- Unidad de Genómica de Poblaciones Aplicada a la Salud, Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (S.C.-Q.); (S.M.-R.); (B.E.L.-C.)
- Instituto Nacional de Medicina Genómica (INMEGEN), Ciudad de México 14610, Mexico
- Departamento de Alimentos y Biotecnología, Facultad de Química, Universidad Nacional Autónoma de Mexico, Ciudad de México 04510, Mexico
| | - Judith Villa-Morales
- Laboratorio de Nutrición Molecular, Unidad de Investigación Médica en Nutrición, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social (IMSS), Ciudad de México 06720, Mexico; (E.C.-M.); (I.C.Z.-M.); (J.V.-M.)
| | - Blanca E. López-Contreras
- Unidad de Genómica de Poblaciones Aplicada a la Salud, Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (S.C.-Q.); (S.M.-R.); (B.E.L.-C.)
- Instituto Nacional de Medicina Genómica (INMEGEN), Ciudad de México 14610, Mexico
| | - Fairt V. Carmona-Sierra
- Unidad de Medicina Familiar Number 4, Instituto Mexicano del Seguro Social (IMSS), Ciudad de México 06720, Mexico;
| | - Maricela Rodríguez-Cruz
- Laboratorio de Nutrición Molecular, Unidad de Investigación Médica en Nutrición, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social (IMSS), Ciudad de México 06720, Mexico; (E.C.-M.); (I.C.Z.-M.); (J.V.-M.)
| |
Collapse
|
10
|
Tarracchini C, Lugli GA, Mancabelli L, van Sinderen D, Turroni F, Ventura M, Milani C. Exploring the vitamin biosynthesis landscape of the human gut microbiota. mSystems 2024; 9:e0092924. [PMID: 39287373 PMCID: PMC11494892 DOI: 10.1128/msystems.00929-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 08/23/2024] [Indexed: 09/19/2024] Open
Abstract
The human gut microbiota possesses the capacity to synthesize vitamins, especially B group vitamins, which are recognized as indispensable for various biological processes both among members of these bacterial communities and host cells. Accordingly, vitamin production by intestinal commensals has attracted significant interest. Nevertheless, our current understanding of bacterial vitamin synthesis is primarily based on individual genomic and monoculture investigations, therefore not providing an overall view of the biosynthetic potential of complex microbial communities. In the current study, we utilized over 100 bacterial genes known to be involved in the biosynthesis of B group and K vitamins to assess the corresponding vitamin biosynthetic potential of approximately 8,000 human gut microbiomes. Our analyses reveal that host-associated factors, such as age and geographical origin, appear to influence the diversity and abundance of vitamin biosynthetic pathways. Furthermore, we identify gut microbiota members that substantially contribute to these biosynthetic functions at each stage of human life. Interestingly, inference of microbial co-associations and network relationships uncovered the apparent key role played by folate and cobalamin in equilibrium establishment of the infant and adult gut microbial communities, respectively.IMPORTANCEOverall, this study expands our understanding of microbe-mediated vitamin biosynthesis in the human gut and may provide potential novel targets to improve availability of these essential micronutrients in the host.
Collapse
Affiliation(s)
- Chiara Tarracchini
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Gabriele Andrea Lugli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| | - Leonardo Mancabelli
- Microbiome Research Hub, University of Parma, Parma, Italy
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Douwe van Sinderen
- APC Microbiome Institute and School of Microbiology, Bioscience Institute, National University of Ireland, Cork, Ireland
| | - Francesca Turroni
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| | - Christian Milani
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| |
Collapse
|
11
|
Salazar-Jaramillo L, de la Cuesta-Zuluaga J, Chica LA, Cadavid M, Ley RE, Reyes A, Escobar JS. Gut microbiome diversity within Clostridia is negatively associated with human obesity. mSystems 2024; 9:e0062724. [PMID: 39012154 PMCID: PMC11334427 DOI: 10.1128/msystems.00627-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 06/06/2024] [Indexed: 07/17/2024] Open
Abstract
Clostridia are abundant in the human gut and comprise families associated with host health such as Oscillospiraceae, which has been correlated with leanness. However, culturing bacteria within this family is challenging, leading to their detection primarily through 16S rRNA amplicon sequencing, which has a limited ability to unravel diversity at low taxonomic levels, or by shotgun metagenomics, which is hindered by its high costs and complexity. In this cross-sectional study involving 114 Colombian adults, we used an amplicon-based sequencing strategy with alternative markers-gyrase subunit B (gyrB) and DNA K chaperone heat protein 70 (dnaK)-that evolve faster than the 16S rRNA gene. Comparing the diversity and abundance observed with the three markers in our cohort, we found a reduction in the diversity of Clostridia, particularly within Lachnospiraceae and Oscillospiraceae among obese individuals [as measured by the body mass index (BMI)]. Within Lachnospiraceae, the diversity of Ruminococcus_A negatively correlated with BMI. Within Oscillospiraceae, the genera CAG-170 and Vescimonas also exhibited this negative correlation. In addition, the abundance of Vescimonas was negatively correlated with BMI. Leveraging shotgun metagenomic data, we conducted a phylogenetic and genomic characterization of 120 metagenome-assembled genomes from Vescimonas obtained from a larger sample of the same cohort. We identified 17 of the 72 reported species. The functional annotation of these genomes showed the presence of multiple carbohydrate-active enzymes, particularly glycosyl transferases and glycoside hydrolases, suggesting potential beneficial roles in fiber degradation, carbohydrate metabolism, and butyrate production. IMPORTANCE The gut microbiota is diverse across various taxonomic levels. At the intra-species level, it comprises multiple strains, some of which may be host-specific. However, our understanding of fine-grained diversity has been hindered by the use of the conserved 16S rRNA gene. While shotgun metagenomics offers higher resolution, it remains costly, may fail to identify specific microbes in complex samples, and requires extensive computational resources and expertise. To address this, we employed a simple and cost-effective analysis of alternative genetic markers to explore diversity within Clostridia, a crucial group within the human gut microbiota whose diversity may be underestimated. We found high intra-species diversity for certain groups and associations with obesity. Notably, we identified Vescimonas, an understudied group. Making use of metagenomic data, we inferred functionality, uncovering potential beneficial roles in dietary fiber and carbohydrate degradation, as well as in short-chain fatty acid production.
Collapse
Affiliation(s)
- Laura Salazar-Jaramillo
- Vidarium–Nutrition, Health and Wellness Research Center, Grupo Empresarial Nutresa, Medellin, Colombia
| | | | - Luis A. Chica
- Department of Biological Sciences, Max Planck Tandem Group in Computational Biology, Research Group in Computational Biology and Microbial Ecology (BCEM), Universidad de los Andes, Bogota, Colombia
| | - María Cadavid
- Vidarium–Nutrition, Health and Wellness Research Center, Grupo Empresarial Nutresa, Medellin, Colombia
| | - Ruth E. Ley
- Department of Microbiome Science, Max Planck Institute for Biology, Tübingen, Germany
| | - Alejandro Reyes
- Department of Biological Sciences, Max Planck Tandem Group in Computational Biology, Research Group in Computational Biology and Microbial Ecology (BCEM), Universidad de los Andes, Bogota, Colombia
- Department of Pathology and Immunology, Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Juan S. Escobar
- Vidarium–Nutrition, Health and Wellness Research Center, Grupo Empresarial Nutresa, Medellin, Colombia
| |
Collapse
|
12
|
Gryaznova M, Smirnova Y, Burakova I, Syromyatnikov M, Chizhkov P, Popov E, Popov V. Changes in the Human Gut Microbiome Caused by the Short-Term Impact of Lactic Acid Bacteria Consumption in Healthy People. Probiotics Antimicrob Proteins 2024; 16:1240-1250. [PMID: 37365419 DOI: 10.1007/s12602-023-10111-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2023] [Indexed: 06/28/2023]
Abstract
The gut microbiome is one of the main factors affecting human health. It has been proven that probiotics can regulate the metabolism in the host body. A large number of people use probiotics not as medicines, but as a prophylactic supplement. The aim of our study was to evaluate the effect of lactic acid bacteria on the gut microbiome of healthy people using the V3 region of the 16S rRNA gene. Our study showed changes in the generic composition in the gut of healthy people when taking the supplement. There was an increase in the members responsible for the production of short-chain fatty acids in the gut of the host (Blautia, Fusicatenibacter, Eubacterium hallii group, Ruminococcus), as well as bacteria that improve intestinal homeostasis (Dorea and Barnesiella). There was also a decrease in the abundance of bacteria in the genera Catenibacterium, Hungatella, Escherichia-Shigella, and Pseudomonas, associated with an unhealthy profile of the human gut microbiome. An increase in members of the phylum Actinobacteriota was also observed, which has a positive effect on the host organism. Our results indicate that short-term prophylactic use of lactic acid bacteria-based supplements can be effective, as it contributes to a beneficial effect on the gut microbiome of healthy people.
