1
|
Fokin AI, Gautreau AM. Assembly and Activity of the WASH Molecular Machine: Distinctive Features at the Crossroads of the Actin and Microtubule Cytoskeletons. Front Cell Dev Biol 2021; 9:658865. [PMID: 33869225 PMCID: PMC8047104 DOI: 10.3389/fcell.2021.658865] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/12/2021] [Indexed: 01/10/2023] Open
Abstract
The Arp2/3 complex generates branched actin networks at different locations of the cell. The WASH and WAVE Nucleation Promoting Factors (NPFs) activate the Arp2/3 complex at the surface of endosomes or at the cell cortex, respectively. In this review, we will discuss how these two NPFs are controlled within distinct, yet related, multiprotein complexes. These complexes are not spontaneously assembled around WASH and WAVE, but require cellular assembly factors. The centrosome, which nucleates microtubules and branched actin, appears to be a privileged site for WASH complex assembly. The actin and microtubule cytoskeletons are both responsible for endosome shape and membrane remodeling. Motors, such as dynein, pull endosomes and extend membrane tubules along microtubule tracks, whereas branched actin pushes onto the endosomal membrane. It was recently uncovered that WASH assembles a super complex with dynactin, the major dynein activator, where the Capping Protein (CP) is exchanged from dynactin to the WASH complex. This CP swap initiates the first actin filament that primes the autocatalytic nucleation of branched actin at the surface of endosomes. Possible coordination between pushing and pulling forces in the remodeling of endosomal membranes is discussed.
Collapse
Affiliation(s)
- Artem I. Fokin
- Laboratoire de Biologie Structurale de la Cellule, CNRS, Ecole Polytechnique, IP Paris, Palaiseau, France
| | - Alexis M. Gautreau
- Laboratoire de Biologie Structurale de la Cellule, CNRS, Ecole Polytechnique, IP Paris, Palaiseau, France
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| |
Collapse
|
2
|
Wight EM, Ide AD, Damer CK. Copine A regulates the size and exocytosis of contractile vacuoles and postlysosomes in Dictyostelium. FEBS Open Bio 2020; 10:979-994. [PMID: 32351039 PMCID: PMC7262877 DOI: 10.1002/2211-5463.12874] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 04/12/2020] [Accepted: 04/28/2020] [Indexed: 11/10/2022] Open
Abstract
Copines are a family of cytosolic proteins that associate with membranes in a calcium‐dependent manner and are found in many eukaryotic organisms. Dictyostelium discoideum has six copine genes (cpnA‐cpnF), and cells lacking cpnA(cpnA−) have defects in cytokinesis, chemotaxis, adhesion, and development. CpnA has also been shown to associate with the plasma membrane, contractile vacuoles (CV), and organelles of the endolysosomal pathway. Here, we use cpnA− cells to investigate the role of CpnA in CV function and endocytosis. When placed in water, cpnA− cells made abnormally large CVs that took longer to expel. Visualization of CVs with the marker protein GFP‐dajumin indicated that cpnA− cells had fewer CVs that sometimes refilled before complete emptying. In endocytosis assays, cpnA− cells took up small fluorescent beads by macropinocytosis at rates similar to parental cells. However, cpnA− cells reached a plateau sooner than parental cells and had less fluorescence at later time points. p80 antibody labeling of postlysosomes (PL) indicated that there were fewer and smaller PLs in cpnA− cells. In dextran pulse‐chase experiments, the number of PLs peaked earlier in cpnA− cells, and the PLs did not become as large and disappeared sooner as compared to parental cells. PLs in cpnA− cells were also shown to have more actin coats, suggesting CpnA may play a role in actin filament disassembly on PL membranes. Overall, these results indicate that CpnA is involved in the regulation of CV size and expulsion, and the maturation, size, and exocytosis of PLs.
Collapse
Affiliation(s)
- Elise M Wight
- Biology Department, Central Michigan University, Mount Pleasant, MI, USA
| | - Amber D Ide
- Biology Department, Central Michigan University, Mount Pleasant, MI, USA
| | - Cynthia K Damer
- Biology Department, Central Michigan University, Mount Pleasant, MI, USA
| |
Collapse
|
3
|
Wu W, Panté N. Vimentin plays a role in the release of the influenza A viral genome from endosomes. Virology 2016; 497:41-52. [PMID: 27423069 DOI: 10.1016/j.virol.2016.06.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 06/26/2016] [Accepted: 06/27/2016] [Indexed: 12/28/2022]
Abstract
Influenza A virus exploits the subcellular transport machinery during the early stages of infection. Actin filaments and microtubules facilitate the trafficking of virus-containing endosomes towards the perinuclear region; however, the role of vimentin remains to be determined. In this study, we followed influenza A virus infection in vimentin-null cells and found that vimentin depletion severely reduced influenza viral RNA and protein expression, and production of infectious progeny virions. Furthermore, we show that in vimentin-null cells endosomal distribution and acidification were affected, and incoming influenza virions accumulated in late endosomes of these cells. We propose that this accumulation resulted from the impaired acidification of late endosomes in vimentin-null cells, which blocked the release of the viral genome from these organelles. These findings are the first to demonstrate that vimentin is critical for influenza viral infection as it facilitates endosomal trafficking and acidification, and mediates viral genome penetration into the cytoplasm to propagate the infection.
