1
|
Zhang K, Chen S, Zhou Z, Yu S, Zhan Y, Zhang X. Current trends and landscape of drug resistance in renal cell carcinoma: a bibliometric analysis. Discov Oncol 2025; 16:820. [PMID: 40389616 PMCID: PMC12089581 DOI: 10.1007/s12672-025-02594-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 05/06/2025] [Indexed: 05/21/2025] Open
Abstract
INTRODUCTION Renal cell carcinoma (RCC) is a common type of kidney cancer, and the prognosis for patients with advanced-stage disease remains poor. One major obstacle is the development of drug resistance, which severely limits the effectiveness of therapeutic interventions. This bibliometric study aims to provide a comprehensive overview of current research trends on drug resistance in RCC. METHODS This study examines publications on drug resistance in RCC from 2000 to 2023, sourced from the Web of Science Core Collection (WoSCC). Detailed analyses were conducted to identify research hotspots, academic collaborations, and emerging trends. CiteSpace, SCImago Graphica, and VOSviewer were utilized to conduct these analyses comprehensively. RESULTS This study analyzed a total of 2,804 publications from the WoSCC database. The number of annual publications showed a consistent upward trend, with an average annual growth rate of 8.12%. The United States had the highest number of publications, followed by China and Japan. The most productive institutions were the University of Texas System, Harvard University, and the National Institutes of Health (NIH). Alfred H. Schinkel emerged as the most prolific author, also having the highest H-index. The three most frequent research categories were oncology, pharmacology and pharmacy, and biochemistry and molecular biology. The evolution of research topics was assessed in 5-year intervals, revealing that recent themes such as ferroptosis and immunotherapy have gained increasing attention. Keyword analysis indicated a shift in research focus toward cell lipid metabolism, androgen receptor and specific molecular signatures. CONCLUSION This study offers the first comprehensive bibliometric analysis specifically focused on drug resistance in RCC. It identifies current research trends, highlights emerging hotspots, and provides insights into key contributors and ongoing challenges in the field. Our study provides a theoretical reference and guidance to guide future research efforts to address drug resistance in RCC more effectively.
Collapse
Affiliation(s)
- Kenan Zhang
- Department of Urology, the First Hospital Affiliated to Zhengzhou University, No.1 Jianshe Dong Road, District of ErQi, Zhengzhou, 450002, Henan, People's Republic of China
| | - Shixu Chen
- Department of Urology, the First Hospital Affiliated to Zhengzhou University, No.1 Jianshe Dong Road, District of ErQi, Zhengzhou, 450002, Henan, People's Republic of China
| | - Zhenzhen Zhou
- Department of Urology, the First Hospital Affiliated to Zhengzhou University, No.1 Jianshe Dong Road, District of ErQi, Zhengzhou, 450002, Henan, People's Republic of China
| | - Shuanbao Yu
- Department of Urology, the First Hospital Affiliated to Zhengzhou University, No.1 Jianshe Dong Road, District of ErQi, Zhengzhou, 450002, Henan, People's Republic of China
| | - Yonghao Zhan
- Department of Urology, the First Hospital Affiliated to Zhengzhou University, No.1 Jianshe Dong Road, District of ErQi, Zhengzhou, 450002, Henan, People's Republic of China.
| | - Xuepei Zhang
- Department of Urology, the First Hospital Affiliated to Zhengzhou University, No.1 Jianshe Dong Road, District of ErQi, Zhengzhou, 450002, Henan, People's Republic of China.
| |
Collapse
|
2
|
Zhou H, Li X, Liu D. Inhibition of Renal Cell Carcinoma Growth by 1,3-thiazin-6-one Through Targeting the Inflammatory Reaction. DOKL BIOCHEM BIOPHYS 2025; 520:101-108. [PMID: 39847292 DOI: 10.1134/s1607672924601008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/15/2024] [Accepted: 10/20/2024] [Indexed: 01/24/2025]
Abstract
The current study examined the underlying mechanism and the effect of 1,3-thiazin-6-one on the growth of renal cancer. The findings showed that 1,3-thiazin-6-one treatment inhibited the growth of xenograft tumors in a dose-dependent manner in mice model of renal cancer. Furthermore, when 1,3-thiazin-6-one was administered in a dose-dependent manner to mice with renal cancer, the expression of the proteins p-PI3K and p-Akt significantly decreased. In mice model of renal cancer, 1,3-thiazin-6-one treatment also inhibited p-mTOR expression. In a model of renal cancer in mice, the 1,3-thiazin-6-one therapy specifically targeted the expression of nuclear factor κB (NF κB) and signal transducer and activator of transcription 3 (STAT3). Renal cancer cells' vitality was significantly (p < 0.05) reduced in a dose-dependent manner upon exposure to 1,3-thiazin-6-one. It also prevents invasiveness of the renal cancer cells in addition to suppression of colony forming potential. In summary, the 1,3-thiazin-6-one blocks the growth of kidney cancer by focusing on the pathways that trigger the inflammatory cascade. Therefore, 1,3-thiazin-6-one might be developed as a significant medicinal agent to cure renal cancer.
Collapse
Affiliation(s)
- Hongmei Zhou
- Nephrology Department, Zhongxian People's Hospital of Chongqing, Zhongxian County, 404300, Chongqing, China
| | - Xin Li
- Nephrology Department, Zhongxian People's Hospital of Chongqing, Zhongxian County, 404300, Chongqing, China
| | - Dongju Liu
- Nephrology Department, Liangping Hospital, Liangping District People's Hospital of Chongqing, 405299, Chongqing, China.
| |
Collapse
|
3
|
Lee MM, Chou YX, Huang SH, Cheng HT, Liu CH, Huang GJ. Renoprotective Effects of Brown-Strain Flammulina velutipes Singer in Chronic Kidney Disease-Induced Mice Through Modulation of Oxidative Stress and Inflammation and Regulation of Renal Transporters. Int J Mol Sci 2024; 25:12096. [PMID: 39596166 PMCID: PMC11593982 DOI: 10.3390/ijms252212096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/04/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
Cisplatin, widely used in chemotherapy, acts through mechanisms such as oxidative stress to damage the DNA and cause the apoptosis of cancer cells. Although effective, cisplatin treatment is associated with considerable side effects including chronic kidney disease (CKD). Studies on brown-strain Flammulina velutipes Singer (FVB) have shown its significant antioxidant and immunomodulatory effects. High-performance liquid chromatography (HPLC) confirmed that the FVB extract contained gallic acid and quercetin. This study investigated whether FVB extract can improve and protect against cisplatin-induced CKD in mice. C57BL/6 mice were used as an animal model, and CKD was induced through intraperitoneal cisplatin injection. FVB was orally administered to the mice for 14 consecutive days. N-acetylcysteine (NAC) was administered in the positive control group. Organ pathology and serum biochemical analyses were conducted after the mice were sacrificed. Significant dose-dependent differences were discovered in body mass, kidney mass, histopathology, renal function, inflammatory factors, and antioxidant functions among the different groups. FVB extract reduced the severity of cisplatin-induced CKD in pathways related to inflammation, autophagy, apoptosis, fibrosis, oxidative stress, and organic ion transport proteins; FVB extract, thus, displays protective physiological activity in kidney cells. Additionally, orally administered high doses of the FVB extract resulted in significantly superior renal function, inflammatory factors, antioxidative activity, and fibrotic pathways. This study establishes a strategy for future clinical adjunctive therapy using edible-mushroom-derived FVB extract to protect kidney function.
Collapse
Affiliation(s)
- Min-Min Lee
- Department of Food Nutrition and Healthy Biotechnology, College of Medical and Health Sciences, Asia University, Taichung 413, Taiwan; (M.-M.L.); (Y.-X.C.); (H.-T.C.)
| | - Yun-Xuan Chou
- Department of Food Nutrition and Healthy Biotechnology, College of Medical and Health Sciences, Asia University, Taichung 413, Taiwan; (M.-M.L.); (Y.-X.C.); (H.-T.C.)
| | - Sheng-Hsiung Huang
- Department of Healthcare Administration, Asia University, Taichung 413, Taiwan;
| | - Hsu-Tang Cheng
- Department of Food Nutrition and Healthy Biotechnology, College of Medical and Health Sciences, Asia University, Taichung 413, Taiwan; (M.-M.L.); (Y.-X.C.); (H.-T.C.)
- Department of Surgery, Asia University Hospital, Taichung 413, Taiwan
| | - Chung-Hsiang Liu
- Department of Neurology, China Medical University Hospital, China Medical University, Taichung 404, Taiwan;
| | - Guan-Jhong Huang
- Department of Food Nutrition and Healthy Biotechnology, College of Medical and Health Sciences, Asia University, Taichung 413, Taiwan; (M.-M.L.); (Y.-X.C.); (H.-T.C.)
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan
| |
Collapse
|
4
|
Luo Y, Guan B, Deng X, Bai P, Huang H, Miao C, Sun A, Li Z, Yang D, Wang X, Shao Z, Wu Y, Xing J, Chen B, Wang T. Methuosis Inducer SGI-1027 Cooperates with Everolimus to Promote Apoptosis and Pyroptosis by Triggering Lysosomal Membrane Permeability in Renal Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404693. [PMID: 39119834 PMCID: PMC11481186 DOI: 10.1002/advs.202404693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/16/2024] [Indexed: 08/10/2024]
Abstract
The mTOR inhibitor everolimus has been approved as a sequential or second-line therapy for renal cell carcinoma (RCC). However, the development of drug resistance limits its clinical applications. This study aims to address the challenge of everolimus resistance and provide new insights into the treatment of advanced RCC. Here, the cytotoxicity of the DNA methyltransferase 1 (DNMT1) inhibitor SGI-1027 in inducing cell vacuolation and methuosis is discovered and demonstrated for the first time. Additionally, SGI-1027 exerts synergistic effects with everolimus, as their combination suppresses the growth, migration, and invasion of renal cancer cells. Mechanistically, apoptosis and GSDME-dependent pyroptosis triggered by lysosomal membrane permeability (LMP) are observed. The upregulation of GSDME expression and increased lysosomal activity in renal cancer cells provide a therapeutic window for the combination of these two drugs to treat renal cancer. The combination treatment exhibits effective anti-tumor activity and is well tolerated in a subcutaneous tumor model. Overall, this study validates and reveals the specific cytotoxicity property of SGI-1027 and its potent synergistic effect with everolimus, offering new insights into advanced RCC therapy and everolimus-resistance overcoming.
Collapse
Affiliation(s)
- Yu Luo
- The Key Laboratory of Urinary Tract Tumors and CalculiDepartment of UrologyThe First Affiliated Hospital of Xiamen UniversitySchool of MedicineXiamen UniversityXiamenFujian361003P. R. China
- Department of UrologyThe First Affiliated Hospital of Chongqing Medical UniversityYuzhongChongqing400016P. R. China
| | - Bing Guan
- The Key Laboratory of Urinary Tract Tumors and CalculiDepartment of UrologyThe First Affiliated Hospital of Xiamen UniversitySchool of MedicineXiamen UniversityXiamenFujian361003P. R. China
| | - Xiaoqi Deng
- Department of NephrologyZigong Fourth People's HospitalZigongSichuan643000P. R. China
| | - Peide Bai
- The Key Laboratory of Urinary Tract Tumors and CalculiDepartment of UrologyThe First Affiliated Hospital of Xiamen UniversitySchool of MedicineXiamen UniversityXiamenFujian361003P. R. China
| | - Haichao Huang
- The Key Laboratory of Urinary Tract Tumors and CalculiDepartment of UrologyThe First Affiliated Hospital of Xiamen UniversitySchool of MedicineXiamen UniversityXiamenFujian361003P. R. China
| | - Chaohao Miao
- The Key Laboratory of Urinary Tract Tumors and CalculiDepartment of UrologyThe First Affiliated Hospital of Xiamen UniversitySchool of MedicineXiamen UniversityXiamenFujian361003P. R. China
| | - Anran Sun
- The Key Laboratory of Urinary Tract Tumors and CalculiDepartment of UrologyThe First Affiliated Hospital of Xiamen UniversitySchool of MedicineXiamen UniversityXiamenFujian361003P. R. China
| | - Zhipeng Li
- The Key Laboratory of Urinary Tract Tumors and CalculiDepartment of UrologyThe First Affiliated Hospital of Xiamen UniversitySchool of MedicineXiamen UniversityXiamenFujian361003P. R. China
| | - Dianqiang Yang
- State Key Laboratory of Cellular Stress BiologySchool of Life SciencesXiamen UniversityXiamenFujian361102P. R. China
| | - Xuegang Wang
- The Key Laboratory of Urinary Tract Tumors and CalculiDepartment of UrologyThe First Affiliated Hospital of Xiamen UniversitySchool of MedicineXiamen UniversityXiamenFujian361003P. R. China
| | - Zhiqiang Shao
- Xiamen University Laboratory Animal CenterXiamen UniversityXiamenFujian361102P. R. China
| | - Yulong Wu
- Department of UrologyThe Fifth Hospital of XiamenXiamenFujian361101P. R. China
| | - Jinchun Xing
- The Key Laboratory of Urinary Tract Tumors and CalculiDepartment of UrologyThe First Affiliated Hospital of Xiamen UniversitySchool of MedicineXiamen UniversityXiamenFujian361003P. R. China
| | - Bin Chen
- The Key Laboratory of Urinary Tract Tumors and CalculiDepartment of UrologyThe First Affiliated Hospital of Xiamen UniversitySchool of MedicineXiamen UniversityXiamenFujian361003P. R. China
| | - Tao Wang
- The Key Laboratory of Urinary Tract Tumors and CalculiDepartment of UrologyThe First Affiliated Hospital of Xiamen UniversitySchool of MedicineXiamen UniversityXiamenFujian361003P. R. China
| |
Collapse
|
5
|
Zhou M, Cao Y, Xie S, Xiang Y, Li M, Yang H, Dong Z. Gypenoside XLIX alleviates acute liver injury: Emphasis on NF-κB/PPAR-α/NLRP3 pathways. Int Immunopharmacol 2024; 131:111872. [PMID: 38503011 DOI: 10.1016/j.intimp.2024.111872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/01/2024] [Accepted: 03/12/2024] [Indexed: 03/21/2024]
Abstract
Liver is one of the vital organs in the human body and liver injury will have a very serious impact on human damage. Gypenoside XLIX is a PPAR-α activator that inhibits the activation of the NF-κB signaling pathway. The components of XLIX have pharmacological effects such as cardiovascular protection, antihypoxia, anti-tumor and anti-aging. In this study, we used cecum ligation and puncture (CLP) was used to induce in vivo mice hepatic injury, and lipopolysaccharide (LPS)-induced inflammation in RAW264.7 cells, evaluated whether Gypenoside XLIX could have a palliative effect on sepsis-induced acute liver injury via NF-κB/PPAR-α/NLRP3. In order to gain insight into these mechanisms, six groups were created in vivo: the Contol group, the Sham group, the CLP group, the CLP + XLIX group (40 mg/kg) and the Sham + XLIX (40 mg/kg) group, and the CLP + DEX (2 mg/kg) group. Three groups were created in vitro: Control, LPS, LPS + XLIX (40 μM). The analytical methods used included H&E staining, qPCR, reactive oxygen species (ROS), oil red O staining, and Western Blot. The results showed that XLIX attenuated hepatic inflammatory injury in mice with toxic liver disease through inhibition of the TLR4-mediated NF-κB pathway, attenuated lipid accumulation through activation of PPAR-α, and attenuated hepatic pyroptosis by inhibiting NLRP3 production. Regarding the imbalance between oxidative and antioxidant defenses due to septic liver injury, XLIX reduced liver oxidative stress-related biomarkers (ALT, AST), reduced ROS accumulation, decreased the amount of malondialdehyde (MDA) produced by lipid peroxidation, and increased the levels of antioxidant enzymes such as glutathione (GSH) and catalase (CAT). Our results demonstrate that XLIX can indeed attenuate septic liver injury. This is extremely important for future studies on XLIX and sepsis, and provides a potential pathway for the treatment of acute liver injury.
