1
|
Chelebian E, Avenel C, Wählby C. Combining spatial transcriptomics with tissue morphology. Nat Commun 2025; 16:4452. [PMID: 40360467 PMCID: PMC12075478 DOI: 10.1038/s41467-025-58989-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 04/04/2025] [Indexed: 05/15/2025] Open
Abstract
Spatial transcriptomics has transformed our understanding of tissue architecture by preserving the spatial context of gene expression patterns. Simultaneously, advances in imaging AI have enabled extraction of morphological features describing the tissue. This review introduces a framework for categorizing methods that combine spatial transcriptomics with tissue morphology, focusing on either translating or integrating morphological features into spatial transcriptomics. Translation involves using morphology to predict gene expression, creating super-resolution maps or inferring genetic information from H&E-stained samples. Integration enriches spatial transcriptomics by identifying morphological features that complement gene expression. We also explore learning strategies and future directions for this emerging field.
Collapse
Affiliation(s)
- Eduard Chelebian
- Department of Information Technology and SciLifeLab, Uppsala University, Uppsala, Sweden
| | - Christophe Avenel
- Department of Information Technology and SciLifeLab, Uppsala University, Uppsala, Sweden
| | - Carolina Wählby
- Department of Information Technology and SciLifeLab, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
2
|
Wang H, Huang J, Fang X, Liu M, Fan X, Li Y. Advances in next-generation sequencing (NGS) applications in drug discovery and development. Expert Opin Drug Discov 2025; 20:537-550. [PMID: 40099494 DOI: 10.1080/17460441.2025.2481262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/27/2025] [Accepted: 03/14/2025] [Indexed: 03/20/2025]
Abstract
INTRODUCTION Drug discovery is a complex and multifaceted process driven by scientific innovation and advanced technologies. Next-Generation Sequencing (NGS) platforms, encompassing both short-read and long-read technologies, have revolutionized the field by enabling the high-throughput and cost-effective analysis of DNA and RNA molecules. Continuous advancements in NGS-based technologies have enabled their seamless integration across preclinical and clinical workflows in drug discovery, encompassing early-stage drug target identification, candidate selection, genetically stratified clinical trials, and pharmacogenetic studies. AREA COVERED This review provides an overview of the current and potential applications of NGS-based technologies in drug discovery and development process, including their roles in novel drug target identification, high-throughput screening, clinical trials, and clinical medication studies. The review is based on literature retrieval from the PubMed and Web of Science databases between 2018 and 2024. EXPERT OPINION As technologies advance rapidly, NGS enhances accuracy and generates vast datasets. These datasets are extensively integrated with other heterogeneous data in systems biology and are mined using machine learning to extract significant insights, thereby driving progress in drug discovery.
Collapse
Affiliation(s)
- Huihong Wang
- Pharmaceutical Department, Chongqing University Three Gorges Hospital, Chongqing University, Chongqing, P. R. China
| | - Jiale Huang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Xianfu Fang
- Pharmaceutical Department, Chongqing University Three Gorges Hospital, Chongqing University, Chongqing, P. R. China
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Mengyao Liu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Xiaohong Fan
- Pharmaceutical Department, Chongqing University Three Gorges Hospital, Chongqing University, Chongqing, P. R. China
| | - Yizhou Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| |
Collapse
|
3
|
Wang C, Chan AS, Fu X, Ghazanfar S, Kim J, Patrick E, Yang JYH. Benchmarking the translational potential of spatial gene expression prediction from histology. Nat Commun 2025; 16:1544. [PMID: 39934114 PMCID: PMC11814321 DOI: 10.1038/s41467-025-56618-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 01/21/2025] [Indexed: 02/13/2025] Open
Abstract
Spatial transcriptomics has enabled the quantification of gene expression at spatial coordinates across a tissue, offering crucial insights into molecular underpinnings of diseases. In light of this, several methods predicting spatial gene expression from paired histology images have provided the opportunity to enhance the utility of obtainable and cost-effective haematoxylin-and-eosin-stained histology images. To this end, we conduct a comprehensive benchmarking study encompassing eleven methods for predicting spatial gene expression with histology images. These methods are reproduced and evaluated using five Spatially Resolved Transcriptomics datasets, followed by external validation using The Cancer Genome Atlas data. Our evaluation incorporates diverse metrics which capture the performance of predicted gene expression, model generalisability, translational potential, usability and computational efficiency of each method. Our findings demonstrate the capacity of the methods to predict spatial gene expression from histology and highlight areas that can be addressed to support the advancement of this emerging field.
Collapse
Affiliation(s)
- Chuhan Wang
- Sydney Precision Data Science Centre, University of Sydney, Sydney, NSW, Australia
- School of Computer Science, The University of Sydney, Sydney, NSW, Australia
- Laboratory of Data Discovery for Health Limited (D24H), Hong Kong SAR, China
| | - Adam S Chan
- Sydney Precision Data Science Centre, University of Sydney, Sydney, NSW, Australia
- School of Mathematics and Statistics, The University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Xiaohang Fu
- Sydney Precision Data Science Centre, University of Sydney, Sydney, NSW, Australia
- School of Computer Science, The University of Sydney, Sydney, NSW, Australia
- Laboratory of Data Discovery for Health Limited (D24H), Hong Kong SAR, China
- School of Mathematics and Statistics, The University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Shila Ghazanfar
- Sydney Precision Data Science Centre, University of Sydney, Sydney, NSW, Australia
- School of Mathematics and Statistics, The University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Jinman Kim
- Sydney Precision Data Science Centre, University of Sydney, Sydney, NSW, Australia
- School of Computer Science, The University of Sydney, Sydney, NSW, Australia
- Laboratory of Data Discovery for Health Limited (D24H), Hong Kong SAR, China
| | - Ellis Patrick
- Sydney Precision Data Science Centre, University of Sydney, Sydney, NSW, Australia.
- Laboratory of Data Discovery for Health Limited (D24H), Hong Kong SAR, China.
- School of Mathematics and Statistics, The University of Sydney, Sydney, NSW, Australia.
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia.
