1
|
Kaneko T, Tanaka S, Sugiyama M, Kaise S, Inui H, Ushida K. The diversity of glycan chains in jellyfish mucin of three Cubozoan species: the contrast in molecular evolution rates of the peptide chain and Glycans. Glycobiology 2025; 35:cwae090. [PMID: 39499653 DOI: 10.1093/glycob/cwae090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 10/08/2024] [Accepted: 11/05/2024] [Indexed: 11/07/2024] Open
Abstract
The O-glycan composition of jellyfish (JF) mucin (qniumucin: Q-mucin) extracted from three Cubozoan species was studied after the optimization of the purification protocol. Application of a stepwise gradient of ionic strength to anion exchange chromatography (AEXC) was effective for isolating Q-mucin from coexisting impurities. In the three species, the amino acid sequence of the tandem repeat (TR) region in Q-mucin in all three Cubozoans seemed to remain the same as that in all Scyphozoans, although their glycan chains seemed to exhibit clear diversity. In particular, the amounts of acidic moieties on the glycan chains of Q-mucin from the Cubozoans markedly varied even in these genetically close species. In two of the three Cubozoan species, the fraction of disaccharides was large, showing a sharp contrast to that of the glycans of Q-mucin in Scyphozoans. This study also indicates that the simple sequence of TR commonly inherited in all Cubozoan and Scyphozoan JF species after the long term of evolution over 500 M years. According to this research, the glycans and the TR of mucin-type glycoproteins (MTGPs), forming a hierarchical structure, appear to complement each other in the evolutionary changes because the time required for their hereditary conversion is considerably different. The cooperation of these mechanisms is a strategy to achieve the contradictory functions of biosystems, namely species conservation and diversity acquisition.
Collapse
Affiliation(s)
- Takuma Kaneko
- Department of Chemistry, School of Science, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0373 Japan
| | - Shinra Tanaka
- Department of Chemistry, School of Science, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0373 Japan
| | - Minami Sugiyama
- Department of Chemistry, School of Science, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0373 Japan
| | - Shiori Kaise
- Department of Chemistry, School of Science, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0373 Japan
| | - Hiroshi Inui
- Department of Chemistry, School of Science, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0373 Japan
| | - Kiminori Ushida
- Department of Chemistry, School of Science, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0373 Japan
- Atomic, Molecular & Optical Physics Laboratory, Riken, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
2
|
Gibu K, Mizusawa N, Iijima M, Ohno Y, Yasumoto J, Yasumoto K, Iguchi A. Polyamine impact on physiology of early stages of reef-building corals-insights from rearing experiments and RNA-Seq analysis. Sci Rep 2024; 14:23465. [PMID: 39379401 PMCID: PMC11461621 DOI: 10.1038/s41598-024-72943-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 09/11/2024] [Indexed: 10/10/2024] Open
Abstract
Polyamines are involved in various functions related to the cellular-level responses. To assess effects of polyamines on marine organisms, rearing experiments and comprehensive gene expression analyses were conducted on Acropora digitifera and Acropora sp.1, representative reef-building corals along the west-central coast of Okinawa, Japan, to evaluate effects of putrescine. Concentrations of putrescine ≥ 1 mM dissolved tissues of juvenile polyps and increased mortality of planula larvae. RNA-Seq analysis of juvenile polyps exposed to putrescine at the stage before effects became visible revealed dynamic fluctuations in gene expression in the putrescine-treated samples, with increased expression of stress-responsive genes (e.g. NAD-dependent protein deacylase sirtuin-6) and the polyamine transporter Slc18b1-like protein. These results also suggest that putrescine affects expression of genes related to ribosomes and translation. This study provides important insights into roles of polyamines and future directions regarding physiological responses of corals.
Collapse
Affiliation(s)
- Kodai Gibu
- Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8567, Japan
- Department of Ecosystem Studies, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, 113-0032, Japan
| | - Nanami Mizusawa
- School of Marine Biosciences, Kitasato University, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa, 252-0373, Japan
| | - Mariko Iijima
- Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8567, Japan
| | - Yoshikazu Ohno
- School of Marine Biosciences, Kitasato University, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa, 252-0373, Japan
| | - Jun Yasumoto
- Faculty of Agriculture, University of the Ryukyus, 1 Senbaru, Nishihara, Nakagusuku, Okinawa, 903-0213, Japan
| | - Ko Yasumoto
- School of Marine Biosciences, Kitasato University, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa, 252-0373, Japan
| | - Akira Iguchi
- Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8567, Japan.
- Research Laboratory On Environmentally-Conscious Developments and Technologies [E-Code], National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, 305-8567, Japan.
| |
Collapse
|
3
|
Bisanti L, La Corte C, Dara M, Bertini F, Parisi MG, Chemello R, Cammarata M, Parrinello D. Global warming-related response after bacterial challenge in Astroides calycularis, a Mediterranean thermophilic coral. Sci Rep 2024; 14:8495. [PMID: 38605161 PMCID: PMC11009343 DOI: 10.1038/s41598-024-58652-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/02/2024] [Indexed: 04/13/2024] Open
Abstract
A worldwide increase in the prevalence of coral diseases and mortality has been linked to ocean warming due to changes in coral-associated bacterial communities, pathogen virulence, and immune system function. In the Mediterranean basin, the worrying upward temperature trend has already caused recurrent mass mortality events in recent decades. To evaluate how elevated seawater temperatures affect the immune response of a thermophilic coral species, colonies of Astroides calycularis were exposed to environmental (23 °C) or elevated (28 °C) temperatures, and subsequently challenged with bacterial lipopolysaccharides (LPS). Using immunolabeling with specific antibodies, we detected the production of Toll-like receptor 4 (TLR4) and nuclear factor kappa B (NF-kB), molecules involved in coral immune responses, and heat shock protein 70 (HSP70) activity, involved in general responses to thermal stress. A histological approach allowed us to characterize the tissue sites of activation (epithelium and/or gastroderm) under different experimental conditions. The activity patterns of the examined markers after 6 h of LPS stimulation revealed an up-modulation at environmental temperature. Under warmer conditions plus LPS-challenge, TLR4-NF-kB activation was almost completely suppressed, while constituent elevated values were recorded under thermal stress only. An HSP70 up-regulation appeared in both treatments at elevated temperature, with a significantly higher activation in LPS-challenge colonies. Such an approach is useful for further understanding the molecular pathogen-defense mechanisms in corals in order to disentangle the complex interactive effects on the health of these ecologically relevant organisms related to global climate change.
Collapse
Affiliation(s)
- L Bisanti
- Department of Earth and Marine Sciences, University of Palermo, 90128, Palermo, Italy
- NBFC, National Biodiversity Future Center, 90133, Palermo, Italy
| | - C La Corte
- Department of Earth and Marine Sciences, University of Palermo, 90128, Palermo, Italy
- NBFC, National Biodiversity Future Center, 90133, Palermo, Italy
| | - M Dara
- Department of Earth and Marine Sciences, University of Palermo, 90128, Palermo, Italy
- NBFC, National Biodiversity Future Center, 90133, Palermo, Italy
| | - F Bertini
- Department of Earth and Marine Sciences, University of Palermo, 90128, Palermo, Italy
- NBFC, National Biodiversity Future Center, 90133, Palermo, Italy
| | - M G Parisi
- Department of Earth and Marine Sciences, University of Palermo, 90128, Palermo, Italy
- NBFC, National Biodiversity Future Center, 90133, Palermo, Italy
| | - R Chemello
- Department of Earth and Marine Sciences, University of Palermo, 90128, Palermo, Italy
- NBFC, National Biodiversity Future Center, 90133, Palermo, Italy
| | - M Cammarata
- Department of Earth and Marine Sciences, University of Palermo, 90128, Palermo, Italy.
- NBFC, National Biodiversity Future Center, 90133, Palermo, Italy.
| | - D Parrinello
- Department of Earth and Marine Sciences, University of Palermo, 90128, Palermo, Italy
- NBFC, National Biodiversity Future Center, 90133, Palermo, Italy
| |
Collapse
|
4
|
Chessel A, De Crozé N, Molina MD, Taberner L, Dru P, Martin L, Lepage T. RAS-independent ERK activation by constitutively active KSR3 in non-chordate metazoa. Nat Commun 2023; 14:3970. [PMID: 37407549 DOI: 10.1038/s41467-023-39606-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 06/21/2023] [Indexed: 07/07/2023] Open
Abstract
During early development of the sea urchin embryo, activation of ERK signalling in mesodermal precursors is not triggered by extracellular RTK ligands but by a cell-autonomous, RAS-independent mechanism that was not understood. We discovered that in these cells, ERK signalling is activated through the transcriptional activation of a gene encoding a protein related to Kinase Suppressor of Ras, that we named KSR3. KSR3 belongs to a family of catalytically inactive allosteric activators of RAF. Phylogenetic analysis revealed that genes encoding kinase defective KSR3 proteins are present in most non-chordate metazoa but have been lost in flies and nematodes. We show that the structure of KSR3 factors resembles that of several oncogenic human RAF mutants and that KSR3 from echinoderms, cnidarians and hemichordates activate ERK signalling independently of RAS when overexpressed in cultured cells. Finally, we used the sequence of KSR3 factors to identify activating mutations of human B-RAF. These findings reveal key functions for this family of factors as activators of RAF in RAS-independent ERK signalling in invertebrates. They have implications on the evolution of the ERK signalling pathway and suggest a mechanism for its co-option in the course of evolution.
Collapse
Affiliation(s)
- Aline Chessel
- Institut de Biologie Valrose CNRS, Université Côte d'Azur, Nice, France
| | - Noémie De Crozé
- Institut de Biologie Valrose CNRS, Université Côte d'Azur, Nice, France
| | - Maria Dolores Molina
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Catalonia, Spain
| | - Laura Taberner
- Institut de Biologie Valrose CNRS, Université Côte d'Azur, Nice, France
| | - Philippe Dru
- CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Institut de la Mer de Villefranche, 181 Chemin du Lazaret, 06230, Villefranche-sur-Mer, France
| | - Luc Martin
- Institut de Biologie Valrose CNRS, Université Côte d'Azur, Nice, France
| | - Thierry Lepage
- Institut de Biologie Valrose CNRS, Université Côte d'Azur, Nice, France.
| |
Collapse
|
5
|
Joglekar I, Clark AC. Sequential Unfolding Mechanisms of Monomeric Caspases. Biochemistry 2023; 62:1878-1889. [PMID: 37337671 DOI: 10.1021/acs.biochem.3c00004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Caspases are evolutionarily conserved cysteinyl proteases that are integral in cell development and apoptosis. All apoptotic caspases evolved from a common ancestor into two distinct subfamilies with either monomeric (initiators) or dimeric (effectors) oligomeric states. The regulation of apoptosis is influenced by the activation mechanism of the two subfamilies, but the evolution of the well-conserved caspase-hemoglobinase fold into the two subfamilies is not well understood. We examined the folding landscape of monomeric caspases from two coral species over a broad pH range of 3-10.5. On an evolutionary timescale, the two coral caspases diverged from each other approximately 300 million years ago, and they diverged from human caspases about 600 million years ago. Our results indicate that both proteins have overall high stability, ∼15 kcal mol-1, near the physiological pH range (pH 6-8) and unfold via two partially folded intermediates, I1 and I2*, that are in equilibrium with the native and the unfolded state. Like the dimeric caspases, the monomeric coral caspases undergo a pH-dependent conformational change resulting from the titration of an evolutionarily conserved site. Data from molecular dynamics simulations paired with limited proteolysis and MALDI-TOF mass spectrometry show that the small subunit of the monomeric caspases is unstable and unfolds prior to the large subunit. Overall, the data suggest that all caspases share a conserved folding landscape, that a conserved allosteric site can be fine-tuned for species-specific regulation, and that the subfamily of stable dimers may have evolved to stabilize the small subunit.