Collapse
Affiliation(s)
- Wei Wu
- Department of Zoology, University of British Columbia, 6270 University Boulevard, Vancouver, British Columbia, Canada V6T 1Z4
| | - Nelly Panté
- Department of Zoology, University of British Columbia, 6270 University Boulevard, Vancouver, British Columbia, Canada V6T 1Z4.
| |
Collapse
|
4
|
Kissmehl R, Sehring IM, Wagner E, Plattner H. Immunolocalization of Actin in Paramecium Cells. J Histochem Cytochem 2016; 52:1543-59. [PMID: 15557210 DOI: 10.1369/jhc.4a6379.2004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have selected a conserved immunogenic region from several actin genes of Paramecium, recently cloned in our laboratory, to prepare antibodies for Western blots and immunolocalization. According to cell fractionation analysis, most actin is structure-bound. Immunofluorescence shows signal enriched in the cell cortex, notably around ciliary basal bodies (identified by anti-centrin antibodies), as well as around the oral cavity, at the cytoproct and in association with vacuoles (phagosomes) up to several μm in size. Subtle strands run throughout the cell body. Postembedding immunogold labeling/EM analysis shows that actin in the cell cortex emanates, together with the infraciliary lattice, from basal bodies to around trichocyst tips. Label was also enriched around vacuoles and vesicles of different size including “discoidal” vesicles that serve the formation of new phagosomes. By all methods used, we show actin in cilia. Although none of the structurally well-defined filament systems in Paramecium are exclusively formed by actin, actin does display some ordered, though not very conspicuous, arrays throughout the cell. F-actin may somehow serve vesicle trafficking and as a cytoplasmic scaffold. This is particularly supported by the postembedding/EM labeling analysis we used, which would hardly allow for any large-scale redistribution during preparation.
Collapse
Affiliation(s)
- Roland Kissmehl
- Department of Biology, University of Konstanz, PO Box 5560, 78457 Konstanz, Germany
| | | | | | | |
Collapse
|
5
|
Griffin P, Furukawa R, Piggott C, Maselli A, Fechheimer M. Requirements for Hirano body formation. EUKARYOTIC CELL 2014; 13:625-34. [PMID: 24632241 PMCID: PMC4060480 DOI: 10.1128/ec.00044-14] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 03/06/2014] [Indexed: 11/20/2022]
Abstract
Hirano bodies are paracrystalline F-actin-rich structures associated with diverse conditions, including neurodegeneration and aging. Generation of model Hirano bodies using altered forms of Dictyostelium 34-kDa actin-bundling protein allows studies of their physiological function and mechanism of formation. We describe a novel 34-kDa protein mutant, E60K, with a point mutation within the inhibitory domain of the 34-kDa protein. Expression of E60K in Dictyostelium induces the formation of model Hirano bodies. The E60K protein has activated actin binding and is calcium regulated, unlike other forms of the 34-kDa protein that induce Hirano bodies and that have activated actin binding but lack calcium regulation. Actin filaments in the presence of E60K in vitro show enhanced resistance to disassembly induced by latrunculin B. Actin filaments in model Hirano bodies are also protected from latrunculin-induced depolymerization. We used nocodazole and blebbistatin to probe the role of the microtubules and myosin II, respectively, in the formation of model Hirano bodies. In the presence of these inhibitors, model Hirano bodies can form but are smaller than controls at early times of formation. The ultrastructure of model Hirano bodies did not reveal any major difference in structure and organization in the presence of inhibitors. In summary, these results support the conclusion that formation of model Hirano bodies is promoted by gain-of-function actin filament bundling, which enhances actin filament stabilization. Microtubules and myosin II contribute to but are not required for formation of model Hirano bodies.
Collapse
Affiliation(s)
- Paul Griffin
- Department of Cellular Biology, University of Georgia, Athens, Georgia, USA
| | - Ruth Furukawa
- Department of Cellular Biology, University of Georgia, Athens, Georgia, USA
| | - Cleveland Piggott
- Department of Cellular Biology, University of Georgia, Athens, Georgia, USA
| | - Andrew Maselli
- Department of Biological Sciences, Chicago State University, Chicago, Illinois, USA
| | - Marcus Fechheimer
- Department of Cellular Biology, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
6
|
Gautreau A, Oguievetskaia K, Ungermann C. Function and regulation of the endosomal fusion and fission machineries. Cold Spring Harb Perspect Biol 2014; 6:6/3/a016832. [PMID: 24591520 DOI: 10.1101/cshperspect.a016832] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Organelles within the endomembrane system are connected via vesicle flux. Along the endocytic pathway, endosomes are among the most versatile organelles. They sort cargo through tubular protrusions for recycling or through intraluminal vesicles for degradation. Sorting involves numerous machineries, which mediate fission of endosomal transport intermediates and fusion with other endosomes or eventually with lysosomes. Here we review the recent advances in our understanding of these processes with a particular focus on the Rab GTPases, tethering factors, and retromer. The cytoskeleton has also been recently recognized as a central player in membrane dynamics of endosomes, and this review covers the regulation of the machineries that govern the formation of branched actin networks through the WASH and Arp2/3 complexes in relation with cargo recycling and endosomal fission.
Collapse
Affiliation(s)
- Alexis Gautreau
- Laboratoire d'Enzymologie et Biochimie Structurales, CNRS UPR3082, 91190 Gif-sur-Yvette, France
| | | | | |
Collapse
|
7
|
Kolonko M, Geffken AC, Blumer T, Hagens K, Schaible UE, Hagedorn M. WASH-driven actin polymerization is required for efficient mycobacterial phagosome maturation arrest. Cell Microbiol 2013; 16:232-46. [PMID: 24119059 DOI: 10.1111/cmi.12217] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 08/21/2013] [Accepted: 09/19/2013] [Indexed: 12/24/2022]
Abstract
Pathogenic mycobacteria survive in phagocytic host cells primarily as a result of their ability to prevent fusion of their vacuole with lysosomes, thereby avoiding a bactericidal environment. The molecular mechanisms to establish and maintain this replication compartment are not well understood. By combining molecular and microscopical approaches we show here that after phagocytosis the actin nucleation-promoting factor WASH associates and generates F-actin on the mycobacterial vacuole. Disruption of WASH or depolymerization of F-actin leads to the accumulation of the proton-pumping V-ATPase around the mycobacterial vacuole, its acidification and reduces the viability of intracellular mycobacteria. This effect is observed for M. marinum in the model phagocyte Dictyostelium but also for M. marinum and M. tuberculosis in mammalian phagocytes. This demonstrates an evolutionarily conserved mechanism by which pathogenic mycobacteria subvert the actin-polymerization activity of WASH to prevent phagosome acidification and maturation, as a prerequisite to generate and maintain a replicative niche.
