1
|
Bosch D, van der Velden KJM, Belleman T, van Deen WK, Bergman AM, van der Doelen MJ, van den Eertwegh AJM, Gerritsen WR, van Moorselaar RJA, Somford DM, Tascilar M, Westgeest HM, Uyl-de Groot CA, Mulders PFA, Kuppen MCP, van Oort IM. Learning From Evidence: Changes in Real-World Use of Second Androgen Receptor Targeted Treatments in Metastatic Castration-Resistant Prostate Cancer (mCRPC). Clin Genitourin Cancer 2025; 23:102317. [PMID: 40082112 DOI: 10.1016/j.clgc.2025.102317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/09/2025] [Accepted: 02/12/2025] [Indexed: 03/16/2025]
Abstract
BACKGROUND Androgen receptor targeted therapies (ART) play a major role in the treatment of metastatic castration-resistant prostate cancer (mCRPC). In recent years consensus has been reached that treatment with a second ART should be avoided due to low response rates. The aim of this study was to investigate if new scientific insights led to changes in clinical daily practice in the Netherlands. METHODS Patients included in the Dutch CAPRI-3 prostate cancer registry, currently encompassing 19 hospitals, and treated with at least 1 ART (ie, abiraterone or enzalutamide) were included. Patients were stratified based on start date of first ART (ART1) according to standard of care between 2016-2017, 2018-2019 and 2020-2021. Second ART (ART2) was defined as either direct (ART1>ART2) or at any given time (any ART2). RESULTS Between the first and last ART1 group, the prevalence of ART1>ART2 declined from 14.3% to 6.5% (P = .001) and the prevalence of any ART2 from 27.6% to 10.7% (P < .001). The decline was observed before recommendations were included in European guidelines. The use of other life-prolonging drugs (LPDs) after ART1 (ART1>LPD) increased. Patients who were selected for ART1>ART2 instead of ART1>LPD were older, less frequently treated with taxane-based chemotherapy for mHSPC and had a longer time to development of mCRPC. CONCLUSIONS New scientific insights were incorporated into clinical daily practice, with a significant decline in in the prevalence of sequential ART treatment, even before recommendations were included in European guidelines.
Collapse
Affiliation(s)
- Dianne Bosch
- Department of Urology, Radboud University Medical Center, Nijmegen, The Netherlands.
| | | | - Tom Belleman
- Erasmus School of Health Policy and Management, Erasmus University Rotterdam, Rotterdam, The Netherlands
| | - Welmoed K van Deen
- Erasmus School of Health Policy and Management, Erasmus University Rotterdam, Rotterdam, The Netherlands
| | - André M Bergman
- Prostate Cancer Center, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Maarten J van der Doelen
- Department of Urology, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Urology, Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
| | | | - Winald R Gerritsen
- Department of Medical Oncology, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Diederik M Somford
- Department of Urology, Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
| | - Metin Tascilar
- Department of Medical Oncology, Isala Hospital, Zwolle, The Netherlands
| | - Hans M Westgeest
- Department of Medical Oncology, Amphia Hospital, Breda, The Netherlands
| | - Carin A Uyl-de Groot
- Erasmus School of Health Policy and Management, Erasmus University Rotterdam, Rotterdam, The Netherlands
| | - Peter F A Mulders
- Department of Urology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Malou C P Kuppen
- Department of Radiation Oncology (Maastro), GROW Research Institute for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Inge M van Oort
- Department of Urology, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
2
|
Navin AK, Rejani CT, Chandrasekaran B, Tyagi A. Urolithins: Emerging natural compound targeting castration-resistant prostate cancer (CRPC). Biomed Pharmacother 2025; 187:118058. [PMID: 40253830 DOI: 10.1016/j.biopha.2025.118058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 04/03/2025] [Accepted: 04/14/2025] [Indexed: 04/22/2025] Open
Abstract
Castration-resistant prostate cancer (CRPC) presents a significant challenge due to its resistance to conventional androgen deprivation therapies. Urolithins, bioactive metabolites derived from ellagitannins, have recently emerged as promising therapeutic agents for CRPC. Urolithins not only inhibit androgen receptor (AR) signaling, a crucial factor in the progression of CRPC, but also play a key role in regulating oxidative stress by their antioxidant properties, thereby inhibiting increased reactive oxygen species, a common feature of the aggressive nature of CRPC. Research has shown that urolithins induce apoptosis and diminish pro-survival signaling, leading to tumor inhibition. This review delves into the intricate mechanisms through which urolithins exert their therapeutic effects, focusing on both AR-dependent and AR-independent pathways. It also explores the exciting potential of combining urolithins with androgen ablation therapy, opening new avenues for CRPC treatment.
Collapse
Affiliation(s)
- Ajit Kumar Navin
- Department of Pharmacology, College of Pharmacy, Texas A&M University, College Station, TX 77845, USA
| | | | - Balaji Chandrasekaran
- Department of Pharmacology, College of Pharmacy, Texas A&M University, College Station, TX 77845, USA
| | - Ashish Tyagi
- Department of Pharmacology, College of Pharmacy, Texas A&M University, College Station, TX 77845, USA.
| |
Collapse
|
3
|
Pinto Á, Domínguez M, Gómez-Iturriaga A, Rodriguez-Vida A, Vallejo-Casas JA, Castro E. The role of radium-223 in the evolving treatment landscape of metastatic castration-resistant prostate cancer: A narrative review. Crit Rev Oncol Hematol 2025; 210:104678. [PMID: 40058740 DOI: 10.1016/j.critrevonc.2025.104678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/20/2025] [Accepted: 02/25/2025] [Indexed: 03/14/2025] Open
Abstract
The treatment of metastatic castration-resistant prostate cancer (mCRPC) has been rapidly evolving over the last two decades. The advent of new androgen receptor pathway inhibitors (ARPIs) such as abiraterone acetate or enzalutamide marks a great advance for treating mCRPC patientd in the pre- and post-docetaxel settings. The subsequent approval of ARPIs in early stages-i.e., metastatic hormone-sensitive (mHSPC) or nonmetastatic CRPC-led to a realignment of subsequent treatment choices upon progression to mCRPC, given the possibility of cross-resistance between ARPIs. Therapies with mechanisms of action different from those of ARPIs are now the focus of new treatment developments. Also, this anomalous situation brings the focus back to well-known treatments currently used later in the treatment sequence. This is the case of radium-223 which, when administered with enzalutamide, has recently been shown to prolong radiographic progression-free survival vs. enzalutamide alone in the first line in asymptomatic or mildly symptomatic patients with no known visceral metastases. In this narrative review, we summarize the treatment landscape for mCRPC, both from a historical and practical point of view, to understand the new potential of radium-223 as a treatment option in this setting.
Collapse
Affiliation(s)
- Álvaro Pinto
- Medical Oncology Department, Hospital Universitario La Paz, Madrid, Spain.
| | - Mario Domínguez
- Urology Department. Hospital Universitario Marqués de Valdecilla, Instituto de Investigación de Valdecilla (IDIVAL), Santander, Spain
| | - Alfonso Gómez-Iturriaga
- Radiation Oncology Department, Cruces University Hospital, Biobizkaia Health Research Institute, Basque Country University (UPV/EHU), Bilbao, Spain
| | | | | | - Elena Castro
- Medical Oncology Department, Hospital Universitario 12 de Octubre, Madrid, Spain
| |
Collapse
|
4
|
Wang T, Ahmad S, Cruz-Lebrón A, Ernst SE, Olivos Caicedo KY, Jeong Y, Binion B, Mbuvi P, Dutta D, Fernandez-Materan FV, Breister AM, Tang E, Lee JW, Kang JD, Harris SC, Ikegawa S, Gaskins HR, Erdman JW, Yang G, Cann I, Daniel SL, Hylemon PB, Anantharaman K, Bernardi RC, Alves JMP, Sfanos KS, Irudayaraj J, Ridlon JM. An expanded metabolic pathway for androgen production by commensal bacteria. Nat Microbiol 2025; 10:1084-1098. [PMID: 40259019 DOI: 10.1038/s41564-025-01979-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 03/06/2025] [Indexed: 04/23/2025]
Abstract
Commensal bacteria have been implicated in the modulation of steroid hormones, including circulating androgen levels in the host. However, the microbial genetic pathways involved in androgen production have not been fully characterized. Here we identify a microbial gene encoding an enzyme that catalyses the conversion of androstenedione to epitestosterone in the gut microbiome member Clostridium scindens and named this gene desF. We demonstrate that epitestosterone impacts androgen receptor-dependent prostate cancer cell proliferation in vitro. We also demonstrate that stool desF levels are elevated in patients with prostate cancer who are unresponsive to abiraterone/prednisone therapy. Bacterial isolates from urine or prostatectomy tissue produced androgens, and 17β-hydroxysteroid dehydrogenase activity encoded by the desG gene was detected in strains of the urinary tract bacterium Propionimicrobium lymphophilum. Furthermore, we demonstrate that urinary androgen-producing bacterial strains can promote prostate cancer cell growth through metabolism of cortisol and prednisone. Abiraterone, which targets host desmolase (CYP17A1), a rate-limiting enzyme in adrenal steroidogenesis, does not inhibit bacterial desmolase (DesAB), whereas the conversion of prednisone to androgens by DesAB, DesF and DesG drives androgen-receptor-dependent prostate cancer cell line proliferation in vitro. Our results are a significant advance in steroid microbiology and highlight a potentially important role for gut and urinary tract bacteria in host endocrine function and drug metabolism.
Collapse
Affiliation(s)
- Taojun Wang
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, Urbana, IL, USA
| | - Saeed Ahmad
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Biomedical Research Center, Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, IL, USA
| | - Angélica Cruz-Lebrón
- Departments of Pathology, Oncology, and Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sarah E Ernst
- Departments of Pathology, Oncology, and Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Yoon Jeong
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Biomedical Research Center, Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, IL, USA
| | - Briawna Binion
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, Urbana, IL, USA
| | - Pauline Mbuvi
- Biomedical Research Center, Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, IL, USA
- Department of Urology, Carle Foundation Hospital, Urbana, IL, USA
| | - Debapriya Dutta
- Biomedical Research Center, Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, IL, USA
- Department of Urology, Carle Foundation Hospital, Urbana, IL, USA
| | - Francelys V Fernandez-Materan
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, Urbana, IL, USA
| | - Adam M Breister
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Elizabeth Tang
- Department of Physics, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Jae Won Lee
- Department of Biotechnology, Sungshin Women's University, Seoul, South Korea
| | - Jason D Kang
- Stravitz-Sanyal Institute for Liver Disease & Metabolic Health, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Spencer C Harris
- Stravitz-Sanyal Institute for Liver Disease & Metabolic Health, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | | | - H Rex Gaskins
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - John W Erdman
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Glen Yang
- Department of Urology, Carle Foundation Hospital, Urbana, IL, USA
| | - Isaac Cann
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, Urbana, IL, USA
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Steven L Daniel
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Phillip B Hylemon
- Stravitz-Sanyal Institute for Liver Disease & Metabolic Health, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | | | | | - João M P Alves
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Karen S Sfanos
- Departments of Pathology, Oncology, and Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Joseph Irudayaraj
- Carl R. Woese Institute for Genomic Biology, Urbana, IL, USA.
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Biomedical Research Center, Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, IL, USA.
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Carle-Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA.
| | - Jason M Ridlon
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Carl R. Woese Institute for Genomic Biology, Urbana, IL, USA.
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA.
- Center for Advanced Study, University of Illinois Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
5
|
Nørgaard M, Rusan M, Kondrup K, Sørensen EMG, Weiss S, Bjerre MT, Fredsøe J, Vang S, Jensen JB, De Laere B, Grönberg H, Borre M, Lindberg J, Sørensen KD. Deep targeted sequencing of circulating tumor DNA to inform treatment in patients with metastatic castration-resistant prostate cancer. J Exp Clin Cancer Res 2025; 44:120. [PMID: 40229848 PMCID: PMC11998381 DOI: 10.1186/s13046-025-03356-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 03/04/2025] [Indexed: 04/16/2025] Open
Abstract
BACKGROUND Intrinsic and acquired resistance to second-generation anti-androgens pose a significant clinical challenge in the treatment of metastatic castration-resistant prostate cancer (mCRPC). Novel biomarkers to predict treatment response and inform alternative treatment options are urgently needed. METHODS Deep targeted sequencing, with a prostate cancer-specific gene panel, was performed on circulating tumor DNA (ctDNA) and germline DNA from blood of mCRPC patients recruited in Denmark (n = 53), prior to starting first-line treatment with enzalutamide or abiraterone acetate, and for a subset of patients also at progression (n = 18). Likely clonal hematopoietic variants were filtered out. Genomic findings were correlated to clinical outcomes (PSA progression-free survival (PFS), overall survival (OS)). Intrinsic resistance candidate biomarkers were considered by enrichment analysis of nonresponders vs. responders. Genomic alterations at progression were considered as possible drivers of acquired resistance. Clinical actionability was assessed based on OncoKB and ESCAT. RESULTS Somatic alterations in PTEN, cell cycle regulators (CCND1, CDKN1B, CDKN2A, and RB1) and chromatin modulators (CHD1, ARID1A) were associated with significantly shorter PFS and OS, also after adjusting for ctDNA% in multivariate Cox regression analysis. The associations with poorer outcomes for alterations in PTEN and chromatin modulators were validated in an external dataset. Patients with primary resistance to enzalutamide/abiraterone had enrichment for BRAF amplification and CHD1 loss, while responders had enrichment for TMPRSS2 fusions. AR resistance mutations emerged in 22% of patients at progression. These were mutually exclusive with other alterations that may confer resistance (i.e., activating CTNNB1 mutations, combined TP53/RB1 loss). Clinically actionable alterations, primarily in homologous recombination repair genes, were found in 54.7% and 49.0% of patients (OncoKB and ESCAT, respectively), with few additional alterations detected at progression. Level I alterations were identified in 41.5% of patients employing OncoKB, however only in 13.2% based on ESCAT. CONCLUSIONS Our study identifies known and novel prognostic and predictive biomarker candidates in patients with mCRPC undergoing first-line treatment with enzalutamide or abiraterone acetate. It further provides real-world evidence of the significant potential of genomic profiling of ctDNA to inform treatment in this setting. Clinical trials are warranted to advance the implementation of ctDNA-based biomarkers into clinical practice.
Collapse
Affiliation(s)
- Maibritt Nørgaard
- Department of Molecular Medicine, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, Aarhus, 8200, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Maria Rusan
- Department of Molecular Medicine, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, Aarhus, 8200, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Clinical Pharmacology, Aarhus University Hospital, Aarhus, Denmark
| | - Karoline Kondrup
- Department of Molecular Medicine, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, Aarhus, 8200, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Ea Marie Givskov Sørensen
- Department of Molecular Medicine, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, Aarhus, 8200, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Simone Weiss
- Department of Molecular Medicine, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, Aarhus, 8200, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Marianne Trier Bjerre
- Department of Molecular Medicine, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, Aarhus, 8200, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Urology, Aarhus University Hospital, Aarhus, Denmark
- Department of Urology, Gødstrup Hospital, Gødstrup, Denmark
| | - Jacob Fredsøe
- Department of Molecular Medicine, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, Aarhus, 8200, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Søren Vang
- Department of Molecular Medicine, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, Aarhus, 8200, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Jørgen Bjerggaard Jensen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Urology, Gødstrup Hospital, Gødstrup, Denmark
| | - Bram De Laere
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Department of Human Structure and Repair, Ghent University, Ghent, Belgium
- Cancer Research Institute Gent (CRIG), Ghent University, Ghent, Belgium
| | - Henrik Grönberg
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Michael Borre
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Urology, Aarhus University Hospital, Aarhus, Denmark
| | - Johan Lindberg
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Karina Dalsgaard Sørensen
- Department of Molecular Medicine, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, Aarhus, 8200, Denmark.
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
6
|
You J, Foo J, Lallous N, Cherkasov A. Deep Modeling of Gain-of-Function Mutations on Androgen Receptor. Mol Inform 2025; 44:e202500018. [PMID: 40304462 DOI: 10.1002/minf.202500018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 04/15/2025] [Accepted: 04/16/2025] [Indexed: 05/02/2025]
Abstract
The efficiency of Androgen Receptor (AR) pathway inhibitors for prostate cancer (PCa) is on decline due to resistance mechanisms including the occurrence of gain-of-function mutations on human androgen receptor (AR). Hence, understanding and predicting such mutations is crucial for developing effective PCa treatment strategies. Leveraging accu- mulated data on clinically relevant AR mutants with recent advances in deep modeling techniques, this study aims to unveil and quantify critical AR mutation-drug relation- ships. By incorporating molecular descriptors for drugs and mutated genes sequences, this work represented these features as single vectors and demonstrates their effective- ness in modeling AR mutant responses to conventional antiandrogens. The developed approach achieves above 80% accuracy in predicting the gain-of-function behavior of AR mutants and therefore can potentially uncover unknown agonist/antagonist relationships among mutant-drug pairs.