Collapse
Affiliation(s)
- Mengyuan Zhou
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yu Cao
- School of Civil and Ocean Engineering, Jiangsu Ocean University, Lianyungang 222005, China
| | - Shaocheng Xie
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yannan Xiang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Mengxin Li
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Haitao Yang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Zibo Dong
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China.
| |
Collapse
|
6
|
Chen X, Zhang T, Ren X, Wei Y, Zhang X, Zang X, Ju X, Qin C, Xu D. CHKB-AS1 enhances proliferation and resistance to NVP-BEZ235 of renal cancer cells via regulating the phosphorylation of MAP4 and PI3K/AKT/mTOR signaling. Eur J Med Res 2023; 28:588. [PMID: 38093375 PMCID: PMC10720114 DOI: 10.1186/s40001-023-01558-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/29/2023] [Indexed: 12/17/2023] Open
Abstract
Targeted therapy is pivotal in renal carcinoma treatment, and the dual-inhibitor NVP-BEZ235 has emerged as a promising candidate in preliminary studies. Its effectiveness against renal carcinoma and the mechanisms underlying potential resistance, however, warrant further exploration. This study aims to elucidate these aspects, enhancing our understanding of NVP-BEZ235's future clinical utility. To investigate resistance mechanisms, renal cancer cell lines were exposed to progressively increasing concentrations of NVP-BEZ235, leading to the development of stable resistance. These resistant cells underwent extensive RNA-sequencing analysis. We implemented gene interference techniques using plasmid vectors and lentivirus and conducted regular IC50 assessments. To pinpoint the role of LncRNAs, we utilized FISH and immunofluorescence staining assays, supplemented by RNA pull-down and RIP assays to delineate interactions between LncRNA and its RNA-binding protein (RBP). Further, Western blotting and qRT-PCR were employed to examine alterations in signaling pathways, with an animal model providing additional validation. Our results show a marked increase in the IC50 of NVP-BEZ235 in resistant cell lines compared to their parental counterparts. A significant revelation was the role of LncRNA-CHKB-AS1 in mediating drug resistance. We observed dysregulated expression of CHKB-AS1 in both clinical samples of clear cell renal cell carcinoma (ccRCC) and cell lines. In vivo experiments further substantiated our findings, showing that CHKB-AS1 overexpression significantly enhanced tumor growth and resistance to NVP-BEZ235 in a subcutaneous tumorigenesis model, as evidenced by increased tumor volume and weight, whereas CHKB-AS1 knockdown led to a marked reduction in these parameters. Critically, CHKB-AS1 was identified to interact with MAP4, a key regulator in the phosphorylation of the PI3k/Akt/mTOR pathway. This interaction contributes to a diminished antitumor effect of NVP-BEZ235, highlighting the intricate mechanism through which CHKB-AS1 modulates drug resistance pathways, potentially impacting therapeutic strategies against renal carcinoma.
Collapse
Affiliation(s)
- Xinglin Chen
- Urology Centre, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Pudong New District, Shanghai, 201203, China
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Street, Nanjing, 210029, Jiangsu Province, China
| | - Tongtong Zhang
- Urology Centre, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Pudong New District, Shanghai, 201203, China
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Street, Nanjing, 210029, Jiangsu Province, China
| | - Xiaohan Ren
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Street, Nanjing, 210029, Jiangsu Province, China
| | - Yuang Wei
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Street, Nanjing, 210029, Jiangsu Province, China
| | - Xu Zhang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Street, Nanjing, 210029, Jiangsu Province, China
| | - Xinyue Zang
- Urology Centre, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Pudong New District, Shanghai, 201203, China
| | - Xiran Ju
- Urology Centre, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Pudong New District, Shanghai, 201203, China.
| | - Chao Qin
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Street, Nanjing, 210029, Jiangsu Province, China.
| | - Dongliang Xu
- Urology Centre, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Pudong New District, Shanghai, 201203, China.
| |
Collapse
|
7
|
Prosseda PP, Dannewitz Prosseda S, Tran M, Liton PB, Sun Y. Crosstalk between the mTOR pathway and primary cilia in human diseases. Curr Top Dev Biol 2023; 155:1-37. [PMID: 38043949 PMCID: PMC11227733 DOI: 10.1016/bs.ctdb.2023.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Autophagy is a fundamental catabolic process whereby excessive or damaged cytoplasmic components are degraded through lysosomes to maintain cellular homeostasis. Studies of mTOR signaling have revealed that mTOR controls biomass generation and metabolism by modulating key cellular processes, including protein synthesis and autophagy. Primary cilia, the assembly of which depends on kinesin molecular motors, serve as sensory organelles and signaling platforms. Given these pathways' central role in maintaining cellular and physiological homeostasis, a connection between mTOR and primary cilia signaling is starting to emerge in a variety of diseases. In this review, we highlight recent advances in our understanding of the complex crosstalk between the mTOR pathway and cilia and discuss its function in the context of related diseases.
Collapse
Affiliation(s)
- Philipp P Prosseda
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, United States
| | | | - Matthew Tran
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Paloma B Liton
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, United States
| | - Yang Sun
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, United States; Palo Alto Veterans Administration Medical Center, Palo Alto, CA, United States.
| |
Collapse
|
8
|
Maenaka A, Kinoshita K, Hara H, Cooper DKC. The case for the therapeutic use of mechanistic/mammalian target of rapamycin (mTOR) inhibitors in xenotransplantation. Xenotransplantation 2023; 30:e12802. [PMID: 37029499 PMCID: PMC11286223 DOI: 10.1111/xen.12802] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 03/23/2023] [Indexed: 04/09/2023]
Abstract
The mechanistic/mammalian target of rapamycin (mTOR) is one of the systems that are necessary to maintain cell homeostasis, such as survival, proliferation, and differentiation. mTOR inhibitors (mTOR-Is) are utilized as immunosuppressants and anti-cancer drugs. In organ allotransplantation, current regimens infrequently include an mTOR-I, which are positioned more commonly as alternative immunosuppressants. In clinical allotransplantation, long-term efficacy has been established, but there is a significant incidence of adverse events, for example, inhibition of wound healing, buccal ulceration, anemia, hyperglycemia, dyslipidemia, and thrombocytopenia, some of which are dose-dependent. mTOR-Is have properties that may be especially beneficial in xenotransplantation. These include suppression of T cell proliferation, increases in the number of T regulatory cells, inhibition of pig graft growth, and anti-inflammatory, anti-viral, and anti-cancer effects. We here review the potential benefits and risks of mTOR-Is in xenotransplantation and suggest that the benefits exceed the adverse effects.
Collapse
Affiliation(s)
- Akihiro Maenaka
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - Kohei Kinoshita
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - Hidetaka Hara
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, Yunnan, China
| | - David K. C. Cooper
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
9
|
Aguayo F, Perez-Dominguez F, Osorio JC, Oliva C, Calaf GM. PI3K/AKT/mTOR Signaling Pathway in HPV-Driven Head and Neck Carcinogenesis: Therapeutic Implications. BIOLOGY 2023; 12:biology12050672. [PMID: 37237486 DOI: 10.3390/biology12050672] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023]
Abstract
High-risk human papillomaviruses (HR-HPVs) are the causal agents of cervical, anogenital and a subset of head and neck carcinomas (HNCs). Indeed, oropharyngeal cancers are a type of HNC highly associated with HR-HPV infections and constitute a specific clinical entity. The oncogenic mechanism of HR-HPV involves E6/E7 oncoprotein overexpression for promoting cell immortalization and transformation, through the downregulation of p53 and pRB tumor suppressor proteins, among other cellular targets. Additionally, E6/E7 proteins are involved in promoting PI3K/AKT/mTOR signaling pathway alterations. In this review, we address the relationship between HR-HPV and PI3K/AKT/mTOR signaling pathway activation in HNC with an emphasis on its therapeutic importance.
Collapse
Affiliation(s)
- Francisco Aguayo
- Departamento de Biomedicina, Facultad de Medicina, Universidad de Tarapacá, Arica 1000000, Chile
| | - Francisco Perez-Dominguez
- Laboratorio de Oncovirología, Programa de Virología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 8380000, Chile
| | - Julio C Osorio
- Laboratorio de Oncovirología, Programa de Virología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 8380000, Chile
| | - Carolina Oliva
- Laboratorio de Oncovirología, Programa de Virología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 8380000, Chile
| | - Gloria M Calaf
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile
| |
Collapse
|
10
|
Circulating Biomarkers in Patients With Locally Advanced or Metastatic Renal Cell Carcinoma Treated With Everolimus in the Pre-nephrectomy Setting. Clin Oncol (R Coll Radiol) 2023; 35:e245-e255. [PMID: 36526521 DOI: 10.1016/j.clon.2022.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 09/28/2022] [Accepted: 11/18/2022] [Indexed: 12/23/2022]
Abstract
Many drugs are available in renal cell carcinoma (RCC), yet clinicians are still looking for predictive biomarkers of disease recurrence or progression supporting more personalised treatments. An assessment of circulating biomarkers over time was carried out in this French, open-label, single-arm, multicentre trial conducted in 25 patients with either locally advanced (n = 14) or metastatic RCC (n = 11) who received everolimus (10 mg daily) for 6 weeks prior to nephrectomy (NEORAD, NCT01715935). Circulating biomarkers, including circulating tumour cells, haematopoietic and endothelial cells, plasma angiogenesis and inflammatory markers were quantified at baseline, upon everolimus and post-nephrectomy. We assessed tumour burden, objective response rate upon RECIST1.1, disease-free survival (DFS) and progression-free survival (PFS). The correlation between circulating biomarkers was evaluated with multiple factor analysis and biomarker association with DFS/PFS by Cox regression. No objective response rate was obtained before nephrectomy. Upon everolimus, neutrophils, platelets and sVEGFR2 significantly decreased. We did not find any association between circulating biomarkers and DFS/PFS, but patients with the highest tumour burden at baseline had significantly higher plasma levels of interleukin-6, an inflammatory circulating biomarker, and lower levels of sVEGFR2, related to angiogenesis. Further understanding of the link between these circulating biomarkers could help to optimise drug combinations in RCC.
Collapse
|
11
|
Seo SU, Woo SM, Kim MW, Lee EW, Min KJ, Kwon TK. Phosphorylation of OTUB1 at Tyr 26 stabilizes the mTORC1 component, Raptor. Cell Death Differ 2023; 30:82-93. [PMID: 35927303 PMCID: PMC9883261 DOI: 10.1038/s41418-022-01047-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 06/18/2022] [Accepted: 07/06/2022] [Indexed: 02/01/2023] Open
Abstract
Raptor plays a critical role in mTORC1 signaling. High expression of Raptor is associated with resistance of cancer cells to PI3K/mTOR inhibitors. Here, we found that OTUB1-stabilized Raptor in a non-canonical manner. Using biochemical assays, we found that the tyrosine 26 residue (Y26) of OTUB1 played a critical role in the interaction between OTUB1 and Raptor. Furthermore, non-receptor tyrosine kinases (Src and SRMS kinases) induced phosphorylation of OTUB1 at Y26, which stabilized Raptor. Interestingly, phosphorylation of OTUB1 at Y26 did not affect the stability of other OTUB1-targeted substrates. However, dephosphorylation of OTUB1 destabilized Raptor and sensitized cancer cells to anti-cancer drugs via mitochondrial reactive oxygen species-mediated mitochondrial dysfunction. Furthermore, we detected high levels of phospho-OTUB1 and Raptor in samples of patients with renal clear carcinoma. Our results suggested that regulation of OTUB1 phosphorylation may be an effective and selective therapeutic target for treating cancers via down-regulation of Raptor.
Collapse
Affiliation(s)
- Seung Un Seo
- Department of Immunology, School of Medicine, Keimyung University, Daegu, 42601, South Korea
| | - Seon Min Woo
- Department of Immunology, School of Medicine, Keimyung University, Daegu, 42601, South Korea
| | - Min Wook Kim
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, South Korea
| | - Eun-Woo Lee
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, South Korea.
- Department of Functional Genomics, University of Science and Technology (UST), Daejeon, 34141, South Korea.
| | - Kyoung-Jin Min
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu, 41061, South Korea.
| | - Taeg Kyu Kwon
- Department of Immunology, School of Medicine, Keimyung University, Daegu, 42601, South Korea.
