1
|
Wu HL, Yang R, Liang XL, Ma R, Su YD, Yang ZR, Cui YR, Du XM, Liu YT, Li Y. Clinical Significance of Tumor-Infiltrating Lymphocytes in Malignant Peritoneal Mesothelioma: A Single-Center Study of 143 Cases. Ann Surg Oncol 2025:10.1245/s10434-025-17437-z. [PMID: 40372588 DOI: 10.1245/s10434-025-17437-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 04/21/2025] [Indexed: 05/16/2025]
Abstract
BACKGROUND Malignant peritoneal mesothelioma (MPM) is a rare malignant tumor with high mortality rate and extremely poor prognosis. The tumor immune microenvironment, particularly tumor-infiltrating lymphocytes (TILs), plays a critical role in disease progression and treatment response. This study aimed to analyze the correlation between the level of TILs and the main clinicopathological characteristics and prognosis of MPM. PATIENTS AND METHODS A total of 143 postoperative specimens from patients with MPM following cytoreductive surgery were collected. Postoperative specimens were stained with hematoxylin and eosin (H&E). The level of TILs was quantitatively analyzed by QuPath 0.3.2 software. Univariate and multivariate analyses were conducted to investigate the correlation between TILs level and other conventional clinicopathological characteristics. RESULTS Among the 143 patients with MPM, 73 were male (51.0%) and 70 were female (49.0%), with a median age of 55 (range 24-73) years. There were 72 (50.3%) cases with low TILs, and 71 (49.7%) cases with high TILs. Univariate analysis showed that TIL level (low versus high) was negatively correlated with the following seven clinicopathological factors: surgery history, Ki-67 index, preoperative CA125 level, peritoneal cancer index (PCI) index, bleeding volume, red blood cell (RBC) transfusion volume, and ascites volume (all P < 0.05). Multivariate analysis indicated that TIL level was independently negatively correlated with preoperative carbohydrate antigen (CA)125 level (odds ratio 0.394, 95% CI 0.179-0.866, P = 0.020). Cox regression analysis suggested that high TILs was independently associated with better prognosis of MPM. Moreover, a cohort of patients who received preoperative chemotherapy combined with targeted therapy were evaluated for response. Kaplan-Meier curve showed that high infiltration of TILs predicted better overall survival in patients undergoing treatment. CONCLUSIONS TILs could be a useful indicator for predicting prognosis and guiding personalized treatment strategies in patients with MPM.
Collapse
Affiliation(s)
- He-Liang Wu
- Department of Peritoneal Cancer Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of Peritoneal Oncology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua Medicine, Tsinghua University, Changping District, Beijing, China
| | - Rui Yang
- Department of Peritoneal Cancer Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of Peritoneal Oncology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua Medicine, Tsinghua University, Changping District, Beijing, China
| | - Xin-Li Liang
- Department of Peritoneal Cancer Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Ru Ma
- Department of Peritoneal Oncology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua Medicine, Tsinghua University, Changping District, Beijing, China
| | - Yan-Dong Su
- Department of Peritoneal Cancer Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of Peritoneal Oncology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua Medicine, Tsinghua University, Changping District, Beijing, China
| | - Zhi-Ran Yang
- Department of Peritoneal Cancer Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Yu-Run Cui
- Department of Peritoneal Cancer Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Xue-Mei Du
- Department of Pathology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yi-Tong Liu
- Department of Peritoneal Cancer Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of Peritoneal Oncology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua Medicine, Tsinghua University, Changping District, Beijing, China
| | - Yan Li
- Department of Peritoneal Oncology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua Medicine, Tsinghua University, Changping District, Beijing, China.
| |
Collapse
|
2
|
Kong WY, Soderholm A, Brooks AJ, Gonzalez Cruz JL, Wells JW. Harnessing cytokine immunocomplexes and cytokine fusion proteins for cancer Therapy: Mechanisms and clinical potential. Cancer Treat Rev 2025; 136:102937. [PMID: 40233680 DOI: 10.1016/j.ctrv.2025.102937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/04/2025] [Accepted: 04/06/2025] [Indexed: 04/17/2025]
Abstract
Cytokines are pivotal regulators of cellular functions and immune responses, making them highly promising targets for cancer immunotherapy. Despite their widespread clinical application, the effectiveness of cytokine immunotherapy is often hampered by their pleiotropic effects, short half-lives, uneven biodistribution, and severe side effects at high dosages. Recent advancements in cytokine biology have led to the development of cytokine-antibody immunocomplexes and cytokine fusion proteins, offering a new paradigm in cancer treatments. These innovations foster the ability of cytokines to selectively activate specific cancer-targeting immune cell populations, such as CD8 T cells and NK cells, effectively inhibiting tumour progression. Furthermore, both therapeutic approaches can mitigate systemic toxicities and prolong the biological activity of cytokines in the body. This review delves into the recent advancements of cytokine immunocomplexes and cytokine fusion proteins, with a particular focus on interleukin-2 (IL-2), IL-7 and IL-15, which are in clinical/preclinical development. Moreover, we discuss the therapeutic benefits of these approaches observed in recent preclinical and clinical studies, along with the challenges that must be addressed to fully unlock their potential in cancer immunotherapy.
Collapse
Affiliation(s)
- Wei Yang Kong
- Frazer Institute, Faculty of Health, Medicine and Behavioural Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Amelia Soderholm
- Frazer Institute, Faculty of Health, Medicine and Behavioural Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Andrew J Brooks
- Frazer Institute, Faculty of Health, Medicine and Behavioural Sciences, The University of Queensland, Brisbane, Queensland, Australia; School of Science & Technology, University of New England, Armidale, New South Wales, Australia
| | - Jazmina L Gonzalez Cruz
- Frazer Institute, Faculty of Health, Medicine and Behavioural Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - James W Wells
- Frazer Institute, Faculty of Health, Medicine and Behavioural Sciences, The University of Queensland, Brisbane, Queensland, Australia; Dermatology Research Centre, Faculty of Health, Medicine and Behavioural Sciences, The University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
3
|
Cui X, Cao C, Hao W, Pan X, Cao Y, Fu Y, Hao H, Jiao Y, Lin S, Cui S, Li R, Liu Y, Yan F. A Nanoplatform of Reversing Tumor Immunosuppressive Microenvironment Based on the NIR-II Gold Hollow Nanorod for the Treatment of Hepatocellular Carcinoma. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2500144. [PMID: 40130748 DOI: 10.1002/smll.202500144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 02/16/2025] [Indexed: 03/26/2025]
Abstract
Advanced hepatocellular carcinoma (HCC) presents a strongly immunosuppressive tumor microenvironment, which enables tumor cells to evade immune cell attacks and hinder effective drug killing, thereby hindering the achievement of the desired therapeutic effect. In response, a novel nanoplatform- AuHNR@γ-Fe2O3@Lenvatinib@β-Glucan (AFLG) with surface modified β-1,3-glucan is developed, which exhibits potent immunostimulatory effect and the capability of repolarizing macrophages, to counteract the immunosuppressive conditions present in the tumor microenvironment. Leveraging the hollow structure of gold nanorods, Lenvatinib is efficiently loaded, a first-line targeted drug for HCC, which effectively inhibits tumor angiogenesis. Additionally, through atomic layer deposition, γ-Fe2O3 is generated on the hollow gold nanorod surface, endowing it with chemodynamic therapy and magnetic resonance T2-weighted imaging capabilities while excellently maintaining the gold nanorod's superior photothermal therapy and photoacoustic imaging properties under 1064 nm excitation. These AFLG NPs feature dual-modal imaging and quadruple-modal synergistic therapy capabilities, along with their powerful potential in remodeling the immunosuppressive tumor microenvironment, offering an encouraging novel approach for the treatment of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Xinyuan Cui
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin 2nd Rd, Shanghai, 200025, P. R. China
| | - Cheng Cao
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, No. 800 Dongchuan Rd, Shanghai, 200240, P. R. China
| | - Wanting Hao
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin 2nd Rd, Shanghai, 200025, P. R. China
| | - Xinni Pan
- Department of Radiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 600 Yishan Rd, Shanghai, 200233, P. R. China
| | - Yu Cao
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, No. 800 Dongchuan Rd, Shanghai, 200240, P. R. China
| | - Yanfei Fu
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, No. 800 Dongchuan Rd, Shanghai, 200240, P. R. China
| | - Huifang Hao
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, No. 800 Dongchuan Rd, Shanghai, 200240, P. R. China
| | - Yingao Jiao
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, No. 800 Dongchuan Rd, Shanghai, 200240, P. R. China
| | - Shujing Lin
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, No. 800 Dongchuan Rd, Shanghai, 200240, P. R. China
| | - Shengsheng Cui
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, No. 800 Dongchuan Rd, Shanghai, 200240, P. R. China
| | - Ruokun Li
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin 2nd Rd, Shanghai, 200025, P. R. China
- Faculty of Medical Imaging Technology, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, No. 150 Ruijin 2nd Rd, Shanghai, 200025, P. R. China
| | - Yanlei Liu
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, No. 800 Dongchuan Rd, Shanghai, 200240, P. R. China
| | - Fuhua Yan
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin 2nd Rd, Shanghai, 200025, P. R. China
- Faculty of Medical Imaging Technology, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, No. 150 Ruijin 2nd Rd, Shanghai, 200025, P. R. China
| |
Collapse
|
4
|
Fang K, Yuan S, Zhang X, Zhang J, Sun SL, Li X. Regulation of immunogenic cell death and potential applications in cancer therapy. Front Immunol 2025; 16:1571212. [PMID: 40207233 PMCID: PMC11979251 DOI: 10.3389/fimmu.2025.1571212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 03/11/2025] [Indexed: 04/11/2025] Open
Abstract
Immunogenic cell death (ICD), a type of regulatory cell death, plays an important role in activating the adaptive immune response. Activation of the tumor-specific immune response is accompanied by the cell surface exposure of calreticulin and heat-shock proteins, the secretion of adenosine triphosphate, and the release of high mobility group box-1. In this review, we summarize and classify the latest types of ICD inducers and their molecular mechanisms, and discuss the effects and potential applications of inducing ICD by chemotherapy drugs, targeted drugs, and oncolytic viruses in clinical research. We also explore the potential role of epigenetic modifiers in the induction of ICD, and clarify the synergistic anti-tumor effects of nano-pulse stimulation, radiosensitizers for radiotherapy, photosensitizers for photodynamic therapy, photothermal therapy, and other physical stimulation, combined with radiotherapy and chemotherapy induced-ICD, in multimodal immunotherapy. In addition, we elucidate the molecular mechanism of ICD in detail, including the calcium imbalance, mitochondrial stress, and the interactions in the tumor microenvironment. Ultimately, this review aims to offer deeper insight into the factors and mechanisms of ICD induction and provide a theoretical basis for the future development of ICD-based immunotherapy.
Collapse
Affiliation(s)
- Kun Fang
- Central Laboratory, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University (Liaoning Cancer Hospital & Institute), Shenyang, Liaoning, China
- Liaoning Key Laboratory of Gastrointestinal Cancer Translational Research, Shenyang, Liaoning, China
| | - Shuai Yuan
- Central Laboratory, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University (Liaoning Cancer Hospital & Institute), Shenyang, Liaoning, China
- Liaoning Key Laboratory of Gastrointestinal Cancer Translational Research, Shenyang, Liaoning, China
| | - Xue Zhang
- Central Laboratory, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University (Liaoning Cancer Hospital & Institute), Shenyang, Liaoning, China
- Liaoning Key Laboratory of Gastrointestinal Cancer Translational Research, Shenyang, Liaoning, China
| | - Jingdong Zhang
- Liaoning Key Laboratory of Gastrointestinal Cancer Translational Research, Shenyang, Liaoning, China
- Department of Medical Oncology, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University (Liaoning Cancer Hospital & Institute), Shenyang, Liaoning, China
| | - Shu-lan Sun
- Central Laboratory, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University (Liaoning Cancer Hospital & Institute), Shenyang, Liaoning, China
- Liaoning Key Laboratory of Gastrointestinal Cancer Translational Research, Shenyang, Liaoning, China
| | - Xiaoxi Li
- Central Laboratory, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University (Liaoning Cancer Hospital & Institute), Shenyang, Liaoning, China
- Liaoning Key Laboratory of Gastrointestinal Cancer Translational Research, Shenyang, Liaoning, China
| |
Collapse
|
5
|
Ma K, Wang L, Li W, Tang T, Ma B, Zhang L, Zhang L. Turning cold into hot: emerging strategies to fire up the tumor microenvironment. Trends Cancer 2025; 11:117-134. [PMID: 39730243 DOI: 10.1016/j.trecan.2024.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 12/29/2024]
Abstract
The tumor microenvironment (TME) is a complex, highly structured, and dynamic ecosystem that plays a pivotal role in the progression of both primary and metastatic tumors. Precise assessment of the dynamic spatiotemporal features of the TME is crucial for understanding cancer evolution and designing effective therapeutic strategies. Cancer is increasingly recognized as a systemic disease, influenced not only by the TME, but also by a multitude of systemic factors, including whole-body metabolism, gut microbiome, endocrine signaling, and circadian rhythm. In this review, we summarize the intrinsic, extrinsic, and systemic factors contributing to the formation of 'cold' tumors within the framework of the cancer-immunity cycle. Correspondingly, we discuss potential strategies for converting 'cold' tumors into 'hot' ones to enhance therapeutic efficacy.
Collapse
Affiliation(s)
- Kaili Ma
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Suzhou, Jiangsu 215123, China; Key Laboratory of Synthetic Biology Regulatory Element, Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Suzhou, Jiangsu 215123, China
| | - Lin Wang
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Suzhou, Jiangsu 215123, China; Key Laboratory of Synthetic Biology Regulatory Element, Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Suzhou, Jiangsu 215123, China
| | - Wenhui Li
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Suzhou, Jiangsu 215123, China; Key Laboratory of Synthetic Biology Regulatory Element, Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Suzhou, Jiangsu 215123, China
| | - Tingting Tang
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Bo Ma
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
| | - Liyuan Zhang
- Center for Cancer Diagnosis and Treatment, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215123, China; PRAG Therapy Center, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215123, China.
| | - Lianjun Zhang
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Suzhou, Jiangsu 215123, China; Key Laboratory of Synthetic Biology Regulatory Element, Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
6
|
Nie F, Guo J, Pan J, Guo Z, Wang C, Yan J, Ma W. Effects of antibiotics on the anti-tumor efficacy of immune checkpoint inhibitor therapy. Clin Transl Oncol 2025; 27:790-799. [PMID: 39046682 DOI: 10.1007/s12094-024-03615-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 07/09/2024] [Indexed: 07/25/2024]
Abstract
PURPOSE Immunotherapy using immune checkpoint inhibitors (ICIs) has shown several benefits over traditional therapies. However, the eligible population remains small. Antibiotic (ATB) use might reduce immunotherapy efficacy by disrupting the gut microbiota. However, in China, ATB effect on ICI therapy efficacy remains unelucidated. We aimed to assess the effects of ATBs on the anti-tumor efficacy of ICIs to provide a reference for clinical use. METHODS We included 134 patients with advanced tumors undergoing ICI therapy at Shanghai Jiading District Central Hospital from January 1, 2021, to October 1, 2023. They were divided into Non-ATB and ATB groups based on ATB use within 30 days before and after ICI administration. Moreover, we compared progression-free (PFS) and overall (OS) survival between the groups. RESULTS Median PFS and OS were lower in the ATB than in the Non-ATB group (PFS: 4.0 vs. 5.5 months; OS: 5.4 vs. 6.5 months). Univariate analysis revealed that ATB use significantly affected PFS (hazard ratio [HR] = 2.318, 95% confidence interval [CI] = 1.281-4.194, P = 0.005) and OS (HR = 2.115, 95% CI = 1.161-3.850, P = 0.014). Moreover, multivariate analysis revealed poor PFS (HR = 2.573, 95% CI = 1.373-4.826, P = 0.003) and OS (HR = 2.452, 95% CI = 1.298-4.632, P = 0.006) in patients who received ATBs during ICI therapy. CONCLUSIONS ATB use is negatively correlated with ICI therapy efficacy, leading to reduced PFS and OS in patients undergoing such treatment. Owing to the significant impact of ATBs on the human gut microbiome, regulation of the gut microbiome may emerge as a novel therapeutic target that can enhance the clinical activity of ICIs.