Collapse
Affiliation(s)
- Jiaying You
- Department of Urologic Sciences, Faculty of Medicine, Vancouver Prostate Centre, University of British Columbia, Vancouver, Canada
| | - Jane Foo
- Department of Urologic Sciences, Faculty of Medicine, Vancouver Prostate Centre, University of British Columbia, Vancouver, Canada
| | - Nada Lallous
- Department of Urologic Sciences, Faculty of Medicine, Vancouver Prostate Centre, University of British Columbia, Vancouver, Canada
| | - Artem Cherkasov
- Department of Urologic Sciences, Faculty of Medicine, Vancouver Prostate Centre, University of British Columbia, Vancouver, Canada
| |
Collapse
|
7
|
Hofstad M, Woods A, Parra K, Sychev ZE, Mazzagatti A, Huo X, Yu L, Gilbreath C, Chen WM, Davis AJ, Ly P, Drake JM, Kittler R. Dual inhibition of ATR and DNA-PKcs radiosensitizes ATM-mutant prostate cancer. Oncogene 2025:10.1038/s41388-025-03343-x. [PMID: 40119228 DOI: 10.1038/s41388-025-03343-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 01/31/2025] [Accepted: 03/06/2025] [Indexed: 03/24/2025]
Abstract
In advanced castration resistant prostate cancer (CRPC), mutations in the DNA damage response (DDR) gene ataxia telangiectasia mutated (ATM) are common. While poly(ADP-ribose) polymerase inhibitors are approved in this context, their clinical efficacy remains limited. Thus, there is a compelling need to identify alternative therapeutic avenues for ATM mutant prostate cancer patients. Here, we generated matched ATM-proficient and ATM-deficient CRPC lines to elucidate the impact of ATM loss on DDR in response to DNA damage via irradiation. Through unbiased phosphoproteomic screening, we unveiled that ATM-deficient CRPC lines maintain dependence on downstream ATM targets through activation of ATR and DNA-PKcs kinases. Dual inhibition of ATR and DNA-PKcs effectively inhibited downstream γH2AX foci formation in response to irradiation and radiosensitized ATM-deficient lines to a greater extent than either ATM-proficient controls or single drug treatment. Further, dual inhibition abrogated residual downstream ATM pathway signaling and impaired replication fork dynamics. To circumvent potential toxicity, we leveraged the RUVBL1/2 ATPase inhibitor Compound B, which leads to the degradation of both ATR and DNA-PKcs kinases. Compound B effectively radiosensitized ATM-deficient CRPC in vitro and in vivo, and impacted replication fork dynamics. Overall, dual targeting of both ATR and DNA-PKcs is necessary to block DDR in ATM-deficient CRPC, and Compound B could be utilized as a novel therapy in combination with irradiation in these patients.
Collapse
Affiliation(s)
- Mia Hofstad
- Eugene McDermott Center for Human Growth and Development, UT Southwestern Medical Center, Dallas, TX, USA.
- Department of Urology, UT Southwestern Medical Center, Dallas, TX, USA.
| | - Andrea Woods
- Department of Urology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Karla Parra
- Department of Urology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Zoi E Sychev
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | - Alice Mazzagatti
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Xiaofang Huo
- Eugene McDermott Center for Human Growth and Development, UT Southwestern Medical Center, Dallas, TX, USA
| | - Lan Yu
- Department of Urology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Collin Gilbreath
- Department of Urology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Wei-Min Chen
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Anthony J Davis
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Peter Ly
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Justin M Drake
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Ralf Kittler
- Eugene McDermott Center for Human Growth and Development, UT Southwestern Medical Center, Dallas, TX, USA.
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA.
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
8
|
da Silva IP, de Amorim LGCR, Piredda GV, Mass-Lindenbaum M, de Moraes FCA, Freitas PFS, Melão BVLA, Brandão HM, da Trindade KM. Cabazitaxel versus abiraterone or enzalutamide for metastatic castration-resistant prostate cancer following docetaxel failure: a systematic review and meta-analysis. Clin Transl Oncol 2025:10.1007/s12094-025-03851-y. [PMID: 39987332 DOI: 10.1007/s12094-025-03851-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 01/08/2025] [Indexed: 02/24/2025]
Abstract
PURPOSE Treatment for metastatic castration-resistant prostate cancer (mCRPC) includes chemotherapy and inhibition of the androgen receptor pathway. However, the optimal treatment sequence in this scenario is not yet fully understood. Therefore, we conducted a systematic review and meta-analysis comparing cabazitaxel versus abiraterone or enzalutamide for efficacy and safety outcomes as second-line therapy in mCRPC patients after docetaxel failure. METHODS We searched PubMed, Embase, and Cochrane databases for interventional studies comparing cabazitaxel versus abiraterone or enzalutamide for patients with mCRPC who have experienced treatment failure with docetaxel as their first-line therapy. We computed hazard ratios (HRs) or odds ratios (ORs) with 95% confidence intervals (CIs). RESULTS Eight studies, comprising 1,897 patients were included, of whom 548 (28.8%) received cabazitaxel. Mean follow-up time ranged from 3 to 16.4 months. Median age ranged from 68.1 to 73.9 years in the cabazitaxel group, and 68.0 to 73.1 years in the abiraterone or enzalutamide group. In our meta-analysis, cabazitaxel significantly improved progression-free survival (PFS) rates (HR 0.60; 95% CI 0.47-0.78; p < 0.001) compared to abiraterone or enzalutamide. There were no differences between groups in overall survival (HR 0.76; 95% CI 0.46-1.24; p = 0.27), therapy-related grade ≥ 3 adverse events (AEs) (OR 3.00; 95% CI 0.72-12.40; p = 0.12), and PSA decline ≥ 50% (OR 1.20; 95% CI 0.51-2.80; p = 0.67). CONCLUSIONS In this systematic review and meta-analysis of men with mCRPC after docetaxel failure, second-line therapy with cabazitaxel was associated with a longer PFS compared with abiraterone or enzalutamide, though without a significant difference in OS.
Collapse
Affiliation(s)
| | | | | | - Marcelo Mass-Lindenbaum
- Department of Medicine, Centro de Innovación en Piso Pélvico, Hospital Sótero del Río, Santiago, Chile
| | | | - Pedro F S Freitas
- Desai Sethi Urology Institute, University of Miami Miller School of Medicine, Miami, USA
| | | | | | - Karine Martins da Trindade
- Latin American Cooperative Oncology Group, Genitourinary Group (LACOG-GU), Porto Alegre, Brazil.
- Division of Oncology, Intituto D'Or de Pesquisa e Ensino, Fortaleza, Brazil.
| |
Collapse
|
9
|
Gokbayrak B, Altintas UB, Lingadahalli S, Morova T, Huang CCF, Ersoy Fazlioglu B, Pak Lok Yu I, Kalkan BM, Cejas P, Kung SHY, Fazli L, Kawamura A, Long HW, Acilan C, Onder TT, Bagci-Onder T, Lynch JT, Lack NA. Identification of selective SWI/SNF dependencies in enzalutamide-resistant prostate cancer. Commun Biol 2025; 8:169. [PMID: 39905188 PMCID: PMC11794516 DOI: 10.1038/s42003-024-07413-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 12/17/2024] [Indexed: 02/06/2025] Open
Abstract
Enzalutamide is a potent second-generation antiandrogen commonly used to treat hormone-sensitive and castration-resistant prostate cancer (CRPC) patients. While initially effective, the disease almost always develops resistance. Given that many enzalutamide-resistant tumors lack specific somatic mutations, there is strong evidence that epigenetic factors can cause enzalutamide resistance. To explore how resistance arises, we systematically test all epigenetic modifiers in several models of castration-resistant and enzalutamide-resistant prostate cancer with a custom epigenetic CRISPR library. From this, we identify and validate SMARCC2, a core component of the SWI/SNF complex, that is selectivity essential in enzalutamide-resistant models. We show that the chromatin occupancy of SMARCC2 and BRG1 is expanded in enzalutamide resistance at regions that overlap with CRPC-associated transcription factors that are accessible in CRPC clinical samples. Overall, our study reveals a regulatory role for SMARCC2 in enzalutamide-resistant prostate cancer and supports the feasibility of targeting the SWI/SNF complex in late-stage PCa.
Collapse
Affiliation(s)
- Bengul Gokbayrak
- Koc University Research Centre for Translational Medicine (KUTTAM), Istanbul, Turkey
- Department of Clinical Pharmacology, School of Medicine, Koc University, Istanbul, Turkey
| | - Umut Berkay Altintas
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, Canada
| | - Shreyas Lingadahalli
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, Canada
| | - Tunc Morova
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, Canada
| | - Chia-Chi Flora Huang
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, Canada
| | - Betul Ersoy Fazlioglu
- Koc University Research Centre for Translational Medicine (KUTTAM), Istanbul, Turkey
- Department of Clinical Pharmacology, School of Medicine, Koc University, Istanbul, Turkey
| | - Ivan Pak Lok Yu
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, Canada
| | - Batuhan M Kalkan
- Koc University Research Centre for Translational Medicine (KUTTAM), Istanbul, Turkey
| | - Paloma Cejas
- Department of Medical Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, and Harvard Medical School, Boston, USA
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, USA
- Translational Oncology Laboratory, Hospital La Paz Institute for Health Research (IdiPAZ) and CIBERONC, La Paz University Hospital, Madrid, Spain
| | - Sonia H Y Kung
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, Canada
| | - Ladan Fazli
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, Canada
| | - Akane Kawamura
- Chemistry - School of Natural and Environmental Sciences, Newcastle University, Newcastle, UK
- Department of Chemistry, University of Oxford, Oxford, UK
| | - Henry W Long
- Department of Medical Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, and Harvard Medical School, Boston, USA
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, USA
| | - Ceyda Acilan
- Koc University Research Centre for Translational Medicine (KUTTAM), Istanbul, Turkey
| | - Tamer T Onder
- Koc University Research Centre for Translational Medicine (KUTTAM), Istanbul, Turkey
| | - Tugba Bagci-Onder
- Koc University Research Centre for Translational Medicine (KUTTAM), Istanbul, Turkey
| | - James T Lynch
- Research and Early Development, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Nathan A Lack
- Koc University Research Centre for Translational Medicine (KUTTAM), Istanbul, Turkey.
- Department of Clinical Pharmacology, School of Medicine, Koc University, Istanbul, Turkey.
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
10
|
Ma S, Xu Y, Liu M, Wu S, Zhang Y, Xia H, Lu J, Zhan Y. Synergistic antitumor effect of MK-1775 and CUDC-907 against prostate cancer. Invest New Drugs 2025; 43:157-166. [PMID: 39869284 DOI: 10.1007/s10637-024-01490-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 12/12/2024] [Indexed: 01/28/2025]
Abstract
Due to the emergence of drug resistance, androgen receptor (AR)-targeted drugs still pose great challenges in the treatment of prostate cancer, and it is urgent to explore an innovative therapeutic strategy. MK-1775, a highly selective WEE1 inhibitor, is shown to have favorable therapeutic benefits in several solid tumor models. Recent evidence suggests that the combination of MK-1775 with DNA-damaging agents could lead to enhanced antitumor efficacy. Here, our results demonstrate that MK-1775 alone could indeed inhibit proliferation and induce apoptosis in prostate cancer. Moreover, the combination of MK-1775 and a dual PI3K and HDAC inhibitor, CUDC-907, can synergistically inhibit cell proliferation and dramatically induces apoptosis in prostate cancer cells. This effect is partially mediated by DNA damage, resulting from the downregulation of DNA damage response (DDR) proteins such as CDK, CHK, and RRM1/2. Notably, the combination of MK-1775 and CUDC-907 leads to significant antitumor effects in vivo. Our findings provide a strong basis for a promising combination strategy against prostate cancer.
Collapse
Affiliation(s)
- Saisai Ma
- School of Life Sciences, Jilin University, Changchun, China
- National Engineering Laboratory for AIDS Vaccine, Jilin University, Changchun, China
| | - Yichen Xu
- School of Life Sciences, Jilin University, Changchun, China
| | - Minmin Liu
- Departments of Structural and Cellular Biology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA, USA
| | - Shuaida Wu
- School of Life Sciences, Jilin University, Changchun, China
- National Engineering Laboratory for AIDS Vaccine, Jilin University, Changchun, China
| | - Ye Zhang
- School of Life Sciences, Jilin University, Changchun, China
- National Engineering Laboratory for AIDS Vaccine, Jilin University, Changchun, China
| | - Hongyan Xia
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Ji Lu
- Department of Urology, The First Hospital of Jilin University, Jilin University, Changchun, China.
- The First Hospital of Jilin University, Jilin University, Changchun, China.
- , 71 Xinmin Street, Changchun, 130021, China.
| | - Yang Zhan
- School of Life Sciences, Jilin University, Changchun, China.
- National Engineering Laboratory for AIDS Vaccine, Jilin University, Changchun, China.
- , 2699 Qianjin Ave, Changchun, 130012, China.
| |
Collapse
|
11
|
Shen H, Xu H, Jin W, Wu T, Hu J, Zhang C, Zhong Z, Li J, Mao R, Zhang S, Zhang X, Wu X, Smaill JB, Xu J, Zhang Y, Xu Y. Discovery of a Potent and Selective GSPT1 Molecular Glue Degrader for the Treatment of Castration-Resistant Prostate Cancer. J Med Chem 2025; 68:1553-1571. [PMID: 39746330 DOI: 10.1021/acs.jmedchem.4c02205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
The treatment of castration-resistant prostate cancer (CRPC) remains a significant challenge, necessitating the development of new and promising therapeutic strategies. Utilizing molecular glue to degrade previously intractable cancer drivers represents an emerging and promising therapeutic approach to cancer treatment. In this study, we developed a novel CRBN-interacting molecular glue, 7d (XYD049), which exhibits potent and selective degradation of G1 to S phase transition 1 (GSPT1), a well-known untargetable cancer driver in diverse cancer cells. Importantly, 7d exhibits superior efficacy compared to 1 (CC-90009) in degrading GSPT1 in 22Rv1 cells with a DC50 value of 19 nM. It effectively suppresses the growth of 22Rv1 cells with an IC50 value of 0.007 ± 0.004 μM and demonstrates efficacy in inhibiting 22Rv1 tumor growth in mice. Mechanistically, via degradation of GSPT1, 7d downregulates CRPC-related oncogenes in 22Rv1 cells, including AR, AR-V7, PSA, and c-Myc. Thus, our work provides a novel GSPT1 selective degrader with potent effectiveness in targeting Myc-driven CRPC.
Collapse
Affiliation(s)
- Hui Shen
- China-New Zealand Joint Laboratory on Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Biocomputing, Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China
- University of Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing 100049, China
| | - Hongrui Xu
- China-New Zealand Joint Laboratory on Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Biocomputing, Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Weiqin Jin
- China-New Zealand Joint Laboratory on Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Biocomputing, Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China
- Institutes of Material Science and Information Technology, Anhui University, Hefei 230601, China
| | - Tianbang Wu
- China-New Zealand Joint Laboratory on Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Biocomputing, Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Jiankang Hu
- China-New Zealand Joint Laboratory on Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Biocomputing, Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China
- University of Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing 100049, China
| | - Cheng Zhang
- China-New Zealand Joint Laboratory on Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Biocomputing, Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Zhixin Zhong
- China-New Zealand Joint Laboratory on Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Biocomputing, Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China
- University of Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing 100049, China
| | - Junhua Li
- China-New Zealand Joint Laboratory on Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Biocomputing, Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Rui Mao
- Laboratory Animal Research Center, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Sheng Zhang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Xiao Zhang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Xishan Wu
- China-New Zealand Joint Laboratory on Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Biocomputing, Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Jeff B Smaill
- Auckland Cancer Society Research Centre, School of Medical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Jinxin Xu
- China-New Zealand Joint Laboratory on Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Biocomputing, Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Yan Zhang
- China-New Zealand Joint Laboratory on Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Biocomputing, Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Yong Xu
- China-New Zealand Joint Laboratory on Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Biocomputing, Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China
| |
Collapse
|
12
|
Wang X, Guo Y, Lin P, Yu M, Song S, Xu W, Kong D, Wang Y, Zhang Y, Lu F, Xie Q, Ma X. Nuclear receptor E75/NR1D2 promotes tumor malignant transformation by integrating Hippo and Notch pathways. EMBO J 2024; 43:6336-6363. [PMID: 39516282 PMCID: PMC11649922 DOI: 10.1038/s44318-024-00290-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 10/10/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Hormone therapy resistance and the ensuing aggressive tumor progression present a significant clinical challenge. However, the mechanisms underlying the induction of tumor malignancy upon inhibition of steroid hormone signaling remain poorly understood. Here, we demonstrate that Drosophila malignant epithelial tumors show a similar reduction in ecdysone signaling, the main steroid hormone pathway. Our analysis of ecdysone-induced downstream targets reveals that overexpression of the nuclear receptor E75, particularly facilitates the malignant transformation of benign tumors. Genome-wide DNA binding profiles and biochemistry data reveal that E75 not only binds to the transcription factors of both Hippo and Notch pathways, but also exhibits widespread co-binding to their target genes, thus contributing to tumor malignancy. We further validated these findings by demonstrating that depletion of NR1D2, the mammalian homolog of E75, inhibits the activation of Hippo and Notch target genes, impeding glioblastoma progression. Together, our study unveils a novel mechanism by which hormone inhibition promotes tumor malignancy, and describes an evolutionarily conserved role of the oncogene E75/NR1D2 in integration of Hippo and Notch pathway activity during tumor progression.
