1
|
Ranjan G, Ranjan S, Sunita P, Pattanayak SP. Thiazolidinedione derivatives in cancer therapy: exploring novel mechanisms, therapeutic potentials, and future horizons in oncology. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:4705-4725. [PMID: 39621087 DOI: 10.1007/s00210-024-03661-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 11/20/2024] [Indexed: 04/11/2025]
Abstract
Thiazolidinedione derivatives have shown significant potential as targeted cancer therapies by leveraging their various mechanisms of action. These include suppressing cell proliferation, triggering apoptosis, and influencing signaling pathways associated with tumor development. Their multifaceted effects make them promising candidates for advancing cancer treatment strategies. They have shown significant promise as anti-cancer agents, particularly through their ability to inhibit lipogenesis pathways and apoptosis essential for cancer cell survival and proliferation. This review comprehensively examines the anti-cancer potential of thiazolidinedione derivatives by targeting key aspects of lipid metabolism, apoptosis, and various mechanistic pathways. This review provides an in-depth examination of the anti-cancer potential of TZD derivatives, focusing on their mechanisms of action, therapeutic applications, and future directions in oncology. The anti-tumor effects of TZDs primarily involve the stimulation of peroxisome proliferator-activated receptor gamma (PPAR-γ), suppressing cell proliferation, induction of apoptosis, and inhibition of angiogenesis. Moreover, recent evidence highlights their ability to modulate non-PPAR-γ pathways, such as PI3K/Akt, NF-κB, and MAPK, further expanding their role in overcoming drug resistance and enhancing therapeutic outcomes. This review explores the preclinical (in vitro and in vivo) and clinical research investigating TZD derivatives efficacy in various cancer types. The insights underscore the significance of targeting lipogenesis as a novel anti-cancer strategy, positioning thiazolidinedione derivatives as potent candidates for future cancer therapeutics. As the oncology landscape evolves, TZD derivatives (rosiglitazone, pioglitazone, inolitazone, troglitazone, and 2,4-thiazolidinedione derivatives) represent a promising class of agents with the potential to contribute meaningfully to cancer treatment. By integrating existing knowledge with recent advancements, this study provides valuable insights into the role of thiazolidinedione derivatives in cancer treatment, paving the way for further research and clinical applications.
Collapse
Affiliation(s)
- Gaurav Ranjan
- Department of Pharmacy, School of Health Sciences, Central University of South Bihar, Gaya, 824236, India
| | - Shashi Ranjan
- Department of Pharmacy, School of Health Sciences, Central University of South Bihar, Gaya, 824236, India
| | - Priyashree Sunita
- Department of Surgery, Case Comprehensive Cancer Centre, Case Western Reserve University, Wolstein Research Building 2103 Cornell Rd, Cleveland, OH, 44106, USA
| | - Shakti Prasad Pattanayak
- Department of Pharmacy, School of Health Sciences, Central University of South Bihar, Gaya, 824236, India.
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Woods Building, W437, 2109 Adelbert Road, Cleaveland, OH, 44106, USA.
| |
Collapse
|
2
|
Jalil AT, Al-Kazzaz HH, Hassan FA, Mohammed SH, Merza MS, Aslandook T, Elewadi A, Fadhil A, Alsalamy A. Metabolic Reprogramming of Anti-cancer T Cells: Targeting AMPK and PPAR to Optimize Cancer Immunotherapy. Indian J Clin Biochem 2025; 40:165-175. [PMID: 40123631 PMCID: PMC11928344 DOI: 10.1007/s12291-023-01166-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 11/17/2023] [Indexed: 03/25/2025]
Abstract
Cancer treatment era has been revolutionized by the novel therapeutic methods such as immunotherapy in recent years. Immunotherapy-based approaches are considered effective and reliable methods that has brought hope to eradicate certain cancers. Nonetheless, there are some issues, considered as critical obstacles in successful cancer immunotherapy. Such issues are attributed to the ability of the tumor cells in providing a tolerant microenvironment that impairs the immune responses, and help the cancer cells evade the immunogenic cell death. It has been suggested that the re-activation and maintenance of effector immune cells may become possible by metabolic reprogramming. Several signaling pathways have been noticed with the possibility of metabolic reprogramming of tumor-specific T cells, to overcome the metabolic restrictions in the tumor microenvironment; and among them, AMP-activated protein kinase (AMPK) and peroxisome proliferator-activated receptors (PPAR) have been investigated the most as the main energy sensors and regulators of mitochondrial biogenesis. The synergic effects of AMPK activators and/or PPAR agonists in cancer immunotherapy have been reported. In this review, we compare the roles of AMPK activators and PPAR agonists, and the efficacy of their combination in metabolic reprogramming of cytotoxic T cells in favoring cancer immunotherapy.
Collapse
Affiliation(s)
| | - Hassan Hadi Al-Kazzaz
- College of Medical and Health Technology, Al-Zahraa University for Women, Karbala, Iraq
| | - Firas A. Hassan
- Department of Chemistry, College of Science, Al-Nahrain University, Baghdad, Iraq
| | | | - Muna S. Merza
- Department of Prosthetic Dental Techniques, Al-Mustaqbal University College, Hillah, Iraq
| | - Tahani Aslandook
- Department of Dentistry, Al-Turath University College, Baghdad, Iraq
| | - Ahmed Elewadi
- College of Technical Engineering, The Islamic University, Najaf, Iraq
| | - Ali Fadhil
- College of Medical Techniques, Al-Farahidi University, Baghdad, Iraq
| | - Ali Alsalamy
- College of Technical Engineering, Imam Ja’afar Al-Sadiq University, Al-Muthanna, 66002 Iraq
| |
Collapse
|
3
|
Lu Q, Yang Q, Zhao J, Li G, Zhang J, Jia C, Wan Y, Chen Y. The identification of heterogeneous reactive oxygen subtypes in esophageal squamous cell carcinoma to aid patient prognosis and immunotherapy. Heliyon 2024; 10:e35235. [PMID: 39165982 PMCID: PMC11334838 DOI: 10.1016/j.heliyon.2024.e35235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 08/22/2024] Open
Abstract
INTRODUCTION Esophageal cancer is increasingly recognized as a significant global malignancy. The main pathological subtype of this cancer is esophageal squamous cell carcinoma (ESCC), which displays a higher degree of malignancy and a poorer prognosis. Reactive oxygen species (ROS) play a critical role in modulating the immune response to tumors, and understanding the regulation of ROS in ESCC could lead to novel and improved therapeutic strategies for ESCC patients. METHODS A consensus matrix derived from genes involved in the ROS pathway revealed two subtypes of ROS. These subtypes were categorized as ROS-active or ROS-suppressive based on their level of ROS activity. The heterogeneity among the different ROS subtypes was then explored from various perspectives, including gene function, immune response, genomic stability, and immunotherapy. In order to assess the prognosis and the potential benefits of immunotherapy, a ROS activity score (RAS) was developed using the identified ROS subtypes. In vitro experiments were performed to confirm the impact of core RAS genes on the proliferative activity of esophageal cancer cell lines. RESULTS Two distinctive subtypes of ROS were identified. The first subtype, referred to as ROS-active, exhibited elevated ROS activity, enhanced involvement in cancer-associated immune pathways, and increased infiltration of effector immune cells. The second subtype, named ROS-suppressive, demonstrated weaker ROS activity but displayed more pronounced dysregulation in the cell cycle and a denser extracellular matrix, indicating malignant characteristics. Genomic stability, particularly in terms of copy number variation (CNV) events, differed between the two ROS subtypes. By developing a RAS model, reliable risk assessment for overall survival (OS) in patients with ESCC was achieved, and the model demonstrated strong predictive capabilities in real-world immunotherapy cohorts. Moreover, the core gene LDLRAD1 within the RAS model was found to enhance proliferative activity in esophageal cancer cell lines. CONCLUSION Based on the ROS pathway, we successfully identified two distinct subtypes in ESCC: the ROS-active subtype and the ROS-suppressive subtype. These subtypes were utilized to evaluate prognosis and the sensitivity to immunotherapy.
Collapse
Affiliation(s)
- Qiang Lu
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, 569 Xinsi Road, Xi'an, 710038, China
| | - Qi Yang
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Jinbo Zhao
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, 569 Xinsi Road, Xi'an, 710038, China
| | - Guizhen Li
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, 569 Xinsi Road, Xi'an, 710038, China
| | - JiPeng Zhang
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, 569 Xinsi Road, Xi'an, 710038, China
| | - Chenghui Jia
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, 569 Xinsi Road, Xi'an, 710038, China
| | - Yi Wan
- Department of Health Service, Air Force Medical University, No.169 Changle West Road, Xi'an, 710032, China
| | - Yan Chen
- Department of Oncology, Xijing Hospital, Air Force Medical University, No. 169 Changle West Road, Xi'an, 710032, China
| |
Collapse
|
4
|
Paneth A, Kaproń B, Plech T, Paduch R, Trotsko N, Paneth P. Combined In Silico and In Vitro Analyses to Assess the Anticancer Potential of Thiazolidinedione-Thiosemicarbazone Hybrid Molecules. Int J Mol Sci 2023; 24:17521. [PMID: 38139350 PMCID: PMC10743653 DOI: 10.3390/ijms242417521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/09/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
The number of people affected by cancer and antibiotic-resistant bacterial infections has increased, such that both diseases are already seen as current and future leading causes of death globally. To address this issue, based on a combined in silico and in vitro approach, we explored the anticancer potential of known antibacterials with a thiazolidinedione-thiosemicarbazone (TZD-TSC) core structure. A cytotoxicity assessment showed encouraging results for compounds 2-4, with IC50 values against T98G and HepG2 cells in the low micromolar range. TZD-TSC 3 proved to be most toxic to cancer cell lines, with IC50 values of 2.97 ± 0.39 µM against human hepatoma HepG2 cells and IC50 values of 28.34 ± 2.21 µM against human glioblastoma T98G cells. Additionally, compound 3 induced apoptosis and showed no specific hemolytic activity. Furthermore, treatment using 3 on cancer cell lines alters these cells' morphology and further suppresses migratory activity. Molecular docking, in turn, suggests that 3 would have the capacity to simultaneously target HDACs and PPARγ, by the activation of PPARγ and the inhibition of both HDAC4 and HDAC8. Thus, the promising preliminary results obtained with TZD-TSC 3 represent an encouraging starting point for the rational design of novel chemotherapeutics with dual antibacterial and anticancer activities.