Collapse
Affiliation(s)
- Fangfang Nie
- Department of Oncology, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai, 201800, China
| | - JunGang Guo
- Department of Thoracic Surgery, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai, 201800, China
| | - JiaYi Pan
- Department of Pharmacy, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, No.1 Cheng Bei Road, Jia ding District, Shanghai, 201800, China
| | - ZhaoJiao Guo
- Department of Oncology, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai, 201800, China
| | - Chun Wang
- Department of Oncology, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai, 201800, China
| | - Jun Yan
- Department of Oncology, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai, 201800, China.
| | - WeiNa Ma
- Department of Pharmacy, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, No.1 Cheng Bei Road, Jia ding District, Shanghai, 201800, China.
| |
Collapse
|
7
|
Xu R, Wan M, Pan J, Mei J, Zhou J, Shen Y, Yang J, Zhu Y, Sun J. Formin protein DAAM1 positively regulates PD-L1 expression via mediating the JAK1/STAT1 axis in pancreatic cancer. Cancer Cell Int 2025; 25:28. [PMID: 39881344 PMCID: PMC11776260 DOI: 10.1186/s12935-024-03631-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 12/31/2024] [Indexed: 01/31/2025] Open
Abstract
BACKGROUND Dishevelled-associated activator of morphogenesis1 (DAAM1) is a member of the evolutionarily conserved Formin family and plays a significant role in the malignant progression of various human cancers. This study aims to explore the clinical and biological significance of DAAM1 in pancreatic cancer. METHODS Multiple public datasets and an in-house cohort were utilized to assess the clinical relevance of DAAM1 in pancreatic cancer. The LinkedOmics platform was employed to perform enrichment analysis of DAAM1-associated molecular pathways in pancreatic cancer. Subsequently, a series of in vitro and in vivo experiments were conducted to evaluate the biological roles of DAAM1 in pancreatic cancer cells and its effects on intratumoral T cells. RESULTS DAAM1 was found to be upregulated in pancreatic cancer tissues, with higher expression levels observed in tumor cells. Additionally, high expression of DAAM1 was associated with poor prognosis. DAAM1 acted as an oncogene in pancreatic cancer, and its inhibition suppressed tumor cell proliferation, migration, and invasion, while promoted apoptosis. Furthermore, DAAM1 was involved in the JAK1/STAT1 signaling pathway and regulated PD-L1 expression in pancreatic cancer cells. The inhibition of DAAM1 also significantly reduced the exhaustion levels of CD8+ T cells. CONCLUSION In conclusion, DAAM1 functions as an oncogene and is immunologically implicated in pancreatic cancer, these findings suggest that DAAM1 may serve as a promising therapeutic target for the clinical management of pancreatic cancer.
Collapse
Affiliation(s)
- Rui Xu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- The First Clinical Medicine College, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Mengyun Wan
- Department of Physiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Jiadong Pan
- Departments of Gastroenterology, The Third People's Hospital of Kunshan, Suzhou, 215300, China
| | - Jie Mei
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- The First Clinical Medicine College, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ji Zhou
- Department of Physiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Yan Shen
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- The First Clinical Medicine College, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jiayue Yang
- Departments of Endocrinology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu, China.
| | - Yichao Zhu
- Department of Physiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China.
- Department of General Surgery, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu, China.
| | - Jing Sun
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
8
|
Sun Z, Hu M, Huang X, Song M, Chen X, Bei J, Lin Y, Chen S. Predictive value of dendritic cell-related genes for prognosis and immunotherapy response in lung adenocarcinoma. Cancer Cell Int 2025; 25:13. [PMID: 39810206 PMCID: PMC11730157 DOI: 10.1186/s12935-025-03642-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 01/07/2025] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND Patients with lung adenocarcinoma (LUAD) receiving drug treatment often have an unpredictive response and there is a lack of effective methods to predict treatment outcome for patients. Dendritic cells (DCs) play a significant role in the tumor microenvironment and the DCs-related gene signature may be used to predict treatment outcome. Here, we screened for DC-related genes to construct a prognostic signature to predict prognosis and response to immunotherapy in LUAD patients. METHODS DC-related biological functions and genes were identified using single-cell RNA sequencing (scRNA-seq) and bulk RNA sequencing. DCs-related gene signature (DCRGS) was constructed using integrated machine learning algorithms. Expression of key genes in clinical samples was examined by real-time q-PCR. Performance of the prognostic model, DCRGS, for the prognostic evaluation, was assessed using a multiple time-dependent receiver operating characteristic (ROC) curve, the R package, "timeROC", and validated using GEO datasets. RESULTS Analysis of scRNA-seq data showed that there is a significant upregulation of LGALS9 expression in DCs isolated from malignant pleural effusion samples. Leveraging the Coxboost and random survival forest combination algorithm, we filtered out six DC-related genes on which a prognostic prediction model, DCRGS, was established. A high predictive capability nomogram was constructed by combining DCRGS with clinical features. We found that patients with a high-DCRGS score had immunosuppression, activated tumor-associated pathways, and elevated somatic mutational load and copy number variant load. In contrast, patients in the low-DCRGS subgroup were resistant to chemotherapy but sensitive to the CTLA-4 immune checkpoint inhibitor and targeted therapy. CONCLUSION We have innovatively established a deep learning-based prediction model, DCRGS, for the prediction of the prognosis of patients with LUAD. The model possesses a strong prognostic prediction performance with high accuracy and sensitivity and could be clinically useful to guide the management of LUAD. Furthermore, the findings of this study could provide an important reference for individualized clinical treatment and prognostic prediction of patients with LUAD.
Collapse
Affiliation(s)
- Zihao Sun
- Department of Immuno-Oncology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080, China
- Guangdong Provincial Engineering Research Center for Esophageal Cancer Precision Therapy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080, China
| | - Mengfei Hu
- Department of Internal Medicine, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230000, China
| | - Xiaoning Huang
- Department of Immuno-Oncology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080, China
- Guangdong Provincial Engineering Research Center for Esophageal Cancer Precision Therapy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080, China
| | - Minghan Song
- Department of Immuno-Oncology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080, China
- Guangdong Provincial Engineering Research Center for Esophageal Cancer Precision Therapy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080, China
| | - Xiujing Chen
- Department of Immuno-Oncology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080, China
- Guangdong Provincial Engineering Research Center for Esophageal Cancer Precision Therapy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080, China
| | - Jiaxin Bei
- Department of Immuno-Oncology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080, China.
- Guangdong Provincial Engineering Research Center for Esophageal Cancer Precision Therapy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080, China.
| | - Yiguang Lin
- Department of Immuno-Oncology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080, China.
- Research & Development Division, Guangzhou Anjie Biomedical Technology Co., Ltd., Guangzhou, 510535, China.
| | - Size Chen
- Department of Immuno-Oncology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080, China.
- Guangdong Provincial Engineering Research Center for Esophageal Cancer Precision Therapy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080, China.
- Key Laboratory of Cancer Immunotherapy of Guangdong Higher Education Institutes, Guangzhou, 510080, China.
- Key Laboratory of Monitoring Adverse Reactions Associated with CAR-T Cell Therapy, Guangzhou, 510080, China.
| |
Collapse
|
9
|
Zuo M, Zheng G, Cao Y, Lu H, Li D, An C, Fan W. Hepatic arterial chemotherapy infusion combined with tyrosine kinase inhibitors and PD-1 inhibitors for advanced hepatocellular carcinoma with high risk: a propensity score matching study. Int J Surg 2025; 111:104-112. [PMID: 38995173 PMCID: PMC11745606 DOI: 10.1097/js9.0000000000001940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/30/2024] [Indexed: 07/13/2024]
Abstract
OBJECTIVE To ascertain the therapeutic efficacy and safety of FOLFOX (oxaliplatin, fluorouracil, and leucovorin)-based hepatic arterial infusion chemotherapy combined with tyrosine kinase inhibitors (TKI) and programmed cell death protein-1 inhibitors (PD-1 inhibitors) (triple therapy), as a first-line treatment in high-risk advanced hepatocellular carcinoma (aHCC with Vp4 portal vein invasion or/and tumor diameter ≥10 cm). METHODS This retrospective multicenter study included 466 high-risk aHCC patients treated with either triple therapy ( n =245) or dual therapy (TKI and PD-1 inhibitors, n =221). The overall survival, progression-free survival, objective response rate, and safety were compared between the two groups. Propensity score matching was performed to reduce bias between the two groups. RESULTS After propensity score matching (1:1), 194 patients in each group were analyzed. The triple-therapy group showed a longer median overall survival (24.6 vs. 11.9 months; HR=0.43, P <0.001) and a longer median progression-free survival (10.0 vs. 7.7 months; HR=0.68, P =0.002) than the dual-therapy group. The survival rates at 6, 12, and 24 months were 94.2, 71.0, and 50.8% for triple therapy and 75.9, 49.9, and 26.8% for dual therapy. The objective response rate in the triple-therapy group was significantly higher (57.7 vs. 28.9%, P <0.001). In the triple-therapy group, more patients converted to non-high-risk (68.0 vs. 36.6%, P <0.001) and received salvage liver resection or ablation after downstaging conversion (16.5% vs. 9.2%, P =0.033). The grade 3/4 adverse events were 59.2 and 47.4% in the triple-therapy group and dual-therapy group, respectively ( P =0.022). CONCLUSION FOLFOX-based hepatic arterial infusion chemotherapy plus TKI and PD-1 inhibitors significantly improve survival prognosis compared with TKI plus PD-1 inhibitors. This is a potential first-line treatment for high-risk aHCC, with a relatively controlled safety profile.
Collapse
Affiliation(s)
- Mengxuan Zuo
- Department of Minimally Invasive Interventional Therapy, Sun Yat-sen University Cancer Center, Guangzhou
- State Key Laboratory of Oncology in South China, Guangzhou
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou People’s Republic of China
| | - Guanglei Zheng
- Department of Minimally Invasive Interventional Therapy, Sun Yat-sen University Cancer Center, Guangzhou
- State Key Laboratory of Oncology in South China, Guangzhou
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou People’s Republic of China
| | - Yuzhe Cao
- Department of Minimally Invasive Interventional Therapy, Sun Yat-sen University Cancer Center, Guangzhou
- State Key Laboratory of Oncology in South China, Guangzhou
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou People’s Republic of China
| | - Hailei Lu
- Department of Minimally Invasive Interventional Therapy, Sun Yat-sen University Cancer Center, Guangzhou
- State Key Laboratory of Oncology in South China, Guangzhou
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou People’s Republic of China
| | - Da Li
- Department of Minimally Invasive Interventional Therapy, Sun Yat-sen University Cancer Center, Guangzhou
- State Key Laboratory of Oncology in South China, Guangzhou
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou People’s Republic of China
| | - Chao An
- Department of Minimally Invasive Interventional Therapy, Sun Yat-sen University Cancer Center, Guangzhou
- State Key Laboratory of Oncology in South China, Guangzhou
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou People’s Republic of China
| | - Weijun Fan
- Department of Minimally Invasive Interventional Therapy, Sun Yat-sen University Cancer Center, Guangzhou
- State Key Laboratory of Oncology in South China, Guangzhou
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou People’s Republic of China
| |
Collapse
|
10
|
Deng L, Zhang M, Zhu K, Ren J, Zhang P, Zhang Y, Jing M, Han T, Zhang B, Zhou J. Predicting Durable Clinical Benefits of Postoperative Adjuvant Chemotherapy in Non-small Cell Lung Cancer: A Nomogram Based on CT Imaging and Immune Type. Acad Radiol 2025; 32:460-470. [PMID: 39153960 DOI: 10.1016/j.acra.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/29/2024] [Accepted: 07/02/2024] [Indexed: 08/19/2024]
Abstract
PURPOSE To develop a model based on conventional CT signs and the tumor microenvironment immune types (TIMT) to predict the durable clinical benefits (DCB) of postoperative adjuvant chemotherapy in non-small cell lung cancer (NSCLC). METHODS AND MATERIALS A total of 205 patients with NSCLC underwent preoperative CT and were divided into two groups: DCB (progression-free survival (PFS) ≥ 18 months) and non-DCB (NDCB, PFS <18 months). The density percentiles of PD-L1 and CD8 + tumor-infiltrating lymphocytes (TIL) were quantified to estimate the TIMT. Clinical characteristics and conventional CT signs were collected. Multivariate logistic regression was employed to select the most discriminating parameters, construct a predictive model, and visualize the model as a nomogram. Receiver operating characteristic (ROC) curves, calibration curves, and decision curve analysis (DCA) were used to evaluate prediction performance and clinical utility. RESULTS Precisely 118 patients with DCB and 87 with NDCB in NSCLC received postoperative adjuvant chemotherapy. TIMT was statistically different between the DCB and NDCB groups (P < 0.05). Clinical characteristics (neuron-specific enolase, squamous cell carcinoma antigen, Ki-76, and cM stage) and conventional CT signs (spiculation, bubble-like lucency, pleural retraction, maximum diameter, and CT value of the venous phase) varied between the four TIMT groups (P < 0.05). Furthermore, clinical characteristics (lymphocyte count [LYMPH] and cM stage) and conventional CT signs (bubble-like lucency and Pleural effusion) differed between the DCB and NDCB groups (P < 0.05). Multivariate analysis revealed that TIMT, cM stage, LYMPH, and pleural effusion were independently associated with DCB and were used to construct a nomogram. The area under the curve (AUC) of the combined model was 0.70 (95%CI: 0.64-0.76), with sensitivity and specificity of 0.73 and 0.60, respectively. CONCLUSION Conventional CT signs and the TIMT offer a promising approach to predicting clinical outcomes for patients treated with postoperative adjuvant chemotherapy in NSCLC.
Collapse
Affiliation(s)
- Liangna Deng
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou 730000, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou University Second Hospital, Lanzhou 730000, China; Second Clinical School, Lanzhou University, Lanzhou 730000, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou 730000, China
| | - Mingtao Zhang
- Second Clinical School, Lanzhou University, Lanzhou 730000, China; Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730000, China
| | - Kaibo Zhu
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou 730000, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou University Second Hospital, Lanzhou 730000, China; Second Clinical School, Lanzhou University, Lanzhou 730000, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou 730000, China
| | - Jialiang Ren
- Department of Pharmaceuticals Diagnostics, GE HealthCare, Beijing 100176, China
| | - Peng Zhang
- Department of Pathology, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Yuting Zhang
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou 730000, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou University Second Hospital, Lanzhou 730000, China; Second Clinical School, Lanzhou University, Lanzhou 730000, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou 730000, China
| | - Mengyuan Jing
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou 730000, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou University Second Hospital, Lanzhou 730000, China; Second Clinical School, Lanzhou University, Lanzhou 730000, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou 730000, China
| | - Tao Han
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou 730000, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou University Second Hospital, Lanzhou 730000, China; Second Clinical School, Lanzhou University, Lanzhou 730000, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou 730000, China
| | - Bin Zhang
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou 730000, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou University Second Hospital, Lanzhou 730000, China; Second Clinical School, Lanzhou University, Lanzhou 730000, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou 730000, China
| | - Junlin Zhou
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou 730000, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou University Second Hospital, Lanzhou 730000, China; Second Clinical School, Lanzhou University, Lanzhou 730000, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou 730000, China.
| |
Collapse
|
11
|
Orehek S, Ramuta TŽ, Lainšček D, Malenšek Š, Šala M, Benčina M, Jerala R, Hafner-Bratkovič I. Cytokine-armed pyroptosis induces antitumor immunity against diverse types of tumors. Nat Commun 2024; 15:10801. [PMID: 39737979 PMCID: PMC11686184 DOI: 10.1038/s41467-024-55083-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 11/29/2024] [Indexed: 01/01/2025] Open
Abstract
Inflammasomes are defense complexes that utilize cytokines and immunogenic cell death (ICD) to stimulate the immune system against pathogens. Inspired by their dual action, we present cytokine-armed pyroptosis as a strategy for boosting immune response against diverse types of tumors. To induce pyroptosis, we utilize designed tightly regulated gasdermin D variants comprising different pore-forming capabilities and diverse modes of activation, representing a toolbox of ICD inducers. We demonstrate that the electrogenic transfer of ICD effector-encoding plasmids into mouse melanoma tumors when combined with intratumoral expression of cytokines IL-1β, IL-12, or IL-18, enhanced anti-tumor immune responses. Careful selection of immunostimulatory molecules is, however, imperative as a combination of IL-1β and IL-18 antagonized the protective effect of pyroptosis by IFNγ-mediated upregulation of several immunosuppressive pathways. Additionally, we show that the intratumoral introduction of armed pyroptosis provides protection against distant tumors and proves effective across various tumor types without inducing systemic inflammation. Deconstructed inflammasomes thus serve as a powerful, tunable, and tumor-agnostic strategy to enhance antitumor response, even against the most resilient types of tumors.
Collapse
Affiliation(s)
- Sara Orehek
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
- Interdisciplinary Doctoral Study of Biomedicine, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Taja Železnik Ramuta
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Duško Lainšček
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
- EN-FIST Centre of Excellence, Ljubljana, Slovenia
- Centre for the Technologies of Gene and Cell Therapy, National Institute of Chemistry, Ljubljana, Slovenia
| | - Špela Malenšek
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
- Interdisciplinary Doctoral Study of Biomedicine, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Martin Šala
- Department of Analytical Chemistry, National Institute of Chemistry, Ljubljana, Slovenia
| | - Mojca Benčina
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
- Centre for the Technologies of Gene and Cell Therapy, National Institute of Chemistry, Ljubljana, Slovenia
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Roman Jerala
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
- EN-FIST Centre of Excellence, Ljubljana, Slovenia
- Centre for the Technologies of Gene and Cell Therapy, National Institute of Chemistry, Ljubljana, Slovenia
| | - Iva Hafner-Bratkovič
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia.
- EN-FIST Centre of Excellence, Ljubljana, Slovenia.