Collapse
Affiliation(s)
- Margot Kolonko
- Section Parasitology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | | | | | | | | | | |
Collapse
|
8
|
Voltan AR, Sardi JDCO, Soares CP, Pelajo Machado M, Fusco Almeida AM, Mendes-Giannini MJS. Early Endosome Antigen 1 (EEA1) decreases in macrophages infected with Paracoccidioides brasiliensis. Med Mycol 2013; 51:759-64. [PMID: 23566224 DOI: 10.3109/13693786.2013.777859] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Paracoccidioidomycosis (PCM) is a chronic granulomatous disease caused by the dimorphic fungus Paracoccidioides brasiliensis, endemic in Latin America. P. brasiliensis has been observed in epithelial cells in vivo and in vitro, as well as within the macrophages. The identification of the mechanism by which it survives within the host cell is fertile ground for the discovery of its pathogenesis since this organism has the ability to induce its own endocytosis in epithelial cells and most likely in macrophages. The study of the expression of endocytic proteins pathway and co-localization of microorganisms enable detection of the mechanism by which microorganisms survive within the host cell. The aim of this study was to evaluate the expression of the endocytic protein EEA1 (early endosome antigen 1) in macrophages infected with P. brasiliensis. For detection of EEA1, three different techniques were employed: immunofluorescence, real-time polymerase chain reaction (PCR) and immunoblotting. In the present study, decreased expression of EEA1 as well as the rearrangement of the actin was observed when the fungus was internalized, confirming that the input mechanism of the fungus in macrophages occurs through phagocytosis.
Collapse
Affiliation(s)
- Aline Raquel Voltan
- * Faculdade de Ciências Farmacêuticas, UNESP - Univ Estadual Paulista , Araraquara , São Paulo
| | | | | | | | | | | |
Collapse
|
9
|
Li LJ, Ren F, Gao XQ, Wei PC, Wang XC. The reorganization of actin filaments is required for vacuolar fusion of guard cells during stomatal opening in Arabidopsis. PLANT, CELL & ENVIRONMENT 2013; 36:484-97. [PMID: 22891733 DOI: 10.1111/j.1365-3040.2012.02592.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The reorganization of actin filaments (AFs) and vacuoles in guard cells is involved in the regulation of stomatal movement. However, it remains unclear whether there is any interaction between the reorganization of AFs and vacuolar changes during stomatal movement. Here, we report the relationship between the reorganization of AFs and vacuolar fusion revealed in pharmacological experiments, and characterizing stomatal opening in actin-related protein 2 (arp2) and arp3 mutants. Our results show that cytochalasin-D-induced depolymerization or phalloidin-induced stabilization of AFs leads to an increase in small unfused vacuoles during stomatal opening in wild-type (WT) Arabidopsis plants. Light-induced stomatal opening is retarded and vacuolar fusion in guard cells is impaired in the mutants, in which the reorganization and the dynamic parameters of AFs are aberrant compared with those of the WT. In WT, AFs tightly surround the small separated vacuoles, forming a ring that encircles the boundary membranes of vacuoles partly fused during stomatal opening. In contrast, in the mutants, most AFs and actin patches accumulate abnormally around the nuclei of the guard cells, which probably further impair vacuolar fusion and retard stomatal opening. Our results suggest that the reorganization of AFs regulates vacuolar fusion in guard cells during stomatal opening.
Collapse
Affiliation(s)
- Li-Juan Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | | | | | | | | |
Collapse
|
10
|
Paschke P, Pawolleck N, Haenel F, Otto H, Rühling H, Maniak M. The isoform B of the Dictyostelium long-chain fatty-acyl-coenzyme A synthetase is initially inserted into the ER and subsequently provides peroxisomes with an activity important for efficient phagocytosis. Eur J Cell Biol 2012; 91:717-27. [DOI: 10.1016/j.ejcb.2012.03.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Revised: 03/27/2012] [Accepted: 03/29/2012] [Indexed: 11/27/2022] Open
|
11
|
Derivery E, Helfer E, Henriot V, Gautreau A. Actin polymerization controls the organization of WASH domains at the surface of endosomes. PLoS One 2012; 7:e39774. [PMID: 22737254 PMCID: PMC3380866 DOI: 10.1371/journal.pone.0039774] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Accepted: 05/30/2012] [Indexed: 12/24/2022] Open
Abstract
Sorting of cargoes in endosomes occurs through their selective enrichment into sorting platforms, where transport intermediates are generated. The WASH complex, which directly binds to lipids, activates the Arp2/3 complex and hence actin polymerization onto such sorting platforms. Here, we analyzed the role of actin polymerization in the physiology of endosomal domains containing WASH using quantitative image analysis. Actin depolymerization is known to enlarge endosomes. Using a novel colocalization method that is insensitive to the heterogeneity of size and shape of endosomes, we further show that preventing the generation of branched actin networks induces endosomal accumulation of the WASH complex. Moreover, we found that actin depolymerization induces a dramatic decrease in the recovery of endosomal WASH after photobleaching. This result suggests a built-in turnover, where the actin network, i.e. the product of the WASH complex, contributes to the dynamic exchange of the WASH complex by promoting its detachment from endosomes. Our experiments also provide evidence for a role of actin polymerization in the lateral compartmentalization of endosomes: several WASH domains exist at the surface of enlarged endosomes, however, the WASH domains coalesce upon actin depolymerization or Arp2/3 depletion. Branched actin networks are thus involved in the regulation of the size of WASH domains. The potential role of this regulation in membrane scission are discussed.