Collapse
Affiliation(s)
- Agata Paneth
- Chair and Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Lublin, 20-059 Lublin, Poland;
| | - Barbara Kaproń
- Department of Clinical Genetics, Faculty of Medicine, Medical University of Lublin, 20-080 Lublin, Poland
| | - Tomasz Plech
- Department of Pharmacology, Faculty of Health Sciences, Medical University of Lublin, 20-080 Lublin, Poland;
| | - Roman Paduch
- Department of Virology and Immunology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, 20-033 Lublin, Poland;
| | - Nazar Trotsko
- Chair and Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Lublin, 20-059 Lublin, Poland;
| | - Piotr Paneth
- Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, 90-924 Lodz, Poland
| |
Collapse
|
5
|
Nourmohammadi K, Bayrami A, Naderi R, Shirpoor A, Soraya H. Moderate exercise mitigates cardiac dysfunction and injury induced by cyclosporine A through activation of the PGI 2 / PPAR-γ signaling pathway. Res Pharm Sci 2023; 18:696-707. [PMID: 39005570 PMCID: PMC11246107 DOI: 10.4103/1735-5362.389958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 06/20/2023] [Accepted: 09/11/2023] [Indexed: 07/16/2024] Open
Abstract
Background and purpose The present study investigated the role of the prostaglandin I2/peroxisome proliferator activator receptor (PGI2/PPAR) signaling pathway in cardiac cell proliferation, apoptosis, and systemic hemodynamic variables under cyclosporine A (CsA) exposure alone or combined with moderate exercises. Experimental approach Twenty-four male Wistar rats were classified into three groups, namely, control, CsA, and CsA + exercise. Findings/Results After 42 days of treatment, the findings showed a significant enhancement in the expression of the β-MHC gene, enhancement in protein expression of Bax and caspase-3, and a significant decline in the protein expression of Bcl-2 expression, as well as increased proliferation intensity in the heart tissue of the CsA group compared to the control group. Systolic pressure, pulse pressure, mean arterial pressure (MAP), QT and QRS duration, and T wave amplitude, as well as QTc amount in the CsA group, showed a significant increase compared to the control group. PPAR-γ and PGI2 showed no significant changes compared to the control group. Moderate exercise along with CsA significantly enhanced the protein expression of PPAR-γ and PGI2 and declined protein expression of Bax, and caspase-3 compared to those in the CsA group. In the CsA + exercise group, systolic pressure, MAP, and Twave showed a significant decrease compared to the CsA group. Moderate exercises along CsA improved heart cell proliferation intensity and significantly reduced β- MHC gene expression compared to the CsA group. Conclusions and implications The results showed moderate exercise alleviated CsA-induced heart tissue apoptosis and proliferation with the corresponding activation of the PGI2/PPAR-γ pathway.
Collapse
Affiliation(s)
- Khatereh Nourmohammadi
- Department of Biology, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Abolfazl Bayrami
- Department of Biology, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Roya Naderi
- Department of Physiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
- Nephrology and Kidney Transplant Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Alireza Shirpoor
- Department of Physiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
- Nephrology and Kidney Transplant Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Hamid Soraya
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
6
|
Yang X, Yang R, Zhang Y, Shi Y, Ma M, Li F, Xie Y, Han X, Liu S. Xianlinglianxiafang Inhibited the growth and metastasis of triple-negative breast cancer via activating PPARγ/AMPK signaling pathway. Biomed Pharmacother 2023; 165:115164. [PMID: 37478577 DOI: 10.1016/j.biopha.2023.115164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/03/2023] [Accepted: 07/11/2023] [Indexed: 07/23/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer characterized by high invasion and metastasis rates. Xian-Ling-Lian-Xia formula (XLLX) is a traditional Chinese medicine prescription widely used in China for treating TNBC. Clinical studies have shown that XLLX significantly reduces the recurrence and metastasis rate of TNBC and improves disease-free survival. However, the potential molecular mechanisms of XLLX on TNBC are not clear yet. Here, we investigated the effects of XLLX on TNBC using a mouse model and tumor cell lines. The results showed that XLLX significantly inhibited the proliferation, migration, and invasion abilities of TNBC cell lines MDA-MB-231 and 4T1 in vitro, induced apoptosis, and regulated the expression of proliferation, apoptosis, and EMT marker proteins in tumor cells. In in vivo experiments, XLLX treatment significantly reduced the progression of TNBC tumors and lung metastasis. Transcriptomics reveals that XLLX treatment significantly enriched differentially expressed genes in the peroxisome proliferator-activated receptor gamma (PPARγ) and AMP-dependent protein kinase (AMPK) signaling pathways. The western blot results confirmed that XLLX significantly upregulated the protein expression of PPARγ and p-AMPK in TNBC cells, tumors, and lung tissues. It is noteworthy that GW9662 (a PPARγ inhibitor) and Compound C (an AMPK inhibitor) partially reversed the anti-proliferation and anti-metastasis effects of XLLX in TNBC cells. Therefore, XLLX may effectively inhibit the growth and metastasis of TNBC by activating the PPARγ/AMPK signaling pathway.
Collapse
Affiliation(s)
- Xiaojuan Yang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Rui Yang
- department of breast surgery, Shanxi Provincial Cancer Hospital, Shanxi, China
| | - Yang Zhang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Youyang Shi
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mei Ma
- Institute of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Feifei Li
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ying Xie
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Xianghui Han
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Sheng Liu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
7
|
Shrivastava N, Khan SA, Alam MM, Akhtar M, Srivastava A, Husain A. Anticancer heterocyclic hybrids: design, synthesis, molecular docking and evaluation of new thiazolidinone-pyrazoles. ZEITSCHRIFT FUR NATURFORSCHUNG SECTION B-A JOURNAL OF CHEMICAL SCIENCES 2023. [DOI: 10.1515/znb-2022-0110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Abstract
In order to obtain potential anticancer agents, hybrid compounds have been synthesized by coupling thiazolidinone and pyrazole scaffolds. Among the synthesized compounds, 2-(1,3-diphenyl-1H-pyrazol-4-yl)-3-phenyl thiazolidin-4-one (4a) was found to be the most potent based on a docking (−9.307) and binding scores (−66.46), along with good ADME parameters. In vitro anticancer activity of compound 4a shows a maximum inhibition against lung cancer (NCI-H23) cell lines with a moderate inhibition rate of 31.01%. Molecular docking studies revealed that these hybrid compounds bind well to the active site of peroxisome proliferator-activated receptors-gamma (PPAR-gamma). Doxorubicin was used as a positive control. It can be concluded that 4a having pyrazole-thiazolidinone ring systems has the potential to be developed as an anticancer agent.
Collapse
Affiliation(s)
- Neelima Shrivastava
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research , Jamia Hamdard (Hamdard University) , New Delhi 110 062 , India
| | - Shah Alam Khan
- College of Pharmacy, National University of Science and Technology , PB 620, PC 130 , Muscat , Sultanate of Oman
| | - Mohammad Mumtaz Alam
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research , Jamia Hamdard (Hamdard University) , New Delhi 110 062 , India
| | - Mymoona Akhtar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research , Jamia Hamdard (Hamdard University) , New Delhi 110 062 , India
| | - Apeksha Srivastava
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research , Jamia Hamdard (Hamdard University) , New Delhi 110 062 , India
| | - Asif Husain
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research , Jamia Hamdard (Hamdard University) , New Delhi 110 062 , India
| |
Collapse
|
8
|
Khan HA, Al‐Hoshani A, Isab AA, Alhomida AS. A Gold(III) Complex with Potential Anticancer Properties. ChemistrySelect 2022. [DOI: 10.1002/slct.202202956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Haseeb A. Khan
- FRCPath, FRSC Department of Biochemistry College of Science King Saud University P.O. Box 2455 Riyadh 11451 Saudi Arabia
| | - Ali Al‐Hoshani
- Department of Pharmaceutical Chemistry College of Pharmacy King Saud University Riyadh 11451 Saudi Arabia
| | - Anvarhusein A. Isab
- Department of Chemistry College of Science King Fahd University of Petroleum and Minerals Dhahran Saudi Arabia
| | - Abdullah S. Alhomida
- FRCPath, FRSC Department of Biochemistry College of Science King Saud University P.O. Box 2455 Riyadh 11451 Saudi Arabia
| |
Collapse
|
9
|
Nitro Fatty Acids (NO 2-FAs): An Emerging Class of Bioactive Fatty Acids. Molecules 2021; 26:molecules26247536. [PMID: 34946618 PMCID: PMC8708353 DOI: 10.3390/molecules26247536] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 12/24/2022] Open
Abstract
Unsaturated nitro fatty acids (NO2-FAs) constitute a category of molecules that may be formed endogenously by the reaction of unsaturated fatty acids (UFAs) with secondary species of nitrogen monoxide and nitrite anions. The warhead of NO2-FAs is a nitroalkene moiety, which is a potent Michael acceptor and can undergo nucleophilic attack from thiol groups of biologically relevant proteins, showcasing the value of these molecules regarding their therapeutic potential against many diseases. In general, NO2-FAs inhibit nuclear factorκ-B (NF-κB), and simultaneously they activate nuclear factor (erythroid derived)-like 2 (Nrf2), which activates an antioxidant signaling pathway. NO2-FAs can be synthesized not only endogenously in the organism, but in a synthetic laboratory as well, either by a step-by-step synthesis or by a direct nitration of UFAs. The step-by-step synthesis requires specific precursor compounds and is in position to afford the desired NO2-FAs with a certain position of the nitro group. On the contrary, the direct nitration of UFAs is not a selective methodology; thus, it affords a mixture of all possible nitro isomers.
Collapse
|
10
|
Rosiglitazone Alleviates Mechanical Allodynia of Rats with Bone Cancer Pain through the Activation of PPAR- γ to Inhibit the NF- κB/NLRP3 Inflammatory Axis in Spinal Cord Neurons. PPAR Res 2021; 2021:6086265. [PMID: 34484316 PMCID: PMC8413064 DOI: 10.1155/2021/6086265] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 07/28/2021] [Indexed: 02/08/2023] Open
Abstract
Bone cancer pain (BCP) is a serious clinical problem that affects the quality of life of cancer patients. However, the current treatment methods for this condition are still unsatisfactory. This study investigated whether intrathecal injection of rosiglitazone modulates the noxious behaviors associated with BCP, and the possible mechanisms related to this effect were explored. We found that rosiglitazone treatment relieved bone cancer-induced mechanical hyperalgesia in a dose-dependent manner, promoted the expression of peroxisome proliferator-activated receptor-γ (PPAR-γ) in spinal cord neurons, and inhibited the activation of the nuclear factor-kappa B (NF-κB)/nod-like receptor protein 3 (NLRP3) inflammatory axis induced by BCP. However, concurrent administration of the PPAR-γ antagonist GW9662 reversed these effects. The results show that rosiglitazone inhibits the NF-κB/NLRP3 inflammation axis by activating PPAR-γ in spinal neurons, thereby alleviating BCP. Therefore, the PPAR-γ/NF-κB/NLRP3 signaling pathway may be a potential target for the treatment of BCP in the future.
Collapse
|
11
|
Egawa D, Ogiso T, Nishikata K, Yamamoto K, Itoh T. Structural Insights into the Loss-of-Function R288H Mutant of Human PPARγ. Biol Pharm Bull 2021; 44:1196-1201. [PMID: 34471047 DOI: 10.1248/bpb.b21-00253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Peroxisome proliferator-activated receptor gamma (PPARγ) is a nuclear receptor and the molecular target of thiazolidinedione-class antidiabetic drugs. It has been reported that the loss of function R288H mutation in the human PPARγ ligand-binding domain (LBD) may be associated with the onset of colon cancer. A previous in vitro study showed that this mutation dampens 15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2, a natural PPARγ agonist)-dependent transcriptional activation; however, it is poorly understood why the function of the R288H mutant is impaired and what role this arginine (Arg) residue plays. In this study, we found that the apo-form of R288H PPARγ mutant displays several altered conformational arrangements of the amino acid side chains in LBD: 1) the loss of a salt bridge between Arg288 and Glu295 leads to increased helix 3 movement; 2) closer proximity of Gln286 and His449 via a hydrogen bond, and closer proximity of Cys285 and Phe363 via hydrophobic interaction, stabilize the helix 3-helix 11 interaction; and 3) there is steric hindrance between Cys285/Gln286/Ser289/His449 and the flexible ligands 15d-PGJ2, 6-oxotetracosahexaenoic acid (6-oxoTHA), and 17-oxodocosahexaenoic acid (17-oxoDHA). These results suggest why Arg288 plays an important role in ligand binding and why the R288H mutation is disadvantageous for flexible ligand binding.