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
12
|
Tian J, Shi Z, Zhao L, Liu P, Sun X, Long L, Zang J, Xiao J. Revolutionizing NSCLC Treatment: Immunotherapy Strategies for EGFR-TKIs Resistance. THE CLINICAL RESPIRATORY JOURNAL 2024; 18:e70037. [PMID: 39631794 PMCID: PMC11617040 DOI: 10.1111/crj.70037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 11/05/2024] [Accepted: 11/20/2024] [Indexed: 12/07/2024]
Abstract
Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) are the standard treatment choice for advanced non-small cell lung cancer (NSCLC) patients with EGFR mutations. EGFR-TKIs have made significant progress in the treatment of advanced NSCLC patients, but drug resistance issues still inevitably arise. The mechanism of drug resistance and subsequent treatment has been current research challenge and priority. Immune checkpoint inhibitors (ICIs) are a new choice for late-stage NSCLC patients without druggable molecular alterations. Currently, several studies have applied ICIs therapy for NSCLC patients with EGFR-TKIs resistance and explored the potential efficacy of ICIs. This review elaborates on the current status of immunotherapy after EGFR-TKIs resistance, including ICIs monotherapy, combined with EGFR-TKIs, chemotherapy, antiangiogenic drugs, and other therapies.
Collapse
Affiliation(s)
- Jin Tian
- Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital)QingdaoShandongChina
| | - Zhiqi Shi
- The First Clinical College of Shandong University of Traditional Chinese MedicineJinanShandongChina
| | - Lili Zhao
- Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital)QingdaoShandongChina
| | - Peng Liu
- Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital)QingdaoShandongChina
| | - Xiaojun Sun
- Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital)QingdaoShandongChina
| | - Lin Long
- Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital)QingdaoShandongChina
| | - Jianhua Zang
- Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital)QingdaoShandongChina
| | - Jun Xiao
- Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital)QingdaoShandongChina
| |
Collapse
|
13
|
Nagatani Y, Kiyota N, Imamura Y, Koyama T, Funakoshi Y, Komatsu M, Itoh T, Teshima M, Nibu KI, Sakai K, Nishio K, Shimomura M, Nakatsura T, Ikarashi D, Nakayama T, Kitano S, Minami H. Different characteristics of the tumor immune microenvironment among subtypes of salivary gland cancer. Asia Pac J Clin Oncol 2024; 20:779-788. [PMID: 39233454 DOI: 10.1111/ajco.14108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/06/2024]
Abstract
AIM Although immune checkpoint inhibitors (ICPi) for salivary gland cancer (SGC) have been investigated in clinical trials, details of the tumor immune microenvironment (TIME) remain unclear. This research aimed to elucidate the TIME of SGC and its relationship with tumor mutation burden (TMB) and to explore the rationale for the applicability of ICPi. MATERIALS AND METHODS We selected five pathological types, namely adenoid cystic carcinoma (ACC); adenocarcinoma, not otherwise specified (ANOS); salivary duct carcinoma (SDC); and low/high-grade mucoepidermoid carcinoma (MEClow/high). We investigated the TIME and TMB of each pathological type. TIME was evaluated by multiplexed fluorescent immunohistochemistry. TMB was measured by next-generation sequencing. RESULTS ACC and MEChigh showed the lowest and highest infiltration of immune effector and suppressor cells in both tumor and stroma. ANOS, SDC, and MEClow showed modest infiltration of immune effector cells in tumors. Correlation analysis showed a positive correlation between CD3+CD8+ T cells in tumor and TMB (r = 0.647). CD3+CD8+ T cells in tumors showed a positive correlation with programmed cell death-ligand 1 expression in tumor cells (r = 0.513) and a weak positive correlation with CD3+CD4+Foxp3+ cells in tumors (r = 0.399). However, no correlation was observed between CD3+CD8+ T cells and CD204+ cells in tumors (r = -0.049). CONCLUSION The TIME of ACC was the so-called immune desert type, which may explain the mechanisms of the poor response to ICPi in previous clinical trials. On the other hand, MEChigh was the immune-inflamed type, and this may support the rationale of ICPi for this pathological subtype.
Collapse
Affiliation(s)
- Yoshiaki Nagatani
- Department of Medical Oncology and Hematology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Naomi Kiyota
- Department of Medical Oncology and Hematology, Kobe University Graduate School of Medicine, Kobe, Japan
- Kobe University Hospital Cancer Center, Kobe, Japan
| | - Yoshinori Imamura
- Department of Medical Oncology and Hematology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Taiji Koyama
- Department of Medical Oncology and Hematology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yohei Funakoshi
- Department of Medical Oncology and Hematology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Masato Komatsu
- Department of Diagnostic Pathology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tomoo Itoh
- Department of Diagnostic Pathology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Masanori Teshima
- Department of Otorhinolaryngology-Head and Neck Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Ken-Ichi Nibu
- Department of Otorhinolaryngology-Head and Neck Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kazuko Sakai
- Department of Genome Biology, Kindai University Faculty of Medicine, Sayama, Japan
| | - Kazuto Nishio
- Department of Genome Biology, Kindai University Faculty of Medicine, Sayama, Japan
| | - Manami Shimomura
- Division of Cancer Immunotherapy (Kashiwa), Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Tetsuya Nakatsura
- Division of Cancer Immunotherapy (Kashiwa), Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Daiki Ikarashi
- Division of Cancer Immunotherapy (Kashiwa), Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Takayuki Nakayama
- Division of Cancer Immunotherapy (Kashiwa), Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Shigehisa Kitano
- Division of Cancer Immunotherapy Development, Center for Advanced Medical Development, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Hironobu Minami
- Department of Medical Oncology and Hematology, Kobe University Graduate School of Medicine, Kobe, Japan
- Kobe University Hospital Cancer Center, Kobe, Japan
| |
Collapse
|
14
|
Yumoto S, Horiguchi H, Kadomatsu T, Horino T, Sato M, Terada K, Miyata K, Moroishi T, Baba H, Oike Y. Host ANGPTL2 establishes an immunosuppressive tumor microenvironment and resistance to immune checkpoint therapy. Cancer Sci 2024; 115:3846-3858. [PMID: 39321028 PMCID: PMC11611770 DOI: 10.1111/cas.16348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/26/2024] [Accepted: 09/06/2024] [Indexed: 09/27/2024] Open
Abstract
Use of immune checkpoint inhibitors (ICIs) as cancer immunotherapy has advanced rapidly in the clinic; however, mechanisms underlying resistance to ICI therapy, including impaired T cell infiltration, low immunogenicity, and tumor "immunophenotypes" governed by the host, remain unclear. We previously reported that in some cancer contexts, tumor cell-derived angiopoietin-like protein 2 (ANGPTL2) has tumor-promoting functions. Here, we asked whether ANGPTL2 deficiency could enhance antitumor ICI activity in two inflammatory contexts: a murine syngeneic model of colorectal cancer and a mouse model of high-fat diet (HFD)-induced obesity. Systemic ANGPTL2 deficiency potentiated ICI efficacy in the syngeneic model, supporting an immunosuppressive role for host ANGPTL2. Relevant to the mechanism, we found that ANGPTL2 induces pro-inflammatory cytokine production in adipose tissues, driving generation of myeloid-derived suppressor cells (MDSCs) in bone marrow and contributing to an immunosuppressive tumor microenvironment and resistance to ICI therapy. Moreover, HFD-induced obese mice showed impaired responsiveness to ICI treatment, suggesting that obesity-induced chronic inflammation facilitated by high ANGPTL2 expression blocks ICI antitumor effects. Our findings overall provide novel insight into protumor ANGPTL2 functions and illustrate the essential role of the host system in ICI responsiveness.
Collapse
Affiliation(s)
- Shinsei Yumoto
- Department of Molecular Genetics, Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
- Department of Gastroenterological Surgery, Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
| | - Haruki Horiguchi
- Department of Molecular Genetics, Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
- Department of Aging and Geriatric Medicine, Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
| | - Tsuyoshi Kadomatsu
- Department of Molecular Genetics, Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
- Center for Metabolic Regulation of Healthy Aging (CMHA), Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
| | - Taichi Horino
- Department of Molecular Genetics, Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
- Department of Gastroenterological Surgery, Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
| | - Michio Sato
- Department of Molecular Genetics, Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
| | - Kazutoyo Terada
- Department of Molecular Genetics, Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
| | - Keishi Miyata
- Department of Molecular Genetics, Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
| | - Toshiro Moroishi
- Center for Metabolic Regulation of Healthy Aging (CMHA), Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
- Department of Molecular and Medical Pharmacology, Faculty of Life SciencesKumamoto UniversityKumamotoJapan
| | - Hideo Baba
- Department of Gastroenterological Surgery, Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
- Center for Metabolic Regulation of Healthy Aging (CMHA), Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
| | - Yuichi Oike
- Department of Molecular Genetics, Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
- Department of Aging and Geriatric Medicine, Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
- Center for Metabolic Regulation of Healthy Aging (CMHA), Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
| |
Collapse
|
15
|
Mao S, Zhao Y, Xiong H, Gong C. Excavating regulated cell death signatures to predict prognosis, tumor microenvironment and therapeutic response in HR+/HER2- breast cancer. Transl Oncol 2024; 50:102117. [PMID: 39241556 PMCID: PMC11406102 DOI: 10.1016/j.tranon.2024.102117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/25/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024] Open
Abstract
Regulated cell death (RCD) has been documented to have great potentials for discovering novel biomarkers and therapeutic targets in malignancies. But its role and clinical value in HR+/HER2- breast cancer, the most common subtype of breast cancer, are obscure. In this study, we comprehensively explored 12 types of RCD patterns and found extensive mutations and dysregulations of RCD genes in HR+/HER2- breast cancer. A prognostic RCD scoring system (CDScore) based on six critical genes (LEF1, SLC7A11, SFRP1, IGFBP6, CXCL2, STXBP1) was constructed, in which a high CDScore predicts poor prognosis. The expressions and prognostic value of LEF1 and SFRP1were also validated in our tissue microarrays. The nomogram established basing on CDScore, age and TNM stage performed satisfactory in predicting overall survival, with an area under the ROC curve of 0.89, 0.82 and 0.8 in predicting 1-year, 3-year and 5-year overall survival rates, respectively. Furthermore, CDScore was identified to be correlated with tumor microenvironments and immune checkpoints by excavation of bulk and single-cell sequencing data. Patients in CDScore high group might be resistant to standard chemotherapy and target therapy. Our results underlined the potential effects and importance of RCD in HR+/HER2- breast cancer and provided novel biomarkers and therapeutic targets for HR+/HER2- breast cancer patients.
Collapse
Affiliation(s)
- Shuangshuang Mao
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Yuanyuan Zhao
- Department of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Huihua Xiong
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Chen Gong
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| |
Collapse
|
16
|
Xie X, Yang M, Wei X, Chu H, Zhao W, Shen N. Dual immunostimulatory CD73 antibody-polymeric cytotoxic drug complex for triple negative breast cancer therapy. Acta Biomater 2024; 189:532-544. [PMID: 39341438 DOI: 10.1016/j.actbio.2024.09.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 08/30/2024] [Accepted: 09/18/2024] [Indexed: 10/01/2024]
Abstract
Treatment of triple-negative breast cancer (TNBC) poses significant challenges due to its propensity for metastasis. A key impediment lies in the suppressive immune microenvironment, which fosters tumor progression. This study introduces an approach employing a dual immune-stimulatory CD73 antibody-polymeric cytotoxic drug complex (αCD73-PLG-MMAE). This complex is designed for targeted eradication of TNBC while modulating tumor immunity through mechanisms such as immunogenic cell death (ICD) and interference with the adenosine signaling pathway. By enhancing antitumor immune responses, this strategy offers a highly effective means of treating TNBC and mitigating metastasis. The complex is synthesized by combining αCD73 with poly(L-glutamic acid) (PLG) grafted Fc binding peptides (Fc-III-4C) and Val-Cit-PAB-monomethyl auristatin E (MMAE), exploiting the affinity between αCD73 and Fc-III-4C. αCD73 selectively targets CD73 molecules on both tumor and immune suppressive cells, thereby inhibiting the adenosine pathway. Meanwhile, Val-Cit-PAB-MMAE, activated by cathepsin B, triggers selective release of MMAE, inducing ICD in tumor cells. In a 4T1 tumor model, αCD73-PLG-MMAE significantly enhances drug accumulation in tumors by 4.13-fold compared to IgG-PLG-MMAE, leading to suppression of tumor growth and metastasis. Furthermore, it synergistically augments the antitumor effects of αPD-1, resulting in a tumor inhibition rate of 92 % as compared to 21 % with αPD-1 alone. This study thus presents a pioneering therapeutic strategy for TNBC, emphasizing the potential of targeted immunomodulation in cancer treatment. STATEMENT OF SIGNIFICANCE: Antibody-drug conjugate (ADC) therapy holds promise for treating triple-negative breast cancer (TNBC). However, the current ADC, sacituzumab govitecan, fails to overcome the crucial role of adenosine in the suppressive immune microenvironment characteristic of this "cold tumor". Here, we present a dual immune-stimulatory complex, αCD73-PLG-MMAE, which targets TNBC specifically and modulates tumor immunity through mechanisms such as immunogenic cell death (ICD) and interference with the adenosine signaling pathway. Thus, it kills tumor cells with cytotoxic drugs, comprehensively regulates immunosuppression, and restores a durable immune response. This study proposes an antibody-polymeric drug complex with immunomodulatory and immunoagonist roles, offering new insights into TNBC treatment.
Collapse
Affiliation(s)
- Xiao Xie
- Department of Breast Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin 130061, China
| | - Ming Yang
- Department of Breast Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin 130061, China.
| | - Xue Wei
- Department of Breast Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin 130061, China
| | - Hongyu Chu
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, China
| | - Weidong Zhao
- Key Laboratory of Polymer Ecomaterials, Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Na Shen
- Key Laboratory of Polymer Ecomaterials, Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.
| |
Collapse
|
17
|
Yu J, Park R, Tojjari A, Sadeghipour A, Saeed A, Saeed A. Zanzalintinib (XL092): a next-generation tyrosine kinase inhibitor-comprehensive review of early safety & efficacy data. Expert Opin Investig Drugs 2024; 33:887-895. [PMID: 39099411 DOI: 10.1080/13543784.2024.2388571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 07/02/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024]
Abstract
INTRODUCTION Zanzalintinib (XL092) is a next-generation anti-VEGFR-related multi-targeted TKI that exhibits immunomodulatory effects. AREAS COVERED This review explores preclinical and clinical data, along with the future directions associated with zanzalintinib and its combination with immune checkpoint inhibitors (ICIs). EXPERT OPINION In addition to its anti-VEGFR activity, zanzalintinib demonstrates potential synergistic effects with ICIs through its immunomodulatory impact, attributed to its inhibition of MET and TAM kinases. Recent preclinical studies provide compelling evidence supporting this synergistic potential. Furthermore, a recent phase 1 dose escalation study confirmed the tolerability of the zanzalintinib and anti-PDL1 combination without major safety concerns.Multiple ongoing clinical trials are investigating the combination of zanzalintinib and ICIs across various solid tumor types, including phase 3 studies for renal cell carcinoma, colorectal, and head and neck cancer. These trials aim to elucidate the therapeutic role of this new-generation TKI and ICI combination.However, the identification of reliable predictive biomarkers for the zanzalintinib and ICI combination presents significant challenges. Given the intricate nature of their mechanistic rationale and the difficulties in identifying reliable biomarkers for combined anti-angiogenesis and ICI therapies, addressing this challenge remains a priority for ongoing and future research.
Collapse
Affiliation(s)
- James Yu
- Division of Hematology and Medical Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Robin Park
- Division of Hematology and Medical Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Alireza Tojjari
- Department of Medicine, Division of Hematology and Oncology, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Arezoo Sadeghipour
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modarres University, Tehran, Iran
| | - Ali Saeed
- Department of Medicine, Ochsner Lafayette General Medical Center, Lafayette, LA, USA
| | - Anwaar Saeed
- Department of Medicine, Division of Hematology and Oncology, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
18
|
Wang FY, Yang LM, Xiong XL, Yang J, Yang Y, Tang JQ, Gao L, Lu Y, Wang Y, Zou T, Liang H, Huang KB. Rhodium(III) Complex Noncanonically Potentiates Antitumor Immune Responses by Inhibiting Wnt/β-Catenin Signaling. J Med Chem 2024; 67:13778-13787. [PMID: 39134504 DOI: 10.1021/acs.jmedchem.4c00583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Metal-based chemoimmunotherapy has recently garnered significant attention for its capacity to stimulate tumor-specific immunity beyond direct cytotoxic effects. Such effects are usually caused by ICD via the activation of DAMP signals. However, metal complexes that can elicit antitumor immune responses other than ICD have not yet been described. Herein, we report that a rhodium complex (Rh-1) triggers potent antitumor immune responses by downregulating Wnt/β-catenin signaling with subsequent activation of T lymphocyte infiltration to the tumor site. The results of mechanistic experiments suggest that ROS accumulation following Rh-1 treatment is a critical trigger of a decrease in β-catenin and enhanced secretion of CCL4, a key mediator of T cell infiltration. Through these properties, Rh-1 exerts a synergistic effect in combination with PD-1 inhibitors against tumor growth in vivo. Taken together, our work describes a promising metal-based antitumor agent with a noncanonical mode of action to sensitize tumor tissues to ICB therapy.