Collapse
Affiliation(s)
- Isha Joglekar
- Department of Biology, University of Texas at Arlington, Arlington, Texas 76019, United States
| | - A Clay Clark
- Department of Biology, University of Texas at Arlington, Arlington, Texas 76019, United States
| |
Collapse
|
6
|
Zhang Y, Zhou Y, Kan D, Yang Y, Shen J, Han C, Liu X, Yang J. m6A-mediated nonhomologous end joining (NHEJ) pathway regulates senescence in Brachionus plicatilis (Rotifera). Arch Gerontol Geriatr 2023; 111:104994. [PMID: 36963346 DOI: 10.1016/j.archger.2023.104994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/23/2023] [Accepted: 03/06/2023] [Indexed: 03/14/2023]
Abstract
Epigenetic modifications play an important role in the regulation of senescence. N6-methyladenosine (m6A) is the most abundant modification of mRNA. However, the impact of m6A on senescence remains largely unknown at the animal individual level. Standard model organisms Caenorhabditis elegans and Drosophila melanogaster lack many gene homologs of vertebrate m6A system that are present in other invertebrates. In this study, we employed a small aquatic invertebrate Brachionus plicatilis which has been used in aging studies for nearly 100 years to study how m6A affects aging. Phylogenetic analysis confirmed that rotifers' m6A pathway has a conserved methyltransferase complex but no demethylases and the m6A reading system was more akin to that of vertebrates than that of D. melanogaster. m6A methyltransferases are highly expressed during development but reduces dramatically during aging. Knockdown of METTL3 results in decreased fecundity and premature senescence of rotifers. Furthermore, RT-qPCR analysis indicates a role for m6A in the nonhomologous end joining (NHEJ) pathway of DNA double-strand breaks (DSBs) repair. Altogether, our work reveals a senescence regulatory model for the rotifer METTL3-m6A-NHEJ pathway.
Collapse
Affiliation(s)
- Yu Zhang
- School of Marine Science and Engineering, Nanjing Normal University, No. 2 Xuelin Rd, Nanjing 210023, People's Republic of China
| | - Yang Zhou
- School of Marine Science and Engineering, Nanjing Normal University, No. 2 Xuelin Rd, Nanjing 210023, People's Republic of China
| | - Dongqi Kan
- School of Marine Science and Engineering, Nanjing Normal University, No. 2 Xuelin Rd, Nanjing 210023, People's Republic of China
| | - Yunhong Yang
- School of Marine Science and Engineering, Nanjing Normal University, No. 2 Xuelin Rd, Nanjing 210023, People's Republic of China
| | - Jing Shen
- School of Marine Science and Engineering, Nanjing Normal University, No. 2 Xuelin Rd, Nanjing 210023, People's Republic of China
| | - Cui Han
- School of Marine Science and Engineering, Nanjing Normal University, No. 2 Xuelin Rd, Nanjing 210023, People's Republic of China
| | - Xiaojie Liu
- School of Marine Science and Engineering, Nanjing Normal University, No. 2 Xuelin Rd, Nanjing 210023, People's Republic of China
| | - Jiaxin Yang
- School of Marine Science and Engineering, Nanjing Normal University, No. 2 Xuelin Rd, Nanjing 210023, People's Republic of China.
| |
Collapse
|
7
|
Kumar L, Brenner N, Sledzieski S, Olaosebikan M, Roger LM, Lynn-Goin M, Klein-Seetharaman R, Berger B, Putnam H, Yang J, Lewinski NA, Singh R, Daniels NM, Cowen L, Klein-Seetharaman J. Transfer of knowledge from model organisms to evolutionarily distant non-model organisms: The coral Pocillopora damicornis membrane signaling receptome. PLoS One 2023; 18:e0270965. [PMID: 36735673 PMCID: PMC9897584 DOI: 10.1371/journal.pone.0270965] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 06/21/2022] [Indexed: 02/04/2023] Open
Abstract
With the ease of gene sequencing and the technology available to study and manipulate non-model organisms, the extension of the methodological toolbox required to translate our understanding of model organisms to non-model organisms has become an urgent problem. For example, mining of large coral and their symbiont sequence data is a challenge, but also provides an opportunity for understanding functionality and evolution of these and other non-model organisms. Much more information than for any other eukaryotic species is available for humans, especially related to signal transduction and diseases. However, the coral cnidarian host and human have diverged over 700 million years ago and homologies between proteins in the two species are therefore often in the gray zone, or at least often undetectable with traditional BLAST searches. We introduce a two-stage approach to identifying putative coral homologues of human proteins. First, through remote homology detection using Hidden Markov Models, we identify candidate human homologues in the cnidarian genome. However, for many proteins, the human genome alone contains multiple family members with similar or even more divergence in sequence. In the second stage, therefore, we filter the remote homology results based on the functional and structural plausibility of each coral candidate, shortlisting the coral proteins likely to have conserved some of the functions of the human proteins. We demonstrate our approach with a pipeline for mapping membrane receptors in humans to membrane receptors in corals, with specific focus on the stony coral, P. damicornis. More than 1000 human membrane receptors mapped to 335 coral receptors, including 151 G protein coupled receptors (GPCRs). To validate specific sub-families, we chose opsin proteins, representative GPCRs that confer light sensitivity, and Toll-like receptors, representative non-GPCRs, which function in the immune response, and their ability to communicate with microorganisms. Through detailed structure-function analysis of their ligand-binding pockets and downstream signaling cascades, we selected those candidate remote homologues likely to carry out related functions in the corals. This pipeline may prove generally useful for other non-model organisms, such as to support the growing field of synthetic biology.
Collapse
Affiliation(s)
- Lokender Kumar
- Department of Chemistry, Colorado School of Mines, Golden, CO, United States of America
| | - Nathanael Brenner
- Department of Chemistry, Colorado School of Mines, Golden, CO, United States of America
| | - Samuel Sledzieski
- MIT Computer Science & Artificial Intelligence Lab, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| | - Monsurat Olaosebikan
- Department of Computer Science, Tufts University, Medford, MA, United States of America
| | - Liza M. Roger
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Matthew Lynn-Goin
- Department of Chemistry, Colorado School of Mines, Golden, CO, United States of America
| | | | - Bonnie Berger
- MIT Computer Science & Artificial Intelligence Lab, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| | - Hollie Putnam
- Department of Biological Sciences, University of Rhode Island, South Kingstown, RI, United States of America
| | - Jinkyu Yang
- Department of Department of Aeronautics & Astronautics, University of Washington, Seattle, WA, United States of America
| | - Nastassja A. Lewinski
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Rohit Singh
- MIT Computer Science & Artificial Intelligence Lab, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| | - Noah M. Daniels
- Department of Computer Science and Statistics, University of Rhode Island, South Kingstown, RI, United States of America
| | - Lenore Cowen
- Department of Computer Science, Tufts University, Medford, MA, United States of America
| | - Judith Klein-Seetharaman
- Department of Chemistry, Colorado School of Mines, Golden, CO, United States of America
- * E-mail:
| |
Collapse
|
8
|
Joglekar I, Clark AC. Sequential unfolding mechanisms of monomeric caspases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.04.522771. [PMID: 36711547 PMCID: PMC9881926 DOI: 10.1101/2023.01.04.522771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Caspases are evolutionarily conserved cysteinyl proteases that are integral in cell development and apoptosis. All apoptotic caspases evolved from a common ancestor into two distinct subfamilies with either monomeric (initiators) or dimeric (effectors) oligomeric states. The regulation of apoptosis is influenced by the activation mechanism of the two subfamilies, but the evolution of the well-conserved caspase-hemoglobinase fold into the two subfamilies is not well understood. We examined the folding landscape of monomeric caspases from two coral species over a broad pH range of 3 to 10.5. On an evolutionary timescale, the two coral caspases diverged from each other approximately 300 million years ago, and they diverged from human caspases about 600 million years ago. Our results indicate that both proteins have overall high stability, ∼ 15 kcal mol -1 near the physiological pH range (pH 6 to pH 8), and unfold via two partially folded intermediates, I 1 and I 2 , that are in equilibrium with the native and the unfolded state. Like the dimeric caspases, the monomeric coral caspases undergo a pH-dependent conformational change resulting from the titration of an evolutionarily conserved site. Data from molecular dynamics simulations paired with limited proteolysis and MALDI-TOF mass spectrometry show that the small subunit of the monomeric caspases is unstable and unfolds prior to the large subunit. Overall, the data suggest that all caspases share a conserved folding landscape, that a conserved allosteric site can be fine-tuned for species-specific regulation, and that the subfamily of stable dimers may have evolved to stabilize the small subunit.
Collapse
Affiliation(s)
- Isha Joglekar
- Department of Biology, University of Texas at Arlington, Arlington, Texas, 76019
| | - A. Clay Clark
- Department of Biology, University of Texas at Arlington, Arlington, Texas, 76019,Corresponding author: A. Clay Clark,
| |
Collapse
|
9
|
Suraweera CD, Banjara S, Hinds MG, Kvansakul M. Metazoans and Intrinsic Apoptosis: An Evolutionary Analysis of the Bcl-2 Family. Int J Mol Sci 2022; 23:ijms23073691. [PMID: 35409052 PMCID: PMC8998228 DOI: 10.3390/ijms23073691] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 01/12/2023] Open
Abstract
The B-cell lymphoma-2 (Bcl-2) family is a group of genes regulating intrinsic apoptosis, a process controlling events such as development, homeostasis and the innate and adaptive immune responses in metazoans. In higher organisms, Bcl-2 proteins coordinate intrinsic apoptosis through their regulation of the integrity of the mitochondrial outer membrane; this function appears to have originated in the basal metazoans. Bcl-2 genes predate the cnidarian-bilaterian split and have been identified in porifera, placozoans and cnidarians but not ctenophores and some nematodes. The Bcl-2 family is composed of two groups of proteins, one with an α-helical Bcl-2 fold that has been identified in porifera, placozoans, cnidarians, and almost all higher bilaterians. The second group of proteins, the BH3-only group, has little sequence conservation and less well-defined structures and is found in cnidarians and most bilaterians, but not porifera or placozoans. Here we examine the evolutionary relationships between Bcl-2 proteins. We show that the structures of the Bcl-2-fold proteins are highly conserved over evolutionary time. Some metazoans such as the urochordate Oikopleura dioica have lost all Bcl-2 family members. This gene loss indicates that Bcl-2 regulated apoptosis is not an absolute requirement in metazoans, a finding mirrored in recent gene deletion studies in mice. Sequence analysis suggests that at least some Bcl-2 proteins lack the ability to bind BH3-only antagonists and therefore potentially have other non-apoptotic functions. By examining the foundations of the Bcl-2 regulated apoptosis, functional relationships may be clarified that allow us to understand the role of specific Bcl-2 proteins in evolution and disease.
Collapse
Affiliation(s)
- Chathura D. Suraweera
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3086, Australia; (C.D.S.); (S.B.)
| | - Suresh Banjara
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3086, Australia; (C.D.S.); (S.B.)
| | - Mark G. Hinds
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3052, Australia
- Correspondence: (M.G.H.); (M.K.)
| | - Marc Kvansakul
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3086, Australia; (C.D.S.); (S.B.)
