1
|
He Y, Shaoyong W, Chen Y, Li M, Gan Y, Sun L, Liu Y, Wang Y, Jin M. The functions of gut microbiota-mediated bile acid metabolism in intestinal immunity. J Adv Res 2025:S2090-1232(25)00307-8. [PMID: 40354934 DOI: 10.1016/j.jare.2025.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 04/19/2025] [Accepted: 05/08/2025] [Indexed: 05/14/2025] Open
Abstract
BACKGROUND Bile acids, derived from cholesterol in the liver, consist a steroidal core. Primary bile acids and secondary bile acids metabolized by the gut microbiota make up the bile acid pool, which modulate nuclear hormone receptors to regulate immunity. Disruptions in the crosstalk between bile acids and the gut flora are intimately associated with the development and course of gastrointestinal inflammation. AIM OF REVIEW This review provides an extensive summary of bile acid production, transport and metabolism. It also delves into the impact of bile acid metabolism on the body and explores the involvement of bile acid-microbiota interactions in various disease states. Furthermore, the potential of targeting bile acid signaling as a means to prevent and treat inflammatory bowel disease is proposed. KEY SCIENTIFIC CONCEPTS OF REVIEW In this review, we primarily address the functions of bile acid-microbiota crosstalk in diseases. Firstly, we summarize bile acid signalling and the factors influencing bile acid metabolism, with highlighting the immune function of microbially conjugated bile acids and the unique roles of different receptors. Subsequently, we emphasize the vital role of bile acids in maintaining a healthy gut microbiota and regulating the intestinal barrier function, energy metabolism and immunity. Finally, we explore differences of bile acid metabolism in different disease states, offering new perspectives on restoring the host's health and the gastrointestinal ecosystem by targeting the gut microbiota-bile acid-bile acid receptor axis.
Collapse
Affiliation(s)
- Yanmin He
- Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou 310058, China; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou 310058, China; Zhejiang Key Laboratory of Nutrition and Breeding for High-quality Animal Products, Hangzhou 310058, China; National Engineering Research Center for Green Feed and Healthy Breeding, Hangzhou 310058, China
| | - Weike Shaoyong
- Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou 310058, China; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou 310058, China; Zhejiang Key Laboratory of Nutrition and Breeding for High-quality Animal Products, Hangzhou 310058, China; National Engineering Research Center for Green Feed and Healthy Breeding, Hangzhou 310058, China
| | - Yanli Chen
- Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou 310058, China; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou 310058, China; Zhejiang Key Laboratory of Nutrition and Breeding for High-quality Animal Products, Hangzhou 310058, China; National Engineering Research Center for Green Feed and Healthy Breeding, Hangzhou 310058, China
| | - Menglin Li
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yujie Gan
- Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou 310058, China; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou 310058, China; Zhejiang Key Laboratory of Nutrition and Breeding for High-quality Animal Products, Hangzhou 310058, China; National Engineering Research Center for Green Feed and Healthy Breeding, Hangzhou 310058, China
| | - Lu Sun
- Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou 310058, China; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou 310058, China; Zhejiang Key Laboratory of Nutrition and Breeding for High-quality Animal Products, Hangzhou 310058, China; National Engineering Research Center for Green Feed and Healthy Breeding, Hangzhou 310058, China
| | - Yalin Liu
- Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou 310058, China; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou 310058, China; Zhejiang Key Laboratory of Nutrition and Breeding for High-quality Animal Products, Hangzhou 310058, China; National Engineering Research Center for Green Feed and Healthy Breeding, Hangzhou 310058, China
| | - Yizhen Wang
- Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou 310058, China; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou 310058, China; Zhejiang Key Laboratory of Nutrition and Breeding for High-quality Animal Products, Hangzhou 310058, China; National Engineering Research Center for Green Feed and Healthy Breeding, Hangzhou 310058, China
| | - Mingliang Jin
- Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou 310058, China; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou 310058, China; Zhejiang Key Laboratory of Nutrition and Breeding for High-quality Animal Products, Hangzhou 310058, China; National Engineering Research Center for Green Feed and Healthy Breeding, Hangzhou 310058, China.
| |
Collapse
|
2
|
Aiuchi N, Nakagawa J, Sakuraba H, Takahata T, Kamata K, Saito N, Ueno K, Ishiyama M, Yamagata K, Kayaba H, Niioka T. Impact of polymorphisms of pharmacokinetics-related genes and the inflammatory response on the metabolism of voriconazole. Pharmacol Res Perspect 2022; 10:e00935. [PMID: 35199485 PMCID: PMC8866912 DOI: 10.1002/prp2.935] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 01/17/2022] [Accepted: 01/24/2022] [Indexed: 12/13/2022] Open
Abstract
The effects of inflammatory responses and polymorphisms of the genes encoding cytochrome P450 (CYP) (CYP2C19 and CYP3A5), flavin-containing monooxygenase 3 (FMO3), pregnane X receptor (NR1I2), constitutive androstane receptor (NR1I3), and CYP oxidoreductase (POR) on the ratio of voriconazole (VRCZ) N-oxide to VRCZ (VNO/VRCZ) and steady-state trough concentrations (C0h ) of VRCZ were investigated. A total of 56 blood samples were collected from 36 Japanese patients. Results of multiple linear regression analyses demonstrated that the presence of the extensive metabolizer CYP2C19 genotype, the dose per administration, and the presence of the NR1I2 rs3814057 C/C genotype were independent factors influencing the VNO/VRCZ ratio in patients with CRP levels of less than 40 mg/L (standardized regression coefficients (SRC) = 0.448, -0.301, and 0.390, respectively; all p < .05). With regard to the concentration of VRCZ itself, in addition to the above factors, the presence of the NR1I2 rs7643645 G/G and rs3814055 T/T genotypes were found to be independent factors influencing the VRCZ C0h in these patients (SRC = -0.430, 0.424, -0.326, 0.406 and -0.455, respectively; all p < .05). On the contrary, in patients with CRP levels of at least 40 mg/L, no independent factors were found to affect VNO/VRCZ and VRCZ C0h . Inflammatory responses, and CYP2C19 and NR1I2 polymorphisms may be useful information for the individualization of VRCZ dosages.
Collapse
Affiliation(s)
- Naoya Aiuchi
- Department of PharmacyHirosaki University HospitalHirosakiAomoriJapan
| | - Junichi Nakagawa
- Department of PharmacyHirosaki University HospitalHirosakiAomoriJapan
| | - Hirotake Sakuraba
- Department of Gastroenterology and HematologyHirosaki University Graduate School of MedicineHirosakiAomoriJapan
| | - Takenori Takahata
- Department of Gastroenterology and HematologyHirosaki University Graduate School of MedicineHirosakiAomoriJapan
| | - Kosuke Kamata
- Department of Gastroenterology and HematologyHirosaki University Graduate School of MedicineHirosakiAomoriJapan
| | - Norihiro Saito
- Department of Clinical Laboratory MedicineHirosaki University Graduate School of MedicineHirosakiAomoriJapan
| | - Kayo Ueno
- Department of PharmacyHirosaki University HospitalHirosakiAomoriJapan
| | - Masahiro Ishiyama
- Department of Clinical LaboratoryHirosaki University HospitalHirosakiAomoriJapan
| | - Kazufumi Yamagata
- Department of Bioscience and Laboratory MedicineHirosaki University Graduate School of Health SciencesHirosakiJapan
| | - Hiroyuki Kayaba
- Department of Clinical Laboratory MedicineHirosaki University Graduate School of MedicineHirosakiAomoriJapan
| | - Takenori Niioka
- Department of PharmacyHirosaki University HospitalHirosakiAomoriJapan
- Department of Pharmaceutical ScienceHirosaki University Graduate School of MedicineHirosakiAomoriJapan
| |
Collapse
|
3
|
Rachmale M, Rajput N, Jadav T, Sahu AK, Tekade RK, Sengupta P. Implication of metabolomics and transporter modulation based strategies to minimize multidrug resistance and enhance site-specific bioavailability: a needful consideration toward modern anticancer drug discovery. Drug Metab Rev 2022; 54:101-119. [PMID: 35254954 DOI: 10.1080/03602532.2022.2048007] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Induction of drug-metabolizing enzymes and efflux transporters (DMET) through activation of pregnane x receptor (PXR) is the primary factor involved in almost all bioavailability and drug resistance-related problems of anticancer drugs. PXR is a transcriptional regulator of many metabolizing enzymes and efflux transporters proteins like p-glycoprotein (p-gp), multidrug resistant protein 1 and 2 (MRP 1 and 2), and breast cancer resistant protein (BCRP), etc. Several anticancer drugs are potent activators of PXR receptors and can modulate the gene expression of DMET proteins. Involvement of anticancer drugs in transcriptional regulation of DMET can prompt increased metabolism and efflux of their own or other co-administered drugs, which leads to poor site-specific bioavailability and increased drug resistance. In this review, we have discussed several novel strategies to evade drug-induced PXR activation and p-gp efflux including assessment of PXR ligand and p-gp substrate at early stages of drug discovery. Additionally, we have critically discussed the chemical structure and drug delivery-based approaches to avoid PXR binding and inhibit the p-gp activity of the drugs at their target sites.
Collapse
Affiliation(s)
- Megha Rachmale
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Gandhinagar, Gujarat, India
| | - Niraj Rajput
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Gandhinagar, Gujarat, India
| | - Tarang Jadav
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Gandhinagar, Gujarat, India
| | - Amit Kumar Sahu
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Gandhinagar, Gujarat, India
| | - Rakesh K Tekade
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Gandhinagar, Gujarat, India
| | - Pinaki Sengupta
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Gandhinagar, Gujarat, India
| |
Collapse
|
4
|
Comparison of Anticancer Drug Toxicities: Paradigm Shift in Adverse Effect Profile. Life (Basel) 2021; 12:life12010048. [PMID: 35054441 PMCID: PMC8777973 DOI: 10.3390/life12010048] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/17/2021] [Accepted: 12/24/2021] [Indexed: 02/06/2023] Open
Abstract
The inception of cancer treatment with chemotherapeutics began in the 1940s with nitrogen mustards that were initially employed as weapons in World War II. Since then, treatment options for different malignancies have evolved over the period of last seventy years. Until the late 1990s, all the chemotherapeutic agents were small molecule chemicals with a highly nonspecific and severe toxicity spectrum. With the landmark approval of rituximab in 1997, a new horizon has opened up for numerous therapeutic antibodies in solid and hematological cancers. Although this transition to large molecules improved the survival and quality of life of cancer patients, this has also coincided with the change in adverse effect patterns. Typically, the anticancer agents are fraught with multifarious adverse effects that negatively impact different organs of cancer patients, which ultimately aggravate their sufferings. In contrast to the small molecules, anticancer antibodies are more targeted toward cancer signaling pathways and exhibit fewer side effects than traditional small molecule chemotherapy treatments. Nevertheless, the interference with the immune system triggers serious inflammation- and infection-related adverse effects. The differences in drug disposition and interaction with human basal pathways contribute to this paradigm shift in adverse effect profile. It is critical that healthcare team members gain a thorough insight of the adverse effect differences between the agents discovered during the last twenty-five years and before. In this review, we summarized the general mechanisms and adverse effects of small and large molecule anticancer drugs that would further our understanding on the toxicity patterns of chemotherapeutic regimens.
Collapse
|
5
|
Modulation of the Blood-Brain Barrier for Drug Delivery to Brain. Pharmaceutics 2021; 13:pharmaceutics13122024. [PMID: 34959306 PMCID: PMC8708282 DOI: 10.3390/pharmaceutics13122024] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/15/2021] [Accepted: 11/25/2021] [Indexed: 12/26/2022] Open
Abstract
The blood-brain barrier (BBB) precisely controls brain microenvironment and neural activity by regulating substance transport into and out of the brain. However, it severely hinders drug entry into the brain, and the efficiency of various systemic therapies against brain diseases. Modulation of the BBB via opening tight junctions, inhibiting active efflux and/or enhancing transcytosis, possesses the potential to increase BBB permeability and improve intracranial drug concentrations and systemic therapeutic efficiency. Various strategies of BBB modulation have been reported and investigated preclinically and/or clinically. This review describes conventional and emerging BBB modulation strategies and related mechanisms, and safety issues according to BBB structures and functions, to try to give more promising directions for designing more reasonable preclinical and clinical studies.
Collapse
|
6
|
High Pregnane X Receptor (PXR) Expression Is Correlated with Poor Prognosis in Invasive Breast Carcinoma. Diagnostics (Basel) 2021; 11:diagnostics11111946. [PMID: 34829293 PMCID: PMC8624096 DOI: 10.3390/diagnostics11111946] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/12/2021] [Accepted: 10/15/2021] [Indexed: 11/16/2022] Open
Abstract
Pregnane X Receptor (PXR) is involved in human cancer, either by directly affecting carcinogenesis or by inducing drug-drug interactions and chemotherapy resistance. The clinical significance of PXR expression in invasive breast carcinoma was evaluated in the present study. PXR protein expression was assessed immunohistochemically on formalin fixed paraffin-embedded breast invasive carcinoma tissue sections, obtained from 148 patients, and was correlated with clinicopathological parameters, molecular phenotypes, tumor cells' proliferative capacity, and overall disease-free patients' survival. Additionally, the expression of PXR was examined on human breast carcinoma cell lines of different histological grade, hormonal status, and metastatic potential. PXR positivity was noted in 79 (53.4%) and high PXR expression in 48 (32.4%), out of 148 breast carcinoma cases. High PXR expression was positively associated with nuclear grade (p = 0.0112) and histological grade of differentiation (p = 0.0305), as well as with tumor cells' proliferative capacity (p = 0.0051), and negatively with luminal A subtype (p = 0.0295). Associations between high PXR expression, estrogen, and progesterone receptor negative status were also recorded (p = 0.0314 and p = 0.0208, respectively). High PXR expression was associated with shorter overall patients' survival times (log-rank test, p = 0.0009). In multivariate analysis, high PXR expression was identified as an independent prognostic factor of overall patients' survival (Cox-regression analysis, p = 0.0082). PXR expression alterations were also noted in breast cancer cell lines of different hormonal status. The present data supported evidence that PXR was related to a more aggressive invasive breast carcinoma phenotype, being a strong and independent poor prognosticator.