Collapse
Affiliation(s)
- Feng-Yang Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Liang-Mei Yang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Xiao-Lin Xiong
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Science, Sun Yat-Sen University, Guangzhou 510006, China
| | - Jing Yang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Yan Yang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Science, Sun Yat-Sen University, Guangzhou 510006, China
| | - Jiu-Qin Tang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Lei Gao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Yuan Lu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Yuan Wang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Science, Sun Yat-Sen University, Guangzhou 510006, China
| | - Taotao Zou
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Science, Sun Yat-Sen University, Guangzhou 510006, China
| | - Hong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Ke-Bin Huang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| |
Collapse
|
19
|
Su X, Li J, Xu X, Ye Y, Wang C, Pang G, Liu W, Liu A, Zhao C, Hao X. Strategies to enhance the therapeutic efficacy of anti-PD-1 antibody, anti-PD-L1 antibody and anti-CTLA-4 antibody in cancer therapy. J Transl Med 2024; 22:751. [PMID: 39123227 PMCID: PMC11316358 DOI: 10.1186/s12967-024-05552-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Although immune checkpoint inhibitors (anti-PD-1 antibody, anti-PD-L1 antibody, and anti-CTLA-4 antibody) have displayed considerable success in the treatment of malignant tumors, the therapeutic effect is still unsatisfactory for a portion of patients. Therefore, it is imperative to develop strategies to enhance the effect of these ICIs. Increasing evidence strongly suggests that the key to this issue is to transform the tumor immune microenvironment from a state of no or low immune infiltration to a state of high immune infiltration and enhance the tumor cell-killing effect of T cells. Therefore, some combination strategies have been proposed and this review appraise a summary of 39 strategies aiming at enhancing the effectiveness of ICIs, which comprise combining 10 clinical approaches and 29 foundational research strategies. Moreover, this review improves the comprehensive understanding of combination therapy with ICIs and inspires novel ideas for tumor immunotherapy.
Collapse
Affiliation(s)
- Xin Su
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Jian Li
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Xiao Xu
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Youbao Ye
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Cailiu Wang
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Guanglong Pang
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Wenxiu Liu
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Ang Liu
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Changchun Zhao
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Xiangyong Hao
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China.
| |
Collapse
|
20
|
Han AX, Long BY, Li CY, Huang DD, Xiong EQ, Li FJ, Wu GL, Liu Q, Yang GB, Hu HY. Machine learning framework develops neutrophil extracellular traps model for clinical outcome and immunotherapy response in lung adenocarcinoma. Apoptosis 2024; 29:1090-1108. [PMID: 38519636 DOI: 10.1007/s10495-024-01947-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2024] [Indexed: 03/25/2024]
Abstract
Neutrophil extracellular traps (NETs) are novel inflammatory cell death in neutrophils. Emerging studies demonstrated NETs contributed to cancer progression and metastases in multiple ways. This study intends to provide a prognostic NETs signature and therapeutic target for lung adenocarcinoma (LUAD) patients. Consensus cluster analysis performed by 38 reported NET-related genes in TCGA-LUAD cohorts. Then, WGCNA network was conducted to investigate characteristics genes in clusters. Seven machine learning algorithms were assessed for training of the model, the optimal model was picked by C-index and 1-, 3-, 5-year ROC value. Then, we constructed a NETs signature to predict the overall survival of LUAD patients. Moreover, multi-omics validation was performed based on NETs signature. Finally, we constructed stable knockdown critical gene LUAD cell lines to verify biological functions of Phospholipid Scramblase 1 (PLSCR1) in vitro and in vivo. Two NETs-related clusters were identified in LUAD patients. Among them, C2 cluster was provided as "hot" tumor phenotype and exhibited a better prognosis. Then, WGCNA network identified 643 characteristic genes in C2 cluster. Then, Coxboost algorithm proved its optimal performance and provided a prognostic NETs signature. Multi-omics revealed that NETs signature was involved in an immunosuppressive microenvironment and predicted immunotherapy efficacy. In vitro and in vivo experiments demonstrated that knockdown of PLSCR1 inhibited tumor growth and EMT ability. Besides, cocultural assay indicated that the knockdown of PLSCR1 impaired the ability of neutrophils to generate NETs. Finally, tissue microarray (TMA) for LUAD patients verified the prognostic value of PLSCR1 expression. In this study, we focus on emerging hot topic NETs in LUAD. We provide a prognostic NETs signature and identify PLSCR1 with multiple roles in LUAD. This work can contribute to risk stratification and screen novel therapeutic targets for LUAD patients.
Collapse
Affiliation(s)
- A Xuan Han
- Department of General Surgery, Aerospace Central Hospital, 15 Yuquan Road, Haidian District, Beijing, China
| | - B Yaping Long
- Department of Medical Oncology, Senior Department of Oncology, Fengtai District, The Fifth Medical Center of PLA General Hospital, No. 100, West Fourth Ring Middle Road, Beijing, 100039, China
- School of Medicine, Nankai University, Nankai District, 94 Weijin Road, Tianjin, 300071, China
| | - C Yao Li
- Department of Medical Oncology, Senior Department of Oncology, Fengtai District, The Fifth Medical Center of PLA General Hospital, No. 100, West Fourth Ring Middle Road, Beijing, 100039, China
- Medical School of Chinese People's Liberation Army (PLA), Haidian District, 28 Fuxing Road, Beijing, 100853, People's Republic of China
| | - D Di Huang
- Department of Medical Oncology, Senior Department of Oncology, Fengtai District, The Fifth Medical Center of PLA General Hospital, No. 100, West Fourth Ring Middle Road, Beijing, 100039, China
| | - E Qi Xiong
- Department of Medical Oncology, Senior Department of Oncology, Fengtai District, The Fifth Medical Center of PLA General Hospital, No. 100, West Fourth Ring Middle Road, Beijing, 100039, China
| | - F Jinfeng Li
- Institute of Oncology, The First Medical Center of Chinese, PLA General Hospital, Beijing, 100853, China
| | - G Liangliang Wu
- Institute of Oncology, The First Medical Center of Chinese, PLA General Hospital, Beijing, 100853, China
| | - Qiaowei Liu
- Department of Medical Oncology, Senior Department of Oncology, Fengtai District, The Fifth Medical Center of PLA General Hospital, No. 100, West Fourth Ring Middle Road, Beijing, 100039, China.
- Department of Emergency, Senior Department of Oncology, The Fifth Medical Center of PLA General Hospital, 8 Dongdajie Road, Fengtai District, Beijing, 100071, China.
| | - G Bo Yang
- Department of Medical Oncology, Senior Department of Oncology, Fengtai District, The Fifth Medical Center of PLA General Hospital, No. 100, West Fourth Ring Middle Road, Beijing, 100039, China.
| | - H Yi Hu
- Department of Medical Oncology, Senior Department of Oncology, Fengtai District, The Fifth Medical Center of PLA General Hospital, No. 100, West Fourth Ring Middle Road, Beijing, 100039, China.
- School of Medicine, Nankai University, Nankai District, 94 Weijin Road, Tianjin, 300071, China.
- Medical School of Chinese People's Liberation Army (PLA), Haidian District, 28 Fuxing Road, Beijing, 100853, People's Republic of China.
- Institute of Oncology, The First Medical Center of Chinese, PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
21
|
Peng B, Lin Y, Yi G, Lin M, Xiao Y, Qiu Y, Yao W, Zhou X, Liu Z. Comprehensive landscape of m6A regulator-related gene patterns and tumor microenvironment infiltration characterization in gastric cancer. Sci Rep 2024; 14:16404. [PMID: 39013954 PMCID: PMC11252343 DOI: 10.1038/s41598-024-66744-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 07/03/2024] [Indexed: 07/18/2024] Open
Abstract
The epigenetic regulation of N6-methyladenosine (m6A) has attracted considerable interest in tumor research, but the potential roles of m6A regulator-related genes, remain largely unknown within the context of gastric cancer (GC) and tumor microenvironment (TME). Here, a comprehensive strategy of data mining and computational biology utilizing multiple datasets based on 28 m6A regulators (including novel anti-readers) was employed to identify m6A regulator-related genes and patterns and elucidate their underlying mechanisms in GC. Subsequently, a scoring system was constructed to evaluate individual prognosis and immunotherapy response. Three distinct m6A regulator-related patterns were identified through the unsupervised clustering of 56 m6A regulator-related genes (all significantly associated with GC prognosis). TME characterization revealed that these patterns highly corresponded to immune-inflamed, immune-excluded, and immune-desert phenotypes, and their TME characteristics were highly consistent with different clinical outcomes and biological processes. Additionally, an m6A-related scoring system was developed to quantify the m6A modification pattern of individual samples. Low scores indicated high survival rates and high levels of immune activation, whereas high scores indicated stromal activation and tumor malignancy. Furthermore, the m6A-related scores were correlated with tumor mutation loads and various clinical traits, including molecular or histological subtypes and clinical stage or grade, and the score had predictive values across all digestive system tumors and even in all tumor types. Notably, a low score was linked to improved responses to anti-PD-1/L1 and anti-CTLA4 immunotherapy in three independent cohorts. This study has expanded the important role of m6A regulator-related genes in shaping TME diversity and clinical/biological traits of GC. The developed scoring system could help develop more effective immunotherapy strategies and personalized treatment guidance.
Collapse
Affiliation(s)
- Bin Peng
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, State Key Laboratory of Respiratory Disease, The Fifth Affiliated Hospital, Guangzhou Medical University, The Fifth Clinical College of Guangzhou Medical University, Guangzhou, China
| | - Yinglin Lin
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, State Key Laboratory of Respiratory Disease, The Fifth Affiliated Hospital, Guangzhou Medical University, The Fifth Clinical College of Guangzhou Medical University, Guangzhou, China
| | - Gao Yi
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, State Key Laboratory of Respiratory Disease, The Fifth Affiliated Hospital, Guangzhou Medical University, The Fifth Clinical College of Guangzhou Medical University, Guangzhou, China
| | - Mingzhen Lin
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, State Key Laboratory of Respiratory Disease, The Fifth Affiliated Hospital, Guangzhou Medical University, The Fifth Clinical College of Guangzhou Medical University, Guangzhou, China
| | - Yao Xiao
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, State Key Laboratory of Respiratory Disease, The Fifth Affiliated Hospital, Guangzhou Medical University, The Fifth Clinical College of Guangzhou Medical University, Guangzhou, China
| | - Yezhenghong Qiu
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, State Key Laboratory of Respiratory Disease, The Fifth Affiliated Hospital, Guangzhou Medical University, The Fifth Clinical College of Guangzhou Medical University, Guangzhou, China
| | - Wenxia Yao
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, State Key Laboratory of Respiratory Disease, The Fifth Affiliated Hospital, Guangzhou Medical University, The Fifth Clinical College of Guangzhou Medical University, Guangzhou, China.
| | - Xinke Zhou
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, State Key Laboratory of Respiratory Disease, The Fifth Affiliated Hospital, Guangzhou Medical University, The Fifth Clinical College of Guangzhou Medical University, Guangzhou, China.
| | - Zhaoyu Liu
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, State Key Laboratory of Respiratory Disease, The Fifth Affiliated Hospital, Guangzhou Medical University, The Fifth Clinical College of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
22
|
Wang Z, Zhao Y, Wo Y, Peng Y, Hu W, Wu Z, Liu P, Shang Y, Liu C, Chen X, Huang K, Chen Y, Hong H, Li F, Sun Y. The single cell immunogenomic landscape after neoadjuvant immunotherapy combined chemotherapy in esophageal squamous cell carcinoma. Cancer Lett 2024; 593:216951. [PMID: 38734159 DOI: 10.1016/j.canlet.2024.216951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 04/19/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024]
Abstract
Neoadjuvant immunotherapy represents promising strategy in the treatment of esophageal squamous cell carcinoma (ESCC). However, the mechanisms underlying its impact on treatment sensitivity or resistance remain a subject of controversy. In this study, we conducted single-cell RNA and T/B cell receptor (scTCR/scBCR) sequencing of CD45+ immune cells on samples from 10 patients who received neoadjuvant immunotherapy and chemotherapy. We also validated our findings using multiplexed immunofluorescence and analyzed bulk RNA-seq from other cohorts in public database. By integrating analysis of 87357 CD45+ cells, we found GZMK + effector memory T cells (Tem) were relatively enriched and CXCL13+ exhausted T cells (Tex) and regulator T cells (Treg) decreased among responders, indicating a persistent anti-tumor memory process. Additionally, the enhanced presence of BCR expansion and somatic hypermutation process within TNFRSF13B + memory B cells (Bmem) suggested their roles in antigen presentation. This was further corroborated by the evidence of the T-B co-stimulation pattern and CXCL13-CXCR5 axis. The complexity of myeloid cell heterogeneity was also particularly pronounced. The elevated expression of S100A7 in ESCC, as detected by bulk RNA-seq, was associated with an exhausted and immunosuppressive tumor microenvironment. In summary, this study has unveiled a potential regulatory network among immune cells and the clonal dynamics of their functions, and the mechanisms of exhaustion and memory conversion between GZMK + Tem and TNFRSF13B + Bmem from antigen presentation and co-stimulation perspectives during neoadjuvant PD-1 blockade treatment in ESCC.
Collapse
MESH Headings
- Humans
- Neoadjuvant Therapy/methods
- Esophageal Squamous Cell Carcinoma/immunology
- Esophageal Squamous Cell Carcinoma/genetics
- Esophageal Squamous Cell Carcinoma/therapy
- Esophageal Squamous Cell Carcinoma/drug therapy
- Esophageal Squamous Cell Carcinoma/pathology
- Esophageal Neoplasms/immunology
- Esophageal Neoplasms/genetics
- Esophageal Neoplasms/therapy
- Esophageal Neoplasms/drug therapy
- Esophageal Neoplasms/pathology
- Immunotherapy/methods
- Single-Cell Analysis/methods
- Female
- Male
- Tumor Microenvironment/immunology
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Chemokine CXCL13/genetics
- Chemokine CXCL13/metabolism
- Middle Aged
- Aged
- Memory T Cells/immunology
- Memory T Cells/metabolism
- Leukocyte Common Antigens/metabolism
- Leukocyte Common Antigens/genetics
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/drug effects
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/metabolism
- Receptors, Antigen, B-Cell/immunology
- Receptors, CXCR5/metabolism
- Receptors, CXCR5/genetics
Collapse
Affiliation(s)
- Zheyi Wang
- Department of Thoracic Surgery and State Key Laboratory of Genetic Engineering, Fudan University Shanghai Cancer Center, Shanghai, China; Institute of Thoracic Oncology, Fudan University, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yue Zhao
- Department of Thoracic Surgery and State Key Laboratory of Genetic Engineering, Fudan University Shanghai Cancer Center, Shanghai, China; Institute of Thoracic Oncology, Fudan University, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yang Wo
- Department of Thoracic Surgery and State Key Laboratory of Genetic Engineering, Fudan University Shanghai Cancer Center, Shanghai, China; Institute of Thoracic Oncology, Fudan University, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yizhou Peng
- Department of Thoracic Surgery and State Key Laboratory of Genetic Engineering, Fudan University Shanghai Cancer Center, Shanghai, China; Institute of Thoracic Oncology, Fudan University, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Weilei Hu
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou, China; State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Zhigang Wu
- Department of Thoracic Surgery and State Key Laboratory of Genetic Engineering, Fudan University Shanghai Cancer Center, Shanghai, China; Institute of Thoracic Oncology, Fudan University, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Pengcheng Liu
- Department of Thoracic Surgery and State Key Laboratory of Genetic Engineering, Fudan University Shanghai Cancer Center, Shanghai, China; Institute of Thoracic Oncology, Fudan University, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yan Shang
- Department of Thoracic Surgery and State Key Laboratory of Genetic Engineering, Fudan University Shanghai Cancer Center, Shanghai, China; Institute of Thoracic Oncology, Fudan University, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chunnan Liu
- Department of Thoracic Surgery and State Key Laboratory of Genetic Engineering, Fudan University Shanghai Cancer Center, Shanghai, China; Institute of Thoracic Oncology, Fudan University, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiao Chen
- Department of Thoracic Surgery and State Key Laboratory of Genetic Engineering, Fudan University Shanghai Cancer Center, Shanghai, China; Institute of Thoracic Oncology, Fudan University, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Kan Huang
- Department of Thoracic Surgery and State Key Laboratory of Genetic Engineering, Fudan University Shanghai Cancer Center, Shanghai, China; Institute of Thoracic Oncology, Fudan University, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yuting Chen
- Department of Thoracic Surgery and State Key Laboratory of Genetic Engineering, Fudan University Shanghai Cancer Center, Shanghai, China; Institute of Thoracic Oncology, Fudan University, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hui Hong
- Department of Thoracic Surgery and State Key Laboratory of Genetic Engineering, Fudan University Shanghai Cancer Center, Shanghai, China; Institute of Thoracic Oncology, Fudan University, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fei Li
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, China.
| | - Yihua Sun
- Department of Thoracic Surgery and State Key Laboratory of Genetic Engineering, Fudan University Shanghai Cancer Center, Shanghai, China; Institute of Thoracic Oncology, Fudan University, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
23
|
Bi S, Zhu J, Huang L, Feng W, Peng L, Leng L, Wang Y, Shan P, Kong W, Zhu S. Comprehensive Analysis of the Function and Prognostic Value of TAS2Rs Family-Related Genes in Colon Cancer. Int J Mol Sci 2024; 25:6849. [PMID: 38999959 PMCID: PMC11241446 DOI: 10.3390/ijms25136849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/09/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024] Open
Abstract
In the realm of colon carcinoma, significant genetic and epigenetic diversity is observed, underscoring the necessity for tailored prognostic features that can guide personalized therapeutic strategies. In this study, we explored the association between the type 2 bitter taste receptor (TAS2Rs) family-related genes and colon cancer using RNA-sequencing and clinical datasets from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO). Our preliminary analysis identified seven TAS2Rs genes associated with survival using univariate Cox regression analysis, all of which were observed to be overexpressed in colon cancer. Subsequently, based on these seven TAS2Rs prognostic genes, two colon cancer molecular subtypes (Cluster A and Cluster B) were defined. These subtypes exhibited distinct prognostic and immune characteristics, with Cluster A characterized by low immune cell infiltration and less favorable outcomes, while Cluster B was associated with high immune cell infiltration and better prognosis. Finally, we developed a robust scoring system using a gradient boosting machine (GBM) approach, integrated with the gene-pairing method, to predict the prognosis of colon cancer patients. This machine learning model could improve our predictive accuracy for colon cancer outcomes, underscoring its value in the precision oncology framework.