Collapse
Affiliation(s)
- Daichi Egawa
- Laboratory of Drug Design and Medicinal Chemistry, Showa Pharmaceutical University
| | - Taku Ogiso
- Laboratory of Drug Design and Medicinal Chemistry, Showa Pharmaceutical University
| | - Kimina Nishikata
- Laboratory of Drug Design and Medicinal Chemistry, Showa Pharmaceutical University
| | - Keiko Yamamoto
- Laboratory of Drug Design and Medicinal Chemistry, Showa Pharmaceutical University
| | - Toshimasa Itoh
- Laboratory of Drug Design and Medicinal Chemistry, Showa Pharmaceutical University
| |
Collapse
|
12
|
Nakano T, Aochi H, Hirasaki M, Takenaka Y, Fujita K, Tamura M, Soma H, Kamezawa H, Koizumi T, Shibuya H, Inomata R, Okuda A, Murakoshi T, Shimada A, Inoue I. Effects of Pparγ1 deletion on late-stage murine embryogenesis and cells that undergo endocycle. Dev Biol 2021; 478:222-235. [PMID: 34246625 DOI: 10.1016/j.ydbio.2021.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 07/01/2021] [Accepted: 07/06/2021] [Indexed: 10/20/2022]
Abstract
Peroxisome proliferator-activated receptor (PPAR) γ1, a nuclear receptor, is abundant in the murine placenta during the late stage of pregnancy (E15-E16), although its functional roles remain unclear. PPARγ1 is encoded by two splicing isoforms, namely Pparγ1canonical and Pparγ1sv, and its embryonic loss leads to early (E10) embryonic lethality. Thus, we generated knockout (KO) mice that carried only one of the isoforms to obtain a milder phenotype. Pparγ1sv-KO mice were viable and fertile, whereas Pparγ1canonical-KO mice failed to recover around the weaning age. Pparγ1canonical-KO embryos developed normally up to 15.5 dpc, followed by growth delays after that. The junctional zone of Pparγ1canonical-KO placentas severely infiltrated the labyrinth, and maternal blood sinuses were dilated. In the wild-type, PPARγ1 was highly expressed in sinusoidal trophoblast giant cells (S-TGCs), peaking at 15.5 dpc. Pparγ1canonical-KO abolished PPARγ1 expression in S-TGCs. Notably, the S-TGCs had unusually enlarged nuclei and often occupied maternal vascular spaces, disturbing the organization of the fine labyrinth structure. Gene expression analyses of Pparγ1canonical-KO placentas indicated enhanced S-phase cell cycle signatures. EdU-positive S-TGCs in Pparγ1canonical-KO placentas were greater in number than those in wild-type placentas, suggesting that the cells continued to endoreplicate in the mutant placentas. These results indicate that PPARγ1, a known cell cycle arrest mediator, is involved in the transition of TGCs undergoing endocycling to the terminal differentiation stage in the placentas. Therefore, PPARγ1 deficiency, induced through genetic manipulation, leads to placental insufficiency.
Collapse
Affiliation(s)
- Takanari Nakano
- Department of Biochemistry, Faculty of Medicine, Saitama Medical University, Saitama, Japan.
| | - Hidekazu Aochi
- Department of Anatomy, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | - Masataka Hirasaki
- Division of Developmental Biology, Research Center for Genomic Medicine, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | - Yasuhiro Takenaka
- Department of Diabetes and Endocrinology, Faculty of Medicine, Saitama Medical University, Saitama, Japan; Department of Physiology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Koji Fujita
- Department of Molecular Pathology, Tokyo Medical University, Tokyo, Japan
| | - Masaru Tamura
- Technology and Development Team for Mouse Phenotype Analysis, RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
| | - Hiroaki Soma
- Department of Molecular Pathology, Tokyo Medical University, Tokyo, Japan; Department of Obstetrics & Gynecology, Tokyo Medical University, Tokyo, Japan
| | - Hajime Kamezawa
- Department of Anatomy, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | - Takahiro Koizumi
- Department of Ophthalmology, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | - Hirotoshi Shibuya
- Technology and Development Team for Mouse Phenotype Analysis, RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
| | - Reiko Inomata
- Department of Anatomy, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | - Akihiko Okuda
- Division of Developmental Biology, Research Center for Genomic Medicine, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | - Takayuki Murakoshi
- Department of Biochemistry, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | - Akira Shimada
- Department of Diabetes and Endocrinology, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | - Ikuo Inoue
- Department of Diabetes and Endocrinology, Faculty of Medicine, Saitama Medical University, Saitama, Japan.
| |
Collapse
|
13
|
Tilekar K, Hess JD, Upadhyay N, Bianco AL, Schweipert M, Laghezza A, Loiodice F, Meyer-Almes FJ, Aguilera RJ, Lavecchia A, C S R. Thiazolidinedione "Magic Bullets" Simultaneously Targeting PPARγ and HDACs: Design, Synthesis, and Investigations of their In Vitro and In Vivo Antitumor Effects. J Med Chem 2021; 64:6949-6971. [PMID: 34006099 PMCID: PMC10926851 DOI: 10.1021/acs.jmedchem.1c00491] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Monotargeting anticancer agents suffer from resistance and target nonspecificity concerns, which can be tackled with a multitargeting approach. The combined treatment with HDAC inhibitors and PPARγ agonists has displayed potential antitumor effects. Based on these observations, this work involves design and synthesis of molecules that can simultaneously target PPARγ and HDAC. Several out of 25 compounds inhibited HDAC4, and six compounds acted as dual-targeting agents. Compound 7i was the most potent, with activity toward PPARγ EC50 = 0.245 μM and HDAC4 IC50 = 1.1 μM. Additionally, compounds 7c and 7i were cytotoxic to CCRF-CEM cells (CC50 = 2.8 and 9.6 μM, respectively), induced apoptosis, and caused DNA fragmentation. Furthermore, compound 7c modulated the expression of c-Myc, cleaved caspase-3, and caused in vivo tumor regression in CCRF-CEM tumor xenografts. Thus, this study provides a basis for the rational design of dual/multitargeting agents that could be developed further as anticancer therapeutics.
Collapse
Affiliation(s)
- Kalpana Tilekar
- Department of Pharmaceutical Chemistry, Bharati Vidyapeeth's College of Pharmacy, CBD Belapur, Navi Mumbai- 400614, India
| | - Jessica D Hess
- Cellular Characterization and Biorepository Core Facility, Border Biomedical Research Center, Department of Biological Sciences, The University of Texas at El Paso, 500 West University Avenue, El Paso, Texas 79968, United States
| | - Neha Upadhyay
- Department of Pharmaceutical Chemistry, Bharati Vidyapeeth's College of Pharmacy, CBD Belapur, Navi Mumbai- 400614, India
| | - Alessandra Lo Bianco
- Department of Pharmacy, "Drug Discovery" Laboratory, University of Napoli "Federico II", Via D. Montesano, 49, 80131 Napoli, Italy
| | - Markus Schweipert
- Department of Chemical Engineering and Biotechnology, University of Applied Science, Haardtring 100, 64295 Darmstadt, Germany
| | - Antonio Laghezza
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Via E. Orabona 4, 70126 Bari, Italy
| | - Fulvio Loiodice
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Via E. Orabona 4, 70126 Bari, Italy
| | - Franz-Josef Meyer-Almes
- Department of Chemical Engineering and Biotechnology, University of Applied Science, Haardtring 100, 64295 Darmstadt, Germany
| | - Renato J Aguilera
- Cellular Characterization and Biorepository Core Facility, Border Biomedical Research Center, Department of Biological Sciences, The University of Texas at El Paso, 500 West University Avenue, El Paso, Texas 79968, United States
| | - Antonio Lavecchia
- Department of Pharmacy, "Drug Discovery" Laboratory, University of Napoli "Federico II", Via D. Montesano, 49, 80131 Napoli, Italy
| | - Ramaa C S
- Department of Pharmaceutical Chemistry, Bharati Vidyapeeth's College of Pharmacy, CBD Belapur, Navi Mumbai- 400614, India
| |
Collapse
|
14
|
Kandel A, Dhillon SK, Prabaharan CB, Fatnin Binti Hisham S, Rajamanickam K, Napper S, Chidambaram SB, Essa MM, Yang J, Sakharkar MK. Identifying kinase targets of PPARγ in human breast cancer. J Drug Target 2021; 29:660-668. [PMID: 33496213 DOI: 10.1080/1061186x.2021.1877719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Breast cancer is the most common cancer in women. Despite advances in screening women for genetic predisposition to breast cancer and risk stratification, a majority of women carriers remain undetected until they become affected. Thus, there is a need to develop a cost-effective, rapid, sensitive and non-invasive early-stage diagnostic method. Kinases are involved in all fundamental cellular processes and mutations in kinases have been reported as drivers of cancer. PPARγ is a ligand-activated transcription factor that plays important roles in cell proliferation and metabolism. However, the complete set of kinases modulated by PPARγ is still unknown. In this study, we identified human kinases that are potential PPARγ targets and evaluated their differential expression and gene pair correlations in human breast cancer patient dataset TCGA-BRCA. We further confirmed the findings in human breast cancer cell lines MCF7 and SK-BR-3 using a kinome array. We observed that gene pair correlations are lost in tumours as compared to healthy controls and could be used as a supplement strategy for diagnosis and prognosis of breast cancer.
Collapse
Affiliation(s)
- Anish Kandel
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Canada
| | - Sarinder Kaur Dhillon
- Faculty of Science, Institute of Biological Sciences, University of Malaya, Kuala Lumpur, Malaysia
| | - Chandra Bose Prabaharan
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Canada
| | | | - Karthic Rajamanickam
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Canada
| | - Scott Napper
- Vaccine and Infectious Disease Organization-International Vaccine Research Centre, University of Saskatchewan, Saskatoon, Canada.,Department of Biochemistry, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Saravana Babu Chidambaram
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSSAHER), Mysuru, India
| | - Musthafa Mohamed Essa
- Ageing and Dementia Research Group, Sultan Qaboos University, Muscat, Oman.,Department of Food Science and Nutrition, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Oman
| | - Jian Yang
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Canada
| | - Meena Kishore Sakharkar
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
15
|
Peroxisome Proliferator-Activated Receptors as Molecular Links between Caloric Restriction and Circadian Rhythm. Nutrients 2020; 12:nu12113476. [PMID: 33198317 PMCID: PMC7696073 DOI: 10.3390/nu12113476] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/04/2020] [Accepted: 11/09/2020] [Indexed: 02/06/2023] Open
Abstract
The circadian rhythm plays a chief role in the adaptation of all bodily processes to internal and environmental changes on the daily basis. Next to light/dark phases, feeding patterns constitute the most essential element entraining daily oscillations, and therefore, timely and appropriate restrictive diets have a great capacity to restore the circadian rhythm. One of the restrictive nutritional approaches, caloric restriction (CR) achieves stunning results in extending health span and life span via coordinated changes in multiple biological functions from the molecular, cellular, to the whole-body levels. The main molecular pathways affected by CR include mTOR, insulin signaling, AMPK, and sirtuins. Members of the family of nuclear receptors, the three peroxisome proliferator-activated receptors (PPARs), PPARα, PPARβ/δ, and PPARγ take part in the modulation of these pathways. In this non-systematic review, we describe the molecular interconnection between circadian rhythm, CR-associated pathways, and PPARs. Further, we identify a link between circadian rhythm and the outcomes of CR on the whole-body level including oxidative stress, inflammation, and aging. Since PPARs contribute to many changes triggered by CR, we discuss the potential involvement of PPARs in bridging CR and circadian rhythm.