- Correspondence: (M.G.H.); (M.K.)
| |
Collapse
|
10
|
A comparative genomic approach using mouse and fruit fly data to discover genes involved in testis function in hymenopterans with a focus on Nasonia vitripennis. BMC Ecol Evol 2021; 21:90. [PMID: 34011283 PMCID: PMC8132408 DOI: 10.1186/s12862-021-01825-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 05/12/2021] [Indexed: 11/18/2022] Open
Abstract
Background Spermatogenesis appears to be a relatively well-conserved process even among distantly related animal taxa such as invertebrates and vertebrates. Although Hymenopterans share many characteristics with other organisms, their complex haplodiploid reproduction system is still relatively unknown. However, they serve as a complementary insect model to Drosophila for studying functional male fertility. In this study, we used a comparative method combining taxonomic, phenotypic data and gene expression to identify candidate genes that could play a significant role in spermatogenesis in hymenopterans. Results Of the 546 mouse genes predominantly or exclusively expressed in the mouse testes, 36% had at least one ortholog in the fruit fly. Of these genes, 68% had at least one ortholog in one of the six hymenopteran species we examined. Based on their gene expression profiles in fruit fly testes, 71 of these genes were hypothesized to play a marked role in testis function. Forty-three of these 71 genes had an ortholog in at least one of the six hymenopteran species examined, and their enriched GO terms were related to the G2/M transition or to cilium organization, assembly, or movement. Second, of the 379 genes putatively involved in male fertility in Drosophila, 224 had at least one ortholog in each of the six Hymenoptera species. Finally, we showed that 199 of these genes were expressed in early pupal testis in Nasonia vitripennis; 86 exhibited a high level of expression, and 54 displayed modulated expression during meiosis. Conclusions In this study combining phylogenetic and experimental approaches, we highlighted genes that may have a major role in gametogenesis in hymenopterans; an essential prerequisite for further research on functional importance of these genes. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-021-01825-6.
Collapse
|
11
|
Barve A, Galande AA, Ghaskadbi SS, Ghaskadbi S. DNA Repair Repertoire of the Enigmatic Hydra. Front Genet 2021; 12:670695. [PMID: 33995496 PMCID: PMC8117345 DOI: 10.3389/fgene.2021.670695] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/12/2021] [Indexed: 12/20/2022] Open
Abstract
Since its discovery by Abraham Trembley in 1744, hydra has been a popular research organism. Features like spectacular regeneration capacity, peculiar tissue dynamics, continuous pattern formation, unique evolutionary position, and an apparent lack of organismal senescence make hydra an intriguing animal to study. While a large body of work has taken place, particularly in the domain of evolutionary developmental biology of hydra, in recent years, the focus has shifted to molecular mechanisms underlying various phenomena. DNA repair is a fundamental cellular process that helps to maintain integrity of the genome through multiple repair pathways found across taxa, from archaea to higher animals. DNA repair capacity and senescence are known to be closely associated, with mutations in several repair pathways leading to premature ageing phenotypes. Analysis of DNA repair in an animal like hydra could offer clues into several aspects including hydra’s purported lack of organismal ageing, evolution of DNA repair systems in metazoa, and alternative functions of repair proteins. We review here the different DNA repair mechanisms known so far in hydra. Hydra genes from various DNA repair pathways show very high similarity with their vertebrate orthologues, indicating conservation at the level of sequence, structure, and function. Notably, most hydra repair genes are more similar to deuterostome counterparts than to common model invertebrates, hinting at ancient evolutionary origins of repair pathways and further highlighting the relevance of organisms like hydra as model systems. It appears that hydra has the full repertoire of DNA repair pathways, which are employed in stress as well as normal physiological conditions and may have a link with its observed lack of senescence. The close correspondence of hydra repair genes with higher vertebrates further demonstrates the need for deeper studies of various repair components, their interconnections, and functions in this early metazoan.
Collapse
Affiliation(s)
- Apurva Barve
- Developmental Biology Group, MACS-Agharkar Research Institute, Pune, India.,Centre of Excellence in Science and Mathematics Education, Indian Institute of Science Education and Research (IISER), Pune, India
| | - Alisha A Galande
- Developmental Biology Group, MACS-Agharkar Research Institute, Pune, India
| | - Saroj S Ghaskadbi
- Department of Zoology, Savitribai Phule Pune University, Pune, India
| | - Surendra Ghaskadbi
- Developmental Biology Group, MACS-Agharkar Research Institute, Pune, India
| |
Collapse
|
12
|
Gribble KE. Brachionus rotifers as a model for investigating dietary and metabolic regulators of aging. ACTA ACUST UNITED AC 2021; 6:1-15. [PMID: 33709041 PMCID: PMC7903245 DOI: 10.3233/nha-200104] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Because every species has unique attributes relevant to understanding specific aspects of aging, using a diversity of study systems and a comparative biology approach for aging research has the potential to lead to novel discoveries applicable to human health. Monogonont rotifers, a standard model for studies of aquatic ecology, evolutionary biology, and ecotoxicology, have also been used to study lifespan and healthspan for nearly a century. However, because much of this work has been published in the ecology and evolutionary biology literature, it may not be known to the biomedical research community. In this review, we provide an overview of Brachionus rotifers as a model to investigate nutritional and metabolic regulators of aging, with a focus on recent studies of dietary and metabolic pathway manipulation. Rotifers are microscopic, aquatic invertebrates with many advantages as a system for studying aging, including a two-week lifespan, easy laboratory culture, direct development without a larval stage, sexual and asexual reproduction, easy delivery of pharmaceuticals in liquid culture, and transparency allowing imaging of cellular morphology and processes. Rotifers have greater gene homology with humans than do established invertebrate models for aging, and thus rotifers may be used to investigate novel genetic mechanisms relevant to human lifespan and healthspan. The research on caloric restriction; dietary, pharmaceutical, and genetic interventions; and transcriptomics of aging using rotifers provide insights into the metabolic regulators of lifespan and health and suggest future directions for aging research. Capitalizing on the unique biology of Brachionus rotifers, referencing the vast existing literature about the influence of diet and drugs on rotifer lifespan and health, continuing the development of genetic tools for rotifers, and growing the rotifer research community will lead to new discoveries a better understanding of the biology of aging.
Collapse
|
13
|
Suknovic N, Tomczyk S, Colevret D, Perruchoud C, Galliot B. The ULK1 kinase, a necessary component of the pro-regenerative and anti-aging machinery in Hydra. Mech Ageing Dev 2020; 194:111414. [PMID: 33338499 DOI: 10.1016/j.mad.2020.111414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 10/22/2022]
Abstract
Hydra vulgaris (Hv) has a high regenerative potential and negligible senescence, as its stem cell populations divide continuously. In contrast, the cold-sensitive H. oligactis (Ho_CS) rapidly develop an aging phenotype under stress, with epithelial stem cells deficient for autophagy, unable to maintain their self-renewal. Here we tested in aging, non-aging and regenerating Hydra the activity and regulation of the ULK1 kinase involved in autophagosome formation. In vitro kinase assays show that human ULK1 activity is activated by Hv extracts but repressed by Ho_CS extracts, reflecting the ability or inability of their respective epithelial cells to initiate autophagosome formation. The factors that keep ULK1 inactive in Ho_CS remain uncharacterized. Hv_Basel1 animals exposed to the ULK1 inhibitor SBI-0206965 no longer regenerate their head, indicating that the sustained autophagy flux recorded in regenerating Hv_AEP2 transgenic animals expressing the DsRed-GFP-LC3A autophagy tandem sensor is necessary. The SBI-0206965 treatment also alters the contractility of intact Hv_Basel1 animals, and leads to a progressive reduction of animal size in Hv_AEP2, similarly to what is observed in ULK1(RNAi) animals. We conclude that the evolutionarily-conserved role of ULK1 in autophagy initiation is crucial to maintain a dynamic homeostasis in Hydra, which supports regeneration efficiency and prevents aging.
Collapse
Affiliation(s)
- Nenad Suknovic
- Department of Genetics and Evolution, Institute of Genetics and Genomics in Geneva (iGE3), Faculty of Sciences, University of Geneva, 30 Quai Ernest Ansermet, CH-1211, Geneva 4, Switzerland
| | - Szymon Tomczyk
- Department of Genetics and Evolution, Institute of Genetics and Genomics in Geneva (iGE3), Faculty of Sciences, University of Geneva, 30 Quai Ernest Ansermet, CH-1211, Geneva 4, Switzerland
| | - Delphine Colevret
- Department of Genetics and Evolution, Institute of Genetics and Genomics in Geneva (iGE3), Faculty of Sciences, University of Geneva, 30 Quai Ernest Ansermet, CH-1211, Geneva 4, Switzerland
| | - Chrystelle Perruchoud
- Department of Genetics and Evolution, Institute of Genetics and Genomics in Geneva (iGE3), Faculty of Sciences, University of Geneva, 30 Quai Ernest Ansermet, CH-1211, Geneva 4, Switzerland
| | - Brigitte Galliot
- Department of Genetics and Evolution, Institute of Genetics and Genomics in Geneva (iGE3), Faculty of Sciences, University of Geneva, 30 Quai Ernest Ansermet, CH-1211, Geneva 4, Switzerland.
| |
Collapse
|
14
|
Shrestha S, Tung J, Grinshpon RD, Swartz P, Hamilton PT, Dimos B, Mydlarz L, Clark AC. Caspases from scleractinian coral show unique regulatory features. J Biol Chem 2020; 295:14578-14591. [PMID: 32788218 PMCID: PMC7586219 DOI: 10.1074/jbc.ra120.014345] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/04/2020] [Indexed: 12/11/2022] Open
Abstract
Coral reefs are experiencing precipitous declines around the globe with coral diseases and temperature-induced bleaching being primary drivers of these declines. Regulation of apoptotic cell death is an important component in the coral stress response. Although cnidaria are known to contain complex apoptotic signaling pathways, similar to those in vertebrates, the mechanisms leading to cell death are largely unexplored. We identified and characterized two caspases each from Orbicella faveolata, a disease-sensitive reef-building coral, and Porites astreoides, a disease-resistant reef-building coral. The caspases are predicted homologs of the human executioner caspases-3 and -7, but OfCasp3a (Orbicella faveolata caspase-3a) and PaCasp7a (Porites astreoides caspase-7a), which we show to be DXXDases, contain an N-terminal caspase activation/recruitment domain (CARD) similar to human initiator/inflammatory caspases. OfCasp3b (Orbicella faveolata caspase-3b) and PaCasp3 (Porites astreoides caspase-3), which we show to be VXXDases, have short pro-domains, like human executioner caspases. Our biochemical analyses suggest a mechanism in coral which differs from that of humans, where the CARD-containing DXXDase is activated on death platforms but the protease does not directly activate the VXXDase. The first X-ray crystal structure of a coral caspase, of PaCasp7a determined at 1.57 Å resolution, reveals a conserved fold and an N-terminal peptide bound near the active site that may serve as a regulatory exosite. The binding pocket has been observed in initiator caspases of other species. These results suggest mechanisms for the evolution of substrate selection while maintaining common activation mechanisms of CARD-mediated dimerization.