Collapse
Affiliation(s)
- Mariya Gryaznova
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036, Voronezh, Russia
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018, Voronezh, Russia
| | - Yuliya Smirnova
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036, Voronezh, Russia
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018, Voronezh, Russia
| | - Inna Burakova
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036, Voronezh, Russia
| | - Mikhail Syromyatnikov
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036, Voronezh, Russia.
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018, Voronezh, Russia.
| | - Pavel Chizhkov
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018, Voronezh, Russia
| | - Evgeny Popov
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036, Voronezh, Russia
| | - Vasily Popov
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036, Voronezh, Russia
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018, Voronezh, Russia
| |
Collapse
|
13
|
Santos-Júnior CD, Torres MDT, Duan Y, Rodríguez Del Río Á, Schmidt TSB, Chong H, Fullam A, Kuhn M, Zhu C, Houseman A, Somborski J, Vines A, Zhao XM, Bork P, Huerta-Cepas J, de la Fuente-Nunez C, Coelho LP. Discovery of antimicrobial peptides in the global microbiome with machine learning. Cell 2024; 187:3761-3778.e16. [PMID: 38843834 PMCID: PMC11666328 DOI: 10.1016/j.cell.2024.05.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 04/11/2024] [Accepted: 05/06/2024] [Indexed: 06/25/2024]
Abstract
Novel antibiotics are urgently needed to combat the antibiotic-resistance crisis. We present a machine-learning-based approach to predict antimicrobial peptides (AMPs) within the global microbiome and leverage a vast dataset of 63,410 metagenomes and 87,920 prokaryotic genomes from environmental and host-associated habitats to create the AMPSphere, a comprehensive catalog comprising 863,498 non-redundant peptides, few of which match existing databases. AMPSphere provides insights into the evolutionary origins of peptides, including by duplication or gene truncation of longer sequences, and we observed that AMP production varies by habitat. To validate our predictions, we synthesized and tested 100 AMPs against clinically relevant drug-resistant pathogens and human gut commensals both in vitro and in vivo. A total of 79 peptides were active, with 63 targeting pathogens. These active AMPs exhibited antibacterial activity by disrupting bacterial membranes. In conclusion, our approach identified nearly one million prokaryotic AMP sequences, an open-access resource for antibiotic discovery.
Collapse
Affiliation(s)
- Célio Dias Santos-Júnior
- Institute of Science and Technology for Brain-Inspired Intelligence - ISTBI, Fudan University, Shanghai 200433, China; Laboratory of Microbial Processes & Biodiversity - LMPB, Department of Hydrobiology, Universidade Federal de São Carlos - UFSCar, São Carlos, São Paulo 13565-905, Brazil
| | - Marcelo D T Torres
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA; Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA; Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA, USA
| | - Yiqian Duan
- Institute of Science and Technology for Brain-Inspired Intelligence - ISTBI, Fudan University, Shanghai 200433, China
| | - Álvaro Rodríguez Del Río
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Campus de Montegancedo-UPM, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Thomas S B Schmidt
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany; APC Microbiome & School of Medicine, University College Cork, Cork, Ireland
| | - Hui Chong
- Institute of Science and Technology for Brain-Inspired Intelligence - ISTBI, Fudan University, Shanghai 200433, China
| | - Anthony Fullam
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Michael Kuhn
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Chengkai Zhu
- Institute of Science and Technology for Brain-Inspired Intelligence - ISTBI, Fudan University, Shanghai 200433, China
| | - Amy Houseman
- Institute of Science and Technology for Brain-Inspired Intelligence - ISTBI, Fudan University, Shanghai 200433, China
| | - Jelena Somborski
- Institute of Science and Technology for Brain-Inspired Intelligence - ISTBI, Fudan University, Shanghai 200433, China
| | - Anna Vines
- Institute of Science and Technology for Brain-Inspired Intelligence - ISTBI, Fudan University, Shanghai 200433, China
| | - Xing-Ming Zhao
- Institute of Science and Technology for Brain-Inspired Intelligence - ISTBI, Fudan University, Shanghai 200433, China; Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China; State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Fudan University, Shanghai, China; MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Peer Bork
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany; Max Delbrück Centre for Molecular Medicine, Berlin, Germany; Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Jaime Huerta-Cepas
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Campus de Montegancedo-UPM, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Cesar de la Fuente-Nunez
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA; Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA; Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA, USA.
| | - Luis Pedro Coelho
- Institute of Science and Technology for Brain-Inspired Intelligence - ISTBI, Fudan University, Shanghai 200433, China; Centre for Microbiome Research, School of Biomedical Sciences, Queensland University of Technology, Translational Research Institute, Woolloongabba, QLD, Australia.
| |
Collapse
|
14
|
Aurora R, Sanford T. The Microbiome: From the Beginning to the End. MISSOURI MEDICINE 2024; 121:310-316. [PMID: 39575080 PMCID: PMC11578570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/24/2024]
Abstract
The human microbiota, a community of microorganisms in our bodies, is crucial for our health. This paper explores its development from birth through old age, highlighting some of the unique roles at key life stages-infancy, adulthood, and in the elderly years. Understanding the significant health impacts and consequences of changes in the microbiota offers insights for both the public and clinicians.
Collapse
Affiliation(s)
- Rajeev Aurora
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri
| | - Thomas Sanford
- Department of Otolaryngology, Saint Louis University School of Medicine, St. Louis, Missouri
| |
Collapse
|
15
|
Chandel N, Maile A, Shrivastava S, Verma AK, Thakur V. Establishment and perturbation of human gut microbiome: common trends and variations between Indian and global populations. GUT MICROBIOME (CAMBRIDGE, ENGLAND) 2024; 5:e8. [PMID: 39776539 PMCID: PMC11704572 DOI: 10.1017/gmb.2024.6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 01/11/2025]
Abstract
Human gut microbial species are crucial for dietary metabolism and biosynthesis of micronutrients. Digested products are utilised by the host as well as several gut bacterial species. These species are influenced by various factors such as diet, age, geographical location, and ethnicity. India is home to the largest human population in the world. It is spread across diverse ecological and geographical locations. With variable dietary habits and lifestyles, Indians have unique gut microbial composition. This review captures contrasting and common trends of gut bacterial community establishment in infants (born through different modes of delivery), and how that bacterial community manifests itself along infancy, through old age between Indian and global populations. Because dysbiosis of the gut community structure is associated with various diseases, this review also highlights the common and unique bacterial species associated with various communicable as well as noncommunicable diseases such as diarrhoea, amoebiasis, malnutrition, type 2 diabetes, obesity, colorectal cancer, inflammatory bowel disease, and gut inflammation and damage to the brain in the global and Indian population.