Collapse
Affiliation(s)
- Xianping Wang
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, Zhejiang, China.
- School of Life Sciences, Westlake University, Hangzhou, 310024, Zhejiang, China.
| | - Yifan Guo
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, Zhejiang, China
- School of Life Sciences, Westlake University, Hangzhou, 310024, Zhejiang, China
| | - Peng Lin
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, Zhejiang, China
- School of Life Sciences, Westlake University, Hangzhou, 310024, Zhejiang, China
| | - Min Yu
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Sha Song
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, Zhejiang, China
- School of Life Sciences, Westlake University, Hangzhou, 310024, Zhejiang, China
| | - Wenyan Xu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, Zhejiang, China
- School of Life Sciences, Westlake University, Hangzhou, 310024, Zhejiang, China
| | - Du Kong
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, Zhejiang, China
- School of Life Sciences, Westlake University, Hangzhou, 310024, Zhejiang, China
| | - Yin Wang
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, Zhejiang, China
- School of Life Sciences, Westlake University, Hangzhou, 310024, Zhejiang, China
- Department of Diabetes & Cancer Metabolism, Beckman Research Institute of City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Yanxiao Zhang
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, Zhejiang, China
- School of Life Sciences, Westlake University, Hangzhou, 310024, Zhejiang, China
| | - Fei Lu
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Qi Xie
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, Zhejiang, China.
- School of Life Sciences, Westlake University, Hangzhou, 310024, Zhejiang, China.
| | - Xianjue Ma
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, Zhejiang, China.
- School of Life Sciences, Westlake University, Hangzhou, 310024, Zhejiang, China.
| |
Collapse
|
13
|
Wang H, Wang X, Zhong H, Cai L, Fu W, Chai X, Liao J, Sheng R, Shan L, Xu X, Xu L, Pan P, Hou T, Li D. Discovery of 5-Nitro- N-(3-(trifluoromethyl)phenyl) Pyridin-2-amine as a Novel Pure Androgen Receptor Antagonist against Antiandrogen Resistance. J Med Chem 2024; 67:20514-20530. [PMID: 39508817 DOI: 10.1021/acs.jmedchem.4c01970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
The transformation of clinical androgen receptor (AR) antagonists into agonists driven by AR mutations poses a significant challenge in treating prostate cancer (PCa). Novel anti-AR therapeutics combating mutation-induced resistance are required. Herein, by combining structure-based virtual screening and biological evaluation, a high-affinity agonist E10 was first discovered. Then guided by the representative conformation of State 1 at the free energy landscape, the structural optimization of E10 was performed, and pure AR antagonists EL15 (IC50 = 0.94 μM) and EF2 (IC50 = 0.30 μM) were successfully identified. Both can antagonize wild-type and variant drug-resistant ARs. Therein, EF2 demonstrated potent inhibition of the AR pathway and effectively suppressed tumor growth in a C4-2B xenograft mouse model following oral administration. Further molecular dynamics simulation and mutagenesis studies revealed atomic insights into the mode of action of EF2 which may serve as a novel lead compound for developing therapeutics against AR-driven PCa.
Collapse
Affiliation(s)
- Huating Wang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Xuwen Wang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Haiyang Zhong
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Lvtao Cai
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Weitao Fu
- Insitute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei 230601, Anhui, China
| | - Xin Chai
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Jianing Liao
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Rong Sheng
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
- Jinhua Institute of Zhejiang University, Jinhua 321000, Zhejiang, China
| | - Luhu Shan
- Institute of Cancer Research and Basic Medical Sciences of Chinese Academy of Sciences, Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou 310022, Zhejiang, China
| | - Xiaohong Xu
- Institute of Cancer Research and Basic Medical Sciences of Chinese Academy of Sciences, Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou 310022, Zhejiang, China
| | - Lei Xu
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou 213001, Jiangsu, China
| | - Peichen Pan
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Tingjun Hou
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Dan Li
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
- Jinhua Institute of Zhejiang University, Jinhua 321000, Zhejiang, China
| |
Collapse
|
14
|
Zhu Z, Xuan W, Wang C, Li C. Long noncoding RNA mediates enzalutamide resistance and transformation in neuroendocrine prostate cancer. Front Oncol 2024; 14:1481777. [PMID: 39655078 PMCID: PMC11625809 DOI: 10.3389/fonc.2024.1481777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 11/08/2024] [Indexed: 12/12/2024] Open
Abstract
Prostate cancer is a malignant tumor caused by the malignant proliferation of epithelial cells, which is highly heterogeneous and drug-resistant, and neuroendocrine prostate cancer (NEPC) is an essential cause of drug resistance in its late stage. Elucidating the evolution of NEPC and the resistance process of enzalutamide, a novel antiandrogen, will be of great help in improving the prognosis of patients. As a research hotspot in the field of molecular biology in recent years, the wide range of biological functions of long noncoding RNAs (lncRNAs) has demonstrated their position in the therapeutic process of many diseases, and a large number of studies have revealed their critical roles in tumor progression and drug resistance. Therefore, elucidating the involvement of lncRNAs in the formation of NEPCs and their interrelationship with enzalutamide resistance may provide new ideas for a deeper understanding of the development of this disease and the occurrence of enzalutamide resistance and give a new direction for reversing the therapeutic dilemma of advanced prostate cancer. This article focuses on lncRNAs that regulate enzalutamide resistance and the neuroendocrine transition of prostate cancer through epigenetic, androgen receptor (AR) signaling, and non-AR pathways that act as "molecular sponges" interacting with miRNAs. Some insights into these mechanisms are used to provide some help for subsequent research in this area.
Collapse
Affiliation(s)
- Zhe Zhu
- Department of Urology, Anhui No.2 Provincial People’s Hospital, HeFei, China
| | - Wenjing Xuan
- Department of Obstetrics, Anhui No.2 Provincial People’s Hospital, HeFei, China
| | - Chaohui Wang
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Chancan Li
- Department of Urology, Anhui No.2 Provincial People’s Hospital, HeFei, China
| |
Collapse
|
15
|
Huang Y, Cen Y, Wu H, Zeng G, Su Z, Zhang Z, Feng S, Jiang X, Wei A. Nodularin-R Synergistically Enhances Abiraterone Against Castrate- Resistant Prostate Cancer via PPP1CA Inhibition. J Cell Mol Med 2024; 28:e70210. [PMID: 39550701 PMCID: PMC11569623 DOI: 10.1111/jcmm.70210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 10/28/2024] [Accepted: 11/02/2024] [Indexed: 11/18/2024] Open
Abstract
Clinically, most prostate cancer (PCa) patients inevitably progress to castration-resistant prostate cancer (CRPC) with poor prognosis after androgen deprivation therapy (ADT), including abiraterone, the drug of choice for ADT. Therefore, it is necessary to explore the resistance mechanism of abiraterone in depth. Genome-wide CRISPR/Cas9 knockout technology was used to screen CRPC cell line 22Rv1 for abiraterone-resistant genes. Combined with bioinformatics, a key gene with high expression and poor prognosis in CRPC patients was screened. Then, the effects of target gene on abiraterone-resistant 22Rv1 cell function were explored by silencing and overexpression. Further, a natural product with potential targeting effect was identified and validated by molecular docking and protein expression. Molecular dynamics simulations revealed potential mechanism for the natural product affecting target protein expression. Finally, the combined anti-CRPC effects of the natural product and abiraterone were validated by cellular and in vivo experiments. Five common resistance genes (KCNJ3, COL2A1, PPP1CA, MDH2 and EXOSC5) were identified successfully, among which high PPP1CA expression had the worst prognosis for disease-free survival. Moreover, PPP1CA was highly expressed in abiraterone-resistant 22Rv1 cells. Silencing PPP1CA increased cell sensitivity to abiraterone while promoting apoptosis and inhibiting clone formation. Overexpressing PPP1CA exerted the opposite effects. Molecular docking revealed the binding mode of the natural product nodularin-R to PPP1CA with a dose-dependent manner for inhibition. Mechanistically, nodularin-R attenuates the interaction between PPP1CA and USP11 (deubiquitinating enzyme), potentially promoting PPP1CA degradation. Additionally, combination of 2.72 μM nodularin-R and 54.5 μM abiraterone synergistically inhibited the resistant 22Rv1 cell function. In vivo experiments also revealed that combination therapy significantly inhibited tumour growth and reduced inducible expression of PPP1CA. PPP1CA is a key driver for abiraterone resistance, and nodularin-R enhances the anti-CRPC effects of abiraterone by inhibiting PPP1CA.
Collapse
Affiliation(s)
- Yiqiao Huang
- Department of Urology, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
- Department of Urology, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education InstitutesThe Fifth Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Yi Cen
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory DiseaseGuangzhou Medical UniversityGuangzhouChina
| | - Hualing Wu
- Department of Gynecology, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education InstitutesThe Fifth Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Guohao Zeng
- Department of Urology, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education InstitutesThe Fifth Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Zhengming Su
- Department of Urology, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education InstitutesThe Fifth Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Zhiming Zhang
- Department of Urology, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education InstitutesThe Fifth Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Shourui Feng
- School of Life SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Xianhan Jiang
- Department of Urology, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education InstitutesThe Fifth Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Anyang Wei
- Department of Urology, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| |
Collapse
|
16
|
Zang PD, Seylani A, Yu EY, Dorff TB. PROTACing the androgen receptor and other emerging therapeutics in prostate cancer. Expert Rev Anticancer Ther 2024; 24:829-835. [PMID: 39021245 DOI: 10.1080/14737140.2024.2379913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/10/2024] [Indexed: 07/20/2024]
Abstract
INTRODUCTION The androgen receptor (AR) is a critical driver of prostate cancer progression, and the advent of androgen receptor pathway inhibitors (ARPIs) has transformed the treatment landscape of metastatic prostate cancer. However, resistance to ARPIs eventually develops via mutations in AR, AR overexpression, and alternative AR signaling which have required novel approaches to target effectively. AREAS COVERED The mechanism of action and early clinical results of proteolysis targeting chimera (PROTAC) agents targeting AR are reviewed. Preclinical and early clinical data for other emerging AR-targeting therapeutics, including dual-action androgen receptor inhibitors (DAARIs) and anitens that target the N-terminal domain of AR, were also identified through literature search for agents which may circumvent resistance through AR splice variants and AR ligand-binding domain mutations. The literature search utilized PubMed to identify articles that were relevant to this review from 2000 to 2024. EXPERT OPINION PROTACs, DAARIs, and anitens represent novel and promising AR-targeting therapeutics that may become an important part of prostate cancer treatment in the future. Elucidating mechanisms of resistance, including ability of these agents to target full length AR, may yield further insights into maximal therapeutic efficacy aimed at silencing AR signaling.
Collapse
Affiliation(s)
- Peter D Zang
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Allen Seylani
- University of California Riverside School of Medicine, Los Angeles, CA, USA
| | - Evan Y Yu
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Medicine, Division of Hematology and Oncology, University of Washington, Seattle, WA, USA
| | - Tanya B Dorff
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| |
Collapse
|
17
|
Farinea G, Calabrese M, Carfì F, Saporita I, Poletto S, Delcuratolo MD, Turco F, Audisio M, Di Stefano FR, Tucci M, Buttigliero C. Impact of Neuroendocrine Differentiation (NED) on Enzalutamide and Abiraterone Efficacy in Metastatic Castration-Resistant Prostate Cancer (mCRPC): A Retrospective Analysis. Cells 2024; 13:1396. [PMID: 39195285 PMCID: PMC11352349 DOI: 10.3390/cells13161396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/01/2024] [Accepted: 08/10/2024] [Indexed: 08/29/2024] Open
Abstract
Neuroendocrine differentiation (NED) represents a possible androgen receptor pathway inhibitors (ARPI) resistance mechanism in metastatic castration resistance prostate cancer (mCRPC). As mCRPC with NED has been excluded from clinical trials evaluating ARPI efficacy, this study investigates the prognostic impact of NED in mCRPC patients treated with ARPIs. Methods: We retrospectively analyzed 327 mCRPC patient data treated with Enzalutamide or Abiraterone in the first and second or successive lines of treatment. NED was assessed using prostate biopsy samples through immunohistochemical staining. Results: NED was confirmed in 32/327 (9.8%) mCRPC patients. In the overall population, mCRPC with NED showed worse PFS (4.38 vs. 11.48 months HR 2.505 [1.71-3.68] p < 0.05), disease control rate (DCR), and PSA response. In the first line setting, mCRPC with NED demonstrated worse PFS (8.5 vs. 14.9 months HR 2.13 [1.18-3.88], p < 0.05). Similarly, in the second or successive lines, mCRPC with NED showed worse PFS (4.0 vs. 7.5 months HR 2.43 [1.45-4.05] p < 0.05), DCR, PSA response and OS (12.53 vs. 18.03 months HR 1.86 [1.12-3.10] p < 0.05). The adverse impact of NED on PFS was consistence across all subgroups; we also noted a trend of worse PFS in patients with high vs. low NED. Conclusions: In our study, mCRPC with NED treated with Enzalutamide or Abiraterone showed worse clinical outcomes. NED assessment should be considered to optimize treatment decisions in the mCRPC setting.
Collapse
Affiliation(s)
- Giovanni Farinea
- Department of Oncology, San Luigi Gonzaga University Hospital, University of Turin, 10043 Orbassano, Italy; (M.C.); (F.C.); (I.S.); (S.P.); (M.D.D.); (M.A.); (F.R.D.S.); (C.B.)
| | - Mariangela Calabrese
- Department of Oncology, San Luigi Gonzaga University Hospital, University of Turin, 10043 Orbassano, Italy; (M.C.); (F.C.); (I.S.); (S.P.); (M.D.D.); (M.A.); (F.R.D.S.); (C.B.)
| | - Federica Carfì
- Department of Oncology, San Luigi Gonzaga University Hospital, University of Turin, 10043 Orbassano, Italy; (M.C.); (F.C.); (I.S.); (S.P.); (M.D.D.); (M.A.); (F.R.D.S.); (C.B.)
| | - Isabella Saporita
- Department of Oncology, San Luigi Gonzaga University Hospital, University of Turin, 10043 Orbassano, Italy; (M.C.); (F.C.); (I.S.); (S.P.); (M.D.D.); (M.A.); (F.R.D.S.); (C.B.)
| | - Stefano Poletto
- Department of Oncology, San Luigi Gonzaga University Hospital, University of Turin, 10043 Orbassano, Italy; (M.C.); (F.C.); (I.S.); (S.P.); (M.D.D.); (M.A.); (F.R.D.S.); (C.B.)
| | - Marco Donatello Delcuratolo
- Department of Oncology, San Luigi Gonzaga University Hospital, University of Turin, 10043 Orbassano, Italy; (M.C.); (F.C.); (I.S.); (S.P.); (M.D.D.); (M.A.); (F.R.D.S.); (C.B.)
| | - Fabio Turco
- Oncology Institute of Southern Switzerland, 6500 Bellinzona, Switzerland;
| | - Marco Audisio
- Department of Oncology, San Luigi Gonzaga University Hospital, University of Turin, 10043 Orbassano, Italy; (M.C.); (F.C.); (I.S.); (S.P.); (M.D.D.); (M.A.); (F.R.D.S.); (C.B.)
| | - Francesco Rosario Di Stefano
- Department of Oncology, San Luigi Gonzaga University Hospital, University of Turin, 10043 Orbassano, Italy; (M.C.); (F.C.); (I.S.); (S.P.); (M.D.D.); (M.A.); (F.R.D.S.); (C.B.)
| | - Marcello Tucci
- Department of Medical Oncology, Cardinal Massaia Hospital, 14100 Asti, Italy;
| | - Consuelo Buttigliero
- Department of Oncology, San Luigi Gonzaga University Hospital, University of Turin, 10043 Orbassano, Italy; (M.C.); (F.C.); (I.S.); (S.P.); (M.D.D.); (M.A.); (F.R.D.S.); (C.B.)
| |
Collapse
|
18
|
Cheng X, Yang H, Chen Y, Zeng Z, Liu Y, Zhou X, Zhang C, Xie A, Wang G. METTL3-mediated m 6A modification of circGLIS3 promotes prostate cancer progression and represents a potential target for ARSI therapy. Cell Mol Biol Lett 2024; 29:109. [PMID: 39143552 PMCID: PMC11325714 DOI: 10.1186/s11658-024-00628-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 08/05/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) have been shown to be involved in tumorigenesis and progression. However, the role of circGLIS3 (hsa_circ_0002874) in prostate cancer (PCa) has yet not been reported. METHODS Candidate circRNA were determined through comprehensive analysis of public datasets, PCa cell lines, and tissues data. A series of cellular functional assays, including CCK-8, colony formation, wound healing, and transwell assays were performed. Subsequently, RNA sequencing, RNA immunoprecipitation, methylated RNA immunoprecipitation, microRNA pulldown, luciferase reporter assay, and western blot were used to explore the underlying molecular mechanisms. Moreover, the xenograft tumor mouse model was established to elucidate the function of circGLIS3. RESULTS CircGLIS3, derived from exon 2 of the parental GLIS3 gene, was identified as a novel oncogenic circRNA in PCa that was closely associated with the biochemical recurrence. Its expression levels were upregulated in PCa tissues and cell lines as well as enzalutamide high-resistant cells. The cellular functional assays revealed that circGLIS3 promoted PCa cell proliferation, migration, and invasion. METTL3-mediated N6-methyladenosine (m6A) modification maintained its upregulation by enhancing its stability. Mechanically, CircGLIS3 sponged miR-661 to upregulate MDM2, thus regulating the p53 signaling pathway to promote cell proliferation, migration, and invasion. Furthermore, in vitro and in vivo experiments, the knockdown of circGLIS3 improved the response of PCa cells to ARSI therapies such as enzalutamide. CONCLUSIONS METTL3-mediated m6A modification of circGLIS3 regulates the p53 signaling pathway via the miR-661/MDM2 axis, thereby facilitating PCa progression. Meanwhile, this study unveils a promising potential target for ARSI therapy for PCa.