- The Westmead Institute for Medical Research, Sydney, NSW, Australia.
| | - Jean Y H Yang
- Sydney Precision Data Science Centre, University of Sydney, Sydney, NSW, Australia.
- Laboratory of Data Discovery for Health Limited (D24H), Hong Kong SAR, China.
- School of Mathematics and Statistics, The University of Sydney, Sydney, NSW, Australia.
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
4
|
Budhkar A, Song Q, Su J, Zhang X. Demystifying the black box: A survey on explainable artificial intelligence (XAI) in bioinformatics. Comput Struct Biotechnol J 2025; 27:346-359. [PMID: 39897059 PMCID: PMC11782883 DOI: 10.1016/j.csbj.2024.12.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/21/2024] [Accepted: 12/23/2024] [Indexed: 02/04/2025] Open
Abstract
The widespread adoption of Artificial Intelligence (AI) and machine learning (ML) tools across various domains has showcased their remarkable capabilities and performance. Black-box AI models raise concerns about decision transparency and user confidence. Therefore, explainable AI (XAI) and explainability techniques have rapidly emerged in recent years. This paper aims to review existing works on explainability techniques in bioinformatics, with a particular focus on omics and imaging. We seek to analyze the growing demand for XAI in bioinformatics, identify current XAI approaches, and highlight their limitations. Our survey emphasizes the specific needs of both bioinformatics applications and users when developing XAI methods and we particularly focus on omics and imaging data. Our analysis reveals a significant demand for XAI in bioinformatics, driven by the need for transparency and user confidence in decision-making processes. At the end of the survey, we provided practical guidelines for system developers.
Collapse
Affiliation(s)
- Aishwarya Budhkar
- Department of Computer Science, Luddy School of Informatics, Computing, and Engineering, Indiana University Bloomington, 700 N Woodlawn Ave, Bloomington, IN 47408, USA
| | - Qianqian Song
- Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, 1889 Museum Rd, Suite 7000, Gainesville, FL 32611, USA
| | - Jing Su
- Department of Biostatistics and Health Data Science, School of Medicine, Indiana University, Indianapolis, HITS 3000 BSAT, Indianapolis, IN 46202, USA
| | - Xuhong Zhang
- Department of Computer Science, Luddy School of Informatics, Computing, and Engineering, Indiana University Bloomington, 700 N Woodlawn Ave, Bloomington, IN 47408, USA
| |
Collapse
|
5
|
Liu T, Fang ZY, Zhang Z, Yu Y, Li M, Yin MZ. A comprehensive overview of graph neural network-based approaches to clustering for spatial transcriptomics. Comput Struct Biotechnol J 2024; 23:106-128. [PMID: 38089467 PMCID: PMC10714345 DOI: 10.1016/j.csbj.2023.11.055] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 10/16/2024] Open
Abstract
Spatial transcriptomics technologies enable researchers to accurately quantify and localize messenger ribonucleic acid (mRNA) transcripts at a high resolution while preserving their spatial context. The identification of spatial domains, or the task of spatial clustering, plays a crucial role in investigating data on spatial transcriptomes. One promising approach for classifying spatial domains involves the use of graph neural networks (GNNs) by leveraging gene expressions, spatial locations, and histological images. This study provided a comprehensive overview of the most recent GNN-based methods of spatial clustering methods for the analysis of data on spatial transcriptomics. We extensively evaluated the performance of current methods on prevalent datasets of spatial transcriptomics by considering their accuracy of clustering, robustness, data stabilization, relevant requirements, computational efficiency, and memory use. To this end, we explored 60 clustering scenarios by extending the essential frameworks of spatial clustering for the selection of the GNNs, algorithms of downstream clustering, principal component analysis (PCA)-based reduction, and refined methods of correction. We comparatively analyzed the performance of the methods in terms of spatial clustering to identify their limitations and outline future directions of research in the field. Our survey yielded novel insights, and provided motivation for further investigating spatial transcriptomics.
Collapse
Affiliation(s)
- Teng Liu
- Clinical Research Center (CRC), Clinical Pathology Center (CPC), Cancer Early Detection and Treatment Center (CEDTC) and Translational Medicine Research Center (TMRC), Chongqing University Three Gorges Hospital, Chongqing University, Wanzhou, Chongqing, China
- Chongqing Technical Innovation Center for Quality Evaluation and Identification of Authentic Medicinal Herbs, Chongqing, China
| | - Zhao-Yu Fang
- School of Computer Science and Engineering, Central South University, Changsha 410083, China
| | - Zongbo Zhang
- Clinical Research Center (CRC), Clinical Pathology Center (CPC), Cancer Early Detection and Treatment Center (CEDTC) and Translational Medicine Research Center (TMRC), Chongqing University Three Gorges Hospital, Chongqing University, Wanzhou, Chongqing, China
| | - Yongxiang Yu
- Clinical Research Center (CRC), Clinical Pathology Center (CPC), Cancer Early Detection and Treatment Center (CEDTC) and Translational Medicine Research Center (TMRC), Chongqing University Three Gorges Hospital, Chongqing University, Wanzhou, Chongqing, China
| | - Min Li
- School of Computer Science and Engineering, Central South University, Changsha 410083, China
- Hunan Provincial Engineering Research Center of Intelligent Computing in Biology and Medicine, Central South University, Changsha 410083, China
| | - Ming-Zhu Yin
- Clinical Research Center (CRC), Clinical Pathology Center (CPC), Cancer Early Detection and Treatment Center (CEDTC) and Translational Medicine Research Center (TMRC), Chongqing University Three Gorges Hospital, Chongqing University, Wanzhou, Chongqing, China
- Chongqing Technical Innovation Center for Quality Evaluation and Identification of Authentic Medicinal Herbs, Chongqing, China
| |
Collapse
|
6
|
Donati B, Manzotti G, Torricelli F, Ascione C, Valli R, Santandrea G, Ragazzi M, Zanetti E, Ciarrocchi A, Piana S. Digital spatial profiling for pathologists. Virchows Arch 2024:10.1007/s00428-024-03955-w. [PMID: 39499318 DOI: 10.1007/s00428-024-03955-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/09/2024] [Accepted: 10/21/2024] [Indexed: 11/07/2024]
Abstract
The advent of "omics" technologies for high-depth tumor profiling has provided new information regarding cancer heterogeneity. However, a bulk omics profile can only partially reproduce tumor complexity, and it does not meet the preferences of pathologists used to perform an in situ assessment of marker expression, for instance, with immunohistochemistry. The NanoString GeoMx® Digital Spatial Profiler (DSP) is a platform for morphology-guided multiplex profiling of tissue slides, which allows the digital quantification of target analytes in different neoplastic settings. To illustrate the feasibility and opportunities offered by DSP from a pathologist's perspective, we applied DSP in three different representative neoplastic settings: breast carcinoma, thyroid anaplastic carcinoma, and biphasic mesothelioma. Because of the perfect overlap between the hematoxylin-eosin-stained slide and the GeoMx areas of interest, in breast carcinoma, two different antibodies allowed the distinction of the tumor cells from the surrounding tumor microenvironment. In biphasic mesothelioma, we could distinguish the epithelioid from the sarcomatoid neoplastic component, and in the thyroid, we easily separated the anaplastic areas from the well-differentiated carcinoma. DSP is a promising tool that combines traditional histological evaluation, allowing spatial assessment of a tumor and its surroundings, and innovative in situ digital profiling. Pathologists should not miss the opportunity to combine morphological and genomic analyses and be at the forefront of investigating the progression of dysplasia/neoplasia, low-grade or high-grade, epithelial/mesenchymal, and, more in general, overcoming the concept of in situ vs. bulk genomic methods.