Collapse
Affiliation(s)
- Suzhen Bi
- Institute of Translational Medicine, College of Medicine, Qingdao University, Qingdao 266021, China; (S.B.); (L.H.); (W.F.); (L.P.); (L.L.); (Y.W.); (P.S.)
| | - Jie Zhu
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, 00014 Helsinki, Finland;
| | - Liting Huang
- Institute of Translational Medicine, College of Medicine, Qingdao University, Qingdao 266021, China; (S.B.); (L.H.); (W.F.); (L.P.); (L.L.); (Y.W.); (P.S.)
| | - Wanting Feng
- Institute of Translational Medicine, College of Medicine, Qingdao University, Qingdao 266021, China; (S.B.); (L.H.); (W.F.); (L.P.); (L.L.); (Y.W.); (P.S.)
| | - Lulu Peng
- Institute of Translational Medicine, College of Medicine, Qingdao University, Qingdao 266021, China; (S.B.); (L.H.); (W.F.); (L.P.); (L.L.); (Y.W.); (P.S.)
| | - Liangqi Leng
- Institute of Translational Medicine, College of Medicine, Qingdao University, Qingdao 266021, China; (S.B.); (L.H.); (W.F.); (L.P.); (L.L.); (Y.W.); (P.S.)
| | - Yin Wang
- Institute of Translational Medicine, College of Medicine, Qingdao University, Qingdao 266021, China; (S.B.); (L.H.); (W.F.); (L.P.); (L.L.); (Y.W.); (P.S.)
| | - Peipei Shan
- Institute of Translational Medicine, College of Medicine, Qingdao University, Qingdao 266021, China; (S.B.); (L.H.); (W.F.); (L.P.); (L.L.); (Y.W.); (P.S.)
| | - Weikaixin Kong
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, 00014 Helsinki, Finland;
| | - Sujie Zhu
- Institute of Translational Medicine, College of Medicine, Qingdao University, Qingdao 266021, China; (S.B.); (L.H.); (W.F.); (L.P.); (L.L.); (Y.W.); (P.S.)
| |
Collapse
|
24
|
Moaveni AK, Amiri M, Shademan B, Farhadi A, Behroozi J, Nourazarian A. Advances and challenges in gene therapy strategies for pediatric cancer: a comprehensive update. Front Mol Biosci 2024; 11:1382190. [PMID: 38836106 PMCID: PMC11149429 DOI: 10.3389/fmolb.2024.1382190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/27/2024] [Indexed: 06/06/2024] Open
Abstract
Pediatric cancers represent a tragic but also promising area for gene therapy. Although conventional treatments have improved survival rates, there is still a need for targeted and less toxic interventions. This article critically analyzes recent advances in gene therapy for pediatric malignancies and discusses the challenges that remain. We explore the innovative vectors and delivery systems that have emerged, such as adeno-associated viruses and non-viral platforms, which show promise in addressing the unique pathophysiology of pediatric tumors. Specifically, we examine the field of chimeric antigen receptor (CAR) T-cell therapies and their adaptation for solid tumors, which historically have been more challenging to treat than hematologic malignancies. We also discuss the genetic and epigenetic complexities inherent to pediatric cancers, such as tumor heterogeneity and the dynamic tumor microenvironment, which pose significant hurdles for gene therapy. Ethical considerations specific to pediatric populations, including consent and long-term follow-up, are also analyzed. Additionally, we scrutinize the translation of research from preclinical models that often fail to mimic pediatric cancer biology to the regulatory landscapes that can either support or hinder innovation. In summary, this article provides an up-to-date overview of gene therapy in pediatric oncology, highlighting both the rapid scientific progress and the substantial obstacles that need to be addressed. Through this lens, we propose a roadmap for future research that prioritizes the safety, efficacy, and complex ethical considerations involved in treating pediatric patients. Our ultimate goal is to move from incremental advancements to transformative therapies.
Collapse
Affiliation(s)
- Amir Kian Moaveni
- Pediatric Urology and Regenerative Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Amiri
- Pediatric Urology and Regenerative Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Behrouz Shademan
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Arezoo Farhadi
- Department of Genetics and Molecular Medicine, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Javad Behroozi
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Alireza Nourazarian
- Department of Basic Medical Sciences, Khoy University of Medical Sciences, Khoy, Iran
| |
Collapse
|
25
|
Wang F, Chen P, Ouyang S, Xiong K, Liu Z, Wang Y. Identification of prognostic m6A modification patterns and score system in melanoma patients. Medicine (Baltimore) 2024; 103:e37950. [PMID: 38669381 PMCID: PMC11049698 DOI: 10.1097/md.0000000000037950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/29/2024] [Indexed: 04/28/2024] Open
Abstract
N6-methyladenosine (m6A) is the most common modification on RNAs and LncRNAs. It plays an important role in cancer stem cell differentiation, T cell differentiation, and immune homeostasis. In this study, we explored the potential roles of m6A modification of RNA in melanoma and investigated the immune cell infiltration in tumor microenvironment in diverse m6Aclusters and different m6Ascore groups. A consensus clustering algorithm determined m6A modification patterns based on 14 m6A regulators, and further explored the biological functions and the connection with TME. An m6A-related gene signature (m6Ascore) was constructed based on m6A-related genes using principal component analysis. Three m6A modification patterns were identified based on 14 m6A regulators, named as m6Aclusters A-C. The prognosis of m6Acluster A was more favorable than m6Aclusters B and C, and it was more closely associated with immune regulation. To quantify the m6A modification patterns of individual tumor, an m6Ascore was constructed, and patients were classified into high and low m6Ascore groups. The low m6Ascore group, which had a favorable prognosis, was more relevant to immunology. The expression of PD-L1 was higher and the immunophenoscore (IPS) revealed stronger response to immunotherapy in the low m6Ascore group. This study identified 3 m6A modification patterns with different immune characteristics and constructed an m6Ascore system to predict prognosis and immunogenicity of patients, which is conducive to clinical prognosis judgment and individual treatment.
Collapse
Affiliation(s)
- Feixiang Wang
- Medical Oncology Department, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangdong, Guangzhou, China
| | - Peijie Chen
- Medical Oncology Department, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangdong, Guangzhou, China
| | - Si Ouyang
- Medical Oncology Department, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangdong, Guangzhou, China
| | - Kaixin Xiong
- Medical Oncology Department, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangdong, Guangzhou, China
| | - Zichuan Liu
- Medical Oncology Department, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangdong, Guangzhou, China
| | - Yao Wang
- Medical Oncology Department, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangdong, Guangzhou, China
| |
Collapse
|
26
|
Zhang Y, Xi K, Zhang Y, Fang Z, Zhang Y, Zhao K, Feng F, Shen J, Wang M, Zhang R, Cheng B, Geng H, Li X, Huang B, Wang KN, Ni S. Blood-Brain Barrier Penetrating Nanovehicles for Interfering with Mitochondrial Electron Flow in Glioblastoma. ACS NANO 2024; 18:9511-9524. [PMID: 38499440 DOI: 10.1021/acsnano.3c12434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Glioblastoma multiforme (GBM) is the most aggressive and lethal form of human brain tumors. Dismantling the suppressed immune microenvironment is an effective therapeutic strategy against GBM; however, GBM does not respond to exogenous immunotherapeutic agents due to low immunogenicity. Manipulating the mitochondrial electron transport chain (ETC) elevates the immunogenicity of GBM, rendering previously immune-evasive tumors highly susceptible to immune surveillance, thereby enhancing tumor immune responsiveness and subsequently activating both innate and adaptive immunity. Here, we report a nanomedicine-based immunotherapeutic approach that targets the mitochondria in GBM cells by utilizing a Trojan-inspired nanovector (ABBPN) that can cross the blood-brain barrier. We propose that the synthetic photosensitizer IrPS can alter mitochondrial electron flow and concurrently interfere with mitochondrial antioxidative mechanisms by delivering si-OGG1 to GBM cells. Our synthesized ABBPN coloaded with IrPS and si-OGG1 (ISA) disrupts mitochondrial electron flow, which inhibits ATP production and induces mitochondrial DNA oxidation, thereby recruiting immune cells and endogenously activating intracranial antitumor immune responses. The results of our study indicate that strategies targeting the mitochondrial ETC have the potential to treat tumors with limited immunogenicity.
Collapse
Affiliation(s)
- Yulin Zhang
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan 250012, Shandong, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan 250117, Shandong, China
| | - Kaiyan Xi
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan 250012, Shandong, China
- Department of Pediatrics, Qilu hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan 250012, Shandong, China
| | - Yuying Zhang
- Department of Obstetrics, The Second Hospital, Cheeloo College of Medicine, Shandong University, No. 247 Beiyuan Road, Jinan 250033, Shandong, China
| | - Zezheng Fang
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan 250012, Shandong, China
| | - Yi Zhang
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan 250012, Shandong, China
| | - Kaijie Zhao
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan 250012, Shandong, China
| | - Fan Feng
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan 250012, Shandong, China
| | - Jianyu Shen
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan 250012, Shandong, China
| | - Mingrui Wang
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan 250012, Shandong, China
| | - Runlu Zhang
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan 250012, Shandong, China
| | - Bo Cheng
- Department of Radiation Oncology, Qilu hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan 250012, Shandong, China
| | - Huimin Geng
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan 250012, Shandong, China
| | - Xingang Li
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan 250012, Shandong, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan 250117, Shandong, China
| | - Bin Huang
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan 250012, Shandong, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan 250117, Shandong, China
| | - Kang-Nan Wang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, Shandong, China
| | - Shilei Ni
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan 250012, Shandong, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan 250117, Shandong, China
| |
Collapse
|
27
|
Ouyang W, Peng Q, Lai Z, Huang H, Huang Z, Xie X, Lin R, Wang Z, Yao H, Yu Y. Synergistic role of activated CD4 + memory T cells and CXCL13 in augmenting cancer immunotherapy efficacy. Heliyon 2024; 10:e27151. [PMID: 38495207 PMCID: PMC10943356 DOI: 10.1016/j.heliyon.2024.e27151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 02/13/2024] [Accepted: 02/26/2024] [Indexed: 03/19/2024] Open
Abstract
The development of immune checkpoint inhibitors (ICIs) has significantly advanced cancer treatment. However, their efficacy is not consistent across all patients, underscoring the need for personalized approaches. In this study, we examined the relationship between activated CD4+ memory T cell expression and ICI responsiveness. A notable correlation was observed between increased activated CD4+ memory T cell expression and better patient survival in various cohorts. Additionally, the chemokine CXCL13 was identified as a potential prognostic biomarker, with higher expression levels associated with improved outcomes. Further analysis highlighted CXCL13's role in influencing the Tumor Microenvironment, emphasizing its relevance in tumor immunity. Using these findings, we developed a deep learning model by the Multi-Layer Aggregation Graph Neural Network method. This model exhibited promise in predicting ICI treatment efficacy, suggesting its potential application in clinical practice.
Collapse
Affiliation(s)
- Wenhao Ouyang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Medicine Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qing Peng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Medicine Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zijia Lai
- Clinical Medicine College, Guangdong Medical University, Zhanjiang, China
| | - Hong Huang
- Clinical Medicine College, Guilin Medical University, Guilin, China
| | - Zhenjun Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Medicine Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xinxin Xie
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Medicine Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ruichong Lin
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macao, China
| | - Zehua Wang
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macao, China
| | - Herui Yao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Medicine Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yunfang Yu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Medicine Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macao, China
| |
Collapse
|
28
|
Jia K, Chen Y, Xie Y, Wang X, Hu Y, Sun Y, Cao Y, Zhang L, Wang Y, Wang Z, Lu Z, Li J, Zhang X, Shen L. Helicobacter pylori and immunotherapy for gastrointestinal cancer. Innovation (N Y) 2024; 5:100561. [PMID: 38379784 PMCID: PMC10878118 DOI: 10.1016/j.xinn.2023.100561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 12/29/2023] [Indexed: 02/22/2024] Open
Abstract
Helicobacter pylori infection is associated with the risk of gastrointestinal (GI) cancers; however, its impact on immunotherapy for GI cancers remains uncertain. In this study, we included 10,122 patients who underwent 13C-urea breath tests. Among 636 patients with Epstein-Barr virus-negative microsatellite-stable gastric cancer (GC) who were treated with anti-PD-1/PD-L1 therapy, H. pylori-positive patients exhibited significantly longer immune-related progression-free survival (irPFS) compared with H. pylori-negative patients (6.97 months versus 5.03 months, p < 0.001, hazard ratio [HR] 0.76, 95% confidence interval [CI] 0.62-0.95, p = 0.015). Moreover, the H. pylori-positive group demonstrated a trend of 4 months longer median immune-related overall survival (irOS) than the H. pylori-negative group. H. pylori-positive GC displayed higher densities of PD-L1+ cells and nonexhausted CD8+ T cells, indicative of a "hot" tumor microenvironment. Transcriptomic analysis revealed that H. pylori-positive GC shared molecular characteristics similar to those of immunotherapy-sensitive GC. However, H. pylori-positive patients with DNA mismatch repair-deficient (dMMR)/microsatellite instability-high (MSI-H) colorectal adenocarcinoma and esophageal squamous cell carcinoma (ESCC) had shorter irPFS compared with H. pylori-negative patients (16.13 months versus not reached, p = 0.042, HR 2.26, 95% CI 1.13-4.50, p = 0.021 and 5.57 months versus 6.97 months, p = 0.029, HR 1.59, 95% CI 1.14-2.23, p = 0.006, respectively). The difference in irOS between H. pylori-positive and -negative patients had the same trend as that between dMMR/MSI-H colorectal adenocarcinoma and ESCC patients. We also identified a trend of shorter irPFS and irOS in H. pylori-positive liver cancer and pancreatic cancer patients. In summary, our findings supported that H. pylori infection is a beneficial factor for GC immunotherapy by shaping hot tumor microenvironments. However, in dMMR/MSI-H colorectal adenocarcinoma and ESCC patients, H. pylori adversely affects the efficacy of immunotherapy.
Collapse
Affiliation(s)
- Keren Jia
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Yang Chen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Yi Xie
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Xicheng Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Yajie Hu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Pathology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Yu Sun
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Pathology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Yanshuo Cao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Liyan Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Yakun Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Zhenghang Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Zhihao Lu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Jian Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Xiaotian Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Lin Shen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| |
Collapse
|
29
|
Xu D, Lu X, Yang F, Jiang Z, Yang S, Bi L, Liu J, Shan H, Li D. STING-targeted PET tracer for early assessment of tumor immunogenicity in colorectal cancer after chemotherapy. Eur J Nucl Med Mol Imaging 2024; 51:641-655. [PMID: 37924341 DOI: 10.1007/s00259-023-06485-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 10/21/2023] [Indexed: 11/06/2023]
Abstract
PURPOSE To optimize chemotherapy regimens and improve the effectiveness of chemotherapy combined with immunotherapy, a PET tracer specifically targeting the stimulator of interferon genes (STING), denoted as [18F]FBTA was used to monitor the early changes in tumor immunogenicity after chemotherapy in colorectal cancer (CRC) mice. METHODS The toluene sulfonate precursor was labeled with 18F to produce the STING targeted probe-[18F]FBTA. [18F]FBTA-PET imaging and biodistribution were performed using CRC mice treated with oxaliplatin (OXA) or cisplatin (CDDP). CRC mice were also treated with low (CDDP-LD: 1 mg/kg) or medium (CDDP-MD: 2.5 mg/kg) doses of CDDP, and subjected to PET imaging and biodistribution. The effects of different chemotherapeutic agents and different doses of CDDP on tumor innate immunity were verified by flow cytometry and immunohistochemistry. RESULTS PET imaging of CRC mice exhibited notably enhanced tumor uptake in the early phase of chemotherapy with treatment with OXA (3.09 ± 0.25%ID/g) and CDDP (4.01 ± 0.18%ID/g), especially in the CDDP group. The PET-derived tumor uptake values have strong correlations with STING immunohistochemical score. Flow cytometry showed both agents led to DCs and macrophages infiltration in tumors. Compared with OXA, CDDP treatment recruits more DCs and macrophages in CRC tumors. Both CDDP-LD and CDDP-MD treatment elevated uptake in CRC tumors, especially in CDDP-MD group. Immunohistochemistry and flow cytometry confirmed CDDP-MD treatment recruits more DCs and macrophages than CDDP-LD treatment. CONCLUSION Overall, the STING-targeted tracer-[18F]FBTA was demonstrated to monitor early changes in tumor immunogenicity in CRC mice after chemotherapy. Besides, the STING-targeted strategy may help to select the appropriate chemotherapy regimen, including chemotherapeutic agents and doses, which further improve clinical decision making for combination immunotherapy after chemotherapy for CRC.