- Center for Forensic Pharmaceutical Science, Keimyung University, Daegu, 42601, South Korea.
| |
Collapse
|
12
|
Delcuratolo MD, Tucci M, Turco F, Di Stefano RF, Ungaro A, Audisio M, Samuelly A, Brusa F, Audisio A, Di Maio M, Scagliotti GV, Buttigliero C. Therapeutic sequencing in advanced renal cell carcinoma: How to choose considering clinical and biological factors. Crit Rev Oncol Hematol 2023; 181:103881. [PMID: 36427772 DOI: 10.1016/j.critrevonc.2022.103881] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 10/26/2022] [Accepted: 11/21/2022] [Indexed: 11/26/2022] Open
Abstract
In the last fifteen years a better understanding of the biological processes promoting tumour growth and progression led to an impressive revolution in metastatic renal cell carcinoma (mRCC) treatment landscape. Angiogenesis plays a critical role in the pathogenesis of RCC. These biological evidences led to targeted therapies interfering with vascular endothelial growth factor and mammalian target of rapamycin pathway. Another big step in the RCC therapeutic landscape was recently made because of the understanding of the interplay between angiogenesis and immune cells. Dual immune checkpoint inhibitors (ICIs) and ICIs plus tyrosine kinase inhibitors (TKI) combinations have been approved considering overall survival benefit compared to targeted therapies as first line treatment. We summarize the activity and the biological rationale of ICIs combinations as mRCC first line therapy. Additionally, we review the clinical and biological criteria useful to guide clinicians in the choice of treatment sequencing focusing on ICIs combinations resistance mechanisms.
Collapse
Affiliation(s)
- Marco Donatello Delcuratolo
- Department of Oncology, University of Turin, at Division of Medical Oncology, San Luigi Gonzaga Hospital, Regione Gonzole 10, Orbassano, Turin 10043, Italy
| | - Marcello Tucci
- Medical Oncology Department, Cardinal Massaia Hospital, Asti 14100, Italy.
| | - Fabio Turco
- Department of Oncology, University of Turin, at Division of Medical Oncology, San Luigi Gonzaga Hospital, Regione Gonzole 10, Orbassano, Turin 10043, Italy
| | - Rosario Francesco Di Stefano
- Department of Oncology, University of Turin, at Division of Medical Oncology, San Luigi Gonzaga Hospital, Regione Gonzole 10, Orbassano, Turin 10043, Italy
| | - Antonio Ungaro
- Department of Oncology, University of Turin, at Division of Medical Oncology, San Luigi Gonzaga Hospital, Regione Gonzole 10, Orbassano, Turin 10043, Italy
| | - Marco Audisio
- Department of Oncology, University of Turin, at Division of Medical Oncology, San Luigi Gonzaga Hospital, Regione Gonzole 10, Orbassano, Turin 10043, Italy
| | - Alessandro Samuelly
- Department of Oncology, University of Turin, at Division of Medical Oncology, San Luigi Gonzaga Hospital, Regione Gonzole 10, Orbassano, Turin 10043, Italy
| | - Federica Brusa
- Medical Oncology Department, Cardinal Massaia Hospital, Asti 14100, Italy
| | - Alessandro Audisio
- Department of Oncology, University of Turin, at Division of Medical Oncology, San Luigi Gonzaga Hospital, Regione Gonzole 10, Orbassano, Turin 10043, Italy
| | - Massimo Di Maio
- Department of Oncology, University of Turin, at Division of Medical Oncology, Ordine Mauriziano Hospital, Via Magellano 1, Turin 10028, Italy
| | - Giorgio Vittorio Scagliotti
- Department of Oncology, University of Turin, at Division of Medical Oncology, San Luigi Gonzaga Hospital, Regione Gonzole 10, Orbassano, Turin 10043, Italy
| | - Consuelo Buttigliero
- Department of Oncology, University of Turin, at Division of Medical Oncology, San Luigi Gonzaga Hospital, Regione Gonzole 10, Orbassano, Turin 10043, Italy
| |
Collapse
|
13
|
Chen Z, Li Z, Li C, Li B, Wang H, Nong D, Li X, Huang G, Lin J, Li W. Speckle-type POZ protein could play a potential inhibitory role in human renal cell carcinoma. BMC Cancer 2022; 22:1277. [PMID: 36474188 PMCID: PMC9727862 DOI: 10.1186/s12885-022-10340-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Speckle-type POZ protein(SPOP), a substrate adaptor of Cul3 ubiquitin ligase, plays crucial roles in solid neoplasms by promoting the ubiquitination and degradation of substrates. Limited studies have shown that SPOP is overexpressed in human renal cell carcinoma (RCC) tissue. However, the exact role of SPOP in RCC remains unclear and needs to be further elucidated. The present study showed that SPOP was expressed at different levels in different RCC cell lines. The purpose of this study was to explore the roles of SPOP in the biological features of RCC cells and the expression levels of SPOP in human tissue microarray (TMA) and kidney tissues. METHODS Here, SPOP was overexpressed by lentiviral vector transfection in ACHN and Caki-1 cells, and SPOP was knocked down in Caki-2 cells with similar transfection methods. The transfection efficiency was evaluated by quantitative PCR and western blotting analyses. The role of SPOP in the proliferation, migration, invasion and apoptosis of cell lines was determined by the MTT, wound-healing, transwell and flow cytometry assays. Moreover, the cells were treated with different drug concentrations in proliferation and apoptosis assays to investigate the effect of sunitinib and IFN-α2b on the proliferation and apoptosis of SPOP-overexpressing cells and SPOP-knockdown RCC cells. Finally, immunohistochemical staining of SPOP was performed in kidney tissues and TMAs, which included RCC tissues and corresponding adjacent normal tissues. RESULTS Overexpression of SPOP inhibited cell proliferation, migration and invasion and increased cell apoptosis. Interestingly, sunitinib and IFN-α2b at several concentrations increased the proliferation inhibitory rate and total apoptosis rate of cells overexpressing SPOP. The findings of the present study showed that the SPOP protein was significantly expressed at low levels in most clear cell RCC (ccRCC) tissues and at relatively high levels in the majority of adjacent normal tissues and kidney tissues. Kaplan-Meier survival analysis showed that there was no statistically significant difference in cumulative survival based on the data of different SPOP expression levels in TMA and patients. CONCLUSIONS In contrast to previous studies, our findings demonstrated that overexpression of SPOP might suppress the progression of RCC cells, which was supported by cell experiments and immunohistochemical staining. SPOP could be a potential tumour inhibitor in RCC.
Collapse
Affiliation(s)
- Zhi Chen
- grid.410652.40000 0004 6003 7358Department of Urology, The People’s Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy Of Medical Sciences, Nanning, China
| | - Zuan Li
- grid.410652.40000 0004 6003 7358Department of Urology, The People’s Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy Of Medical Sciences, Nanning, China
| | - Chunlin Li
- grid.410652.40000 0004 6003 7358Department of Urology, The People’s Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy Of Medical Sciences, Nanning, China
| | - Bingcai Li
- grid.410652.40000 0004 6003 7358Department of Urology, The People’s Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy Of Medical Sciences, Nanning, China
| | - Haojian Wang
- grid.410652.40000 0004 6003 7358Department of Urology, The People’s Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy Of Medical Sciences, Nanning, China
| | - Deyong Nong
- grid.410652.40000 0004 6003 7358Department of Urology, The People’s Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy Of Medical Sciences, Nanning, China
| | - Ximing Li
- grid.410652.40000 0004 6003 7358Department of Urology, The People’s Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy Of Medical Sciences, Nanning, China
| | - Guihai Huang
- grid.410652.40000 0004 6003 7358Department of Urology, The People’s Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy Of Medical Sciences, Nanning, China
| | - Junhao Lin
- grid.410652.40000 0004 6003 7358Department of Urology, The People’s Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy Of Medical Sciences, Nanning, China
| | - Wei Li
- grid.410652.40000 0004 6003 7358Department of Urology, The People’s Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy Of Medical Sciences, Nanning, China
| |
Collapse
|
14
|
Yadav RP, Chatterjee S, Chatterjee A, Pal DK, Ghosh S, Acharya K, Das M. Identification of novel mycocompounds as inhibitors of PI3K/AKT/mTOR pathway against RCC. J Recept Signal Transduct Res 2022; 42:599-607. [PMID: 36125981 DOI: 10.1080/10799893.2022.2123515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PI3K/AKT/mTOR pathway is one of the frequently disrupted signaling pathways in renal cell carcinoma (RCC) that plays a significant role in tumor formation, disease progression and therapeutic resistance. Therefore, novel natural molecules targeting the critical proteins of this pathway will provide the best alternative to existing drugs, which are toxic and develops resistance. Recent studies have recognized the anti-cancer therapeutic potential of mycocompounds. The current study is focused on screening various mycocompounds from Astraeus hygrometricus against key cancer signaling proteins phosphoinositide 3-kinase (PI3K), protein kinase B, PKB (AKT1) and mammalian target of rapamycin (mTOR). We also studied in-silico cancer cells cytotoxicity and ADMET (absorption, distribution, metabolism, excretion and toxicity) profiles to elucidate the molecular mechanism against RCC and also to uncover the pharmacokinetic profile of these compounds. Astrakurkurone and Ergosta-4,6, 8-(14) 22-tetraene-3-one were the two most efficacious compounds with highest interaction scores and bonding. These compounds were both active against RCC4 and VMRC-RCZ cell lines of RCC. The ADME profiles of both were satisfactory based on druglikeness and bioavailability score criteria. Thus, this proposed study identified astrakurkurone and ergosta-4,6, 8-(14) 22-tetraene-3-one as potential anticancer drug candidates, and provides comparative structural insight into their binding to the 3 protein kinases.
Collapse
Affiliation(s)
| | | | | | - Dilip Kumar Pal
- Department of Urology, Institute of Post Graduate Medical Education & Research, Kolkata, India
| | - Sudakshina Ghosh
- Department of Zoology, Vidyasagar College for Women, Kolkata, India
| | - Krishnendu Acharya
- Molecular and Applied Mycology and Plant Pathology Laboratory, Centre of Advanced Study, Department of Botany, University of Calcutta, Kolkata, India
| | - Madhusudan Das
- Department of Zoology, University of Calcutta, Kolkata, India
| |
Collapse
|
15
|
Wang L, Fang Z, Gao P, Zheng J. GLUD1 suppresses renal tumorigenesis and development via inhibiting PI3K/Akt/mTOR pathway. Front Oncol 2022; 12:975517. [PMID: 36203437 PMCID: PMC9530280 DOI: 10.3389/fonc.2022.975517] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/29/2022] [Indexed: 12/24/2022] Open
Abstract
Growing cancer cells are addicted to glutamine. Glutamate dehydrogenase 1 (GLUD1) is one of key enzymes in glutamine metabolism and plays a critical role in the malignancy of diverse tumors. However, its role and molecular mechanism in clear cell renal cell carcinoma (ccRCC) development and progression remain unknown. In this study, analysis results of the GEO/TCGA/UALCAN database showed that GLUD1 level was downregulated in ccRCC tissues. Immunohistochemistry and western blotting results further validated the downregulation of GLUD1 level in ccRCC tissues. GLUD1 level was gradually decreased as ccRCC stage and grade progressed. Low GLUD1 level was associated with a shorter survival and higher IC50 value for tyrosine kinase inhibitors (TKIs) in ccRCC, reminding that GLUD1 level could predict the prognosis and TKIs sensitivity of ccRCC patients. High level of methylation in GLUD1 promoter was positively correlated with the downregulation of GLUD1 level and was negatively correlated with survival of ccRCC patients. GLUD1 overexpression suppressed RCC cell proliferation, colony formation and migration by inhibiting PI3K/Akt/mTOR pathway activation. Low GLUD1 level correlated with suppressive immune microenvironment (TIME) in ccRCC. Together, we found a novel tumor-suppressing role of GLUD1 in ccRCC which was different from that in other tumors and a new mechanism for inhibiting PI3K/Akt/mTOR activation and TIME in ccRCC. These results provide a theoretical basis for GLUD1 as a therapeutic target and prognostic marker in ccRCC.
Collapse
Affiliation(s)
- Lei Wang
- Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhiyu Fang
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Peixiang Gao
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Junfang Zheng
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
- *Correspondence: Junfang Zheng,
| |
Collapse
|
16
|
Wu X, Xu Y, Liang Q, Yang X, Huang J, Wang J, Zhang H, Shi J. Recent Advances in Dual PI3K/mTOR Inhibitors for Tumour Treatment. Front Pharmacol 2022; 13:875372. [PMID: 35614940 PMCID: PMC9124774 DOI: 10.3389/fphar.2022.875372] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 04/14/2022] [Indexed: 12/31/2022] Open
Abstract
The PI3K-Akt-mTOR pathway is a viable target for cancer treatment and can be used to treat various malignant tumours, including follicular lymphoma and breast cancer. Both enzymes, PI3K and mTOR, are critical in this pathway. Hence, in recent years, an array of inhibitors targeting these two targets have been studied, showing dual PI3K/mTOR inhibition compared with single targeting small molecule inhibitors. Inhibitors not only inhibit cell proliferation but also promote cell apoptosis. These inhibitors show high potency and little drug resistance even at low doses, suggesting that PI3K/mTOR inhibitors are promising cancer drugs. Herein, we summarised the recent research of PI3K/mTOR dual inhibitors—for example, structure-activity relationship, pharmacokinetics, and clinical practice, and briefly commented on them. Clinical Trial Registration:https://clinicaltrials.gov.
Collapse
Affiliation(s)
- Xianbo Wu
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Yihua Xu
- School of Basic Medical Science, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qi Liang
- College of Medicine, Southwest Jiaotong University, Chengdu, China
| | - Xinwei Yang
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Jianli Huang
- First Clinical College of Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Jie Wang
- First Clinical College of Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Hong Zhang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jianyou Shi
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
17
|
Zhu W, Feng D, Shi X, Wei Q, Yang L. The Potential Role of Mitochondrial Acetaldehyde Dehydrogenase 2 in Urological Cancers From the Perspective of Ferroptosis and Cellular Senescence. Front Cell Dev Biol 2022; 10:850145. [PMID: 35517510 PMCID: PMC9065557 DOI: 10.3389/fcell.2022.850145] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/21/2022] [Indexed: 12/21/2022] Open
Abstract
Overproduction of reactive oxygen species (ROS) and superlative lipid peroxidation promote tumorigenesis, and mitochondrial aldehyde dehydrogenase 2 (ALDH2) is associated with the detoxification of ROS-mediated lipid peroxidation-generated reactive aldehydes such as 4-hydroxy-2-nonenal (4-HNE), malondialdehyde, and acrolein due to tobacco smoking. ALDH2 has been demonstrated to be highly associated with the prognosis and chemoradiotherapy sensitivity of many types of cancer, including leukemia, lung cancer, head and neck cancer, esophageal cancer, hepatocellular cancer, pancreatic cancer, and ovarian cancer. In this study, we explored the possible relationship between ALDH2 and urological cancers from the aspects of ferroptosis, epigenetic alterations, proteostasis, mitochondrial dysfunction, and cellular senescence.