Collapse
Affiliation(s)
- Benedetta Donati
- Laboratory of Translational Research, Arcispedale Santa Maria Nuova, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Via Risorgimento 80, 42124, Reggio Emilia, Italy
| | - Gloria Manzotti
- Laboratory of Translational Research, Arcispedale Santa Maria Nuova, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Via Risorgimento 80, 42124, Reggio Emilia, Italy
| | - Federica Torricelli
- Laboratory of Translational Research, Arcispedale Santa Maria Nuova, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Via Risorgimento 80, 42124, Reggio Emilia, Italy
| | - Cristian Ascione
- Laboratory of Translational Research, Arcispedale Santa Maria Nuova, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Via Risorgimento 80, 42124, Reggio Emilia, Italy
| | - Riccardo Valli
- Pathology Unit, Arcispedale Santa Maria Nuova, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Via Risorgimento 80, 42124, Reggio Emilia, Italy
| | - Giacomo Santandrea
- Pathology Unit, Arcispedale Santa Maria Nuova, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Via Risorgimento 80, 42124, Reggio Emilia, Italy
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, Modena, Italy
| | - Moira Ragazzi
- Pathology Unit, Arcispedale Santa Maria Nuova, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Via Risorgimento 80, 42124, Reggio Emilia, Italy
- Dept. of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Eleonora Zanetti
- Pathology Unit, Arcispedale Santa Maria Nuova, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Via Risorgimento 80, 42124, Reggio Emilia, Italy
| | - Alessia Ciarrocchi
- Laboratory of Translational Research, Arcispedale Santa Maria Nuova, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Via Risorgimento 80, 42124, Reggio Emilia, Italy.
| | - Simonetta Piana
- Pathology Unit, Arcispedale Santa Maria Nuova, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Via Risorgimento 80, 42124, Reggio Emilia, Italy.
| |
Collapse
|
7
|
Cahill R, Wang Y, Xian RP, Lee AJ, Zeng H, Yu B, Tasic B, Abbasi-Asl R. Unsupervised pattern identification in spatial gene expression atlas reveals mouse brain regions beyond established ontology. Proc Natl Acad Sci U S A 2024; 121:e2319804121. [PMID: 39226356 PMCID: PMC11406299 DOI: 10.1073/pnas.2319804121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 07/24/2024] [Indexed: 09/05/2024] Open
Abstract
The rapid growth of large-scale spatial gene expression data demands efficient and reliable computational tools to extract major trends of gene expression in their native spatial context. Here, we used stability-driven unsupervised learning (i.e., staNMF) to identify principal patterns (PPs) of 3D gene expression profiles and understand spatial gene distribution and anatomical localization at the whole mouse brain level. Our subsequent spatial correlation analysis systematically compared the PPs to known anatomical regions and ontology from the Allen Mouse Brain Atlas using spatial neighborhoods. We demonstrate that our stable and spatially coherent PPs, whose linear combinations accurately approximate the spatial gene data, are highly correlated with combinations of expert-annotated brain regions. These PPs yield a brain ontology based purely on spatial gene expression. Our PP identification approach outperforms principal component analysis and typical clustering algorithms on the same task. Moreover, we show that the stable PPs reveal marked regional imbalance of brainwide genetic architecture, leading to region-specific marker genes and gene coexpression networks. Our findings highlight the advantages of stability-driven machine learning for plausible biological discovery from dense spatial gene expression data, streamlining tasks that are infeasible by conventional manual approaches.