Collapse
|
7
|
Chen Y, Tang Y, Nie JZ, Zhang Y, Nie D. Megestrol acetate is a specific inducer of CYP3A4 mediated by human pregnane X receptor. Cancer Chemother Pharmacol 2021; 88:985-996. [PMID: 34524495 DOI: 10.1007/s00280-021-04352-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 09/01/2021] [Indexed: 11/28/2022]
Abstract
PURPOSE Megestrol acetate is a synthetic progestogen used to treat some cancers and cancer-associated cachexia, but its potential interactions with other drugs are not well known. This study aims to determine the regulation of drug metabolizing enzymes by megestrol acetate. METHODS Primary human hepatocytes were treated and analyzed by PCR array to identify genes involved in drug metabolism that are impacted by megestrol acetate. P450 3A4 (CYP3A4) reporter gene assay and HPLC analyses of nifedipine metabolites were used to determine CYP3A4 gene expression and activities. Competitive ligand binding assay was used to determine the affinity of megestrol acetate toward human pregnane x receptor (hPXR). Electrophoretic mobility shift assay and mammalian two hybrid assay were used to determine the mechanism of megestrol to activate hPXR. RESULTS The levels and activities of CYP3A4 were significantly induced (> 4-folds) by megestrol acetate in human hepatocytes and HepG2 cells. Megestrol treatment induced CYP3A4 through the activation of hPXR, a ligand-activated transcription factor that plays a role in drug metabolism and transport. Other tested nuclear receptors showed no response. The mechanism studies showed that megestrol activated hPXR by binding to the ligand binding domain (LBD) of hPXR and increasing the recruitment of the cofactors such as steroid receptor cofactor (SRC-1). CONCLUSION The results suggest that megestrol acetate is a specific inducer of CYP3A4 mediated by hPXR and therefore has the potential to cause drug interactions, especially in the co-administration with drugs that are substrates of CYP3A4.
Collapse
Affiliation(s)
- Yakun Chen
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine and Simmons Cancer Institute, Springfield, IL, 62794-9626, USA
| | - Yong Tang
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine and Simmons Cancer Institute, Springfield, IL, 62794-9626, USA
| | - Jeffrey Z Nie
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine and Simmons Cancer Institute, Springfield, IL, 62794-9626, USA
| | - Yuanqin Zhang
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine and Simmons Cancer Institute, Springfield, IL, 62794-9626, USA
| | - Daotai Nie
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine and Simmons Cancer Institute, Springfield, IL, 62794-9626, USA.
| |
Collapse
|
8
|
Benassi JC, Barbosa FAR, Candiotto G, Grinevicius VMAS, Filho DW, Braga AL, Pedrosa RC. Docking and molecular dynamics predicted B-DNA and dihydropyrimidinone selenoesters interactions elucidating antiproliferative effects on breast adenocarcinoma cells. J Biomol Struct Dyn 2021; 40:8261-8273. [PMID: 33847252 DOI: 10.1080/07391102.2021.1910569] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Dihydropyrimidinones have demonstrated different biological activities including anticancer properties. Cytotoxic potential and antiproliferative potential of new dihydropyrimidinone-derived selenoesters (Se-DHPM) compounds were assessed in vitro against the breast adenocarcinoma cells (MCF-7). Among the eight Se-DHPM compounds tested just 49A and 49F were the most cytotoxic for MCF-7 and the most selective for the non-tumor strain (McCoy) and reduced cell viability in a time- and concentration-dependent manner. Compounds 49A and 49F increased the rate of cell death due to apoptosis and necrosis comparatively to the control, however only the 49F showed antiproliferative potential, reducing the number of colonies formed. In the molecular assay 49A interacts with CT-DNA and caused hyperchromism while 49F caused a hypochromic effect. The intercalation test revealed that the two compounds caused destabilization in the CT-DNA molecule. This effect was evidenced by the loss of fluorescence when the compounds competed and caused the displacement of propidium iodide. Simulations (docking and molecular dynamics) using B-DNA brought a greater understanding of ligand-B-DNA interactions. Furthermore, they predicted that the compounds act as minor groove ligands that are stabilized through hydrogen bonds and hydrophobic interactions. However, the form of interaction foreseen for 49A was more energetically favorable and had more stable hydrogen bonds during the simulation time. Despite some violations foreseen in the ADMET for 49F, the set of other results point to this Se-DHPM as a promising leader compound with anti-tumor potential for breast cancer.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Jean C Benassi
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Flavio A R Barbosa
- Department of Chemistry, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Graziâni Candiotto
- Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Danilo Wilhelm Filho
- Departament of Ecology and Zoology, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Antônio L Braga
- Department of Chemistry, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Rozangela C Pedrosa
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Brazil
| |
Collapse
|
9
|
Influence of serum inflammatory cytokines on cytochrome P450 drug metabolising activity during breast cancer chemotherapy: a patient feasibility study. Sci Rep 2021; 11:5648. [PMID: 33707475 PMCID: PMC7952716 DOI: 10.1038/s41598-021-85048-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 02/22/2021] [Indexed: 11/16/2022] Open
Abstract
Individual response to chemotherapy in patients with breast cancer is variable. Obesity and exercise are associated with better and worse outcomes, respectively, and it is known that both impact the systemic cytokine milieu. Cytochrome P450 (CYP) enzymes are responsible for the metabolism of many chemotherapy agents, and CYP enzyme activity has been shown to be modified by inflammatory cytokines in vitro and in vivo. Cytokine-associated changes in CYP metabolism may alter chemotherapy exposure, potentially affecting treatment response and patient survival. Therefore, better understanding of these biological relationships is required. This exploratory single arm open label trial investigated changes in in vivo CYP activity in twelve women treated for stage II or III breast cancer, and demonstrated for the first time the feasibility and safety of utilising the Inje phenotyping cocktail to measure CYP activity in cancer patients receiving chemotherapy. Relative CYP activity varied between participants, particularly for CYP2C9 and CYP2D6, and changes in serum concentrations of the inflammatory cytokine monocyte chemoattractant protein 1 inversely correlated to CYP3A4 activity during chemotherapy. Future use of phenotyping cocktails in a clinical oncology setting may help guide drug dosing and improve chemotherapy outcomes. Clinical Trial Registration: Trial was retrospectively registered to the Australia New Zealand Clinical Trial Registry (ANZCTR). ACTRN12620000832976, 21 Aug 2020, https://www.anzctr.org.au/ACTRN12620000832976.aspx.
Collapse
|
10
|
Dalpiaz A, Paganetto G, Botti G, Pavan B. Cancer stem cells and nanomedicine: new opportunities to combat multidrug resistance? Drug Discov Today 2020; 25:1651-1667. [PMID: 32763499 DOI: 10.1016/j.drudis.2020.07.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 06/09/2020] [Accepted: 07/29/2020] [Indexed: 12/20/2022]
Abstract
'Multidrug resistance' (MDR) is a difficult challenge for cancer treatment. The combined role of cytochrome P450 enzymes (CYPs) and active efflux transporters (AETs) in cancer cells appears relevant in inducing MDR. Chemotherapeutic drugs can be substrates of both CYPs and AETs and CYP inducers or inhibitors can produce the same effects on AETs. In addition, a small subpopulation of cancer stem-like cells (CSCs) appears to survive conventional chemotherapy, leading to recurrent disease. Natural products appear efficacious against CSCs; their combinational treatments with standard chemotherapy are promising for cancer eradication, in particular when supported by nanotechnologies.
Collapse
Affiliation(s)
- Alessandro Dalpiaz
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Ferrara, Italy
| | - Guglielmo Paganetto
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Giada Botti
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Ferrara, Italy
| | - Barbara Pavan
- Department of Biomedical and Specialist Surgical Sciences, University of Ferrara, Ferrara, Italy.
| |
Collapse
|
11
|
Pan-cancer analyses of human nuclear receptors reveal transcriptome diversity and prognostic value across cancer types. Sci Rep 2020; 10:1873. [PMID: 32024906 PMCID: PMC7002682 DOI: 10.1038/s41598-020-58842-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 01/08/2020] [Indexed: 12/19/2022] Open
Abstract
The human nuclear receptor (NR) superfamily comprises 48 ligand-dependent transcription factors that play regulatory roles in physiology and pathophysiology. In cancer, NRs have long served as predictors of disease stratification, treatment response, and clinical outcome. The Cancer Genome Atlas (TCGA) Pan-Cancer project provides a wealth of genetic data for a large number of human cancer types. Here, we examined NR transcriptional activity in 8,526 patient samples from 33 TCGA ‘Pan-Cancer’ diseases and 11 ‘Pan-Cancer’ organ systems using RNA sequencing data. The web-based Kaplan-Meier (KM) plotter tool was then used to evaluate the prognostic potential of NR gene expression in 21/33 cancer types. Although, most NRs were significantly underexpressed in cancer, NR expression (moderate to high expression levels) was predominantly restricted (46%) to specific tissues, particularly cancers representing gynecologic, urologic, and gastrointestinal ‘Pan-Cancer’ organ systems. Intriguingly, a relationship emerged between recurrent positive pairwise correlation of Class IV NRs in most cancers. NR expression was also revealed to play a profound effect on patient overall survival rates, with ≥5 prognostic NRs identified per cancer type. Taken together, these findings highlighted the complexity of NR transcriptional networks in cancer and identified novel therapeutic targets for specific cancer types.
Collapse
|
12
|
Xing Y, Yan J, Niu Y. PXR: a center of transcriptional regulation in cancer. Acta Pharm Sin B 2020; 10:197-206. [PMID: 32082968 PMCID: PMC7016272 DOI: 10.1016/j.apsb.2019.06.012] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 06/10/2019] [Accepted: 06/20/2019] [Indexed: 02/05/2023] Open
Abstract
Pregnane X receptor (PXR, NR1I2) is a prototypical member of the nuclear receptor superfamily. PXR can be activated by both endobiotics and xenobiotics. As a key xenobiotic receptor, the cellular function of PXR is mostly exerted by its binding to the regulatory gene sequences in a ligand-dependent manner. Classical downstream target genes of PXR participate in xenobiotic responses, such as detoxification, metabolism and inflammation. Emerging evidence also implicates PXR signaling in the processes of apoptosis, cell cycle arrest, proliferation, angiogenesis and oxidative stress, which are closely related to cancer. Here, we discussed, in addition to the characterization of PXR per se, the biological function and regulatory mechanism of PXR signaling in cancer, and its potential for the targeted prevention and therapeutics.
Collapse
Affiliation(s)
- Yaqi Xing
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, China
| | - Jiong Yan
- Center for Pharmacogenetics, University of Pittsburgh, PA 15261, USA
| | - Yongdong Niu
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, China
- Corresponding author.
| |
Collapse
|
13
|
Zeng G, Wang L, Shi L, Li H, Zhu M, Luo J, Zhang Z. Variability of voriconazole concentrations in patients with hematopoietic stem cell transplantation and hematological malignancies: influence of loading dose, procalcitonin, and pregnane X receptor polymorphisms. Eur J Clin Pharmacol 2020; 76:515-523. [PMID: 31932875 DOI: 10.1007/s00228-020-02831-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 01/08/2020] [Indexed: 12/11/2022]
Abstract
AIMS Voriconazole (VCZ) displays highly variable pharmacokinetics affecting treatment efficacy and safety. We aimed to identify the factors affecting VCZ steady-state trough concentration (Cssmin) to provide evidence for optimizing VCZ treatment regimens. METHODS A total of 510 Cssmin of 172 patients with hematopoietic stem cell transplantation and hematologic malignancies and their clinical characteristics and genotypes of FMO, POR, and PXR were included in this study. RESULTS In univariate analysis, the standard loading dose of VCZ significantly increased the Cssmin of VCZ (P < 0.001). The Cssmin of VCZ was significantly correlated with patients' total bilirubin (TB) (P < 0.001) and procalcitonin (PCT) (P < 0.001). FMO3 rs2266780 (P = 0.025), POR rs10954732 (P = 0.015), PXR rs2461817 (P = 0.010), PXR rs7643645 (P = 0.003), PXR rs3732359 (P = 0.014), PXR rs3814057 (P = 0.005), and PXR rs6785049 (P = 0.013) have a significant effect on Cssmin of VCZ. Loading dose, TB, PCT level, and PXRrs3814057 polymorphism were independent influencing factors of VCZ Cssmin in the analysis of multivariate linear regression. And loading dose, PCT, and PXR rs3814057 had significant effects on the probability of the therapeutic window of VCZ. CONCLUSION The high variability of VCZ Cssmin may be partially explained by loading dose, liver function, inflammation, and PXR polymorphisms. This study suggests the VCZ standard loading dose regimen significantly increased Cssmin and probability of the therapeutic window providing treatment benefits. Patients in the high PCT group may be more likely to exceed 5.5 μg/mL, thus suffering from VCZ toxicity.
Collapse
Affiliation(s)
- Guangting Zeng
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Linlin Wang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lihong Shi
- Sichuan cancer hospital & institute, Chengdu, Sichuan, China
| | - Huilan Li
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Miaomiao Zhu
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan Mental Health Centre; Wuhan Hospital for Psychotherapy, Wuhan, Hubei, China
| | - Jia Luo
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zanling Zhang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, China. .,Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
14
|
YUAN X, XIANG D, MIN Q, DING Y, ZHAO A, WANG R. [Effects of acute hypoxia on expression of pregnane X receptor in liver tissues of rats exposed to high altitude]. Zhejiang Da Xue Xue Bao Yi Xue Ban 2019; 48:603-608. [PMID: 31955533 PMCID: PMC8800778 DOI: 10.3785/j.issn.1008-9292.2019.12.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 08/25/2019] [Indexed: 06/10/2023]
Abstract
OBJECTIVE To investigate the effects of high-altitude hypoxic environment on the expression of pregnane X receptor (PXR) in rat liver and related mechanism. METHODS Wistar rats were randomly divided into five groups with 8 rats in each group, the rats were exposed to high-plateau hypoxia for 0 (control group), 12, 24, 36 and 48 h, respectively. Abdominal aortic blood samples were collected for blood gas analysis. HE staining was used to observe the pathological changes of liver tissue. The expression levels of PXR mRNA in liver tissues were determined by RT-PCR. Western blot analysis was performed to determine the protein expression of PXR and protease SUG1 in liver tissues of rats. RESULTS Compared with the control group, the blood pH of the rats decreased after 12 h of acute hypoxia. After 24 h exposed to hypoxia, SaO2 was lower than 80%, PaO2 was lower than 60 mmHg (1 mmHg=0.133 kPa); and PaCO2 increased after 48 h exposed to hypoxia (P<0.05). There was obvious edema in the central vein of the liver tissue at 12 h and 24 h after exposure to hypoxia. The liver tissue of the rats exposed to hypoxia for 36 h and 48 h showed inflammatory infiltration. The expression of PXR mRNA was significantly decreased by 63%, 96%, 86%, and 85%at 12, 24, 36 h, and 48 h after exposure to hypoxia (all P<0.05), respectively. The protein expression of PXR was significantly up-regulated by 93%and 99%after 36 h and 48 h exposure to hypoxia (all P<0.05), respectively. The protein expression of proteinase SUG1 decreased by 14%, 34%and 46%after 24, 36 and 48 h after hypoxia (all P<0.01). CONCLUSIONS Acute hypoxia at high altitude can affect the expression of nuclear receptor PXR in rat liver, and protease SUG1 may be a regulatory factor for PXR expression in hypoxia.