Collapse
Affiliation(s)
| | | | | | - Qiang Wei
- *Correspondence: Qiang Wei, ; Lu Yang,
| | - Lu Yang
- *Correspondence: Qiang Wei, ; Lu Yang,
| |
Collapse
|
18
|
Wang S, Wei X, Ji C, Wang Y, Zhang X, Cong R, Song N. Adipogenic Transdifferentiation and Regulatory Factors Promote the Progression and the Immunotherapy Response of Renal Cell Carcinoma: Insights From Integrative Analysis. Front Oncol 2022; 12:781932. [PMID: 35356208 PMCID: PMC8959453 DOI: 10.3389/fonc.2022.781932] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 02/09/2022] [Indexed: 12/24/2022] Open
Abstract
Background Adipogenic transdifferentiation was an important carcinogenic factor in various tumors, while studies on its role in clear cell renal cell carcinoma (ccRCC) were still relatively few. This study aimed to investigate its prognostic value and mechanism of action in ccRCC. Methods Gene expression profiles and clinical data of ccRCC patients were obtained from The Cancer Genome Atlas database. Nonnegative matrix factorization was used for clustering. Gene set variation analysis (GSVA) and gene set enrichment analysis (GSEA) were used to analyze the pathways and biological process activities. single-sample GSEA (ssGSEA) was utilized to quantify the relative abundance of each immune cell. Tumor Immune Estimation Resource (TIMER) was used to evaluate the proportion of various immune infiltrating cells across diverse cancer types. Real-Time PCR was performed to examine the gene expression. R software was utilized to analyze the expression and prognostic role of genes in ccRCC. Results A total of 49 adipose-related genes (ARGs) were screened for differential expression between normal and ccRCC tissues. Based on differentially expressed ARGs, patients with ccRCC were divided into two adipose subtypes with different clinical, molecular, and pathway characteristics. Patients in cluster A exhibited more advanced pathological stages, higher expressions of RARRES2 and immune checkpoint genes, higher immune infiltration scores, and less nutrient metabolism pathways. Adipose differentiation index (ADI) was constructed according to the above ARGs and survival data, and its robustness and accuracy was validated in different cohorts. In addition, it was found that the expression of ARGs was associated with immune cell infiltration and immune checkpoint in ccRCC, among which GBP2 was thought to be the most relevant gene to the tumor immune microenvironment and play a potential role in carcinogenesis and invasion of tumor cells. Conclusion Our analysis revealed the consistency of higher adipogenic transdifferentiation of tumor cells with worse clinical outcomes in ccRCC. The 16-mRNA signature could predict the prognosis of ccRCC patients with high accuracy. ARGs such as GBP2 might shed light on the development of novel biomarkers and immunotherapies of ccRCC.
Collapse
Affiliation(s)
- Shuai Wang
- The State Key Lab of Reproductive Medicine, Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiyi Wei
- The State Key Lab of Reproductive Medicine, Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chengjian Ji
- The State Key Lab of Reproductive Medicine, Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yichun Wang
- The State Key Lab of Reproductive Medicine, Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xi Zhang
- The State Key Lab of Reproductive Medicine, Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Rong Cong
- The State Key Lab of Reproductive Medicine, Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ninghong Song
- The State Key Lab of Reproductive Medicine, Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Department of Urology, The Affiliated Kezhou People's Hospital of Nanjing Medical University, Kezhou, China
| |
Collapse
|
19
|
Cao D, Ge S, Li M. MiR-451a Promotes Cell Growth, Migration and EMT in Osteosarcoma by Regulating YTHDC1-mediated m6A Methylation to Activate the AKT/mTOR Signaling Pathway. J Bone Oncol 2022; 33:100412. [PMID: 35198364 PMCID: PMC8842083 DOI: 10.1016/j.jbo.2022.100412] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 01/06/2022] [Accepted: 01/14/2022] [Indexed: 11/25/2022] Open
Abstract
It’s first proved that miR-451a can promote the malignant progression of osteosarcoma cells through AKT/mTOR pathway. It’s first proved that YTHDC1 modifies the m6A methylation of PDPK1. It’s first proved that YTHDC1 can promote the malignant progression of osteosarcoma cells.
Background Osteosarcoma is the most prevalent primary malignant bone tumor containing mesenchymal cells with poor prognosis. Being a hot spot of anti-tumor therapy researches, AKT/mammalian target of rapamycin (mTOR) signaling pathway could affect various cellular processes including transcription, protein synthesis, apoptosis, autophagy and growth. Materials and methods The levels of RNA and protein were detected by quantitative real-time polymerase chain reaction (q-PCR) and western blot analyses respectively. Functional assays were carried out to analyze the malignant phenotypes of osteosarcoma cells. RNA-binding protein immunoprecipitation (RIP), Co-immunoprecipitation (Co-IP), RNA pulldown, luciferase reporter and in vitro kinase assays were conducted to uncover the specific mechanism of microRNA-451a (miR-451a) in osteosarcoma cells. Results Functionally, miR-451a represses the malignant progression of osteosarcoma. Mechanically, miR-451a could curb the AKT/mTOR pathway via 3-phosphoinositide dependent protein kinase 1 (PDPK1)-mediated phosphorylation modification. After the certification that YTH domain containing 1 (YTHDC1) regulates the m6A phosphorylation modification of PDPK1 mRNA, we further proved that miR-451a-mediated YTHDC1 stabilizes PDPK1 mRNA via m6A-dependent regulation. Conclusion This study demonstrated that miR-451a regulates YTHDC1-mediated m6A methylation to activate the AKT/mTOR pathway, stimulating the malignancy of osteosarcoma.
Collapse
|
20
|
Hayashi N, Yamasaki A, Ueda S, Okazaki S, Ohno Y, Tanaka T, Endo Y, Tomioka Y, Masuko K, Masuko T, Sugiura R. Oncogenic transformation of NIH/3T3 cells by the overexpression of L-type amino acid transporter 1, a promising anti-cancer target. Oncotarget 2021; 12:1256-1270. [PMID: 34194623 PMCID: PMC8238248 DOI: 10.18632/oncotarget.27981] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 05/26/2021] [Indexed: 01/10/2023] Open
Abstract
L-type amino acid transporter 1 (LAT1)/SLC7A5 is the first identified CD98 light chain disulfide linked to the CD98 heavy chain (CD98hc/SLC3A2). LAT1 transports large neutral amino acids, including leucine, which activates mTOR, and is highly expressed in human cancers. We investigated the oncogenicity of human LAT1 introduced to NIH/3T3 cells by retrovirus infection. NIH/3T3 cell lines stably expressing human native (164C) or mutant (164S) LAT1 (naLAT1/3T3 or muLAT1/3T3, respectively) were established. We confirmed that endogenous mouse CD98hc forms a disulfide bond with exogenous human LAT1 in naLAT1/3T3, but not in muLAT1/3T3. Endogenous mouse CD98hc mRNA increased in both naNIH/3T3 and muLAT1/3T3, and a similar amount of exogenous human LAT1 protein was detected in both cell lines. Furthermore, naLAT1/3T3 and muLAT1/3T3 cell lines were evaluated for cell growth-related phenotypes (phosphorylation of ERK, cell-cycle progression) and cell malignancy-related phenotypes (anchorage-independent cell growth, tumor formation in nude mice). naLAT1/3T3 had stronger growth- and malignancy- related phenotypes than NIH/3T3 and muLAT1/3T3, suggesting the oncogenicity of native LAT1 through its interaction with CD98hc. Anti-LAT1 monoclonal antibodies significantly inhibited in vitro cell proliferation and in vivo tumor growth of naLAT1/3T3 cells in nude mice, demonstrating LAT1 to be a promising anti-cancer target.
Collapse
Affiliation(s)
- Natsumi Hayashi
- Laboratory of Molecular Pharmacogenomics, Faculty of Pharmacy, Kindai University, Higashiosaka-Shi, Osaka, Japan.,Cell Biology Laboratory, School of Pharmacy, Kindai University, Osaka, Japan.,Co-first authors.,This laboratory (April, 2000~) was closed at the end of March, 2020, after the mandatory retirement of Takashi Masuko
| | - Akitaka Yamasaki
- Cell Biology Laboratory, School of Pharmacy, Kindai University, Osaka, Japan.,Laboratory of Oncology Pharmacy Practice and Science, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai-Shi, Miyagi, Japan.,Co-first authors.,This laboratory (April, 2000~) was closed at the end of March, 2020, after the mandatory retirement of Takashi Masuko
| | - Shiho Ueda
- Cell Biology Laboratory, School of Pharmacy, Kindai University, Osaka, Japan
| | - Shogo Okazaki
- Division of Cell Fate Regulation, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda-shi, Chiba, Japan
| | - Yoshiya Ohno
- Laboratory of Immunobiology, Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, Kobe-Shi, Hyogo, Japan
| | - Toshiyuki Tanaka
- Laboratory of Immunobiology, Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, Kobe-Shi, Hyogo, Japan
| | - Yuichi Endo
- Natural Drug Resources, Faculty of Pharmacy, Kindai University, Osaka, Japan
| | - Yoshihisa Tomioka
- Laboratory of Oncology Pharmacy Practice and Science, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai-Shi, Miyagi, Japan
| | - Kazue Masuko
- Cell Biology Laboratory, School of Pharmacy, Kindai University, Osaka, Japan
| | - Takashi Masuko
- Cell Biology Laboratory, School of Pharmacy, Kindai University, Osaka, Japan.,Natural Drug Resources, Faculty of Pharmacy, Kindai University, Osaka, Japan
| | - Reiko Sugiura
- Laboratory of Molecular Pharmacogenomics, Faculty of Pharmacy, Kindai University, Higashiosaka-Shi, Osaka, Japan
| |
Collapse
|
21
|
Liu H, Li X, Duan Y, Xie JB, Piao XL. Mechanism of gypenosides of Gynostemma pentaphyllum inducing apoptosis of renal cell carcinoma by PI3K/AKT/mTOR pathway. JOURNAL OF ETHNOPHARMACOLOGY 2021; 271:113907. [PMID: 33556477 DOI: 10.1016/j.jep.2021.113907] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/06/2021] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Gynostemma pentaphyllum (Thunb.) Makino is a traditional medicine commonly used in China, East Asia and Southeast Asia. In clinic, it is mainly used for hyperlipidemia and antitumor. Its antitumor activity was first recorded in "Illustrated Catalogue of Plants". Gypenosides were the main active ingredients of G. pentaphyllum. The anticancer activity of gypenosides in vivo and in vitro had been widely reported. However, the mechanism of gypenosides in renal cell carcinoma (RCC) still unclear. AIM OF THE STUDY In this study, we tried to investigate the active constituents from G. pentaphyllum and potential mechanisms in RCC treatment through network pharmacology and in vitro experiments. MATERIAL/METHODS Active compounds and their targets were evaluated and screened through TCMSP and Swiss Target Prediction database. Notably, nine preliminary screened components obtained from database were identified by LC-MS and LC-MS/MS. The targets associated with RCC were obtained from OMIM, TTD and GeneCards database. The PPI network and active component/target/pathway networks were constructed to identify the potential drug targets using String database and Cytoscape software. The functions and pathways of targets were analyzed through DAVID database. Finally, AutoDockTools 1.5.6 was used for molecular docking to assess the binding ability between compounds and targets. To support our prediction, we then explore the antitumor effect and mechanism of gypenosides by vitro experiments. CCK8 and flow cytometry were performed to evaluate cell death treated with gypenosides. Quantitative real-time PCR and Western blot were conducted to detect the changes of PI3K/AKT/mTOR signaling pathway. RESULTS Nine saponins and 68 targets have been screened. The hub targets covered PIK3CA, VEGFA, STAT3, JAK2, CCND1 and MAPK3. Enrichment analysis showed that the pathways mainly contained PI3K/Akt/mTOR, HIF-1, TNF, JAK-STAT and MAPK signaling pathways. Gypenosides extracted from G. pentaphyllum showed strong activity against 786-O and Caki-1 cells, and cell apoptosis were detected through Annexin V/PI dual staining assay. RT-qPCR showed that gypenosides downregulated the levels of PIK3CA, Akt and mTOR in Caki-1 and 786-O cells. Mechanistically, gypenosides induced apoptosis of RCC cells through regulating PI3K/Akt/mTOR signaling pathway which was implemented though decreasing the phosphorylation level of Akt and mTOR. CONCLUSIONS Gypenosides induced apoptosis of RCC cells by modulating PI3K/Akt/mTOR signaling pathway.
Collapse
Affiliation(s)
- Hui Liu
- Key Laboratory of Ethnomedicine of Ministry of Education, Center on Translational Neuroscience, School of Pharmacy, Minzu University of China, Beijing, 100081, PR China
| | - Xiuming Li
- Department of Urology, Affiliated Hospital of Chengde Medical University, Chengde, Hebei, 067000, China
| | - Yu Duan
- Key Laboratory of Ethnomedicine of Ministry of Education, Center on Translational Neuroscience, School of Pharmacy, Minzu University of China, Beijing, 100081, PR China
| | - Jin-Bo Xie
- Key Laboratory of Ethnomedicine of Ministry of Education, Center on Translational Neuroscience, School of Pharmacy, Minzu University of China, Beijing, 100081, PR China
| | - Xiang-Lan Piao
- Key Laboratory of Ethnomedicine of Ministry of Education, Center on Translational Neuroscience, School of Pharmacy, Minzu University of China, Beijing, 100081, PR China.
| |
Collapse
|
22
|
Yang L, Zou X, Zou J, Zhang G. A Review of Recent Research on the Role of MicroRNAs in Renal Cancer. Med Sci Monit 2021; 27:e930639. [PMID: 33963171 PMCID: PMC8114846 DOI: 10.12659/msm.930639] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Renal cell carcinoma (RCC) is a most common type of urologic neoplasms; it accounts for 3% of malignant tumors, with high rates of relapse and mortality. The most common types of renal cancer are clear cell carcinoma (ccRCC), papillary renal cell carcinoma (pRCC), and chromophobe renal carcinoma (chRCC), which account for 90%, 6–15%, and 2–5%, respectively, of all renal malignancies. Although surgical resection, chemotherapy, and radiotherapy are the most common treatment method for those diseases, their effects remain dissatisfactory. Furthermore, recent research shows that the treatment efficacy of checkpoint inhibitors in advanced RCC patients is widely variable. Hence, patients urgently need a new molecular biomarker for early diagnosis and evaluating the prognosis of RCC. MicroRNAs (miRNAs) belong to a family of short, non-coding RNAs that are highly conserved, have long half-life evolution, and post-transcriptionally regulate gene expression; they have been predicted to play crucial roles in tumor metastasis, invasion, angiogenesis, proliferation, apoptosis, epithelial-mesenchymal transition, differentiation, metabolism, cancer occurrence, and treatment resistance. Although some previous papers demonstrated that miRNAs play vital roles in renal cancer, such as pathogenesis, diagnosis, and prognosis, the roles of miRNAs in kidney cancer are still unclear. Therefore, we reviewed studies indexed in PubMed from 2017 to 2020, and found several studies suggesting that there are more than 82 miRNAs involved in renal cancers. The present review describes the current status of miRNAs in RCC and their roles in progression, diagnosis, therapy targeting, and prognosis of RCC.