Collapse
Affiliation(s)
- Nisha Chandel
- Department of Systems and Computational Biology, University of Hyderabad, Hyderabad, India
| | - Anwesh Maile
- DBT-Centre for Microbial Informatics, University of Hyderabad, Hyderabad, India
| | - Suyesh Shrivastava
- ICMR-National Institute of Research in Tribal Health (NIRTH), Jabalpur, India
| | - Anil Kumar Verma
- ICMR-National Institute of Research in Tribal Health (NIRTH), Jabalpur, India
| | - Vivek Thakur
- Department of Systems and Computational Biology, University of Hyderabad, Hyderabad, India
| |
Collapse
|
16
|
Zhong J, Guo L, Wang Y, Jiang X, Wang C, Xiao Y, Wang Y, Zhou F, Wu C, Chen L, Wang X, Wang J, Cao B, Li M, Ren L. Gut Microbiota Improves Prognostic Prediction in Critically Ill COVID-19 Patients Alongside Immunological and Hematological Indicators. RESEARCH (WASHINGTON, D.C.) 2024; 7:0389. [PMID: 38779486 PMCID: PMC11109594 DOI: 10.34133/research.0389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024]
Abstract
The gut microbiota undergoes substantial changes in COVID-19 patients; yet, the utility of these alterations as prognostic biomarkers at the time of hospital admission, and its correlation with immunological and hematological parameters, remains unclear. The objective of this study is to investigate the gut microbiota's dynamic change in critically ill patients with COVID-19 and evaluate its predictive capability for clinical outcomes alongside immunological and hematological parameters. In this study, anal swabs were consecutively collected from 192 COVID-19 patients (583 samples) upon hospital admission for metagenome sequencing. Simultaneously, blood samples were obtained to measure the concentrations of 27 cytokines and chemokines, along with hematological and biochemical indicators. Our findings indicate a significant correlation between the composition and dynamics of gut microbiota with disease severity and mortality in COVID-19 patients. Recovered patients exhibited a higher abundance of Veillonella and denser interactions among gut commensal bacteria compared to deceased patients. Furthermore, the abundance of gut commensal bacteria exhibited a negative correlation with the concentration of proinflammatory cytokines and organ damage markers. The gut microbiota upon admission showed moderate prognostic prediction ability with an AUC of 0.78, which was less effective compared to predictions based on immunological and hematological parameters (AUC 0.80 and 0.88, respectively). Noteworthy, the integration of these three datasets yielded a higher predictive accuracy (AUC 0.93). Our findings suggest the gut microbiota as an informative biomarker for COVID-19 prognosis, augmenting existing immune and hematological indicators.
Collapse
Affiliation(s)
- Jiaxin Zhong
- Beijing Institute of Genomics, Chinese Academy of Sciences, and China National Center for Bioinformation, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Li Guo
- National Health Commission Key Laboratory of Systems Biology of Pathogens, State Key Laboratory of Respiratory Health and Multimorbidity and Christophe Mérieux Laboratory, National Institute of Pathogen Biology,
Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Respiratory Disease Pathogenomics,
Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yeming Wang
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital,
Capital Medical University, Beijing, China
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases,
Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Xuan Jiang
- Beijing Institute of Genomics, Chinese Academy of Sciences, and China National Center for Bioinformation, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chun Wang
- Beijing Institute of Genomics, Chinese Academy of Sciences, and China National Center for Bioinformation, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yan Xiao
- National Health Commission Key Laboratory of Systems Biology of Pathogens, State Key Laboratory of Respiratory Health and Multimorbidity and Christophe Mérieux Laboratory, National Institute of Pathogen Biology,
Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Respiratory Disease Pathogenomics,
Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ying Wang
- National Health Commission Key Laboratory of Systems Biology of Pathogens, State Key Laboratory of Respiratory Health and Multimorbidity and Christophe Mérieux Laboratory, National Institute of Pathogen Biology,
Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Respiratory Disease Pathogenomics,
Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fei Zhou
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital,
Capital Medical University, Beijing, China
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases,
Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Chao Wu
- National Health Commission Key Laboratory of Systems Biology of Pathogens, State Key Laboratory of Respiratory Health and Multimorbidity and Christophe Mérieux Laboratory, National Institute of Pathogen Biology,
Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Respiratory Disease Pathogenomics,
Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lan Chen
- National Health Commission Key Laboratory of Systems Biology of Pathogens, State Key Laboratory of Respiratory Health and Multimorbidity and Christophe Mérieux Laboratory, National Institute of Pathogen Biology,
Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Respiratory Disease Pathogenomics,
Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xinming Wang
- National Health Commission Key Laboratory of Systems Biology of Pathogens, State Key Laboratory of Respiratory Health and Multimorbidity and Christophe Mérieux Laboratory, National Institute of Pathogen Biology,
Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Respiratory Disease Pathogenomics,
Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianwei Wang
- National Health Commission Key Laboratory of Systems Biology of Pathogens, State Key Laboratory of Respiratory Health and Multimorbidity and Christophe Mérieux Laboratory, National Institute of Pathogen Biology,
Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Respiratory Disease Pathogenomics,
Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bin Cao
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital,
Capital Medical University, Beijing, China
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases,
Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Mingkun Li
- Beijing Institute of Genomics, Chinese Academy of Sciences, and China National Center for Bioinformation, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - LiLi Ren
- National Health Commission Key Laboratory of Systems Biology of Pathogens, State Key Laboratory of Respiratory Health and Multimorbidity and Christophe Mérieux Laboratory, National Institute of Pathogen Biology,
Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Respiratory Disease Pathogenomics,
Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
17
|
Dong J, Cui Y, Qu X. Metabolism mechanism of glycosaminoglycans by the gut microbiota: Bacteroides and lactic acid bacteria: A review. Carbohydr Polym 2024; 332:121905. [PMID: 38431412 DOI: 10.1016/j.carbpol.2024.121905] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/19/2024] [Accepted: 01/30/2024] [Indexed: 03/05/2024]
Abstract
Glycosaminoglycans (GAGs), as a class of biopolymers, play pivotal roles in various biological metabolisms such as cell signaling, tissue development, cell apoptosis, immune modulation, and growth factor activity. They are mainly present in the colon in free forms, which are essential for maintaining the host's health by regulating the colonization and proliferation of gut microbiota. Therefore, it is important to explain the specific members of the gut microbiota for GAGs' degradation and their enzymatic machinery in vivo. This review provides an outline of GAGs-utilizing entities in the Bacteroides, highlighting their polysaccharide utilization loci (PULs) and the enzymatic machinery involved in chondroitin sulfate (CS) and heparin (Hep)/heparan sulfate (HS). While there are some variations in GAGs' degradation among different genera, we analyze the reputed GAGs' utilization clusters in lactic acid bacteria (LAB), based on recent studies on GAGs' degradation. The enzymatic machinery involved in Hep/HS and CS metabolism within LAB is also discussed. Thus, to elucidate the precise mechanisms utilizing GAGs by diverse gut microbiota will augment our understanding of their effects on human health and contribute to potential therapeutic strategies for diseases.