Collapse
|
16
|
Fu F, Yang X, Zheng M, Zhao Q, Zhang K, Li Z, Zhang H, Zhang S. Role of Transmembrane 4 L Six Family 1 in the Development and Progression of Cancer. Front Mol Biosci 2020; 7:202. [PMID: 33015133 PMCID: PMC7461813 DOI: 10.3389/fmolb.2020.00202] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/27/2020] [Indexed: 12/27/2022] Open
Abstract
Transmembrane 4 L six family 1 (TM4SF1) is a protein with four transmembrane domains that belongs to the transmembrane 4 L six family members (TM4SFs). Structurally, TM4SF1 consists of four transmembrane domains (TM1-4), N- and C-terminal intracellular domains, two extracellular domains, a smaller domain between TM1 and TM2, and a larger domain between TM3 and TM4. Within the cell, TM4SF1 is located at the cell surface where it transmits extracellular signals into the cytoplasm. TM4SF1 interacts with tetraspanins, integrin, receptor tyrosine kinases, and other proteins to form tetraspanin-enriched microdomains. This interaction affects the pro-migratory activity of the cells, and thus it plays important roles in the development and progression of cancer. TM4SF1 has been shown to be overexpressed in many malignant tumors, including gliomas; malignant melanomas; and liver, prostate, breast, pancreatic, bladder, colon, lung, gastric, ovarian, and thyroid cancers. TM4SF1 promotes the migration and invasion of cancer cells by inducing epithelial-mesenchymal transition, self-renewal ability, tumor angiogenesis, invadopodia formation, and regulating the related signaling pathway. TM4SF1 is an independent prognostic indicator and biomarker in several cancers. It also promotes drug resistance, which is a major cause of therapeutic failure. These characteristics make TM4SF1 an attractive target for antibody-based immunotherapy. Here, we review the many functions of TM4SF1 in malignant tumors, with the aim to understand the interaction between its expression and the biological behaviors of cancer and to supply a basis for exploring new therapeutic targets.
Collapse
Affiliation(s)
- Fangmei Fu
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xudong Yang
- Tianjin Rehabilitation Center, Tianjin, China
| | - Minying Zheng
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China
| | - Qi Zhao
- Graduate School, Tianjin Medical University, Tianjin, China
| | - Kexin Zhang
- Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Zugui Li
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hao Zhang
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shiwu Zhang
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China
| |
Collapse
|
17
|
Kim JS, Kim YR, Yang CS. Host-Directed Therapy in Tuberculosis: Targeting Host Metabolism. Front Immunol 2020; 11:1790. [PMID: 32903583 PMCID: PMC7438556 DOI: 10.3389/fimmu.2020.01790] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 07/06/2020] [Indexed: 12/13/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) has complex and intricate interactions with host immune cells. Mtb can survive, persist, and grow within macrophages and thereby circumvent detection by the innate immune system. Recently, the field of immunometabolism, which focuses on the link between metabolism and immune function, has provided us with an improved understanding of the role of metabolism in modulating immune function. For example, host immune cells can switch from oxidative phosphorylation to glycolysis in response to infection, a phenomenon known as the Warburg effect. In this state, immune cells are capable of amplifying production of both antimicrobial pro-inflammatory mediators that are critical for the elimination of bacteria. Also, cells undergoing the Warburg effect upregulate production of nitric oxide augment the synthesis of bioactive lipids. In this review, we describe our current understanding of the Warburg effect and discuss its role in promoting host immune responses to Mtb. In most settings, immune cells utilize the Warburg effect to promote inflammation and thereby eliminate invading bacteria; interestingly, Mtb exploits this effect to promote its own survival. A better understanding of the dynamics of metabolism within immune cells together with the specific features that contribute to the pathogenesis of tuberculosis (TB) may suggest potential host-directed therapeutic targets for promoting clearance of Mtb and limiting its survival in vivo.
Collapse
Affiliation(s)
- Jae-Sung Kim
- Department of Molecular and Life Science, Hanyang University, Ansan, South Korea.,Depatment of Bionano Technology, Hanyang University, Seoul, South Korea
| | - Ye-Ram Kim
- Department of Molecular and Life Science, Hanyang University, Ansan, South Korea.,Depatment of Bionano Technology, Hanyang University, Seoul, South Korea
| | - Chul-Su Yang
- Department of Molecular and Life Science, Hanyang University, Ansan, South Korea.,Depatment of Bionano Technology, Hanyang University, Seoul, South Korea
| |
Collapse
|
18
|
Oh I, Raymundo B, Jung SA, Kim HJ, Park J, Kim C. Extremely
Low‐Frequency
Electromagnetic Field Altered
PPARγ
and
CCL2
Levels and Suppressed
CD44
+
/
CD24
−
Breast Cancer Cells Characteristics. B KOREAN CHEM SOC 2020. [DOI: 10.1002/bkcs.12072] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- In‐Rok Oh
- College of Life Sciences and BiotechnologyKorea University Seoul 136‐701 Korea
| | - Bernardo Raymundo
- College of Life Sciences and BiotechnologyKorea University Seoul 136‐701 Korea
| | - Sung A Jung
- College of Life Sciences and BiotechnologyKorea University Seoul 136‐701 Korea
| | - Hyun Jung Kim
- College of Life Sciences and BiotechnologyKorea University Seoul 136‐701 Korea
| | - Jung‐Keug Park
- Dongguk University Biomedi CampusDongguk University Goyang Korea
| | - Chan‐Wha Kim
- College of Life Sciences and BiotechnologyKorea University Seoul 136‐701 Korea
| |
Collapse
|
19
|
Peroxisome Proliferator-Activated Receptors and Caloric Restriction-Common Pathways Affecting Metabolism, Health, and Longevity. Cells 2020; 9:cells9071708. [PMID: 32708786 PMCID: PMC7407644 DOI: 10.3390/cells9071708] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/14/2020] [Accepted: 07/14/2020] [Indexed: 02/06/2023] Open
Abstract
Caloric restriction (CR) is a traditional but scientifically verified approach to promoting health and increasing lifespan. CR exerts its effects through multiple molecular pathways that trigger major metabolic adaptations. It influences key nutrient and energy-sensing pathways including mammalian target of rapamycin, Sirtuin 1, AMP-activated protein kinase, and insulin signaling, ultimately resulting in reductions in basic metabolic rate, inflammation, and oxidative stress, as well as increased autophagy and mitochondrial efficiency. CR shares multiple overlapping pathways with peroxisome proliferator-activated receptors (PPARs), particularly in energy metabolism and inflammation. Consequently, several lines of evidence suggest that PPARs might be indispensable for beneficial outcomes related to CR. In this review, we present the available evidence for the interconnection between CR and PPARs, highlighting their shared pathways and analyzing their interaction. We also discuss the possible contributions of PPARs to the effects of CR on whole organism outcomes.
Collapse
|
20
|
Thorat BR, Rani D, Yamgar RS, Mali SN. Synthesis, Spectroscopic, In-vitro and Computational Analysis of Hydrazones as Potential Antituberculosis Agents: (Part-I). Comb Chem High Throughput Screen 2020; 23:392-401. [PMID: 32209038 DOI: 10.2174/1386207323999200325125858] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/19/2020] [Accepted: 02/26/2020] [Indexed: 01/06/2023]
Abstract
BACKGROUND Since the last few decades, the healthcare sector is facing the problem of the development of multidrug-resistant (MDR-TB) and extensively drug-resistant tuberculosis (XDR-TB) infections all over the world. Regardless of the current healthcare progress for the treatment of mycobacterial infections, we are still unable to control addition of every year 9 million new cases of tuberculosis (TB). OBJECTIVE We had an objective to synthesize some novel hydrazones, which were further subjected to characterization, Photoluminescence study, in vitro anti-mycobacterium testing and in silico ADMET predictions. METHODS Some new hydrazone derivatives have been successfully prepared by the condensation reaction in the present study. All the compounds were characterized by using FTIR, NMR, UV, Fluorescence spectroscopic techniques. RESULTS All our newly synthesized compounds showed strong electronic excitation at 292.6 - 319.0 nm and displayed more intense emissions in the 348 - 365 nm regions except compound 3i. The newly synthesized hydrazones 3a, 3b, 3f and 3g were found to be the most active compounds and showed MIC (Minimum inhibitory concentrations) values of 12.5 μg/mL. CONCLUSION In the realm of development of more potent, effective, safer and less toxic antituberculosis agents; our current study would definitely help the medicinal chemists to develop potent analogues containing hydrazine motifs in them.
Collapse
Affiliation(s)
- Bapu R Thorat
- Department of Chemistry, Government of Maharashtra's Ismail Yusuf College of Arts, Science and Commerce, Mumbai 60, India
| | - Deepa Rani
- Department of Chemistry, Government of Maharashtra's Ismail Yusuf College of Arts, Science and Commerce, Mumbai 60, India
| | - Ramesh S Yamgar
- Department of Chemistry, Chikitsak Samuha's Patkar-Varde College of Arts, Science and Commerce, Goregaon (West), Mumbai 400 062, India
| | - Suraj N Mali
- Government College of Pharmacy, Karad, Maharashtra, 415125, India
| |
Collapse
|
21
|
Mrowka P, Glodkowska-Mrowka E. PPARγ Agonists in Combination Cancer Therapies. Curr Cancer Drug Targets 2019; 20:197-215. [PMID: 31814555 DOI: 10.2174/1568009619666191209102015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/03/2019] [Accepted: 11/01/2019] [Indexed: 12/15/2022]
Abstract
Peroxisome proliferator-activated receptor-gamma (PPARγ) is a nuclear receptor acting as a transcription factor involved in the regulation of energy metabolism, cell cycle, cell differentiation, and apoptosis. These unique properties constitute a strong therapeutic potential that place PPARγ agonists as one of the most interesting and widely studied anticancer molecules. Although PPARγ agonists exert significant, antiproliferative and tumoricidal activity in vitro, their anticancer efficacy in animal models is ambiguous, and their effectiveness in clinical trials in monotherapy is unsatisfactory. However, due to pleiotropic effects of PPARγ activation in normal and tumor cells, PPARγ ligands interact with many antitumor treatment modalities and synergistically potentiate their effectiveness. The most spectacular example is a combination of PPARγ ligands with tyrosine kinase inhibitors (TKIs) in chronic myeloid leukemia (CML). In this setting, PPARγ activation sensitizes leukemic stem cells, resistant to any previous form of treatment, to targeted therapy. Thus, this combination is believed to be the first pharmacological therapy able to cure CML patients. Within the last decade, a significant body of data confirming the benefits of the addition of PPARγ ligands to various antitumor therapies, including chemotherapy, hormonotherapy, targeted therapy, and immunotherapy, has been published. Although the majority of these studies have been carried out in vitro or animal tumor models, a few successful attempts to introduce PPARγ ligands into anticancer therapy in humans have been recently made. In this review, we aim to summarize shines and shadows of targeting PPARγ in antitumor therapies.