Collapse
Affiliation(s)
- Robert Cahill
- Department of Neurology, University of California, San Francisco, CA 94143
- UCSF Weill Institute for Neurosciences, San Francisco, CA 94143
| | - Yu Wang
- Department of Statistics, University of California, Berkeley, CA 94720
| | - R Patrick Xian
- Department of Neurology, University of California, San Francisco, CA 94143
- UCSF Weill Institute for Neurosciences, San Francisco, CA 94143
| | - Alex J Lee
- Department of Neurology, University of California, San Francisco, CA 94143
- UCSF Weill Institute for Neurosciences, San Francisco, CA 94143
| | - Hongkui Zeng
- Allen Institute for Brain Science, Seattle, WA 98109
| | - Bin Yu
- Department of Statistics, University of California, Berkeley, CA 94720
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA 94720
| | | | - Reza Abbasi-Asl
- Department of Neurology, University of California, San Francisco, CA 94143
- UCSF Weill Institute for Neurosciences, San Francisco, CA 94143
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94143
| |
Collapse
|
8
|
Guo Y, Ren C, He Y, Wu Y, Yang X. Deciphering the spatiotemporal transcriptional landscape of intestinal diseases (Review). Mol Med Rep 2024; 30:157. [PMID: 38994768 PMCID: PMC11258600 DOI: 10.3892/mmr.2024.13281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 04/19/2024] [Indexed: 07/13/2024] Open
Abstract
The intestines are the largest barrier organ in the human body. The intestinal barrier plays a crucial role in maintaining the balance of the intestinal environment and protecting the intestines from harmful bacterial invasion. Single‑cell RNA sequencing technology allows the detection of the different cell types in the intestine in two dimensions and the exploration of cell types that have not been fully characterized. The intestinal mucosa is highly complex in structure, and its proper functioning is linked to multiple structures in the proximal‑distal intestinal and luminal‑mucosal axes. Spatial localization is at the core of the efforts to explore the interactions between the complex structures. Spatial transcriptomics (ST) is a method that allows for comprehensive tissue analysis and the acquisition of spatially separated genetic information from individual cells, while preserving their spatial location and interactions. This approach also prevents the loss of fragile cells during tissue disaggregation. The emergence of ST technology allows us to spatially dissect enzymatic processes and interactions between multiple cells, genes, proteins and signals in the intestine. This includes the exchange of oxygen and nutrients in the intestine, different gradients of microbial populations and the role of extracellular matrix proteins. This regionally precise approach to tissue studies is gaining more acceptance and is increasingly applied in the investigation of disease mechanisms related to the gastrointestinal tract. Therefore, this review summarized the application of ST in gastrointestinal diseases.
Collapse
Affiliation(s)
- Yajing Guo
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, P.R. China
| | - Chao Ren
- Graduate School, Hunan University of Traditional Chinese Medicine, Changsha, Hunan 410208, P.R. China
| | - Yuxi He
- Department of Digestive Medicine, Chongqing City Hospital of Traditional Chinese Medicine, Chongqing 400021, P.R. China
| | - Yue Wu
- Department of Digestive Medicine, Chongqing City Hospital of Traditional Chinese Medicine, Chongqing 400021, P.R. China
| | - Xiaojun Yang
- Department of Digestive Medicine, Chongqing City Hospital of Traditional Chinese Medicine, Chongqing 400021, P.R. China
| |
Collapse
|
9
|
Ozcelik F, Dundar MS, Yildirim AB, Henehan G, Vicente O, Sánchez-Alcázar JA, Gokce N, Yildirim DT, Bingol NN, Karanfilska DP, Bertelli M, Pojskic L, Ercan M, Kellermayer M, Sahin IO, Greiner-Tollersrud OK, Tan B, Martin D, Marks R, Prakash S, Yakubi M, Beccari T, Lal R, Temel SG, Fournier I, Ergoren MC, Mechler A, Salzet M, Maffia M, Danalev D, Sun Q, Nei L, Matulis D, Tapaloaga D, Janecke A, Bown J, Cruz KS, Radecka I, Ozturk C, Nalbantoglu OU, Sag SO, Ko K, Arngrimsson R, Belo I, Akalin H, Dundar M. The impact and future of artificial intelligence in medical genetics and molecular medicine: an ongoing revolution. Funct Integr Genomics 2024; 24:138. [PMID: 39147901 DOI: 10.1007/s10142-024-01417-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 08/17/2024]
Abstract
Artificial intelligence (AI) platforms have emerged as pivotal tools in genetics and molecular medicine, as in many other fields. The growth in patient data, identification of new diseases and phenotypes, discovery of new intracellular pathways, availability of greater sets of omics data, and the need to continuously analyse them have led to the development of new AI platforms. AI continues to weave its way into the fabric of genetics with the potential to unlock new discoveries and enhance patient care. This technology is setting the stage for breakthroughs across various domains, including dysmorphology, rare hereditary diseases, cancers, clinical microbiomics, the investigation of zoonotic diseases, omics studies in all medical disciplines. AI's role in facilitating a deeper understanding of these areas heralds a new era of personalised medicine, where treatments and diagnoses are tailored to the individual's molecular features, offering a more precise approach to combating genetic or acquired disorders. The significance of these AI platforms is growing as they assist healthcare professionals in the diagnostic and treatment processes, marking a pivotal shift towards more informed, efficient, and effective medical practice. In this review, we will explore the range of AI tools available and show how they have become vital in various sectors of genomic research supporting clinical decisions.