Collapse
Affiliation(s)
- Longfei Yang
- First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi, China (mainland)
| | - Xiaofeng Zou
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China (mainland)
| | - Junrong Zou
- Institute of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China (mainland)
| | - Guoxi Zhang
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China (mainland)
| |
Collapse
|
23
|
Chen Z, Zhang Y, Wu X, Zhang J, Xu W, Shen C, Zheng B. Gαi1 Promoted Proliferation, Migration and Invasion via Activating the Akt-mTOR/Erk-MAPK Signaling Pathway in Renal Cell Carcinoma. Onco Targets Ther 2021; 14:2941-2952. [PMID: 33976552 PMCID: PMC8106533 DOI: 10.2147/ott.s298102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 04/08/2021] [Indexed: 12/15/2022] Open
Abstract
Background Renal cell carcinoma (RCC) accounts for about 2-3% of all adult malignancies. G protein alpha inhibitory subunit 1 (Gαi1) plays a key role in mediating PI3K-Akt signaling upon activation of receptor tyrosine kinases (RTKs). However, little is known about its expression, regulation and biological function in RCC. Methods Gαi1 expression in RCC tissues and cells was detected by quantitative real-time PCR (qRT-PCR), Western blot and immunohistochemistry (IHC). The effect of Gαi1 silence on cell proliferation and apoptosis of 786-O and ACHN cells was detected by CCK-8 assay and flow cytometry. Wound-healing assay and Transwell assays were used to detect the cell invasion in RCC cells. The expression of CDK4, cyclin D1, MMP-2, MMP-9, Bax, Bcl-2, p/t-Akt, p/t-S6 and p/t-Erk was detected by Western blot and qRT-PCR. Furthermore, a nude mouse subcutaneous xenograft model was used to further evaluate the potential effects of Gail in vivo. Results In the present study, our data showed that Gαi1 expression was dramatically increased in RCC tissues compared with normal renal tissues. In addition, knocking down the expression of Gαi1 subsequently inhibited proliferation, migration and invasion of RCC cells in vivo and vitro. Furthermore, the expression of CDK4, cyclin D1, MMP-2 and MMP-9 was significantly reduced upon Gαi1 inhibition. Gαi1 positively regulates the activation of the mTOR and Erk pathways. Conclusion In conclusion, this study reveals Gαi1 promoted proliferation via activating the Akt-mTOR and Erk-MAPK signaling pathways in RCC, and Gαi1 may be a therapeutic and prognostic target for RCC.
Collapse
Affiliation(s)
- Zhan Chen
- Department of Urology, The Second Affiliated Hospital of Nantong University, Nantong, People's Republic of China.,Medical Research Center, The Second Affiliated Hospital of Nantong University, Nantong, People's Republic of China
| | - Yong Zhang
- Department of Urology, The Second Affiliated Hospital of Nantong University, Nantong, People's Republic of China.,Medical Research Center, The Second Affiliated Hospital of Nantong University, Nantong, People's Republic of China
| | - Xiang Wu
- Department of Urology, The Second Affiliated Hospital of Nantong University, Nantong, People's Republic of China
| | - Ji Zhang
- Department of Urology, The Second Affiliated Hospital of Nantong University, Nantong, People's Republic of China
| | - Wei Xu
- Department of Urology, The Second Affiliated Hospital of Nantong University, Nantong, People's Republic of China.,Medical Research Center, The Second Affiliated Hospital of Nantong University, Nantong, People's Republic of China
| | - Cheng Shen
- Department of Urology, The Second Affiliated Hospital of Nantong University, Nantong, People's Republic of China.,Medical Research Center, The Second Affiliated Hospital of Nantong University, Nantong, People's Republic of China
| | - Bing Zheng
- Department of Urology, The Second Affiliated Hospital of Nantong University, Nantong, People's Republic of China
| |
Collapse
|
24
|
Miricescu D, Balan DG, Tulin A, Stiru O, Vacaroiu IA, Mihai DA, Popa CC, Papacocea RI, Enyedi M, Sorin NA, Vatachki G, Georgescu DE, Nica AE, Stefani C. PI3K/AKT/mTOR signalling pathway involvement in renal cell carcinoma pathogenesis (Review). Exp Ther Med 2021; 21:540. [PMID: 33815613 PMCID: PMC8014975 DOI: 10.3892/etm.2021.9972] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 01/15/2021] [Indexed: 12/14/2022] Open
Abstract
Renal cell carcinoma (RCC) accounts for over 90% of all renal malignancies, and mainly affects the male population. Obesity and smoking are involved in the pathogenesis of several systemic cancers including RCC. The phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signalling pathway regulates cell growth, differentiation, migration, survival, angiogenesis, and metabolism. Growth factors, hormones, cytokine and many extracellular cues activate PI3K/AKT/mTOR. Dysregulation of this molecular pathway is frequently reported in human cancers including RCC and is associated with aggressive development and poor survival rate. mTOR is the master regulator of cell metabolism and growth, and is activated in many pathological processes such as tumour formation, insulin resistance and angiogenesis. mTOR inhibitors are used at present as drug therapy for RCC to inhibit cell proliferation, growth, survival, and the cell cycle. Temsirolimus and everolimus are two mTOR inhibitors that are currently used for the treatment of RCC. Drugs targeting the PI3K/AKT/mTOR signalling pathway may be one of the best therapeutic options for RCC.
Collapse
Affiliation(s)
- Daniela Miricescu
- Department of Biochemistry, Faculty of Dental Medicine, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Daniela Gabriela Balan
- Discipline of Physiology, Faculty of Dental Medicine, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Adrian Tulin
- Department of Anatomy, Faculty of Medicine, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of General Surgery, ‘Prof. Dr. Agrippa Ionescu’ Clinical Emergency Hospital, 011356 Bucharest, Romania
| | - Ovidiu Stiru
- Department of Cardiovascular Surgery, Faculty of Medicine, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Cardiovascular Surgery, ‘Prof. Dr. C. C. Iliescu’ Emergency Institute for Cardiovascular Diseases, 022322 Bucharest, Romania
| | - Ileana Adela Vacaroiu
- Department of Nephrology and Dialysis, ‘Sf. Ioan’ Emergency Clinical Hospital, 042122 Bucharest, Romania
- Department of Nephrology, Nutrition and Metabolic Diseases, Faculty of Medicine, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Doina Andrada Mihai
- Discipline of Diabetes, Nutrition and Metabolic Diseases, Faculty of Medicine, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department II of Diabetes, ‘Prof. N. Paulescu’ Nutrition and Metabolic Diseases National Institute of Diabetes, 020474 Bucharest, Romania
| | - Cristian Constantin Popa
- Department of Surgery, Faculty of Medicine, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Surgery, Emergency University Hospital, 050098 Bucharest, Romania
| | - Raluca Ioana Papacocea
- Discipline of Physiology, Faculty of Medicine, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Mihaly Enyedi
- Department of Anatomy, Faculty of Medicine, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Radiology, ‘Victor Babes’ Private Medical Clinic, 030303 Bucharest, Romania
| | - Nedelea Andrei Sorin
- Division of Urology, ‘Prof. Dr. Agrippa Ionescu’ Clinical Emergency Hospital, 011356 Bucharest, Romania
| | - Guenadiy Vatachki
- Department of General Surgery, ‘Fundeni’ Clinical Institute 022328 Bucharest, Romania
| | - Dragoș Eugen Georgescu
- Department of Surgery, Faculty of Medicine, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Adriana Elena Nica
- Department of Orthopedics, Anesthesia Intensive Care Unit, Faculty of Medicine, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Constantin Stefani
- Department of Family Medicine and Clinical Base, Dr. Carol Davila Central Military Emergency University Hospital, 010825 Bucharest, Romania
| |
Collapse
|
25
|
Zhang L, Xie D, Lei Y, Na A, Zhu L. Preclinical activity of cobimetinib alone or in combination with chemotherapy and targeted therapies in renal cell carcinoma. Future Oncol 2021; 17:3051-3060. [PMID: 33906367 DOI: 10.2217/fon-2021-0256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background: The poor outcome of advanced renal cell carcinoma (RCC) necessitates new treatments. Cobimetinib is a MEK inhibitor and approved for the treatment of melanoma. This work investigated the efficacy of cobimetinib alone and in combination with anti-RCC drugs. Methods: Proliferation and apoptosis assays were performed, and combination index was analyzed on RCC cell lines (CaKi-2, 786-O, A-704, ACHN and A489) and xenograft models. Immunoblotting analysis was conducted to investigate the MAPK pathway. Results: Cobimetinib was active against RCC cells, with IC50 at 0.006-0.8μM, and acted synergistically with standard-of-care therapy. Cobimetinib at nontoxic doses prevented tumor formation, inhibited tumor growth and enhanced efficacy of 5-fluorouracil, sorafenib and sunitinib via suppressing Raf/MEK/ERK, leading to MAPK pathway inhibition. Conclusion: Our findings demonstrate the potent anti-RCC activity of cobimetinib and its synergism with RCC standard-of-care drugs, and confirm the underlying mechanism of the action of cobimetinib.
Collapse
Affiliation(s)
- Lichen Zhang
- Department of Nephrology, The Second People's Hospital of Yibin, Yibin, Sichuan, 644000, PR China
| | - Deqiong Xie
- Department of Nephrology, The Second People's Hospital of Yibin, Yibin, Sichuan, 644000, PR China
| | - Yonghua Lei
- Department of Urology, Tangdu Hospital, Air Force Medical University, Xi'an, Shanxi, 710038, PR China
| | - Aoli Na
- Department of Nephrology, The Second People's Hospital of Yibin, Yibin, Sichuan, 644000, PR China
| | - Lei Zhu
- Department of Nephrology, The Second People's Hospital of Yibin, Yibin, Sichuan, 644000, PR China
| |
Collapse
|
26
|
TOR targets an RNA processing network to regulate facultative heterochromatin, developmental gene expression and cell proliferation. Nat Cell Biol 2021; 23:243-256. [PMID: 33574613 PMCID: PMC9260697 DOI: 10.1038/s41556-021-00631-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 01/06/2021] [Indexed: 01/30/2023]
Abstract
Cell proliferation and differentiation require signalling pathways that enforce appropriate and timely gene expression. We find that Tor2, the catalytic subunit of the TORC1 complex in fission yeast, targets a conserved nuclear RNA elimination network, particularly the serine and proline-rich protein Pir1, to control gene expression through RNA decay and facultative heterochromatin assembly. Phosphorylation by Tor2 protects Pir1 from degradation by the ubiquitin-proteasome system involving the polyubiquitin Ubi4 stress-response protein and the Cul4-Ddb1 E3 ligase. This pathway suppresses widespread and untimely gene expression and is critical for sustaining cell proliferation. Moreover, we find that the dynamic nature of Tor2-mediated control of RNA elimination machinery defines gene expression patterns that coordinate fundamental chromosomal events during gametogenesis, such as meiotic double-strand-break formation and chromosome segregation. These findings have important implications for understanding how the TOR signalling pathway reprogrammes gene expression patterns and contributes to diseases such as cancer.
Collapse
|
27
|
Gui Y, Dai C. mTOR Signaling in Kidney Diseases. KIDNEY360 2020; 1:1319-1327. [PMID: 35372878 PMCID: PMC8815517 DOI: 10.34067/kid.0003782020] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/02/2020] [Indexed: 04/27/2023]
Abstract
The mammalian target of rapamycin (mTOR), a serine/threonine protein kinase, is crucial in regulating cell growth, metabolism, proliferation, and survival. Under physiologic conditions, mTOR signaling maintains podocyte and tubular cell homeostasis. In AKI, activation of mTOR signaling in tubular cells and interstitial fibroblasts promotes renal regeneration and repair. However, constitutive activation of mTOR signaling in kidneys results in the initiation and progression of glomerular hypertrophy, interstitial fibrosis, polycystic kidney disease, and renal cell carcinoma. Here, we summarize the recent studies about mTOR signaling in renal physiology and injury, and discuss the possibility of its use as a therapeutic target for kidney diseases.
Collapse
Affiliation(s)
- Yuan Gui
- Department of Nephrology, University of Connecticut Health Center, Farmington, Connecticut
| | - Chunsun Dai
- Center for Kidney Disease, 2nd Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
28
|
GDC-0349 inhibits non-small cell lung cancer cell growth. Cell Death Dis 2020; 11:951. [PMID: 33154352 PMCID: PMC7644631 DOI: 10.1038/s41419-020-03146-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/11/2020] [Accepted: 10/13/2020] [Indexed: 02/07/2023]
Abstract
Non-small cell lung cancer (NSCLC) is a leading cause of cancer-related human mortality with a clear need for new therapeutic intervention. GDC-0349 is a potent and selective ATP-competitive mTOR inhibitor. In A549 cells and primary human NSCLC cells, GDC-0349 inhibited cell growth, proliferation, cell cycle progression, migration and invasion, while inducing significant apoptosis activation. Although GDC-0349 blocked Akt-mTORC1/2 activation in NSCLC cells, it also exerted cytotoxicity in Akt1-knockout A549 cells. Furthermore, restoring Akt-mTOR activation by a constitutively-active Akt1 only partially attenuated GDC-0349-induced A549 cell apoptosis, indicating the existence of Akt-mTOR-independent mechanisms. In NSCLC cells GDC-0349 induced sphingosine kinase 1 (SphK1) inhibition, ceramide accumulation, JNK activation and oxidative injury. Conversely, N-acetylcysteine, the JNK inhibitor and sphingosine 1-phosphate alleviated GDC-0349-induced NSCLC cell apoptosis. In vivo, daily oral administration of GDC-0349 potently inhibited NSCLC xenograft growth in mice. Akt-mTOR in-activation, SphK1 inhibition, JNK activation and oxidative stress were detected in NSCLC xenograft tissues with GDC-0349 administration. In summary, GDC-0349 inhibits NSCLC cell growth via Akt-mTOR-dependent and Akt-mTOR-independent mechanisms.