Collapse
Affiliation(s)
- Duo Xu
- Department of Interventional Medicine, the Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, China
- Department of Nuclear Medicine, the Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, China
- Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, the Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, China
| | - Xin Lu
- Department of Interventional Medicine, the Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, China
- Department of Nuclear Medicine, the Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, China
| | - Fan Yang
- Department of Nuclear Medicine, the Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, China
- Department of Pediatrics, the Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, Guangdong Province, China
| | - Zebo Jiang
- Department of Nuclear Medicine, the Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, China
| | - Shirui Yang
- Department of Nuclear Medicine, the Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, China
| | - Lei Bi
- Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, China
| | - Jiani Liu
- Cancer Center, the Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, China
| | - Hong Shan
- Department of Interventional Medicine, the Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, China.
- Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, China.
- Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, the Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, China.
| | - Dan Li
- Department of Nuclear Medicine, the Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, China.
- Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, China.
- Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, the Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, China.
| |
Collapse
|
30
|
Zhou X, Zhang B, Hu J, Shen J, Chen Z, Zhang J, Wu B, Zhou E, Peng S, Wong TW, Yang G, Cao J, Chen M. Igniting cold tumors of intrahepatic cholangiocarcinoma: An insight into immune evasion and tumor immune microenvironment. THE INNOVATION MEDICINE 2024; 2:100052. [DOI: 10.59717/j.xinn-med.2024.100052] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
<p>Intrahepatic cholangiocarcinoma (ICC) is a rare hepatobiliary cancer that originates from the epithelium of the intrahepatic bile duct. The various treatments for ICC, such as chemotherapy, radiotherapy, and locoregional therapy, confer only modest improvements in survival rates. Immunotherapy, although revolutionary in cancer treatment, has found limited application in the treatment of ICCs due to the “cold” nature of these tumors, which is marked by scant T-cell infiltration. This characteristic makes immune checkpoint inhibitors (ICIs) unsuitable for the majority of ICC patients. Therefore, comprehensively understanding the mechanisms underlying these “cold” tumors is crucial for harnessing the potential of immunotherapy for treating ICC patients. This paper explores immune evasion mechanisms and the complex tumor immune microenvironment of ICC. This study provides a comprehensive overview of therapeutic strategies aimed at activating cold tumors and enhancing their immunogenicity. Furthermore, potential and promising targets for cancer vaccines and adoptive cellular therapy in the context of ICC are discussed. This endeavor strives to reveal new pathways for innovative immunotherapy strategies, with a focus on overcoming the key challenge of triggering an effective immune response in ICC patients.</p>
Collapse
|
31
|
Lei Y, Cao P, Zheng X, Wei J, Cheng M, Liu M. Perspectives for immunotherapy of EBV-associated GLELC: A relatively "hot" tumor microenvironment. Cancer Med 2023; 12:19838-19849. [PMID: 37732493 PMCID: PMC10587976 DOI: 10.1002/cam4.6555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/01/2023] [Accepted: 09/08/2023] [Indexed: 09/22/2023] Open
Abstract
BACKGROUND Epstein-Barr virus (EBV)-associated gastric lymphoepithelioma-like carcinoma (EBVaGLELC) represents a small number of gastric cancer (GC), and research on tumor microenvironment (TME) and treatment strategy are still lacking. AIMS Here, we aim to elucidate the immune features of this rare disease and further help to develop more effective treatment options. MATERIALS & METHODS A retrospective analysis was conducted between 2019 to 2022 in West China Hospital to reveal the immunological characteristics of EBV-positive GLELC. The difference of immune cell subset and tumor vascular structure between gastric denocarcinoma (GAC) and EBVaGLELC will be pointed out. DISCUSSION 13 patients with GELEC and 8 patients with GAC were retrospectively studied. The heterogeneity of the immune cell profile was then confirmed through multiplexed immunofluorescence staining (mIF), which revealed a higher proportion of CD3+ T cells, CD8+ T cells, and Treg cells in the EBV-associated GLELC group. Such a distinct TME may provide therapeutic advantages, and patients with this rare subtype of GC could be good candidates for immune checkpoint inhibitors (ICIs). Angiogenesis in EBV-positive GLELC may be less intense than that in gastric adenocarcinoma (GAC), a feature that might decrease their susceptibility to antiangiogenic therapy. Furthermore, we reported a 52-year-old male with advanced EBV-positive GLELC who showed a favorable response to the combined therapy with . A repeat evaluation showed sustained partial response (PR), and the progression-free survival (PFS) was more than 34 months until now. CONCLUSION Compared with GAC, EBVaGLELC revealed higher T cell infiltration and less intense of angiogenesis. It displays relatively "hot" TME that may provide the rationality to treat with immunotherapy in EBV-related GLELC.
Collapse
Affiliation(s)
- Yanna Lei
- Department of Gastric Cancer Center, West China HospitalSichuan UniversityChengduSichuanChina
- Department of Abdominal Oncology, West China HospitalSichuan UniversityChengduSichuanChina
| | - Peng Cao
- Department of Abdominal Oncology, West China HospitalSichuan UniversityChengduSichuanChina
- Department of Colorectal Cancer Center, West China HospitalSichuan UniversityChengduSichuanChina
| | - Xiufeng Zheng
- Department of Gastric Cancer Center, West China HospitalSichuan UniversityChengduSichuanChina
- Department of Abdominal Oncology, West China HospitalSichuan UniversityChengduSichuanChina
| | - Jing Wei
- Department of Gastric Cancer Center, West China HospitalSichuan UniversityChengduSichuanChina
- Department of Abdominal Oncology, West China HospitalSichuan UniversityChengduSichuanChina
| | - Mo Cheng
- Department of Gastric Cancer Center, West China HospitalSichuan UniversityChengduSichuanChina
- Department of Abdominal Oncology, West China HospitalSichuan UniversityChengduSichuanChina
| | - Ming Liu
- Department of Gastric Cancer Center, West China HospitalSichuan UniversityChengduSichuanChina
- Department of Abdominal Oncology, West China HospitalSichuan UniversityChengduSichuanChina
| |
Collapse
|
32
|
Hou P, Luo Y, Wu N. TCL1A+ B cells predict prognosis in triple-negative breast cancer through integrative analysis of single-cell and bulk transcriptomic data. Open Life Sci 2023; 18:20220707. [PMID: 37791059 PMCID: PMC10543705 DOI: 10.1515/biol-2022-0707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/18/2023] [Accepted: 08/02/2023] [Indexed: 10/05/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype with limited treatment options and high mortality rates. It remains a prevailing clinical need to distinguish whether the patient can benefit from therapy, such as chemotherapy. By integrating single-cell and global transcriptome data, we have for the first time identified TCL1A+ B cell functions that are prognostically relevant in TNBC. This finding broadens the perspective of traditional tumor-infiltrating lymphocytes in predicting survival, especially the potential value of B cells in TNBC. Single-cell RNA-seq data from five TNBC patients were collected to identify the association between immune cell populations and clinical outcomes. Functional analysis was according to gene set enrichment analysis using pathways from MsigDB. Subsequently, the gene signature of TCL1A+ B cells based on differential expression genes of TCL1A+ B cells versus other immune cells was used to explore the correlation with tumor microenvironment (TME) and construct a prognostic signature using a non-parametric and unsupervised method. We identified TCL1A+ B cells as a cluster of B cells associated with clinical outcomes in TNBC. Functional analysis demonstrated its function in B cell activation and regulation of immune response. The highly enriched TCL1A+ B cell population was found to be associated with a thermal TME with anti-tumor effects. A high abundance of TCL1A+ B cell population is positively correlated with a favorable therapeutic outcome, as indicated by longer overall survival. The present study suggests that TCL1A+ B cells play a key role in the treatment and prognostic prediction of TNBC, although further studies are needed to validate our findings. Moreover, the integration of transcriptome data at various resolutions provides a viable approach for the discovery of novel prognostic markers.
Collapse
Affiliation(s)
- Peifeng Hou
- Department of Oncology, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350001, China
- Fujian Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian, 350000, China
- Fujian Medical University Stem Cell Research Institute, Fuzhou, Fujian, 350000, China
| | - Yang Luo
- Department of Oncology, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350001, China
| | - Ningzi Wu
- Department of Oncology, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350001, China
| |
Collapse
|
33
|
Eralp Y, Ates U. Clinical Applications of Combined Immunotherapy Approaches in Gastrointestinal Cancer: A Case-Based Review. Vaccines (Basel) 2023; 11:1545. [PMID: 37896948 PMCID: PMC10610904 DOI: 10.3390/vaccines11101545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/24/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
Malignant neoplasms arising from the gastrointestinal (GI) tract are among the most common types of cancer with high mortality rates. Despite advances in treatment in a small subgroup harboring targetable mutations, the outcome remains poor, accounting for one in three cancer-related deaths observed globally. As a promising therapeutic option in various tumor types, immunotherapy with immune checkpoint inhibitors has also been evaluated in GI cancer, albeit with limited efficacy except for a small subgroup expressing microsatellite instability. In the quest for more effective treatment options, energetic efforts have been placed to evaluate the role of several immunotherapy approaches comprising of cancer vaccines, adoptive cell therapies and immune checkpoint inhibitors. In this review, we report our experience with a personalized dendritic cell cancer vaccine and cytokine-induced killer cell therapy in three patients with GI cancers and summarize current clinical data on combined immunotherapy strategies.
Collapse
Affiliation(s)
- Yesim Eralp
- Maslak Acıbadem Hospital, Acıbadem University, Istanbul 34398, Turkey
| | - Utku Ates
- Biotech4life Tissue and Cell R&D Center, Stembio Cell and Tissue Technologies, Inc., Istanbul 34398, Turkey
| |
Collapse
|
34
|
Liu Y, Lu J. Mechanism and clinical application of thymosin in the treatment of lung cancer. Front Immunol 2023; 14:1237978. [PMID: 37701432 PMCID: PMC10493777 DOI: 10.3389/fimmu.2023.1237978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/16/2023] [Indexed: 09/14/2023] Open
Abstract
Cancer is one of the leading causes of death worldwide. The burden of cancer on public health is becoming more widely acknowledged. Lung cancer has one of the highest incidence and mortality rates of all cancers. The prevalence of early screening, the emergence of targeted therapy, and the development of immunotherapy have all significantly improved the overall prognosis of lung cancer patients. The current state of affairs, however, is not encouraging, and there are issues like poor treatment outcomes for some patients and extremely poor prognoses for those with advanced lung cancer. Because of their potent immunomodulatory capabilities, thymosin drugs are frequently used in the treatment of tumors. The effectiveness of thymosin drugs in the treatment of lung cancer has been demonstrated in numerous studies, which amply demonstrates the potential and future of thymosin drugs for the treatment of lung cancer. The clinical research on thymosin peptide drugs in lung cancer and the basic research on the mechanism of thymosin drugs in anti-lung cancer are both systematically summarized and analyzed in this paper, along with future research directions.
Collapse
Affiliation(s)
| | - Jibin Lu
- Department of Thoracic Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
35
|
Courlet P, Abler D, Guidi M, Girard P, Amato F, Vietti Violi N, Dietz M, Guignard N, Wicky A, Latifyan S, De Micheli R, Jreige M, Dromain C, Csajka C, Prior JO, Venkatakrishnan K, Michielin O, Cuendet MA, Terranova N. Modeling tumor size dynamics based on real-world electronic health records and image data in advanced melanoma patients receiving immunotherapy. CPT Pharmacometrics Syst Pharmacol 2023; 12:1170-1181. [PMID: 37328961 PMCID: PMC10431051 DOI: 10.1002/psp4.12983] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 04/28/2023] [Accepted: 05/04/2023] [Indexed: 06/18/2023] Open
Abstract
The development of immune checkpoint inhibitors (ICIs) has revolutionized cancer therapy but only a fraction of patients benefits from this therapy. Model-informed drug development can be used to assess prognostic and predictive clinical factors or biomarkers associated with treatment response. Most pharmacometric models have thus far been developed using data from randomized clinical trials, and further studies are needed to translate their findings into the real-world setting. We developed a tumor growth inhibition model based on real-world clinical and imaging data in a population of 91 advanced melanoma patients receiving ICIs (i.e., ipilimumab, nivolumab, and pembrolizumab). Drug effect was modeled as an ON/OFF treatment effect, with a tumor killing rate constant identical for the three drugs. Significant and clinically relevant covariate effects of albumin, neutrophil to lymphocyte ratio, and Eastern Cooperative Oncology Group (ECOG) performance status were identified on the baseline tumor volume parameter, as well as NRAS mutation on tumor growth rate constant using standard pharmacometric approaches. In a population subgroup (n = 38), we had the opportunity to conduct an exploratory analysis of image-based covariates (i.e., radiomics features), by combining machine learning and conventional pharmacometric covariate selection approaches. Overall, we demonstrated an innovative pipeline for longitudinal analyses of clinical and imaging RWD with a high-dimensional covariate selection method that enabled the identification of factors associated with tumor dynamics. This study also provides a proof of concept for using radiomics features as model covariates.
Collapse
Affiliation(s)
- Perrine Courlet
- Precision Oncology Center, Department of OncologyLausanne University Hospital and University of LausanneLausanneSwitzerland
- Centre for Research and Innovation in Clinical Pharmaceutical SciencesLausanne University Hospital and University of LausanneLausanneSwitzerland
| | - Daniel Abler
- Precision Oncology Center, Department of OncologyLausanne University Hospital and University of LausanneLausanneSwitzerland
- Institute of Informatics, School of Management, University of Applied Sciences Western Switzerland (HES‐SO)SierreSwitzerland
| | - Monia Guidi
- Centre for Research and Innovation in Clinical Pharmaceutical SciencesLausanne University Hospital and University of LausanneLausanneSwitzerland
- Service of Clinical PharmacologyLausanne University Hospital and University of LausanneLausanneSwitzerland
| | - Pascal Girard
- Merck Institute of Pharmacometrics, Ares Trading S.A. (an affiliate of Merck KGaA, Darmstadt, Germany)LausanneSwitzerland
| | - Federico Amato
- Swiss Data Science Centre, École Polytechnique Fédérale de Lausanne (EPFL) and Eidgenössische Technische Hochschule Zurich (ETH)ZurichSwitzerland
| | - Naik Vietti Violi
- Department of Radiology and Interventional RadiologyLausanne University Hospital and University of LausanneLausanneSwitzerland
| | - Matthieu Dietz
- Nuclear Medicine and Molecular Imaging DepartmentLausanne University Hospital and University of LausanneLausanneSwitzerland
| | - Nicolas Guignard
- Department of Radiology and Interventional RadiologyLausanne University Hospital and University of LausanneLausanneSwitzerland
| | - Alexandre Wicky
- Precision Oncology Center, Department of OncologyLausanne University Hospital and University of LausanneLausanneSwitzerland
| | - Sofiya Latifyan
- Department of OncologyLausanne University Hospital and University of LausanneLausanneSwitzerland
| | - Rita De Micheli
- Department of OncologyLausanne University Hospital and University of LausanneLausanneSwitzerland
| | - Mario Jreige
- Nuclear Medicine and Molecular Imaging DepartmentLausanne University Hospital and University of LausanneLausanneSwitzerland
| | - Clarisse Dromain
- Department of Radiology and Interventional RadiologyLausanne University Hospital and University of LausanneLausanneSwitzerland
| | - Chantal Csajka
- Centre for Research and Innovation in Clinical Pharmaceutical SciencesLausanne University Hospital and University of LausanneLausanneSwitzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of GenevaUniversity of LausanneGenevaSwitzerland
- School of Pharmaceutical SciencesUniversity of GenevaGenevaSwitzerland
| | - John O. Prior
- Nuclear Medicine and Molecular Imaging DepartmentLausanne University Hospital and University of LausanneLausanneSwitzerland
| | | | - Olivier Michielin
- Precision Oncology Center, Department of OncologyLausanne University Hospital and University of LausanneLausanneSwitzerland
| | - Michel A. Cuendet
- Precision Oncology Center, Department of OncologyLausanne University Hospital and University of LausanneLausanneSwitzerland
- Swiss Institute of Bioinformatics, University of LausanneLausanneSwitzerland
- Department of Physiology and Biophysics, Weill Cornell MedicineNew YorkNew YorkUSA
| | - Nadia Terranova
- Merck Institute of Pharmacometrics, Ares Trading S.A. (an affiliate of Merck KGaA, Darmstadt, Germany)LausanneSwitzerland
| |
Collapse
|
36
|
Jin Z, Zhou Q, Cheng JN, Jia Q, Zhu B. Heterogeneity of the tumor immune microenvironment and clinical interventions. Front Med 2023; 17:617-648. [PMID: 37728825 DOI: 10.1007/s11684-023-1015-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 06/24/2023] [Indexed: 09/21/2023]
Abstract
The tumor immune microenvironment (TIME) is broadly composed of various immune cells, and its heterogeneity is characterized by both immune cells and stromal cells. During the course of tumor formation and progression and anti-tumor treatment, the composition of the TIME becomes heterogeneous. Such immunological heterogeneity is not only present between populations but also exists on temporal and spatial scales. Owing to the existence of TIME, clinical outcomes can differ when a similar treatment strategy is provided to patients. Therefore, a comprehensive assessment of TIME heterogeneity is essential for developing precise and effective therapies. Facilitated by advanced technologies, it is possible to understand the complexity and diversity of the TIME and its influence on therapy responses. In this review, we discuss the potential reasons for TIME heterogeneity and the current approaches used to explore it. We also summarize clinical intervention strategies based on associated mechanisms or targets to control immunological heterogeneity.