Collapse
Affiliation(s)
- Jiahuan Dong
- Department of Food Nutrition and Health, School of Medicine and Health, Harbin Institute of Technology, Harbin 150090, China
| | - Yanhua Cui
- Department of Food Nutrition and Health, School of Medicine and Health, Harbin Institute of Technology, Harbin 150090, China.
| | - Xiaojun Qu
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin 150010, China
| |
Collapse
|
18
|
DeClercq V, Wright RJ, Nearing JT, Langille MGI. Oral microbial signatures associated with age and frailty in Canadian adults. Sci Rep 2024; 14:9685. [PMID: 38678061 PMCID: PMC11055859 DOI: 10.1038/s41598-024-60409-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/23/2024] [Indexed: 04/29/2024] Open
Abstract
This study aimed to assess the association between the oral microbiome, age, and frailty. Data and saliva samples were obtained from male and female participants aged 35-70 years (n = 1357). Saliva samples were analysed by 16S rRNA gene sequencing and differences in microbial diversity and community compositions were examined in relation to chronological age and the frailty index (FI). Most alpha diversity measures (Richness, Shannon Diversity, Faith's Phylogenetic Diversity) showed an inverse association with frailty, whereas a positive association was observed with age and Shannon Diversity and Evenness. A further sex-stratified analysis revealed differences in measures of microbial diversity and composition. Multiple genera were detected as significantly differentially abundant with increasing frailty and age by at least two methods. With age, the relative abundance of Veillonella was reduced in both males and females, whereas increases in Corynebacterium appeared specific to males and Aggregatibacter, Fusobacterium, Neisseria, Stomatobaculum, and Porphyromonas specific to females. Beta diversity was significantly associated with multiple mental health components of the FI. This study shows age and frailty are differentially associated with measures of microbial diversity and composition, suggesting the oral microbiome may be a useful indicator of increased risk of frailty or a potential target for improving health in ageing adults.
Collapse
Affiliation(s)
- Vanessa DeClercq
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada.
- Department of Community Health and Epidemiology, Dalhousie University, Halifax, Nova Scotia, Canada.
| | - Robyn J Wright
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Jacob T Nearing
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Morgan G I Langille
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
19
|
Cavalluzzo B, Viuff MC, Tvingsholm SA, Ragone C, Manolio C, Mauriello A, Buonaguro FM, Tornesello ML, Izzo F, Morabito A, Hadrup SR, Tagliamonte M, Buonaguro L. Cross-reactive CD8 + T cell responses to tumor-associated antigens (TAAs) and homologous microbiota-derived antigens (MoAs). J Exp Clin Cancer Res 2024; 43:87. [PMID: 38509571 PMCID: PMC10953141 DOI: 10.1186/s13046-024-03004-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 03/06/2024] [Indexed: 03/22/2024] Open
Abstract
BACKGROUND We have recently shown extensive sequence and conformational homology between tumor-associated antigens (TAAs) and antigens derived from microorganisms (MoAs). The present study aimed to assess the breadth of T-cell recognition specific to MoAs and the corresponding TAAs in healthy subjects (HS) and patients with cancer (CP). METHOD A library of > 100 peptide-MHC (pMHC) combinations was used to generate DNA-barcode labelled multimers. Homologous peptides were selected from the Cancer Antigenic Peptide Database, as well as Bacteroidetes/Firmicutes-derived peptides. They were incubated with CD8 + T cells from the peripheral blood of HLA-A*02:01 healthy individuals (n = 10) and cancer patients (n = 16). T cell recognition was identified using tetramer-staining analysis. Cytotoxicity assay was performed using as target cells TAP-deficient T2 cells loaded with MoA or the paired TuA. RESULTS A total of 66 unique pMHC recognized by CD8+ T cells across all groups were identified. Of these, 21 epitopes from microbiota were identified as novel immunological targets. Reactivity against selected TAAs was observed for both HS and CP. pMHC tetramer staining confirmed CD8+ T cell populations cross-reacting with CTA SSX2 and paired microbiota epitopes. Moreover, PBMCs activated with the MoA where shown to release IFNγ as well as to exert cytotoxic activity against cells presenting the paired TuA. CONCLUSIONS Several predicted microbiota-derived MoAs are recognized by T cells in HS and CP. Reactivity against TAAs was observed also in HS, primed by the homologous bacterial antigens. CD8+ T cells cross-reacting with MAGE-A1 and paired microbiota epitopes were identified in three subjects. Therefore, the microbiota can elicit an extensive repertoire of natural memory T cells to TAAs, possibly able to control tumor growth ("natural anti-cancer vaccination"). In addition, non-self MoAs can be included in preventive/therapeutic off-the-shelf cancer vaccines with more potent anti-tumor efficacy than those based on TAAs.
Collapse
Affiliation(s)
- Beatrice Cavalluzzo
- Innovative Immunological Models Unit, Istituto Nazionale Tumori - IRCCS - "Fond G. Pascale", Via Mariano Semmola, 52, Naples, Italy
| | - Marie Christine Viuff
- Department of Health Technology, Section of Experimental and Translational Immunology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Siri Amanda Tvingsholm
- Department of Health Technology, Section of Experimental and Translational Immunology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Concetta Ragone
- Innovative Immunological Models Unit, Istituto Nazionale Tumori - IRCCS - "Fond G. Pascale", Via Mariano Semmola, 52, Naples, Italy
| | - Carmen Manolio
- Innovative Immunological Models Unit, Istituto Nazionale Tumori - IRCCS - "Fond G. Pascale", Via Mariano Semmola, 52, Naples, Italy
| | - Angela Mauriello
- Innovative Immunological Models Unit, Istituto Nazionale Tumori - IRCCS - "Fond G. Pascale", Via Mariano Semmola, 52, Naples, Italy
| | - Franco M Buonaguro
- Molecular Biology and Viral Oncogenesis Unit, Istituto Nazionale Tumori - IRCCS - "Fond G. Pascale", Naples, Italy
| | - Maria Lina Tornesello
- Molecular Biology and Viral Oncogenesis Unit, Istituto Nazionale Tumori - IRCCS - "Fond G. Pascale", Naples, Italy
| | - Francesco Izzo
- Hepatobiliary Surgical Oncology Unit, Istituto Nazionale Tumori - IRCCS - "Fond. G. Pascale", Naples, Italy
| | - Alessandro Morabito
- Thoracic Medical Oncology, Istituto Nazionale Tumori - IRCCS - "Fond G. Pascale", Naples, Italy
| | - Sine Reker Hadrup
- Department of Health Technology, Section of Experimental and Translational Immunology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Maria Tagliamonte
- Innovative Immunological Models Unit, Istituto Nazionale Tumori - IRCCS - "Fond G. Pascale", Via Mariano Semmola, 52, Naples, Italy.
| | - Luigi Buonaguro
- Innovative Immunological Models Unit, Istituto Nazionale Tumori - IRCCS - "Fond G. Pascale", Via Mariano Semmola, 52, Naples, Italy.