Collapse
Affiliation(s)
- Suman Shrestha
- Department of Biology, University of Texas at Arlington, Arlington, Texas, USA
| | - Jessica Tung
- Department of Biology, University of Texas at Arlington, Arlington, Texas, USA
| | - Robert D Grinshpon
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina, USA
| | - Paul Swartz
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina, USA
| | - Paul T Hamilton
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, USA
| | - Bradford Dimos
- Department of Biology, University of Texas at Arlington, Arlington, Texas, USA
| | - Laura Mydlarz
- Department of Biology, University of Texas at Arlington, Arlington, Texas, USA
| | - A Clay Clark
- Department of Biology, University of Texas at Arlington, Arlington, Texas, USA.
| |
Collapse
|
15
|
Chiu YL, Shikina S, Yoshioka Y, Shinzato C, Chang CF. De novo transcriptome assembly from the gonads of a scleractinian coral, Euphyllia ancora: molecular mechanisms underlying scleractinian gametogenesis. BMC Genomics 2020; 21:732. [PMID: 33087060 PMCID: PMC7579821 DOI: 10.1186/s12864-020-07113-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/29/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Sexual reproduction of scleractinians has captured the attention of researchers and the general public for decades. Although extensive ecological data has been acquired, underlying molecular and cellular mechanisms remain largely unknown. In this study, to better understand mechanisms underlying gametogenesis, we isolated ovaries and testes at different developmental phases from a gonochoric coral, Euphyllia ancora, and adopted a transcriptomic approach to reveal sex- and phase-specific gene expression profiles. In particular, we explored genes associated with oocyte development and maturation, spermiogenesis, sperm motility / capacitation, and fertilization. RESULTS 1.6 billion raw reads were obtained from 24 gonadal samples. De novo assembly of trimmed reads, and elimination of contigs derived from symbiotic dinoflagellates (Symbiodiniaceae) and other organisms yielded a reference E. ancora gonadal transcriptome of 35,802 contigs. Analysis of 4 developmental phases identified 2023 genes that were differentially expressed during oogenesis and 678 during spermatogenesis. In premature/mature ovaries, 631 genes were specifically upregulated, with 538 in mature testes. Upregulated genes included those involved in gametogenesis, gamete maturation, sperm motility / capacitation, and fertilization in other metazoans, including humans. Meanwhile, a large number of genes without homology to sequences in the SWISS-PROT database were also observed among upregulated genes in premature / mature ovaries and mature testes. CONCLUSIONS Our findings show that scleractinian gametogenesis shares many molecular characteristics with that of other metazoans, but it also possesses unique characteristics developed during cnidarian and/or scleractinian evolution. To the best of our knowledge, this study is the first to create a gonadal transcriptome assembly from any scleractinian. This study and associated datasets provide a foundation for future studies regarding gametogenesis and differences between male and female colonies from molecular and cellular perspectives. Furthermore, our transcriptome assembly will be a useful reference for future development of sex-specific and/or stage-specific germ cell markers that can be used in coral aquaculture and ecological studies.
Collapse
Affiliation(s)
- Yi-Ling Chiu
- Doctoral Program in Marine Biotechnology, National Taiwan Ocean University, Keelung, 20224, Taiwan.,Doctoral Program in Marine Biotechnology, Academia Sinica, Taipei, 11529, Taiwan
| | - Shinya Shikina
- Institute of Marine Environment and Ecology, National Taiwan Ocean University, Keelung, Taiwan. .,Center of Excellence for the Oceans, National Taiwan Ocean University, 2 Pei-Ning Rd, Keelung, 20224, Taiwan.
| | - Yuki Yoshioka
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, 277-8564, Japan
| | - Chuya Shinzato
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, 277-8564, Japan.
| | - Ching-Fong Chang
- Center of Excellence for the Oceans, National Taiwan Ocean University, 2 Pei-Ning Rd, Keelung, 20224, Taiwan. .,Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan.
| |
Collapse
|
16
|
Parisi MG, Parrinello D, Stabili L, Cammarata M. Cnidarian Immunity and the Repertoire of Defense Mechanisms in Anthozoans. BIOLOGY 2020; 9:E283. [PMID: 32932829 PMCID: PMC7563517 DOI: 10.3390/biology9090283] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/04/2020] [Accepted: 09/04/2020] [Indexed: 02/07/2023]
Abstract
Anthozoa is the most specious class of the phylum Cnidaria that is phylogenetically basal within the Metazoa. It is an interesting group for studying the evolution of mutualisms and immunity, for despite their morphological simplicity, Anthozoans are unexpectedly immunologically complex, with large genomes and gene families similar to those of the Bilateria. Evidence indicates that the Anthozoan innate immune system is not only involved in the disruption of harmful microorganisms, but is also crucial in structuring tissue-associated microbial communities that are essential components of the cnidarian holobiont and useful to the animal's health for several functions including metabolism, immune defense, development, and behavior. Here, we report on the current state of the art of Anthozoan immunity. Like other invertebrates, Anthozoans possess immune mechanisms based on self/non-self-recognition. Although lacking adaptive immunity, they use a diverse repertoire of immune receptor signaling pathways (PRRs) to recognize a broad array of conserved microorganism-associated molecular patterns (MAMP). The intracellular signaling cascades lead to gene transcription up to endpoints of release of molecules that kill the pathogens, defend the self by maintaining homeostasis, and modulate the wound repair process. The cells play a fundamental role in immunity, as they display phagocytic activities and secrete mucus, which acts as a physicochemical barrier preventing or slowing down the proliferation of potential invaders. Finally, we describe the current state of knowledge of some immune effectors in Anthozoan species, including the potential role of toxins and the inflammatory response in the Mediterranean Anthozoan Anemonia viridis following injection of various foreign particles differing in type and dimensions, including pathogenetic bacteria.
Collapse
Affiliation(s)
- Maria Giovanna Parisi
- Department of Earth and Marine Sciences, University of Palermo, 90128 Palermo, Italy;
| | - Daniela Parrinello
- Department of Earth and Marine Sciences, University of Palermo, 90128 Palermo, Italy;
| | - Loredana Stabili
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy;
| | - Matteo Cammarata
- Department of Earth and Marine Sciences, University of Palermo, 90128 Palermo, Italy;
| |
Collapse
|
17
|
da Cruz I, Brochier-Armanet C, Benavente R. The TERB1-TERB2-MAJIN complex of mouse meiotic telomeres dates back to the common ancestor of metazoans. BMC Evol Biol 2020; 20:55. [PMID: 32408858 PMCID: PMC7227075 DOI: 10.1186/s12862-020-01612-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 04/15/2020] [Indexed: 02/15/2023] Open
Abstract
Background Meiosis is essential for sexual reproduction and generates genetically diverse haploid gametes from a diploid germ cell. Reduction of ploidy depends on active chromosome movements during early meiotic prophase I. Chromosome movements require telomere attachment to the nuclear envelope. This attachment is mediated by telomere adaptor proteins. Telomere adaptor proteins have to date been identified in fission yeast and mice. In the mouse, they form a complex composed of the meiotic proteins TERB1, TERB2, and MAJIN. No sequence similarity was observed between these three mouse proteins and the adaptor proteins of fission yeast, raising the question of the evolutionary history and significance of this specific protein complex. Result Here, we show the TERB1, TERB2, and MAJIN proteins are found throughout the Metazoa and even in early-branching non-bilateral phyla such as Cnidaria, Placozoa and Porifera. Metazoan TERB1, TERB2, and MAJIN showed comparable domain architecture across all clades. Furthermore, the protein domains involved in the formation of the complex as well as those involved for the interaction with the telomere shelterin protein and the LINC complexes revealed high sequence similarity. Finally, gene expression in the cnidarian Hydra vulgaris provided evidence that the TERB1-TERB2-MAJIN complex is selectively expressed in the germ line. Conclusion Our results indicate that the TERB1-TERB2-MAJIN complex has an ancient origin in metazoans, suggesting conservation of meiotic functions.
Collapse
Affiliation(s)
- Irene da Cruz
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, 97074, Würzburg, Germany
| | - Céline Brochier-Armanet
- Laboratoire de Biométrie et Biologie Evolutive, CNRS, UMR 5558, Université Lyon 1, F-69622, Villeurbanne, France
| | - Ricardo Benavente
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, 97074, Würzburg, Germany.
| |
Collapse
|
18
|
Tomczyk S, Suknovic N, Schenkelaars Q, Wenger Y, Ekundayo K, Buzgariu W, Bauer C, Fischer K, Austad S, Galliot B. Deficient autophagy in epithelial stem cells drives aging in the freshwater cnidarian Hydra. Development 2020; 147:dev.177840. [PMID: 31862842 PMCID: PMC6983715 DOI: 10.1242/dev.177840] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 12/02/2019] [Indexed: 12/31/2022]
Abstract
Hydra possesses three distinct stem cell populations that continuously self-renew and prevent aging in Hydra vulgaris. However, sexual animals from the H. oligactis cold-sensitive strain Ho_CS develop an aging phenotype upon gametogenesis induction, initiated by the loss of interstitial stem cells. Animals stop regenerating, lose their active behaviors and die within 3 months. This phenotype is not observed in the cold-resistant strain Ho_CR. To dissect the mechanisms of Hydra aging, we compared the self-renewal of epithelial stem cells in these two strains and found it to be irreversibly reduced in aging Ho_CS but sustained in non-aging Ho_CR. We also identified a deficient autophagy in Ho_CS epithelial cells, with a constitutive deficiency in autophagosome formation as detected with the mCherry-eGFP-LC3A/B autophagy sensor, an inefficient response to starvation as evidenced by the accumulation of the autophagosome cargo protein p62/SQSTM1, and a poorly inducible autophagy flux upon proteasome inhibition. In the non-aging H. vulgaris animals, the blockade of autophagy by knocking down WIPI2 suffices to induce aging. This study highlights the essential role of a dynamic autophagy flux to maintain epithelial stem cell renewal and prevent aging. Summary: Lack of epithelial stem cell renewal and deficient epithelial autophagy are the major causes of aging in Hydra oligactis, whereas lowering autophagy efficiency in the non-aging Hydra vulgaris induces an aging phenotype.