Collapse
Affiliation(s)
- Xiaofeng Cheng
- Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330000, Jiangxi, China
- Jiangxi Institute of Urology, Nanchang, 330000, Jiangxi, China
| | - Heng Yang
- Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330000, Jiangxi, China
- Jiangxi Institute of Urology, Nanchang, 330000, Jiangxi, China
| | - Yujun Chen
- Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330000, Jiangxi, China
- Jiangxi Institute of Urology, Nanchang, 330000, Jiangxi, China
| | - Zhenhao Zeng
- Department of Urology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330000, Jiangxi, China
| | - Yifu Liu
- Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330000, Jiangxi, China
- Jiangxi Institute of Urology, Nanchang, 330000, Jiangxi, China
| | - Xiaochen Zhou
- Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330000, Jiangxi, China
- Jiangxi Institute of Urology, Nanchang, 330000, Jiangxi, China
| | - Cheng Zhang
- Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330000, Jiangxi, China
- Jiangxi Institute of Urology, Nanchang, 330000, Jiangxi, China
| | - An Xie
- Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330000, Jiangxi, China.
- Jiangxi Institute of Urology, Nanchang, 330000, Jiangxi, China.
| | - Gongxian Wang
- Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330000, Jiangxi, China.
- Jiangxi Institute of Urology, Nanchang, 330000, Jiangxi, China.
| |
Collapse
|
19
|
Hofstad M, Woods A, Parra K, Sychev ZE, Mazzagatti A, Yu L, Gilbreath C, Ly P, Drake JM, Kittler R. Dual inhibition of ATR and DNA-PKcs radiosensitizes ATM-mutant prostate cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.10.602941. [PMID: 39026771 PMCID: PMC11257504 DOI: 10.1101/2024.07.10.602941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
In advanced castration resistant prostate cancer (CRPC), mutations in the DNA damage response (DDR) gene ataxia telangiectasia mutated ( ATM ) are common. While poly(ADP-ribose) polymerase inhibitors are approved in this context, their clinical efficacy remains limited. Thus, there is a compelling need to identify alternative therapeutic avenues for ATM mutant prostate cancer patients. Here, we generated matched ATM-proficient and ATM-deficient CRPC lines to elucidate the impact of ATM loss on DDR in response to DNA damage via irradiation. Through unbiased phosphoproteomic screening, we unveiled that ATM-deficient CRPC lines maintain dependence on downstream ATM targets through activation of ATR and DNA-PKcs kinases. Dual inhibition of ATR and DNA-PKcs effectively inhibited downstream γH2AX foci formation in response to irradiation and radiosensitized ATM-deficient lines to a greater extent than either ATM-proficient controls or single drug treatment. Further, dual inhibition abrogated residual downstream ATM pathway signaling and impaired replication fork dynamics. To circumvent potential toxicity, we leveraged the RUVBL1/2 ATPase inhibitor Compound B, which leads to the degradation of both ATR and DNA-PKcs kinases. Compound B effectively radiosensitized ATM-deficient CRPC in vitro and in vivo , and impacted replication fork dynamics. Overall, dual targeting of both ATR and DNA-PKcs is necessary to block DDR in ATM-deficient CRPC, and Compound B could be utilized as a novel therapy in combination with irradiation in these patients.
Collapse
|
20
|
Cai C, Liu Q, Shan H, Zhong C, Chen G, Cai Z, Zheng Y, Lu J, Tang J, Lin Z. Aberrant Super-Enhancer Landscape in Enzalutamide-Resistant Prostate Cancer Cells. Genet Test Mol Biomarkers 2024; 28:243-256. [PMID: 38722048 DOI: 10.1089/gtmb.2023.0280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024] Open
Abstract
Background: Castration-resistant prostate cancer (CRPC), which has developed resistance to next-generation antiandrogens, such as enzalutamide (Enz), is a lethal disease. Furthermore, transcriptional regulation by super enhancers (SEs) is crucial for the growth and spread of prostate cancer, as well as drug resistance. The functions of SEs, a significant class of noncoding DNA cis-regulatory elements, have been the subject of numerous recent studies in the field of cancer research. Materials and Methods: The goal of this research was to identify SEs associated with Enz resistance in C4-2B cells using chromatin immunoprecipitation sequencing and cleavage under targets and tagmentation (CUT&Tag). Using HOMER analysis to predict protein/gene-binding motifs, we identified master transcription factors (TFs) that may bind to SE sites. Using small interfering RNA, WST-1 assays, and qRT-PCR, we then confirmed the associations between TFs of SEs and Enz resistance. Results: A total of 999 SEs were screened from C4-2B EnzR cells in total. Incorporating analysis with RNA-seq data revealed 41 SEs to be strongly associated with the promotion of Enz resistance. In addition, we finally predicted that master TFs bind to SE-binding regions. Subsequently, we selected zinc finger protein 467 (ZFP467) and SMAD family member 3 to confirm the functional connections of master TFs with Enz resistance through SEs (ZNF467). Conclusions: In this study, SMAD3 and ZNF467 were found to be closely related to Enz-resistant CRPC. Our research uncovered a sizable group of SEs linked to Enz resistance in prostate cancer, dissected the mechanisms underlying SE Enz resistance, and shed light on potential clinical uses for SEs.
Collapse
Affiliation(s)
- Chao Cai
- Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Guangzhou Institute of Urology, Guangzhou, China
| | - Qinwei Liu
- Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Guangzhou Institute of Urology, Guangzhou, China
| | - Haoran Shan
- Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Guangzhou Institute of Urology, Guangzhou, China
| | - Chuanfan Zhong
- Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Guidong Chen
- Department of Pathology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhouda Cai
- Department of Andrology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yu Zheng
- Department of Urology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Jianming Lu
- Department of Andrology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jiaojiao Tang
- Department of Cardiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhuoyuan Lin
- Department of Urology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
21
|
Chen K, Zhang Y, Li C, Liu Y, Cao Q, Zhang X. Clinical value of molecular subtypes identification based on anoikis-related lncRNAs in castration-resistant prostate cancer. Cell Signal 2024; 117:111104. [PMID: 38373667 DOI: 10.1016/j.cellsig.2024.111104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/07/2023] [Accepted: 02/15/2024] [Indexed: 02/21/2024]
Abstract
BACKGROUND Anoikis is a distinctive type of apoptosis. It is involved in tumor progression and metastasis. But its function in castration-resistant prostate cancer (CRPC) remains veiled. We aimed to develop a prognostic indicator based on anoikis-related long non-coding RNAs (arlncRNAs) and to investigate their biological function in CRPC. MATERIAL AND METHOD Differentially expressed anoikis-related genes were extracted from two CRPC datasets, GSE51873, and GSE78201. Four lncRNAs associated with the anoikis-related genes were selected. A risk model based on these lncRNAs was developed and validated in The Cancer Genome Atlas (TCGA) and the Memorial Sloan-Kettering Cancer Center (MSKCC) prostate cancer cohorts. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, immune infiltration, immune checkpoints expression, and drug susceptibility were performed based on the model. To identify the biofunction of anoikis-related lncRNA, CCK-8 assays, colony formation assays, and flow cytometry were used. RESULT Twenty-nine anoikis-related genes were differentially expressed in the CRPC datasets. And 36 prognostic arlncRNAs were selected for the LASSO Cox analysis. Patients were subsequently classified into two subtypes by constructing an anoikis-related lncRNA based prognostic index (ARPI). The accuracy of this index was validated. KEGG enrichment analysis revealed that the high-ARPI group was enriched in cancer-related and immune-related pathways. Immune infiltration analysis has indicated a positive association between high-ARPI groups and increased immune infiltration. Fulvestrant, OSI-027, Lapatinib, Dabrafenib, and Palbociclib were identified as potential sensitive drugs for high-ARPI patients. In vitro experiments exhibited that silencing LINC01138 dampened the proliferation, migration and enzalutamide resistance in CRPC. Furthermore, it stimulated apoptosis and inhibited the eithelial-mesenchymal transition process. CONCLUSION Four arlncRNAs were identified and a risk model was established to predict the prognosis of patients with prostate cancer. Immune infiltration and drug susceptibility analysis revealed a potential therapeutic strategy for patients with castration-resistant prostate cancer.
Collapse
Affiliation(s)
- Kailei Chen
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Urology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yunxuan Zhang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Urology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chengyong Li
- Department of Urology, the Second Hospital of Shanxi Medical University, Taiyuan 030000, China
| | - Yuenan Liu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Urology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qi Cao
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Urology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Xiaoping Zhang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Urology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen 518000, China..
| |
Collapse
|
22
|
Grisay G, Lavaud P, Fizazi K. Current Systemic Therapy in Men with Metastatic Castration-Sensitive Prostate Cancer. Curr Oncol Rep 2024; 26:488-495. [PMID: 38592590 DOI: 10.1007/s11912-024-01509-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2024] [Indexed: 04/10/2024]
Abstract
PURPOSE OF REVIEW This review aims to explore the evolving landscape of treatments available for metastatic castration-sensitive prostate cancer (mCSPC) patients. RECENT FINDINGS In less than a decade, evidence was chronologically provided that (1) systemic treatment intensification with docetaxel improves outcomes, including survival, in men with mCSPC, (2) then that these outcomes are also improved when a second-generation androgen receptor pathway inhibitor (ARPI) is combined with androgen deprivation therapy (ADT), and (3) using a "triplet systemic therapy," which consists in the combination of ADT, an ARPI and docetaxel, further improves outcomes, including survival. Radiotherapy to the prostate combined with ADT alone is now recommended in men with low-volume mCSPC. Combining prostate radiotherapy and intensified systemic treatment including abiraterone may be synergistic as suggested in the PEACE-1 trial. Also, the role of metastases-directed local therapies (mostly stereotactic radiotherapy) is currently being assessed in phase 3 trials. Finally, the integration of biomarkers (e.g. BRCA2 gene alterations, PTEN loss, PSMA expression) for decision making is not currently established, though trials are also currently underway. Importantly, most evidence currently available was obtained in men with de novo metastases, while for those with metastatic relapse after definitive local treatment, the role of treatment intensification is less well established. Treatment intensification is nowadays the standard of care for patients with de novo mCSPC as it leads to outcomes improvement, including survival, and the standard of care is evolving almost on a yearly basis.
Collapse
Affiliation(s)
- Guillaume Grisay
- Department of Medical Oncology, Centres Hospitaliers Universitaires Helora, La Louvière, Belgium.
| | - Pernelle Lavaud
- Department of Cancer Medicine, Institut Gustave Roussy, University of Paris-Saclay, Villejuif, France
| | - Karim Fizazi
- Department of Cancer Medicine, Institut Gustave Roussy, University of Paris-Saclay, Villejuif, France
| |
Collapse
|
23
|
Dorff T, Horvath LG, Autio K, Bernard-Tessier A, Rettig MB, Machiels JP, Bilen MA, Lolkema MP, Adra N, Rottey S, Greil R, Matsubara N, Tan DSW, Wong A, Uemura H, Lemech C, Meran J, Yu Y, Minocha M, McComb M, Penny HL, Gupta V, Hu X, Jurida G, Kouros-Mehr H, Janát-Amsbury MM, Eggert T, Tran B. A Phase I Study of Acapatamab, a Half-life Extended, PSMA-Targeting Bispecific T-cell Engager for Metastatic Castration-Resistant Prostate Cancer. Clin Cancer Res 2024; 30:1488-1500. [PMID: 38300720 PMCID: PMC11395298 DOI: 10.1158/1078-0432.ccr-23-2978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/08/2023] [Accepted: 01/30/2024] [Indexed: 02/03/2024]
Abstract
PURPOSE Safety and efficacy of acapatamab, a prostate-specific membrane antigen (PSMA) x CD3 bispecific T-cell engager were evaluated in a first-in-human study in metastatic castration-resistant prostate cancer (mCRPC). PATIENTS AND METHODS Patients with mCRPC refractory to androgen receptor pathway inhibitor therapy and taxane-based chemotherapy received target acapatamab doses ranging from 0.003 to 0.9 mg in dose exploration (seven dose levels) and 0.3 mg (recommended phase II dose) in dose expansion intravenously every 2 weeks. Safety (primary objective), pharmacokinetics, and antitumor activity (secondary objectives) were assessed. RESULTS In all, 133 patients (dose exploration, n = 77; dose expansion, n = 56) received acapatamab. Cytokine release syndrome (CRS) was the most common treatment-emergent adverse event seen in 97.4% and 98.2% of patients in dose exploration and dose expansion, respectively; grade ≥ 3 was seen in 23.4% and 16.1%, respectively. Most CRS events were seen in treatment cycle 1; incidence and severity decreased at/beyond cycle 2. In dose expansion, confirmed prostate-specific antigen (PSA) responses (PSA50) were seen in 30.4% of patients and radiographic partial responses in 7.4% (Response Evaluation Criteria in Solid Tumors 1.1). Median PSA progression-free survival (PFS) was 3.3 months [95% confidence interval (CI): 3.0-4.9], radiographic PFS per Prostate Cancer Clinical Trials Working Group 3 was 3.7 months (95% CI: 2.0-5.4). Acapatamab induced T-cell activation and increased cytokine production several-fold within 24 hours of initiation. Treatment-emergent antidrug antibodies were detected in 55% and impacted serum exposures in 36% of patients in dose expansion. CONCLUSIONS Acapatamab was safe and tolerated and had a manageable CRS profile. Preliminary signs of efficacy with limited durable antitumor activity were observed. Acapatamab demonstrated pharmacokinetic and pharmacodynamic activity.