Collapse
|
15
|
Abbott KL, Flannery PC, Gill KS, Boothe DM, Dhanasekaran M, Mani S, Pondugula SR. Adverse pharmacokinetic interactions between illicit substances and clinical drugs. Drug Metab Rev 2019; 52:44-65. [PMID: 31826670 DOI: 10.1080/03602532.2019.1697283] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Adverse pharmacokinetic interactions between illicit substances and clinical drugs are of a significant health concern. Illicit substances are taken by healthy individuals as well as by patients with medical conditions such as mental illnesses, acquired immunodeficiency syndrome, diabetes mellitus and cancer. Many individuals that use illicit substances simultaneously take clinical drugs meant for targeted treatment. This concomitant usage can lead to life-threatening pharmacokinetic interactions between illicit substances and clinical drugs. Optimal levels and activity of drug-metabolizing enzymes and drug-transporters are crucial for metabolism and disposition of illicit substances as well as clinical drugs. However, both illicit substances and clinical drugs can induce changes in the expression and/or activity of drug-metabolizing enzymes and drug-transporters. Consequently, with concomitant usage, illicit substances can adversely influence the therapeutic outcome of coadministered clinical drugs. Likewise, clinical drugs can adversely affect the response of coadministered illicit substances. While the interactions between illicit substances and clinical drugs pose a tremendous health and financial burden, they lack a similar level of attention as drug-drug, food-drug, supplement-drug, herb-drug, disease-drug, or other substance-drug interactions such as alcohol-drug and tobacco-drug interactions. This review highlights the clinical pharmacokinetic interactions between clinical drugs and commonly used illicit substances such as cannabis, cocaine and 3, 4-Methylenedioxymethamphetamine (MDMA). Rigorous efforts are warranted to further understand the underlying mechanisms responsible for these clinical pharmacokinetic interactions. It is also critical to extend the awareness of the life-threatening adverse interactions to both health care professionals and patients.
Collapse
Affiliation(s)
- Kodye L Abbott
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA.,Auburn University Research Initiative in Cancer, Auburn University, Auburn, AL, USA
| | - Patrick C Flannery
- College of Osteopathic Medicine, Rocky Vista University, Parker, CO, USA
| | - Kristina S Gill
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA.,Auburn University Research Initiative in Cancer, Auburn University, Auburn, AL, USA
| | - Dawn M Boothe
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA.,Auburn University Research Initiative in Cancer, Auburn University, Auburn, AL, USA
| | - Muralikrishnan Dhanasekaran
- Auburn University Research Initiative in Cancer, Auburn University, Auburn, AL, USA.,Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, AL, USA
| | - Sridhar Mani
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Satyanarayana R Pondugula
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA.,Auburn University Research Initiative in Cancer, Auburn University, Auburn, AL, USA
| |
Collapse
|
16
|
Madrigal-Bujaidar E, Pérez-Montoya E, García-Medina S, Cristóbal-Luna JM, Morales-González JA, Madrigal-Santillán EO, Paniagua-Pérez R, Álvarez-González I. Pharmacokinetic parameters of ifosfamide in mouse pre-administered with grapefruit juice or naringin. Sci Rep 2019; 9:16621. [PMID: 31719649 PMCID: PMC6851181 DOI: 10.1038/s41598-019-53204-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 10/24/2019] [Indexed: 02/07/2023] Open
Abstract
Grapefruit juice (GFJ) and naringin when consumed previously or together with medications may alter their bioavailavility and consequently the clinical effect. Ifosfamide (IF) is an antitumoral agent prescribed against various types of cancer. Nevertheless, there is no information regarding its interaction with the ingestion of GFJ or naringin. The aims of the present report were validating a method for the quantitation of IF in the plasma of mouse, and determine if mice pretreated with GFJ or naringin may modify the IF pharmacokinetics. Our HPLC results to quantify IF showed adequate intra and inter-day precision (RSD < 15%) and accuracy (RE < 15%) indicating reliability. Also, the administration of GFJ or naringin increased Cmax of IF 22.9% and 17.8%, respectively, and decreased Tmax of IF 19.2 and 53.8%, respectively. The concentration of IF was higher when GFJ (71.35 ± 3.5 µg/mL) was administered with respect to that obtained in the combination naringin with IF (64.12 ± µg/mL); however, the time required to reach such concentration was significantly lower when naringin was administered (p < 0.5). We concluded that pre-administering GFJ and naringin to mice increased the Tmax and decreased the Cmax of IF.
Collapse
Affiliation(s)
- Eduardo Madrigal-Bujaidar
- Laboratorio de Genética, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. Av. Wilfrido Massieu s/n, Col. Zacatenco, Del. Gustavo A. Madero, Ciudad de México, 07738, Mexico
| | - Edilberto Pérez-Montoya
- Laboratorio de Biofarmacia, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n, Col. Zacatenco, Del. Gustavo A. Madero, Ciudad de México, 07738, Mexico
| | - Sandra García-Medina
- Laboratorio de Biofarmacia, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n, Col. Zacatenco, Del. Gustavo A. Madero, Ciudad de México, 07738, Mexico
| | - José Melesio Cristóbal-Luna
- Laboratorio de Genética, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. Av. Wilfrido Massieu s/n, Col. Zacatenco, Del. Gustavo A. Madero, Ciudad de México, 07738, Mexico
| | - José A Morales-González
- Laboratorio de Medicina de la Conservación, Escuela Superior de Medicina, Instituto Politécnico Nacional. Plan de San Luis y Díaz Mirón s/n, Col. Casco de Santo Tomás, Del. Miguel Hidalgo, Ciudad de México, 11340, Mexico
| | - Eduardo Osiris Madrigal-Santillán
- Laboratorio de Medicina de la Conservación, Escuela Superior de Medicina, Instituto Politécnico Nacional. Plan de San Luis y Díaz Mirón s/n, Col. Casco de Santo Tomás, Del. Miguel Hidalgo, Ciudad de México, 11340, Mexico
| | - Rogelio Paniagua-Pérez
- Instituto Nacional de Rehabilitación, Servicio de Bioquímica. Av. México-Xochimilco 289, Ciudad de México, 14389, Mexico
| | - Isela Álvarez-González
- Laboratorio de Genética, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. Av. Wilfrido Massieu s/n, Col. Zacatenco, Del. Gustavo A. Madero, Ciudad de México, 07738, Mexico.
| |
Collapse
|
17
|
Miyauchi Y, Tanaka Y, Nagata K, Yamazoe Y, Mackenzie PI, Yamada H, Ishii Y. UDP-Glucuronosyltransferase (UGT)-mediated attenuations of cytochrome P450 3A4 activity: UGT isoform-dependent mechanism of suppression. Br J Pharmacol 2019; 177:1077-1089. [PMID: 31660580 DOI: 10.1111/bph.14900] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 09/19/2019] [Accepted: 09/28/2019] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND AND PURPOSE Cytochrome P450 (CYP, P450) 3A4 is involved in the metabolism of 50% of drugs and its catalytic activity in vivo is not explained only by hepatic expression levels. We previously demonstrated that UDP-glucuronosyltransferase (UGT) 2B7 suppressed CYP3A4 activity through an interaction. In the present study, we target UGT1A9 as another candidate modulator of CYP3A4. EXPERIMENTAL APPROACH We prepared co-expressed enzymes using the baculovirus-insect cell expression system and compared CYP3A4 activity in the presence and absence of UGT1A9. Wistar rats were treated with dexamethasone and liver microsomes were used to elucidate the role of CYP3A-UGT1A interactions. KEY RESULTS UGT1A9 and UGT2B7 interacted with and suppressed CYP3A4. Kinetic analyses showed that both of the UGTs significantly reduced Vmax of CYP3A4 activity. In addition, C-terminal truncated mutants of UGT1A9 and UGT2B7 still retained the suppressive capacity. Dexamethasone treatment induced hepatic CYP3As and UGT1As at different magnitudes. Turnover of CYP3A was enhanced about twofold by this treatment. CONCLUSION AND IMPLICATIONS The changes of kinetic parameters suggested that UGT1A9 suppressed CYP3A4 activity with almost the same mechanism as UGT2B7. The luminal domain of UGTs contains the suppressive interaction site(s), whereas the C-terminal domain may contribute to modulating suppression in a UGT isoform-specific manner. CYP3A-UGT1A interaction seemed to be disturbed by dexamethasone treatment and the suppression was partially cancelled. CYP3A4-UGT interactions would help to better understand the causes of inter/intra-individual differences in CYP3A4 activity.
Collapse
Affiliation(s)
- Yuu Miyauchi
- Laboratory of Molecular Life Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan.,Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshitaka Tanaka
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Kiyoshi Nagata
- Department of Environmental and Health Science, School of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Yasushi Yamazoe
- Food Safety Commission, Cabinet Office, Government of Japan, Tokyo, Japan
| | - Peter I Mackenzie
- Department of Clinical Pharmacology, Flinders Medical Centre and Flinders University, Adelaide, SA, Australia
| | - Hideyuki Yamada
- Laboratory of Molecular Life Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuji Ishii
- Laboratory of Molecular Life Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
18
|
Carazo A, Mladěnka P, Pávek P. Marine Ligands of the Pregnane X Receptor (PXR): An Overview. Mar Drugs 2019; 17:md17100554. [PMID: 31569349 PMCID: PMC6836225 DOI: 10.3390/md17100554] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 09/27/2019] [Accepted: 09/27/2019] [Indexed: 02/06/2023] Open
Abstract
Pregnane X Receptor (PXR) is a ligand-activated transcription factor which binds many structurally different molecules. The receptor is able to regulate the expression of a wide array of genes and is involved in cancer and different key physiological processes such as the metabolism of drugs/xenobiotics and endogenous compounds including lipids and carbohydrates, and inflammation. Algae, sponges, sea squirts, and other marine organisms are some of the species from which structurally new molecules have been isolated that have been subsequently identified in recent decades as ligands for PXR. The therapeutic potential of these natural compounds is promising in different areas and has recently resulted in the registration of trabectedin by the FDA as a novel antineoplastic drug. Apart from being potentially novel drugs, these compounds can also serve as models for the development of new molecules with improved activity. The aim of this review is to succinctly summarize the currently known natural molecules isolated from marine organisms with a proven ability to interact with PXR.
Collapse
Affiliation(s)
- Alejandro Carazo
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Heyrovského 1203, Hradec Králové 500 05, Czech Republic.
| | - Přemysl Mladěnka
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Heyrovského 1203, Hradec Králové 500 05, Czech Republic.
| | - Petr Pávek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Heyrovského 1203, Hradec Králové 500 05, Czech Republic.
| |
Collapse
|
19
|
Díaz Flaqué MC, Cayrol MF, Sterle HA, Del Rosario Aschero M, Díaz Albuja JA, Isse B, Farías RN, Cerchietti L, Rosemblit C, Cremaschi GA. Thyroid hormones induce doxorubicin chemosensitivity through enzymes involved in chemotherapy metabolism in lymphoma T cells. Oncotarget 2019; 10:3051-3065. [PMID: 31105885 PMCID: PMC6508960 DOI: 10.18632/oncotarget.26890] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 03/23/2019] [Indexed: 01/08/2023] Open
Abstract
Thyroid hormones (THs) – 3,3′,5-triiodo-L-thyronine (T3) and L-thyroxine (T4) – are important regulators of the metabolism and physiology of most normal tissues. Cytochrome P450 family 3A members are drug metabolizing enzymes involved in the activation and detoxification of several drugs. CYP3A4 is the major enzyme involved in the metabolism of chemotherapeutic drugs. In this work, we demonstrate that THs induce a significant increase in CYP3A4 mRNA levels, protein expression and metabolic activity through the membrane receptor integrin αvβ3 and the activation of signalling pathways through Stat1 and NF-κB. We reasoned that TH-induced CYP3A4 modulation may act as an important regulator in the metabolism of doxorubicin (Doxo). Experiments in vitro demonstrated that in CYP3A4-knocked down cells, no TH-mediated chemosensitivity to Doxo was observed. We also found that THs modulate these functions by activating the membrane receptor integrin αvβ3. In addition, we showed that the thyroid status can modulate CYP450 mRNA levels in tumor and liver tissues, and the tumor volume in response to chemotherapy in vivo. In fact, Doxo treatment in hypothyroid mice was associated with lower tumors, displaying lower levels of CYP enzymes, than euthyroid mice. However, higher mRNA levels of CYP enzymes were found in livers from Doxo treated hypothyroid mice respect to control. These results present a new mechanism by which TH could modulate chemotherapy response. These findings highlight the importance of evaluating thyroid status in patients during application of T-cell lymphoma therapeutic regimens.
Collapse
Affiliation(s)
- María Celeste Díaz Flaqué
- Instituto de Investigaciones Biomédicas (BIOMED), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Médicas, Pontificia Universidad Católica Argentina (UCA), Buenos Aires, Argentina
| | - Maria Florencia Cayrol
- Instituto de Investigaciones Biomédicas (BIOMED), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Médicas, Pontificia Universidad Católica Argentina (UCA), Buenos Aires, Argentina
| | - Helena Andrea Sterle
- Instituto de Investigaciones Biomédicas (BIOMED), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Médicas, Pontificia Universidad Católica Argentina (UCA), Buenos Aires, Argentina
| | - María Del Rosario Aschero
- Instituto de Investigaciones Biomédicas (BIOMED), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Médicas, Pontificia Universidad Católica Argentina (UCA), Buenos Aires, Argentina
| | - Johanna Abigail Díaz Albuja
- Instituto de Investigaciones Biomédicas (BIOMED), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Médicas, Pontificia Universidad Católica Argentina (UCA), Buenos Aires, Argentina
| | - Blanca Isse
- Departmento de Bioquimica Nutricional, CONICET, Universidad Nacional de Tucuman, Instituto de Quimica Biologica "Dr Bernabe Bloj", San Miguel de Tucuman, Tucuman, Argentina
| | - Ricardo Norberto Farías
- Departmento de Bioquimica Nutricional, CONICET, Universidad Nacional de Tucuman, Instituto de Quimica Biologica "Dr Bernabe Bloj", San Miguel de Tucuman, Tucuman, Argentina
| | - Leandro Cerchietti
- Division of Hematology and Oncology, Department of Medicine, Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - Cinthia Rosemblit
- Instituto de Investigaciones Biomédicas (BIOMED), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Médicas, Pontificia Universidad Católica Argentina (UCA), Buenos Aires, Argentina
| | - Graciela Alicia Cremaschi
- Instituto de Investigaciones Biomédicas (BIOMED), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Médicas, Pontificia Universidad Católica Argentina (UCA), Buenos Aires, Argentina
| |
Collapse
|
20
|
Meech R, Hu DG, McKinnon RA, Mubarokah SN, Haines AZ, Nair PC, Rowland A, Mackenzie PI. The UDP-Glycosyltransferase (UGT) Superfamily: New Members, New Functions, and Novel Paradigms. Physiol Rev 2019; 99:1153-1222. [DOI: 10.1152/physrev.00058.2017] [Citation(s) in RCA: 224] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
UDP-glycosyltransferases (UGTs) catalyze the covalent addition of sugars to a broad range of lipophilic molecules. This biotransformation plays a critical role in elimination of a broad range of exogenous chemicals and by-products of endogenous metabolism, and also controls the levels and distribution of many endogenous signaling molecules. In mammals, the superfamily comprises four families: UGT1, UGT2, UGT3, and UGT8. UGT1 and UGT2 enzymes have important roles in pharmacology and toxicology including contributing to interindividual differences in drug disposition as well as to cancer risk. These UGTs are highly expressed in organs of detoxification (e.g., liver, kidney, intestine) and can be induced by pathways that sense demand for detoxification and for modulation of endobiotic signaling molecules. The functions of the UGT3 and UGT8 family enzymes have only been characterized relatively recently; these enzymes show different UDP-sugar preferences to that of UGT1 and UGT2 enzymes, and to date, their contributions to drug metabolism appear to be relatively minor. This review summarizes and provides critical analysis of the current state of research into all four families of UGT enzymes. Key areas discussed include the roles of UGTs in drug metabolism, cancer risk, and regulation of signaling, as well as the transcriptional and posttranscriptional control of UGT expression and function. The latter part of this review provides an in-depth analysis of the known and predicted functions of UGT3 and UGT8 enzymes, focused on their likely roles in modulation of levels of endogenous signaling pathways.