Collapse
Affiliation(s)
- Firat Ozcelik
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Mehmet Sait Dundar
- Department of Electrical and Computer Engineering, Graduate School of Engineering and Sciences, Abdullah Gul University, Kayseri, Turkey
| | - A Baki Yildirim
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Gary Henehan
- School of Food Science and Environmental Health, Technological University of Dublin, Dublin, Ireland
| | - Oscar Vicente
- Institute for the Conservation and Improvement of Valencian Agrodiversity (COMAV), Universitat Politècnica de València, Valencia, Spain
| | - José A Sánchez-Alcázar
- Centro de Investigación Biomédica en Red: Enfermedades Raras, Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Instituto de Salud Carlos III, Sevilla, Spain
| | - Nuriye Gokce
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Duygu T Yildirim
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Nurdeniz Nalbant Bingol
- Department of Translational Medicine, Institute of Health Sciences, Bursa Uludag University, Bursa, Turkey
| | - Dijana Plaseska Karanfilska
- Research Centre for Genetic Engineering and Biotechnology, Macedonian Academy of Sciences and Arts, Skopje, Macedonia
| | | | - Lejla Pojskic
- Institute for Genetic Engineering and Biotechnology, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Mehmet Ercan
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Miklos Kellermayer
- Department of Biophysics and Radiation Biology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Izem Olcay Sahin
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | | | - Busra Tan
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Donald Martin
- University Grenoble Alpes, CNRS, TIMC-IMAG/SyNaBi (UMR 5525), Grenoble, France
| | - Robert Marks
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Satya Prakash
- Department of Biomedical Engineering, University of McGill, Montreal, QC, Canada
| | - Mustafa Yakubi
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Tommaso Beccari
- Department of Pharmeceutical Sciences, University of Perugia, Perugia, Italy
| | - Ratnesh Lal
- Neuroscience Research Institute, University of California, Santa Barbara, USA
| | - Sehime G Temel
- Department of Translational Medicine, Institute of Health Sciences, Bursa Uludag University, Bursa, Turkey
- Department of Medical Genetics, Bursa Uludag University Faculty of Medicine, Bursa, Turkey
- Department of Histology and Embryology, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| | - Isabelle Fournier
- Réponse Inflammatoire et Spectrométrie de Masse-PRISM, University of Lille, Lille, France
| | - M Cerkez Ergoren
- Department of Medical Genetics, Near East University Faculty of Medicine, Nicosia, Cyprus
| | - Adam Mechler
- Department of Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Michel Salzet
- Réponse Inflammatoire et Spectrométrie de Masse-PRISM, University of Lille, Lille, France
| | - Michele Maffia
- Department of Experimental Medicine, University of Salento, Via Lecce-Monteroni, Lecce, 73100, Italy
| | - Dancho Danalev
- University of Chemical Technology and Metallurgy, Sofia, Bulgaria
| | - Qun Sun
- Department of Food Science and Technology, Sichuan University, Chengdu, China
| | - Lembit Nei
- School of Engineering Tallinn University of Technology, Tartu College, Tartu, Estonia
| | - Daumantas Matulis
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Dana Tapaloaga
- Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine of Bucharest, Bucharest, Romania
| | - Andres Janecke
- Department of Paediatrics I, Medical University of Innsbruck, Innsbruck, Austria
- Division of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - James Bown
- School of Science, Engineering and Technology, Abertay University, Dundee, UK
| | | | - Iza Radecka
- School of Science, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, UK
| | - Celal Ozturk
- Department of Software Engineering, Erciyes University, Kayseri, Turkey
| | - Ozkan Ufuk Nalbantoglu
- Department of Computer Engineering, Engineering Faculty, Erciyes University, Kayseri, Turkey
| | - Sebnem Ozemri Sag
- Department of Medical Genetics, Bursa Uludag University Faculty of Medicine, Bursa, Turkey
| | - Kisung Ko
- Department of Medicine, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Reynir Arngrimsson
- Iceland Landspitali University Hospital, University of Iceland, Reykjavik, Iceland
| | - Isabel Belo
- Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Hilal Akalin
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey.
| | - Munis Dundar
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey.
| |
Collapse
|
10
|
Budhkar A, Tang Z, Liu X, Zhang X, Su J, Song Q. xSiGra: explainable model for single-cell spatial data elucidation. Brief Bioinform 2024; 25:bbae388. [PMID: 39120644 PMCID: PMC11312371 DOI: 10.1093/bib/bbae388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/22/2024] [Accepted: 07/23/2024] [Indexed: 08/10/2024] Open
Abstract
Recent advancements in spatial imaging technologies have revolutionized the acquisition of high-resolution multichannel images, gene expressions, and spatial locations at the single-cell level. Our study introduces xSiGra, an interpretable graph-based AI model, designed to elucidate interpretable features of identified spatial cell types, by harnessing multimodal features from spatial imaging technologies. By constructing a spatial cellular graph with immunohistology images and gene expression as node attributes, xSiGra employs hybrid graph transformer models to delineate spatial cell types. Additionally, xSiGra integrates a novel variant of gradient-weighted class activation mapping component to uncover interpretable features, including pivotal genes and cells for various cell types, thereby facilitating deeper biological insights from spatial data. Through rigorous benchmarking against existing methods, xSiGra demonstrates superior performance across diverse spatial imaging datasets. Application of xSiGra on a lung tumor slice unveils the importance score of cells, illustrating that cellular activity is not solely determined by itself but also impacted by neighboring cells. Moreover, leveraging the identified interpretable genes, xSiGra reveals endothelial cell subset interacting with tumor cells, indicating its heterogeneous underlying mechanisms within complex cellular interactions.
Collapse
Affiliation(s)
- Aishwarya Budhkar
- Luddy School of Informatics, Computing, and Engineering, Indiana University Bloomington, 107 S Indiana Ave, Bloomington, IN 47405, United States
| | - Ziyang Tang
- Department of Computer and Information Technology, Purdue University, 610 Purdue Mall, West Lafayette, IN 47907, United States
| | - Xiang Liu
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, 340 W 10th St, Indianapolis, IN 46202, United States
| | - Xuhong Zhang
- Luddy School of Informatics, Computing, and Engineering, Indiana University Bloomington, 107 S Indiana Ave, Bloomington, IN 47405, United States
| | - Jing Su
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, 340 W 10th St, Indianapolis, IN 46202, United States
- Gerontology and Geriatric Medicine, Wake Forest School of Medicine, 475 Vine St, Winston-Salem, NC 27101, United States
| | - Qianqian Song
- Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, Gainesville, FL 32611, United States
| |
Collapse
|
11
|
Razzouk S. Single-cell sequencing, spatial transcriptome ad periodontitis: Rethink pathogenesis and classification. Oral Dis 2024; 30:2771-2783. [PMID: 37794757 DOI: 10.1111/odi.14761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 08/02/2023] [Accepted: 09/21/2023] [Indexed: 10/06/2023]
Abstract
OBJECTIVE This narrative review illuminates on the application of single-cell RNA sequencing (scRNA-seq) and spatial transcriptomics (ST) in periodontitis and highlights the probability of relating cell population and gene signatures to the pathogenesis of the disease for a better diagnosis. METHODS An electronic search of the literature in the PubMed database for the keywords, "single cell sequencing" OR "spatial transcriptomics" and "periodontitis" OR "gingiva" OR "oral mucosa" yielded 486 research articles and reviews. After filtering duplicates and careful curation, 22 papers conducted in humans were retained. RESULTS The molecular mechanisms underlying periodontitis are complex and involve the interaction of multiple cells and various gene expressions. Most residing cells in periodontal tissues participate in maintaining homeostasis and health, while in addition to infiltrating immune cells contribute to the fight against the bacterial insult. CONCLUSION scRNA-seq and ST have provided new insights into the cellular and molecular changes associated with periodontitis for a better diagnosis and clinical outcome. New functions of cells and genes are revealed with these techniques; however, no cells or gene signatures are attributed to periodontitis so far.