Collapse
Affiliation(s)
- Tanya Dorff
- Department of Medical Oncology & Therapeutics Research, City of Hope, Duarte, CA, USA
| | - Lisa G. Horvath
- Department of Medical Oncology, Chris O’Brien Lifehouse, Camperdown, Australia
| | - Karen Autio
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alice Bernard-Tessier
- Department of Cancer Medicine, Institut Gustave Roussy, University of Paris Saclay, Villejuif, France
| | - Matthew B. Rettig
- Departments of Medicine and Urology, University of California, Los Angeles, CA, USA; Department of Medicine, VA Greater Los Angeles, Los Angeles, CA, USA
| | - Jean-Pascal Machiels
- Department of Medical Oncology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Mehmet A. Bilen
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Martijn P. Lolkema
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands, and Amgen Inc
| | - Nabil Adra
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sylvie Rottey
- Department of Medical Oncology. Drug Research Unit, Ghent University, Ghent, Belgium
| | - Richard Greil
- Paracelsus Medical University Salzburg, Salzburg Cancer Research Institute-CCCIT and Cancer Cluster Salzburg, Austria
| | - Nobuaki Matsubara
- Department of Medical Oncology, National Cancer Center Hospital East, Chiba, Japan
| | - Daniel SW Tan
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
| | - Alvin Wong
- Department of Haematology-Oncology, National University Cancer Institute, Singapore
| | - Hiroji Uemura
- Department of Urology and Renal Transplantation, Yokohama City University Medical Center, Yokohama, Japan
| | - Charlotte Lemech
- Scientia Clinical Research, University of New South Wales, Randwick, Australia
| | - Johannes Meran
- Department of Internal Medicine, Hematology, and Internal Oncology, Hospital Barmherzige Brueder, Vienna, Austria
| | - Youfei Yu
- Global Biostatistical Science, Amgen Inc., Thousand Oaks, CA, USA
| | - Mukul Minocha
- Clinical Pharmacology M&S, Amgen Inc., Thousand Oaks, CA, USA
| | - Mason McComb
- Clinical Pharmacology M&S, Amgen Inc., Thousand Oaks, CA, USA
| | | | - Vinita Gupta
- Clinical Biomarkers, Amgen Inc., Thousand Oaks, CA, USA
| | - Xuguang Hu
- Clinical Biomarkers, Amgen Inc., Thousand Oaks, CA, USA
| | - Gabor Jurida
- Safety TA & Combination Products, Amgen Inc., Thousand Oaks, CA, USA
| | | | | | - Tobias Eggert
- Early Development, Oncology, Amgen Inc., Thousand Oaks, CA, USA
| | - Ben Tran
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
| |
Collapse
|
24
|
Fang W, Zheng J, Deng L, An Y, Rong D, Wei J, Xiong XF, Wang J, Wang Y. Discovery of the First-in-Class RORγ Covalent Inhibitors for Treatment of Castration-Resistant Prostate Cancer. J Med Chem 2024; 67:1481-1499. [PMID: 38227771 DOI: 10.1021/acs.jmedchem.3c02063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Nuclear receptor receptor-related orphan receptor γ (RORγ) is a ligand-dependent transcription factor and has been established as a key player in castration-resistant prostate cancers (CRPC) by driving androgen receptor (AR) overexpression, representing a potential therapeutical target for advanced prostate cancers. Here, we report the identification of the first-in-class RORγ covalent inhibitor 29 via the structure-based drug design approach following structure-activity relationship (SAR) exploration. Mass spectrometry assay validated its covalent inhibition mechanism. Compound 29 significantly inhibited RORγ transcriptional activity and remarkably suppressed the expression levels of AR and AR-targeted genes. Compound 29 also exhibited much superior activity in inhibiting the proliferation and colony formation and inducing apoptosis of the CRPC cell lines relative to the positive control 2 and noncovalent control 33. Importantly, it markedly suppressed the tumor growth in a 22Rv1 mouse tumor xenograft model with good safety. These results clearly demonstrate that 29 is a highly potent and selective RORγ covalent inhibitor.
Collapse
Affiliation(s)
- Wei Fang
- Balance-Based Drug Discovery Laboratory, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Jianwei Zheng
- Balance-Based Drug Discovery Laboratory, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Lin Deng
- Balance-Based Drug Discovery Laboratory, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yana An
- Balance-Based Drug Discovery Laboratory, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Deqin Rong
- Balance-Based Drug Discovery Laboratory, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Jianwei Wei
- Balance-Based Drug Discovery Laboratory, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Xiao-Feng Xiong
- Balance-Based Drug Discovery Laboratory, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Junjian Wang
- Balance-Based Drug Discovery Laboratory, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yuanxiang Wang
- Balance-Based Drug Discovery Laboratory, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| |
Collapse
|
25
|
An Y, Lu W, Li S, Lu X, Zhang Y, Han D, Su D, Jia J, Yuan J, Zhao B, Tu M, Li X, Wang X, Fang N, Ji S. Systematic review and integrated analysis of prognostic gene signatures for prostate cancer patients. Discov Oncol 2023; 14:234. [PMID: 38112859 PMCID: PMC10730790 DOI: 10.1007/s12672-023-00847-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 12/07/2023] [Indexed: 12/21/2023] Open
Abstract
Prostate cancer (PC) is one of the most common cancers in men and becoming the second leading cause of cancer fatalities. At present, the lack of effective strategies for prognosis of PC patients is still a problem to be solved. Therefore, it is significant to identify potential gene signatures for PC patients' prognosis. Here, we summarized 71 different prognostic gene signatures for PC and concluded 3 strategies for signature construction after extensive investigation. In addition, 14 genes frequently appeared in 71 different gene signatures, which enriched in mitotic and cell cycle. This review provides extensive understanding and integrated analysis of current prognostic signatures of PC, which may help researchers to construct gene signatures of PC and guide future clinical treatment.
Collapse
Affiliation(s)
- Yang An
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China.
- Department of Biochemistry and Molecular Biology, Cell Signal Transduction Laboratory, School of Basic Medical Sciences, Henan University, Jinming Street, Kaifeng, 475004, Henan, China.
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Kaifeng, 475004, China.
| | - Wenyuan Lu
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
- Department of Biochemistry and Molecular Biology, Cell Signal Transduction Laboratory, School of Basic Medical Sciences, Henan University, Jinming Street, Kaifeng, 475004, Henan, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Kaifeng, 475004, China
| | - Shijia Li
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
- Department of Biochemistry and Molecular Biology, Cell Signal Transduction Laboratory, School of Basic Medical Sciences, Henan University, Jinming Street, Kaifeng, 475004, Henan, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Kaifeng, 475004, China
| | - Xiaoyan Lu
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
- Department of Biochemistry and Molecular Biology, Cell Signal Transduction Laboratory, School of Basic Medical Sciences, Henan University, Jinming Street, Kaifeng, 475004, Henan, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Kaifeng, 475004, China
| | - Yuanyuan Zhang
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
- Department of Biochemistry and Molecular Biology, Cell Signal Transduction Laboratory, School of Basic Medical Sciences, Henan University, Jinming Street, Kaifeng, 475004, Henan, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Kaifeng, 475004, China
| | - Dongcheng Han
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
- Department of Biochemistry and Molecular Biology, Cell Signal Transduction Laboratory, School of Basic Medical Sciences, Henan University, Jinming Street, Kaifeng, 475004, Henan, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Kaifeng, 475004, China
| | - Dingyuan Su
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
- Department of Biochemistry and Molecular Biology, Cell Signal Transduction Laboratory, School of Basic Medical Sciences, Henan University, Jinming Street, Kaifeng, 475004, Henan, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Kaifeng, 475004, China
| | - Jiaxin Jia
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
- Department of Biochemistry and Molecular Biology, Cell Signal Transduction Laboratory, School of Basic Medical Sciences, Henan University, Jinming Street, Kaifeng, 475004, Henan, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Kaifeng, 475004, China
| | - Jiaxin Yuan
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
- Department of Biochemistry and Molecular Biology, Cell Signal Transduction Laboratory, School of Basic Medical Sciences, Henan University, Jinming Street, Kaifeng, 475004, Henan, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Kaifeng, 475004, China
| | - Binbin Zhao
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
- Department of Biochemistry and Molecular Biology, Cell Signal Transduction Laboratory, School of Basic Medical Sciences, Henan University, Jinming Street, Kaifeng, 475004, Henan, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Kaifeng, 475004, China
| | - Mengjie Tu
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
- Department of Biochemistry and Molecular Biology, Cell Signal Transduction Laboratory, School of Basic Medical Sciences, Henan University, Jinming Street, Kaifeng, 475004, Henan, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Kaifeng, 475004, China
| | - Xinyu Li
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
- Department of Biochemistry and Molecular Biology, Cell Signal Transduction Laboratory, School of Basic Medical Sciences, Henan University, Jinming Street, Kaifeng, 475004, Henan, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Kaifeng, 475004, China
| | - Xiaoqing Wang
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
- Department of Biochemistry and Molecular Biology, Cell Signal Transduction Laboratory, School of Basic Medical Sciences, Henan University, Jinming Street, Kaifeng, 475004, Henan, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Kaifeng, 475004, China
| | - Na Fang
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China.
- Department of Biochemistry and Molecular Biology, Cell Signal Transduction Laboratory, School of Basic Medical Sciences, Henan University, Jinming Street, Kaifeng, 475004, Henan, China.
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Kaifeng, 475004, China.
| | - Shaoping Ji
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China.
- Department of Biochemistry and Molecular Biology, Cell Signal Transduction Laboratory, School of Basic Medical Sciences, Henan University, Jinming Street, Kaifeng, 475004, Henan, China.
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Kaifeng, 475004, China.
| |
Collapse
|
26
|
Campanelli G, Deabel RA, Puaar A, Devarakonda LS, Parupathi P, Zhang J, Waxner N, Yang C, Kumar A, Levenson AS. Molecular Efficacy of Gnetin C as Dual-Targeted Therapy for Castrate-Resistant Prostate Cancer. Mol Nutr Food Res 2023; 67:e2300479. [PMID: 37863824 DOI: 10.1002/mnfr.202300479] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/29/2023] [Indexed: 10/22/2023]
Abstract
SCOPE Resistance of castrate-resistant prostate cancer (CRPC) to enzalutamide (Enz) involves the expression of constitutively active androgen receptor splice variant (AR-V7). In addition to altered AR pathways, CRPC is characterized by "non-AR-driven" signaling, which includes an overexpression of metastasis-associated protein 1 (MTA1). Combining natural compounds with anticancer drugs may enhance drug effectiveness while reducing adverse effects. In this study, the in vitro and in vivo anticancer effects of Gnetin C (GnC) alone and in combination with Enz against CRPC are examined. METHODS AND RESULTS The effects of GnC alone and in combination with Enz are assessed by cell viability, clonogenic survival, cell migration, and AR and MTA1 expression using 22Rv1 cells. The tumor growth in vivo is assessed by bioluminescent imaging, western blots, RT-PCR, and IHC. GnC alone and in combined treatment inhibit cell viability, clonogenic survival and migration, and AR and MTA1 expression in 22Rv1 cells. The underlying AR- and MTA1-targeted anticancer mechanisms of treatments in vivo involve inhibition of proliferation and angiogenesis, and induction of apoptosis. CONCLUSION The findings demonstrate that GnC alone and GnC combined with Enz effectively inhibits AR- and MTA1-promoted tumor-progression in advanced CRPC, which indicates its potential as a novel therapeutic approach for CRPC.
Collapse
Affiliation(s)
- Gisella Campanelli
- Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY, USA
| | - Rabab Al Deabel
- School of Health Professions and Nursing, Long Island University, Brookville, NY, USA
| | - Anand Puaar
- Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY, USA
| | | | - Prashanth Parupathi
- Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY, USA
| | | | - Noah Waxner
- College of Veterinary Medicine, Long Island University, Brookville, NY, USA
| | - Ching Yang
- College of Veterinary Medicine, Long Island University, Brookville, NY, USA
| | - Avinash Kumar
- Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY, USA
| | - Anait S Levenson
- College of Veterinary Medicine, Long Island University, Brookville, NY, USA
| |
Collapse
|
27
|
Huang JL, Yan XL, Huang D, Gan L, Gao H, Fan RZ, Li S, Yuan FY, Zhu X, Tang GH, Chen HW, Wang J, Yin S. Discovery of a highly potent and orally available importin- β1 inhibitor that overcomes enzalutamide-resistance in advanced prostate cancer. Acta Pharm Sin B 2023; 13:4934-4944. [PMID: 38045040 PMCID: PMC10692375 DOI: 10.1016/j.apsb.2023.07.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/27/2023] [Accepted: 07/11/2023] [Indexed: 12/05/2023] Open
Abstract
Nuclear transporter importin-β1 is emerging as an attractive target by virtue of its prevalence in many cancers. However, the lack of druggable inhibitors restricts its therapeutic proof of concept. In the present work, we optimized a natural importin-β1 inhibitor DD1 to afford an improved analog DD1-Br with better tolerability (>25 folds) and oral bioavailability. DD1-Br inhibited the survival of castration-resistant prostate cancer (CRPC) cells with sub-nanomolar potency and completely prevented tumor growth in resistant CRPC models both in monotherapy (0.5 mg/kg) and in enzalutamide-combination therapy. Mechanistic study revealed that by targeting importin-β1, DD1-Br markedly inhibited the nuclear accumulation of multiple CRPC drivers, particularly AR-V7, a main contributor to enzalutamide resistance, leading to the integral suppression of downstream oncogenic signaling. This study provides a promising lead for CRPC and demonstrates the potential of overcoming drug resistance in advanced CRPC via targeting importin-β1.
Collapse
Affiliation(s)
- Jia-Luo Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xue-Long Yan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
- School of Pharmacy, Guizhou Medical University, Guian New District, Guizhou 550025, China
| | - Dong Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Lu Gan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Huahua Gao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Run-Zhu Fan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Shen Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Fang-Yu Yuan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xinying Zhu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Gui-Hua Tang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Hong-Wu Chen
- School of Medicine, University of California Davis, Sacramento, CA 95817, USA
| | - Junjian Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Sheng Yin
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
28
|
Zhang Z, Wang X, Kim M, He D, Wang C, Fong KW, Liu X. Downregulation of EZH2 inhibits epithelial-mesenchymal transition in enzalutamide-resistant prostate cancer. Prostate 2023; 83:1458-1469. [PMID: 37475584 PMCID: PMC11618820 DOI: 10.1002/pros.24602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 06/27/2023] [Accepted: 07/10/2023] [Indexed: 07/22/2023]
Abstract
BACKGROUND Androgen signaling inhibitors (ASI) have been approved for treatment of metastatic castration-resistant prostate cancer (mCRPC). However, the limited success of ASI in clinic justifies an urgent need to identify new targets and develop novel approaches for treatment. EZH2 significantly increases in prostate cancer (PCa). Little is understood, however, regarding the roles of EZH2 in Enzalutamide-resistant (EnzR) mCRPC. METHODS We firstly investigated the levels of EZH2 and the altered pathways in public database which was comprised with primary and metastatic PCa patient tumors. To elucidate the roles of EZH2 in mCRPC, we manipulated EZH2 in EnzR PCa cell lines to examine epithelial-mesenchymal transition (EMT). To dissect the underlying mechanisms, we measured the transcription levels of EMT-associated transcription factors (TFs). RESULTS We found that EZH2 was highly expressed in mCRPC than that of primary PCa tumors and that EnzR PCa cells gained more EMT characteristics than those of enzalutamide-sensitive counterparts. Further, loss of EZH2-induced inhibition of EMT is independent of polycomb repressive complex 2 (PRC2). Mechanistically, downregulation of EZH2 inhibits transcription of EMT-associated TFs by repressing formation of H3K4me3 to the promotor regions of the TFs. CONCLUSION We identified the novel roles of EZH2 in EnzR mCRPC. EnzR PCa gains more EMT properties than that of enzalutamide-sensitive PCa. Loss of EZH2-assocaited inhibition of EMT is PRC2 independent. Downregulation of EZH2 suppresses EMT by impairing formation of H3K4me3 at the promotor regions, thus repressing expression of EMT-associated TFs.
Collapse
Affiliation(s)
- Zhuangzhuang Zhang
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky, USA
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky, USA
| | - Xinyi Wang
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky, USA
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky, USA
| | - Miyeong Kim
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky, USA
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky, USA
| | - Daheng He
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky, USA
| | - Chi Wang
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky, USA
| | - Ka Wing Fong
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky, USA
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky, USA
| | - Xiaoqi Liu
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky, USA
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
29
|
Wang J, Zeng L, Wu N, Liang Y, Jin J, Fan M, Lai X, Chen ZS, Pan Y, Zeng F, Deng F. Inhibition of phosphoglycerate dehydrogenase induces ferroptosis and overcomes enzalutamide resistance in castration-resistant prostate cancer cells. Drug Resist Updat 2023; 70:100985. [PMID: 37423117 DOI: 10.1016/j.drup.2023.100985] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/11/2023] [Accepted: 06/12/2023] [Indexed: 07/11/2023]
Abstract
Phosphoglycerate dehydrogenase (PHGDH), the rate-limiting enzyme in the first step of the serine synthesis pathway (SSP), is overexpressed in multiple types of cancers. The androgen receptor inhibitor enzalutamide (Enza) is the primary therapeutic drug for patients with castration-resistant prostate cancer (CRPC). However, most patients eventually develop resistance to Enza. The association of SSP with Enza resistance remains unclear. In this study, we found that high expression of PHGDH was associated with Enza resistance in CRPC cells. Moreover, increased expression of PHGDH led to ferroptosis resistance by maintaining redox homeostasis in Enza-resistant CRPC cells. Knockdown of PHGDH caused significant GSH reduction, induced lipid peroxides (LipROS) increase and significant cell death, resulting in inhibiting growth of Enza-resistant CRPC cells and sensitizing Enza-resistant CRPC cells to enzalutamide treatment both in vitro and in vivo. We also found that overexpression of PHGDH promoted cell growth and Enza resistance in CRPC cells. Furthermore, pharmacological inhibition of PHGDH by NCT-503 effectively inhibited cell growth, induced ferroptosis, and overcame enzalutamide resistance in Enza-resistant CRPC cells both in vitro and in vivo. Mechanically, NCT-503 triggered ferroptosis by decreasing GSH/GSSG levels and increasing LipROS production as well as suppressing SLC7A11 expression through activation of the p53 signaling pathway. Moreover, stimulating ferroptosis by ferroptosis inducers (FINs) or NCT-503 synergistically sensitized Enza-resistant CRPC cells to enzalutamide. The synergistic effects of NCT-503 and enzalutamide were verified in a xenograft nude mouse model. NCT-503 in combination with enzalutamide effectively restricted the growth of Enza-resistant CRPC xenografts in vivo. Overall, our study highlights the essential roles of increased PHGDH in mediating enzalutamide resistance in CRPC. Therefore, the combination of ferroptosis inducer and targeted inhibition of PHGDH could be a potential therapeutic strategy for overcoming enzalutamide resistance in CRPC.