Collapse
Affiliation(s)
- Robyn Meech
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Dong Gui Hu
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Ross A. McKinnon
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Siti Nurul Mubarokah
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Alex Z. Haines
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Pramod C. Nair
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Andrew Rowland
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Peter I. Mackenzie
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| |
Collapse
|
21
|
El-Readi MZ, Eid S, Abdelghany AA, Al-Amoudi HS, Efferth T, Wink M. Resveratrol mediated cancer cell apoptosis, and modulation of multidrug resistance proteins and metabolic enzymes. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 55:269-281. [PMID: 30668439 DOI: 10.1016/j.phymed.2018.06.046] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 06/11/2018] [Accepted: 06/19/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND The degree of intracellular drug accumulation by specific membrane transporters, i.e., MDR1, BCRP, and MRP, and the degree of detoxification by intracellular metabolic enzymes, i.e., CYP3A4 and GST, provide control for cancer chemotherapy through diminishing the propensity of cancer cells to undergo apoptosis which in turn modulates the unresolved and complex phenomenon of multidrug resistance (MDR) for the cancer cells. HYPOTHESIS/PURPOSE This study dwells into the interaction details involving ABC-transporters, CYP3A4, GST and cytotoxic effects of resveratrol on different cell lines. METHODS Resveratrol was evaluated for its ability modulating the expression and efflux functions of P-gp /MDR1, MRP1, and BCRP in the multidrug-resistant human colon carcinoma cell line, Caco-2, and CEM/ADR5000 cells through flow cytometry and RTPCR technique. RESULTS The resveratrol influenced P-gp and MRP1 efflux functions whereby it increased rhodamine 123 with calcein accumulation in concentration-dependent manner (1 - 500 µM) in the Caco-2 cell lines and inhibited the effluxes of both the substrates also as concentration-dependent phenomenon (10 - 100 µM) in the p-gp overexpressing CEM/ADR5000 cells through FACS (full form). The treatment of drug-resistant Caco-2, and CEM/ADR5000 cells with doxorubicin (DOX) along with 20 µM of resveratrol in the mixture. It increased the cell sensitivity DOX towards the DOX and enhanced the cytotoxicity. The resveratrol inhibited both CYP3A4 and GST enzymatic activity in a concentration-dependent way and induced apoptosis in the resistance cell lines because of increased levels of caspase-3, -8,-6/9 and incremental phosphatidyl serine (PS) exposure as detected by flow cytometry. The treatment of Caco-2 cells with resveratrol showed significantly lower p-gp, MRP1, BCRP, CYP3A4, GST, and hPXR mRNA levels in a 48 h observation. CONCLUSION The result confirmed resveratrol mediated inhibition of ABC-transporters' overall efflux functions, and its expression, and apoptosis as well as metabolic enzymes GST and CYP3A4 activity.
Collapse
Affiliation(s)
- Mahmoud Zaki El-Readi
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia; Department of Biochemistry, Faculty of Pharmacy, Al-Azhar University, 71524, Assiut, Egypt; Department of Pharmaceutical Biology, Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany.
| | - SafaaYehia Eid
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia; Department of Pharmaceutical Biology, Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany
| | - Ahmed Ali Abdelghany
- Department of Biochemistry, Faculty of Pharmacy, Al-Azhar University, 71524, Assiut, Egypt
| | - Hiba Saeed Al-Amoudi
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, University of Mainz, Staudinger Weg 5, 55128, Mainz, Germany
| | - Michael Wink
- Department of Pharmaceutical Biology, Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany
| |
Collapse
|
22
|
Taneja G, Chu C, Maturu P, Moorthy B, Ghose R. Role of c-Jun-N-Terminal Kinase in Pregnane X Receptor-Mediated Induction of Human Cytochrome P4503A4 In Vitro. Drug Metab Dispos 2018; 46:397-404. [PMID: 29440179 PMCID: PMC5829542 DOI: 10.1124/dmd.117.079160] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 02/01/2018] [Indexed: 12/17/2022] Open
Abstract
Cytochrome P450 CYP3A4 is the most abundant drug-metabolizing enzyme and is responsible for the metabolism of ∼50% of clinically available drugs. Induction of CYP3A4 impacts the disposition of its substrates and leads to harmful clinical consequences, such as failure of therapy. To prevent such undesirable consequences, the molecular mechanisms of regulation of CYP3A4 need to be fully understood. CYP3A4 induction is regulated primarily by the xenobiotic nuclear receptor pregnane-X receptor (PXR). After ligand binding, PXR is translocated to the nucleus, where it binds to the CYP3A4 promoter and induces its gene expression. PXR function is modulated by phosphorylation(s) by multiple kinases. In this study, we determined the role of the c-Jun N-terminal kinase (JNK) in PXR-mediated induction of CYP3A4 enzyme in vitro. Human liver carcinoma cells (HepG2) were transfected with CYP3A4 luciferase and PXR plasmids, followed by treatment with JNK inhibitor (SP600125; SP) and PXR activators rifampicin (RIF) or hyperforin. Our results indicate that SP treatment significantly attenuated PXR-mediated induction of CYP3A4 reporter activity, as well as gene expression and enzyme activity. JNK knockdown by siRNA (targeting both JNK 1 and 2) also attenuated CYP3A4 induction by RIF. Interestingly, SP treatment attenuated JNK activation by RIF. Furthermore, treatment with RIF increased PXR nuclear levels and binding to the CYP3A4 promoter; SP attenuated these effects. This study shows that JNK is a novel mechanistic regulator of CYP3A4 induction by PXR.
Collapse
Affiliation(s)
- Guncha Taneja
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston (G.T., R.G.), and Department of Pediatrics, Baylor College of Medicine (C.C., P.M., B.M.), Houston, Texas
| | - Chun Chu
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston (G.T., R.G.), and Department of Pediatrics, Baylor College of Medicine (C.C., P.M., B.M.), Houston, Texas
| | - Paramahamsa Maturu
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston (G.T., R.G.), and Department of Pediatrics, Baylor College of Medicine (C.C., P.M., B.M.), Houston, Texas
| | - Bhagavatula Moorthy
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston (G.T., R.G.), and Department of Pediatrics, Baylor College of Medicine (C.C., P.M., B.M.), Houston, Texas
| | - Romi Ghose
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston (G.T., R.G.), and Department of Pediatrics, Baylor College of Medicine (C.C., P.M., B.M.), Houston, Texas
| |
Collapse
|
23
|
Bandyopadhyay A, Favours E, Phelps DA, Del Pozo V, Ghilu S, Kurmashev D, Michalek J, Trevino A, Guttridge D, London C, Hirotani K, Zhang L, Kurmasheva RT, Houghton PJ. Evaluation of patritumab with or without erlotinib in combination with standard cytotoxic agents against pediatric sarcoma xenograft models. Pediatr Blood Cancer 2018; 65:10.1002/pbc.26870. [PMID: 29080385 PMCID: PMC5739936 DOI: 10.1002/pbc.26870] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 09/13/2017] [Accepted: 09/15/2017] [Indexed: 12/23/2022]
Abstract
BACKGROUND Integrating molecularly targeted agents with cytotoxic drugs used in curative treatment of pediatric cancers is complex. An evaluation was undertaken with the ERBB3/Her3-specific antibody patritumab (P) either alone or with the ERBB1/epidermal growth factor receptor inhibitor erlotinib (E) in combination with standard cytotoxic agents, cisplatin, vincristine, and cyclophosphamide, in pediatric sarcoma xenograft models that express receptors and ligands targeted by these agents. PROCEDURES Tumor models were selected based upon ERBB3 expression and phosphorylation, and ligand (heregulin) expression. Patritumab, E, or these agents combined was evaluated without or with concomitant cytotoxic agents using procedures developed by the Pediatric Preclinical Testing Program. RESULTS Full doses of cytotoxic agents were tolerated when combined with P, whereas dose reductions of 25% (vincristine, cisplatin) or 50% (cyclophosphamide) were required when combined with P + E. Patritumab, E alone, or in combination did not significantly inhibit growth of any tumor model, except for Rh18 xenografts (E alone). Patritumab had no single-agent activity and marginally enhanced the activity of vincristine and cisplatin only in Ewing sarcoma ES-4. P + E did not increase the antitumor activity of vincristine or cisplatin, whereas dose-reduced cyclophosphamide was significantly less active than cyclophosphamide administered at its maximum tolerated dose when combined with P + E. CONCLUSIONS P had no single-agent activity, although it marginally potentiated the activity of vincristine and cisplatin in one of three models studied. However, the addition of E necessitated dose reduction of each cytotoxic agent, abrogating the enhancement observed with P alone.
Collapse
Affiliation(s)
- Abhik Bandyopadhyay
- Greehey Children’s Cancer Research Institute, University of Texas Health Science Center, San Antonio
| | - Edward Favours
- Greehey Children’s Cancer Research Institute, University of Texas Health Science Center, San Antonio
| | - Doris A. Phelps
- Greehey Children’s Cancer Research Institute, University of Texas Health Science Center, San Antonio
| | - Vanessa Del Pozo
- Greehey Children’s Cancer Research Institute, University of Texas Health Science Center, San Antonio
| | - Samson Ghilu
- Greehey Children’s Cancer Research Institute, University of Texas Health Science Center, San Antonio
| | - Dias Kurmashev
- Greehey Children’s Cancer Research Institute, University of Texas Health Science Center, San Antonio
| | - Joel Michalek
- Department of Epidemiology and Biostatistics, University of Texas Health Science Center, San Antonio
| | - Aron Trevino
- Department of Epidemiology and Biostatistics, University of Texas Health Science Center, San Antonio
| | - Denis Guttridge
- Center for Regenerative Medicine and Cell-Based Therapies, Ohio State University, Columbus
| | - Cheryl London
- Cummings School of Veterinary Medicine at Tufts University, Boston
| | | | - Ling Zhang
- Daiichi Sankyo Company Limited, Edison, NJ
| | - Raushan T. Kurmasheva
- Greehey Children’s Cancer Research Institute, University of Texas Health Science Center, San Antonio
| | - Peter J. Houghton
- Greehey Children’s Cancer Research Institute, University of Texas Health Science Center, San Antonio,Corresponding Author: Peter J. Houghton, PhD, Greehey Children’s Cancer Research Institute, 8403 Floyd Curl Drive, San Antonio, TX78229, Ph: 210-450-5397,
| |
Collapse
|
24
|
Schmidt AM, Sengupta N, Saski CA, Noorai RE, Baldwin WS. RNA sequencing indicates that atrazine induces multiple detoxification genes in Daphnia magna and this is a potential source of its mixture interactions with other chemicals. CHEMOSPHERE 2017; 189:699-708. [PMID: 28968576 PMCID: PMC5651997 DOI: 10.1016/j.chemosphere.2017.09.107] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 09/14/2017] [Accepted: 09/22/2017] [Indexed: 05/08/2023]
Abstract
Atrazine is an herbicide with several known toxicologically relevant effects, including interactions with other chemicals. Atrazine increases the toxicity of several organophosphates and has been shown to reduce the toxicity of triclosan to D. magna in a concentration dependent manner. Atrazine is a potent activator in vitro of the xenobiotic-sensing nuclear receptor, HR96, related to vertebrate constitutive androstane receptor (CAR) and pregnane X-receptor (PXR). RNA sequencing (RNAseq) was performed to determine if atrazine is inducing phase I-III detoxification enzymes in vivo, and estimate its potential for mixture interactions. RNAseq analysis demonstrates induction of glutathione S-transferases (GSTs), cytochrome P450s (CYPs), glucosyltransferases (UDPGTs), and xenobiotic transporters, of which several are verified by qPCR. Pathway analysis demonstrates changes in drug, glutathione, and sphingolipid metabolism, indicative of HR96 activation. Based on our RNAseq data, we hypothesized as to which environmentally relevant chemicals may show altered toxicity with co-exposure to atrazine. Acute toxicity tests were performed to determine individual LC50 and Hillslope values as were toxicity tests with binary mixtures containing atrazine. The observed mixture toxicity was compared with modeled mixture toxicity using the Computational Approach to the Toxicity Assessment of Mixtures (CATAM) to assess whether atrazine is exerting antagonism, additivity, or synergistic toxicity in accordance with our hypothesis. Atrazine-triclosan mixtures showed decreased toxicity as expected; atrazine-parathion, atrazine-endosulfan, and to a lesser extent atrazine-p-nonylphenol mixtures showed increased toxicity. In summary, exposure to atrazine activates HR96, and induces phase I-III detoxification genes that are likely responsible for mixture interactions.