Collapse
Affiliation(s)
- Emmanuel Derivery
- Laboratoire d'Enzymologie et Biochimie Structurales, CNRS UPR3082, Gif-sur-Yvette, France
| | - Emmanuèle Helfer
- Laboratoire d'Enzymologie et Biochimie Structurales, CNRS UPR3082, Gif-sur-Yvette, France
| | - Véronique Henriot
- Laboratoire d'Enzymologie et Biochimie Structurales, CNRS UPR3082, Gif-sur-Yvette, France
| | - Alexis Gautreau
- Laboratoire d'Enzymologie et Biochimie Structurales, CNRS UPR3082, Gif-sur-Yvette, France
- * E-mail:
| |
Collapse
|
12
|
Carnell M, Zech T, Calaminus SD, Ura S, Hagedorn M, Johnston SA, May RC, Soldati T, Machesky LM, Insall RH. Actin polymerization driven by WASH causes V-ATPase retrieval and vesicle neutralization before exocytosis. ACTA ACUST UNITED AC 2011; 193:831-9. [PMID: 21606208 PMCID: PMC3105540 DOI: 10.1083/jcb.201009119] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
WASH coats mature lysosomes and is required for exocytosis of indigestible material. WASP and SCAR homologue (WASH) is a recently identified and evolutionarily conserved regulator of actin polymerization. In this paper, we show that WASH coats mature Dictyostelium discoideum lysosomes and is essential for exocytosis of indigestible material. A related process, the expulsion of the lethal endosomal pathogen Cryptococcus neoformans from mammalian macrophages, also uses WASH-coated vesicles, and cells expressing dominant negative WASH mutants inefficiently expel C. neoformans. D. discoideum WASH causes filamentous actin (F-actin) patches to form on lysosomes, leading to the removal of vacuolar adenosine triphosphatase (V-ATPase) and the neutralization of lysosomes to form postlysosomes. Without WASH, no patches or coats are formed, neutral postlysosomes are not seen, and indigestible material such as dextran is not exocytosed. Similar results occur when actin polymerization is blocked with latrunculin. V-ATPases are known to bind avidly to F-actin. Our data imply a new mechanism, actin-mediated sorting, in which WASH and the Arp2/3 complex polymerize actin on vesicles to drive the separation and recycling of proteins such as the V-ATPase.
Collapse
Affiliation(s)
- Michael Carnell
- Cancer Research UK Beatson Institute for Cancer Research, Bearsden, Glasgow G61 1BD, Scotland, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Ohashi E, Tanabe K, Henmi Y, Mesaki K, Kobayashi Y, Takei K. Receptor sorting within endosomal trafficking pathway is facilitated by dynamic actin filaments. PLoS One 2011; 6:e19942. [PMID: 21625493 PMCID: PMC3098849 DOI: 10.1371/journal.pone.0019942] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Accepted: 04/06/2011] [Indexed: 12/22/2022] Open
Abstract
Early endosomes (EEs) are known to be a sorting station for internalized molecules destined for degradation, recycling, or other intracellular organelles. Segregation is an essential step in such sorting, but the molecular mechanism of this process remains to be elucidated. Here, we show that actin is required for efficient recycling and endosomal maturation by producing a motile force. Perturbation of actin dynamics by drugs induced a few enlarged EEs containing several degradative vacuoles and also interfered with their transporting ability. Actin repolymerization induced by washout of the drug caused the vacuoles to dissociate and individually translocate toward the perinuclear region. We further elucidated that cortactin, an actin-nucleating factor, was required for transporting contents from within EEs. Actin filaments regulated by cortactin may provide a motile force for efficient sorting within early endosomes. These data suggest that actin filaments coordinate with microtubules to mediate segregation in EEs.
Collapse
Affiliation(s)
- Emiko Ohashi
- Department of Neuroscience, Okayama University Graduate School of
Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kenji Tanabe
- Department of Neuroscience, Okayama University Graduate School of
Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
- * E-mail:
| | - Yuji Henmi
- Department of Neuroscience, Okayama University Graduate School of
Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kumi Mesaki
- Department of Neuroscience, Okayama University Graduate School of
Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yuka Kobayashi
- Department of Neuroscience, Okayama University Graduate School of
Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kohji Takei
- Department of Neuroscience, Okayama University Graduate School of
Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
14
|
Oelkers JM, Vinzenz M, Nemethova M, Jacob S, Lai FPL, Block J, Szczodrak M, Kerkhoff E, Backert S, Schlüter K, Stradal TEB, Small JV, Koestler SA, Rottner K. Microtubules as platforms for assaying actin polymerization in vivo. PLoS One 2011; 6:e19931. [PMID: 21603613 PMCID: PMC3095617 DOI: 10.1371/journal.pone.0019931] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Accepted: 04/21/2011] [Indexed: 11/19/2022] Open
Abstract
The actin cytoskeleton is continuously remodeled through cycles of actin filament assembly and disassembly. Filaments are born through nucleation and shaped into supramolecular structures with various essential functions. These range from contractile and protrusive assemblies in muscle and non-muscle cells to actin filament comets propelling vesicles or pathogens through the cytosol. Although nucleation has been extensively studied using purified proteins in vitro, dissection of the process in cells is complicated by the abundance and molecular complexity of actin filament arrays. We here describe the ectopic nucleation of actin filaments on the surface of microtubules, free of endogenous actin and interfering membrane or lipid. All major mechanisms of actin filament nucleation were recapitulated, including filament assembly induced by Arp2/3 complex, formin and Spir. This novel approach allows systematic dissection of actin nucleation in the cytosol of live cells, its genetic re-engineering as well as screening for new modifiers of the process.