Collapse
Affiliation(s)
- Szymon Tomczyk
- Department of Genetics and Evolution, Institute of Genetics and Genomics in Geneva (iGE3), University of Geneva, CH-1205 Geneva, Switzerland
| | - Nenad Suknovic
- Department of Genetics and Evolution, Institute of Genetics and Genomics in Geneva (iGE3), University of Geneva, CH-1205 Geneva, Switzerland
| | - Quentin Schenkelaars
- Department of Genetics and Evolution, Institute of Genetics and Genomics in Geneva (iGE3), University of Geneva, CH-1205 Geneva, Switzerland
| | - Yvan Wenger
- Department of Genetics and Evolution, Institute of Genetics and Genomics in Geneva (iGE3), University of Geneva, CH-1205 Geneva, Switzerland
| | - Kazadi Ekundayo
- Department of Genetics and Evolution, Institute of Genetics and Genomics in Geneva (iGE3), University of Geneva, CH-1205 Geneva, Switzerland
| | - Wanda Buzgariu
- Department of Genetics and Evolution, Institute of Genetics and Genomics in Geneva (iGE3), University of Geneva, CH-1205 Geneva, Switzerland
| | - Christoph Bauer
- Department of Genetics and Evolution, Institute of Genetics and Genomics in Geneva (iGE3), University of Geneva, CH-1205 Geneva, Switzerland
| | - Kathleen Fischer
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Steven Austad
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Brigitte Galliot
- Department of Genetics and Evolution, Institute of Genetics and Genomics in Geneva (iGE3), University of Geneva, CH-1205 Geneva, Switzerland
| |
Collapse
|
19
|
The Bcl-2 Family: Ancient Origins, Conserved Structures, and Divergent Mechanisms. Biomolecules 2020; 10:biom10010128. [PMID: 31940915 PMCID: PMC7022251 DOI: 10.3390/biom10010128] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/18/2019] [Accepted: 01/09/2020] [Indexed: 12/13/2022] Open
Abstract
Intrinsic apoptosis, the response to intracellular cell death stimuli, is regulated by the interplay of the B-cell lymphoma 2 (Bcl-2) family and their membrane interactions. Bcl-2 proteins mediate a number of processes including development, homeostasis, autophagy, and innate and adaptive immune responses and their dysregulation underpins a host of diseases including cancer. The Bcl-2 family is characterized by the presence of conserved sequence motifs called Bcl-2 homology motifs, as well as a transmembrane region, which form the interaction sites and intracellular location mechanism, respectively. Bcl-2 proteins have been recognized in the earliest metazoans including Porifera (sponges), Placozoans, and Cnidarians (e.g., Hydra). A number of viruses have gained Bcl-2 homologs and subvert innate immunity and cellular apoptosis for their replication, but they frequently have very different sequences to their host Bcl-2 analogs. Though most mechanisms of apoptosis initiation converge on activation of caspases that destroy the cell from within, the numerous gene insertions, deletions, and duplications during evolution have led to a divergence in mechanisms of intrinsic apoptosis. Currently, the action of the Bcl-2 family is best understood in vertebrates and nematodes but new insights are emerging from evolutionarily earlier organisms. This review focuses on the mechanisms underpinning the activity of Bcl-2 proteins including their structures and interactions, and how they have changed over the course of evolution.
Collapse
|
20
|
Funayama N, Frank U. Meeting Report on “At the Roots of Bilaterian Complexity: Insights from Early Emerging Metazoans,” Tutzing (Germany) September 16–19, 2019. Bioessays 2019; 42:e1900236. [DOI: 10.1002/bies.201900236] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 12/05/2019] [Indexed: 12/27/2022]
Affiliation(s)
- Noriko Funayama
- Department of Biophysics, Graduate School of ScienceKyoto University Kitashirakawaoiwake, Sakyo‐ku Kyoto 606‐8502 Japan
| | - Uri Frank
- Centre for Chromosome BiologySchool of Natural SciencesNational University of Ireland Galway University Road Galway H91 W2TYIreland
| |
Collapse
|
21
|
Zhang Y, Chiu YL, Chen CJ, Ho YY, Shinzato C, Shikina S, Chang CF. Discovery of a receptor guanylate cyclase expressed in the sperm flagella of stony corals. Sci Rep 2019; 9:14652. [PMID: 31601940 PMCID: PMC6787079 DOI: 10.1038/s41598-019-51224-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 09/16/2019] [Indexed: 12/27/2022] Open
Abstract
The receptor guanylate cyclases (rGCs) in animals serve as sensitive chemoreceptors to detect both chemical and environmental cues. In reproduction, rGCs were shown to be expressed on sperm and serve as receptors for egg-derived sperm-activating and sperm-attracting factors in some echinoderms and mammals. However, sperm-associated rGCs have only been identified in some deuterostomes thus far, and it remains unclear how widely rGCs are utilized in metazoan reproduction. To address this issue, this study investigated the existence and expression of rGCs, particularly asking if rGCs are involved in the reproduction of a basal metazoan, phylum Cnidaria, using the stony coral Euphyllia ancora. Six paralogous rGCs were identified from a transcriptome database of E. ancora, and one of the rGCs, GC-A, was shown to be specifically expressed in the testis. Immunohistochemical analyses demonstrated that E. ancora GC-A protein was expressed in the spermatocytes and spermatids and eventually congregated on the sperm flagella during spermatogenesis. These findings suggest that GC-A may be involved in the regulation of sperm activity and/or functions (e.g., fertilization) in corals. This study is the first to perform molecular characterization of rGCs in cnidarians and provides evidence for the possible involvement of rGCs in the reproduction of basal metazoans.
Collapse
Affiliation(s)
- Yan Zhang
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, 20224, Taiwan
| | - Yi-Ling Chiu
- Doctoral Program in Marine Biotechnology, National Taiwan Ocean University, Keelung, 20224, Taiwan.,Doctoral Program in Marine Biotechnology, Academia Sinica, Taipei, 11529, Taiwan
| | - Chieh-Jhen Chen
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, 20224, Taiwan
| | - Yu-Ying Ho
- Department of Aquaculture, National Taiwan Ocean University, Keelung, 20224, Taiwan
| | - Chuya Shinzato
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, 277-8564, Japan
| | - Shinya Shikina
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, 20224, Taiwan. .,Institute of Marine Environment and Ecology, National Taiwan Ocean University, Keelung, 20224, Taiwan.
| | - Ching-Fong Chang
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, 20224, Taiwan. .,Department of Aquaculture, National Taiwan Ocean University, Keelung, 20224, Taiwan.
| |
Collapse
|
22
|
Striedter GF. Variation across Species and Levels: Implications for Model Species Research. BRAIN, BEHAVIOR AND EVOLUTION 2019; 93:57-69. [PMID: 31416083 DOI: 10.1159/000499664] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 03/08/2019] [Indexed: 11/19/2022]
Abstract
The selection of model species tends to involve two typically unstated assumptions, namely: (1) that the similarity between species decreases steadily with phylogenetic distance, and (2) that similarities are greater at lower levels of biological organization. The first assumption holds on average, but species similarities tend to decrease with the square root of divergence time, rather than linearly, and lineages with short generation times (which includes most model species) tend to diverge faster than average, making the decrease in similarity non-monotonic. The second assumption is more difficult to test. Comparative molecular research has traditionally emphasized species similarities over differences, whereas comparative research at higher levels of organization frequently highlights the species differences. However, advances in comparative genomics have brought to light a great variety of species differences, not just in gene regulation but also in protein coding genes. Particularly relevant are cases in which homologous high-level characters are based on non-homologous genes. This phenomenon of non-orthologous gene displacement, or "deep non-homology," indicates that species differences at the molecular level can be surprisingly large. Given these observations, it is not surprising that some findings obtained in model species do not generalize across species as well as researchers had hoped, even if the research is molecular.
Collapse
Affiliation(s)
- Georg F Striedter
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, California, USA,
| |
Collapse
|
23
|
Siebert S, Farrell JA, Cazet JF, Abeykoon Y, Primack AS, Schnitzler CE, Juliano CE. Stem cell differentiation trajectories in Hydra resolved at single-cell resolution. Science 2019; 365:eaav9314. [PMID: 31346039 PMCID: PMC7104783 DOI: 10.1126/science.aav9314] [Citation(s) in RCA: 207] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 06/11/2019] [Indexed: 12/31/2022]
Abstract
The adult Hydra polyp continually renews all of its cells using three separate stem cell populations, but the genetic pathways enabling this homeostatic tissue maintenance are not well understood. We sequenced 24,985 Hydra single-cell transcriptomes and identified the molecular signatures of a broad spectrum of cell states, from stem cells to terminally differentiated cells. We constructed differentiation trajectories for each cell lineage and identified gene modules and putative regulators expressed along these trajectories, thus creating a comprehensive molecular map of all developmental lineages in the adult animal. In addition, we built a gene expression map of the Hydra nervous system. Our work constitutes a resource for addressing questions regarding the evolution of metazoan developmental processes and nervous system function.
Collapse
Affiliation(s)
- Stefan Siebert
- Department of Molecular and Cellular Biology, University of California, Davis, CA, USA.
| | - Jeffrey A Farrell
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Jack F Cazet
- Department of Molecular and Cellular Biology, University of California, Davis, CA, USA
| | - Yashodara Abeykoon
- Department of Molecular and Cellular Biology, University of California, Davis, CA, USA
| | - Abby S Primack
- Department of Molecular and Cellular Biology, University of California, Davis, CA, USA
| | - Christine E Schnitzler
- Whitney Laboratory for Marine Bioscience and Department of Biology, University of Florida, St. Augustine, FL, USA
| | - Celina E Juliano
- Department of Molecular and Cellular Biology, University of California, Davis, CA, USA.
| |
Collapse
|
24
|
Sanders SM, Ma Z, Hughes JM, Riscoe BM, Gibson GA, Watson AM, Flici H, Frank U, Schnitzler CE, Baxevanis AD, Nicotra ML. CRISPR/Cas9-mediated gene knockin in the hydroid Hydractinia symbiolongicarpus. BMC Genomics 2018; 19:649. [PMID: 30176818 PMCID: PMC6122657 DOI: 10.1186/s12864-018-5032-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 08/22/2018] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Hydractinia symbiolongicarpus, a colonial cnidarian, is a tractable model system for many cnidarian-specific and general biological questions. Until recently, tests of gene function in Hydractinia have relied on laborious forward genetic approaches, randomly integrated transgenes, or transient knockdown of mRNAs. RESULTS Here, we report the use of CRISPR/Cas9 genome editing to generate targeted genomic insertions in H. symbiolonigcarpus. We used CRISPR/Cas9 to promote homologous recombination of two fluorescent reporters, eGFP and tdTomato, into the Eukaryotic elongation factor 1 alpha (Eef1a) locus. We demonstrate that the transgenes are expressed ubiquitously and are stable over two generations of breeding. We further demonstrate that CRISPR/Cas9 genome editing can be used to mark endogenous proteins with FLAG or StrepII-FLAG affinity tags to enable in vivo and ex vivo protein studies. CONCLUSIONS This is the first account of CRISPR/Cas9 mediated knockins in Hydractinia and the first example of the germline transmission of a CRISPR/Cas9 inserted transgene in a cnidarian. The ability to precisely insert exogenous DNA into the Hydractinia genome will enable sophisticated genetic studies and further development of functional genomics tools in this understudied cnidarian model.
Collapse
Affiliation(s)
- Steven M. Sanders
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA USA
- Pittsburgh Center for Evolutionary Biology and Medicine, University of Pittsburgh, Pittsburgh, PA USA
| | - Zhiwei Ma
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA USA
- Pittsburgh Center for Evolutionary Biology and Medicine, University of Pittsburgh, Pittsburgh, PA USA
| | - Julia M. Hughes
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA USA
- Pittsburgh Center for Evolutionary Biology and Medicine, University of Pittsburgh, Pittsburgh, PA USA
| | - Brooke M. Riscoe
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA USA
- Pittsburgh Center for Evolutionary Biology and Medicine, University of Pittsburgh, Pittsburgh, PA USA
| | - Gregory A. Gibson
- Center for Biological Imaging and Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA USA
| | - Alan M. Watson
- Center for Biological Imaging and Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA USA
| | - Hakima Flici
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland, Galway, Ireland
| | - Uri Frank
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland, Galway, Ireland
| | - Christine E. Schnitzler
- Whitney Laboratory for Marine Bioscience, and Department of Biology, University of Florida, St. Augustine, FL USA
| | - Andreas D. Baxevanis
- Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD USA
| | - Matthew L. Nicotra
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA USA
- Pittsburgh Center for Evolutionary Biology and Medicine, University of Pittsburgh, Pittsburgh, PA USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA USA
| |
Collapse
|
25
|
Nicosia A, Bennici C, Biondo G, Costa S, Di Natale M, Masullo T, Monastero C, Ragusa MA, Tagliavia M, Cuttitta A. Characterization of Translationally Controlled Tumour Protein from the Sea Anemone Anemonia viridis and Transcriptome Wide Identification of Cnidarian Homologues. Genes (Basel) 2018; 9:genes9010030. [PMID: 29324689 PMCID: PMC5793182 DOI: 10.3390/genes9010030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 01/05/2018] [Accepted: 01/05/2018] [Indexed: 02/06/2023] Open
Abstract
Gene family encoding translationally controlled tumour protein (TCTP) is defined as highly conserved among organisms; however, there is limited knowledge of non-bilateria. In this study, the first TCTP homologue from anthozoan was characterised in the Mediterranean Sea anemone, Anemonia viridis. The release of the genome sequence of Acropora digitifera, Exaiptasia pallida, Nematostella vectensis and Hydra vulgaris enabled a comprehensive study of the molecular evolution of TCTP family among cnidarians. A comparison among TCTP members from Cnidaria and Bilateria showed conserved intron exon organization, evolutionary conserved TCTP signatures and 3D protein structure. The pattern of mRNA expression profile was also defined in A. viridis. These analyses revealed a constitutive mRNA expression especially in tissues with active proliferation. Additionally, the transcriptional profile of A. viridis TCTP (AvTCTP) after challenges with different abiotic/biotic stresses showed induction by extreme temperatures, heavy metals exposure and immune stimulation. These results suggest the involvement of AvTCTP in the sea anemone defensome taking part in environmental stress and immune responses.