Collapse
|
29
|
Zheng B, Sun X, Chen XF, Chen Z, Zhu WL, Zhu H, Gu DH. Dual inhibition of DNA-PKcs and mTOR by CC-115 potently inhibits human renal cell carcinoma cell growth. Aging (Albany NY) 2020; 12:20445-20456. [PMID: 33109772 PMCID: PMC7655216 DOI: 10.18632/aging.103847] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 07/20/2020] [Indexed: 01/06/2023]
Abstract
CC-115 is a dual inhibitor of DNA-PKcs and mTOR, both are valuable therapeutic targets for renal cell carcinoma (RCC). Our results showed that CC-115 inhibited survival and proliferation of established RCC cell lines (786-O and A489) and primary human RCC cells. The dual inhibitor induced selective apoptosis activation in RCC cells, as compared to no cytotoxicity nor apoptotic effects toward normal renal epithelial cells. CC-115 inhibited DNA-PKcs and mTORC1/2 activation in RCC cells. It was however ineffective in DNA-PKcs-mTOR double knockout (DKO) 786-O cells. CC-115 induced feedback autophagy activation in RCC cells. Autophagy inhibitors or Beclin-1/Light chain 3 (LC3) silencing potentiated CC-115-induced anti-RCC cell activity. Conversely, ectopic overexpression of Beclin-1 inhibited CC-115-induced cytotoxicity. At last CC-115 oral administration inhibited 786-O subcutaneous xenograft growth in nude mice. Taken together, dual inhibition of DNA-PKcs and mTOR by CC-115 potently inhibited RCC cell growth.
Collapse
Affiliation(s)
- Bing Zheng
- Department of Urology, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Xu Sun
- Department of Hand and Foot Surgery, Hospital Affiliated 5 to Nantong University, Taizhou People’s Hospital, Taizhou, China
| | - Xin-Feng Chen
- Department of Urology, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Zhan Chen
- Department of Urology, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Wei-Li Zhu
- Port Clinic, Changshu Customs, Changshu, China
| | - Hua Zhu
- Department of Urology, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Dong-Hua Gu
- Department of Urology, The Second Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
30
|
Zhu X, Xu A, Zhang Y, Huo N, Cong R, Ma L, Chu Z, Tang Z, Kang X, Xian S, Xu X. ITPKA1 Promotes Growth, Migration and Invasion of Renal Cell Carcinoma via Activation of mTOR Signaling Pathway. Onco Targets Ther 2020; 13:10515-10523. [PMID: 33116630 PMCID: PMC7573328 DOI: 10.2147/ott.s266095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/04/2020] [Indexed: 12/12/2022] Open
Abstract
Background Renal cell cancer (RCC) is one of the most lethal malignancies of the kidney in adults. mTOR (mammalian target of rapamycin) signaling pathway plays a pivotal role in RCC tumorigenesis and progression and inhibitors targeting the mTOR pathway have been widely used in advanced RCC treatment. Therefore, it is of great significance to explore the potential regulators of the mTOR pathway as RCC therapeutic targets. Materials and Methods Bioinformatics analysis was used to screen out the most significant differentially expressed genes in the RCC dataset of The Cancer Genome Atlas (TCGA). Real-time PCR and Western-blot analysis were utilized to examine the expression of inositol-1,4,5-trisphosphate-3-kinase-A (ITPKA) in four RCC cell lines and one human embryonic kidney cell line. Cell counting Kit-8 and colony formation assay were performed to estimate the effect of ITPKA on the proliferation ability of RCC cells. Wound healing and Transwell assays were used to test the effect of ITPKA on RCC cell migration and invasion. Xenograft formation assay was performed in nude mice to investigate the effect of ITPKA in vivo. mTORC1 pathway inhibitor was added to explore the mechanisms by which ITPKA regulates RCC cell growth and progression. Results Based on bioinformatics analysis, ITPKA is screened out as one of the most significant differentially expressed genes in RCC. ITPKA is upregulated and positively correlated with RCC malignancy and poorer prognosis. ITPKA promotes RCC growth, migration and invasion in cultured cells, and accelerates tumor growth in nude mice. Mechanistically, ITPKA stimulates the mTORC1 signaling pathway which is a requirement for ITPKA modulation of RCC cell proliferation, migration and invasion. Conclusion Our data demonstrate a critical regulatory role of the ITPKA in RCC and suggest that ITPKA/mTORC1 axis may be a promising target for diagnosis and treatment of RCC.
Collapse
Affiliation(s)
- Xiang Zhu
- Department of Infectious Disease, Army No.82 Group Military Hospital, Baoding, People's Republic of China.,Department of Cellular Engineering Lab, Beijing Institute of Biotechnology, Beijing, People's Republic of China
| | - An Xu
- Department of Oncology, Second Medical Center of Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Yang Zhang
- Department of Radiation Oncology, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Nan Huo
- Department of Cellular Engineering Lab, Beijing Institute of Biotechnology, Beijing, People's Republic of China
| | - Rui Cong
- Department of Cellular Engineering Lab, Beijing Institute of Biotechnology, Beijing, People's Republic of China
| | - Luyuan Ma
- Department of Cellular Engineering Lab, Beijing Institute of Biotechnology, Beijing, People's Republic of China
| | - Zhong Chu
- Department of Cellular Engineering Lab, Beijing Institute of Biotechnology, Beijing, People's Republic of China
| | - Zhi Tang
- Department of Cellular Engineering Lab, Beijing Institute of Biotechnology, Beijing, People's Republic of China
| | - Xiaofeng Kang
- Department of Cellular Engineering Lab, Beijing Institute of Biotechnology, Beijing, People's Republic of China
| | - Shaozhong Xian
- Department of Urology, Beijing Luhe Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Xiaojie Xu
- Department of Cellular Engineering Lab, Beijing Institute of Biotechnology, Beijing, People's Republic of China
| |
Collapse
|
31
|
BRD4 inhibition sensitizes renal cell carcinoma cells to the PI3K/mTOR dual inhibitor VS-5584. Aging (Albany NY) 2020; 12:19147-19158. [PMID: 33051401 PMCID: PMC7732329 DOI: 10.18632/aging.103723] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 06/29/2020] [Indexed: 01/24/2023]
Abstract
Activation of the PI3K/AKT/mTOR pathway promotes the progression of renal cell carcinoma (RCC). This study tested the anti-RCC cell activity of the PI3K/mTOR dual inhibitor, VS-5584. We show that VS-5584 inhibited PI3K/AKT/mTORC1/2 activation in established (786-O and A498 lines) and primary RCC cells, thereby suppressing cell survival, proliferation, migration and cell cycle progression. VS-5584 induced significant apoptosis in RCC cells. A daily single oral dose of VS-5584 (20 mg/kg) significantly inhibited 786-O tumor growth in vivo. VS-5584 treatment of 786-O tumor xenografts and RCC cells resulted in feedback upregulation of bromodomain-containing protein 4 (BRD4). Furthermore, BRD4 inhibition (by JQ1 and CPI203), knockdown or complete knockout potentiated VS-5584-induced RCC cell death and apoptosis. Conversely, forced overexpression of BRD4 attenuated the cytotoxicity of VS-5584 in 786-O cells. Collectively, VS-5584 potently inhibits RCC cell proliferation and survival. Its anti-tumor activity is further enhanced by the targeted inhibition of BRD4.
Collapse
|
32
|
Khetani VV, Portal DE, Shah MR, Mayer T, Singer EA. Combination drug regimens for metastatic clear cell renal cell carcinoma. World J Clin Oncol 2020; 11:541-562. [PMID: 32879843 PMCID: PMC7443831 DOI: 10.5306/wjco.v11.i8.541] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 05/11/2020] [Accepted: 07/18/2020] [Indexed: 02/06/2023] Open
Abstract
Renal cell carcinomas (RCC) make up about 90% of kidney cancers, of which 80% are of the clear cell subtype. About 20% of patients are already metastatic at the time of diagnosis. Initial treatment is often cytoreductive nephrectomy, but systemic therapy is required for advanced RCC. Single agent targeted therapies are moderately toxic and only somewhat effective, leading to development of immunotherapies and combination therapies. This review identifies limitations of monotherapies for metastatic renal cell carcinoma, discusses recent advances in combination therapies, and highlights therapeutic options under development. The goal behind combining various modalities of systemic therapy is to potentiate a synergistic antitumor effect. However, combining targeted therapies may cause increased toxicity. The initial attempts to create therapeutic combinations based on inhibition of the vascular endothelial growth factor or mammalian target of rapamycin pathways were largely unsuccessful in achieving a profile of increased synergy without increased toxicity. To date, five combination therapies have been approved by the U.S. Food and Drug Administration, with the most recently approved therapies being a combination of checkpoint inhibition plus targeted therapy. Several other combination therapies are under development, including some in the phase 3 stage. The new wave of combination therapies for metastatic RCC has the potential to increase response rates and improve survival outcomes while maintaining tolerable side effect profiles.
Collapse
Affiliation(s)
- Viraj V Khetani
- Rutgers Cancer Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ 08903, United States
| | - Daniella E Portal
- Rutgers Cancer Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ 08903, United States
| | - Mansi R Shah
- Rutgers Cancer Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ 08903, United States
| | - Tina Mayer
- Rutgers Cancer Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ 08903, United States
| | - Eric A Singer
- Rutgers Cancer Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ 08903, United States
| |
Collapse
|
33
|
Mikami S, Mizuno R, Kosaka T, Tanaka N, Kuroda N, Nagashima Y, Okada Y, Oya M. Significance of tumor microenvironment in acquiring resistance to vascular endothelial growth factor-tyrosine kinase inhibitor and recent advance of systemic treatment of clear cell renal cell carcinoma. Pathol Int 2020; 70:712-723. [PMID: 32652869 DOI: 10.1111/pin.12984] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/20/2020] [Accepted: 06/24/2020] [Indexed: 12/18/2022]
Abstract
The development of systemic therapies, including vascular endothelial growth factor-tyrosine kinase inhibitors (VEGF-TKI) and mammalian target of rapamycin (mTOR) inhibitors, represents a major breakthrough in the treatment of patients with renal cell carcinoma (RCC). However, inherent resistance is observed in some patients and acquired resistance commonly develops in many patients within several months of the initiation of systemic therapies. Since these treatments rarely cure patients, their aim is to suppress tumor progression and prolong survival. Therefore, the establishment of dependable criteria that predict responses and resistance to systemic therapies is clinically important, and the underlying molecular mechanisms also need to be elucidated for the future development of more effective therapies. We herein review recent advances in research on the molecular mechanisms underlying resistance, with a focus on morphological characteristics, tumor angiogenesis, and the tumor immune microenvironment in RCC and their relationships with VEGF-TKI treatments. Recent therapies using immune checkpoint inhibitors (ICI) and newly developed VEGF-TKI also appear to be effective for advanced RCC, with stable and durable responses to ICI being observed in some RCC patients. These new drugs and their outcomes have been briefly described.
Collapse
Affiliation(s)
- Shuji Mikami
- Division of Diagnostic Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Ryuichi Mizuno
- Department of Urology, Keio University School of Medicine, Tokyo, Japan
| | - Takeo Kosaka
- Department of Urology, Keio University School of Medicine, Tokyo, Japan
| | - Nobuyuki Tanaka
- Department of Urology, Keio University School of Medicine, Tokyo, Japan
| | - Naoto Kuroda
- Department of Diagnostic Pathology, Konan Medical Center, Hyogo, Japan
| | - Yoji Nagashima
- Department of Surgical Pathology, Tokyo Women's Medical University, Tokyo, Japan
| | - Yasunori Okada
- Department of Pathophysiology for Locomotive and Neoplastic Diseases, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Mototsugu Oya
- Department of Urology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
34
|
Ye X, Ruan JW, Huang H, Huang WP, Zhang Y, Zhang F. PI3K-Akt-mTOR inhibition by GNE-477 inhibits renal cell carcinoma cell growth in vitro and in vivo. Aging (Albany NY) 2020; 12:9489-9499. [PMID: 32421688 PMCID: PMC7288912 DOI: 10.18632/aging.103221] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 03/31/2020] [Indexed: 02/05/2023]
Abstract
Sustained activation of PI3K-Akt-mTOR cascade is important for renal cell carcinoma (RCC) cell progression. GNE-477 is a novel and efficacious PI3K-mTOR dual inhibitor. The current study tested its anti-RCC cell activity. In the primary cultured human RCC cells, GNE-477 potently inhibited cell growth, viability and proliferation, as well as cell cycle progression, migration and invasion. Furthermore, it induced robust apoptosis activation in primary RCC cells, but being non-cytotoxic to HK-2 epithelial cells and primary human renal epithelial cells. In the primary RCC cells GNE-477 inactivated PI3K-Akt-mTOR cascade by blocking phosphorylation of p85, Akt1, p70S6K1 and S6. Restoring Akt-mTOR activation by a constitutively-active Akt1 reversed GNE-477-induced anti-RCC cell activity. In nude mice intraperitoneal injection of GNE-477 potently suppressed RCC xenograft tumor growth. Collectively, targeting PI3K-Akt-mTOR cascade by GNE-477 inhibits RCC cell growth in vitro and in vivo.