Collapse
Affiliation(s)
- Sleiman Razzouk
- Department of Periodontology and Implant Dentistry, New York University College of Dentistry, New York, New York, USA
- Private Practice, Beirut, Lebanon
| |
Collapse
|
12
|
Zhao SH, Ji XY, Yuan GZ, Cheng T, Liang HY, Liu SQ, Yang FY, Tang Y, Shi S. A Bibliometric Analysis of the Spatial Transcriptomics Literature from 2006 to 2023. Cell Mol Neurobiol 2024; 44:50. [PMID: 38856921 PMCID: PMC11164738 DOI: 10.1007/s10571-024-01484-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 05/28/2024] [Indexed: 06/11/2024]
Abstract
In recent years, spatial transcriptomics (ST) research has become a popular field of study and has shown great potential in medicine. However, there are few bibliometric analyses in this field. Thus, in this study, we aimed to find and analyze the frontiers and trends of this medical research field based on the available literature. A computerized search was applied to the WoSCC (Web of Science Core Collection) Database for literature published from 2006 to 2023. Complete records of all literature and cited references were extracted and screened. The bibliometric analysis and visualization were performed using CiteSpace, VOSviewer, Bibliometrix R Package software, and Scimago Graphica. A total of 1467 papers and reviews were included. The analysis revealed that the ST publication and citation results have shown a rapid upward trend over the last 3 years. Nature Communications and Nature were the most productive and most co-cited journals, respectively. In the comprehensive global collaborative network, the United States is the country with the most organizations and publications, followed closely by China and the United Kingdom. The author Joakim Lundeberg published the most cited paper, while Patrik L. Ståhl ranked first among co-cited authors. The hot topics in ST are tissue recognition, cancer, heterogeneity, immunotherapy, differentiation, and models. ST technologies have greatly contributed to in-depth research in medical fields such as oncology and neuroscience, opening up new possibilities for the diagnosis and treatment of diseases. Moreover, artificial intelligence and big data drive additional development in ST fields.
Collapse
Affiliation(s)
- Shu-Han Zhao
- Guang'an Men Hospital, China Academy of Chinese Medical Sciences, No. 5 Beixiange Street, Xicheng District, Beijing, 100053, People's Republic of China
- Beijing University of Chinese Medicine, No. 11, Beisanhuan East Road, Chaoyang District, Beijing, 100029, People's Republic of China
| | - Xin-Yu Ji
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimennei Ave, Beijing, 100700, People's Republic of China
| | - Guo-Zhen Yuan
- Guang'an Men Hospital, China Academy of Chinese Medical Sciences, No. 5 Beixiange Street, Xicheng District, Beijing, 100053, People's Republic of China
| | - Tao Cheng
- Guang'an Men Hospital, China Academy of Chinese Medical Sciences, No. 5 Beixiange Street, Xicheng District, Beijing, 100053, People's Republic of China
| | - Hai-Yi Liang
- Beijing University of Chinese Medicine, No. 11, Beisanhuan East Road, Chaoyang District, Beijing, 100029, People's Republic of China
| | - Si-Qi Liu
- Beijing University of Chinese Medicine, No. 11, Beisanhuan East Road, Chaoyang District, Beijing, 100029, People's Republic of China
| | - Fu-Yi Yang
- Beijing University of Chinese Medicine, No. 11, Beisanhuan East Road, Chaoyang District, Beijing, 100029, People's Republic of China
| | - Yang Tang
- School of Chinese Medicine, Beijing University of Chinese Medicine, No. 11, Beisanhuan East Road, Chaoyang District, Beijing, 100029, People's Republic of China.
| | - Shuai Shi
- Guang'an Men Hospital, China Academy of Chinese Medical Sciences, No. 5 Beixiange Street, Xicheng District, Beijing, 100053, People's Republic of China.
| |
Collapse
|
13
|
Budhkar A, Tang Z, Liu X, Zhang X, Su J, Song Q. xSiGra: Explainable model for single-cell spatial data elucidation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.27.591458. [PMID: 38746321 PMCID: PMC11092461 DOI: 10.1101/2024.04.27.591458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Recent advancements in spatial imaging technologies have revolutionized the acquisition of high-resolution multi-channel images, gene expressions, and spatial locations at the single-cell level. Our study introduces xSiGra, an interpretable graph-based AI model, designed to elucidate interpretable features of identified spatial cell types, by harnessing multi-modal features from spatial imaging technologies. By constructing a spatial cellular graph with immunohistology images and gene expression as node attributes, xSiGra employs hybrid graph transformer models to delineate spatial cell types. Additionally, xSiGra integrates a novel variant of Grad-CAM component to uncover interpretable features, including pivotal genes and cells for various cell types, thereby facilitating deeper biological insights from spatial data. Through rigorous benchmarking against existing methods, xSiGra demonstrates superior performance across diverse spatial imaging datasets. Application of xSiGra on a lung tumor slice unveils the importance score of cells, illustrating that cellular activity is not solely determined by itself but also impacted by neighboring cells. Moreover, leveraging the identified interpretable genes, xSiGra reveals endothelial cell subset interacting with tumor cells, indicating its heterogeneous underlying mechanisms within the complex cellular communications.
Collapse
|
14
|
Danishuddin, Khan S, Kim JJ. Spatial transcriptomics data and analytical methods: An updated perspective. Drug Discov Today 2024; 29:103889. [PMID: 38244672 DOI: 10.1016/j.drudis.2024.103889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/01/2024] [Accepted: 01/15/2024] [Indexed: 01/22/2024]
Abstract
Spatial transcriptomics (ST) is a newly emerging field that integrates high-resolution imaging and transcriptomic data to enable the high-throughput analysis of the spatial localization of transcripts in diverse biological systems. The rapid progress in this field necessitates the development of innovative computational methods to effectively tackle the distinct challenges posed by the analysis of ST data. These platforms, integrating AI techniques, offer a promising avenue for understanding disease mechanisms and expediting drug discovery. Despite significant advances in the development of ST data analysis techniques, there is an ongoing need to enhance these models for increased biological relevance. In this review, we briefly discuss the ST-related databases and current deep-learning-based models for spatial transcriptome data analyses and highlight their roles and future perspectives in biomedical applications.