Collapse
Affiliation(s)
- Aldo Nicosia
- National Research Council-Institute for Marine and Coastal Environment (IAMC-CNR), Laboratory of Molecular Ecology and Biotechnology, Detached Unit of Capo Granitola, Via del mare, 91021 Torretta Granitola (TP), Sicily, Italy.
| | - Carmelo Bennici
- National Research Council-Institute for Marine and Coastal Environment (IAMC-CNR), Laboratory of Molecular Ecology and Biotechnology, Detached Unit of Capo Granitola, Via del mare, 91021 Torretta Granitola (TP), Sicily, Italy.
| | - Girolama Biondo
- National Research Council-Institute for Marine and Coastal Environment (IAMC-CNR), Laboratory of Molecular Ecology and Biotechnology, Detached Unit of Capo Granitola, Via del mare, 91021 Torretta Granitola (TP), Sicily, Italy.
| | - Salvatore Costa
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Viale delle Scienze, Ed. 16, 90128 Palermo, Sicily, Italy.
| | - Marilena Di Natale
- National Research Council-Institute for Marine and Coastal Environment (IAMC-CNR), Laboratory of Molecular Ecology and Biotechnology, Detached Unit of Capo Granitola, Via del mare, 91021 Torretta Granitola (TP), Sicily, Italy.
| | - Tiziana Masullo
- National Research Council-Institute for Marine and Coastal Environment (IAMC-CNR), Laboratory of Molecular Ecology and Biotechnology, Detached Unit of Capo Granitola, Via del mare, 91021 Torretta Granitola (TP), Sicily, Italy.
| | - Calogera Monastero
- National Research Council-Institute for Marine and Coastal Environment (IAMC-CNR), Laboratory of Molecular Ecology and Biotechnology, Detached Unit of Capo Granitola, Via del mare, 91021 Torretta Granitola (TP), Sicily, Italy.
| | - Maria Antonietta Ragusa
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Viale delle Scienze, Ed. 16, 90128 Palermo, Sicily, Italy.
| | - Marcello Tagliavia
- National Research Council-Institute for Marine and Coastal Environment (IAMC-CNR), Laboratory of Molecular Ecology and Biotechnology, Detached Unit of Capo Granitola, Via del mare, 91021 Torretta Granitola (TP), Sicily, Italy.
| | - Angela Cuttitta
- National Research Council-Institute for Marine and Coastal Environment (IAMC-CNR), Laboratory of Molecular Ecology and Biotechnology, Detached Unit of Capo Granitola, Via del mare, 91021 Torretta Granitola (TP), Sicily, Italy.
| |
Collapse
|
26
|
Deines P, Lachnit T, Bosch TCG. Competing forces maintain theHydrametaorganism. Immunol Rev 2017; 279:123-136. [DOI: 10.1111/imr.12564] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Peter Deines
- Zoological Institute; Christian Albrechts University Kiel; Kiel Germany
| | - Tim Lachnit
- Zoological Institute; Christian Albrechts University Kiel; Kiel Germany
| | | |
Collapse
|
27
|
Cuttitta A, Ragusa MA, Costa S, Bennici C, Colombo P, Mazzola S, Gianguzza F, Nicosia A. Evolutionary conserved mechanisms pervade structure and transcriptional modulation of allograft inflammatory factor-1 from sea anemone Anemonia viridis. FISH & SHELLFISH IMMUNOLOGY 2017; 67:86-94. [PMID: 28579525 DOI: 10.1016/j.fsi.2017.05.063] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 05/05/2017] [Accepted: 05/30/2017] [Indexed: 06/07/2023]
Abstract
Gene family encoding allograft inflammatory factor-1 (AIF-1) is well conserved among organisms; however, there is limited knowledge in lower organisms. In this study, the first AIF-1 homologue from cnidarians was identified and characterised in the sea anemone Anemonia viridis. The full-length cDNA of AvAIF-1 was of 913 bp with a 5' -untranslated region (UTR) of 148 bp, a 3'-UTR of 315 and an open reading frame (ORF) of 450 bp encoding a polypeptide with149 amino acid residues and predicted molecular weight of about 17 kDa. The predicted protein possesses evolutionary conserved EF hand Ca2+ binding motifs, post-transcriptional modification sites and a 3D structure which can be superimposed with human members of AIF-1 family. The AvAIF-1 transcript was constitutively expressed in all tested tissues of unchallenged sea anemone, suggesting that AvAIF-1 could serve as a general protective factor under normal physiological conditions. Moreover, we profiled the transcriptional activation of AvAIF-1 after challenges with different abiotic/biotic stresses showing induction by warming conditions, heavy metals exposure and immune stimulation. Thus, mechanisms associated to inflammation and immune challenges up-regulated AvAIF-1 mRNA levels. Our results suggest its involvement in the inflammatory processes and immune response of A. viridis.
Collapse
Affiliation(s)
- Angela Cuttitta
- National Research Council-Institute for Marine and Coastal Environment (IAMC-CNR), Laboratory of Molecular Ecology and Biotechnology, Detached Unit of Capo Granitola, Via mare del Sud, 3, 91021, Torretta Granitola (TP), Sicily, Italy.
| | - Maria Antonietta Ragusa
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies, University of Palermo, viale delle Scienze, Ed. 16, 90128, Palermo, Sicily, Italy
| | - Salvatore Costa
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies, University of Palermo, viale delle Scienze, Ed. 16, 90128, Palermo, Sicily, Italy
| | - Carmelo Bennici
- National Research Council-Institute for Marine and Coastal Environment (IAMC-CNR), Laboratory of Molecular Ecology and Biotechnology, Detached Unit of Capo Granitola, Via mare del Sud, 3, 91021, Torretta Granitola (TP), Sicily, Italy
| | - Paolo Colombo
- Istituto di Biomedicina e di Immunologia Molecolare - Consiglio Nazionale delle Ricerche, Via Ugo La Malfa, 153, 90146, Palermo, Italy
| | - Salvatore Mazzola
- National Research Council-Institute for Marine and Coastal Environment (IAMC-CNR), Laboratory of Molecular Ecology and Biotechnology, Detached Unit of Capo Granitola, Via mare del Sud, 3, 91021, Torretta Granitola (TP), Sicily, Italy
| | - Fabrizio Gianguzza
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies, University of Palermo, viale delle Scienze, Ed. 16, 90128, Palermo, Sicily, Italy
| | - Aldo Nicosia
- National Research Council-Institute for Marine and Coastal Environment (IAMC-CNR), Laboratory of Molecular Ecology and Biotechnology, Detached Unit of Capo Granitola, Via mare del Sud, 3, 91021, Torretta Granitola (TP), Sicily, Italy.
| |
Collapse
|
28
|
Morgan MB, Edge SE, Venn AA, Jones RJ. Developing transcriptional profiles in Orbicella franksi exposed to copper: Characterizing responses associated with a spectrum of laboratory-controlled environmental conditions. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 189:60-76. [PMID: 28599170 DOI: 10.1016/j.aquatox.2017.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 04/23/2017] [Accepted: 05/09/2017] [Indexed: 06/07/2023]
Affiliation(s)
- Michael B Morgan
- Department of Biology, Berry College, School of Mathematics and Natural Sciences, 2277 Martha Berry Hwy, Mount Berry, GA, 30149, USA.
| | - Sara E Edge
- Hawaii Pacific University, 45-045 Kamehameha Hwy, Kaneohe, HI, 96744, USA
| | - Alexander A Venn
- Marine Biology Department et Laboratoire International Associé 647 "BIOSENSIB", Centre Scientifique de Monaco, 8 Quai Antoine 1er, MC98000, Monaco
| | - Ross J Jones
- Australian Institute of Marine Science (AIMS), Perth, 6009, Australia
| |
Collapse
|
29
|
Adaptive Evolution of Extreme Acidophile Sulfobacillus thermosulfidooxidans Potentially Driven by Horizontal Gene Transfer and Gene Loss. Appl Environ Microbiol 2017; 83:AEM.03098-16. [PMID: 28115381 DOI: 10.1128/aem.03098-16] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 01/13/2017] [Indexed: 12/27/2022] Open
Abstract
Recent phylogenomic analysis has suggested that three strains isolated from different copper mine tailings around the world were taxonomically affiliated with Sulfobacillusthermosulfidooxidans Here, we present a detailed investigation of their genomic features, particularly with respect to metabolic potentials and stress tolerance mechanisms. Comprehensive analysis of the Sulfobacillus genomes identified a core set of essential genes with specialized biological functions in the survival of acidophiles in their habitats, despite differences in their metabolic pathways. The Sulfobacillus strains also showed evidence for stress management, thereby enabling them to efficiently respond to harsh environments. Further analysis of metabolic profiles provided novel insights into the presence of genomic streamlining, highlighting the importance of gene loss as a main mechanism that potentially contributes to cellular economization. Another important evolutionary force, especially in larger genomes, is gene acquisition via horizontal gene transfer (HGT), which might play a crucial role in the recruitment of novel functionalities. Also, a successful integration of genes acquired from archaeal donors appears to be an effective way of enhancing the adaptive capacity to cope with environmental changes. Taken together, the findings of this study significantly expand the spectrum of HGT and genome reduction in shaping the evolutionary history of Sulfobacillus strains.IMPORTANCE Horizontal gene transfer (HGT) and gene loss are recognized as major driving forces that contribute to the adaptive evolution of microbial genomes, although their relative importance remains elusive. The findings of this study suggest that highly frequent gene turnovers within microorganisms via HGT were necessary to incur additional novel functionalities to increase the capacity of acidophiles to adapt to changing environments. Evidence also reveals a fascinating phenomenon of potential cross-kingdom HGT. Furthermore, genome streamlining may be a critical force in driving the evolution of microbial genomes. Taken together, this study provides insights into the importance of both HGT and gene loss in the evolution and diversification of bacterial genomes.