| |
Collapse
|
20
|
Lluansí A, Llirós M, Carreras-Torres R, Bahí A, Capdevila M, Feliu A, Vilà-Quintana L, Elias-Masiques N, Cueva E, Peries L, Torrealba L, Miquel-Cusachs JO, Sàbat M, Busquets D, López C, Delgado-Aros S, Garcia-Gil LJ, Elias I, Aldeguer X. Impact of bread diet on intestinal dysbiosis and irritable bowel syndrome symptoms in quiescent ulcerative colitis: A pilot study. PLoS One 2024; 19:e0297836. [PMID: 38363772 PMCID: PMC10871487 DOI: 10.1371/journal.pone.0297836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 01/11/2024] [Indexed: 02/18/2024] Open
Abstract
Gut microbiota may be involved in the presence of irritable bowel syndrome (IBS)-like symptomatology in ulcerative colitis (UC) patients in remission. Bread is an important source of dietary fiber, and a potential prebiotic. To assess the effect of a bread baked using traditional elaboration, in comparison with using modern elaboration procedures, in changing the gut microbiota and relieving IBS-like symptoms in patients with quiescent ulcerative colitis. Thirty-one UC patients in remission with IBS-like symptoms were randomly assigned to a dietary intervention with 200 g/d of either treatment or control bread for 8 weeks. Clinical symptomatology was tested using questionnaires and inflammatory parameters. Changes in fecal microbiota composition were assessed by high-throughput sequencing of the 16S rRNA gene. A decrease in IBS-like symptomatology was observed after both the treatment and control bread interventions as reductions in IBS-Symptom Severity Score values (p-value < 0.001) and presence of abdominal pain (p-value < 0.001). The treatment bread suggestively reduced the Firmicutes/Bacteroidetes ratio (p-value = 0.058). In addition, the Firmicutes/Bacteroidetes ratio seemed to be associated with improving IBS-like symptoms as suggested by a slight decrease in patient without abdominal pain (p-value = 0.059). No statistically significant differential abundances were found at any taxonomic level. The intake of a bread baked using traditional elaboration decreased the Firmicutes/Bacteroidetes ratio, which seemed to be associated with improving IBS-like symptoms in quiescent ulcerative colitis patients. These findings suggest that the traditional bread elaboration has a potential prebiotic effect improving gut health (ClinicalTrials.gov ID number of study: NCT05656391).
Collapse
Affiliation(s)
- Aleix Lluansí
- Digestive Diseases and Microbiota Group, Institut d’Investigació Biomèdica de Girona Dr. Josep Trueta (IDIBGI), Girona, Spain
| | - Marc Llirós
- Digestive Diseases and Microbiota Group, Institut d’Investigació Biomèdica de Girona Dr. Josep Trueta (IDIBGI), Girona, Spain
| | - Robert Carreras-Torres
- Digestive Diseases and Microbiota Group, Institut d’Investigació Biomèdica de Girona Dr. Josep Trueta (IDIBGI), Girona, Spain
| | - Anna Bahí
- Digestive Diseases and Microbiota Group, Institut d’Investigació Biomèdica de Girona Dr. Josep Trueta (IDIBGI), Girona, Spain
| | - Montserrat Capdevila
- Digestive Diseases and Microbiota Group, Institut d’Investigació Biomèdica de Girona Dr. Josep Trueta (IDIBGI), Girona, Spain
| | - Anna Feliu
- Digestive Diseases and Microbiota Group, Institut d’Investigació Biomèdica de Girona Dr. Josep Trueta (IDIBGI), Girona, Spain
| | - Laura Vilà-Quintana
- Digestive Diseases and Microbiota Group, Institut d’Investigació Biomèdica de Girona Dr. Josep Trueta (IDIBGI), Girona, Spain
| | | | | | - Laia Peries
- Digestive Diseases and Microbiota Group, Institut d’Investigació Biomèdica de Girona Dr. Josep Trueta (IDIBGI), Girona, Spain
- Department of Gastroenterology, Hospital Universitari de Girona Dr. Josep Trueta, Girona, Spain
| | - Leyanira Torrealba
- Digestive Diseases and Microbiota Group, Institut d’Investigació Biomèdica de Girona Dr. Josep Trueta (IDIBGI), Girona, Spain
- Department of Gastroenterology, Hospital Universitari de Girona Dr. Josep Trueta, Girona, Spain
| | - Josep Oriol Miquel-Cusachs
- Digestive Diseases and Microbiota Group, Institut d’Investigació Biomèdica de Girona Dr. Josep Trueta (IDIBGI), Girona, Spain
- Department of Gastroenterology, Hospital Universitari de Girona Dr. Josep Trueta, Girona, Spain
| | - Míriam Sàbat
- Digestive Diseases and Microbiota Group, Institut d’Investigació Biomèdica de Girona Dr. Josep Trueta (IDIBGI), Girona, Spain
- Department of Gastroenterology, Hospital de Santa Caterina, Girona, Spain
| | - David Busquets
- Digestive Diseases and Microbiota Group, Institut d’Investigació Biomèdica de Girona Dr. Josep Trueta (IDIBGI), Girona, Spain
- Department of Gastroenterology, Hospital Universitari de Girona Dr. Josep Trueta, Girona, Spain
| | - Carmen López
- Digestive Diseases and Microbiota Group, Institut d’Investigació Biomèdica de Girona Dr. Josep Trueta (IDIBGI), Girona, Spain
- Department of Gastroenterology, Hospital Universitari de Girona Dr. Josep Trueta, Girona, Spain
| | - Sílvia Delgado-Aros
- Gastroenterology Scientific advisor to Elias-Boulanger S.L., Vilassar de Mar, Spain
| | - Librado Jesús Garcia-Gil
- Digestive Diseases and Microbiota Group, Institut d’Investigació Biomèdica de Girona Dr. Josep Trueta (IDIBGI), Girona, Spain
- Department of Biology, Universitat de Girona, Girona, Spain
| | - Isidre Elias
- Department of Gastroenterology, Hospital Universitari de Girona Dr. Josep Trueta, Girona, Spain
| | - Xavier Aldeguer
- Digestive Diseases and Microbiota Group, Institut d’Investigació Biomèdica de Girona Dr. Josep Trueta (IDIBGI), Girona, Spain
| |
Collapse
|
21
|
Goudman L, Demuyser T, Pilitsis JG, Billot M, Roulaud M, Rigoard P, Moens M. Gut dysbiosis in patients with chronic pain: a systematic review and meta-analysis. Front Immunol 2024; 15:1342833. [PMID: 38352865 PMCID: PMC10862364 DOI: 10.3389/fimmu.2024.1342833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/08/2024] [Indexed: 02/16/2024] Open
Abstract
Introduction Recent evidence supports the contribution of gut microbiota dysbiosis to the pathophysiology of rheumatic diseases, neuropathic pain, and neurodegenerative disorders. The bidirectional gut-brain communication network and the occurrence of chronic pain both involve contributions of the autonomic nervous system and the hypothalamic pituitary adrenal axis. Nevertheless, the current understanding of the association between gut microbiota and chronic pain is still not clear. Therefore, the aim of this study is to systematically evaluate the existing knowledge about gut microbiota alterations in chronic pain conditions. Methods Four databases were consulted for this systematic literature review: PubMed, Web of Science, Scopus, and Embase. The Newcastle-Ottawa Scale was used to assess the risk of bias. The study protocol was prospectively registered at the International prospective register of systematic reviews (PROSPERO, CRD42023430115). Alpha-diversity, β-diversity, and relative abundance at different taxonomic levels were summarized qualitatively, and quantitatively if possible. Results The initial database search identified a total of 3544 unique studies, of which 21 studies were eventually included in the systematic review and 11 in the meta-analysis. Decreases in alpha-diversity were revealed in chronic pain patients compared to controls for several metrics: observed species (SMD= -0.201, 95% CI from -0.04 to -0.36, p=0.01), Shannon index (SMD= -0.27, 95% CI from -0.11 to -0.43, p<0.001), and faith phylogenetic diversity (SMD -0.35, 95% CI from -0.08 to -0.61, p=0.01). Inconsistent results were revealed for beta-diversity. A decrease in the relative abundance of the Lachnospiraceae family, genus Faecalibacterium and Roseburia, and species of Faecalibacterium prausnitzii and Odoribacter splanchnicus, as well as an increase in Eggerthella spp., was revealed in chronic pain patients compared to controls. Discussion Indications for gut microbiota dysbiosis were revealed in chronic pain patients, with non-specific disease alterations of microbes. Systematic review registration https://www.crd.york.ac.uk/prospero/, identifier CRD42023430115.