Collapse
Affiliation(s)
- Allison M Schmidt
- Environmental Toxicology Program, Clemson University, Clemson, SC, USA
| | - Namrata Sengupta
- Environmental Toxicology Program, Clemson University, Clemson, SC, USA
| | | | - Rooksana E Noorai
- Clemson University Genomics Institute, Clemson University, Clemson, SC, USA
| | - William S Baldwin
- Environmental Toxicology Program, Clemson University, Clemson, SC, USA; Biological Sciences, Clemson University, Clemson, SC, USA.
| |
Collapse
|
25
|
Dong Y, Wang Z, Xie GF, Li C, Zuo WW, Meng G, Xu CP, Li JJ. Pregnane X receptor is associated with unfavorable survival and induces chemotherapeutic resistance by transcriptional activating multidrug resistance-related protein 3 in colorectal cancer. Mol Cancer 2017; 16:71. [PMID: 28356150 PMCID: PMC5372326 DOI: 10.1186/s12943-017-0641-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Accepted: 03/20/2017] [Indexed: 12/20/2022] Open
Abstract
Background Although chemotherapy represents a predominant anti-cancer therapeutic modality, drug treatment efficacy is often limited due to the development of resistant tumor cells. The pregnane X receptor (PXR) affects chemotherapeutic effects by regulating targets involved in drug metabolism and transportation, but the regulatory mechanism is poorly understood. Methods Oxaliplatin (L-OHP) content in tumor cells was analyzed by mass cytometry. The roles of PXR on cancer cell proliferation, apoptosis and tumor growth with L-OHP-treated were investigated by MTS, colony formation, flow cytometry and xenograft tumor assays. Luciferase reporter, Chromatin-immunoprecipitation and Site-directed mutagenesis were evaluated the mechanisms. The PXR and multidrug resistance-related protein 3 (MRP3) expressions were examined by western blot, RT-PCR or immunohistochemistry of TMA. Kaplan-Meier and Cox regression were adopted to analyze the prognostic value of PXR in colorectal cancer (CRC). Results PXR over-expression significantly increased oxaliplatin (L-OHP) transport capacity with a reduction of its content and repressed the effects of L-OHP on tumour cell proliferation and apoptosis. Conversely, PXR knockdown augments L-OHP-mediated cellular proliferation and apoptosis. Moreover, PXR significantly reduced the therapeutic effects of L-OHP on tumor growth in nude mice. Further studies indicated a positive correlation between PXR and MRP3 expression and this finding was confirmed in two independent cohorts. Significantly increased MRP3 expression was also found in PXR over-expressing cell lines. Mechanistically, PXR could directly bind to the MRP3 promoter, activating its transcription. The PXR binding sites were determined to be at -796 to -782bp (CTGAAGCAGAGGGAA) and the key binding sites were the “AGGGA” (-787 to -783bp) on the MRP3 promoter. Accordingly, blockade of MRP3 diminishes the effects on drug resistance of PXR. In addition, PXR expression is significantly associated with poor overall survival and represents an unfavorable and independent factor for male or stage I + II CRC patient prognosis. Conclusions PXR is a potential biomarker for predicting outcome and activates MRP3 transcription by directly binding to its promoter resulting in an increased L-OHP efflux capacity, and resistance to L-OHP or platinum drugs in CRC. Our work reveals a novel and unique mechanism of drug resistance in CRC. Electronic supplementary material The online version of this article (doi:10.1186/s12943-017-0641-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yan Dong
- Department of Oncology, Southwest Hospital, Third Military Medical University, No. 29, Gaotanyan Street, Shapingba District, Chongqing, 400038, People's Republic of China
| | - Zhe Wang
- Department of Oncology, Southwest Hospital, Third Military Medical University, No. 29, Gaotanyan Street, Shapingba District, Chongqing, 400038, People's Republic of China
| | - Gan-Feng Xie
- Department of Oncology, Southwest Hospital, Third Military Medical University, No. 29, Gaotanyan Street, Shapingba District, Chongqing, 400038, People's Republic of China
| | - Chong Li
- Department of Oncology, Southwest Hospital, Third Military Medical University, No. 29, Gaotanyan Street, Shapingba District, Chongqing, 400038, People's Republic of China
| | - Wen-Wei Zuo
- Department of Oncology, Southwest Hospital, Third Military Medical University, No. 29, Gaotanyan Street, Shapingba District, Chongqing, 400038, People's Republic of China
| | - Gang Meng
- Department of Pathology, Southwest Hospital, Third Military Medical University, No. 29, Gaotanyan Street, Shapingba District, Chongqing, 400038, People's Republic of China
| | - Cheng-Ping Xu
- Department of Pathology, Southwest Hospital, Third Military Medical University, No. 29, Gaotanyan Street, Shapingba District, Chongqing, 400038, People's Republic of China
| | - Jian-Jun Li
- Department of Oncology, Southwest Hospital, Third Military Medical University, No. 29, Gaotanyan Street, Shapingba District, Chongqing, 400038, People's Republic of China.
| |
Collapse
|
26
|
Kong Q, Han Z, Zuo X, Wei H, Huang W. Co-expression of pregnane X receptor and ATP-binding cassette sub-family B member 1 in peripheral blood: A prospective indicator for drug resistance prediction in non-small cell lung cancer. Oncol Lett 2016; 11:3033-3039. [PMID: 27123059 PMCID: PMC4840610 DOI: 10.3892/ol.2016.4369] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 02/11/2016] [Indexed: 02/06/2023] Open
Abstract
The aim of the present study was to investigate the protein expression profiling of pregnane X receptor (PXR) and ATP-binding cassette sub-family B member 1 (ABCB1; also known as MDR1 or P-gp), present in the peripheral blood mononuclear cells (PBMCs) and cancerous tissues of cases of non-small cell lung cancer (NSCLC). Furthermore, the study aimed to assess the feasibility of predicting drug resistance through the medium of PBMCs. Of the subjects included in the study, 37 were histopathologically diagnosed with NSCLC and 17 were control patients without cancer. ThinPrep liquid-based smears with cytosine were applied in the examination of the PBMCs and proved quite effective in preserving the morphology and surface antigens of the lymphocytes. Measurements of expression levels in the PBMCs and cancerous tissues were obtained by immunohistochemical means. The results showed that, with the exception of the selective PXR expression in the normal lung tissues, the two types of proteins existed extensively throughout the PBMCs, normal tissues and tumors. Among the cancer patients, prior to chemotherapy, a significant rise in ABCB1 expression could be observed in the PBMCs, together with a similar rise in ABCB1 and PXR expression in the tumor specimens. Marked upregulation of the two proteins was detected in the PBMCs following 1 cycle of first-line chemotherapy. ABCB1 expression, correlated with PXR, persisted mostly in the PBMCs and tissue samples. When bound to and activated by ligands, PXR translocates from the cytoplasm to the nucleus of the cells. PXR subsequently binds to its DNA response elements as a heterodimer with the retinoid X receptor. A PXR translocation of moderate or low differentiation was identified in 3 cases of adenocarcinoma, which were co-expressing the two genes in the PBMCs prior to chemotherapy. During follow-up visits, tumor recurrence was observed within 3 months in 5 cases, which were characterized by PXR translocation. These findings indicate that the combined expression of PXR and ABCB1 in PBMCs may be used as a prospective indicator in diagnosis prior to histopathological diagnosis, and therefore may function as a novel biomarker for the prediction of drug resistance.
Collapse
Affiliation(s)
- Qingnuan Kong
- Department of Pathology, Qingdao Municipal Hospital, Affiliated to Medical College of Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Zenglei Han
- Department of Pathology, Qingdao Municipal Hospital, Affiliated to Medical College of Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Xiaoli Zuo
- Department of Pathology, Qingdao Hiser Hospital, Qingdao, Shandong 266011, P.R. China
| | - Hongjun Wei
- Department of Pathology, Qingdao Municipal Hospital, Affiliated to Medical College of Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Weiqing Huang
- Department of Pathology, Qingdao Municipal Hospital, Affiliated to Medical College of Qingdao University, Qingdao, Shandong 266071, P.R. China
| |
Collapse
|
27
|
Banerjee M, Chai SC, Wu J, Robbins D, Chen T. Tryptophan 299 is a conserved residue of human pregnane X receptor critical for the functional consequence of ligand binding. Biochem Pharmacol 2016; 104:131-8. [PMID: 26902414 DOI: 10.1016/j.bcp.2016.02.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 02/17/2016] [Indexed: 12/23/2022]
Abstract
PXR is a xenobiotic receptor that regulates drug metabolism by regulating the expression of drug-metabolizing enzymes including CYP3A4. It can be modulated by chemicals with different structures, functional groups and sizes. X-ray crystal structures of the ligand binding domain of human PXR (hPXR) alone or bound with agonists reveal a highly hydrophobic ligand binding pocket where the aromatic amino acid residue W299 appears to play a critical role in ligand binding. Here, we have investigated the role of W299 on the functional consequence of hPXR ligand binding. We first found that substitution of W299 with a hydrophobic residue retained its response to rifampicin, but substitution with a charged residue altered such agonist response in activating the transcription of CYP3A4. The activity of hPXR mutants on CYP3A4 expression correlates with the ability of hPXR mutants to interact with co-activator SRC-1. We further demonstrated that the effect of replacing W299 by residues with different side chains on hPXR's function varied depending on the specific agonist used. Finally we interpreted the cellular activity of the hPXR mutants by analyzing reported crystallographic data and proposing a model. Our findings reveal the essential role of W299 in the transactivation of hPXR in response to agonist binding, and provide useful information for designing modulators of hPXR.
Collapse
Affiliation(s)
- Monimoy Banerjee
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Sergio C Chai
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Jing Wu
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Delira Robbins
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA.
| |
Collapse
|
28
|
Cecchin E, De Mattia E, Toffoli G. Nuclear receptors and drug metabolism for the personalization of cancer therapy. Expert Opin Drug Metab Toxicol 2016; 12:291-306. [DOI: 10.1517/17425255.2016.1141196] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Erika Cecchin
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico- National Cancer Institute, Aviano, Italy
| | - Elena De Mattia
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico- National Cancer Institute, Aviano, Italy
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico- National Cancer Institute, Aviano, Italy
| |
Collapse
|
29
|
Ghose R, Mallick P, Taneja G, Chu C, Moorthy B. In Vitro Approaches to Study Regulation of Hepatic Cytochrome P450 (CYP) 3A Expression by Paclitaxel and Rifampicin. Methods Mol Biol 2016; 1395:55-68. [PMID: 26910068 DOI: 10.1007/978-1-4939-3347-1_4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cancer is the second leading cause of mortality worldwide; however the response rate to chemotherapy treatment remains slow, mainly due to narrow therapeutic index and multidrug resistance. Paclitaxel (taxol) has a superior outcome in terms of response rates and progression-free survival. However, numerous cancer patients are resistant to this drug. In this investigation, we tested the hypothesis that induction of cytochrome P450 (Cyp)3a11 gene by paclitaxel is downregulated by the inflammatory mediator, lipopolysaccharide (LPS), and that the pro-inflammatory cytokine, tumor necrosis factor (TNF)-α, attenuates human CYP3A4 gene induction by rifampicin. Primary mouse hepatocytes were pretreated with LPS (1 μg/ml) for 10 min, followed by paclitaxel (20 μM) or vehicle for 24 h. RNA was extracted from the cells by trizol method followed by cDNA synthesis and analysis by real-time PCR. Paclitaxel significantly induced gene expression of Cyp3a11 (~30-fold) and this induction was attenuated in LPS-treated samples. Induction and subsequent downregulation of CYP3A enzyme can impact paclitaxel treatment in cancer patients where inflammatory mediators are activated. It has been shown that the nuclear receptor, pregnane X receptor (PXR), plays a role in the induction of CYP enzymes. In order to understand the mechanisms of regulation of human CYP3A4 gene, we co-transfected HepG2 cells (human liver cell line) with CYP3A4-luciferase construct and a PXR expression plasmid. The cells were then treated with the pro-inflammatory cytokine, TNFα, followed by the prototype CYP3A inducer rifampicin. It is well established that rifampicin activates PXR, leading to CYP3A4 induction. We found that induction of CYP3A4-luciferase activity by rifampicin was significantly attenuated by TNFα. In conclusion, we describe herein several in vitro approaches entailing primary and cultured hepatocytes, real-time PCR, and transcriptional activation (transfection) assays to investigate the molecular regulation of CYP3A, which plays a pivotal role in the metabolism of numerous chemotherapeutic drugs. Genetic or drug-induced variation in CYP3A and/or PXR expression could contribute to drug resistance to chemotherapeutic agents in cancer patients.
Collapse
Affiliation(s)
- Romi Ghose
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, TX, 77030, USA
| | - Pankajini Mallick
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, TX, 77030, USA
| | - Guncha Taneja
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, TX, 77030, USA
| | - Chun Chu
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Bhagavatula Moorthy
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
30
|
Koutsounas I, Giaginis C, Alexandrou P, Zizi-Serbetzoglou A, Patsouris E, Kouraklis G, Theocharis S. Pregnane X Receptor Expression in Human Pancreatic Adenocarcinoma: Associations With Clinicopathologic Parameters, Tumor Proliferative Capacity, Patients' Survival, and Retinoid X Receptor Expression. Pancreas 2015; 44:1134-40. [PMID: 26355550 DOI: 10.1097/mpa.0000000000000405] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVES Pregnane X receptor (PXR) has been involved in human malignancy, either by directly affecting carcinogenesis or by inducing drug-drug interactions and chemotherapy resistance. The present study aimed to assess the clinical significance of PXR in pancreatic adenocarcinoma. METHODS Pregnane X receptor and its heterodimers' PXR/retinoid X receptor α (RXR-α), RXR-β, and RXR-γ expression were assessed immunohistochemically on tumoral samples from 55 pancreatic adenocarcinoma patients and were associated with clinicopathologic parameters, tumor proliferative capacity, and patients' survival. RESULTS Enhanced PXR expression was noted in 24 (43.6%) of 55 pancreatic adenocarcinoma cases. Pancreatic adenocarcinoma patients presenting increased histological grade of tumor differentiation showed a significant increased incidence of elevated PXR expression (P = 0.023). Enhanced PXR/RXR-β expression was significantly associated with smaller tumor size and earlier clinical stage (P = 0.005 and P = 0.003, respectively). Elevated PXR/RXR-γ expression was significantly associated with smaller tumor size and earlier clinical stage (P = 0.012 and P = 0.014, respectively) and borderline with the absence of lymph node metastases (P = 0.056). In addition, pancreatic adenocarcinoma patients presenting enhanced PXR/RXR-γ expression showed marginally longer survival times compared with those with decreased expression (log-rank test, P = 0.053). CONCLUSIONS This study supported evidence that PXR and its copartners' overexpression may be associated with favorable clinicopathologic parameters and better outcome in pancreatic adenocarcinoma.