Collapse
Affiliation(s)
- J. Margit Oelkers
- Helmholtz Centre for Infection Research, Braunschweig, Germany
- Institute of Genetics, University of Bonn, Bonn, Germany
| | - Marlene Vinzenz
- Institute of Molecular Biotechnology, Austrian Academy of Sciences, Vienna, Austria
| | - Maria Nemethova
- Institute of Molecular Biotechnology, Austrian Academy of Sciences, Vienna, Austria
| | - Sonja Jacob
- Institute of Molecular Biotechnology, Austrian Academy of Sciences, Vienna, Austria
| | - Frank P. L. Lai
- Helmholtz Centre for Infection Research, Braunschweig, Germany
- Department of Developmental and Regenerative Biology, Institute of Medical Biology, Immunos, Singapore, Singapore
| | - Jennifer Block
- Helmholtz Centre for Infection Research, Braunschweig, Germany
- Institute of Genetics, University of Bonn, Bonn, Germany
| | | | - Eugen Kerkhoff
- Molecular Cell Biology Laboratory, Department of Neurology, Bavarian Genome Research Network, University Hospital Regensburg, Regensburg, Germany
| | - Steffen Backert
- School of Biomolecular and Biomedical Sciences, University College Dublin, Dublin, Ireland
| | - Kai Schlüter
- Helmholtz Centre for Infection Research, Braunschweig, Germany
- Institute for Molecular Cell Biology, University of Münster, Münster, Germany
| | - Theresia E. B. Stradal
- Helmholtz Centre for Infection Research, Braunschweig, Germany
- Institute for Molecular Cell Biology, University of Münster, Münster, Germany
| | - J. Victor Small
- Institute of Molecular Biotechnology, Austrian Academy of Sciences, Vienna, Austria
| | - Stefan A. Koestler
- Helmholtz Centre for Infection Research, Braunschweig, Germany
- Institute of Genetics, University of Bonn, Bonn, Germany
| | - Klemens Rottner
- Helmholtz Centre for Infection Research, Braunschweig, Germany
- Institute of Genetics, University of Bonn, Bonn, Germany
| |
Collapse
|
15
|
Maniak M. Dictyostelium as a model for human lysosomal and trafficking diseases. Semin Cell Dev Biol 2010; 22:114-9. [PMID: 21056680 DOI: 10.1016/j.semcdb.2010.11.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 10/27/2010] [Accepted: 11/01/2010] [Indexed: 11/17/2022]
Abstract
Dictyostelium cells are genetically haploid and therefore easily analyzed for mutant phenotypes. In the past, many tools and molecular markers have been developed for a quantitative and qualitative analysis of the endocytic pathway in these amoebae. This review outlines parallels and discrepancies between mutants in Dictyostelium, the corresponding mammalian cells and the symptoms of human patients affected by lysosomal and trafficking defects. Situations where knowledge from Dictyostelium may potentially help understand human disease and vice versa are also addressed.
Collapse
Affiliation(s)
- Markus Maniak
- Abteilung Zellbiologie, Universität Kassel, Kassel, Germany.
| |
Collapse
|
16
|
The human fungal pathogen Cryptococcus neoformans escapes macrophages by a phagosome emptying mechanism that is inhibited by Arp2/3 complex-mediated actin polymerisation. PLoS Pathog 2010; 6:e1001041. [PMID: 20714349 PMCID: PMC2920849 DOI: 10.1371/journal.ppat.1001041] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Accepted: 07/13/2010] [Indexed: 12/04/2022] Open
Abstract
The lysis of infected cells by disease-causing microorganisms is an efficient but risky strategy for disseminated infection, as it exposes the pathogen to the full repertoire of the host's immune system. Cryptococcus neoformans is a widespread fungal pathogen that causes a fatal meningitis in HIV and other immunocompromised patients. Following intracellular growth, cryptococci are able to escape their host cells by a non-lytic expulsive mechanism that may contribute to the invasion of the central nervous system. Non-lytic escape is also exhibited by some bacterial pathogens and is likely to facilitate long-term avoidance of the host immune system during latency. Here we show that phagosomes containing intracellular cryptococci undergo repeated cycles of actin polymerisation. These actin ‘flashes’ occur in both murine and human macrophages and are dependent on classical WASP-Arp2/3 complex mediated actin filament nucleation. Three dimensional confocal imaging time lapse revealed that such flashes are highly dynamic actin cages that form around the phagosome. Using fluorescent dextran as a phagosome membrane integrity probe, we find that the non-lytic expulsion of Cryptococcus occurs through fusion of the phagosome and plasma membranes and that, prior to expulsion, 95% of phagosomes become permeabilised, an event that is immediately followed by an actin flash. By using pharmacological agents to modulate both actin dynamics and upstream signalling events, we show that flash occurrence is inversely related to cryptococcal expulsion, suggesting that flashes may act to temporarily inhibit expulsion from infected phagocytes. In conclusion, our data reveal the existence of a novel actin-dependent process on phagosomes containing cryptococci that acts as a potential block to expulsion of Cryptococcus and may have significant implications for the dissemination of, and CNS invasion by, this organism. Cryptococcus neoformans is fatal fungal pathogen of HIV-positive and other immunocompromised patients that causes an estimated 650 000 deaths per annum. Cryptococcus is able to undermine our immune system by growing within and escaping from immune cells called macrophages. In this study we describe how macrophage cells may be able to prevent this escape by forming a transient ‘cage’ of the protein actin around the intracellular pathogen. Blocking escape from within the macrophage in this way may help prevent the spread of disease around the body, especially into the brain. Thus actin flashes may represent an important host defence against diverse human pathogens.