Collapse
Affiliation(s)
- Lisa Goudman
- STIMULUS (Research and Teaching Neuromodulation Uz Brussel) Research Group, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Neurosurgery, Universitair Ziekenhuis Brussel, Brussels, Belgium
- Center for Neurosciences (C4N), Vrije Universiteit Brussel, Brussels, Belgium
- Pain in Motion (PAIN) Research Group, Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education and Physiotherapy, Vrije Universiteit Brussel, Brussels, Belgium
- Research Foundation—Flanders (FWO), Brussels, Belgium
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, United States
| | - Thomas Demuyser
- Department Microbiology and Infection Control, Universitair Ziekenhuis Brussel, Brussels, Belgium
- AIMS Lab, Center for Neurosciences, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Julie G. Pilitsis
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, United States
| | - Maxime Billot
- PRISMATICS Lab (Predictive Research in Spine/Neuromodulation Management and Thoracic Innovation/Cardiac Surgery), Poitiers University Hospital, Poitiers, France
| | - Manuel Roulaud
- PRISMATICS Lab (Predictive Research in Spine/Neuromodulation Management and Thoracic Innovation/Cardiac Surgery), Poitiers University Hospital, Poitiers, France
| | - Philippe Rigoard
- PRISMATICS Lab (Predictive Research in Spine/Neuromodulation Management and Thoracic Innovation/Cardiac Surgery), Poitiers University Hospital, Poitiers, France
- Department of Spine Surgery and Neuromodulation, Poitiers University Hospital, Poitiers, France
- Pprime Institute UPR 3346, CNRS, ISAE-ENSMA, University of Poitiers, Chasseneuil-du-Poitou, France
| | - Maarten Moens
- STIMULUS (Research and Teaching Neuromodulation Uz Brussel) Research Group, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Neurosurgery, Universitair Ziekenhuis Brussel, Brussels, Belgium
- Center for Neurosciences (C4N), Vrije Universiteit Brussel, Brussels, Belgium
- Pain in Motion (PAIN) Research Group, Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education and Physiotherapy, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Radiology, Universitair Ziekenhuis Brussel, Brussels, Belgium
| |
Collapse
|
22
|
Fernandes TH, Bell V. The imprecision of micronutrient requirement values: the example of vitamin D. J Food Sci 2024; 89:51-63. [PMID: 38126105 DOI: 10.1111/1750-3841.16889] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 11/10/2023] [Accepted: 11/29/2023] [Indexed: 12/23/2023]
Abstract
Food, not nutrients, is the fundamental unit in nutrition. Nutrient requirement values and recommended daily intakes have long been determined and organized in tables by several regulators. These figures, however, overlook the complexity of mixing different foods in a diet and the mediation by human gut microbiota on digestion, metabolism, and health. The microbiome molecular mechanisms and its potential influence on nutrient requirements are far from clear. Guidelines should depend on the sort of intake, along with the dietary habits, rather than focusing on single nutrients. Despite many decades of attempts to investigate the proximate nutrient composition of foods consumed by different world populations, there are still neither standardization of food composition databases nor harmonized dietary intake methods of assessment of nutrients. No all-inclusive attempt was yet made to emphasize the requirements of the various micronutrients, phytonutrients, and non-nutrients on gut microbiota and vice versa, and thereafter reflected into dietary guidelines. New multifaceted methods have been advanced to reevaluate the way nutrients and nutrient requirements are assessed within the intricate biological systems. Our main goal here was to enhance the fact that existing food guidelines hold inherent strengths and limitations but fail, in many aspects, namely, in not taking into account essential geographical, ethnic and cultural differences, and the different stages of life, infant nutrition, and the microbiota impact on several micronutrient requirements. Vitamin D is given as an illustration on present inaccuracy of its requirements. Defining dietary reference intakes is therefore an ongoing process specific for each population.
Collapse
Affiliation(s)
| | - Victoria Bell
- Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Coimbra, Portugal
| |
Collapse
|
23
|
Ungor I, Apidianakis Y. Bacterial synergies and antagonisms affecting Pseudomonas aeruginosa virulence in the human lung, skin and intestine. Future Microbiol 2024; 19:141-155. [PMID: 37843410 DOI: 10.2217/fmb-2022-0155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/12/2023] [Indexed: 10/17/2023] Open
Abstract
Pseudomonas aeruginosa requires a significant breach in the host defense to cause an infection. While its virulence factors are well studied, its tropism cannot be explained only by studying its interaction with the host. Why are P. aeruginosa infections so rare in the intestine compared with the lung and skin? There is not enough evidence to claim specificity in virulence factors deployed by P. aeruginosa in each anatomical site, and host physiology differences between the lung and the intestine cannot easily explain the observed differences in virulence. This perspective highlights a relatively overlooked parameter in P. aeruginosa virulence, namely, potential synergies with bacteria found in the human skin and lung, as well as antagonisms with bacteria of the human intestine.
Collapse
Affiliation(s)
- Izel Ungor
- Department of Biological Sciences, University of Cyprus, Nicosia, 2109, Cyprus
| | - Yiorgos Apidianakis
- Department of Biological Sciences, University of Cyprus, Nicosia, 2109, Cyprus
| |
Collapse
|
24
|
Melo-Marques I, Cardoso SM, Empadinhas N. Bacterial extracellular vesicles at the interface of gut microbiota and immunity. Gut Microbes 2024; 16:2396494. [PMID: 39340209 PMCID: PMC11444517 DOI: 10.1080/19490976.2024.2396494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/30/2024] Open
Abstract
Bacterial extracellular vesicles (BEVs) are nano-sized lipid-shielded structures released by bacteria and that play an important role in intercellular communication. Their broad taxonomic origins and varying cargo compositions suggest their active participation in significant biological mechanisms. Specifically, they are involved in directly modulating microbial ecosystems, competing with other organisms, contributing to pathogenicity, and influencing the immunity of their hosts. This review examines the mechanisms that underlie the modulatory effects of BEVs on gut dynamics and immunity. Understanding how BEVs modulate microbiota composition and functional imbalances is crucial, as gut dysbiosis is implicated not only in the pathogenesis of various gastrointestinal, metabolic, and neurological diseases, but also in reducing resistance to colonization by enteric pathogens, which is particularly concerning given the current antimicrobial resistance crisis. This review summarizes recent advancements in the field of BEVs to encourage further research into these enigmatic entities. This will facilitate a better understanding of intra- and interkingdom communication phenomena and reveal promising therapeutic approaches.
Collapse
Affiliation(s)
- Inês Melo-Marques
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Sandra Morais Cardoso
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Institute of Cellular and Molecular Biology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Nuno Empadinhas
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
25
|
Arredondo A, Àlvarez G, Isabal S, Teughels W, Laleman I, Contreras MJ, Isbej L, Huapaya E, Mendoza G, Mor C, Nart J, Blanc V, León R. Comparative 16S rRNA gene sequencing study of subgingival microbiota of healthy subjects and patients with periodontitis from four different countries. J Clin Periodontol 2023; 50:1176-1187. [PMID: 37246304 DOI: 10.1111/jcpe.13827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 03/15/2023] [Accepted: 05/02/2023] [Indexed: 05/30/2023]
Abstract
AIM To investigate the differences between the subgingival microbiota of healthy subjects (HS) and periodontitis patients (PP) from four different countries through a metagenomic approach. MATERIALS AND METHODS Subgingival samples were obtained from subjects from four different countries. Microbial composition was analysed through high-throughput sequencing of the V3-V4 region of the 16S rRNA gene. The country of origin, diagnosis and clinical and demographic variables of the subjects were used to analyse the microbial profiles. RESULTS In total, 506 subgingival samples were analysed: 196 from HS and 310 from patients with periodontitis. Differences in richness, diversity and microbial composition were observed when comparing samples pertaining to different countries of origin and different subject diagnoses. Clinical variables, such as bleeding on probing, did not significantly affect the bacterial composition of the samples. A highly conserved core of microbiota associated with periodontitis was detected, while the microbiota associated with periodontally HS was much more diverse. CONCLUSIONS Periodontal diagnosis of the subjects was the main variable explaining the composition of the microbiota in the subgingival niche. Nevertheless, the country of origin also had a significant impact on the microbiota and is therefore an important factor to consider when describing subgingival bacterial communities.