Collapse
Affiliation(s)
- Xueting Ye
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jian-Wei Ruan
- Department of Orthopedics, Taizhou Municipal Hospital, Taizhou, China
| | - Hang Huang
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wei-Ping Huang
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yan Zhang
- Department of Radiotherapy and Oncology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - Fangyi Zhang
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
35
|
The therapeutic value of SC66 in human renal cell carcinoma cells. Cell Death Dis 2020; 11:353. [PMID: 32393791 PMCID: PMC7214466 DOI: 10.1038/s41419-020-2566-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/17/2020] [Accepted: 04/20/2020] [Indexed: 01/08/2023]
Abstract
The PI3K-AKT-mTOR cascade is required for renal cell carcinoma (RCC) progression. SC66 is novel AKT inhibitor. We found that SC66 inhibited viability, proliferation, migration and invasion of RCC cell lines (786-O and A498) and patient-derived primary RCC cells. Although SC66blocked AKT-mTORC1/2 activation in RCC cells, it remained cytotoxic in AKT-inhibited/-silenced RCC cells. In RCC cells, SC66 cytotoxicity appears to occur via reactive oxygen species (ROS) production, sphingosine kinase 1inhibition, ceramide accumulation and JNK activation, independent of AKT inhibition. The ROS scavenger N-acetylcysteine, the JNK inhibitor (JNKi) and the anti-ceramide sphingolipid sphingosine-1-phosphate all attenuated SC66-induced cytotoxicity in 786-O cells. In vivo, oral administration of SC66 potently inhibited subcutaneous 786-O xenograft growth in SCID mice. AKT-mTOR inhibition, SphK1 inhibition, ceramide accumulation and JNK activation were detected in SC66-treated 786-O xenograft tumors, indicating that SC66 inhibits RCC cell progression through AKT-dependent and AKT-independent mechanisms.
Collapse
|
36
|
Kuroshima K, Yoshino H, Okamura S, Tsuruda M, Osako Y, Sakaguchi T, Sugita S, Tatarano S, Nakagawa M, Enokida H. Potential new therapy of Rapalink-1, a new generation mammalian target of rapamycin inhibitor, against sunitinib-resistant renal cell carcinoma. Cancer Sci 2020; 111:1607-1618. [PMID: 32232883 PMCID: PMC7226215 DOI: 10.1111/cas.14395] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 03/17/2020] [Accepted: 03/18/2020] [Indexed: 01/20/2023] Open
Abstract
Sunitinib, a multitargeted receptor tyrosine kinase inhibitor including vascular endothelial growth factor, has been widely used as a first-line treatment against metastatic renal cell carcinoma (mRCC). However, mRCC often acquires resistance to sunitinib, rendering it difficult to treat with this agent. Recently, Rapalink-1, a drug that links rapamycin and the mTOR kinase inhibitor MLN0128, has been developed with excellent therapeutic effects against breast cancer cells carrying mTOR resistance mutations. The aim of the present study was to evaluate the in vitro and in vivo therapeutic efficacy of Rapalink-1 against renal cell carcinoma (RCC) compared to temsirolimus, which is commonly used as a small molecule inhibitor of mTOR and is a derivative of rapamycin. In comparison with temsirolimus, Rapalink-1 showed significantly greater effects against proliferation, migration, invasion and cFolony formation in sunitinib-naïve RCC cells. Inhibition was achieved through suppression of the phosphorylation of substrates in the mTOR signal pathway, such as p70S6K, eukaryotic translation initiation factor 4E-binding protein 1 (4EBP1) and AKT. In addition, Rapalink-1 had greater tumor suppressive effects than temsirolimus against the sunitinib-resistant 786-o cell line (SU-R 786-o), which we had previously established, as well as 3 additional SU-R cell lines established here. RNA sequencing showed that Rapalink-1 suppressed not only the mTOR signaling pathway but also a part of the MAPK signaling pathway, the ErbB signaling pathway and ABC transporters that were associated with resistance to several drugs. Our study suggests the possibility of a new treatment option for patients with RCC that is either sunitinib-sensitive or sunitinib-resistant.
Collapse
Affiliation(s)
- Kazuki Kuroshima
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Hirofumi Yoshino
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Shunsuke Okamura
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Masafumi Tsuruda
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Yoichi Osako
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Takashi Sakaguchi
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Satoshi Sugita
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Shuichi Tatarano
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Masayuki Nakagawa
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Hideki Enokida
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
37
|
Liu X, Zhong L, Li P, Zhao P. MicroRNA-100 Enhances Autophagy and Suppresses Migration and Invasion of Renal Cell Carcinoma Cells via Disruption of NOX4-Dependent mTOR Pathway. Clin Transl Sci 2020; 15:567-575. [PMID: 32356935 PMCID: PMC8841407 DOI: 10.1111/cts.12798] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/04/2020] [Indexed: 12/24/2022] Open
Abstract
Renal cell carcinoma (RCC) is the most common kidney malignancy and has a poor prognosis owing to its resistance to chemotherapy. Recently, microRNAs (miRNAs or miRs) have been shown to have a role in cancer metastasis and potential as prognostic biomarkers in cancer. In the present study, we aim to explore the potential role of miR‐100 in RCC by targeting nicotinamide adenine dinucleotide phosphate oxidase 4 (NOX4) through the mammalian target of rapamycin (mTOR) pathway. Initially, microarray‐based gene expression profiling of RCC was used to identify differentially expressed genes. Next, the expression of miR‐100 and NOX4 was examined in RCC tissues and cell lines. Then, the interaction between miR‐100 and NOX4 was identified using bioinformatics analysis and dual‐luciferase reporter assay. Gain‐of‐function or loss‐of‐function approaches were adopted to manipulate miR‐100 and NOX4 in order to explore the functional roles in RCC. The results revealed the presence of an upregulated NOX4 and a downregulated miR‐100 in both RCC tissues and cell lines. NOX4 was verified as a target of miR‐100 in cells. In addition, overexpression of miR‐100 or NOX4 silencing could increase autophagy while decreasing the expression of mTOR pathway‐related genes and migration and invasion. Conjointly, upregulated miR‐100 can potentially increase the autophagy and inhibit the invasion and migration of RCC cells by targeting NOX4 and inactivating the mTOR pathway, which contributes to an extensive understanding of RCC and may provide novel therapeutic options for this disease.
Collapse
Affiliation(s)
- Xiumin Liu
- Department of Clinical Laboratory, The Second Hospital of Jilin University, Changchun, China
| | - Lili Zhong
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Ping Li
- Department of Developmental Pediatrics, The Second Hospital of Jilin University, Changchun, China
| | - Peng Zhao
- Department of Anesthesiology, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
38
|
Kim H, Lee SJ, Lee IK, Min SC, Sung HH, Jeong BC, Lee J, Park SH. Synergistic Effects of Combination Therapy with AKT and mTOR Inhibitors on Bladder Cancer Cells. Int J Mol Sci 2020; 21:ijms21082825. [PMID: 32325639 PMCID: PMC7215775 DOI: 10.3390/ijms21082825] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/12/2020] [Accepted: 04/16/2020] [Indexed: 12/14/2022] Open
Abstract
Despite comprehensive genomic analyses, no targeted therapies are approved for bladder cancer. Here, we investigate whether a single and combination therapy with targeted agents exert antitumor effects on bladder cancer cells through genomic alterations using a three-dimensional (3D) high-throughput screening (HTS) platform. Seven human bladder cancer cell lines were used to screen 24 targeted agents. The effects of 24 targeted agents were dramatically different according to the genomic alterations of bladder cancer cells. BEZ235 (dual phosphatidylinositol-3-kinase (PI3K)/mammalian target of rapamycin (mTOR) inhibitor) showed antitumor effects against most cell lines, while AZD2014 (mTOR inhibitor) had an IC50 value lower than 2 μM in 5637, J82, and RT4 cell lines. AZD5363 (protein kinase B (AKT) inhibitor) exerted antitumor effects on 5637, J82, and 253J-BV cells. J82 cells (PI3KCA and mTOR mutations) were sensitive to AZD5363, AZD2014, and BEZ235 alone or in AZD5363/AZD2014 and AZD5363/BEZ235 combinations. Although all single drugs suppressed cell proliferation, the combination of drugs exhibited synergistic effects on cell viability and colony formation. The synergistic effects of the combination therapy on the PI3K/Akt/mTOR pathway, apoptosis, and EMT were evident in Western blotting. Thus, the 3D culture-based HTS platform could serve as a useful preclinical tool to evaluate various drug combinations.
Collapse
Affiliation(s)
- Hyera Kim
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea; (H.K.)
- Division of Hematology-Oncology, Department of Internal Medicine, Keimyung University Dongsan Hospital, Daegu 42601, Korea
| | - Su Jin Lee
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea; (H.K.)
- Division of Hematology-Oncology, Department of Internal Medicine, Ewha Womans University College of Medicine, Seoul 07804, Korea
| | - In Kyoung Lee
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea; (H.K.)
| | - Suejean C. Min
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea; (H.K.)
| | - Hyun Hwan Sung
- Department of Urology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
| | - Byong Chang Jeong
- Department of Urology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
| | - Jeeyun Lee
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea; (H.K.)
| | - Se Hoon Park
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea; (H.K.)
- Correspondence: ; Tel.: +82-2-3410-1767; Fax: +82-2-3410-1754
| |
Collapse
|
39
|
Pozzessere C, Bassanelli M, Ceribelli A, Rasul S, Li S, Prior JO, Cicone F. Renal Cell Carcinoma: the Oncologist Asks, Can PSMA PET/CT Answer? Curr Urol Rep 2019; 20:68. [PMID: 31605269 DOI: 10.1007/s11934-019-0938-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW To critically review the potential clinical applications of prostate-specific membrane antigen (PSMA) radioactive ligands in renal cell carcinoma (RCC). RECENT FINDINGS Radioactive probes targeting PSMA hold promise in several malignancies in addition to prostate cancer, owing to the expression of PSMA by tumor neovasculature. The majority of clear cell RCCs (ccRCC), the most malignant RCC subtype, express PSMA on tumor-associated neovasculature. The endothelium of less aggressive RCC subtypes is PSMA positive in a lower, but still significant percentage of cases. PSMA might therefore represent an interesting theragnostic target in RCC. The preliminary data available suggest a potential role for PSMA-targeting radiopharmaceuticals in complementing conventional imaging for staging ccRCC patients at risk of nodal involvement and oligometastatic disease. Additional applications of PSMA imaging may be the selection and the response assessment of patients receiving anti-angiogenic treatments. The effectiveness of PSMA-targeting radionuclide therapy should also be investigated.
Collapse
Affiliation(s)
- Chiara Pozzessere
- Department of Radiology, AUSL Toscana Centro San Giuseppe Hospital, Viale Boccaccio 20, 50053, Empoli, Italy.
- Department of Nuclear Medicine and Molecular Imaging, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
| | - Maria Bassanelli
- Division of Medical Oncology, San Camillo De Lellis Hospital, Rieti, Italy
| | - Anna Ceribelli
- Division of Medical Oncology, San Camillo De Lellis Hospital, Rieti, Italy
| | - Sazan Rasul
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Shuren Li
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - John O Prior
- Department of Nuclear Medicine and Molecular Imaging, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Francesco Cicone
- Department of Nuclear Medicine and Molecular Imaging, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
40
|
The tumor suppressor NDRG2 cooperates with an mTORC1 inhibitor to suppress the Warburg effect in renal cell carcinoma. Invest New Drugs 2019; 38:956-966. [DOI: 10.1007/s10637-019-00839-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 07/12/2019] [Indexed: 10/26/2022]
|
41
|
p38gamma overexpression promotes renal cell carcinoma cell growth, proliferation and migration. Biochem Biophys Res Commun 2019; 516:466-473. [PMID: 31229268 DOI: 10.1016/j.bbrc.2019.06.056] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 06/08/2019] [Indexed: 01/08/2023]
Abstract
Recent studies have proposed that p38gamma (p38γ) might be critically involved in tumorigenesis and cancer progression. Its expression and potential functions in human renal cell carcinoma (RCC) are studied here. We show that p38γ mRNA and protein levels are upregulated in human RCC tissues, as compared to its levels in the surrounding normal renal tissues. p38γ upregulation was also detected in established (786-O line) and primary human RCC cells. Functional studies in 786-O cells and primary human RCC cells demonstrated that p38γ silencing (by targeted shRNAs) or CRISPR/Cas9-mediated p38γ knockout (KO) potently inhibited cell growth, viability, proliferation and migration. Furthermore, p38γ shRNA or KO in RCC cells decreased retinoblastoma (Rb) phosphorylation and downregulated cyclin E1/A expression. Additionally, significant apoptosis activation was detected in p38γ-silenced and p38γ-KO RCC cells. Contrarily, ectopic overexpression of p38γ facilitated cell growth, viability, proliferation and migration in RCC cells. Taken together, we show that p38γ overexpression promotes RCC cell growth, proliferation and migration. p38γ could be a novel therapeutic target for human RCC.
Collapse
|
42
|
Ye XT, Huang H, Huang WP, Hu WL. LncRNA THOR promotes human renal cell carcinoma cell growth. Biochem Biophys Res Commun 2019; 501:661-667. [PMID: 29752937 DOI: 10.1016/j.bbrc.2018.05.040] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 05/07/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND Recent studies have characterized a novel but extremely conserved long non-coding RNA (LncRNA) THOR. THOR directly associates with insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1) to promote mRNA stabilization of key pro-cancerous genes. RESULTS Here, we show that THOR is expressed in human renal cell carcinoma (RCC) tissues and established/primary human RCC cells. It was not detected in normal renal tissues nor in HK-2 and primary human renal epithelial cells. THOR silencing (by targeted siRNAs) or CRISPR/Cas9 knockout inhibited RCC cell growth, viability and proliferation in vitro. Reversely, forced over-expression of THOR promoted RCC cell survival and proliferation. IGF2BP1-regulated genes, including IGF2, GLI1 and Myc, were downregulated by THOR silencing or knockout, but they were upregulated after THOR over-expression. In vivo, THOR-knockout 786-O tumors grew significantly slower than the control tumors in nude mice. CONCLUSION THOR expression promotes RCC cell growth in vitro and in vivo. THOR could be a novel and important therapeutic target for human RCC.