Collapse
Affiliation(s)
- Danishuddin
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Korea.
| | - Shawez Khan
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Jong Joo Kim
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Korea.
| |
Collapse
|
15
|
Yao J, Yu J, Caffo B, Page SC, Martinowich K, Hicks SC. Spatial domain detection using contrastive self-supervised learning for spatial multi-omics technologies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.02.578662. [PMID: 38352580 PMCID: PMC10862910 DOI: 10.1101/2024.02.02.578662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Recent advances in spatially-resolved single-omics and multi-omics technologies have led to the emergence of computational tools to detect or predict spatial domains. Additionally, histological images and immunofluorescence (IF) staining of proteins and cell types provide multiple perspectives and a more complete understanding of tissue architecture. Here, we introduce Proust, a scalable tool to predict discrete domains using spatial multi-omics data by combining the low-dimensional representation of biological profiles based on graph-based contrastive self-supervised learning. Our scalable method integrates multiple data modalities, such as RNA, protein, and H&E images, and predicts spatial domains within tissue samples. Through the integration of multiple modalities, Proust consistently demonstrates enhanced accuracy in detecting spatial domains, as evidenced across various benchmark datasets and technological platforms.
Collapse
Affiliation(s)
- Jianing Yao
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, MD, USA
| | - Jinglun Yu
- Department of Electrical and Computer Engineering, Johns Hopkins University, MD, USA
| | - Brian Caffo
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, MD, USA
| | - Stephanie C. Page
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
| | - Keri Martinowich
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Stephanie C. Hicks
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Center for Computational Biology, Johns Hopkins University, Baltimore, MD, USA
- Malone Center for Engineering in Healthcare, Johns Hopkins University, MD, USA
| |
Collapse
|
16
|
Biswas A, Kumari A, Gaikwad DS, Pandey DK. Revolutionizing Biological Science: The Synergy of Genomics in Health, Bioinformatics, Agriculture, and Artificial Intelligence. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2023; 27:550-569. [PMID: 38100404 DOI: 10.1089/omi.2023.0197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
With climate emergency, COVID-19, and the rise of planetary health scholarship, the binary of human and ecosystem health has been deeply challenged. The interdependence of human and nonhuman animal health is increasingly acknowledged and paving the way for new frontiers in integrative biology. The convergence of genomics in health, bioinformatics, agriculture, and artificial intelligence (AI) has ushered in a new era of possibilities and applications. However, the sheer volume of genomic/multiomics big data generated also presents formidable sociotechnical challenges in extracting meaningful biological, planetary health and ecological insights. Over the past few years, AI-guided bioinformatics has emerged as a powerful tool for managing, analyzing, and interpreting complex biological datasets. The advances in AI, particularly in machine learning and deep learning, have been transforming the fields of genomics, planetary health, and agriculture. This article aims to unpack and explore the formidable range of possibilities and challenges that result from such transdisciplinary integration, and emphasizes its radically transformative potential for human and ecosystem health. The integration of these disciplines is also driving significant advancements in precision medicine and personalized health care. This presents an unprecedented opportunity to deepen our understanding of complex biological systems and advance the well-being of all life in planetary ecosystems. Notwithstanding in mind its sociotechnical, ethical, and critical policy challenges, the integration of genomics, multiomics, planetary health, and agriculture with AI-guided bioinformatics opens up vast opportunities for transnational collaborative efforts, data sharing, analysis, valorization, and interdisciplinary innovations in life sciences and integrative biology.
Collapse
Affiliation(s)
- Aakanksha Biswas
- Amity Institute of Biotechnology, Amity University Jharkhand, Ranchi, India
| | - Aditi Kumari
- Amity Institute of Biotechnology, Amity University Jharkhand, Ranchi, India
| | - D S Gaikwad
- Amity Institute of Organic Agriculture, Amity University, Noida, India
| | - Dhananjay K Pandey
- Amity Institute of Biotechnology, Amity University Jharkhand, Ranchi, India
| |
Collapse
|
17
|
Tisi A, Palaniappan S, Maccarrone M. Advanced Omics Techniques for Understanding Cochlear Genome, Epigenome, and Transcriptome in Health and Disease. Biomolecules 2023; 13:1534. [PMID: 37892216 PMCID: PMC10605747 DOI: 10.3390/biom13101534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/10/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Advanced genomics, transcriptomics, and epigenomics techniques are providing unprecedented insights into the understanding of the molecular underpinnings of the central nervous system, including the neuro-sensory cochlea of the inner ear. Here, we report for the first time a comprehensive and updated overview of the most advanced omics techniques for the study of nucleic acids and their applications in cochlear research. We describe the available in vitro and in vivo models for hearing research and the principles of genomics, transcriptomics, and epigenomics, alongside their most advanced technologies (like single-cell omics and spatial omics), which allow for the investigation of the molecular events that occur at a single-cell resolution while retaining the spatial information.