Collapse
Affiliation(s)
- A Arredondo
- Department of Microbiology, DENTAID Research Center, Barcelona, Spain
| | - G Àlvarez
- Department of Microbiology, DENTAID Research Center, Barcelona, Spain
| | - S Isabal
- Department of Microbiology, DENTAID Research Center, Barcelona, Spain
| | - W Teughels
- Department of Oral Health Sciences, KU Leuven and Dentistry, University Hospitals Leuven, Leuven, Belgium
| | - I Laleman
- Department of Oral Health Sciences, KU Leuven and Dentistry, University Hospitals Leuven, Leuven, Belgium
| | - M J Contreras
- School of Dentistry, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - L Isbej
- School of Dentistry, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Pharmacology and Toxicology Programme, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - E Huapaya
- Department of Periodontology, School of Dentistry, Universidad Científica del Sur, Lima, Peru
| | - G Mendoza
- Department of Periodontology, School of Dentistry, Universidad Científica del Sur, Lima, Peru
- Department of Periodontics, University of Pennsylvania, School of dental Medicine, Philadelphia, Pennsylvania, USA
| | - C Mor
- Department of Periodontology, Universitat Internacional de Catalunya, Barcelona, Spain
| | - J Nart
- Department of Periodontology, Universitat Internacional de Catalunya, Barcelona, Spain
| | - V Blanc
- Department of Microbiology, DENTAID Research Center, Barcelona, Spain
| | - R León
- Department of Microbiology, DENTAID Research Center, Barcelona, Spain
| |
Collapse
|
26
|
Vitetta L, Gorgani NN, Vitetta G, Henson JD. Prebiotics Progress Shifts in the Intestinal Microbiome That Benefits Patients with Type 2 Diabetes Mellitus. Biomolecules 2023; 13:1307. [PMID: 37759707 PMCID: PMC10526165 DOI: 10.3390/biom13091307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
Hypoglycemic medications that could be co-administered with prebiotics and functional foods can potentially reduce the burden of metabolic diseases such as Type 2 Diabetes Mellitus (T2DM). The efficacy of drugs such as metformin and sulfonylureas can be enhanced by the activity of the intestinal microbiome elaborated metabolites. Functional foods such as prebiotics (e.g., oligofructose) and dietary fibers can treat a dysbiotic gut microbiome by enhancing the diversity of microbial niches in the gut. These beneficial shifts in intestinal microbiome profiles include an increased abundance of bacteria such as Faecalibacterium prauznitzii, Akkermancia muciniphila, Roseburia species, and Bifidobacterium species. An important net effect is an increase in the levels of luminal SCFAs (e.g., butyrate) that provide energy carbon sources for the intestinal microbiome in cross-feeding activities, with concomitant improvement in intestinal dysbiosis with attenuation of inflammatory sequalae and improved intestinal gut barrier integrity, which alleviates the morbidity of T2DM. Oligosaccharides administered adjunctively with pharmacotherapy to ameliorate T2DM represent current plausible treatment modalities.
Collapse
Affiliation(s)
- Luis Vitetta
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Nick N. Gorgani
- OzStar Therapeutics Pty Ltd., Pennant Hills, NSW 2120, Australia
| | - Gemma Vitetta
- Gold Coast University Hospital, Southport, QLD 4215, Australia
| | - Jeremy D. Henson
- Prince of Wales Clinical School, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
27
|
Del Chierico F, Marzano V, Scanu M, Reddel S, Dentici ML, Capolino R, Di Donato M, Spasari I, Fiscarelli EV, Digilio MC, Abreu MT, Dallapiccola B, Putignani L. Analysis of gut microbiota in patients with Williams-Beuren Syndrome reveals dysbiosis linked to clinical manifestations. Sci Rep 2023; 13:9797. [PMID: 37328513 PMCID: PMC10275996 DOI: 10.1038/s41598-023-36704-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 06/08/2023] [Indexed: 06/18/2023] Open
Abstract
Williams-Beuren syndrome (WBS) is a multisystem genetic disease caused by the deletion of a region of 1.5-1.8 Mb on chromosome 7q11.23. The elastin gene seems to account for several comorbidities and distinct clinical features such including cardiovascular disease, connective tissue abnormalities, growth retardation, and gastrointestinal (GI) symptoms. Increasing evidence points to alterations in gut microbiota composition as a primary or secondary cause of some GI or extra-intestinal characteristics. In this study, we performed the first exploratory analysis of gut microbiota in WBS patients compared to healthy subjects (CTRLs) using 16S rRNA amplicon sequencing, by investigating the gut dysbiosis in relation to diseases and comorbidities. We found that patients with WBS have significant dysbiosis compared to age-matched CTRLs, characterized by an increase in proinflammatory bacteria such as Pseudomonas, Gluconacetobacter and Eggerthella, and a reduction of anti-inflammatory bacteria including Akkermansia and Bifidobacterium. Microbial biomarkers associated with weight gain, GI symptoms and hypertension were identified. Gut microbiota profiling could represent a new tool that characterise intestinal dysbiosis to complement the clinical management of these patients. In particular, the administration of microbial-based treatments, alongside traditional therapies, could help in reducing or preventing the burden of these symptoms and improve the quality of life of these patients.
Collapse
Affiliation(s)
- Federica Del Chierico
- Immunology, Rheumatology and Infectious Diseases Research Area, Unit of Human Microbiome, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.
| | - Valeria Marzano
- Immunology, Rheumatology and Infectious Diseases Research Area, Unit of Human Microbiome, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Matteo Scanu
- Immunology, Rheumatology and Infectious Diseases Research Area, Unit of Human Microbiome, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Sofia Reddel
- Immunology, Rheumatology and Infectious Diseases Research Area, Unit of Human Microbiome, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Maria Lisa Dentici
- Genetics and Rare Diseases Research Division and Medical Genetics Department, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Rossella Capolino
- Genetics and Rare Diseases Research Division and Medical Genetics Department, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Maddalena Di Donato
- Translational Cytogenomics Research Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Iolanda Spasari
- Translational Cytogenomics Research Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Ersilia Vita Fiscarelli
- Research Unit of Diagnostical and Management Innovations, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Maria Cristina Digilio
- Genetics and Rare Diseases Research Division and Medical Genetics Department, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Maria Teresa Abreu
- Crohn's and Colitis Center, Division of Digestive Health and Liver Diseases, Department of Medicine, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Bruno Dallapiccola
- Scientific Directorate, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Lorenza Putignani
- Unit of Microbiology and Diagnostic Immunology, Unit of Microbiomics and Immunology, Rheumatology and Infectious Diseases Research Area, Unit of Human Microbiome, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.
| |
Collapse
|
28
|
Singh RP, Bhardwaj A. β-glucans: a potential source for maintaining gut microbiota and the immune system. Front Nutr 2023; 10:1143682. [PMID: 37215217 PMCID: PMC10198134 DOI: 10.3389/fnut.2023.1143682] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/03/2023] [Indexed: 05/24/2023] Open
Abstract
The human gastrointestinal (GI) tract holds a complex and dynamic population of microbial communities, which exerts a marked influence on the host physiology during homeostasis and disease conditions. Diet is considered one of the main factors in structuring the gut microbiota across a lifespan. Intestinal microbial communities play a vital role in sustaining immune and metabolic homeostasis as well as protecting against pathogens. The negatively altered gut bacterial composition has related to many inflammatory diseases and infections. β-glucans are a heterogeneous assemblage of glucose polymers with a typical structure comprising a leading chain of β-(1,4) and/or β-(1,3)-glucopyranosyl units with various branches and lengths as a side chain. β-glucans bind to specific receptors on immune cells and initiate immune responses. However, β-glucans from different sources differ in their structures, conformation, physical properties, and binding affinity to receptors. How these properties modulate biological functions in terms of molecular mechanisms is not known in many examples. This review provides a critical understanding of the structures of β-glucans and their functions for modulating the gut microbiota and immune system.