Collapse
Affiliation(s)
- Jinxiang Wang
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Precision Medicine Center, Department of Biobank, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Leli Zeng
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Precision Medicine Center, Department of Biobank, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Nisha Wu
- Department of Clinical Laboratory, the Fifth Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Yanling Liang
- Department of Clinical Laboratory, the Fifth Affiliated Hospital, Southern Medical University, Guangzhou, China; Department of Clinical Laboratory, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jie Jin
- Department of Clinical Laboratory, the Fifth Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Mingming Fan
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xiaoju Lai
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Jamaica, NY 11439, USA
| | - Yihang Pan
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Precision Medicine Center, Department of Biobank, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China.
| | - Fangyin Zeng
- Department of Clinical Laboratory, the Fifth Affiliated Hospital, Southern Medical University, Guangzhou, China.
| | - Fan Deng
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
| |
Collapse
|
30
|
Maddeboina K, Jonnalagadda SK, Morsy A, Duan L, Chhonker YS, Murry DJ, Penning TM, Trippier PC. Aldo-Keto Reductase 1C3 Inhibitor Prodrug Improves Pharmacokinetic Profile and Demonstrates In Vivo Efficacy in a Prostate Cancer Xenograft Model. J Med Chem 2023; 66:9894-9915. [PMID: 37428858 PMCID: PMC11963376 DOI: 10.1021/acs.jmedchem.3c00732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Aldo-keto reductase 1C3 (AKR1C3) is overexpressed in castration-resistant prostate cancer where it acts to drive proliferation and aggressiveness by producing androgens. The reductive action of the enzyme leads to chemoresistance development against various clinical antineoplastics across a range of cancers. Herein, we report the continued optimization of selective AKR1C3 inhibitors and the identification of 5r, a potent AKR1C3 inhibitor (IC50 = 51 nM) with >1216-fold selectivity for AKR1C3 over closely related isoforms. Due to the cognizance of the poor pharmacokinetics associated with free carboxylic acids, a methyl ester prodrug strategy was pursued. The prodrug 4r was converted to free acid 5r in vitro in mouse plasma and in vivo. The in vivo pharmacokinetic evaluation revealed an increase in systemic exposure and increased the maximum 5r concentration compared to direct administration of the free acid. The prodrug 4r demonstrated a dose-dependent effect to reduce the tumor volume of 22Rv1 prostate cancer xenografts without observed toxicity.
Collapse
Affiliation(s)
- Krishnaiah Maddeboina
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68106, United States
| | - Sravan K Jonnalagadda
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68106, United States
| | - Ahmed Morsy
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68106, United States
| | - Ling Duan
- Center of Excellence in Environmental Toxicology, Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Yashpal S Chhonker
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68106, United States
| | - Daryl J Murry
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68106, United States
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68106, United States
| | - Trevor M Penning
- Center of Excellence in Environmental Toxicology, Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Paul C Trippier
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68106, United States
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68106, United States
- UNMC Center for Drug Discovery, University of Nebraska Medical Center, Omaha, Nebraska 68106, United States
| |
Collapse
|
31
|
Huang M, Chen L, Guo Y, Ruan Y, Xu H. PARP1 negatively regulates transcription of BLM through its interaction with HSP90AB1 in prostate cancer. J Transl Med 2023; 21:445. [PMID: 37415147 PMCID: PMC10324254 DOI: 10.1186/s12967-023-04288-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 06/19/2023] [Indexed: 07/08/2023] Open
Abstract
BACKGROUND Prostate cancer (PCa) is a prevalent malignant disease affecting a significant number of males globally. Elevated expression of the Bloom's syndrome protein (BLM) helicase has emerged as a promising cancer biomarker, being associated with the onset and progression of PCa. Nevertheless, the precise molecular mechanisms governing BLM regulation in PCa remain elusive. METHODS The expression of BLM in human specimens was analyzed using immnohistochemistry (IHC). A 5'-biotin-labeled DNA probe containing the promoter region of BLM was synthesized to pull down BLM promoter-binding proteins. Functional studies were conducted using a range of assays, including CCK-8, EdU incorporation, clone formation, wound scratch, transwell migration, alkaline comet assay, xenograft mouse model, and H&E staining. Mechanistic studies were carried out using various techniques, including streptavidin-agarose-mediated DNA pull-down, mass spectrometry (MS), immunofluorescence (IF), dual luciferase reporter assay system, RT-qPCR, ChIP-qPCR, co-immunoprecipitation (co-IP), and western blot. RESULTS The results revealed significant upregulation of BLM in human PCa tissues, and its overexpression was associated with an unfavorable prognosis in PCa patients. Increased BLM expression showed significant correlations with advanced clinical stage (P = 0.022) and Gleason grade (P = 0.006). In vitro experiments demonstrated that BLM knockdown exerted inhibitory effects on cell proliferation, clone formation, invasion, and migration. Furthermore, PARP1 (poly (ADP-ribose) polymerase 1) was identified as a BLM promoter-binding protein. Further investigations revealed that the downregulation of PARP1 led to increased BLM promoter activity and expression, while the overexpression of PARP1 exerted opposite effects. Through mechanistic studies, we elucidated that the interaction between PARP1 and HSP90AB1 (heat shock protein alpha family class B) enhanced the transcriptional regulation of BLM by counteracting the inhibitory influence of PARP1 on BLM. Furthermore, the combination treatment of olaparib with ML216 demonstrated enhanced inhibitory effects on cell proliferation, clone formation, invasion, and migration. It also induced more severe DNA damage in vitro and exhibited superior inhibitory effects on the proliferation of PC3 xenograft tumors in vivo. CONCLUSIONS The results of this study underscore the significance of BLM overexpression as a prognostic biomarker for PCa, while also demonstrating the negative regulatory impact of PARP1 on BLM transcription. The concurrent targeting of BLM and PARP1 emerges as a promising therapeutic approach for PCa treatment, holding potential clinical significance.
Collapse
Affiliation(s)
- Mengqiu Huang
- Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang, 550025, Guizhou, China
- College of Animal Science, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Lin Chen
- Department of Ophthalmology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Yingchu Guo
- College of Animal Science, Guizhou University, Guiyang, 550025, Guizhou, China
- Guizhou University school of Medicine, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Yong Ruan
- College of Animal Science, Guizhou University, Guiyang, 550025, Guizhou, China
- Guizhou University school of Medicine, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Houqiang Xu
- Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang, 550025, Guizhou, China.
- College of Animal Science, Guizhou University, Guiyang, 550025, Guizhou, China.
- Guizhou University school of Medicine, Guizhou University, Guiyang, 550025, Guizhou, China.
| |
Collapse
|
32
|
Jang A, Lanka SM, Ruan HT, Kumar HLS, Jia AY, Garcia JA, Mian OY, Barata PC. Novel therapies for metastatic prostate cancer. Expert Rev Anticancer Ther 2023; 23:1251-1263. [PMID: 38030394 DOI: 10.1080/14737140.2023.2290197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/28/2023] [Indexed: 12/01/2023]
Abstract
INTRODUCTION Patients with metastatic prostate cancer, especially in the castrate-resistant setting, have a poor prognosis. Many agents have been approved for metastatic prostate cancer, such as androgen receptor pathway inhibitors, taxane-based chemotherapy, radiopharmaceuticals, and immunotherapy. However, prostate cancer remains the leading cause of cancer deaths in nonsmoking men. Fortunately, many more novel agents are under investigation. AREAS COVERED We provide an overview of the broad group of novel therapies for metastatic prostate cancer, with an emphasis on active and recruiting clinical trials that have been recently published and/or presented at national or international meetings. EXPERT OPINION The future for patients with metastatic prostate cancer is promising, with further development of novel therapies such as radiopharmaceuticals. Based on a growing understanding of prostate cancer biology, novel agents are being designed to overcome resistance to approved therapies. There are many trials using novel agents either as monotherapy or in combination with already approved agents with potential to further improve outcomes for men with advanced prostate cancer.
Collapse
Affiliation(s)
- Albert Jang
- Division of Solid Tumor Oncology, Department of Medicine, University Hospitals Seidman Cancer Center, Case Comprehensive Cancer Center, Cleveland, OH, USA
| | - Sree M Lanka
- Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Hui Ting Ruan
- Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Case Comprehensive Cancer Center, Cleveland, OH, USA
| | - Hamsa L S Kumar
- Division of Solid Tumor Oncology, Department of Medicine, University Hospitals Seidman Cancer Center, Case Comprehensive Cancer Center, Cleveland, OH, USA
| | - Angela Y Jia
- Department of Radiation Oncology, University Hospitals Seidman Cancer Center, Case Comprehensive Cancer Center, Cleveland, OH, USA
| | - Jorge A Garcia
- Division of Solid Tumor Oncology, Department of Medicine, University Hospitals Seidman Cancer Center, Case Comprehensive Cancer Center, Cleveland, OH, USA
| | - Omar Y Mian
- Translational Hematology and Oncology Research, Department of Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, Case Comprehensive Cancer Center, Cleveland, OH, USA
| | - Pedro C Barata
- Division of Solid Tumor Oncology, Department of Medicine, University Hospitals Seidman Cancer Center, Case Comprehensive Cancer Center, Cleveland, OH, USA
| |
Collapse
|
33
|
Shen Q, Liu Y, Deng X, Hu CD. PRMT5 promotes chemotherapy-induced neuroendocrine differentiation in NSCLC. Thorac Cancer 2023. [PMID: 37140020 DOI: 10.1111/1759-7714.14921] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 05/05/2023] Open
Abstract
BACKGROUND In response to therapeutic treatments, cancer cells can exhibit a variety of resistance phenotypes including neuroendocrine differentiation (NED). NED is a process by which cancer cells can transdifferentiate into neuroendocrine-like cells in response to treatments, and is now widely accepted as a key mechanism of acquired therapy resistance. Recent clinical evidence has suggested that non-small cell lung cancer (NSCLC) can also transform into small cell lung cancer (SCLC) in patients treated with EGFR inhibitors. However, whether chemotherapy induces NED to confer therapy resistance in NSCLC remains unknown. METHODS We evaluated whether NSCLC cells can undergo NED in response to chemotherapeutic agents etoposide and cisplatin. By Knock-down of PRMT5 or pharmacological inhibition of PRMT5 to identify its role in the NED process. RESULTS We observed that both etoposide and cisplatin can induce NED in multiple NSCLC cell lines. Mechanistically, we identified protein arginine methyltransferase 5 (PRMT5) as a critical mediator of chemotherapy-induced NED. Significantly, the knock-down of PRMT5 or pharmacological inhibition of PRMT5 suppressed the induction of NED and increased the sensitivity to chemotherapy. CONCLUSION Taken together, our results suggest that targeting PRMT5 may be explored as a chemosensitization approach by inhibiting chemotherapy-induced NED.
Collapse
Affiliation(s)
- Qi Shen
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University College of Pharmacy, West Lafayette, Indiana, USA
- Department of Gastroenterology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Liu
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University College of Pharmacy, West Lafayette, Indiana, USA
- College of Chemical Engineering, Sichuan University of Science & Engineering, Zigong, China
| | - Xuehong Deng
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University College of Pharmacy, West Lafayette, Indiana, USA
| | - Chang-Deng Hu
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University College of Pharmacy, West Lafayette, Indiana, USA
| |
Collapse
|
34
|
Yanagisawa T, Kawada T, Rajwa P, Kimura T, Shariat SF. Emerging systemic treatment for metastatic castration-resistant prostate cancer: a review of recent randomized controlled trials. Curr Opin Urol 2023; 33:219-229. [PMID: 36692012 DOI: 10.1097/mou.0000000000001080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
PURPOSE OF REVIEW The landscape of therapy for metastatic castration-resistant prostate cancer (mCRPC) has seen an unprecedented transformation with the emergence of combination therapies. This review summarizes the current findings from randomized controlled trials (RCTs) assessing the oncologic outcomes of mCRPC. RECENT FINDINGS In the first-line, treatment-naïve setting, recent RCTs demonstrated the oncologic benefit of adding AKT inhibitors or poly (adenosine diphosphate-ribose) polymerase (PARP) inhibitors to abiraterone in terms of radiographical progression-free survival. Although this is a strong surrogate endpoint, these agents have not yet shown overall survival (OS) improvement. In the second- or later-line settings, olaparib improved OS in patients with at least one alteration in BRCA1 , BRCA2 , or ATM gene and lutetium-177-prostate-specific membrane antigen-617 [177-Lu-prostate-specific membrane antigen (PSMA)-617] were superior to repeat androgen receptor signaling inhibitor (ARSI) therapy. In addition, 177-Lu-PSMA-617 had better progression-free survival compared with cabazitaxel but failed to result in an OS benefit. To date, there is no evidence for effective immune checkpoint inhibitor regimens/combinations for mCRPC. SUMMARY According to recent RCTs, several novel agents and/or combinations exhibit promising oncologic outcomes. In the first-line setting, OS benefits compared with currently available regimens are still missing. Results from ongoing/well-designed phase 3 RCTs and real-world data regarding the sequential impact of currently available agents on outcomes of mCRPC patients after ARSI-based combination therapy for metastatic hormone-sensitive prostate cancer are awaited. Such data will improve clinical decision-making in the ever-intensifying treatment era.
Collapse
Affiliation(s)
- Takafumi Yanagisawa
- Department of Urology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- Department of Urology, The Jikei University School of Medicine, Tokyo
| | - Tatsushi Kawada
- Department of Urology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Pawel Rajwa
- Department of Urology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- Department of Urology, Medical University of Silesia, Zabrze, Poland
| | - Takahiro Kimura
- Department of Urology, The Jikei University School of Medicine, Tokyo
| | - Shahrokh F Shariat
- Department of Urology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- Division of Urology, Department of Special Surgery, The University of Jordan, Amman, Jordan
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Urology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
- Department of Urology, Weill Cornell Medical College, New York, New York, USA
- Karl Landsteiner Institute of Urology and Andrology, Vienna, Austria
| |
Collapse
|
35
|
Ren L, Luo H, Zhao J, Huang S, Zhang J, Shao C. An integrated in vitro/in silico approach to assess the anti-androgenic potency of isobavachin. Food Chem Toxicol 2023; 176:113764. [PMID: 37019376 DOI: 10.1016/j.fct.2023.113764] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/16/2023] [Accepted: 04/01/2023] [Indexed: 04/05/2023]
Abstract
Isobavachin is a dietary flavanone with multiple biological activities. Our previous research has confirmed the estrogenicity of isobavachin, and this work aims to assess the anti-androgenic potency of isobavachin by an integrated in vitro and in silico approach. Isobavachin can limit the proliferation of prostate cancer cells by inducing a distinct G1 cell-cycle arrest. In addition, isobavachin also significantly represses the transcription of androgen receptor (AR)-downstream targets such as prostate specific antigen. Mechanistically, we demonstrated that isobavachin can disrupt the nuclear translocation of AR and promote its proteasomal degradation. The results of computer simulations showed that isobavachin can stably bind to AR, and the amino acid residue Gln711 may play a critical role in AR binding of both AR agonists and antagonists. In conclusion, this work has identified isobavachin as a novel AR antagonist.