Collapse
Affiliation(s)
- Piotr Mrowka
- Department of Biophysics and Human Physiology, Medical University of Warsaw, Warsaw, Poland
| | - Eliza Glodkowska-Mrowka
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Warsaw, Poland.,Department of Experimental Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| |
Collapse
|
22
|
Kumar R, Singh P, Kolloli A, Shi L, Bushkin Y, Tyagi S, Subbian S. Immunometabolism of Phagocytes During Mycobacterium tuberculosis Infection. Front Mol Biosci 2019; 6:105. [PMID: 31681793 PMCID: PMC6803600 DOI: 10.3389/fmolb.2019.00105] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 09/26/2019] [Indexed: 12/18/2022] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb) remains as a leading killer among infectious diseases worldwide. The nature of the host immune response dictates whether the initial Mtb infection is cleared or progresses toward active disease, and is ultimately determined by intricate host-pathogen interactions that are yet to be fully understood. The early immune response to infection is mediated by innate immune cells, including macrophages and neutrophils that can phagocytose Mtb and mount an antimicrobial response. However, Mtb can exploit these innate immune cells for its survival and dissemination. Recently, it has become clear that the immune response and metabolic remodeling are interconnected, which is highlighted by the rapid evolution of the interdisciplinary field of immunometabolism. It has been proposed that the net outcome to Mtb infection—clearance or chronic disease—is likely a result of combined immunologic and metabolic activities of the immune cells. Indeed, host cells activated by Mtb infection have strikingly different metabolic requirements than naïve/non-infected cells. Macrophages activated by Mtb-derived molecules or upon phagocytosis acquire a phenotype similar to M1 with elevated production of pro-inflammatory molecules and rely on glycolysis and pentose phosphate pathway to meet their bioenergetic and metabolic requirements. In these macrophages, oxidative phosphorylation and fatty acid oxidation are dampened. However, the non-infected/naive, M2-type macrophages are anti-inflammatory and derive their energy from oxidative phosphorylation and fatty acid oxidation. Similar metabolic adaptations also occur in other phagocytes, including dendritic cells, neutrophils upon Mtb infection. This metabolic reprogramming of innate immune cells during Mtb infection can differentially regulate their effector functions, such as the production of cytokines and chemokines, and antimicrobial response, all of which can ultimately determine the outcome of Mtb-host interactions within the granulomas. In this review, we describe key immune cells bolstering host innate response and discuss the metabolic reprogramming in these phagocytes during Mtb infection. We focused on the major phagocytes, including macrophages, dendritic cells and neutrophils and the key regulators involved in metabolic reprogramming, such as hypoxia-inducible factor-1, mammalian target of rapamycin, the cellular myelocytomatosis, peroxisome proliferator-activator receptors, sirtuins, arginases, inducible nitric acid synthase and sphingolipids.
Collapse
Affiliation(s)
- Ranjeet Kumar
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States
| | - Pooja Singh
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States
| | - Afsal Kolloli
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States
| | - Lanbo Shi
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States
| | - Yuri Bushkin
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States
| | - Sanjay Tyagi
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States
| | - Selvakumar Subbian
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States
| |
Collapse
|
23
|
Molecular Alterations in Thyroid Cancer: From Bench to Clinical Practice. Genes (Basel) 2019; 10:genes10090709. [PMID: 31540307 PMCID: PMC6771012 DOI: 10.3390/genes10090709] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/26/2019] [Accepted: 09/10/2019] [Indexed: 12/11/2022] Open
Abstract
Thyroid cancer comprises different clinical and histological entities. Whereas differentiated (DTCs) malignancies are sensitive to radioiodine therapy, anaplastic (ATCs) and medullary (MTCs) tumors do not uptake radioactive iodine and display aggressive features associated with a poor prognosis. Moreover, in a majority of DTCs, disease evolution leads to the progressive loss of iodine sensitivity. Hence, iodine-refractory DTCs, along with ATCs and MTCs, require alternative treatments reflective of their different tumor biology. In the last decade, the molecular mechanisms promoting thyroid cancer development and progression have been extensively studied. This has led to a better understanding of the genomic landscape, displayed by thyroid malignancies, and to the identification of novel therapeutic targets. Indeed, several pharmacological compounds have been developed for iodine-refractory tumors, with four multi-target tyrosine kinase inhibitors already available for DTCs (sorafenib and lenvatinib) and MTCs (cabozantib and vandetanib), and a plethora of drugs currently being evaluated in clinical trials. In this review, we will describe the genomic alterations and biological processes intertwined with thyroid cancer development, also providing a thorough overview of targeted drugs already tested or under investigation for these tumors. Furthermore, given the existing preclinical evidence, we will briefly discuss the potential role of immunotherapy as an additional therapeutic strategy for the treatment of thyroid cancer.
Collapse
|
24
|
Moretti E, Collodel G, Salvatici MC, Belmonte G, Signorini C. New insights into sperm with total globozoospermia: Increased fatty acid oxidation and centrin1 alteration. Syst Biol Reprod Med 2019; 65:390-399. [DOI: 10.1080/19396368.2019.1626934] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Elena Moretti
- Departement of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Giulia Collodel
- Departement of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Maria Cristina Salvatici
- Centro di Microscopie Elettroniche “Laura Bonzi”, ICCOM, Consiglio Nazionale delle Ricerche (CNR), Firenze, Italy
| | - Giuseppe Belmonte
- Departement of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Cinzia Signorini
- Departement of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| |
Collapse
|
25
|
Abstract
Prominent in the current stage of drug development, antiviral compounds can be efficiently prepared through cycloaddition reactions. The chapter reports the use of classical Diels–Alder and their hetero version for the design and synthesis of compounds that were tested for their antiviral activities against a variety of viruses. Furthermore, 1,3-dipolar cycloaddition reactions of selected 1,3-dipoles, such as azides, nitrones, and nitrile oxides, are reviewed in the light of their application in the preparation of key intermediates for antiviral synthesis. A few examples of [2+2] cycloaddition reactions are also presented. The products obtained from these pericyclic reaction approaches were all tested for their activities in terms of blocking the virus replication, and the relevant biological data are highlighted.
Collapse
|
26
|
Duszka K, Wahli W. Enteric Microbiota⁻Gut⁻Brain Axis from the Perspective of Nuclear Receptors. Int J Mol Sci 2018; 19:ijms19082210. [PMID: 30060580 PMCID: PMC6121494 DOI: 10.3390/ijms19082210] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 07/18/2018] [Accepted: 07/23/2018] [Indexed: 12/12/2022] Open
Abstract
Nuclear receptors (NRs) play a key role in regulating virtually all body functions, thus maintaining a healthy operating body with all its complex systems. Recently, gut microbiota emerged as major factor contributing to the health of the whole organism. Enteric bacteria have multiple ways to influence their host and several of them involve communication with the brain. Mounting evidence of cooperation between gut flora and NRs is already available. However, the full potential of the microbiota interconnection with NRs remains to be uncovered. Herewith, we present the current state of knowledge on the multifaceted roles of NRs in the enteric microbiota–gut–brain axis.
Collapse
Affiliation(s)
- Kalina Duszka
- Department of Nutritional Sciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria.
| | - Walter Wahli
- Lee Kong Chian School of Medicine, Nanyang Technological, 11 Mandalay Road, Singapore 308232, Singapore.
- Center for Integrative Genomics, University of Lausanne, Génopode, CH-1015 Lausanne, Switzerland.
| |
Collapse
|
27
|
Cao R, Wang G, Qian K, Chen L, Ju L, Qian G, Wu CL, Dan HC, Jiang W, Wu M, Xiao Y, Wang X. TM4SF1 regulates apoptosis, cell cycle and ROS metabolism via the PPARγ-SIRT1 feedback loop in human bladder cancer cells. Cancer Lett 2018; 414:278-293. [PMID: 29175458 DOI: 10.1016/j.canlet.2017.11.015] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 11/10/2017] [Accepted: 11/13/2017] [Indexed: 01/05/2023]
Abstract
Transmembrane-4-L-Six-Family-1 (TM4SF1) is a member of the L6 family and functions as a signal transducer to regulate cell development, growth and motility. Here we show that TM4SF1 is strongly upregulated in human muscle invasive bladder cancer (MIBC) tissues, corroborating the bioinformatical results of transcriptome analysis. Moreover, tissue microarray (TMA) shows significant correlations (p < 0.05) between high expression of TM4SF1 and T stage, TNM stage, lymph node metastasis status and survival rate of MIBC patients, indicating a positive association between TM4SF1 expression and poorer prognosis. Furthermore, in vitro and in vivo studies indicate that the proliferation of human bladder cancer (BCa) cells is significantly suppressed by knockdown of TM4SF1 (p < 0.05). Functionally, the reduction of TM4SF1 could induce cell cycle arrest and apoptosis possibly via the upregulation of reactive oxygen species (ROS) in BCa cells. In addition, these observations could be recovered by treatment with GW9662 (antagonist of PPARγ) and resveratrol (activator of SIRT1). Taken together, our results suggest that high expression of TM4SF1 predicts poor prognosis of MIBC.
Collapse
Affiliation(s)
- Rui Cao
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Gang Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Kaiyu Qian
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China; Department of Urology, The Fifth Hospital of Wuhan, Wuhan, China
| | - Liang Chen
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lingao Ju
- College of Life Science, Wuhan University, Wuhan, China
| | - Guofeng Qian
- Department of Endocrinology, The First Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Chin-Lee Wu
- Department of Urology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Han C Dan
- Greenebaum Cancer Center, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Wei Jiang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China; Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Min Wu
- College of Life Science, Wuhan University, Wuhan, China
| | - Yu Xiao
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China; Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China; Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Xinghuan Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
28
|
Weng JR, Bai LY, Lin WY. Identification of a Triterpenoid as a Novel PPARγ Activator Derived from Formosan Plants. Phytother Res 2017; 31:1722-1730. [PMID: 28856793 DOI: 10.1002/ptr.5900] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 07/20/2017] [Accepted: 08/02/2017] [Indexed: 01/04/2023]
Abstract
Peroxisome proliferator-activated receptor γ (PPARγ), one of the transcription factors that regulate lipid metabolism and energy use in tumor cells, is a viable target for cancer therapy. In our search for potential PPARγ activator, extracts from five Formosan plants were tested. Among them, Momordica charantia L. showed the highest ability to activate PPARγ, which led us to identify its potential constituents. Among the seven compounds isolated from M. charantia, a triterpenoid, 5β,19-epoxy-19-methoxycucurbita-6,23-dien-3β,25-diol (compound 1), was identified as a PPARγ activator with an IC50 of 10 μM in breast cancer MCF-7 cells. Flow cytometric analysis indicated that compound 1 induced G1 cell cycle arrest which might be attributable to the modulation of phosphorylation and expression of numerous key signaling effectors, including cyclin D1, CDK6, and p53. Notably, compound 1 downregulated the expression of histone deacetylase 1, leading to increased histone H3 acetylation. Taken together, these findings suggest that compound 1 may have therapeutic applications in cancer treatment through PPARγ activation. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Jing-Ru Weng
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
| | - Li-Yuan Bai
- Division of Hematology and Oncology, Department of Internal Medicine, China Medical University Hospital, Taichung, 40447, Taiwan.,College of Medicine, China Medical University, Taichung, 40402, Taiwan
| | - Wei-Yu Lin
- Department of Pharmacy, Kinmen Hospital, Kinmen, 89142, Taiwan
| |
Collapse
|
29
|
Synthesis and in vitro anticancer activity of new 2-thioxo-oxazolidin-4-one derivatives. Pharmacol Rep 2017; 69:633-641. [PMID: 28511054 DOI: 10.1016/j.pharep.2017.03.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Revised: 02/20/2017] [Accepted: 03/09/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND Oxazolidinones derivatives exhibit different biological properties, including anticancer activity. This work aimed to investigate the anticancer potential of five novel 2-Thioxo-oxazolidin-4-one derivatives. METHODS Cytotoxicity assays were performed in human peripheral blood mononuclear cells (PBMCs) from healthy individuals and seven tumor cell lines. Apoptosis detection and cell cycle were evaluated by flow cytometry and the expression of genes involved in cell death processes by Real-Time PCR. RESULTS All oxazolinedione derivatives were not cytotoxic in PBMCs. NB-5 showed the best results in cancer cells, inhibiting the growth of all tumor cell lines tested. NB-4 exhibited the highest cytotoxicity in Jurkat cells (IC50=15.19μM) and NB-3 showed better anticancer effects in HL-60 (17.84μM). Only NB-4 significantly induced apoptosis in acute leukemia cells (p=0.001). All compounds caused a significant increase in expression of pro-apoptotic gene BID (p<0.05) and BECN1 (p<0.05). NB-3 significantly modulated the expression of RIPK3 (p=0.02) and DDIT3 (p=0.014), while NB-2 induced an increase of CDKN1A (p=0.03) and NB-4 induced PPARγ gene (p=0.0006). CONCLUSION NB-5 showed antitumor effects in solid and hematopoietic cancer cells, while other derivatives produced higher activity against hematopoietic cells. In acute leukemia cells, oxazolidinone derivatives modulated the expression of genes involved in apoptosis, ER stress, necroptosis and inflammation.