Collapse
|
17
|
Liebl D, Griffiths G. Transient assembly of F-actin by phagosomes delays phagosome fusion with lysosomes in cargo-overloaded macrophages. J Cell Sci 2009; 122:2935-45. [PMID: 19638408 DOI: 10.1242/jcs.048355] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Dynamic remodelling of the cortical actin cytoskeleton is required for phagocytic uptake of pathogens and other particles by macrophages. Actin can also be nucleated de novo on membranes of nascent phagosomes, a process that can stimulate or inhibit phagosome fusion with lysosomes. Recently, phagosomes were shown to polymerize actin in transient pulses, called actin ;flashing', whose function remains unexplained. Here, we investigated phagosomal actin dynamics in live macrophages expressing actin tagged with green fluorescent protein (GFP). We show that only immature phagosomes can transiently induce assembly of actin coat, which forms a barrier preventing phagosome-lysosome docking and fusion. The capacity of phagosomes to assemble actin is enhanced in cells exposed to increased phagocytic load, which also exhibit a delay in phagosome maturation. Parallel analysis indicated that polymerization of actin on macropinosomes also induces compression and propulsion. We show that dynamic interactions between membrane elastic tension and compression forces of polymerizing actin can also lead to macropinosome constriction and scission - a process that is obstructed on rigid phagosomes. We hypothesize that the rate of individual phagosome maturation, as well as the biogenesis and remodelling of macropinosomes, can be regulated by the extent and manner of actin assembly on their membrane.
Collapse
Affiliation(s)
- David Liebl
- Cell Biology and Biophysics Unit, EMBL Heidelberg, Meyerhofstrasse 1, 69117 Heidelberg, Germany.
| | | |
Collapse
|
18
|
Schmauch C, Claussner S, Zöltzer H, Maniak M. Targeting the actin-binding protein VASP to late endosomes induces the formation of giant actin aggregates. Eur J Cell Biol 2009; 88:385-96. [DOI: 10.1016/j.ejcb.2009.02.185] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Revised: 02/12/2009] [Accepted: 02/19/2009] [Indexed: 11/24/2022] Open
|
19
|
Charette SJ, Cosson P. Altered Composition and Secretion of Lysosome-Derived Compartments in Dictyostelium AP-3 Mutant Cells. Traffic 2008; 9:588-96. [DOI: 10.1111/j.1600-0854.2008.00706.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
20
|
Endocytosis and the Actin Cytoskeleton in Dictyostelium discoideum. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 267:343-97. [DOI: 10.1016/s1937-6448(08)00633-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
21
|
Schmauch C, Maniak M. Competition between targeting signals in hybrid proteins provides information on their relative in vivo affinities for subcellular compartments. Eur J Cell Biol 2007; 87:57-68. [PMID: 18054409 DOI: 10.1016/j.ejcb.2007.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2007] [Revised: 10/26/2007] [Accepted: 10/26/2007] [Indexed: 11/28/2022] Open
Abstract
After their translation and folding in the cytoplasm, proteins may be imported into an organelle, associate with a membrane, or rather become part of large, highly localised cytoplasmic structures such as the cytoskeleton. The localisation of a protein is governed by the strength of binding to its immediate target, such as an import receptor for an organelle or a major component of the cytoskeleton, e.g. actin. We have experimentally provided a set of actin-binding proteins with competing targeting information and expressed them at various concentrations to analyse the strength of the signal that governs their subcellular localisation. Our microscopic observations indicate that organellar sorting signals override the targeting preference of most cytoskeletal proteins. Among these signals, the nuclear localisation signal of SV40 is strongest, followed by the oligomerised PHB domain that targets vacuolin to the endosomal surface, and finally the tripeptide SKL mediating transport into the peroxisome. The actin-associated protein coronin, however, can only be misled by the nuclear localisation signal. Interestingly, the targeting behaviour of this model set of hybrid proteins in living Dictyostelium amoebae correlates surprisingly well with the affinities of their constituent signals derived from in vitro experiments conducted in various other organisms. Accordingly, this approach allows estimating the in vivo affinity of a protein to its target even if the latter is not known, as in the case of vacuolin.
Collapse
|
22
|
Lladó A, Timpson P, Vilà de Muga S, Moretó J, Pol A, Grewal T, Daly RJ, Enrich C, Tebar F. Protein kinase Cdelta and calmodulin regulate epidermal growth factor receptor recycling from early endosomes through Arp2/3 complex and cortactin. Mol Biol Cell 2007; 19:17-29. [PMID: 17959830 DOI: 10.1091/mbc.e07-05-0411] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The intracellular trafficking of the epidermal growth factor receptor (EGFR) is regulated by a cross-talk between calmodulin (CaM) and protein kinase Cdelta (PKCdelta). On inhibition of CaM, PKCdelta promotes the formation of enlarged early endosomes and blocks EGFR recycling and degradation. Here, we show that PKCdelta impairs EGFR trafficking due to the formation of an F-actin coat surrounding early endosomes. The PKCdelta-induced polymerization of actin is orchestrated by the Arp2/3 complex and requires the interaction of cortactin with PKCdelta. Accordingly, inhibition of actin polymerization by using cytochalasin D or by overexpression of active cofilin, restored the normal morphology of the organelle and the recycling of EGFR. Similar results were obtained after down-regulation of cortactin and the sequestration of the Arp2/3 complex. Furthermore we demonstrate an interaction of cortactin with CaM and PKCdelta, the latter being dependent on CaM inhibition. In summary, this study provides the first evidence that CaM and PKCdelta organize actin dynamics in the early endosomal compartment, thereby regulating the intracellular trafficking of EGFR.