Collapse
Affiliation(s)
- Annamaria Tisi
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
| | - Sakthimala Palaniappan
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
| | - Mauro Maccarrone
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
- Laboratory of Lipid Neurochemistry, European Center for Brain Research (CERC), Santa Lucia Foundation IRCCS, 00143 Rome, Italy
| |
Collapse
|
18
|
Meng-Lin K, Ung CY, Zhang C, Weiskittel TM, Wisniewski P, Zhang Z, Tan SH, Yeo KS, Zhu S, Correia C, Li H. SPIN-AI: A Deep Learning Model That Identifies Spatially Predictive Genes. Biomolecules 2023; 13:895. [PMID: 37371475 PMCID: PMC10296445 DOI: 10.3390/biom13060895] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/23/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
Spatially resolved sequencing technologies help us dissect how cells are organized in space. Several available computational approaches focus on the identification of spatially variable genes (SVGs), genes whose expression patterns vary in space. The detection of SVGs is analogous to the identification of differentially expressed genes and permits us to understand how genes and associated molecular processes are spatially distributed within cellular niches. However, the expression activities of SVGs fail to encode all information inherent in the spatial distribution of cells. Here, we devised a deep learning model, Spatially Informed Artificial Intelligence (SPIN-AI), to identify spatially predictive genes (SPGs), whose expression can predict how cells are organized in space. We used SPIN-AI on spatial transcriptomic data from squamous cell carcinoma (SCC) as a proof of concept. Our results demonstrate that SPGs not only recapitulate the biology of SCC but also identify genes distinct from SVGs. Moreover, we found a substantial number of ribosomal genes that were SPGs but not SVGs. Since SPGs possess the capability to predict spatial cellular organization, we reason that SPGs capture more biologically relevant information for a given cellular niche than SVGs. Thus, SPIN-AI has broad applications for detecting SPGs and uncovering which biological processes play important roles in governing cellular organization.
Collapse
Affiliation(s)
- Kevin Meng-Lin
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA; (K.M.-L.); (C.-Y.U.); (C.Z.); (T.M.W.); (P.W.); (Z.Z.); (S.-H.T.)
| | - Choong-Yong Ung
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA; (K.M.-L.); (C.-Y.U.); (C.Z.); (T.M.W.); (P.W.); (Z.Z.); (S.-H.T.)
| | - Cheng Zhang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA; (K.M.-L.); (C.-Y.U.); (C.Z.); (T.M.W.); (P.W.); (Z.Z.); (S.-H.T.)
| | - Taylor M. Weiskittel
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA; (K.M.-L.); (C.-Y.U.); (C.Z.); (T.M.W.); (P.W.); (Z.Z.); (S.-H.T.)
| | - Philip Wisniewski
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA; (K.M.-L.); (C.-Y.U.); (C.Z.); (T.M.W.); (P.W.); (Z.Z.); (S.-H.T.)
| | - Zhuofei Zhang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA; (K.M.-L.); (C.-Y.U.); (C.Z.); (T.M.W.); (P.W.); (Z.Z.); (S.-H.T.)
| | - Shyang-Hong Tan
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA; (K.M.-L.); (C.-Y.U.); (C.Z.); (T.M.W.); (P.W.); (Z.Z.); (S.-H.T.)
| | - Kok-Siong Yeo
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; (K.-S.Y.); (S.Z.)
| | - Shizhen Zhu
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; (K.-S.Y.); (S.Z.)
| | - Cristina Correia
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA; (K.M.-L.); (C.-Y.U.); (C.Z.); (T.M.W.); (P.W.); (Z.Z.); (S.-H.T.)
| | - Hu Li
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA; (K.M.-L.); (C.-Y.U.); (C.Z.); (T.M.W.); (P.W.); (Z.Z.); (S.-H.T.)
| |
Collapse
|
19
|
Lee RY, Ng CW, Rajapakse MP, Ang N, Yeong JPS, Lau MC. The promise and challenge of spatial omics in dissecting tumour microenvironment and the role of AI. Front Oncol 2023; 13:1172314. [PMID: 37197415 PMCID: PMC10183599 DOI: 10.3389/fonc.2023.1172314] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/18/2023] [Indexed: 05/19/2023] Open
Abstract
Growing evidence supports the critical role of tumour microenvironment (TME) in tumour progression, metastases, and treatment response. However, the in-situ interplay among various TME components, particularly between immune and tumour cells, are largely unknown, hindering our understanding of how tumour progresses and responds to treatment. While mainstream single-cell omics techniques allow deep, single-cell phenotyping, they lack crucial spatial information for in-situ cell-cell interaction analysis. On the other hand, tissue-based approaches such as hematoxylin and eosin and chromogenic immunohistochemistry staining can preserve the spatial information of TME components but are limited by their low-content staining. High-content spatial profiling technologies, termed spatial omics, have greatly advanced in the past decades to overcome these limitations. These technologies continue to emerge to include more molecular features (RNAs and/or proteins) and to enhance spatial resolution, opening new opportunities for discovering novel biological knowledge, biomarkers, and therapeutic targets. These advancements also spur the need for novel computational methods to mine useful TME insights from the increasing data complexity confounded by high molecular features and spatial resolution. In this review, we present state-of-the-art spatial omics technologies, their applications, major strengths, and limitations as well as the role of artificial intelligence (AI) in TME studies.
Collapse
Affiliation(s)
- Ren Yuan Lee
- Singapore Thong Chai Medical Institution, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Chan Way Ng
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | | | - Nicholas Ang
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Joe Poh Sheng Yeong
- Department of Anatomical Pathology, Singapore General Hospital, Singapore, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Mai Chan Lau
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| |
Collapse
|
20
|
Stanojevic S, Li Y, Ristivojevic A, Garmire LX. Computational Methods for Single-cell Multi-omics Integration and Alignment. GENOMICS, PROTEOMICS & BIOINFORMATICS 2022; 20:836-849. [PMID: 36581065 PMCID: PMC10025765 DOI: 10.1016/j.gpb.2022.11.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 08/09/2022] [Accepted: 11/04/2022] [Indexed: 12/27/2022]
Abstract
Recently developed technologies to generate single-cell genomic data have made a revolutionary impact in the field of biology. Multi-omics assays offer even greater opportunities to understand cellular states and biological processes. The problem of integrating different omics data with very different dimensionality and statistical properties remains, however, quite challenging. A growing body of computational tools is being developed for this task, leveraging ideas ranging from machine translation to the theory of networks, and represents another frontier on the interface of biology and data science. Our goal in this review is to provide a comprehensive, up-to-date survey of computational techniques for the integration of single-cell multi-omics data, while making the concepts behind each algorithm approachable to a non-expert audience.
Collapse
Affiliation(s)
- Stefan Stanojevic
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yijun Li
- Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Lana X Garmire
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|