Collapse
|
30
|
Piemontese L, Cerchia C, Laghezza A, Ziccardi P, Sblano S, Tortorella P, Iacobazzi V, Infantino V, Convertini P, Dal Piaz F, Lupo A, Colantuoni V, Lavecchia A, Loiodice F. New diphenylmethane derivatives as peroxisome proliferator-activated receptor alpha/gamma dual agonists endowed with anti-proliferative effects and mitochondrial activity. Eur J Med Chem 2017; 127:379-397. [DOI: 10.1016/j.ejmech.2016.12.047] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 12/21/2016] [Accepted: 12/23/2016] [Indexed: 12/18/2022]
|
31
|
Intestinal PPARγ signalling is required for sympathetic nervous system activation in response to caloric restriction. Sci Rep 2016; 6:36937. [PMID: 27853235 PMCID: PMC5113069 DOI: 10.1038/srep36937] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 10/05/2016] [Indexed: 02/08/2023] Open
Abstract
Nuclear receptor PPARγ has been proven to affect metabolism in multiple tissues, and has received considerable attention for its involvement in colon cancer and inflammatory disease. However, its role in intestinal metabolism has been largely ignored. To investigate this potential aspect of PPARγ function, we submitted intestinal epithelium-specific PPARγ knockout mice (iePPARγKO) to a two-week period of 25% caloric restriction (CR), following which iePPARγKO mice retained more fat than their wild type littermates. In attempting to explain this discrepancy, we analysed the liver, skeletal muscle, intestinal lipid trafficking, and the microbiome, none of which appeared to contribute to the adiposity phenotype. Interestingly, under conditions of CR, iePPARγKO mice failed to activate their sympathetic nervous system (SNS) and increase CR-specific locomotor activity. These KO mice also manifested a defective control of their body temperature, which was overly reduced. Furthermore, the white adipose tissue of iePPARγKO CR mice showed lower levels of both hormone-sensitive lipase, and its phosphorylated form. This would result from impaired SNS signalling and possibly cause reduced lipolysis. We conclude that intestinal epithelium PPARγ plays an essential role in increasing SNS activity under CR conditions, thereby contributing to energy mobilization during metabolically stressful episodes.
Collapse
|
32
|
Pytlowanciv EZ, Pinto-Fochi ME, Reame V, Gobbo MG, Ribeiro DL, Taboga SR, Góes RM. Differential ontogenetic exposure to obesogenic environment induces hyperproliferative status and nuclear receptors imbalance in the rat prostate at adulthood. Prostate 2016; 76:662-78. [PMID: 26847797 DOI: 10.1002/pros.23158] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 01/08/2016] [Indexed: 01/08/2023]
Abstract
BACKGROUND Experimental data indicate that high-fat diet (HFD) may alter proliferative activity and prostate health. However, the consequences of HFD exposure during different periods of ontogenetic development on prostate histophysiology remain to be elucidated. Herein, we compare the influence of obesogenic environment (OE) due to maternal obesity and HFD at different periods of life on proliferative activity and nuclear receptors frequency in the rat ventral prostate and a possible relationship with metabolic and hormonal alterations. METHODS Male Wistar rats (19 weeks old), treated with balanced chow (Control group-C; 3% high-fat, 3.5 Kcal/g), were compared with those exposed to HFD (20% high-fat, 4.9 kcal/g) during gestation (G-maternal obesity), gestation and lactation (GL), from post-weaning to adulthood (WA), from lactation to adulthood (LA) and from gestation to adulthood (GA). After the experimental period, the ventral prostate lobes were removed and analyzed with different methods. RESULTS Metabolic data indicated that G and GL rats became insulin resistant and WA, LA, and GA became insulin resistant and obese. There was a strong inverse correlation between serum testosterone (∼133% lower) and leptin levels (∼467% higher) in WA, LA, and GA groups. Estrogen serum levels increased in GA, and insulin levels increased in all groups, especially in WA (64.8×). OE-groups exhibited prostatic hypertrophy, since prostate weight increased ∼40% in G, GL, LA, and GA and 31% in WA. As indicated by immunohistochemistry, all HFD-groups except G exhibited an increase in epithelial cell proliferation (PCNA-positive) and a decrease in frequency of AR- and ERβ-positive epithelial cells; there was also an increment of ERα-positive stromal cells in comparison with control. Cells containing PPARγ increased in both epithelium and stroma of all OE groups and those expressing LXRα decreased, particularly in groups OE-exposed during gestation (G, GL and GA). CONCLUSIONS OE leads to prostate hypertrophy regardless of the period of development and, except when restricted to gestation, leads to a hyperproliferative status which was correlated to downregulation of AR and LXRα and upregulation of ERα and PPARγ signaling.
Collapse
Affiliation(s)
- Eloísa Zanin Pytlowanciv
- Department of Structural and Functional Biology, Institute of Biology, Campinas State University-UNICAMP, Campinas, São Paulo, Brazil
| | - Maria Etelvina Pinto-Fochi
- Department of Biology, Institute of Biosciences, Letters and Exact Sciences, Univ Estadual Paulista-UNESP, São José do Rio Preto, São Paulo, Brazil
| | - Vanessa Reame
- Department of Structural and Functional Biology, Institute of Biology, Campinas State University-UNICAMP, Campinas, São Paulo, Brazil
| | - Marina Guimarães Gobbo
- Department of Structural and Functional Biology, Institute of Biology, Campinas State University-UNICAMP, Campinas, São Paulo, Brazil
| | - Daniele Lisboa Ribeiro
- Histology Sector, Institute of Biomedical Sciences, Federal University of Uberlândia-UFU, Uberlândia, MG, Brazil
| | - Sebastião Roberto Taboga
- Department of Biology, Institute of Biosciences, Letters and Exact Sciences, Univ Estadual Paulista-UNESP, São José do Rio Preto, São Paulo, Brazil
| | - Rejane Maira Góes
- Department of Biology, Institute of Biosciences, Letters and Exact Sciences, Univ Estadual Paulista-UNESP, São José do Rio Preto, São Paulo, Brazil
| |
Collapse
|
33
|
Morais JF, Sant’Anna JRD, Pereira TS, Franco CCDS, Mathias PCDF, de Castro-Prado MAA. Genotoxic investigation of a thiazolidinedione PPARγ agonist using thein vitromicronucleus test and thein vivohomozygotization assay. Mutagenesis 2016; 31:417-24. [DOI: 10.1093/mutage/gew003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
34
|
Mahmoud AM, Abdella EM, El-Derby AM, Abdella EM. Protective Effects of Turbinaria ornata and Padina pavonia against Azoxymethane-Induced Colon Carcinogenesis through Modulation of PPAR Gamma, NF-κB and Oxidative Stress. Phytother Res 2015; 29:737-48. [PMID: 25676613 DOI: 10.1002/ptr.5310] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 01/22/2015] [Accepted: 01/22/2015] [Indexed: 12/16/2023]
Abstract
The aim of this study was to investigate the antiproliferative and protective effects of the brown seaweeds, Turbinaria ornata and Padina pavonia, against azoxymethane (AOM)-induced colon carcinogenesis in mice. Both algal extracts showed anti-proliferative effects on the human carcinoma cell line HCT-116 in vitro, with T. ornata demonstrating a more potent effect. Male albino Swiss mice received intraperitoneal injections of AOM (10 mg/kg) once a week for two consecutive weeks and 100 mg/kg of either T. ornata or P. pavonia extracts. AOM-induced mice exhibited alterations in the histological structure of the colon, elevated lipid peroxidation and nitric oxide, declined glutathione content and reduced activity of superoxide dismutase and glutathione peroxidase. In addition, AOM induced downregulation of peroxisome proliferator activated receptor gamma (PPARγ) and p53 mRNA expression, with concomitant upregulation of nuclear factor-kappa B (NF-κB) in colon tissue. Administration of either algal extract markedly alleviated the recorded alterations. In conclusion, the current study suggests that T. ornata and P. pavonia, through their antioxidant and anti-inflammatory effects, are able to attenuate colon inflammation by downregulating NF-κB expression. Furthermore, the protective effects of both algae against AOM-initiated carcinogenesis were attributed, at least in part, to their ability to upregulate colonic PPARγ and p53 expression.
Collapse
Affiliation(s)
- Ayman M Mahmoud
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Egypt
| | | | | | | |
Collapse
|
35
|
Zhao J, Zhi Z, Song G, Wang J, Wang C, Ma H, Yu X, Sui A, Zhang H. Peroxisome Proliferator-Activated Receptor-Gamma Pro12Ala Polymorphism Could be a Risk Factor for Gastric Cancer. Asian Pac J Cancer Prev 2015; 16:2333-40. [DOI: 10.7314/apjcp.2015.16.6.2333] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
36
|
Chin LH, Hsu SP, Zhong WB, Liang YC. Combined treatment with troglitazone and lovastatin inhibited epidermal growth factor-induced migration through the downregulation of cysteine-rich protein 61 in human anaplastic thyroid cancer cells. PLoS One 2015; 10:e0118674. [PMID: 25742642 PMCID: PMC4351011 DOI: 10.1371/journal.pone.0118674] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 01/22/2015] [Indexed: 12/11/2022] Open
Abstract
Our previous studies have demonstrated that epidermal growth factor (EGF) can induce cell migration through the induction of cysteine-rich protein 61 (Cyr61) in human anaplastic thyroid cancer (ATC) cells. The aim of the present study was to determine the inhibitory effects of combined treatment with the peroxisome proliferator-activated receptor-γ (PPARγ) ligand troglitazone and the cholesterol-lowering drug lovastatin at clinically achievable concentrations on ATC cell migration. Combined treatment with 5 μM troglitazone and 1 μM lovastatin exhibited no cytotoxicity but significantly inhibited EGF-induced migration, as determined using wound healing and Boyden chamber assays. Cotreatment with troglitazone and lovastatin altered the epithelial-to-mesenchymal-transition (EMT) -related marker gene expression of the cells; specifically, E-cadherin expression increased and vimentin expression decreased. In addition, cotreatment reduced the number of filopodia, which are believed to be involved in migration, and significantly inhibited EGF-induced Cyr61 mRNA and protein expression as well as Cyr61 secretion. Moreover, the phosphorylation levels of 2 crucial signal molecules for EGF-induced Cyr61 expression, the cAMP response element-binding protein (CREB) and extracellular signal-regulated kinase (ERK), were decreased in cells cotreated with troglitazone and lovastatin. Performing a transient transfection assay revealed that the combined treatment significantly suppressed Cyr61 promoter activity. These results suggest that combined treatment with low doses of troglitazone and lovastatin effectively inhibits ATC cell migration and may serve as a novel therapeutic strategy for metastatic ATC.