Collapse
Affiliation(s)
- Anna Lladó
- Departament de Biologia Cellular, Facultat de Medicina, Universitat de Barcelona, Casanova 143, 08036-Barcelona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Kaller M, Földesi B, Nellen W. Localization and organization of protein factors involved in chromosome inheritance in Dictyostelium discoideum. Biol Chem 2007; 388:355-65. [PMID: 17391056 DOI: 10.1515/bc.2007.047] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Heterochromatin protein 1 (HP1) proteins are highly conserved heterochromatin components required for genomic integrity. We have previously shown that the two HP1 isoforms expressed in Dictyostelium, HcpA and HcpB, are mainly localized to (peri-)centromeric heterochromatin and have largely overlapping functions. However, they cause distinct phenotypes when overexpressed. We show here that these isoforms display quantitative differences in dimerization behavior. Dimerization preference, as well as the mutant phenotype in overexpression strains, depends on the C-terminus containing the hinge and chromo shadow domains. Both Hcp proteins are targeted to distinct subnuclear regions by different chromo shadow domain-dependent and -independent mechanisms. In addition, both proteins bind to DNA and RNA in vitro and binding is independent of the chromo shadow domain. Thus, this DNA and/or RNA binding activity may contribute to protein targeting. To further characterize heterochromatin, we cloned the Dictyostelium homolog of the origin recognition complex subunit 2 (OrcB). OrcB localizes to distinct subnuclear foci that were also targeted by HcpA. In addition, it is associated with the centrosome throughout the cell cycle. The results indicate that, similar to Orc2 homologs from other organisms, it is required for different processes in chromosome inheritance.
Collapse
Affiliation(s)
- Markus Kaller
- Abteilung Genetik, FB 18, Universität Kassel, Heinrich-Plett-Str. 40., D-34132 Kassel, Germany
| | | | | |
Collapse
|
24
|
Sehring IM, Reiner C, Mansfeld J, Plattner H, Kissmehl R. A broad spectrum of actin paralogs inParamecium tetraureliacells display differential localization and function. J Cell Sci 2007; 120:177-90. [PMID: 17164292 DOI: 10.1242/jcs.03313] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
To localize the different actin paralogs found in Paramecium and to disclose functional implications, we used overexpression of GFP-fusion proteins and antibody labeling, as well as gene silencing. Several isoforms are associated with food vacuoles of different stages. GFP-actin either forms a tail at the lee side of the organelle, or it is vesicle bound in a homogenous or in a speckled arrangement, thus reflecting an actin-based mosaic of the phagosome surface appropriate for association and/or dissociation of other vesicles upon travel through the cell. Several paralogs occur in cilia. A set of actins is found in the cell cortex where actin outlines the regular surface pattern. Labeling of defined structures of the oral cavity is due to other types of actin, whereas yet more types are distributed in a pattern suggesting association with the numerous Golgi fields. A substantial fraction of actins is associated with cytoskeletal elements that are known to be composed of other proteins. Silencing of the respective actin genes or gene subfamilies entails inhibitory effects on organelles compatible with localization studies. Knock down of the actin found in the cleavage furrow abolishes cell division, whereas silencing of other actin genes alters vitality, cell shape and swimming behavior.
Collapse
Affiliation(s)
- Ivonne M Sehring
- Department of Biology, University of Konstanz, P.O. Box 5560, 78457 Konstanz, Germany.
| | | | | | | | | |
Collapse
|
25
|
Ono S. Mechanism of depolymerization and severing of actin filaments and its significance in cytoskeletal dynamics. INTERNATIONAL REVIEW OF CYTOLOGY 2007; 258:1-82. [PMID: 17338919 DOI: 10.1016/s0074-7696(07)58001-0] [Citation(s) in RCA: 212] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The actin cytoskeleton is one of the major structural components of the cell. It often undergoes rapid reorganization and plays crucial roles in a number of dynamic cellular processes, including cell migration, cytokinesis, membrane trafficking, and morphogenesis. Actin monomers are polymerized into filaments under physiological conditions, but spontaneous depolymerization is too slow to maintain the fast actin filament dynamics observed in vivo. Gelsolin, actin-depolymerizing factor (ADF)/cofilin, and several other actin-severing/depolymerizing proteins can enhance disassembly of actin filaments and promote reorganization of the actin cytoskeleton. This review presents advances as well as a historical overview of studies on the biochemical activities and cellular functions of actin-severing/depolymerizing proteins.
Collapse
Affiliation(s)
- Shoichiro Ono
- Department of Pathology, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
26
|
Wienke D, Drengk A, Schmauch C, Jenne N, Maniak M. Vacuolin, a flotillin/reggie-related protein from Dictyostelium oligomerizes for endosome association. Eur J Cell Biol 2006; 85:991-1000. [PMID: 16750281 DOI: 10.1016/j.ejcb.2006.04.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
We have analysed the domain structure of vacuolin, a Dictyostelium protein binding to the cytoplasmic surface of late endosomes. Localisation studies using GFP fusions together with a yeast two-hybrid analysis and co-immunoprecipitation experiments reveal that a region close to the C-terminus mediates oligomer formation of the protein through a coiled-coil mechanism which in turn is a prerequisite for the efficient binding to endosomal membranes via a prohibitin (PHB) domain in the middle of the molecule. Overexpression of the coiled-coil domain strongly competes with endogenous vacuolin in the oligomers and reduces the efficiency of membrane targeting. The domain arrangement of vacuolin is most similar to flotillin/reggie, a protein found on late endosomes of mammalian cells.