Collapse
Affiliation(s)
- Zheng Jin
- Department of Oncology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
- Key Laboratory of Tumor Immunotherapy, Chongqing, 400037, China
- Research Institute, GloriousMed Clinical Laboratory (Shanghai) Co. Ltd., Shanghai, 201318, China
- Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Qin Zhou
- Department of Oncology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
- Key Laboratory of Tumor Immunotherapy, Chongqing, 400037, China
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Jia-Nan Cheng
- Department of Oncology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China.
- Key Laboratory of Tumor Immunotherapy, Chongqing, 400037, China.
| | - Qingzhu Jia
- Department of Oncology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China.
- Key Laboratory of Tumor Immunotherapy, Chongqing, 400037, China.
| | - Bo Zhu
- Department of Oncology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China.
- Key Laboratory of Tumor Immunotherapy, Chongqing, 400037, China.
| |
Collapse
|
37
|
Tan H, Liu J, Huang J, Li Y, Xie Q, Dong Y, Mi Z, Ma X, Rong P. Ketoglutaric acid can reprogram the immunophenotype of triple-negative breast cancer after radiotherapy and improve the therapeutic effect of anti-PD-L1. J Transl Med 2023; 21:462. [PMID: 37438720 DOI: 10.1186/s12967-023-04312-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/28/2023] [Indexed: 07/14/2023] Open
Abstract
BACKGROUND Great progress has been made in applying immunotherapy to the clinical treatment of tumors. However, many patients with triple-negative breast cancer (TNBC) cannot benefit from immunotherapy due to the immune desert type of TNBC, which is unresponsive to immunotherapy. DMKG, a cell-permeable derivative of α-KG, has shown potential to address this issue. METHOD We investigated the effects of combining DMKG with radioimmunotherapy on TNBC. We assessed the ability of DMKG to promote tumor cell apoptosis and immunogenic death induced by radiotherapy (RT), as well as its impact on autophagy reduction, antigen and inflammatory factor release, DC cell activation, and infiltration of immune cells in the tumor area. RESULT Our findings indicated that DMKG significantly promoted tumor cell apoptosis and immunogenic death induced by RT. DMKG also significantly reduced autophagy in tumor cells, resulting in increased release of antigens and inflammatory factors, thereby activating DC cells. Furthermore, DMKG promoted infiltration of CD8 + T cells in the tumor area and reduced the composition of T-regulatory cells after RT, reshaping the tumor immune microenvironment. Both DMKG and RT increased the expression of PD-L1 at immune checkpoints. When combined with anti-PD-L1 drugs (α-PD-L1), they significantly inhibited tumor growth without causing obvious side effects during treatment. CONCLUSION Our study underscores the potential of pairing DMKG with radioimmunotherapy as an effective strategy for treating TNBC by promoting apoptosis, immunogenic death, and remodeling the tumor immune microenvironment. This combination therapy could offer a promising therapeutic avenue for TNBC patients unresponsive to conventional immunotherapy.
Collapse
Affiliation(s)
- Hongpei Tan
- Department of Radiology, Third Xiangya Hospital, Central South University, No. 138 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Jiahao Liu
- Department of Radiology, Third Xiangya Hospital, Central South University, No. 138 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Jing Huang
- Department of Anesthesiology, Zhuzhou Central Hospital, Zhuzhou, 412000, China
| | - Yanan Li
- Department of Radiology, Third Xiangya Hospital, Central South University, No. 138 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Qiongxuan Xie
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410000, China
| | - Yuqian Dong
- Department of Radiology, Third Xiangya Hospital, Central South University, No. 138 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Ze Mi
- Department of Radiology, Third Xiangya Hospital, Central South University, No. 138 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Xiaoqian Ma
- Department of Radiology, Third Xiangya Hospital, Central South University, No. 138 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Pengfei Rong
- Department of Radiology, Third Xiangya Hospital, Central South University, No. 138 Tongzipo Road, Changsha, 410013, Hunan, China.
| |
Collapse
|
38
|
Tao M, Han J, Shi J, Liao H, Wen K, Wang W, Mui S, Li H, Yan Y, Xiao Z. Application and Resistance Mechanisms of Lenvatinib in Patients with Advanced Hepatocellular Carcinoma. J Hepatocell Carcinoma 2023; 10:1069-1083. [PMID: 37457652 PMCID: PMC10348321 DOI: 10.2147/jhc.s411806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 06/01/2023] [Indexed: 07/18/2023] Open
Abstract
Lenvatinib, a multitargeted tyrosine kinase inhibitor (TKI), is one of the preferred targeted drugs for the treatment of advanced hepatocellular carcinoma (aHCC). Since the REFLECT study showed that lenvatinib was noninferior to sorafenib in overall survival (OS), lenvatinib monotherapy has been widely used for aHCC. Moreover, lenvatinib combination therapy, especially lenvatinib combined with immune checkpoint inhibitors (ICIs), has shown more encouraging clinical results. However, drug development and comprehensive treatment have not significantly improved the prognosis, and lenvatinib resistance is often encountered in treatment. The underlying molecular mechanism of lenvatinib resistance is still unclear, and studies to solve drug resistance are ongoing. The molecular mechanisms of lenvatinib resistance in patients with aHCC include the regulation of signaling pathways, the regulation of noncoding RNAs, the impact of the immune microenvironment, tumor stem cell activation and other mechanisms. This review aims to (1) summarize the progress of lenvatinib in treating aHCC, (2) delineate the known lenvatinib resistance mechanisms of current therapy, and (3) describe the development of therapeutic methods intended to overcome these resistance mechanisms.
Collapse
Affiliation(s)
- Meng Tao
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People’s Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People’s Republic of China
| | - Jing Han
- Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, People’s Republic of China
| | - Juanyi Shi
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People’s Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People’s Republic of China
| | - Hao Liao
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People’s Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People’s Republic of China
| | - Kai Wen
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People’s Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People’s Republic of China
| | - Weidong Wang
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People’s Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People’s Republic of China
| | - Sintim Mui
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People’s Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People’s Republic of China
| | - Huoming Li
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People’s Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People’s Republic of China
| | - Yongcong Yan
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People’s Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People’s Republic of China
| | - Zhiyu Xiao
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People’s Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People’s Republic of China
| |
Collapse
|
39
|
Xu T, Wang C, Wang X, Wang E, Wang B, Sun M. A novel TREM1/DAP12-based multiple chain CAR-T cell targets PTK7 in ovarian cancer therapy. Med Oncol 2023; 40:226. [PMID: 37405498 DOI: 10.1007/s12032-023-02084-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 06/13/2023] [Indexed: 07/06/2023]
Abstract
While CAR-T cell therapy has shown success against hematological tumors, its effectiveness for solid tumors, including ovarian cancer, remains unsatisfactory. This study aimed to develop and evaluate the efficacy of novel chimeric antigen receptor T (CAR-T) cells targeting PTK7 through TREM1/DAP12 signaling against ovarian cancer. The expression of PTK7 in ovarian cancer tissues and cells was evaluated using immunohistochemical staining and flow cytometric analysis. The anti-tumor effects of PTK7 CAR-T cells were assessed in vitro using real-time cell analysis and enzyme-linked immunosorbent assay, and in vivo using a xenograft tumor model. PTK7 was significantly expressed in ovarian cancer tissues and cells. PTK7-targeting CAR-T cells based on TREM1/DAP12 signaling exhibited potent cytotoxicity against ovarian cancer cells expressing PTK7 in vitro, and effectively eradicated tumors in vivo. Our findings suggest that TREM1/DAP12-based PTK7 CAR-T cells have potential as a treatment strategy for ovarian cancer. Further studies are needed to evaluate the safety and efficacy of this approach in clinical trials.
Collapse
Affiliation(s)
- Tongpeng Xu
- Department of Oncology, First Affiliated Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Chen Wang
- Nanjing CART Medical Technology Co., Ltd, Nanjing, 210032, People's Republic of China
| | - Xiaoyan Wang
- Reproductive Center, Qingdao Women and Children's Hospital, Qingdao Women and Children's Hospital Affiliated to Qingdao University, Qingdao, 266034, China
| | - Enxiu Wang
- Nanjing CART Medical Technology Co., Ltd, Nanjing, 210032, People's Republic of China.
- Department of Pathology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, China.
- Clinical Pathological Diagnosis & Research Center, Youjiang Medical University for Nationalities, Baise, 533000, China.
- The Key Laboratory of Molecular Pathology (Hepatobiliary Diseases) of Guangxi, Baise, 533000, China.
| | - Bo Wang
- Department of Medical Oncology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, People's Republic of China.
| | - Ming Sun
- Suzhou Cancer Center Core Laboratory, Nanjing Medical University Affiliated Suzhou Hospital, Suzhou Municipal Hospital, Gusu School, Baita West Road #16, Suzhou, 215001, People's Republic of China.
| |
Collapse
|
40
|
Wang S, Huang M, Chen M, Sun Z, Jiao Y, Ye G, Pan J, Ye W, Zhao J, Zhang D. Zoledronic acid and thymosin α1 elicit antitumor immunity against prostate cancer by enhancing tumor inflammation and cytotoxic T cells. J Immunother Cancer 2023; 11:e006381. [PMID: 37295817 PMCID: PMC10277537 DOI: 10.1136/jitc-2022-006381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2023] [Indexed: 06/12/2023] Open
Abstract
BACKGROUND Advanced or metastatic prostate cancer (PCa) is still an incurable malignancy with high lethality and a poor prognosis. Despite the remarkable success of immunotherapy against many types of cancer, most patients with PCa receive minimal benefit from current immunotherapeutic strategies, because PCa is an immune cold tumor with scarce T-cell infiltration in the tumor microenvironment. The aim of this study was to develop an effective immunotherapeutic approach for immune cold PCa tumors. METHODS The therapeutic efficacy of androgen deprivation therapy (ADT) and zoledronic acid (ZA) plus thymosin α1 (Tα1) therapy was analyzed retrospectively in patients with advanced or metastatic PCa. The effects and mechanisms by which ZA and Tα1 regulated the immune functions of PCa cells and immune cells were evaluated by a PCa allograft mouse model, flow cytometric analysis, immunohistochemical and immunofluorescence staining assays, and PCR, ELISA, and Western blot analyses. RESULTS In this study, clinical retrospective analysis revealed that ADT combined with ZA plus Tα1 improved the therapeutic outcomes of patients with PCa, which might be associated with an enhanced frequency of T cells. ZA and Tα1 treatment synergistically inhibited the growth of androgen-independent PCa allograft tumors, with increased infiltration of tumor-specific cytotoxic CD8+ T cells and enhanced tumor inflammation. Functionally, ZA and Tα1 treatment relieved immunosuppression in PCa cells, stimulated pro-inflammatory macrophages, and enhanced the cytotoxic function of T cells. Mechanistically, ZA plus Tα1 therapy blocked the MyD88/NF-κB pathway in PCa cells but activated this signaling in macrophages and T cells, altering the tumor immune landscape to suppress PCa progression. CONCLUSIONS These findings uncover a previously undefined role for ZA and Tα1 in inhibiting the disease progression of immune cold PCa tumors by enhancing antitumor immunity and pave the way for the application of ZA plus Tα1 therapy as an immunotherapeutic strategy for treating patients with immunologically unresponsive PCa.
Collapse
Affiliation(s)
- Sheng Wang
- Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, Guangdong, China
| | - Maohua Huang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, Guangdong, China
| | - Minfeng Chen
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, Guangdong, China
| | - Zhiting Sun
- Research Center of Cancer Diagnosis and Therapy, Department of Oncology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Yubo Jiao
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, Guangdong, China
| | - Geni Ye
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, Guangdong, China
| | - Jinghua Pan
- The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Wencai Ye
- Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, Guangdong, China
| | - Jianfu Zhao
- Research Center of Cancer Diagnosis and Therapy, Department of Oncology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Dongmei Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, Guangdong, China
| |
Collapse
|
41
|
Tang X, Yang Y, Zheng M, Yin T, Huang G, Lai Z, Zhang B, Chen Z, Xu T, Ma T, Pan H, Cai L. Magnetic-Acoustic Sequentially Actuated CAR T Cell Microrobots for Precision Navigation and In Situ Antitumor Immunoactivation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211509. [PMID: 36807373 DOI: 10.1002/adma.202211509] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/10/2023] [Indexed: 05/05/2023]
Abstract
Despite its clinical success, chimeric antigen receptor T (CAR T)-cell immunotherapy remains limited in solid tumors, owing to the harsh physical barriers and immunosuppressive microenvironment. Here a CAR-T-cell-based live microrobot (M-CAR T) is created by decorating CAR T with immunomagnetic beads using click conjugation. M-CAR Ts are capable of magnetic-acoustic actuation for precision targeting and in situ activation of antitumor immune responses. Sequential actuation endows M-CAR Ts with magnetically actuated anti-flow and obstacle avoidance as well as tissue penetration driven by acoustic propulsion, enabling efficient migration and accumulation in artificial tumor models. In vivo, sequentially actuated M-CAR Ts achieves long-distance targeting and accumulate at the peritumoural area under programmable magnetic guidance, and subsequently acoustic tweezers actuate M-CAR Ts to migrate into deep tumor tissues, resulting in a 6.6-fold increase in accumulated exogenous CD8+ CAR T cells compared with that without actuation. Anti-CD3/CD28 immunomagnetic beads stimulate infiltrated CAR T proliferation and activation in situ, significantly enhancing their antitumor efficacy. Thus, this sequential-actuation-guided cell microrobot combines the merits of autonomous targeting and penetration of intelligent robots with in situ T-cell immunoactivation, and holds considerable promise for precision navigation and cancer immunotherapies.
Collapse
Affiliation(s)
- Xiaofan Tang
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Ye Yang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Mingbin Zheng
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Key Laboratory for Nanomedicine, Guangdong Medical University, Dongguan, 523808, P. R. China
| | - Ting Yin
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Key Laboratory for Nanomedicine, Guangdong Medical University, Dongguan, 523808, P. R. China
| | - Guojun Huang
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Zhengyu Lai
- Guangdong Provincial Key Lab of Robotics and Intelligent System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Baozhen Zhang
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Ze Chen
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Tiantian Xu
- Guangdong Provincial Key Lab of Robotics and Intelligent System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Teng Ma
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Hong Pan
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Lintao Cai
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| |
Collapse
|
42
|
Xiong K, Wei F, Chen Y, Ji L, Chao H. Recent Progress in Photodynamic Immunotherapy with Metal-Based Photosensitizers. SMALL METHODS 2023; 7:e2201403. [PMID: 36549671 DOI: 10.1002/smtd.202201403] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/23/2022] [Indexed: 05/17/2023]
Abstract
Cancer ranks as a leading cause of death. There is an urgent need to develop minimally invasive methods to eradicate tumors and prevent their recurrence. As a light-driven modality, photodynamic therapy takes advantage of high tumor selectivity and low normal tissue damage. However, it shows poor potential for preventing tumor recurrence. Immunotherapy is currently being used as an alternative treatment for the control of malignant diseases. Although immunotherapy can establish long-time immune memory and efficiently protects treated patients from cancer relapse, its clinical efficacy is limited by the minority of patients' responding rate. Recently, photodynamic immunotherapy, which utilizes photosensitizers as an immunotherapy trigger to exert synergistic effects of photodynamic therapy and tumor immunotherapy, has attracted considerable interest. Like all the newly proposed treatments, there is still room for improvement. In this mini review, the progress in photodynamic immunotherapy with metal-based photosensitizers is summarized. It is hoped that this review can give a broad update on photodynamic immunotherapy and inspire readers.
Collapse
Affiliation(s)
- Kai Xiong
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Fangmian Wei
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Yu Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Liangnian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Hui Chao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
- MOE Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 400201, P. R. China
| |
Collapse
|
43
|
Abstract
Recent advances in cancer immunotherapy - ranging from immune-checkpoint blockade therapy to adoptive cellular therapy and vaccines - have revolutionized cancer treatment paradigms, yet the variability in clinical responses to these agents has motivated intense interest in understanding how the T cell landscape evolves with respect to response to immune intervention. Over the past decade, the advent of multidimensional single-cell technologies has provided the unprecedented ability to dissect the constellation of cell states of lymphocytes within a tumour microenvironment. In particular, the rapidly expanding capacity to definitively link intratumoural phenotypes with the antigen specificity of T cells provided by T cell receptors (TCRs) has now made it possible to focus on investigating the properties of T cells with tumour-specific reactivity. Moreover, the assessment of TCR clonality has enabled a molecular approach to track the trajectories, clonal dynamics and phenotypic changes of antitumour T cells over the course of immunotherapeutic intervention. Here, we review the current knowledge on the cellular states and antigen specificities of antitumour T cells and examine how fine characterization of T cell dynamics in patients has provided meaningful insights into the mechanisms underlying effective cancer immunotherapy. We highlight those T cell subsets associated with productive T cell responses and discuss how diverse immunotherapies might leverage the pre-existing tumour-reactive T cell pool or instruct de novo generation of antitumour specificities. Future studies aimed at elucidating the factors associated with the elicitation of productive antitumour T cell immunity are anticipated to instruct the design of more efficacious treatment strategies.