Collapse
Affiliation(s)
- Ioannis Koutsounas
- From the *First Department of Pathology, Medical School, National and Kapodistrian University of Athens, Athens; †Department of Food Science and Nutrition, School of the Environment, University of the Aegean, Myrina, Lemnos; ‡Department of Pathology, Tzaneio General Hospital, Piraeus; and §Second Department of Propedeutic Surgery, Medical School, University of Athens, Athens, Greece
| | | | | | | | | | | | | |
Collapse
|
31
|
Martin P, Giardiello M, McDonald TO, Smith D, Siccardi M, Rannard SP, Owen A. Augmented Inhibition of CYP3A4 in Human Primary Hepatocytes by Ritonavir Solid Drug Nanoparticles. Mol Pharm 2015; 12:3556-68. [DOI: 10.1021/acs.molpharmaceut.5b00204] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Philip Martin
- Department
of Molecular and Clinical Pharmacology, University of Liverpool, Block H, 70 Pembroke Place, Liverpool L69 3GF, U.K
| | - Marco Giardiello
- Department
of Chemistry, University of Liverpool, Crown Street, Liverpool L69 3BX, U.K
| | - Tom O. McDonald
- Department
of Chemistry, University of Liverpool, Crown Street, Liverpool L69 3BX, U.K
| | - Darren Smith
- Department
of Applied Sciences, University of Northumbria at Newcastle, Ellison
Building, Newcastle NE1
8ST, U.K
| | - Marco Siccardi
- Department
of Molecular and Clinical Pharmacology, University of Liverpool, Block H, 70 Pembroke Place, Liverpool L69 3GF, U.K
| | - Steven P. Rannard
- Department
of Chemistry, University of Liverpool, Crown Street, Liverpool L69 3BX, U.K
| | - Andrew Owen
- Department
of Molecular and Clinical Pharmacology, University of Liverpool, Block H, 70 Pembroke Place, Liverpool L69 3GF, U.K
| |
Collapse
|
32
|
Fallopia japonica, a Natural Modulator, Can Overcome Multidrug Resistance in Cancer Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:868424. [PMID: 26346937 PMCID: PMC4545274 DOI: 10.1155/2015/868424] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 06/26/2015] [Accepted: 07/06/2015] [Indexed: 02/08/2023]
Abstract
Resistance of cancer cells to chemotherapy is controlled by the decrease of intracellular drug accumulation, increase of detoxification, and diminished propensity of cancer cells to undergo apoptosis. ATP-binding cassette (ABC) membrane transporters with intracellular metabolic enzymes contribute to the complex and unresolved phenomenon of multidrug resistance (MDR). Natural products as alternative medicine have great potential to discover new MDR inhibitors with diverse modes of action. In this study, we characterized several extracts of traditional Chinese medicine (TCM) plants (N = 16) for their interaction with ABC transporters, cytochrome P3A4 (CYP3A4), and glutathione-S-transferase (GST) activities and their cytotoxic effect on different cancer cell lines. Fallopia japonica (FJ) (Polygonaceae) shows potent inhibitory effect on CYP3A4 P-glycoprotein activity about 1.8-fold when compared to verapamil as positive control. FJ shows significant inhibitory effect (39.81%) compared with the known inhibitor ketoconazole and 100 μg/mL inhibited GST activity to 14 μmol/min/mL. FJ shows moderate cytotoxicity in human Caco-2, HepG-2, and HeLa cell lines; IC50 values were 630.98, 198.80, and 317.37 µg/mL, respectively. LC-ESI-MS were used to identify and quantify the most abundant compounds, emodin, polydatin, and resveratrol, in the most active extract of FJ. Here, we present the prospect of using Fallopia japonica as natural products to modulate the function of ABC drug transporters. We are conducting future study to evaluate the ability of the major active secondary metabolites of Fallopia japonica to modulate MDR and their impact in case of failure of chemotherapy.
Collapse
|
33
|
Screening Ingredients from Herbs against Pregnane X Receptor in the Study of Inductive Herb-Drug Interactions: Combining Pharmacophore and Docking-Based Rank Aggregation. BIOMED RESEARCH INTERNATIONAL 2015; 2015:657159. [PMID: 26339628 PMCID: PMC4538340 DOI: 10.1155/2015/657159] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 12/22/2014] [Accepted: 12/27/2014] [Indexed: 01/30/2023]
Abstract
The issue of herb-drug interactions has been widely reported. Herbal ingredients can activate nuclear receptors and further induce the gene expression alteration of drug-metabolizing enzyme and/or transporter. Therefore, the herb-drug interaction will happen when the herbs and drugs are coadministered. This kind of interaction is called inductive herb-drug interactions. Pregnane X Receptor (PXR) and drug-metabolizing target genes are involved in most of inductive herb-drug interactions. To predict this kind of herb-drug interaction, the protocol could be simplified to only screen agonists of PXR from herbs because the relations of drugs with their metabolizing enzymes are well studied. Here, a combinational in silico strategy of pharmacophore modelling and docking-based rank aggregation (DRA) was employed to identify PXR's agonists. Firstly, 305 ingredients were screened out from 820 ingredients as candidate agonists of PXR with our pharmacophore model. Secondly, DRA was used to rerank the result of pharmacophore filtering. To validate our prediction, a curated herb-drug interaction database was built, which recorded 380 herb-drug interactions. Finally, among the top 10 herb ingredients from the ranking list, 6 ingredients were reported to involve in herb-drug interactions. The accuracy of our method is higher than other traditional methods. The strategy could be extended to studies on other inductive herb-drug interactions.
Collapse
|
34
|
Ai N, Fan X, Ekins S. In silico methods for predicting drug-drug interactions with cytochrome P-450s, transporters and beyond. Adv Drug Deliv Rev 2015; 86:46-60. [PMID: 25796619 DOI: 10.1016/j.addr.2015.03.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 01/05/2015] [Accepted: 03/11/2015] [Indexed: 12/13/2022]
Abstract
Drug-drug interactions (DDIs) are associated with severe adverse effects that may lead to the patient requiring alternative therapeutics and could ultimately lead to drug withdrawal from the market if they are severe. To prevent the occurrence of DDI in the clinic, experimental systems to evaluate drug interaction have been integrated into the various stages of the drug discovery and development process. A large body of knowledge about DDI has also accumulated through these studies and pharmacovigillence systems. Much of this work to date has focused on the drug metabolizing enzymes such as cytochrome P-450s as well as drug transporters, ion channels and occasionally other proteins. This combined knowledge provides a foundation for a hypothesis-driven in silico approach, using either cheminformatics or physiologically based pharmacokinetics (PK) modeling methods to assess DDI potential. Here we review recent advances in these approaches with emphasis on hypothesis-driven mechanistic models for important protein targets involved in PK-based DDI. Recent efforts with other informatics approaches to detect DDI are highlighted. Besides DDI, we also briefly introduce drug interactions with other substances, such as Traditional Chinese Medicines to illustrate how in silico modeling can be useful in this domain. We also summarize valuable data sources and web-based tools that are available for DDI prediction. We finally explore the challenges we see faced by in silico approaches for predicting DDI and propose future directions to make these computational models more reliable, accurate, and publically accessible.
Collapse
Affiliation(s)
- Ni Ai
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Xiaohui Fan
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China.
| | - Sean Ekins
- Collaborations in Chemistry, 5616 Hilltop Needmore Road, Fuquay-Varina, NC 27526, USA.
| |
Collapse
|
35
|
Joyce H, McCann A, Clynes M, Larkin A. Influence of multidrug resistance and drug transport proteins on chemotherapy drug metabolism. Expert Opin Drug Metab Toxicol 2015; 11:795-809. [PMID: 25836015 DOI: 10.1517/17425255.2015.1028356] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Chemotherapy involving the use of anticancer drugs remains an important strategy in the overall management of patients with metastatic cancer. Acquisition of multidrug resistance remains a major impediment to successful chemotherapy. Drug transporters in cell membranes and intracellular drug metabolizing enzymes contribute to the resistance phenotype and determine the pharmacokinetics of anticancer drugs in the body. AREAS COVERED ATP-binding cassette (ABC) transporters mediate the transport of endogenous metabolites and xenobiotics including cytotoxic drugs out of cells. Solute carrier (SLC) transporters mediate the influx of cytotoxic drugs into cells. This review focuses on the substrate interaction of these transporters, on their biology and what role they play together with drug metabolizing enzymes in eliminating therapeutic drugs from cells. EXPERT OPINION The majority of anticancer drugs are substrates for the ABC transporter and SLC transporter families. Together, these proteins have the ability to control the influx and the efflux of structurally unrelated chemotherapeutic drugs, thereby modulating the intracellular drug concentration. These interactions have important clinical implications for chemotherapy because ultimately they determine therapeutic efficacy, disease progression/relapse and the success or failure of patient treatment.
Collapse
Affiliation(s)
- Helena Joyce
- Dublin City University, National Institute for Cellular Biotechnology (NICB) , Glasnevin, Dublin 9 , Ireland +353 1 7005700 ; +353 1 7005484 ;
| | | | | | | |
Collapse
|
36
|
Khan JA, Camac DM, Low S, Tebben AJ, Wensel DL, Wright MC, Su J, Jenny V, Gupta RD, Ruzanov M, Russo KA, Bell A, An Y, Bryson JW, Gao M, Gambhire P, Baldwin ET, Gardner D, Cavallaro CL, Duncia JV, Hynes J. Developing Adnectins that target SRC co-activator binding to PXR: a structural approach toward understanding promiscuity of PXR. J Mol Biol 2015; 427:924-942. [PMID: 25579995 DOI: 10.1016/j.jmb.2014.12.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 12/19/2014] [Accepted: 12/29/2014] [Indexed: 02/08/2023]
Abstract
The human pregnane X receptor (PXR) is a promiscuous nuclear receptor that functions as a sensor to a wide variety of xenobiotics and regulates expression of several drug metabolizing enzymes and transporters. We have generated "Adnectins", derived from 10th fibronectin type III domain ((10)Fn3), that target the PXR ligand binding domain (LBD) interactions with the steroid receptor co-activator-1 (SRC-1) peptide, displacing SRC-1 binding. Adnectins are structurally homologous to the immunoglobulin superfamily. Three different co-crystal structures of PXR LBD with Adnectin-1 and CCR1 (CC chemokine receptor-1) antagonist Compound-1 were determined. This structural information was used to modulate PXR affinity for a related CCR1 antagonist compound that entered into clinical trials for rheumatoid arthritis. The structures of PXR with Adnectin-1 reveal specificity of Adnectin-1 in not only targeting the interface of the SRC-1 interactions but also engaging the same set of residues that are involved in binding of SRC-1 to PXR. Substituting SRC-1 with Adnectin-1 does not alter the binding conformation of Compound-1 in the ligand binding pocket. The structure also reveals the possibility of using Adnectins as crystallization chaperones to generate structures of PXR with compounds of interest.
Collapse
Affiliation(s)
- Javed A Khan
- Bristol-Myers Squibb Research and Development, PO Box 4000, Princeton, NJ 08543-4000, USA.
| | - Daniel M Camac
- Bristol-Myers Squibb Research and Development, PO Box 4000, Princeton, NJ 08543-4000, USA
| | - Simon Low
- Adnexus, 100 Beaver Street, Waltham, MA 02453, USA
| | - Andrew J Tebben
- Bristol-Myers Squibb Research and Development, PO Box 4000, Princeton, NJ 08543-4000, USA
| | | | | | - Julie Su
- Adnexus, 100 Beaver Street, Waltham, MA 02453, USA
| | | | | | - Max Ruzanov
- Bristol-Myers Squibb Research and Development, PO Box 4000, Princeton, NJ 08543-4000, USA
| | | | - Aneka Bell
- Bristol-Myers Squibb Research and Development, PO Box 4000, Princeton, NJ 08543-4000, USA
| | - Yongmi An
- Bristol-Myers Squibb Research and Development, PO Box 4000, Princeton, NJ 08543-4000, USA
| | - James W Bryson
- Bristol-Myers Squibb Research and Development, PO Box 4000, Princeton, NJ 08543-4000, USA
| | - Mian Gao
- Bristol-Myers Squibb Research and Development, PO Box 4000, Princeton, NJ 08543-4000, USA
| | | | - Eric T Baldwin
- Bristol-Myers Squibb Research and Development, PO Box 4000, Princeton, NJ 08543-4000, USA
| | - Daniel Gardner
- Bristol-Myers Squibb Research and Development, PO Box 4000, Princeton, NJ 08543-4000, USA
| | - Cullen L Cavallaro
- Bristol-Myers Squibb Research and Development, PO Box 4000, Princeton, NJ 08543-4000, USA
| | - John V Duncia
- Bristol-Myers Squibb Research and Development, PO Box 4000, Princeton, NJ 08543-4000, USA
| | - John Hynes
- Bristol-Myers Squibb Research and Development, PO Box 4000, Princeton, NJ 08543-4000, USA
| |
Collapse
|
37
|
Prakash C, Zuniga B, Song CS, Jiang S, Cropper J, Park S, Chatterjee B. Nuclear Receptors in Drug Metabolism, Drug Response and Drug Interactions. NUCLEAR RECEPTOR RESEARCH 2015; 2:101178. [PMID: 27478824 PMCID: PMC4963026 DOI: 10.11131/2015/101178] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Orally delivered small-molecule therapeutics are metabolized in the liver and intestine by phase I and phase II drug-metabolizing enzymes (DMEs), and transport proteins coordinate drug influx (phase 0) and drug/drug-metabolite efflux (phase III). Genes involved in drug metabolism and disposition are induced by xenobiotic-activated nuclear receptors (NRs), i.e. PXR (pregnane X receptor) and CAR (constitutive androstane receptor), and by the 1α, 25-dihydroxy vitamin D3-activated vitamin D receptor (VDR), due to transactivation of xenobiotic-response elements (XREs) present in phase 0-III genes. Additional NRs, like HNF4-α, FXR, LXR-α play important roles in drug metabolism in certain settings, such as in relation to cholesterol and bile acid metabolism. The phase I enzymes CYP3A4/A5, CYP2D6, CYP2B6, CYP2C9, CYP2C19, CYP1A2, CYP2C8, CYP2A6, CYP2J2, and CYP2E1 metabolize >90% of all prescription drugs, and phase II conjugation of hydrophilic functional groups (with/without phase I modification) facilitates drug clearance. The conjugation step is mediated by broad-specificity transferases like UGTs, SULTs, GSTs. This review delves into our current understanding of PXR/CAR/VDR-mediated regulation of DME and transporter expression, as well as effects of single nucleotide polymorphism (SNP) and epigenome (specified by promoter methylation, histone modification, microRNAs, long non coding RNAs) on the expression of PXR/CAR/VDR and phase 0-III mediators, and their impacts on variable drug response. Therapeutic agents that target epigenetic regulation and the molecular basis and consequences (overdosing, underdosing, or beneficial outcome) of drug-drug/drug-food/drug-herb interactions are also discussed. Precision medicine requires understanding of a drug's impact on DME and transporter activity and their NR-regulated expression in order to achieve optimal drug efficacy without adverse drug reactions. In future drug screening, new tools such as humanized mouse models and microfluidic organs-on-chips, which mimic the physiology of a multicellular environment, will likely replace the current cell-based workflow.