Collapse
Affiliation(s)
- Li-Han Chin
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Sung-Po Hsu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Physiology, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Wen-Bin Zhong
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Physiology, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yu-Chih Liang
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Traditional Herbal Medicine Research Center, Taipei Medical University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
37
|
Xiong M, Li B, Zhu Q, Wang YX, Zhang HY. Identification of transcription factors for drug-associated gene modules and biomedical implications. Bioinformatics 2013; 30:305-9. [DOI: 10.1093/bioinformatics/btt683] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
38
|
Atamanyuk D, Zimenkovsky B, Atamanyuk V, Lesyk R. 5-Ethoxymethylidene-4-thioxo-2-thiazolidinone as Versatile Building Block for Novel Biorelevant Small Molecules with Thiopyrano[2,3-d][1,3]thiazole Core. SYNTHETIC COMMUN 2013. [DOI: 10.1080/00397911.2013.800552] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Dmytro Atamanyuk
- a Department of Pharmaceutical, Organic, and Bioorganic Chemistry , Danylo Halytsky Lviv National Medical University , Lviv , Ukraine
| | - Borys Zimenkovsky
- a Department of Pharmaceutical, Organic, and Bioorganic Chemistry , Danylo Halytsky Lviv National Medical University , Lviv , Ukraine
| | - Vasyl Atamanyuk
- a Department of Pharmaceutical, Organic, and Bioorganic Chemistry , Danylo Halytsky Lviv National Medical University , Lviv , Ukraine
| | - Roman Lesyk
- a Department of Pharmaceutical, Organic, and Bioorganic Chemistry , Danylo Halytsky Lviv National Medical University , Lviv , Ukraine
| |
Collapse
|
39
|
Shashni B, Sharma K, Singh R, Sakharkar KR, Dhillon SK, Nagasaki Y, Sakharkar MK. Coffee component hydroxyl hydroquinone (HHQ) as a putative ligand for PPAR gamma and implications in breast cancer. BMC Genomics 2013; 14 Suppl 5:S6. [PMID: 24564733 PMCID: PMC3852186 DOI: 10.1186/1471-2164-14-s5-s6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Background Coffee contains several compounds that have the potential to influence breast cancer risk and survival. However, epidemiologic data on the relation between coffee compounds and breast cancer survival are sparse and inconsistent. Results We show that coffee component HHQ has significant apoptotic effect on MDA-MB-231 and MCF-7 cells in vitro, and that ROS generation, change in mitochondrial membrane permeability, upregulation of Bax and Caspase-8 as well as down regulation of PGK1 and PKM2 expression may be important apoptosis-inducing mechanisms. The results suggest that PPARγ ligands may serve as potential therapeutic agents for breast cancer therapy. HHQ was also validated as a ligand for PPARγ by docking procedure. Conclusion This is the first report on the anti-breast cancer (in vitro) activity of HHQ.
Collapse
|
40
|
Chang SS, Hu HY. Association of thiazolidinediones with gastric cancer in type 2 diabetes mellitus: a population-based case-control study. BMC Cancer 2013; 13:420. [PMID: 24041200 PMCID: PMC3850900 DOI: 10.1186/1471-2407-13-420] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 09/10/2013] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND It has been shown that peroxisome proliferator-activated receptors (PPAR) have physiological and pharmacological ligands. The objective is to assess the association between thiazolidinediones (TZDs) and the occurrence of gastric cancer. METHODS We conducted a population-based nested case-control study. Data were retrospectively collected from the National Health Insurance Research Database (NHIRD). The cases consisted of all diabetes mellitus (DM) patients aged 30 to 99 years, and who had a first time diagnosis of gastric cancer in the study cohort. The controls were matched to cases by age, sex, and index date. The adjusted odds ratio (OR) and 95% confidence interval (CI) were estimated by using multiple logistic regression. RESULTS Records from 357 gastric cancer and 1,428 selected matched controls were included in the analyses of gastric cancer risk. A total of 7% or 9.5% of the cases and 10.8% or 14.8% of the controls had used any quantity of at least 2 prescriptions for pioglitazone or rosiglitazone, respectively. After adjusting for possible confounders, pioglitazone (OR = 0.93, P > 0.05) and rosiglitazone (OR = 1.21, P > 0.05), had no significant association of decreasing gastric cancer. After adjusting for possible confounders, pioglitazone (OR = 0.70, P > 0.05) or rosiglitazone (OR = 0.79, P > 0.05), had no significant trend toward decreasing gastric cancer risk with increasing cumulative doses ≥ 260 defined daily doses (DDDs), respectively. Moreover, adjusting for possible confounders pioglitazone (OR = 0.68, P > 0.05) or rosiglitazone (OR = 0.74, P > 0.05) had no significant trend toward decreasing gastric cancer risk with increasing cumulative doses ≥ 1 year, respectively. CONCLUSIONS Our results did not show evidence to support that TZD derivatives in DM patients reduces gastric cancer occurrence.
Collapse
Affiliation(s)
- Shen-Shong Chang
- Institute of Public Health & Department of Public Health, National Yang-Ming University, Taipei, Taiwan.
| | | |
Collapse
|
41
|
Doinseunggitang ameliorates endothelial dysfunction in diabetic atherosclerosis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:783576. [PMID: 24062791 PMCID: PMC3766992 DOI: 10.1155/2013/783576] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Revised: 05/23/2013] [Accepted: 05/23/2013] [Indexed: 02/03/2023]
Abstract
Atherosclerosis, a chronic and progressive disease characterized by vascular inflammation, is a leading cause of death in diabetes patients. Doinseunggitang (DYSGT), traditional prescription, has been used for promoting blood circulation to remove blood stasis. The aim of this study was to investigate the beneficial effects of DYSGT on endothelial dysfunction in diabetic atherosclerosis animal model. Apolipoprotein E knockout (ApoE KO) mice fed on a Western diet were treated with DYSGT (200 mg/kg/day). DYSGT significantly lowered blood glucose level and glucose tolerance as well as systolic blood pressure. Metabolic parameter showed that DYSGT markedly decreased triglyceride and LDL-cholesterol levels. In the thoracic aorta, the impairment of vasorelaxation response to acetylcholine and atherosclerotic lesion was attenuated by DYSGT. Furthermore, DYSGT restored the reduction of endothelial nitric oxide synthase (eNOS) expression, leading to the inhibition of intracellular adhesion molecule-1 (ICAM-1) and endothelin-1 (ET-1) expression. In conclusion, DYSGT improved the development of diabetic atherosclerosis via attenuation of the endothelial dysfunction, possibly by inhibiting ET-1, cell adhesion molecules, and lesion formation. Therefore, these results suggest that Korean traditional prescription Doinseunggitang may be useful in the treatment and prevention of diabetic vascular complications.
Collapse
|
42
|
Dana N, Javanmard SH, Fazilati M, Pilehvarian AA. A comparison of peroxisome proliferator-activated receptor-α agonist and antagonist on human umbilical vein endothelial cells angiogenesis. Adv Biomed Res 2013; 2:54. [PMID: 24223369 PMCID: PMC3814543 DOI: 10.4103/2277-9175.115792] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 10/23/2012] [Indexed: 12/16/2022] Open
Abstract
Background: There are controversial reports about the antiangiogenic effects of peroxisome proliferator-activated receptor α (PPARα). In the current study, we compared the effects of PPARα agonist and antagonist on human umbilical vein endothelial cells (HUVECs) angiogenesis with matrigel assay. Materials and Methods: HUVECs (1 × 105 cells/well) treated with PPARα agonist (fenofibrate) and antagonist (GW6471) were cultured on matrigel for 24 h. Treated cells were stained with calcein and investigated by fluorescent microscopy. The obtained images were also analyzed by AngioQuant software. Finally, the data were analyzed using SPSS 15 software, Kruskal-Wallis and one way ANOVA. Results: Statistical analysis showed that fenofibrate significantly inhibit the tube formation (size, length, junction) (P < 0.05) but there was a trend to increased angiogenesis in GW6471 treated group (P > 0.05). Conclusion: These results showed that PPARα agonist is effective in suppression of angiogenesis. Further studies are needed to confirm these results in in vivo studies.
Collapse
Affiliation(s)
- Nasim Dana
- Department of Physiology, Physiology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | | | | |
Collapse
|
43
|
Smallridge RC, Copland JA, Brose MS, Wadsworth JT, Houvras Y, Menefee ME, Bible KC, Shah MH, Gramza AW, Klopper JP, Marlow LA, Heckman MG, Von Roemeling R. Efatutazone, an oral PPAR-γ agonist, in combination with paclitaxel in anaplastic thyroid cancer: results of a multicenter phase 1 trial. J Clin Endocrinol Metab 2013; 98:2392-400. [PMID: 23589525 PMCID: PMC3667260 DOI: 10.1210/jc.2013-1106] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE A phase 1 study was initiated to determine the safety, potential effectiveness, and maximal tolerated dose and recommended phase 2 dose of efatutazone and paclitaxel in anaplastic thyroid cancer. EXPERIMENTAL DESIGN Patients received efatutazone (0.15, 0.3, or 0.5 mg) orally twice daily and then paclitaxel every 3 weeks. Patient tolerance and outcomes were assessed, as were serum efatutazone pharmacokinetics. RESULTS Ten of 15 patients were women. Median age was 59 years. Seven patients received 0.15 mg of efatutazone, 6 patients received 0.3 mg, and 2 patients received 0.5 mg. One patient receiving 0.3 mg of efatutazone had a partial response from day 69 to day 175; 7 patients attained stable disease. Median times to progression were 48 and 68 days in patients receiving 0.15 mg of efatutazone and 0.3 mg of efatutazone, respectively; corresponding median survival was 98 vs 138 days. The median peak efatutazone blood level was 8.6 ng/mL for 0.15-mg dosing vs 22.0 ng/mL for 0.3-mg twice daily dosing. Ten patients had grade 3 or greater adverse events (Common Terminology Criteria for Adverse Events), with 2 of these (anemia and edema) related to efatutazone. Thirteen events of edema were reported in 8 patients, with 2 of grade 3 or greater. Eight patients had ≥1 serious adverse event, with 1 of these (anemia) attributed to efatutazone and 1 (anaphylactic reaction) related to paclitaxel. The maximal tolerated dose was not achieved. Angiopoietin-like 4 was induced by efatutazone in tissue biopsy samples of 2 patients. CONCLUSIONS Efatutazone and paclitaxel in combination were safe and tolerated and had biologic activity.
Collapse
Affiliation(s)
- R C Smallridge
- Mayo Clinic, 4500 San Pablo Road, Jacksonville, Florida 32224, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Nakles RE, Kallakury BVS, Furth PA. The PPARγ agonist efatutazone increases the spectrum of well-differentiated mammary cancer subtypes initiated by loss of full-length BRCA1 in association with TP53 haploinsufficiency. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 182:1976-85. [PMID: 23664366 DOI: 10.1016/j.ajpath.2013.02.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 01/21/2013] [Accepted: 02/12/2013] [Indexed: 12/27/2022]
Abstract
Peroxisome proliferator-activated receptor gamma (PPARγ) agonists have anticancer activity and influence cell differentiation. We examined the impact of the selective PPARγ agonist efatutazone on mammary cancer pathogenesis in a mouse model of BRCA1 mutation. Mice with conditional loss of full-length BRCA1 targeted to mammary epithelial cells in association with germline TP53 insufficiency were treated with efatutazone through the diet starting at age 4 months and were euthanized at age 12 months or when palpable tumor reached 1 cm(3). Although treatment did not reduce percentage of mice developing invasive cancer, it significantly reduced prevalence of noninvasive cancer and total number of cancers per mouse and increased prevalence of well-differentiated cancer subtypes not usually seen in this mouse model. Invasive cancers from controls were uniformly estrogen receptor α negative and undifferentiated, whereas well-differentiated estrogen receptor α-positive papillary invasive cancers appeared in efatutazone-treated mice. Expression levels of phosphorylated AKT and CDK6 were significantly reduced in the cancers developing in efatutazone-treated mice. Efatutazone treatment reduced rates of mammary epithelial cell proliferation and development of hyperplastic alveolar nodules and increased expression levels of the PPARγ target genes Adfp, Fabp4, and Pdhk4 in preneoplastic mammary tissue. Intervention efatutazone treatment in mice with BRCA1 deficiency altered mammary cancer development by promoting development of differentiated invasive cancer and reducing prevalence of noninvasive cancer and preneoplastic disease.