Collapse
Affiliation(s)
- Li Ren
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Haoge Luo
- College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Jingqi Zhao
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Shuqing Huang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Jie Zhang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China.
| | - Chen Shao
- College of Basic Medical Sciences, Jilin University, Changchun, 130021, China.
| |
Collapse
|
36
|
LOX-1 Activation by oxLDL Induces AR and AR-V7 Expression via NF-κB and STAT3 Signaling Pathways Reducing Enzalutamide Cytotoxic Effects. Int J Mol Sci 2023; 24:ijms24065082. [PMID: 36982155 PMCID: PMC10049196 DOI: 10.3390/ijms24065082] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/18/2023] [Accepted: 02/22/2023] [Indexed: 03/09/2023] Open
Abstract
The oxidized low-density lipoprotein receptor 1 (LOX-1) is one of the most important receptors for modified LDLs, such as oxidated (oxLDL) and acetylated (acLDL) low-density lipoprotein. LOX-1 and oxLDL are fundamental in atherosclerosis, where oxLDL/LOX1 promotes ROS generation and NF-κB activation inducing the expression of IL-6, a STAT3 activator. Furthermore, LOX-1/oxLDL function has been associated with other diseases, such as obesity, hypertension, and cancer. In prostate cancer (CaP), LOX-1 overexpression is associated with advanced stages, and its activation by oxLDL induces an epithelial-mesenchymal transition, increasing angiogenesis and proliferation. Interestingly, enzalutamide-resistant CaP cells increase the uptake of acLDL. Enzalutamide is an androgen receptor (AR) antagonist for castration-resistant prostate cancer (CRPC) treatment, and a high percentage of patients develop a resistance to this drug. The decreased cytotoxicity is promoted in part by STAT3 and NF-κB activation that induces the secretion of the pro-inflammatory program and the expression of AR and its splicing variant AR-V7. Here, we demonstrate for the first time that oxLDL/LOX-1 increases ROS levels and activates NF-κB, inducing IL-6 secretion and the activation of STAT3 in CRPC cells. Furthermore, oxLDL/LOX1 increases AR and AR-V7 expression and decreases enzalutamide cytotoxicity in CRPC. Thus, our investigation suggests that new factors associated with cardiovascular pathologies, such as LOX-1/oxLDL, may also promote important signaling axes for the progression of CRPC and its resistance to drugs used for its treatment.
Collapse
|
37
|
Hung CL, Liu HH, Fu CW, Yeh HH, Hu TL, Kuo ZK, Lin YC, Jhang MR, Hwang CS, Hsu HC, Kung HJ, Wang LY. Targeting androgen receptor and the variants by an orally bioavailable Proteolysis Targeting Chimeras compound in castration resistant prostate cancer. EBioMedicine 2023; 90:104500. [PMID: 36893587 PMCID: PMC10011747 DOI: 10.1016/j.ebiom.2023.104500] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 02/12/2023] [Accepted: 02/12/2023] [Indexed: 03/09/2023] Open
Abstract
BACKGROUND Despite the advent of improved therapeutic options for advanced prostate cancer, the durability of clinical benefits is limited due to inevitable development of resistance. By constitutively sustaining androgen receptor (AR) signaling, expression of ligand-binding domain truncated AR variants (AR-V(ΔLBD)) accounts for the major mechanism underlying the resistance to anti-androgen drugs. Strategies to target AR and its LBD truncated variants are needed to prevent the emergence or overcome drug resistance. METHODS We utilize Proteolysis Targeting Chimeras (PROTAC) technology to achieve induced degradation of both full-length AR (AR-FL) and AR-V(ΔLBD) proteins. In the ITRI-PROTAC design, an AR N-terminal domain (NTD) binding moiety is appended to von-Hippel-Lindau (VHL) or Cereblon (CRBN) E3 ligase binding ligand with linker. FINDINGS In vitro studies demonstrate that ITRI-PROTAC compounds mechanistically degrade AR-FL and AR-V(ΔLBD) proteins via ubiquitin-proteasome system, leading to impaired AR transactivation on target gene expression, and inhibited cell proliferation accompanied by apoptosis activation. The compounds also significantly inhibit enzalutamide-resistant growth of castration resistant prostate cancer (CRPC) cells. In castration-, enzalutamide-resistant CWR22Rv1 xenograft model without hormone ablation, ITRI-90 displays a pharmacokinetic profile with decent oral bioavailability and strong antitumor efficacy. INTERPRETATION AR NTD that governs the transcriptional activities of all active variants has been considered attractive therapeutic target to block AR signaling in prostate cancer cells. We demonstrated that utilizing PROTAC for induced AR protein degradation via NTD represents an efficient alternative therapeutic strategy for CRPC to overcome anti-androgen resistance. FUNDING The funding detail can be found in the Acknowledgements section.
Collapse
Affiliation(s)
- Chiu-Lien Hung
- Department of Preclinical Drug Discovery Technology, Biomedical Technology and Devices Research Labs, Industrial Technology Research Institute, Hsinchu 31040, Taiwan
| | - Hao-Hsuan Liu
- Department of Preclinical Drug Discovery Technology, Biomedical Technology and Devices Research Labs, Industrial Technology Research Institute, Hsinchu 31040, Taiwan
| | - Chih-Wei Fu
- Department of Preclinical Drug Discovery Technology, Biomedical Technology and Devices Research Labs, Industrial Technology Research Institute, Hsinchu 31040, Taiwan
| | - Hsun-Hao Yeh
- Department of Biochemistry and Molecular Biology, Chang Gung University, Taoyuan 33302, Taiwan
| | - Tsan-Lin Hu
- Department of Preclinical Drug Discovery Technology, Biomedical Technology and Devices Research Labs, Industrial Technology Research Institute, Hsinchu 31040, Taiwan
| | - Zong-Keng Kuo
- Department of Preclinical Drug Discovery Technology, Biomedical Technology and Devices Research Labs, Industrial Technology Research Institute, Hsinchu 31040, Taiwan
| | - Yu-Chin Lin
- Department of Preclinical Drug Discovery Technology, Biomedical Technology and Devices Research Labs, Industrial Technology Research Institute, Hsinchu 31040, Taiwan
| | - Mei-Ru Jhang
- Department of Preclinical Drug Discovery Technology, Biomedical Technology and Devices Research Labs, Industrial Technology Research Institute, Hsinchu 31040, Taiwan
| | - Chrong-Shiong Hwang
- Department of Preclinical Drug Discovery Technology, Biomedical Technology and Devices Research Labs, Industrial Technology Research Institute, Hsinchu 31040, Taiwan
| | - Hung-Chih Hsu
- Division of Hematology-Oncology, Chang Gung Memorial Hospital at Linkou, Taoyuan 33305, Taiwan; College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan
| | - Hsing-Jien Kung
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli County 35053, Taiwan; Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan; Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Ling-Yu Wang
- Department of Biochemistry and Molecular Biology, Chang Gung University, Taoyuan 33302, Taiwan; Division of Hematology-Oncology, Chang Gung Memorial Hospital at Linkou, Taoyuan 33305, Taiwan.
| |
Collapse
|
38
|
Gonciarz RL, Sakhamuri S, Hooshdaran N, Kumar G, Kim H, Evans MJ, Renslo AR. Elevated labile iron in castration-resistant prostate cancer is targetable with ferrous iron-activatable antiandrogen therapy. Eur J Med Chem 2023; 249:115110. [PMID: 36708680 PMCID: PMC10210592 DOI: 10.1016/j.ejmech.2023.115110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 01/05/2023] [Accepted: 01/07/2023] [Indexed: 01/15/2023]
Abstract
Clinical responses to second generation androgen signaling inhibitors (e.g., enzalutamide) in metastatic castration-resistant prostate cancer (mCRPC) are variable and transient, and are associated with dose limiting toxicities, including rare but severe CNS effects. We hypothesized that changes to iron metabolism coincident with more advanced disease might be leveraged for tumor-selective delivery of antiandrogen therapy. Using the recently described chemical probes SiRhoNox and 18F-TRX in mCRPC models, we found elevated Fe2+ to be a common feature of mCRPC in vitro and in vivo. We next synthesized ferrous-iron activatable drug conjugates of second and third-generation antiandrogens and found these conjugates possessed comparable or enhanced antiproliferative activity across mCRPC cell line models. Mouse pharmacokinetic studies showed that these prototype antiandrogen conjugates are stable in vivo and limited exposure to conjugate or free antiandrogen in the brain. Our results reveal elevated Fe2+ to be a feature of mCRPC that might be leveraged to improve the tolerability and efficacy of antiandrogen therapy.
Collapse
Affiliation(s)
- Ryan L Gonciarz
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, 94158, United States
| | - Sasank Sakhamuri
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, 94158, United States
| | - Nima Hooshdaran
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, 94158, United States
| | - Garima Kumar
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, 94158, United States
| | - Hyunjung Kim
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, 94158, United States
| | - Michael J Evans
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, 94158, United States; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, 94158, United States.
| | - Adam R Renslo
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, 94158, United States; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, 94158, United States.
| |
Collapse
|
39
|
Ota A, Kawai M, Kudo Y, Segawa J, Hoshi M, Kawano S, Yoshino Y, Ichihara K, Shiota M, Fujimoto N, Matsunaga T, Endo S, Ikari A. Artepillin C overcomes apalutamide resistance through blocking androgen signaling in prostate cancer cells. Arch Biochem Biophys 2023; 735:109519. [PMID: 36642262 DOI: 10.1016/j.abb.2023.109519] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/07/2022] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
Prostate cancer has a relatively good prognosis, but most cases develop resistance to hormone therapy, leading to castration-resistant prostate cancer (CRPC). Androgen receptor (AR) antagonists and a cytochrome P450 17A1 inhibitor have been used to treat CRPC, but cancer cells readily develop resistance to these drugs. In this study, to improve the therapy of CRPC, we searched for natural compounds which block androgen signaling. Among cinnamic acid derivatives contained in Brazilian green propolis, artepillin C (ArtC) suppressed expressions of androgen-induced prostate-specific antigen and transmembrane protease serine 2 in a dose-dependent manner. Reporter assays revealed that ArtC displayed AR antagonist activity, albeit weaker than an AR antagonist flutamide. In general, aberrant activation of the androgen signaling is involved in the resistance of prostate cancer cells to hormone therapy. Recently, apalutamide, a novel AR antagonist, has been in clinical use, but its drug-resistant cases have been already reported. To search for compounds which overcome the resistance to apalutamide, we established apalutamide-resistant prostate cancer 22Rv1 cells (22Rv1/APA). The 22Rv1/APA cells showed higher AR expression and androgen sensitivity than parental 22Rv1 cells. ArtC inhibited androgen-induced proliferation of 22Rv1/APA cells by suppressing the enhanced androgen signaling through blocking the nuclear translocation of AR. In addition, ArtC potently sensitized the resistant cells to apalutamide by inducing apoptotic cell death due to mitochondrial dysfunction. These results suggest that the intake of Brazilian green propolis containing ArtC improves prostate cancer therapy.
Collapse
Affiliation(s)
- Atsumi Ota
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu, 501-1196, Gifu, Japan
| | - Mina Kawai
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu, 501-1196, Gifu, Japan
| | - Yudai Kudo
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu, 501-1196, Gifu, Japan
| | - Jin Segawa
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu, 501-1196, Gifu, Japan
| | - Manami Hoshi
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu, 501-1196, Gifu, Japan
| | - Shinya Kawano
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu, 501-1196, Gifu, Japan
| | - Yuta Yoshino
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu, 501-1196, Gifu, Japan
| | - Kenji Ichihara
- Nagaragawa Research Center, API Co., Ltd., Gifu, 502-0071, Japan
| | - Masaki Shiota
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Naohiro Fujimoto
- Department of Urology, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan
| | - Toshiyuki Matsunaga
- Laboratory of Bioinformatics, Gifu Pharmaceutical University, Gifu, 502-8585, Japan
| | - Satoshi Endo
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu, 501-1196, Gifu, Japan.
| | - Akira Ikari
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu, 501-1196, Gifu, Japan
| |
Collapse
|
40
|
Wu M, Zhang R, Zhang Z, Zhang N, Li C, Xie Y, Xia H, Huang F, Zhang R, Liu M, Li X, Cen S, Zhou J. Selective androgen receptor degrader (SARD) to overcome antiandrogen resistance in castration-resistant prostate cancer. eLife 2023; 12:70700. [PMID: 36656639 PMCID: PMC9901937 DOI: 10.7554/elife.70700] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 01/18/2023] [Indexed: 01/20/2023] Open
Abstract
In patients with castration-resistant prostate cancer (CRPC), clinical resistances such as androgen receptor (AR) mutation, AR overexpression, and AR splice variants (ARVs) limit the effectiveness of second-generation antiandrogens (SGAs). Several strategies have been implemented to develop novel antiandrogens to circumvent the occurring resistance. Here, we found and identified a bifunctional small molecule Z15, which is both an effective AR antagonist and a selective AR degrader. Z15 could directly interact with the ligand-binding domain (LBD) and activation function-1 region of AR, and promote AR degradation through the proteasome pathway. In vitro and in vivo studies showed that Z15 efficiently suppressed AR, AR mutants and ARVs transcription activity, downregulated mRNA and protein levels of AR downstream target genes, thereby overcoming AR LBD mutations, AR amplification, and ARVs-induced SGAs resistance in CRPC. In conclusion, our data illustrate the synergistic importance of AR antagonism and degradation in advanced prostate cancer treatment.
Collapse
Affiliation(s)
- Meng Wu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical SciencesBeijingChina
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical SciencesBeijingChina
- Department of Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Rongyu Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal UniversityJinhuaChina
| | - Zixiong Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical SciencesBeijingChina
| | - Ning Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical SciencesBeijingChina
| | - Chenfan Li
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal UniversityJinhuaChina
| | - Yongli Xie
- Institute of Medicinal Biotechnology, Chinese Academy of Medical SciencesBeijingChina
| | - Haoran Xia
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical SciencesBeijingChina
| | - Fangjiao Huang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal UniversityJinhuaChina
| | - Ruoying Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal UniversityJinhuaChina
| | - Ming Liu
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical SciencesBeijingChina
| | - Xiaoyu Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical SciencesBeijingChina
| | - Shan Cen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical SciencesBeijingChina
| | - Jinming Zhou
- Institute of Medicinal Biotechnology, Chinese Academy of Medical SciencesBeijingChina
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal UniversityJinhuaChina
| |
Collapse
|
41
|
Chen X, Wang Q, Pan Y, Wang S, Li Y, Zhang H, Xu M, Zhou H, Liu X. Comparative efficacy of second-generation androgen receptor inhibitors for treating prostate cancer: A systematic review and network meta-analysis. Front Endocrinol (Lausanne) 2023; 14:1134719. [PMID: 36967752 PMCID: PMC10034066 DOI: 10.3389/fendo.2023.1134719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/22/2023] [Indexed: 03/11/2023] Open
Abstract
INTRODUCTION Second-generation androgen receptor inhibitors (SGARIs), namely enzalutamide, apalutamide, and darolutamide, are good for improving survival outcomes in prostate cancer patients, but some researchers have shown that using SGARIs increases side effects, which complicates clinicians' choice of. Therefore, we performed this network meta-analysis to assess the efficacy and toxicity of several SGARIs in the treatment of patients with metastatic hormone-sensitive prostate cancer (mHSPC), non-metastatic castration-resistant prostate cancer (nmCRPC), and metastatic castration-resistant prostate cancer (mCRPC). METHODS We searched PubMed, EMBASE and Cochrane Library databases from January 2000 to December 2022 to identify randomized controlled studies associated with SGARIs. We use Stata 16.0 and R 4.4.2 for data analysis, hazard ratio (HR) with 95% confidence intervals (CI) were used to assess the results. RESULTS This meta-analysis included 7 studies with a total of 9488 patients. In mHSPC, enzalutamide and darolutamide had a positive effect on overall survival (OS) (HR, 0.70; 95% CI, 0.59-0.82), but we did not find a difference in their efficacy to improve OS (HR, 1.19; 95% CI, 0.75-1.89). Also in nmCRPC, enzalutamide, apalutamide and darolutamide were beneficial for metastasis-free survival (MFS) (HR, 0.32; 95% CI, 0.25-0.41). Compared to darolutamide, enzalutamide (HR, 0.71; 95% CI, 0.54-0.93) and apalutamide (HR, 0.68; 95% CI, 0.51-0.91) prolonged MFS, but there was no difference in efficacy between enzalutamide and apalutamide (HR, 0.97; 95% CI, 0.73-1.28). Finally in mCRPC, there was no significant difference in indirect effects on OS between pre- and post-chemotherapy enzalutamide (HR, 0.89; 95% CI, 0.70-1.13). However, using enzalutamide before chemotherapy to improve radiographic progression-free survival (rPFS) was a better option (HR, 2.11; 95% CI, 1.62-2.73). CONCLUSION The SGARIs used in each trial were beneficial for the primary endpoint in the study. Firstly there was no significant difference in the effect of enzalutamide and darolutamide in improving OS in patients with mHSPC. Secondly improving MFS in patients with nmCRPC was best achieved with enzalutamide and apalutamide. In addition both pre- and post-chemotherapy use of enzalutamide was beneficial for OS in mCRPC patients, but for improving rPFS pre-chemotherapy use of enzalutamide should be preferred.The INPLASY registration number of this systematic review is INPLASY202310084.