Collapse
Affiliation(s)
- Dirk Wienke
- Laboratory for Molecular Cell Biology, University College London, London, UK
| | | | | | | | | |
Collapse
|
27
|
Somesh BP, Neffgen C, Iijima M, Devreotes P, Rivero F. Dictyostelium RacH Regulates Endocytic Vesicular Trafficking and is Required for Localization of Vacuolin. Traffic 2006; 7:1194-212. [PMID: 17004322 DOI: 10.1111/j.1600-0854.2006.00455.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Dictyostelium RacH localizes predominantly to membranes of the nuclear envelope, endoplasmic reticulum and Golgi apparatus. To investigate the role of this protein, we generated knockout and overexpressor strains. RacH-deficient cells displayed 50% reduced fluid-phase uptake and a moderate exocytosis defect, but phagocytosis was unaffected. Detailed examination of the endocytic pathway revealed defective acidification of early endosomes and reduced secretion of acid phosphatase in the presence of sucrose. The distribution of the post-lysosomal marker vacuolin was altered, with a high proportion of cells showing a diffuse vesicular pattern in contrast to the wild-type strain, where few intensely stained vacuoles predominate. Cytokinesis, cell motility, chemotaxis and development appeared largely unaffected. In a cell-free system, RacH stimulates actin polymerization, suggesting that this protein is involved in actin-based trafficking of vesicular compartments. We also investigated the determinants of subcellular localization of RacH by expression of green-fluorescent-protein-tagged chimeras in which the C-terminus of RacH and the plasma-membrane-targeted RacG were exchanged, the insert region was deleted or the net positive charge of the hypervariable region was increased. We show that several regions of the molecule, not only the hypervariable region, determine targeting of RacH. Overexpression of mistargeted RacH mutants did not recapitulate the phenotypes of a strain overexpressing nonmutated RacH, indicating that the function of this protein is in great part related to its subcellular localization.
Collapse
Affiliation(s)
- Baggavalli P Somesh
- Center for Biochemistry, Medical Faculty, University of Cologne, D-50931 Köln, Germany
| | | | | | | | | |
Collapse
|
28
|
Welsch T, Endlich N, Gökce G, Doroshenko E, Simpson JC, Kriz W, Shaw AS, Endlich K. Association of CD2AP with dynamic actin on vesicles in podocytes. Am J Physiol Renal Physiol 2005; 289:F1134-43. [PMID: 15956777 DOI: 10.1152/ajprenal.00178.2005] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The docking protein CD2AP (CD2-associated protein) serves a nonredundant function in podocytes as CD2AP knockout mice die of renal failure at the age of 6-7 wk. Furthermore, haploinsufficiency due to mutation of the CD2AP gene is associated with focal segmental glomerulosclerosis in humans. Although CD2AP has been shown to interact with proteins regulating actin polymerization, with proteins of the slit diaphragm, and with the endocytic machinery, its critical function in podocytes remains unclear. In conditionally immortalized mouse podocytes, we demonstrate that CD2AP colocalizes with cortactin and F-actin in spots of < or =0.5-microm diameter. Confocal time-lapse microscopy in living podocytes expressing GFP-CD2AP or GFP-actin revealed that spots are motile, possess a limited lifetime, and are frequently associated with vesicles. A significant portion of spot-associated vesicles belongs to a later endosomal-sorting compartment, characterized by delayed uptake of fluorescent dextran (10 kDa) and by colocalization with Rab4, but not Rab5 and AP-2. Rapid accumulation of microinjected G-actin in spots and abrogation of spot motility by jasplakinolide demonstrate that spot movements depend on actin polymerization. Furthermore, a high turnover (half-time < 10 s) of CD2AP in spots was demonstrated by FRAP (fluorescence recovery after photobleaching). Our results demonstrate that CD2AP is associated with dynamic actin in a specific late endosomal compartment in podocytes, suggesting that CD2AP might be crucially involved in endosomal sorting and/or trafficking via regulation of actin assembly on vesicles.
Collapse
Affiliation(s)
- Thilo Welsch
- Department of Anatomy and Cell Biology, University of Heidelberg, D-69120 Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Müller I, Subert N, Otto H, Herbst R, Rühling H, Maniak M, Leippe M. A Dictyostelium mutant with reduced lysozyme levels compensates by increased phagocytic activity. J Biol Chem 2005; 280:10435-43. [PMID: 15640146 DOI: 10.1074/jbc.m411445200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lysozymes are bacteria-degrading enzymes and play a major role in the immune defense of animals. In free-living protozoa, lysozyme-like proteins are involved in the digestion of phagocytosed bacteria. Here, we purified a protein with lysozyme activity from Dictyostelium amoebae, which constitutes the founding member, a novel class of lysozymes. By tagging the protein with green fluorescent protein or the Myc epitope, a new type of lysozyme-containing vesicle was identified that was devoid of other known lysosomal enzymes. The most highly expressed isoform, encoded by the alyA gene, was knocked out by homologous recombination. The mutant cells had greatly reduced enzymatic activity and grew inefficiently when bacteria were the sole food source. Over time the mutant gained the ability to internalize bacteria more efficiently, so that the defect in digestion was compensated by increased uptake of food particles.
Collapse
Affiliation(s)
- Iris Müller
- Department of Cell Biology, Kassel University, Heinrich-Plett-Strasse 40, 34132 Kassel, Germany
| | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Hermansky-Pudlak syndrome defines a group of genetic disorders characterized by defects in organelles of the endosomal-lysosomal system, most notably melanosomes and platelet-dense granules. About a dozen genes have been implicated in the pathogenesis of the disease in humans and mice. Most of these genes encode novel polypeptides that are not conserved in unicellular eukaryotes. Recent studies have revealed that these polypeptides are stable components of at least three distinct, ubiquitously expressed protein complexes, named biogenesis of lysosome-related organelles complex (BLOC)-1, -2 and -3. These findings provide a framework for studies on the function of these proteins and the pathogenesis of Hermansky-Pudlak syndrome.
Collapse
Affiliation(s)
- Esteban C Dell'Angelica
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Gonda Center 6357B, Los Angeles, California 90095-7088, USA.
| |
Collapse
|