Collapse
|
30
|
Gribble KE, Mark Welch DB. Genome-wide transcriptomics of aging in the rotifer Brachionus manjavacas, an emerging model system. BMC Genomics 2017; 18:217. [PMID: 28249563 PMCID: PMC5333405 DOI: 10.1186/s12864-017-3540-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 02/02/2017] [Indexed: 12/22/2022] Open
Abstract
Background Understanding gene expression changes over lifespan in diverse animal species will lead to insights to conserved processes in the biology of aging and allow development of interventions to improve health. Rotifers are small aquatic invertebrates that have been used in aging studies for nearly 100 years and are now re-emerging as a modern model system. To provide a baseline to evaluate genetic responses to interventions that change health throughout lifespan and a framework for new hypotheses about the molecular genetic mechanisms of aging, we examined the transcriptome of an asexual female lineage of the rotifer Brachionus manjavacas at five life stages: eggs, neonates, and early-, late-, and post-reproductive adults. Results There are widespread shifts in gene expression over the lifespan of B. manjavacas; the largest change occurs between neonates and early reproductive adults and is characterized by down-regulation of developmental genes and up-regulation of genes involved in reproduction. The expression profile of post-reproductive adults was distinct from that of other life stages. While few genes were significantly differentially expressed in the late- to post-reproductive transition, gene set enrichment analysis revealed multiple down-regulated pathways in metabolism, maintenance and repair, and proteostasis, united by genes involved in mitochondrial function and oxidative phosphorylation. Conclusions This study provides the first examination of changes in gene expression over lifespan in rotifers. We detected differential expression of many genes with human orthologs that are absent in Drosophila and C. elegans, highlighting the potential of the rotifer model in aging studies. Our findings suggest that small but coordinated changes in expression of many genes in pathways that integrate diverse functions drive the aging process. The observation of simultaneous declines in expression of genes in multiple pathways may have consequences for health and longevity not detected by single- or multi-gene knockdown in otherwise healthy animals. Investigation of subtle but genome-wide change in these pathways during aging is an important area for future study. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3540-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kristin E Gribble
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA, 02543, USA
| | - David B Mark Welch
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA, 02543, USA.
| |
Collapse
|
31
|
Bosch TCG, Klimovich A, Domazet-Lošo T, Gründer S, Holstein TW, Jékely G, Miller DJ, Murillo-Rincon AP, Rentzsch F, Richards GS, Schröder K, Technau U, Yuste R. Back to the Basics: Cnidarians Start to Fire. Trends Neurosci 2016; 40:92-105. [PMID: 28041633 DOI: 10.1016/j.tins.2016.11.005] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 11/22/2016] [Accepted: 11/23/2016] [Indexed: 12/15/2022]
Abstract
The nervous systems of cnidarians, pre-bilaterian animals that diverged close to the base of the metazoan radiation, are structurally simple and thus have great potential to reveal fundamental principles of neural circuits. Unfortunately, cnidarians have thus far been relatively intractable to electrophysiological and genetic techniques and consequently have been largely passed over by neurobiologists. However, recent advances in molecular and imaging methods are fueling a renaissance of interest in and research into cnidarians nervous systems. Here, we review current knowledge on the nervous systems of cnidarian species and propose that researchers should seize this opportunity and undertake the study of members of this phylum as strategic experimental systems with great basic and translational relevance for neuroscience.
Collapse
Affiliation(s)
| | | | - Tomislav Domazet-Lošo
- Ruđer Bošković Institute, Zagreb, Croatia; Catholic University of Croatia, Zagreb, Croatia
| | - Stefan Gründer
- Institute of Physiology, RWTH Aachen University, Germany
| | | | - Gáspár Jékely
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - David J Miller
- ARC Centre of Excellence for Coral Reef Studies, Townsville, Australia
| | | | - Fabian Rentzsch
- Sars International Centre for Marine Molecular Biology, University of Bergen, Norway
| | - Gemma S Richards
- Sars International Centre for Marine Molecular Biology, University of Bergen, Norway; University of Queensland, Brisbane, Australia
| | | | | | - Rafael Yuste
- Neurotechnology Center, Columbia University, New York, NY, USA.
| |
Collapse
|
32
|
Simakov O, Kawashima T. Independent evolution of genomic characters during major metazoan transitions. Dev Biol 2016; 427:179-192. [PMID: 27890449 DOI: 10.1016/j.ydbio.2016.11.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 11/08/2016] [Accepted: 11/14/2016] [Indexed: 02/03/2023]
Abstract
Metazoan evolution encompasses a vast evolutionary time scale spanning over 600 million years. Our ability to infer ancestral metazoan characters, both morphological and functional, is limited by our understanding of the nature and evolutionary dynamics of the underlying regulatory networks. Increasing coverage of metazoan genomes enables us to identify the evolutionary changes of the relevant genomic characters such as the loss or gain of coding sequences, gene duplications, micro- and macro-synteny, and non-coding element evolution in different lineages. In this review we describe recent advances in our understanding of ancestral metazoan coding and non-coding features, as deduced from genomic comparisons. Some genomic changes such as innovations in gene and linkage content occur at different rates across metazoan clades, suggesting some level of independence among genomic characters. While their contribution to biological innovation remains largely unclear, we review recent literature about certain genomic changes that do correlate with changes to specific developmental pathways and metazoan innovations. In particular, we discuss the origins of the recently described pharyngeal cluster which is conserved across deuterostome genomes, and highlight different genomic features that have contributed to the evolution of this group. We also assess our current capacity to infer ancestral metazoan states from gene models and comparative genomics tools and elaborate on the future directions of metazoan comparative genomics relevant to evo-devo studies.
Collapse
Affiliation(s)
- Oleg Simakov
- Okinawa Institute of Science and Technology, Okinawa, Japan.
| | | |
Collapse
|
33
|
Rentzsch F, Layden M, Manuel M. The cellular and molecular basis of cnidarian neurogenesis. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2016; 6. [PMID: 27882698 PMCID: PMC6680159 DOI: 10.1002/wdev.257] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 08/30/2016] [Accepted: 09/21/2016] [Indexed: 12/22/2022]
Abstract
Neurogenesis initiates during early development and it continues through later developmental stages and in adult animals to enable expansion, remodeling, and homeostasis of the nervous system. The generation of nerve cells has been analyzed in detail in few bilaterian model organisms, leaving open many questions about the evolution of this process. As the sister group to bilaterians, cnidarians occupy an informative phylogenetic position to address the early evolution of cellular and molecular aspects of neurogenesis and to understand common principles of neural development. Here we review studies in several cnidarian model systems that have revealed significant similarities and interesting differences compared to neurogenesis in bilaterian species, and between different cnidarian taxa. Cnidarian neurogenesis is currently best understood in the sea anemone Nematostella vectensis, where it includes epithelial neural progenitor cells that express transcription factors of the soxB and atonal families. Notch signaling regulates the number of these neural progenitor cells, achaete‐scute and dmrt genes are required for their further development and Wnt and BMP signaling appear to be involved in the patterning of the nervous system. In contrast to many vertebrates and Drosophila, cnidarians have a high capacity to generate neurons throughout their lifetime and during regeneration. Utilizing this feature of cnidarian biology will likely allow gaining new insights into the similarities and differences of embryonic and regenerative neurogenesis. The use of different cnidarian model systems and their expanding experimental toolkits will thus continue to provide a better understanding of evolutionary and developmental aspects of nervous system formation. WIREs Dev Biol 2017, 6:e257. doi: 10.1002/wdev.257 This article is categorized under:
Gene Expression and Transcriptional Hierarchies > Cellular Differentiation Signaling Pathways > Cell Fate Signaling Comparative Development and Evolution > Organ System Comparisons Between Species
Collapse
Affiliation(s)
- Fabian Rentzsch
- Sars Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
| | | | - Michaël Manuel
- Sorbonne Universités, UMPC Univ Paris 06, CNRS, Evolution Paris-Seine, Institut de Biologie Paris-Seine (IBPS), Paris, France
| |
Collapse
|
34
|
van der Burg CA, Prentis PJ, Surm JM, Pavasovic A. Insights into the innate immunome of actiniarians using a comparative genomic approach. BMC Genomics 2016; 17:850. [PMID: 27806695 PMCID: PMC5094078 DOI: 10.1186/s12864-016-3204-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Accepted: 10/25/2016] [Indexed: 02/06/2023] Open
Abstract
Background Innate immune genes tend to be highly conserved in metazoans, even in early divergent lineages such as Cnidaria (jellyfish, corals, hydroids and sea anemones) and Porifera (sponges). However, constant and diverse selection pressures on the immune system have driven the expansion and diversification of different immune gene families in a lineage-specific manner. To investigate how the innate immune system has evolved in a subset of sea anemone species (Order: Actiniaria), we performed a comprehensive and comparative study using 10 newly sequenced transcriptomes, as well as three publically available transcriptomes, to identify the origins, expansions and contractions of candidate and novel immune gene families. Results We characterised five conserved genes and gene families, as well as multiple novel innate immune genes, including the newly recognised putative pattern recognition receptor CniFL. Single copies of TLR, MyD88 and NF-κB were found in most species, and several copies of IL-1R-like, NLR and CniFL were found in almost all species. Multiple novel immune genes were identified with domain architectures including the Toll/interleukin-1 receptor (TIR) homology domain, which is well documented as functioning in protein-protein interactions and signal transduction in immune pathways. We hypothesise that these genes may interact as novel proteins in immune pathways of cnidarian species. Novelty in the actiniarian immunome is not restricted to only TIR-domain-containing proteins, as we identify a subset of NLRs which have undergone neofunctionalisation and contain 3–5 N-terminal transmembrane domains, which have so far only been identified in two anthozoan species. Conclusions This research has significance in understanding the evolution and origin of the core eumetazoan gene set, including how novel innate immune genes evolve. For example, the evolution of transmembrane domain containing NLRs indicates that these NLRs may be membrane-bound, while all other metazoan and plant NLRs are exclusively cytosolic receptors. This is one example of how species without an adaptive immune system may evolve innovative solutions to detect pathogens or interact with native microbiota. Overall, these results provide an insight into the evolution of the innate immune system, and show that early divergent lineages, such as actiniarians, have a diverse repertoire of conserved and novel innate immune genes. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3204-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chloé A van der Burg
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, GPO Box 2434, Brisbane, Qld, 4000, Australia. .,Institute of Health and Biomedical Innovation, Queensland University of Technology, GPO Box 2434, Brisbane, Qld, 4000, Australia.
| | - Peter J Prentis
- School of Earth, Environmental and Biological Sciences, Science and Engineering Faculty, Queensland University of Technology, GPO Box 2434, Brisbane, Qld, 4000, Australia.,Institute of Future Environments, Queensland University of Technology, GPO Box 2434, Brisbane, Qld, 4000, Australia
| | - Joachim M Surm
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, GPO Box 2434, Brisbane, Qld, 4000, Australia.,Institute of Health and Biomedical Innovation, Queensland University of Technology, GPO Box 2434, Brisbane, Qld, 4000, Australia
| | - Ana Pavasovic
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, GPO Box 2434, Brisbane, Qld, 4000, Australia.,Institute of Health and Biomedical Innovation, Queensland University of Technology, GPO Box 2434, Brisbane, Qld, 4000, Australia
| |
Collapse
|
35
|
Stepwise metamorphosis of the tubeworm Hydroides elegans is mediated by a bacterial inducer and MAPK signaling. Proc Natl Acad Sci U S A 2016; 113:10097-102. [PMID: 27551098 DOI: 10.1073/pnas.1603142113] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Diverse animal taxa metamorphose between larval and juvenile phases in response to bacteria. Although bacteria-induced metamorphosis is widespread among metazoans, little is known about the molecular changes that occur in the animal upon stimulation by bacteria. Larvae of the tubeworm Hydroides elegans metamorphose in response to surface-bound Pseudoalteromonas luteoviolacea bacteria, producing ordered arrays of phage tail-like metamorphosis-associated contractile structures (MACs). Sequencing the Hydroides genome and transcripts during five developmental stages revealed that MACs induce the regulation of groups of genes important for tissue remodeling, innate immunity, and mitogen-activated protein kinase (MAPK) signaling. Using two MAC mutations that block P. luteoviolacea from inducing settlement or metamorphosis and three MAPK inhibitors, we established a sequence of bacteria-induced metamorphic events: MACs induce larval settlement; then, particular properties of MACs encoded by a specific locus in P. luteoviolacea initiate cilia loss and activate metamorphosis-associated transcription; finally, signaling through p38 and c-Jun N-terminal kinase (JNK) MAPK pathways alters gene expression and leads to morphological changes upon initiation of metamorphosis. Our results reveal that the intricate interaction between Hydroides and P. luteoviolacea can be dissected using genomic, genetic, and pharmacological tools. Hydroides' dependency on bacteria for metamorphosis highlights the importance of external stimuli to orchestrate animal development. The conservation of Hydroides genome content with distantly related deuterostomes (urchins, sea squirts, and humans) suggests that mechanisms of bacteria-induced metamorphosis in Hydroides may have conserved features in diverse animals. As a major biofouling agent, insight into the triggers of Hydroides metamorphosis might lead to practical strategies for fouling control.