Collapse
|
42
|
Makhov P, Fazliyeva R, Tufano A, Uzzo RG, Kolenko VM. Examining the Effect of PARP-1 Inhibitors on Transcriptional Activity of Androgen Receptor in Prostate Cancer Cells. Methods Mol Biol 2023; 2609:329-335. [PMID: 36515844 PMCID: PMC10103651 DOI: 10.1007/978-1-0716-2891-1_19] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Since the early 1940s, androgen ablation has been the cornerstone of treatment for prostate cancer (PC). Importantly, androgen receptor (AR) signaling is vital not only for the initiation of PC, which is initially androgen-dependent, but also for castration-resistant disease. Recent studies demonstrated clear promise of the poly(ADP-ribose) polymerase 1 (PARP-1) inhibitors for targeting prostate cancer cells harboring mutations in DNA damage-repair genes. In addition, it has been established that PARP-1 inhibition suppresses growth of AR-positive prostate cancer cells in cell and animal models. Thus, prostate cancer represents a particularly promising disease site for targeting PARP-1, given that both DNA repair and AR-mediated transcription depend on PARP-1 function. Here, we describe the development and use of cell-based assay to evaluate the impact of PARP-1 inhibitors on the AR signaling in prostate cancer cells.
Collapse
Affiliation(s)
- Peter Makhov
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Rushaniya Fazliyeva
- Cancer Signaling and Epigenetics Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Antonio Tufano
- Urology Unit, Department of Maternal-Child and Urological Sciences, "Sapienza" University of Rome, Rome, Italy
| | - Robert G Uzzo
- Department of Surgical Oncology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Vladimir M Kolenko
- Cancer Signaling and Epigenetics Program, Fox Chase Cancer Center, Philadelphia, PA, USA.
| |
Collapse
|
43
|
Zhang Y, Wei W, Li C, Yan S, Wang S, Xiao S, He C, Li J, Qi Z, Li B, Yang K, Li C. Idarubicin combats abiraterone and enzalutamide resistance in prostate cells via targeting XPA protein. Cell Death Dis 2022; 13:1034. [PMID: 36509750 PMCID: PMC9744908 DOI: 10.1038/s41419-022-05490-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 11/13/2022] [Accepted: 12/01/2022] [Indexed: 12/15/2022]
Abstract
Although second-generation therapies like abiraterone (ABI) and enzalutamide (ENZ) benefit patients with castration-resistant prostate cancer (CRPC), drug resistance frequently occurs, eventually resulting in therapy failure. In this study, we used two libraries, FDA-approved drug library and CRISP/Cas9 knockout (GeCKO) library to screen for drugs that overcome treatment resistance and to identify the potential drug-resistant genes involved in treatment resistance. Our screening results showed that the DNA-damaging agent idarubicin (IDA) overcame abiraterone and enzalutamide resistance in prostate cancer cells. IDA treatment inhibited the DNA repair protein XPA expression in a transcription-independent manner. Consistently, XPA knockout sensitized prostate cancer cells to abiraterone and enzalutamide treatment. In conclusion, IDA combats abiraterone and enzalutamide resistance by reducing XPA protein level in prostate cancer.
Collapse
Affiliation(s)
- Ying Zhang
- Institute of Precision Medicine, Jining Medical University, 272067, Jining, China
| | - Wei Wei
- Center for Experimental Medicine, School of Public Health, Jining Medical University, 272067, Jining, China
| | - Changying Li
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, 300211, Tianjin, China
| | - Siyuan Yan
- Institute of Precision Medicine, Jining Medical University, 272067, Jining, China
| | - Shanshan Wang
- Institute of Precision Medicine, Jining Medical University, 272067, Jining, China
| | - Shudong Xiao
- Institute of Precision Medicine, Jining Medical University, 272067, Jining, China
| | - Chenchen He
- Department of Radiation Oncology, The First Affiliated Hospital, Xi'An Jiaotong University School of Medicine, 710061, Xi'An, China
| | - Jing Li
- Department of Histology and Embryology, School of Medicine, Nankai University, 300071, Tianjin, China
| | - Zhi Qi
- Department of Histology and Embryology, School of Medicine, Nankai University, 300071, Tianjin, China
| | - Benyi Li
- Department of Urology, The University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Kuo Yang
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, 300211, Tianjin, China.
| | - Changlin Li
- Institute of Precision Medicine, Jining Medical University, 272067, Jining, China.
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, 300211, Tianjin, China.
| |
Collapse
|
44
|
Addition of New Androgen Receptor Pathway Inhibitors to Docetaxel and Androgen Deprivation Therapy in Metastatic Hormone-Sensitive Prostate Cancer: A Systematic Review and Metanalysis. Curr Oncol 2022; 29:9511-9524. [PMID: 36547161 PMCID: PMC9776703 DOI: 10.3390/curroncol29120747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/14/2022] [Accepted: 12/01/2022] [Indexed: 12/09/2022] Open
Abstract
In recent years, significant changes have occurred in metastatic hormone-sensitive prostate cancer (mHSPC) management, where docetaxel and new androgen receptor pathway inhibitors (ARPI) have been shown to improve overall survival (OS) compared to androgen deprivation therapy (ADT). Recent data could once again radically change mHSPC treatment. PEACE-1 and ARASENS trials demonstrated a survival benefit of the addition of ARPI to docetaxel and ADT combination (triplet therapy), compared to docetaxel and ADT. With multiple options to choose from, it is crucial to identify the patients who would benefit most from triplet therapy. In this meta-analysis, we evaluated the activity of the triplet therapy versus docetaxel plus ADT in mHSPC. A systematic review of PubMed/Medline, Embase, and the proceedings of major international meetings was performed. Five RCTs fulfilled the inclusion criteria. PEACE-1 and ARASENS studies reported disease-free survival (DFS) and OS. Post hoc analysis of three other trials evaluated the combination of ARPI, docetaxel and ADT. Globally, 2538 patients were included (1270 triplet therapy; 1268 docetaxel + ADT). Triplet therapy was associated with improved OS (hazard ratio (HR) 0.74; 95% confidence interval (CI), 0.66-0.83, p < 0.00001). A statistically significant benefit was shown in high-volume mHSPC patients (HR 0.76; 95% CI 0.59-0.97, p = 0.03) and in patients with de novo metastatic disease (HR 0.73; 95% CI, 0.64-0.82, p < 0.00001). The addition of ARPI to standard therapy was associated with DFS improvement (HR 0.41; 95% CI, 0.35-0.49, p < 0.00001). This metanalysis shows a significant OS benefit from concomitant administration of ARPI, docetaxel and ADT in high volume and de novo mHSPC.
Collapse
|
45
|
Kotamarti S, Armstrong AJ, Polascik TJ, Moul JW. Molecular Mechanisms of Castrate-Resistant Prostate Cancer. Urol Clin North Am 2022; 49:615-626. [DOI: 10.1016/j.ucl.2022.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
46
|
Lelong EIJ, Khelifi G, Adjibade P, Joncas FH, Grenier St-Sauveur V, Paquette V, Gris T, Zoubeidi A, Audet-Walsh E, Lambert JP, Toren P, Mazroui R, Hussein SMI. Prostate cancer resistance leads to a global deregulation of translation factors and unconventional translation. NAR Cancer 2022; 4:zcac034. [PMID: 36348939 PMCID: PMC9634437 DOI: 10.1093/narcan/zcac034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/29/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
Emerging evidence associates translation factors and regulators to tumorigenesis. However, our understanding of translational changes in cancer resistance is still limited. Here, we generated an enzalutamide-resistant prostate cancer (PCa) model, which recapitulated key features of clinical enzalutamide-resistant PCa. Using this model and poly(ribo)some profiling, we investigated global translation changes that occur during acquisition of PCa resistance. We found that enzalutamide-resistant cells exhibit an overall decrease in mRNA translation with a specific deregulation in the abundance of proteins involved in mitochondrial processes and in translational regulation. However, several mRNAs escape this translational downregulation and are nonetheless bound to heavy polysomes in enzalutamide-resistant cells suggesting active translation. Moreover, expressing these corresponding genes in enzalutamide-sensitive cells promotes resistance to enzalutamide treatment. We also found increased association of long non-coding RNAs (lncRNAs) with heavy polysomes in enzalutamide-resistant cells, suggesting that some lncRNAs are actively translated during enzalutamide resistance. Consistent with these findings, expressing the predicted coding sequences of known lncRNAs JPX, CRNDE and LINC00467 in enzalutamide-sensitive cells drove resistance to enzalutamide. Taken together, this suggests that aberrant translation of specific mRNAs and lncRNAs is a strong indicator of PCa enzalutamide resistance, which points towards novel therapeutic avenues that may target enzalutamide-resistant PCa.
Collapse
Affiliation(s)
- Emeline I J Lelong
- Cancer Research Center, Université Laval , Quebec City, Québec G1R 3S3, Canada
- CHU of Québec-Université Laval Research Center, Oncology Division , Quebec City, Québec G1R 3S3, Canada
| | - Gabriel Khelifi
- Cancer Research Center, Université Laval , Quebec City, Québec G1R 3S3, Canada
- CHU of Québec-Université Laval Research Center, Oncology Division , Quebec City, Québec G1R 3S3, Canada
| | - Pauline Adjibade
- Cancer Research Center, Université Laval , Quebec City, Québec G1R 3S3, Canada
- CHU of Québec-Université Laval Research Center, Oncology Division , Quebec City, Québec G1R 3S3, Canada
| | - France-Hélène Joncas
- Cancer Research Center, Université Laval , Quebec City, Québec G1R 3S3, Canada
- CHU of Québec-Université Laval Research Center, Oncology Division , Quebec City, Québec G1R 3S3, Canada
| | - Valérie Grenier St-Sauveur
- Cancer Research Center, Université Laval , Quebec City, Québec G1R 3S3, Canada
- CHU of Québec-Université Laval Research Center, Oncology Division , Quebec City, Québec G1R 3S3, Canada
| | - Virginie Paquette
- Cancer Research Center, Université Laval , Quebec City, Québec G1R 3S3, Canada
- CHU of Québec-Université Laval Research Center, Endocrinology and Nephrology Division , Quebec City, Québec G1V 4G2, Canada
| | - Typhaine Gris
- Cancer Research Center, Université Laval , Quebec City, Québec G1R 3S3, Canada
- CHU of Québec-Université Laval Research Center, Oncology Division , Quebec City, Québec G1R 3S3, Canada
| | - Amina Zoubeidi
- Vancouver Prostate Centre, Department of Urologic Sciences, Faculty of Medicine, University of British Columbia , Vancouver, British Columbia V6H 3Z6, Canada
| | - Etienne Audet-Walsh
- Cancer Research Center, Université Laval , Quebec City, Québec G1R 3S3, Canada
- CHU of Québec-Université Laval Research Center, Endocrinology and Nephrology Division , Quebec City, Québec G1V 4G2, Canada
| | - Jean-Philippe Lambert
- Cancer Research Center, Université Laval , Quebec City, Québec G1R 3S3, Canada
- CHU of Québec-Université Laval Research Center, Endocrinology and Nephrology Division , Quebec City, Québec G1V 4G2, Canada
| | - Paul Toren
- Cancer Research Center, Université Laval , Quebec City, Québec G1R 3S3, Canada
- CHU of Québec-Université Laval Research Center, Oncology Division , Quebec City, Québec G1R 3S3, Canada
| | - Rachid Mazroui
- Cancer Research Center, Université Laval , Quebec City, Québec G1R 3S3, Canada
- CHU of Québec-Université Laval Research Center, Oncology Division , Quebec City, Québec G1R 3S3, Canada
| | - Samer M I Hussein
- Cancer Research Center, Université Laval , Quebec City, Québec G1R 3S3, Canada
- CHU of Québec-Université Laval Research Center, Oncology Division , Quebec City, Québec G1R 3S3, Canada
| |
Collapse
|
47
|
Wang A, Luo X, Wang Y, Meng X, Lu Z, Yang Y. Design, Synthesis, and Biological Evaluation of Androgen Receptor Degrading and Antagonizing Bifunctional Steroidal Analogs for the Treatment of Advanced Prostate Cancer. J Med Chem 2022; 65:12460-12481. [PMID: 36070471 DOI: 10.1021/acs.jmedchem.2c01164] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Metastatic castration-resistant prostate cancer (mCRPC) with high mortality has seriously threatened men's health. Bifunctional agents simultaneously degrade and antagonize androgen receptor (AR), display robust AR signaling pathway blockade, and show the therapeutic prospect for mCRPC. Herein, systemic structural modifications on the C-3, C-6, and C-17 positions of galeterone led to the discovery of 67-b with the dual functions of AR antagonism and degradation. In vitro, 67-b exhibited excellent antiproliferative activity and potent AR degradation activity in different PCa cells (LNCaP and 22RV1), as well as outstanding antagonistic activity against wild-type and mutant (W741L, T877A, and F876L) ARs. In vivo, 67-b effectively inhibited the growth of hormone-sensitive organs in the Hershberger assay and exhibited tumor regression in the enzalutamide-resistant (c4-2b-ENZ) xenograft model. These results confirmed 67-b to be a promising AR degrader and antagonist for the treatment of mCRPC patients.
Collapse
Affiliation(s)
- Ao Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Xianggang Luo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Yawan Wang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing 210023, China
| | - Xin Meng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Zhengyu Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Yushe Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| |
Collapse
|
48
|
Chen Y, Zhou Q, Hankey W, Fang X, Yuan F. Second generation androgen receptor antagonists and challenges in prostate cancer treatment. Cell Death Dis 2022; 13:632. [PMID: 35864113 PMCID: PMC9304354 DOI: 10.1038/s41419-022-05084-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 01/21/2023]
Abstract
Prostate cancer is a hormone-dependent malignancy, whose onset and progression are closely related to the activity of the androgen receptor (AR) signaling pathway. Due to this critical role of AR signaling in driving prostate cancer, therapy targeting the AR pathway has been the mainstay strategy for metastatic prostate cancer treatment. The utility of these agents has expanded with the emergence of second-generation AR antagonists, which began with the approval of enzalutamide in 2012 by the United States Food and Drug Administration (FDA). Together with apalutamide and darolutamide, which were approved in 2018 and 2019, respectively, these agents have improved the survival of patients with prostate cancer, with applications for both androgen-dependent and castration-resistant disease. While patients receiving these drugs receive a benefit in the form of prolonged survival, they are not cured and ultimately progress to lethal neuroendocrine prostate cancer (NEPC). Here we summarize the current state of AR antagonist development and highlight the emerging challenges of their clinical application and the potential resistance mechanisms, which might be addressed by combination therapies or the development of novel AR-targeted therapies.
Collapse
Affiliation(s)
- Yanhua Chen
- grid.412540.60000 0001 2372 7462Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 201203 Shanghai, China
| | - Qianqian Zhou
- grid.412540.60000 0001 2372 7462Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 201203 Shanghai, China
| | - William Hankey
- grid.10698.360000000122483208Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Xiaosheng Fang
- grid.460018.b0000 0004 1769 9639Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 271000 Jinan, Shandong China
| | - Fuwen Yuan
- grid.412540.60000 0001 2372 7462Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 201203 Shanghai, China
| |
Collapse
|
49
|
Danielak D, Krejčí T, Beránek J. Increasing the efficacy of abiraterone - from pharmacokinetics, through therapeutic drug monitoring to overcoming food effects with innovative pharmaceutical products. Eur J Pharm Sci 2022; 176:106254. [DOI: 10.1016/j.ejps.2022.106254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/02/2022] [Accepted: 07/02/2022] [Indexed: 11/03/2022]
|
50
|
Mechanisms of Resistance to Second-Generation Antiandrogen Therapy for Prostate Cancer: Actual Knowledge and Perspectives. Med Sci (Basel) 2022; 10:medsci10020025. [PMID: 35645241 PMCID: PMC9149952 DOI: 10.3390/medsci10020025] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/06/2022] [Accepted: 04/22/2022] [Indexed: 12/14/2022] Open
Abstract
Prostate cancer therapy for locally advanced and metastatic diseases includes androgen deprivation therapy (ADT). Second-generation antiandrogens have a role in castration-resistant prostate cancer. Nevertheless, some patients do not respond to this therapy, and eventually all the patients became resistant. This is due to modifications to intracellular signaling pathways, genomic alteration, cytokines production, metabolic switches, constitutional receptor activation, overexpression of some proteins, and regulation of gene expression. The aim of this review is to define the most important mechanisms that drive this resistance and the newest discoveries in this field, specifically for enzalutamide and abiraterone, with potential implications for future therapeutic targets. Furthermore, apalutamide and darolutamide share some resistance mechanisms with abiraterone and enzalutamide and could be useful in some resistance settings.
Collapse
|