Collapse
Affiliation(s)
- Ravindra Pal Singh
- Department of Industrial Biotechnology, Gujarat Biotechnology University, Gandhinagar, Gujarat, India
| | | |
Collapse
|
29
|
Majumdar A, Siva Venkatesh IP, Basu A. Short-Chain Fatty Acids in the Microbiota-Gut-Brain Axis: Role in Neurodegenerative Disorders and Viral Infections. ACS Chem Neurosci 2023; 14:1045-1062. [PMID: 36868874 DOI: 10.1021/acschemneuro.2c00803] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023] Open
Abstract
The gut-brain axis (GBA) is the umbrella term to include all bidirectional communication between the brain and gastrointestinal (GI) tract in the mammalian body. Evidence from over two centuries describes a significant role of GI microbiome in health and disease states of the host organism. Short-chain fatty acids (SCFAs), mainly acetate, butyrate, and propionate that are the physiological forms of acetic acid, butyric acid, and propionic acid respectively, are GI bacteria derived metabolites. SCFAs have been reported to influence cellular function in multiple neurodegenerative diseases (NDDs). In addition, the inflammation modulating properties of SCFAs make them suitable therapeutic candidates in neuroinflammatory conditions. This review provides a historical background of the GBA and current knowledge of the GI microbiome and role of individual SCFAs in central nervous system (CNS) disorders. Recently, a few reports have also identified the effects of GI metabolites in the case of viral infections. Among these viruses, the flaviviridae family is associated with neuroinflammation and deterioration of CNS functions. In this context, we additionally introduce SCFA based mechanisms in different viral pathogenesis to understand the former's potential as agents against flaviviral disease.
Collapse
Affiliation(s)
- Atreye Majumdar
- National Brain Research Centre, Manesar, Haryana 122052, India
| | | | - Anirban Basu
- National Brain Research Centre, Manesar, Haryana 122052, India
| |
Collapse
|
30
|
Zhang YW, Cao MM, Li YJ, Lu PP, Dai GC, Zhang M, Wang H, Rui YF. Fecal microbiota transplantation ameliorates bone loss in mice with ovariectomy-induced osteoporosis via modulating gut microbiota and metabolic function. J Orthop Translat 2022; 37:46-60. [PMID: 36196151 PMCID: PMC9520092 DOI: 10.1016/j.jot.2022.08.003] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/29/2022] [Accepted: 08/08/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Osteoporosis (OP) is a systemic metabolic bone disease characterized by decreased bone mass and destruction of bone microstructure, which tends to result in enhanced bone fragility and related fractures. The postmenopausal osteoporosis (PMOP) has a relatively high proportion, and numerous studies reveal that estrogen-deficiency is related to the imbalance of gut microbiota (GM), impaired intestinal mucosal barrier function and enhanced inflammatory reactivity. However, the underlying mechanisms remain unclear and the existing interventions are also scarce. METHODS In this study, we established a mouse model induced by ovariectomy (OVX) and conducted fecal microbiota transplantation (FMT) by gavage every day for 8 weeks. Subsequently, the bone mass and microarchitecture of mice were evaluated by the micro computed tomography (Micro-CT). The intestinal permeability, pro-osteoclastogenic cytokines expression, osteogenic and osteoclastic activities were detected by the immunohistological analysis, histological examination, enzyme-linked immunosorbent assay (ELISA) and western blot analysis accordingly. Additionally, the composition and abundance of GM were assessed by 16S rRNA sequencing and the fecal short chain fatty acids (SCFAs) level was measured by metabolomics. RESULTS Our results demonstrated that FMT inhibited the excessive osteoclastogenesis and prevented the OVX-induced bone loss. Specifically, compared with the OVX group, FMT enhanced the expressions of tight junction proteins (zonula occludens protein 1 (ZO-1) and Occludin) and suppressed the release of pro-osteoclastogenic cytokines (tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β)). Furthermore, FMT also optimized the composition and abundance of GM, and increased the fecal SCFAs level (mainly acetic acid and propionic acid). CONCLUSIONS Collectively, based on GM-bone axis, FMT prevented the OVX-induced bone loss by correcting the imbalance of GM, improving the SCFAs level, optimizing the intestinal permeability and suppressing the release of pro-osteoclastogenic cytokines, which may be an alternative option to serve as a promising candidate for the prevention and treatment of PMOP in the future. THE TRANSLATIONAL POTENTIAL OF THIS ARTICLE This study indicates the ingenious involvement of GM-bone axis in PMOP and the role of FMT in reshaping the status of GM and ameliorating the bone loss in OVX-induced mice. FMT might serve as a promising candidate for the prevention and treatment of PMOP in the future.
Collapse
Key Words
- BMD, bone mineral density
- Bone loss
- FMT, fecal microbiota transplantation
- Fecal microbiota transplantation
- GM, gut microbiota
- Gut microbiota
- IL-1β, interleukin-1β
- KEGG, kyoto encyclopedia of genes and genomes
- NMDS, non-metric multi-dimensional scaling
- OP, osteoporosis
- OPG, osteoprotegerin
- OPLS-DA, orthogonal partial least squares discriminant analysis
- OPN, osteopontin
- OTU, operational taxonomic unit
- OVX, ovariectomy
- Ovariectomy-induced osteoporosis
- PCoA, principal coordinates analysis
- PMOP, postmenopausal osteoporosis
- QIIME, quantitative insights into microbial ecology
- RANKL, receptor activator for nuclear factor-κB ligand
- RUNX2, recombinant runt related transcription factor 2
- SCFAs, short chain fatty acids
- Short chain fatty acids
- TNF-α, tumor necrosis factor-α
- TRACP5B, tartrate-resistant acid phosphatase 5B
- TRAP, tartrate-resistant acid phosphatase
- ZO-1, zonula occludens protein 1
Collapse
Affiliation(s)
- Yuan-Wei Zhang
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing Jiangsu, PR China
- School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, Jiangsu, PR China
- Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
| | - Mu-Min Cao
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing Jiangsu, PR China
- School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, Jiangsu, PR China
- Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
| | - Ying-Juan Li
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing Jiangsu, PR China
- Department of Geriatrics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
| | - Pan-Pan Lu
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing Jiangsu, PR China
- School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, Jiangsu, PR China
- Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
| | - Guang-Chun Dai
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing Jiangsu, PR China
- School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, Jiangsu, PR China
- Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
| | - Ming Zhang
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing Jiangsu, PR China
- School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, Jiangsu, PR China
- Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
| | - Hao Wang
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing Jiangsu, PR China
- School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, Jiangsu, PR China
- Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
| | - Yun-Feng Rui
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing Jiangsu, PR China
- School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, Jiangsu, PR China
- Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
| |
Collapse
|