Collapse
Affiliation(s)
- Rebecca E Nakles
- Department of Oncology, Georgetown University, Washington, District of Columbia 20057, USA
| | | | | |
Collapse
|
45
|
Panza A, Pazienza V, Ripoli M, Benegiamo G, Gentile A, Valvano MR, Augello B, Merla G, Prattichizzo C, Tavano F, Ranieri E, di Sebastiano P, Vinciguerra M, Andriulli A, Mazzoccoli G, Piepoli A. Interplay between SOX9, β-catenin and PPARγ activation in colorectal cancer. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:1853-65. [PMID: 23583560 DOI: 10.1016/j.bbamcr.2013.04.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 04/03/2013] [Accepted: 04/05/2013] [Indexed: 12/31/2022]
Abstract
Colorectal carcinogenesis relies on loss of homeostasic mechanisms regulating cell proliferation, differentiation and survival. These cell processes have been reported to be influenced independently by transcription factors activated downstream of the Wnt pathway, such as SOX9 and β-catenin, and by the nuclear receptor PPARγ. The purpose of this study was to explore the expression levels and functional link between SOX9, β-catenin and PPARγ in the pathogenesis of colorectal cancer (CRC). We evaluated SOX9, β-catenin and PPARγ expression levels on human CRC specimens by qPCR and immunoblot detection. We tested the hypothesis that PPARγ activation might affect SOX9 and β-catenin expression using four colon cancer cell lines (CaCo2, SW480, HCT116, and HT29 cells). In CRC tissues SOX9 resulted up-regulated at both mRNA and protein levels when compared to matched normal mucosa, β-catenin resulted up-regulated at protein levels, while PPARG mRNA and PPARγ protein levels were down-regulated. A significant relationship was observed between high PPARG and SOX9 expression levels in the tumor tissue and female gender (p=0.005 and p=0.04, respectively), and between high SOX9 expression in the tumor tissue and age (p=0.04) and microsatellite instability (MSI), in particular with MSI-H (p=0.0002). Moreover, treatment with the synthetic PPARγ ligand rosiglitazone induced different changes of SOX9 and β-catenin expression and subcellular localization in the colon cancer cell lines examined. In conclusion, SOX9, β-catenin and PPARγ expression levels are deregulated in the CRC tissue, and in colon cancer cell lines ligand-dependent PPARγ activation unevenly influences SOX9 and β-catenin expression and subcellular localization, suggesting a variable mechanistic role in colon carcinogenesis.
Collapse
Affiliation(s)
- Anna Panza
- Department of Medical Sciences, IRCCS Scientific Institute and Regional General Hospital, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Dou X, Zhang Y, Sun N, Wu Y, Li L. The anti-tumor activity of Mikania micrantha aqueous extract in vitro and in vivo. Cytotechnology 2013; 66:107-17. [PMID: 23397444 DOI: 10.1007/s10616-013-9543-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2012] [Accepted: 11/20/2012] [Indexed: 12/22/2022] Open
Abstract
Aqueous extract obtained from Mikania micrantha (MMAE) is commonly used as traditional medicine in some countries. We hypothesized that MMAE may inhibit tumor cell growth, both in an in vitro and in vivo setting. In in vitro experiments, two kinds of human cancer cell lines, K562 and Hela were used to test the anti-tumor activity. Inhibitory concentrations (IC50) were obtained from the inhibition curves fitted by regression analysis, inhibitory rates (%) were calculated by MTT assay, morphological changes were observed by transmission electron microscope (TEM), cell cycles were analyzed by flow cytometry (FCM), and DNA ladders were determined by agarose gel electrophoresis. The in vivo anti-tumor activity was evaluated by calculating the tumor inhibitory rates, thymus index and spleen index of S180-bearing mice. Paraffin-embedded sections were used to test the pathologic changes. The result displayed that the growth of K562 and Hela were enhanced when treated with MMAE at 20 μg/mL after 48 h. Other concentrations of MMAE (50, 100, 200, 400 μg/mL) inhibited the proliferation of both kinds of cells. The IC50 values of K562 and Hela at 48 h were 167.16 and 196.27 μg/mL and at 72 h 98.07 and 131.56 μg/mL, respectively. The effects showed time-dose dependence. MMAE led to damages of organelles and induced apoptosis. These results were confirmed by ladder DNA fragmentation profile. MMAE also increased the percentage of cells in G2/M phase and decreased the percentage of cells undergoing G0/G1 and S phase in in vivo tests using S180 cells. MMAE showed antitummor activity in vivo, with its tumor inhibitory rate ranging from 12.1 to 46.9 %. MMAE also induced necrosis, as shown by pathological examination of Hematoxilin-Eosin stained tumor sections. Meanwhile, compared with the control group, the changes of thymus index and spleen index in MMAE treated group were not obvious. This study suggests that MMAE may be an effective agent for cancer therapy with low toxicity.
Collapse
Affiliation(s)
- Xiaoju Dou
- Faculty of Agriculture and Forestry, Tibet Vocational Technical Collage, Lhasa, 850030, China,
| | | | | | | | | |
Collapse
|
47
|
Stocker P, Brunel JM, de Rezende L, -do Amaral AT, Morelli X, Roche P, Vidal N, Giardina T, Perrier J. Aminoacylase 1-catalysed deacetylation of bioactives epoxides mycotoxin-derived mercapturates; 3,4-epoxyprecocenes as models of cytotoxic epoxides. Biochimie 2012; 94:1668-75. [DOI: 10.1016/j.biochi.2012.01.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 01/10/2012] [Indexed: 12/25/2022]
|
48
|
Arunachalam S, Kim SY, Kim MS, Yi HK, Yun BS, Lee DY, Hwang PH. Adriamycin inhibits adipogenesis through the modulation of PPARγ and restoration of adriamycin-mediated inhibition of adipogenesis by PPARγ over-expression. Toxicol Mech Methods 2012; 22:540-6. [DOI: 10.3109/15376516.2012.692110] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
49
|
Lee BJ, Lee HS, Kim CD, Jung SW, Seo YS, Kim YS, Jeen YT, Chun HJ, Um SH, Lee SW, Choi JH, Ryu HS. The Effects of Combined Treatment with an HMG-CoA Reductase Inhibitor and PPARγ Agonist on the Activation of Rat Pancreatic Stellate Cells. Gut Liver 2012; 6:262-9. [PMID: 22570758 PMCID: PMC3343167 DOI: 10.5009/gnl.2012.6.2.262] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 09/15/2011] [Accepted: 10/13/2011] [Indexed: 12/13/2022] Open
Abstract
Background/Aims Hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors (statins) and peroxisome proliferator-activated receptor gamma (PPARγ) ligands can modulate cellular differentiation, proliferation, and apoptosis through various pathways. It has been shown that HMG-CoA reductase inhibitors and PPARγ agonists separately inhibit pancreatic stellate cell (PaSC) activation. We studied the effects of a combination of both types of drugs on activated PaSCs via platelet-derived growth factor (PDGF), which has not previously been reported. The present study was performed to elucidate the underlying mechanisms of these effects by focusing on the impact of the signaling associated with cell-cycle progression. Methods Primary cultures of rat PaSCs were exposed to simvastatin and troglitazone. Proliferation was quantified using the BrdU method, and cell-cycle analysis was performed using a fluorescent activated cell sorter. The protein expression levels of smooth muscle actin (SMA), extracellular signal-regulated kinase (ERK), and a cell cycle machinery protein (p27Kip1) were investigated using Western blot analysis. Results Simvastatin reversed the effects of PDGF on cell proliferation in a dose-dependent manner. The combination of a low concentration of simvastatin (1 mM) and troglitazone (10 mM) synergistically reversed the effects of PDGF on cell proliferation but had no effect on cell viability. The expression of a-SMA was markedly attenuated by combining the two drugs, which blocked the cell cycle beyond the G0/G1 phase by reducing the levels of phosphorylated ERK and reversed the expression of p27Kip1 interrupted by PDGF. Conclusions Simvastatin and troglitazone synergistically inhibited cell proliferation in activated PaSCs by blocking the cell cycle beyond the G0/G1 phase. This inhibition was due to the synergistic modulation of the ERK pathway and the cell cycle machinery protein p27Kip1.
Collapse
Affiliation(s)
- Beom Jae Lee
- Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Giaginis C, Politi E, Alexandrou P, Sfiniadakis J, Kouraklis G, Theocharis S. Expression of peroxisome proliferator activated receptor-gamma (PPAR-γ) in human non-small cell lung carcinoma: correlation with clinicopathological parameters, proliferation and apoptosis related molecules and patients' survival. Pathol Oncol Res 2012; 18:875-83. [PMID: 22426809 DOI: 10.1007/s12253-012-9517-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Accepted: 03/06/2012] [Indexed: 01/02/2023]
Abstract
Peroxisome proliferator-activated receptor-γ (PPAR-γ) has currently been considered as molecular target for the treatment of human metabolic disorders. PPAR-γ has also been implicated in the pathogenesis and progression of several types of cancer, being associated with cell differentiation, growth and apoptosis. The present study aimed to evaluate the clinical significance of PPAR-γ expression in non-small cell lung carcinoma (NSCLC). PPAR-γ protein expression was assessed immunohistochemically in tumoral samples of 67 NSCLC patients and was statistically analyzed in relation to clinicopathological parameters, proliferation and apoptosis related molecules and patients' survival. Positive PPAR-γ expression was prominent in 30 (45 %) out of 67 NSCLC cases. PPAR-γ positivity was more frequently observed in squamous cell lung carcinoma cases compared to lung adenocarcinoma ones (p = 0.048). PPAR-γ positivity was significantly associated with bcl-2 positivity (p = 0.016) and borderline with c-myc positivity (p = 0.052), whereas non associations with grade of differentiation, TNM stage, Ki-67, p53, bax proteins' expression and patients' survival were noted. In the subgroup of squamous cell lung carcinoma cases, PPAR-γ positivity was significantly associated with tumor size (p = 0.038), while in lung adenocarcinoma ones with histopathological grade of differentiation (p = 0.026). The present study supported evidence for possible participation of PPAR-γ in the biological mechanisms underlying the carcinogenic evolution of the lung. Although the survival prediction using PPAR-γ expression as a marker seems uncertain, the observed correlation with apoptosis related proteins reinforces the potential utility of PPAR-γ ligands as cell cycle modulators in future therapeutic approaches in lung cancer.
Collapse
Affiliation(s)
- Costantinos Giaginis
- Department of Forensic Medicine and Toxicology, Medical School, University of Athens, 75 Mikras Asias Street, Athens, 11527, Greece.
| | | | | | | | | | | |
Collapse
|