Collapse
Affiliation(s)
- Chandra Prakash
- Department of Molecular Medicine/Institute of Biotechnology, The University of Texas Health Science Center at San Antonio, Texas Research Park, 15355 Lambda Drive, San Antonio, Texas 78245
- William Carey University College of Osteopathic Medicine, 498 Tucsan Ave, Hattiesburg, Mississipi 39401
| | - Baltazar Zuniga
- Department of Molecular Medicine/Institute of Biotechnology, The University of Texas Health Science Center at San Antonio, Texas Research Park, 15355 Lambda Drive, San Antonio, Texas 78245
- University of Texas at Austin, 2100 Comal Street, Austin, Texas 78712
| | - Chung Seog Song
- Department of Molecular Medicine/Institute of Biotechnology, The University of Texas Health Science Center at San Antonio, Texas Research Park, 15355 Lambda Drive, San Antonio, Texas 78245
| | - Shoulei Jiang
- Department of Molecular Medicine/Institute of Biotechnology, The University of Texas Health Science Center at San Antonio, Texas Research Park, 15355 Lambda Drive, San Antonio, Texas 78245
| | - Jodie Cropper
- Department of Molecular Medicine/Institute of Biotechnology, The University of Texas Health Science Center at San Antonio, Texas Research Park, 15355 Lambda Drive, San Antonio, Texas 78245
| | - Sulgi Park
- Department of Molecular Medicine/Institute of Biotechnology, The University of Texas Health Science Center at San Antonio, Texas Research Park, 15355 Lambda Drive, San Antonio, Texas 78245
| | - Bandana Chatterjee
- Department of Molecular Medicine/Institute of Biotechnology, The University of Texas Health Science Center at San Antonio, Texas Research Park, 15355 Lambda Drive, San Antonio, Texas 78245
- South Texas Veterans Health Care System, Audie L Murphy VA Hospital, 7400 Merton Minter Boulevard, San Antonio, Texas 78229
| |
Collapse
|
38
|
Hu DG, Meech R, McKinnon RA, Mackenzie PI. Transcriptional regulation of human UDP-glucuronosyltransferase genes. Drug Metab Rev 2014; 46:421-58. [PMID: 25336387 DOI: 10.3109/03602532.2014.973037] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Glucuronidation is an important metabolic pathway for many small endogenous and exogenous lipophilic compounds, including bilirubin, steroid hormones, bile acids, carcinogens and therapeutic drugs. Glucuronidation is primarily catalyzed by the UDP-glucuronosyltransferase (UGT) 1A and two subfamilies, including nine functional UGT1A enzymes (1A1, 1A3-1A10) and 10 functional UGT2 enzymes (2A1, 2A2, 2A3, 2B4, 2B7, 2B10, 2B11, 2B15, 2B17 and 2B28). Most UGTs are expressed in the liver and this expression relates to the major role of hepatic glucuronidation in systemic clearance of toxic lipophilic compounds. Hepatic glucuronidation activity protects the body from chemical insults and governs the therapeutic efficacy of drugs that are inactivated by UGTs. UGT mRNAs have also been detected in over 20 extrahepatic tissues with a unique complement of UGT mRNAs seen in almost every tissue. This extrahepatic glucuronidation activity helps to maintain homeostasis and hence regulates biological activity of endogenous molecules that are primarily inactivated by UGTs. Deciphering the molecular mechanisms underlying tissue-specific UGT expression has been the subject of a large number of studies over the last two decades. These studies have shown that the constitutive and inducible expression of UGTs is primarily regulated by tissue-specific and ligand-activated transcription factors (TFs) via their binding to cis-regulatory elements (CREs) in UGT promoters and enhancers. This review first briefly summarizes published UGT gene transcriptional studies and the experimental models and tools utilized in these studies, and then describes in detail the TFs and their respective CREs that have been identified in the promoters and/or enhancers of individual UGT genes.
Collapse
Affiliation(s)
- Dong Gui Hu
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University School of Medicine, Flinders Medical Centre , Bedford Park, SA , Australia
| | | | | | | |
Collapse
|
39
|
Frye C, Koonce C, Walf A. Role of pregnane xenobiotic receptor in the midbrain ventral tegmental area for estradiol- and 3α,5α-THP-facilitated lordosis of female rats. Psychopharmacology (Berl) 2014; 231:3365-74. [PMID: 24435323 PMCID: PMC4102666 DOI: 10.1007/s00213-013-3406-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 12/05/2013] [Indexed: 12/17/2022]
Abstract
RATIONALE Progesterone and its metabolite, 5α-pregnan-3α-ol-20-one (3α,5α-THP), have actions in the ventral tegmental area (VTA) that are required for lordosis, a characteristic mating posture of female rodents. 17β-estradiol (estradiol) co-varies with progestogens over natural cycles, enhances production of 3α,5α-THP, and is required for successful reproductive behavior. OBJECTIVES A question of interest is the role of pregnane xenobiotic receptor (PXR), a nuclear receptor that regulates enzymes needed for the production of 3α,5α-THP, for estradiol-mediated lordosis. The hypothesis tested was that if PXR is involved in estradiol-mediated biosynthesis of 3α,5α-THP and reproductive behavior, knocking down expression of PXR in the VTA of estradiol-primed, but not vehicle-primed, rats should decrease lordosis and midbrain 3α,5α-THP; effects may be attenuated by 3α,5α-THP administered to the VTA. METHODS Ovariectomized rats were administered subcutaneous injections of oil vehicle or estradiol. Rats were then administered PXR antisense oligonucleotides (PXR AS-ODNs; which are expected to locally knock down expression of PXR), or control (saline), infusions to the VTA. Rats were administered 3α,5α-THP or vehicle via infusions to the VTA. Reproductive behavior (paced mating task) of rats was determined in addition to exploratory (open field), affective (elevated plus maze), and pro-social (social interaction task) behavior. RESULTS Reproductive behavior (i.e., increased lordosis) was enhanced with estradiol-priming and infusions of 3α,5α-THP to the VTA. Infusions of PXR AS-ODNs to the VTA attenuated responses in estradiol-, but not vehicle-, primed rats, compared to control infusions. CONCLUSIONS PXR may be involved in a neuroregulatory response involving biosynthesis of 3α,5α-THP in the midbrain VTA of estradiol-primed rats.
Collapse
Affiliation(s)
- C.A. Frye
- Dept. of Psychology, The University at Albany-SUNY, Life Sciences 01058, 1400 Washington Ave., Albany, NY USA 12222,Dept. of Biological Sciences, The University at Albany-SUNY, Life Sciences 01058, 1400 Washington Ave., Albany, NY USA 12222,The Centers for Neuroscience, The University at Albany-SUNY, Life Sciences 01058, 1400 Washington Ave., Albany, NY USA 12222,The Centers for Life Sciences Research, The University at Albany-SUNY, Life Sciences 01058, 1400 Washington Ave., Albany, NY USA 12222,Department of Chemistry, Institute for Arctic Biology, The University of Alaska–Fairbanks, Fairbanks, Alaska USA 99775,IDeA Network of Biomedical Excellence, The University of Alaska–Fairbanks, Fairbanks, Alaska USA 99775
| | - C.J. Koonce
- Dept. of Psychology, The University at Albany-SUNY, Life Sciences 01058, 1400 Washington Ave., Albany, NY USA 12222,Department of Chemistry, Institute for Arctic Biology, The University of Alaska–Fairbanks, Fairbanks, Alaska USA 99775
| | - A.A. Walf
- Dept. of Psychology, The University at Albany-SUNY, Life Sciences 01058, 1400 Washington Ave., Albany, NY USA 12222,Department of Chemistry, Institute for Arctic Biology, The University of Alaska–Fairbanks, Fairbanks, Alaska USA 99775,IDeA Network of Biomedical Excellence, The University of Alaska–Fairbanks, Fairbanks, Alaska USA 99775
| |
Collapse
|
40
|
Zhuo W, Hu L, Lv J, Wang H, Zhou H, Fan L. Role of pregnane X receptor in chemotherapeutic treatment. Cancer Chemother Pharmacol 2014; 74:217-27. [PMID: 24889719 DOI: 10.1007/s00280-014-2494-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Accepted: 05/06/2014] [Indexed: 10/25/2022]
Abstract
Pregnane X receptor (PXR) is a member of the nuclear receptor superfamily that differently expresses not only in human normal tissues but also in numerous types of human cancers. PXR can be activated by many endogenous substances and exogenous chemicals, and thus affects chemotherapeutic effects and intervenes drug-drug interactions by regulating its target genes involving drug metabolism and transportation, cell proliferation and apoptosis, and modulating endobiotic homeostasis. Tissue and context-specific regulation of PXR contributes to diverse effects in the treatment for numerous cancers. Genetic variants of PXR lead to intra- and inter-individual differences in the expression and inducibility of PXR, resulting in different responses to chemotherapy in PXR-positive cancers. The purpose of this review is to summarize and discuss the role of PXR in the metabolism and clearance of anticancer drugs. It is also expected that this review will provide insights into PXR-mediated enhancement for chemotherapeutic treatment, prediction of drug-drug interactions and personalized medicine.
Collapse
Affiliation(s)
- Wei Zhuo
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| | | | | | | | | | | |
Collapse
|
41
|
Hu DG, Rogers A, Mackenzie PI. Epirubicin upregulates UDP glucuronosyltransferase 2B7 expression in liver cancer cells via the p53 pathway. Mol Pharmacol 2014; 85:887-97. [PMID: 24682467 DOI: 10.1124/mol.114.091603] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Anthracyclines are effective genotoxic anticancer drugs for treating human malignancies; however, their clinical use is limited by tumor resistance and severe cardiotoxicity (e.g., congestive heart failure). Epirubicin (EPI) is less cardiotoxic compared with other canonical anthracyclines (e.g., doxorubicin). This has been attributed to its unique glucuronidation detoxification pathway. EPI is primarily inactivated by UDP-glucuronosyltransferase 2B7 (UGT2B7) in the liver. Hence, the regulation of hepatic UGT2B7 expression is critical for EPI systemic clearance but remains poorly characterized. We show herein that EPI upregulates UGT2B7 expression in hepatocellular carcinoma (HCC) HepG2 and Huh7 cells. Our analyses of deleted and mutated UGT2B7 promoter constructs identified a p53 response element (p53RE) in the UGT2B7 promoter. EPI stimulated UGT2B7 promoter activity via this p53RE and enhanced in vivo p53 binding at this p53RE in HepG2 cells. Knockdown of p53 expression by small interfering RNA silencing technology significantly repressed the capacity of EPI to stimulate UGT2B7 transcription. Furthermore, the p53 activator nutlin-3α significantly enhanced UGT2B7 expression and recruited the p53 protein to the UGT2B7 p53RE in HepG2 cells. Collectively, our results demonstrated that EPI promotes its own detoxification via the p53-mediated pathway. This regulation may contribute to tumor resistance to EPI-containing HCC chemotherapy and may also provide a new explanation for the reduced cardiotoxicity of EPI compared with other anthracyclines. Our finding also suggests that upon exposure to genotoxic agents, detoxifying genes are activated by the p53-mediated pathway to clear genotoxic agents locally within the tumor site or even systemically through the liver.
Collapse
Affiliation(s)
- Dong Gui Hu
- Department of Clinical Pharmacology, Flinders University School of Medicine, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | | | | |
Collapse
|
42
|
Frye CA, Koonce CJ, Walf AA. The pregnane xenobiotic receptor, a prominent liver factor, has actions in the midbrain for neurosteroid synthesis and behavioral/neural plasticity of female rats. Front Syst Neurosci 2014; 8:60. [PMID: 24795576 PMCID: PMC4001026 DOI: 10.3389/fnsys.2014.00060] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 03/31/2014] [Indexed: 11/13/2022] Open
Abstract
A novel factor of interest for growth/plasticity in the brain is pregnane xenobiotic receptor (PXR). PXR is a liver factor known for its role in xenobiotic clearance and cholesterol metabolism. It is expressed in the brain, suggesting a potential role for plasticity, particularly involving cholesterol-based steroids and neurosteroids. Mating induces synthesis of neurosteroids in the midbrain Ventral Tegmental Area (VTA) of female rodents, as well as other “plastic” regions of the brain, including the hippocampus, that may be involved in the consolidation of the mating experience. Reducing PXR in the VTA attenuates mating-induced biosynthesis of the neurosteroid, 5α-pregnan-3α-ol-20-one (3α,5α-THP). The 18 kDA translocator protein (TSPO) is one rate-limiting factor for 3α,5α-THP neurosteroidogenesis. The hypothesis tested was that PXR is an upstream factor of TSPO for neurosteroidogenesis of 3α,5α-THP in the VTA for lordosis, independent of peripheral glands. First, proestrous rats were administered a TSPO blocker (PK11195) and/or 3α,5α-THP following infusions of PXR antisense oligonucleotides (AS-ODNs) or vehicle to the VTA. Inhibiting TSPO with PK11195 reduced 3α,5α-THP levels in the midbrain and lordosis, an effect that could be reversed with 3α,5α-THP administration, but not AS-ODN+3α,5α-THP. Second, proestrous, ovariectomized (OVX), or ovariectomized/adrenalectomized (OVX/ADX) rats were infused with a TSPO enhancer (FGIN 1-27) subsequent to AS-ODNs or vehicle to the VTA. PXR AS-ODNs blocked actions of FGIN 1–27 for lordosis and 3α,5α-THP levels among proestrous > OVX > OVX/ADX rats. Thus, PXR may be upstream of TSPO, involved in neurosteroidogenesis of 3α,5α-THP in the brain for plasticity. This novel finding of a liver factor involved in behavioral/neural plasticity substantiates future studies investigating factors known for their prominent actions in the peripheral organs, such as the liver, for modulating brain function and its augmentation.