Collapse
Affiliation(s)
- Xue-Ting Ye
- Graduate School, Southern Medical University, Guangzhou, China; Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hang Huang
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wei-Ping Huang
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wei-Lie Hu
- Graduate School, Southern Medical University, Guangzhou, China; Department of Urology, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou, China.
| |
Collapse
|
43
|
Bergerot PG, Bergerot CD, Philip EJ, Meza L, Dizman N, Hsu J, Pal SK. Targeted Therapy and Immunotherapy: Effect of Body Mass Index on Clinical Outcomes in Patients Diagnosed with Metastatic Renal Cell Carcinoma. KIDNEY CANCER 2019. [DOI: 10.3233/kca-180047] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Paulo Gustavo Bergerot
- Department of Medical Oncology & Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Cristiane Decat Bergerot
- Department of Medical Oncology & Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | | | - Luis Meza
- Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Nazli Dizman
- Department of Medical Oncology & Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - JoAnn Hsu
- Department of Medical Oncology & Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Sumanta Kumar Pal
- Department of Medical Oncology & Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| |
Collapse
|
44
|
Grünwald V, Powles T, Choueiri TK, Hutson TE, Porta C, Eto M, Sternberg CN, Rha SY, He CS, Dutcus CE, Smith A, Dutta L, Mody K, Motzer RJ. Lenvatinib plus everolimus or pembrolizumab versus sunitinib in advanced renal cell carcinoma: study design and rationale. Future Oncol 2019; 15:929-941. [PMID: 30689402 DOI: 10.2217/fon-2018-0745] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
AIM Lenvatinib plus everolimus is approved for the treatment of advanced renal cell carcinoma (RCC) after one prior vascular endothelial growth factor-targeted therapy. Lenvatinib plus pembrolizumab demonstrated promising antitumor activity in a Phase I/II trial of RCC. METHODS We describe the rationale and design of the CLEAR study, a three-arm Phase III trial comparing lenvatinib plus everolimus and lenvatinib plus pembrolizumab versus sunitinib monotherapy for first-line treatment of RCC. Eligible patients must have advanced clear cell RCC and must not have received any prior systemic anticancer therapy. The primary end point is progression-free survival; secondary end points include objective response rate, overall survival, safety, health-related quality of life and pharmacokinetics. Biomarker evaluations are included as exploratory end points.
Collapse
Affiliation(s)
- Viktor Grünwald
- Clinic for Hematology, Hemostasis, Oncology and Stem Cell Transplantation, University Hospital Essen, Essen, Germany
| | - Thomas Powles
- Experimental Cancer Medicine, Barts Cancer Institute, London, UK
| | - Toni K Choueiri
- Lank Center for Genitourinary Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Thomas E Hutson
- Urologic Oncology Program, Baylor University Medical Center, Dallas, TX, USA
| | - Camillo Porta
- University of Pavia & Division of Translational Oncology, IRCCS Istituti Clinici Scientifici Maugeri, Pavia, Italy
| | - Masatoshi Eto
- Department of Urology, Kyushu University, Fukuoka, Japan
| | - Cora N Sternberg
- Weill Cornell Medicine, New York-Presbyterian, New York, NY, USA
| | - Sun Young Rha
- Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, South Korea
| | | | | | | | | | | | - Robert J Motzer
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
45
|
Stitzlein L, Rao PSS, Dudley R. Emerging oral VEGF inhibitors for the treatment of renal cell carcinoma. Expert Opin Investig Drugs 2018; 28:121-130. [DOI: 10.1080/13543784.2019.1559296] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Lea Stitzlein
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Findlay, Findlay, OH, USA
| | - PSS Rao
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Findlay, Findlay, OH, USA
| | - Richard Dudley
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Findlay, Findlay, OH, USA
| |
Collapse
|
46
|
Therapeutic Use of mTOR Inhibitors in Renal Diseases: Advances, Drawbacks, and Challenges. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:3693625. [PMID: 30510618 PMCID: PMC6231362 DOI: 10.1155/2018/3693625] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 09/07/2018] [Accepted: 09/25/2018] [Indexed: 02/06/2023]
Abstract
The mammalian (or mechanistic) target of rapamycin (mTOR) pathway has a key role in the regulation of a variety of biological processes pivotal for cellular life, aging, and death. Impaired activity of mTOR complexes (mTORC1/mTORC2), particularly mTORC1 overactivation, has been implicated in a plethora of age-related disorders, including human renal diseases. Since the discovery of rapamycin (or sirolimus), more than four decades ago, advances in our understanding of how mTOR participates in renal physiological and pathological mechanisms have grown exponentially, due to both preclinical studies in animal models with genetic modification of some mTOR components as well as due to evidence coming from the clinical experience. The main clinical indication of rapamycin is as immunosuppressive therapy for the prevention of allograft rejection, namely, in renal transplantation. However, considering the central participation of mTOR in the pathogenesis of other renal disorders, the use of rapamycin and its analogs meanwhile developed (rapalogues) everolimus and temsirolimus has been viewed as a promising pharmacological strategy. This article critically reviews the use of mTOR inhibitors in renal diseases. Firstly, we briefly overview the mTOR components and signaling as well as the pharmacological armamentarium targeting the mTOR pathway currently available or in the research and development stages. Thereafter, we revisit the mTOR pathway in renal physiology to conclude with the advances, drawbacks, and challenges regarding the use of mTOR inhibitors, in a translational perspective, in four classes of renal diseases: kidney transplantation, polycystic kidney diseases, renal carcinomas, and diabetic nephropathy.
Collapse
|
47
|
Meissner MA, McCormick BZ, Karam JA, Wood CG. Adjuvant therapy for advanced renal cell carcinoma. Expert Rev Anticancer Ther 2018; 18:663-671. [PMID: 29707987 DOI: 10.1080/14737140.2018.1469980] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
INTRODUCTION Locally advanced, non-metastatic renal cell carcinoma (RCC) is conventionally managed with surgery. However, patients are at a high risk of RCC recurrence and have poor survival outcomes. An effective adjuvant systemic treatment is needed to improve on these outcomes. Targeted molecular and immune-based therapies have been investigated, or are under investigation, but their role in this setting remains unclear. Areas covered: A comprehensive search of PubMed and ClinicalTrials.gov was performed for relevant literature. The following topics pertinent to adjuvant therapy in RCC were evaluated: strategies for patient selection, cytokine-based immunotherapy, vaccine therapy, VEGF and non-VEGF targeted molecular agents, and immune checkpoint inhibitors. Expert commentary: Strong evidence for the incorporation of adjuvant therapy in high-risk RCC is lacking. Multiple targeted molecular therapies have been examined with only one approved for use. Genetic and molecular-based prognostic models are needed to determine who may benefit from adjuvant therapy. Developing adjuvant therapy strategies in the future depends on the results of important ongoing trials with immunotherapy and targeted agents.
Collapse
Affiliation(s)
- Matthew A Meissner
- a Department of Urology , The University of Texas MD Anderson Cancer Center , Houston , Texas , USA
| | - Barrett Z McCormick
- a Department of Urology , The University of Texas MD Anderson Cancer Center , Houston , Texas , USA
| | - Jose A Karam
- a Department of Urology , The University of Texas MD Anderson Cancer Center , Houston , Texas , USA
| | - Christopher G Wood
- a Department of Urology , The University of Texas MD Anderson Cancer Center , Houston , Texas , USA
| |
Collapse
|
48
|
Simioni C, Martelli AM, Zauli G, Vitale M, McCubrey JA, Capitani S, Neri LM. Targeting the phosphatidylinositol 3-kinase/Akt/mechanistic target of rapamycin signaling pathway in B-lineage acute lymphoblastic leukemia: An update. J Cell Physiol 2018; 233:6440-6454. [PMID: 29667769 DOI: 10.1002/jcp.26539] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 02/12/2018] [Indexed: 12/26/2022]
Abstract
Despite considerable progress in treatment protocols, B-lineage acute lymphoblastic leukemia (B-ALL) displays a poor prognosis in about 15-20% of pediatric cases and about 60% of adult patients. In addition, life-long irreversible late effects from chemo- and radiation therapy, including secondary malignancies, are a growing problem for leukemia survivors. Targeted therapy holds promising perspectives for cancer treatment as it may be more effective and have fewer side effects than conventional therapies. The phosphatidylinositol 3-phosphate kinase (PI3K)/Akt/mechanistic target of rapamycin (mTOR) signaling pathway is a key regulatory cascade which controls proliferation, survival and drug-resistance of cancer cells, and it is frequently upregulated in the different subtypes of B-ALL, where it plays important roles in the pathophysiology, maintenance and progression of the disease. Moreover, activation of this signaling cascade portends a poorer prognosis in both pediatric and adult B-ALL patients. Promising preclinical data on PI3K/Akt/mTOR inhibitors have documented their anticancer activity in B-ALL and some of these novel drugs have entered clinical trials as they could lead to a longer event-free survival and reduce therapy-associated toxicity for patients with B-ALL. This review highlights the current status of PI3K/Akt/mTOR inhibitors in B-ALL, with an emphasis on emerging evidence of the superior efficacy of synergistic combinations involving the use of traditional chemotherapeutics or other novel, targeted agents.
Collapse
Affiliation(s)
- Carolina Simioni
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Alberto M Martelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Giorgio Zauli
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Marco Vitale
- Department of Medicine and Surgery, University of Parma, Parma, Italy.,CoreLab, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina
| | - Silvano Capitani
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Luca M Neri
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| |
Collapse
|
49
|
Xiong Z, Zang Y, Zhong S, Zou L, Wu Y, Liu S, Fang Z, Shen Z, Ding Q, Chen S. The preclinical assessment of XL388, a mTOR kinase inhibitor, as a promising anti-renal cell carcinoma agent. Oncotarget 2018; 8:30151-30161. [PMID: 28404914 PMCID: PMC5444733 DOI: 10.18632/oncotarget.15620] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 01/16/2017] [Indexed: 01/07/2023] Open
Abstract
XL388 is a mammalian target of rapamycin (mTOR) kinase inhibitor. We demonstrated that XL388 inhibited survival and proliferation of renal cell carcinoma (RCC) cell lines (786-0 and A549) and primary human RCC cells. XL388 activated caspase-dependent apoptosis in the RCC cells. XL388 blocked mTOR complex 1 (mTORC1) and mTORC2 activation, and depleted hypoxia-inducible factor 1α (HIF1α) and HIF-2α expression in RCC cells. Yet, XL388 was ineffective in RCC cells with mTOR shRNA knockdown or kinase-dead mutation. Notably, XL388 was more efficient than mTORC1 inhibitors (rapamycin, everolimus and temsirolimus) in killing RCC cells. Further studies showed that activation of MEK-ERK might be a key resistance factor of XL388. Pharmacological or shRNA-mediated inhibition of MEK-ERK pathway sensitized XL388-induced cytotoxicity in RCC cells. In vivo, oral administration of XL388 inhibited in nude mice 786-0 RCC tumor growth, and its anti-tumor activity was sensitized with co-administration of the MEK-ERK inhibitor MEK162. Together, these results suggest that concurrent inhibition of mTORC1/2 by XL388 may represent a fine strategy to inhibit RCC cells.
Collapse
Affiliation(s)
- Zuquan Xiong
- Department of Urology, Huashan Hospital Affiliated to Fudan University, Shanghai, China
| | - Yiwen Zang
- Department of General Surgery, Huashan Hospital Affiliated to Fudan University, Shanghai, China
| | - Shan Zhong
- Department of Urology, Huashan Hospital Affiliated to Fudan University, Shanghai, China
| | - Lujia Zou
- Department of Urology, Huashan Hospital Affiliated to Fudan University, Shanghai, China
| | - Yishuo Wu
- Department of Urology, Huashan Hospital Affiliated to Fudan University, Shanghai, China
| | - Shenghua Liu
- Department of Urology, Huashan Hospital Affiliated to Fudan University, Shanghai, China
| | - Zujun Fang
- Department of Urology, Huashan Hospital Affiliated to Fudan University, Shanghai, China
| | - Zhoujun Shen
- Department of Urology, Huashan Hospital Affiliated to Fudan University, Shanghai, China
| | - Qiang Ding
- Department of Urology, Huashan Hospital Affiliated to Fudan University, Shanghai, China
| | - Shanwen Chen
- Department of Urology, Huashan Hospital Affiliated to Fudan University, Shanghai, China
| |
Collapse
|
50
|
Liu Q, Fang Q, Ji S, Han Z, Cheng W, Zhang H. Resveratrol-mediated apoptosis in renal cell carcinoma via the p53/AMP‑activated protein kinase/mammalian target of rapamycin autophagy signaling pathway. Mol Med Rep 2017; 17:502-508. [PMID: 29115429 DOI: 10.3892/mmr.2017.7868] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 08/31/2017] [Indexed: 11/06/2022] Open
Abstract
Resveratrol, known as phytoalexin, is a natural compound. Clinical studies have revealed that resveratrol has a variety of effects including anti‑inflammatory, antivirus and tumor suppressor activities. It has been reported that it may serve an important role in renal cell carcinoma (RCC) however, the molecular mechanism underlying resveratrol‑induced apoptosis in RCC is still unclear. The aim of the present study was to determine whether resveratrol could suppress RCC progression. Analysis of apoptosis demonstrated that resveratrol may act as a RCC suppressor in a dose‑ and time‑dependent manner. In addition, the results of the MTT and cell migration experiments revealed that resveratrol significantly decreased cell viability and migration. In addition, the expression of the anti‑apoptosis gene B‑cell lymphoma 2 (Bcl‑2) was downregulated by resveratrol, and the expression of pro‑apoptosis gene Bcl‑2‑associated X was upregulated at the mRNA and protein levels. Resveratrol also promoted the expression of p53 and activated phospho‑AMP‑activated protein kinase (AMPK). The phosphorylation of mammalian target of rapamycin (mTOR) was inhibited and the autophagy‑associated genes, light chain 3, autophagy related (ATG)5 and ATG7, were upregulated at the mRNA and protein levels. In conclusion, resveratrol suppressed RCC viability and migration, and promoted RCC apoptosis via the p53/AMPK/mTOR‑induced autophagy signaling pathway.
Collapse
Affiliation(s)
- Qingjun Liu
- Department of Urology, Beijing Ditan Hospital, Capital Medical Science, Beijing 100015, P.R. China
| | - Qiang Fang
- Department of Urology, First Hospital of Fangshan District, Beijing 102400, P.R. China
| | - Shiqi Ji
- Department of Urology, Beijing Ditan Hospital, Capital Medical Science, Beijing 100015, P.R. China
| | - Zhixing Han
- Department of Urology, Beijing Ditan Hospital, Capital Medical Science, Beijing 100015, P.R. China
| | - Wenlong Cheng
- Department of Urology, Beijing Ditan Hospital, Capital Medical Science, Beijing 100015, P.R. China
| | - Haijian Zhang
- Department of Urology, Beijing Ditan Hospital, Capital Medical Science, Beijing 100015, P.R. China
| |
Collapse
|