Collapse
Affiliation(s)
- Giacomo Oliveira
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Catherine J Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.
| |
Collapse
|
44
|
Li X, Kang K, Shen L, Shen L, Zhou Y. Integrative Analysis of the Predictive Value of Perilipin Family on Clinical Significance, Prognosis and Immunotherapy of Glioma. Biomedicines 2023; 11:biomedicines11041009. [PMID: 37189627 DOI: 10.3390/biomedicines11041009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/29/2023] Open
Abstract
Gliomas are common tumors of the central nervous system. The PLINs family is widely involved in the regulation of lipid metabolism and has been associated with the development and invasive metastasis of various malignancies. However, the biological role of the PLINs family in gliomas is still unclear. TIMER and UALCAN were used to assess PLINs mRNA expression in gliomas. “Survminer” and “Survival” were used to evaluate the connection between PLINs expression and glioma patients’ survival. cBioPortal was applied to assess PLINs’ genetic alterations in glioblastoma multiforme (GBM) and low-grade glioma (LGG). The correlation of PLINs expression with tumor immune cells was analyzed by TIMER. The expressions of PLIN1, PLIN4, and PLIN5 were decreased in GBM compared to normal tissues. However, PLIN2 and PLIN3 were significantly increased in GBM. Prognostic analysis showed that LGG patients with high PLIN1 expression had better overall survival (OS), and high expression of PLIN2/3/4/5 was associated with unfavorable OS. We further determined that the expression of PLINs members in gliomas was strongly related to tumor immune cells and immune checkpoint-associated genes. PLINS may be potential biomarkers for regulating the tumor microenvironment and predicting the efficacy of immunotherapy. In addition, we determined that PLIN1 may affect glioma patients’ therapeutic sensitivity to temozolomide. Our results demonstrated the biological significance and clinical values of PLINs in gliomas and provide a basis for future in-depth exploration of the specific mechanisms of each member of PLINs in gliomas.
Collapse
|
45
|
Feng X, Li Z, Guo W, Hu Y. The effects of traditional Chinese medicine and dietary compounds on digestive cancer immunotherapy and gut microbiota modulation: A review. Front Immunol 2023; 14:1087755. [PMID: 36845103 PMCID: PMC9945322 DOI: 10.3389/fimmu.2023.1087755] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/17/2023] [Indexed: 02/09/2023] Open
Abstract
Digestive tract-related cancers account for four of the top ten high-risk cancers worldwide. In recent years, cancer immunotherapy, which exploits the innate immune system to attack tumors, has led to a paradigm shifts in cancer treatment. Gut microbiota modification has been widely used to regulate cancer immunotherapy. Dietary compounds and traditional Chinese medicine (TCM) can alter the gut microbiota and its influence on toxic metabolite production, such as the effect of iprindole on lipopolysaccharide (LPS), and involvement in various metabolic pathways that are closely associated with immune reactions. Therefore, it is an effective strategy to explore new immunotherapies for gastrointestinal cancer to clarify the immunoregulatory effects of different dietary compounds/TCMs on intestinal microbiota. In this review, we have summarized recent progress regarding the effects of dietary compounds/TCMs on gut microbiota and their metabolites, as well as the relationship between digestive cancer immunotherapy and gut microbiota. We hope that this review will act as reference, providing a theoretical basis for the clinical immunotherapy of digestive cancer via gut microbiota modulation.
Collapse
Affiliation(s)
- Xiaoli Feng
- Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Zhenhao Li
- Department of General Surgery, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Weihong Guo
- Department of General Surgery, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, China,*Correspondence: Weihong Guo, ; Yanfeng Hu,
| | - Yanfeng Hu
- Department of General Surgery, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, China,*Correspondence: Weihong Guo, ; Yanfeng Hu,
| |
Collapse
|
46
|
Yang R, Zhang W, Shang X, Chen H, Mu X, Zhang Y, Zheng Q, Wang X, Liu Y. Neutrophil-related genes predict prognosis and response to immune checkpoint inhibitors in bladder cancer. Front Pharmacol 2022; 13:1013672. [PMID: 36339597 PMCID: PMC9635818 DOI: 10.3389/fphar.2022.1013672] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 10/12/2022] [Indexed: 12/20/2023] Open
Abstract
Neutrophils play a key role in the occurrence and development of cancer. However, the relationship between neutrophils and cancer prognosis remains unclear due to their great plasticity and diversity. To explore the effects of neutrophils on the clinical outcome of bladder cancer, we acquired and analyzed gene expression data and clinical information of bladder cancer patients from IMvigor210 cohort and The Cancer Genome Atlas dataset (TCGA) database. We established a neutrophil-based prognostic model incorporating five neutrophil-related genes (EMR3, VNN1, FCGRT, HIST1H2BC, and MX1) and the predictive value of the model was validated in both an internal and an external validation cohort. Multivariate Cox regression analysis further proved that the model remained an independent prognostic factor for overall survival and a nomogram was constructed for clinical practice. Additionally, FCGRT was identified as the key neutrophil-related gene linked to an adverse prognosis of bladder cancer. Up-regulation of FCGRT indicated activated cancer metabolism, immunosuppressive tumor environment, and dysregulated functional status of immune cells. FCGRT overexpression was also correlated with decreased expression of PD-L1 and low levels of tumor mutation burden (TMB). FCGRT predicted a poor response to immunotherapy and had a close correlation with chemotherapy sensitivity. Taken together, a novel prognostic model was developed based on the expression level of neutrophil-related genes. FCGRT served as a promising candidate biomarker for anti-cancer drug response, which may contribute to individualized prognostic prediction and may contribute to clinical decision-making.
Collapse
Affiliation(s)
- Rui Yang
- Department of Medical Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhuaxi Road, Jinan, Shandong, China
| | - Wengang Zhang
- Department of Medical Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhuaxi Road, Jinan, Shandong, China
| | - Xiaoling Shang
- Department of Medical Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhuaxi Road, Jinan, Shandong, China
| | - Hang Chen
- School of Basic Medical Sciences, Shandong First Medical University, Jinan, China
| | - Xin Mu
- Department of Medical Imaging Center, Third People’s Hospital of Jinan, Jinan, China
| | - Yuqing Zhang
- Department of Medical Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhuaxi Road, Jinan, Shandong, China
| | - Qi Zheng
- Department of Medical Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhuaxi Road, Jinan, Shandong, China
| | - Xiuwen Wang
- Department of Medical Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhuaxi Road, Jinan, Shandong, China
| | - Yanguo Liu
- Department of Medical Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhuaxi Road, Jinan, Shandong, China
| |
Collapse
|
47
|
Zhao L, Li D, Zhang Y, Huang Q, Zhang Z, Chen C, Xu CF, Chu X, Zhang Y, Yang X. HSP70-Promoter-Driven CRISPR/Cas9 System Activated by Reactive Oxygen Species for Multifaceted Anticancer Immune Response and Potentiated Immunotherapy. ACS NANO 2022; 16:13821-13833. [PMID: 35993350 DOI: 10.1021/acsnano.2c01885] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
To address the low response rate to immune checkpoint blockade (ICB) therapy, we propose a specific promoter-driven CRISPR/Cas9 system, F-PC/pHCP, that achieves permanent genomic disruption of PD-L1 and elicits a multifaceted anticancer immune response to potentiate immunotherapy. This system consists of a chlorin e6-encapsulated fluorinated dendrimer and HSP70-promoter-driven CRISPR/Cas9. F-PC/pHCP under 660 nm laser activated the HSP70 promoter and enabled the specific expression of the Cas9 protein to disrupt the PD-L1 gene, preventing immune escape. Moreover, F-PC/pHCP also induced immunogenic cell death (ICD) of tumor cells and reprogrammed the immunosuppressive tumor microenvironment. Overall, this specific promoter-driven CRISPR/Cas9 system showed great anticancer efficacy and, more importantly, stimulated an immune memory response to inhibit distant tumor growth and lung metastasis. This CRISPR/Cas9 system represents an alternative strategy for ICB therapy as well as enhanced cancer immunotherapy.
Collapse
Affiliation(s)
- Liang Zhao
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong 511442, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction and Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, Guangdong 510006, P. R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, and Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong 510006, P. R. China
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, China
| | - Dongdong Li
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong 511442, P. R. China
| | - Yuxi Zhang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong 511442, P. R. China
| | - Qiaoyi Huang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong 511442, P. R. China
| | - Zhenghai Zhang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong 511442, P. R. China
| | - Chaoran Chen
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong 511442, P. R. China
| | - Cong-Fei Xu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong 511442, P. R. China
| | - Xiao Chu
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, China
| | - Yu Zhang
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, China
| | - Xianzhu Yang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong 511442, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction and Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, Guangdong 510006, P. R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, and Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong 510006, P. R. China
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, China
| |
Collapse
|
48
|
Chen YW, Tucker MD, Brown LC, Yasin HA, Ancell KK, Armstrong AJ, Beckermann KE, Davis NB, Harrison MR, Kaiser EG, McAlister RK, Schaffer KR, Wallace DE, George DJ, Rathmell WK, Rini BI, Zhang T. The Association between a Decrease in On-Treatment Neutrophil-to-Eosinophil Ratio (NER) at Week 6 after Ipilimumab Plus Nivolumab Initiation and Improved Clinical Outcomes in Metastatic Renal Cell Carcinoma. Cancers (Basel) 2022; 14:cancers14153830. [PMID: 35954493 PMCID: PMC9367298 DOI: 10.3390/cancers14153830] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/23/2022] [Accepted: 07/27/2022] [Indexed: 11/16/2022] Open
Abstract
A lower baseline neutrophil-to-eosinophil ratio (NER) has been associated with improved responses to immune checkpoint inhibitors (ICI)-treated metastatic renal cell carcinoma (mRCC). This study investigated the decrease in NER at week 6 after ipilimumab/nivolumab (ipi/nivo) initiation and treatment responses in mRCC. A retrospective study of ipi/nivo-treated mRCC at two US academic cancer centers was conducted. A landmark analysis at week 6 was performed to assess the association between the change in NER and clinical responses (progression-free survival (PFS)/overall survival (OS)). Week 6 NER was modeled as a continuous variable, after log transformation (Ln NER), and a categorical variable by percent change. There were 150 mRCC patients included: 78% had clear cell histology, and 78% were IMDC intermediate/poor risk. In multivariable regression analysis, every decrease of 1 unit of Ln NER at week 6 was associated with improved PFS (adjusted hazard ratio (AHR): 0.78, p-value:0.005) and OS (AHR: 0.67, p-value: 0.002). When NER was modeled by percent change, decreased NER > 50% was associated with improved PFS (AHR: 0.55, p-value: 0.03) and OS (AHR: 0.37, p-value: 0.02). The decrease in week 6 NER was associated with improved PFS/OS in ipi/nivo-treated mRCC. Prospective studies are warranted to validate NER change as a biomarker to predict ICI responses.
Collapse
Affiliation(s)
- Yu-Wei Chen
- Division of Hematology Oncology, Vanderbilt University Medical Center, 1211 Medical Center Drive, Nashville, TN 37232, USA
| | - Matthew D. Tucker
- Division of Hematology Oncology, Vanderbilt University Medical Center, 1211 Medical Center Drive, Nashville, TN 37232, USA
- Grandview Cancer Center, Alabama Oncology, 3670 Grandview Pkwy, Birmingham, AL 35243, USA
| | - Landon C. Brown
- Levine Cancer Institute, Atrium Health, 1021 Morehead Medical Drive, Charlotte, NC 28204, USA
| | - Hesham A. Yasin
- Division of Hematology Oncology, Vanderbilt University Medical Center, 1211 Medical Center Drive, Nashville, TN 37232, USA
| | - Kristin K. Ancell
- Division of Hematology Oncology, Vanderbilt University Medical Center, 1211 Medical Center Drive, Nashville, TN 37232, USA
| | - Andrew J. Armstrong
- Duke Cancer Institute, 2 Seeley Mudd, 10 Bryan Searle Drive, Durham, NC 27710, USA
| | - Kathryn E. Beckermann
- Division of Hematology Oncology, Vanderbilt University Medical Center, 1211 Medical Center Drive, Nashville, TN 37232, USA
| | - Nancy B. Davis
- Division of Hematology Oncology, Vanderbilt University Medical Center, 1211 Medical Center Drive, Nashville, TN 37232, USA
| | - Michael R. Harrison
- Duke Cancer Institute, 2 Seeley Mudd, 10 Bryan Searle Drive, Durham, NC 27710, USA
| | - Elizabeth G. Kaiser
- Division of Hematology Oncology, Vanderbilt University Medical Center, 1211 Medical Center Drive, Nashville, TN 37232, USA
| | - Renee K. McAlister
- Division of Hematology Oncology, Vanderbilt University Medical Center, 1211 Medical Center Drive, Nashville, TN 37232, USA
| | - Kerry R. Schaffer
- Division of Hematology Oncology, Vanderbilt University Medical Center, 1211 Medical Center Drive, Nashville, TN 37232, USA
| | - Deborah E. Wallace
- Division of Hematology Oncology, Vanderbilt University Medical Center, 1211 Medical Center Drive, Nashville, TN 37232, USA
| | - Daniel J. George
- Duke Cancer Institute, 2 Seeley Mudd, 10 Bryan Searle Drive, Durham, NC 27710, USA
| | - W. Kimryn Rathmell
- Division of Hematology Oncology, Vanderbilt University Medical Center, 1211 Medical Center Drive, Nashville, TN 37232, USA
| | - Brian I. Rini
- Division of Hematology Oncology, Vanderbilt University Medical Center, 1211 Medical Center Drive, Nashville, TN 37232, USA
| | - Tian Zhang
- Duke Cancer Institute, 2 Seeley Mudd, 10 Bryan Searle Drive, Durham, NC 27710, USA
- Division of Hematology Oncology, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA
- Correspondence: ; Tel.: +1-214-648-4180
| |
Collapse
|
49
|
Application of mRNA Technology in Cancer Therapeutics. Vaccines (Basel) 2022; 10:vaccines10081262. [PMID: 36016150 PMCID: PMC9415393 DOI: 10.3390/vaccines10081262] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/31/2022] [Accepted: 08/01/2022] [Indexed: 11/18/2022] Open
Abstract
mRNA-based therapeutics pose as promising treatment strategies for cancer immunotherapy. Improvements in materials and technology of delivery systems have helped to overcome major obstacles in generating a sufficient immune response required to fight a specific type of cancer. Several in vivo models and early clinical studies have suggested that various mRNA treatment platforms can induce cancer-specific cytolytic activity, leading to numerous clinical trials to determine the optimal method of combinations and sequencing with already established agents in cancer treatment. Nevertheless, further research is required to optimize RNA stabilization, delivery platforms, and improve clinical efficacy by interacting with the tumor microenvironment to induce a long-term antitumor response. This review provides a comprehensive summary of the available evidence on the recent advances and efforts to overcome existing challenges of mRNA-based treatment strategies, and how these efforts play key roles in offering perceptive insights into future considerations for clinical application.
Collapse
|
50
|
Li C, Ding Y, Zhang X, Hua K. Integrated in silico analysis of LRP2 mutations to immunotherapy efficacy in pan-cancer cohort. Discov Oncol 2022; 13:65. [PMID: 35834061 PMCID: PMC9283634 DOI: 10.1007/s12672-022-00528-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/06/2022] [Indexed: 12/15/2022] Open
Abstract
PURPOSE Immunotherapy has emerged as a novel therapy, while many patients are refractory. Although, several biomarkers have been identified as predictive biomarkers for immunotherapy, such as tumor specific genes, PD-1/PD-L1, tumor mutation burn (TMB), and microsatellite instability (MSI), results remain unsatisfactory. The aim of this study is to evaluate the value of LRP2 mutations in predicating cancer immunotherapy. METHODS We investigated the characteristics of low-density lipoprotein receptor-related protein 2 (LRP2) mutation in the cancer genome atlas (TCGA) and explored the potential association of LRP2 mutations with immunotherapy. Characteristics of LRP2 mutations in 33 cancer types were analyzed using large-scale public data. The association of LRP2 mutations with immune cell infiltration and immunotherapy efficacy was evaluated. Finally, a LPR2 mutation signature (LMS) was developed and validated by TCGA-UCEC and pan-cancer cohorts. Furthermore, we demonstrated the predictive power of LMS score in independent immunotherapy cohorts by performing a meta-analysis. RESULTS Our results revealed that patients with LRP2 mutant had higher TMB and MSI compared with patients without LRP2 mutations. LRP2 mutations were associated with high levels of immune cells infiltration, immune-related genes expression and enrichment of immune related signaling pathways. Importantly, LRP2-mutated patients had a long overall survival (OS) after immunotherapy. In the endometrial cancer (EC) cohort, we found that patients with LRP2 mutations belonged to the POLE and MSI-H type and had a better prognosis. Finally, we developed a LRP2 mutations signature (LMS), that was significantly associated with prognosis in patients receiving immunotherapy. CONCLUSION These results indicated that LRP2 mutations can serve as a biomarker for personalized tumor immunotherapy. Importantly, LMS is a potential predictor of patients' prognosis after immunotherapy.
Collapse
Affiliation(s)
- Chunbo Li
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan University, 419 FangXie Road, Shanghai, 200011, China
| | - Yan Ding
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan University, 419 FangXie Road, Shanghai, 200011, China
| | - Xuyin Zhang
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan University, 419 FangXie Road, Shanghai, 200011, China.
| | - Keqin Hua
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan University, 419 FangXie Road, Shanghai, 200011, China.
| |
Collapse
|