Collapse
Affiliation(s)
- Cheryl A Frye
- Department of Psychology, The University at Albany-SUNY Albany, NY, USA ; Department of Biological Sciences, The University at Albany-SUNY Albany, NY, USA ; The Center for Neuroscience Research, The University at Albany-SUNY Albany, NY, USA ; The Center for Life Sciences Research, The University at Albany-SUNY Albany, NY, USA ; Department of Chemistry and Biochemistry, The University of Alaska-Fairbanks Fairbanks, AK, USA ; Institute of Arctic Biology, The University of Alaska-Fairbanks Fairbanks, AK, USA ; IDeA Network of Biomedical Excellence (INBRE), The University of Alaska-Fairbanks Fairbanks, AK, USA
| | - Carolyn J Koonce
- Department of Psychology, The University at Albany-SUNY Albany, NY, USA ; Institute of Arctic Biology, The University of Alaska-Fairbanks Fairbanks, AK, USA ; IDeA Network of Biomedical Excellence (INBRE), The University of Alaska-Fairbanks Fairbanks, AK, USA
| | - Alicia A Walf
- Department of Psychology, The University at Albany-SUNY Albany, NY, USA ; Institute of Arctic Biology, The University of Alaska-Fairbanks Fairbanks, AK, USA ; IDeA Network of Biomedical Excellence (INBRE), The University of Alaska-Fairbanks Fairbanks, AK, USA
| |
Collapse
|
43
|
Frye CA, Koonce CJ, Walf AA. Novel receptor targets for production and action of allopregnanolone in the central nervous system: a focus on pregnane xenobiotic receptor. Front Cell Neurosci 2014; 8:106. [PMID: 24782710 PMCID: PMC3988369 DOI: 10.3389/fncel.2014.00106] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 03/25/2014] [Indexed: 12/05/2022] Open
Abstract
Neurosteroids are cholesterol-based hormones that can be produced in the brain, independent of secretion from peripheral endocrine glands, such as the gonads and adrenals. A focus in our laboratory for over 25 years has been how production of the pregnane neurosteroid, allopregnanolone, is regulated and the novel (i.e., non steroid receptor) targets for steroid action for behavior. One endpoint of interest has been lordosis, the mating posture of female rodents. Allopregnanolone is necessary and sufficient for lordosis, and the brain circuitry underlying it, such as actions in the midbrain ventral tegmental area (VTA), has been well-characterized. Published and recent findings supporting a dynamic role of allopregnanolone are included in this review. First, contributions of ovarian and adrenal sources of precursors of allopregnanolone, and the requisite enzymatic actions for de novo production in the central nervous system will be discussed. Second, how allopregnanolone produced in the brain has actions on behavioral processes that are independent of binding to steroid receptors, but instead involve rapid modulatory actions via neurotransmitter targets (e.g., γ-amino butyric acid-GABA, N-methyl-D-aspartate- NMDA) will be reviewed. Third, a recent focus on characterizing the role of a promiscuous nuclear receptor, pregnane xenobiotic receptor (PXR), involved in cholesterol metabolism and expressed in the VTA, as a target for allopregnanolone and how this relates to both actions and production of allopregnanolone will be addressed. For example, allopregnanolone can bind PXR and knocking down expression of PXR in the midbrain VTA attenuates actions of allopregnanolone via NMDA and/or GABAA for lordosis. Our understanding of allopregnanolone’s actions in the VTA for lordosis has been extended to reveal the role of allopregnanolone for broader, clinically-relevant questions, such as neurodevelopmental processes, neuropsychiatric disorders, epilepsy, and aging.
Collapse
Affiliation(s)
- Cheryl A Frye
- Department of Psychology, The University at Albany-SUNY Albany, NY, USA ; Department of Biological Sciences, The University at Albany-SUNY Albany, NY, USA ; The Centers for Neuroscience, The University at Albany-SUNY Albany, NY, USA ; Life Sciences Research, The University at Albany-SUNY Albany, NY, USA ; Department of Chemistry and Biochemistry, The University of Alaska-Fairbanks Fairbanks, AK, USA ; Institute of Arctic Biology, The University of Alaska-Fairbanks Fairbanks, AK, USA ; IDeA Network of Biomedical Excellence (INBRE), The University of Alaska-Fairbanks Fairbanks, AK, USA
| | - Carolyn J Koonce
- Department of Psychology, The University at Albany-SUNY Albany, NY, USA ; Institute of Arctic Biology, The University of Alaska-Fairbanks Fairbanks, AK, USA ; IDeA Network of Biomedical Excellence (INBRE), The University of Alaska-Fairbanks Fairbanks, AK, USA
| | - Alicia A Walf
- Department of Psychology, The University at Albany-SUNY Albany, NY, USA ; Institute of Arctic Biology, The University of Alaska-Fairbanks Fairbanks, AK, USA ; IDeA Network of Biomedical Excellence (INBRE), The University of Alaska-Fairbanks Fairbanks, AK, USA
| |
Collapse
|
44
|
Robbins D, Chen T. Tissue-specific regulation of pregnane X receptor in cancer development and therapy. Cell Biosci 2014; 4:17. [PMID: 24690092 PMCID: PMC4237984 DOI: 10.1186/2045-3701-4-17] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 02/19/2014] [Indexed: 11/10/2022] Open
Abstract
As a ligand-dependent transcription factor of the nuclear hormone receptor superfamily, the pregnane X receptor (PXR) has a multitude of functions including regulating xenobiotic and cholesterol metabolism, energy homeostasis, gut mucosal defense, and cancer development. Whereas the detoxification functions of PXR have been widely studied and well established, the role of PXR in cancer has become controversial. With more than 60% of non-prescription and prescription drugs being metabolized by cytochrome P450 enzyme 3A4 (CYP3A4), a transcriptional target of PXR, insights into the regulation of PXR during systemic administration of novel treatment modalities will lead to a better understanding of PXR function in the context of human disease. Previous studies have suggested that PXR activation decreases drug sensitivity and augments chemoresistance in certain colon cancers mainly through the upregulation of CYP3A4 and multidrug resistance protein-1 (MDR1). Later studies suggest that downregulation of PXR expression may be oncogenic in hormone-dependent breast and endometrial cancers by reducing estrogen metabolism via CYP3A4; thus, higher estradiol concentrations contribute to carcinogenesis. These results suggest a differential role of PXR in tumor growth regulation dependent on tissue type and tumor microenvironment. Here, we will summarize the various mechanisms utilized by PXR to induce its diverse effects on cancerous tissues. Moreover, current approaches will be explored to evaluate the exploitation of PXR-mediated pathways as a novel mechanistic approach to cancer therapy.
Collapse
Affiliation(s)
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St, Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA.
| |
Collapse
|
45
|
Bruce A, Rybak AP. CYB5D2 requires heme-binding to regulate HeLa cell growth and confer survival from chemotherapeutic agents. PLoS One 2014; 9:e86435. [PMID: 24466094 PMCID: PMC3899279 DOI: 10.1371/journal.pone.0086435] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 12/10/2013] [Indexed: 12/19/2022] Open
Abstract
The cytochrome b5 domain containing 2 (CYB5D2; Neuferricin) protein has been reported to bind heme, however, the critical residues responsible for heme-binding are undefined. Furthermore, the relationship between heme-binding and CYB5D2-mediated intracellular functions remains unknown. Previous studies examining heme-binding in two cytochrome b5 heme-binding domain-containing proteins, damage-associated protein 1 (Dap1; Saccharomyces cerevisiae) and human progesterone receptor membrane component 1 (PGRMC1), have revealed that conserved tyrosine (Y) 73, Y79, aspartic acid (D) 86, and Y127 residues present in human CYB5D2 may be involved in heme-binding. CYB5D2 binds to type b heme, however, only the substitution of glycine (G) at D86 (D86G) within its cytochrome b5 heme-binding (cyt-b5) domain abolished its heme-binding ability. Both CYB5D2 and CYB5D2(D86G) localize to the endoplasmic reticulum. Ectopic CYB5D2 expression inhibited cell proliferation and anchorage-independent colony growth of HeLa cells. Conversely, CYB5D2 knockdown and ectopic CYB5D2(D86G) expression increased cell proliferation and colony growth. As PGRMC1 has been reported to regulate the expression and activities of cytochrome P450 proteins (CYPs), we examined the role of CYB5D2 in regulating the activities of CYPs involved in sterol synthesis (CYP51A1) and drug metabolism (CYP3A4). CYB5D2 co-localizes with cytochrome P450 reductase (CYPOR), while CYB5D2 knockdown reduced lanosterol demethylase (CYP51A1) levels and rendered HeLa cells sensitive to mevalonate. Additionally, knockdown of CYB5D2 reduced CYP3A4 activity. Lastly, CYB5D2 expression conferred HeLa cell survival from chemotherapeutic agents (paclitaxel, cisplatin and doxorubicin), with its ability to promote survival being dependent on its heme-binding ability. Taken together, this study provides evidence that heme-binding is critical for CYB5D2 in regulating HeLa cell growth and survival, with endogenous CYB5D2 being required to modulate CYP activities.
Collapse
Affiliation(s)
- Anthony Bruce
- Medical Sciences Program, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
- Father Sean O’Sullivan Research Institute, Hamilton, Ontario, Canada
- Hamilton Centre for Kidney Research (HCKR), St. Joseph’s Hospital, Hamilton, Ontario, Canada
- * E-mail: (AB); (APR)
| | - Adrian P. Rybak
- Medical Sciences Program, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
- Father Sean O’Sullivan Research Institute, Hamilton, Ontario, Canada
- Hamilton Centre for Kidney Research (HCKR), St. Joseph’s Hospital, Hamilton, Ontario, Canada
- * E-mail: (AB); (APR)
| |
Collapse
|
46
|
Fotaki N. Pros and cons of methods used for the prediction of oral drug absorption. Expert Rev Clin Pharmacol 2014; 2:195-208. [DOI: 10.1586/17512433.2.2.195] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
47
|
Kwatra D, Vadlapudi AD, Vadlapatla RK, Khurana V, Pal D, Mitra AK. Binary and ternary combinations of anti-HIV protease inhibitors: effect on gene expression and functional activity of CYP3A4 and efflux transporters. ACTA ACUST UNITED AC 2014; 29:101-10. [PMID: 24399676 DOI: 10.1515/dmdi-2013-0056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 11/27/2013] [Indexed: 01/14/2023]
Abstract
BACKGROUND The purpose of this study is to identify the effect of binary and ternary combinations of anti-HIV protease inhibitors (PIs) on the expression of metabolizing enzyme (CYP3A4) and efflux transporters [multidrug resistance-associated protein 2 (MRP2), P-glycoprotein (P-gp) and breast cancer resistant protein (BCRP)] in a model intestinal cell line (LS-180). METHODS LS-180 cells were treated with various combinations of PIs (amprenavir, indinavir, saquinavir and lopinavir), and the mRNA expression levels of metabolizing enzyme and efflux transporters were measured using quantitative reverse transcription polymerase chain reaction. The alteration of gene expression was further correlated to the expression of nuclear hormone receptor PXR. Uptake of fluorescent and radioactive substrates was carried out to study the functional activity of these proteins. Cytotoxicity and adenosine triphosphate (ATP) assays were carried out to measure stress responses. RESULTS Binary and ternary combinations of PIs appeared to modulate the expression of CYP3A4, MRP2, P-gp and BCRP in a considerable manner. Unlike the individual PIs, their binary combinations showed much greater induction of metabolizing enzyme and efflux proteins. However, such pronounced induction was not observed in the presence of ternary combinations. The observed trend of altered mRNA expression was found to correlate well with the change in expression levels of PXR. The gene expression was found to correlate with activity assays. Lack of cytotoxicity and ATP activity was observed in the treatment samples, suggesting that these alterations in expression levels were probably not stress responses. CONCLUSIONS In the present study, we demonstrated that combinations of drugs can have serious consequences toward the treatment of HIV infection by altering their bioavailability and disposition.
Collapse
|
48
|
Rathod V, Jain S, Nandekar P, Sangamwar AT. Human pregnane X receptor: a novel target for anticancer drug development. Drug Discov Today 2014; 19:63-70. [DOI: 10.1016/j.drudis.2013.08.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 05/02/2013] [Accepted: 08/15/2013] [Indexed: 02/07/2023]
|
49
|
De Mattia E, Dreussi E, Cecchin E, Toffoli G. Pharmacogenetics of the nuclear hormone receptors: the missing link between environment and drug effects? Pharmacogenomics 2013; 14:2035-54. [DOI: 10.2217/pgs.13.214] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
In the last decade, genetic variations in ABC/SLC transporters and phase I/II enzymes have raised pharmacogenetic markers as being predictive to the attention of researchers in the field of personalized medicine in oncology. However, it is becoming evident that the sequence variations in these genes cannot address by themselves the sharp interindividual variability in drug effects. Recently, nuclear receptors (NRs), including pregnane X receptor, constitutive androstane receptor, retinoid X receptor, farnesoid X receptor, liver X receptor, vitamin D receptor, peroxisome proliferator-activated receptors and HNF4A, have demonstrated key roles in regulating transporter and metabolic gene expression in response to xeno/endobiotics, as well as antineoplastic drugs. These findings attracted interest to the genetics of the NRs for their possible role in influencing the metabolism and pharmacological profiles of chemotherapeutics. In this review, we aim to summarize the most recent findings in the innovative field of NR pharmacogenetics and findings in how they could integrate with more traditional markers in order to improve drug treatment personalization.
Collapse
Affiliation(s)
- Elena De Mattia
- Experimental & Clinical Pharmacology Unit, Centro di Riferimento Oncologico–National Cancer Institute, Via Franco Gallini, 2, 33081, Aviano, Italy
| | - Eva Dreussi
- Experimental & Clinical Pharmacology Unit, Centro di Riferimento Oncologico–National Cancer Institute, Via Franco Gallini, 2, 33081, Aviano, Italy
| | - Erika Cecchin
- Experimental & Clinical Pharmacology Unit, Centro di Riferimento Oncologico–National Cancer Institute, Via Franco Gallini, 2, 33081, Aviano, Italy
| | - Giuseppe Toffoli
- Experimental & Clinical Pharmacology Unit, Centro di Riferimento Oncologico–National Cancer Institute, Via Franco Gallini, 2, 33081, Aviano, Italy
| |
Collapse
|
50
|
Pregnane X receptor dependent up-regulation of CYP2C9 and CYP3A4 in tumor cells by antitumor acridine agents, C-1748 and C-1305, selectively diminished under hypoxia. Biochem Pharmacol 2013; 86:231-41. [PMID: 23688499 DOI: 10.1016/j.bcp.2013.05.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Revised: 05/04/2013] [Accepted: 05/08/2013] [Indexed: 01/12/2023]
Abstract
Induction of proteins involved in drug metabolism and in drug delivery has a significant impact on drug-drug interactions and on the final therapeutic effects. Two antitumor acridine derivatives selected for present studies, C-1748 (9-(2'-hydroxyethylamino)-4-methyl-1-nitroacridine) and C-1305 (5-dimethylaminopropylamino-8-hydroxy-triazoloacridinone), expressed high and low susceptibility to metabolic transformations with liver microsomes, respectively. In the current study, we examined the influence of these compounds on cytochrome P450 3A4 (CYP3A4) and 2C9 (CYP2C9) enzymatic activity and gene expression in HepG2 tumor cells. Luminescence and HPLC examination, real-time RT-PCR and western blot analyses along with transfection of pregnane X receptor (PXR) siRNA and CYP3A4 reporter gene assays were applied. We found that both compounds strongly induced CYP3A4 and CYP2C9 activity and expression as well as expression of UGT1A1 and MDR1 in a concentration- and time-dependent manner. C-1748-mediated CYP3A4 and CYP2C9 mRNA induction equal to rifampicin occurred at extremely low concentrations (0.001 and 0.01μM), whereas 10μM C-1305 induced three-times higher CYP3A4 and CYP2C9 mRNA levels than rifampicin did. CYP3A4 and CYP2C9 expressions were shown to be PXR-dependent; however, neither compound influenced PXR expression. Thus, the observed drug-mediated induction of isoenzymes occurs on a PXR-mediated regulatory level. Furthermore, C-1748 and C-1305 were demonstrated to be selective PXR agonists. These effects are hypoxia-inhibited only in the case of C-1748, which is sensitive to P450 metabolism. In summary, PXR was found to be a new target of the studied compounds. Thus, possible combinations of these compounds with other therapeutics might lead to the PXR-dependent enzyme-mediated drug-drug interactions.
Collapse
|