Collapse
|
36
|
Abstract
The recent increase in genomic data is revealing an unexpected perspective of gene loss as a pervasive source of genetic variation that can cause adaptive phenotypic diversity. This novel perspective of gene loss is raising new fundamental questions. How relevant has gene loss been in the divergence of phyla? How do genes change from being essential to dispensable and finally to being lost? Is gene loss mostly neutral, or can it be an effective way of adaptation? These questions are addressed, and insights are discussed from genomic studies of gene loss in populations and their relevance in evolutionary biology and biomedicine.
Collapse
|
37
|
Nicosia A, Maggio T, Costa S, Salamone M, Tagliavia M, Mazzola S, Gianguzza F, Cuttitta A. Maintenance of a Protein Structure in the Dynamic Evolution of TIMPs over 600 Million Years. Genome Biol Evol 2016; 8:1056-71. [PMID: 26957029 PMCID: PMC4860685 DOI: 10.1093/gbe/evw052] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Deciphering the events leading to protein evolution represents a challenge, especially for protein families showing complex evolutionary history. Among them, TIMPs represent an ancient eukaryotic protein family widely distributed in the animal kingdom. They are known to control the turnover of the extracellular matrix and are considered to arise early during metazoan evolution, arguably tuning essential features of tissue and epithelial organization. To probe the structure and molecular evolution of TIMPs within metazoans, we report the mining and structural characterization of a large data set of TIMPs over approximately 600 Myr. The TIMPs repertoire was explored starting from the Cnidaria phylum, coeval with the origins of connective tissue, to great apes and humans. Despite dramatic sequence differences compared with highest metazoans, the ancestral proteins displayed the canonical TIMP fold. Only small structural changes, represented by an α-helix located in the N-domain, have occurred over the evolution. Both the occurrence of such secondary structure elements and the relative solvent accessibility of the corresponding residues in the three-dimensional structures raises the possibility that these sites represent unconserved element prone to accept variations.
Collapse
Affiliation(s)
- Aldo Nicosia
- Laboratory of Molecular Ecology and Biotechnology, National Research Council-Institute for Marine and Coastal Environment (IAMC-CNR) Detached Unit of Capo Granitola, Torretta Granitola, Trapani, Sicily, Italy
| | - Teresa Maggio
- Institute for Environmental Protection and Research-ISPRA, Palermo, Sicily, Italy
| | - Salvatore Costa
- Dipartimento Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, University of Palermo, Sicily, Italy
| | - Monica Salamone
- Laboratory of Molecular Ecology and Biotechnology, National Research Council-Institute for Marine and Coastal Environment (IAMC-CNR) Detached Unit of Capo Granitola, Torretta Granitola, Trapani, Sicily, Italy
| | - Marcello Tagliavia
- Laboratory of Molecular Ecology and Biotechnology, National Research Council-Institute for Marine and Coastal Environment (IAMC-CNR) Detached Unit of Capo Granitola, Torretta Granitola, Trapani, Sicily, Italy
| | - Salvatore Mazzola
- Laboratory of Molecular Ecology and Biotechnology, National Research Council-Institute for Marine and Coastal Environment (IAMC-CNR) Detached Unit of Capo Granitola, Torretta Granitola, Trapani, Sicily, Italy
| | - Fabrizio Gianguzza
- Dipartimento Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, University of Palermo, Sicily, Italy
| | - Angela Cuttitta
- Laboratory of Molecular Ecology and Biotechnology, National Research Council-Institute for Marine and Coastal Environment (IAMC-CNR) Detached Unit of Capo Granitola, Torretta Granitola, Trapani, Sicily, Italy
| |
Collapse
|
38
|
Sequential development of apical-basal and planar polarities in aggregating epitheliomuscular cells of Hydra. Dev Biol 2016; 412:148-159. [DOI: 10.1016/j.ydbio.2016.02.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 02/18/2016] [Accepted: 02/23/2016] [Indexed: 11/24/2022]
|
39
|
Anderson DA, Walz ME, Weil E, Tonellato P, Smith MC. RNA-Seq of the Caribbean reef-building coral Orbicella faveolata (Scleractinia-Merulinidae) under bleaching and disease stress expands models of coral innate immunity. PeerJ 2016; 4:e1616. [PMID: 26925311 PMCID: PMC4768675 DOI: 10.7717/peerj.1616] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 01/01/2016] [Indexed: 12/16/2022] Open
Abstract
Climate change-driven coral disease outbreaks have led to widespread declines in coral populations. Early work on coral genomics established that corals have a complex innate immune system, and whole-transcriptome gene expression studies have revealed mechanisms by which the coral immune system responds to stress and disease. The present investigation expands bioinformatic data available to study coral molecular physiology through the assembly and annotation of a reference transcriptome of the Caribbean reef-building coral, Orbicella faveolata. Samples were collected during a warm water thermal anomaly, coral bleaching event and Caribbean yellow band disease outbreak in 2010 in Puerto Rico. Multiplex sequencing of RNA on the Illumina GAIIx platform and de novo transcriptome assembly by Trinity produced 70,745,177 raw short-sequence reads and 32,463 O. faveolata transcripts, respectively. The reference transcriptome was annotated with gene ontologies, mapped to KEGG pathways, and a predicted proteome of 20,488 sequences was generated. Protein families and signaling pathways that are essential in the regulation of innate immunity across Phyla were investigated in-depth. Results were used to develop models of evolutionarily conserved Wnt, Notch, Rig-like receptor, Nod-like receptor, and Dicer signaling. O. faveolata is a coral species that has been studied widely under climate-driven stress and disease, and the present investigation provides new data on the genes that putatively regulate its immune system.
Collapse
Affiliation(s)
- David A Anderson
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, Missouri, United States of America; Department of Marine Sciences, University of Puerto Rico at Mayagüez, Mayagüez, Puerto Rico, United States of America
| | - Marcus E Walz
- Joseph J. Zilber School of Public Health, University of Wisconsin-Milwaukee , Milwaukee, Wisconsin , United States of America
| | - Ernesto Weil
- Department of Marine Sciences, University of Puerto Rico at Mayagüez , Mayagüez, Puerto Rico , United States of America
| | - Peter Tonellato
- Joseph J. Zilber School of Public Health, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, United States of America; Department of Biomedical Informatics, Harvard Medical School, Harvard University, Boston, Massachusetts, United States of America
| | - Matthew C Smith
- School of Freshwater Sciences, University of Wisconsin-Milwaukee , Milwaukee, Wisconsin , United States of America
| |
Collapse
|
40
|
Green TJ, Rolland JL, Vergnes A, Raftos D, Montagnani C. OsHV-1 countermeasures to the Pacific oyster's anti-viral response. FISH & SHELLFISH IMMUNOLOGY 2015; 47:435-443. [PMID: 26384844 DOI: 10.1016/j.fsi.2015.09.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 09/06/2015] [Accepted: 09/14/2015] [Indexed: 06/05/2023]
Abstract
The host-pathogen interactions between the Pacific oyster (Crassostrea gigas) and Ostreid herpesvirus type 1 (OsHV-1) are poorly characterised. Herpesviruses are a group of large, DNA viruses that are known to encode gene products that subvert their host's antiviral response. It is likely that OsHV-1 has also evolved similar strategies as its genome encodes genes with high homology to C. gigas inhibitors of apoptosis (IAPs) and an interferon-stimulated gene (termed CH25H). The first objective of this study was to simultaneously investigate the expression of C. gigas and OsHV-1 genes that share high sequence homology during an acute infection. Comparison of apoptosis-related genes revealed that components of the extrinsic apoptosis pathway (TNF) were induced in response to OsHV-1 infection, but we failed to observe evidence of apoptosis using a combination of biochemical and molecular assays. IAPs encoded by OsHV-1 were highly expressed during the acute stage of infection and may explain why we didn't observe evidence of apoptosis. However, C. gigas must have an alternative mechanism to apoptosis for clearing OsHV-1 from infected gill cells as we observed a reduction in viral DNA between 27 and 54 h post-infection. The reduction of viral DNA in C. gigas gill cells occurred after the up-regulation of interferon-stimulated genes (viperin, PKR, ADAR). In a second objective, we manipulated the host's anti-viral response by injecting C. gigas with a small dose of poly I:C at the time of OsHV-1 infection. This small dose of poly I:C was unable to induce transcription of known antiviral effectors (ISGs), but these oysters were still capable of inhibiting OsHV-1 replication. This result suggests dsRNA induces an anti-viral response that is additional to the IFN-like pathway.
Collapse
Affiliation(s)
- Timothy J Green
- Department of Biological Sciences, Macquarie University, NSW, 2109, Australia; Sydney Institute of Marine Science, Chowder Bay Road, Mosman, NSW, 2088, Australia.
| | - Jean-Luc Rolland
- IFREMER, IHPE, UMR 5244, Univ. Perpignan Via Domitia, CNRS, Univ. Montpellier, F-34095, Montpellier, France
| | - Agnes Vergnes
- IFREMER, IHPE, UMR 5244, Univ. Perpignan Via Domitia, CNRS, Univ. Montpellier, F-34095, Montpellier, France
| | - David Raftos
- Department of Biological Sciences, Macquarie University, NSW, 2109, Australia; Sydney Institute of Marine Science, Chowder Bay Road, Mosman, NSW, 2088, Australia
| | - Caroline Montagnani
- IFREMER, IHPE, UMR 5244, Univ. Perpignan Via Domitia, CNRS, Univ. Montpellier, F-34095, Montpellier, France
| |
Collapse
|
41
|
Technau U, Schwaiger M. Recent advances in genomics and transcriptomics of cnidarians. Mar Genomics 2015; 24 Pt 2:131-8. [PMID: 26421490 DOI: 10.1016/j.margen.2015.09.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 09/20/2015] [Accepted: 09/21/2015] [Indexed: 01/05/2023]
Abstract
The advent of the genomic era has provided important and surprising insights into the deducted genetic composition of the common ancestor of cnidarians and bilaterians. This has changed our view of how genomes of metazoans evolve and when crucial gene families arose and diverged in animal evolution. Sequencing of several cnidarian genomes showed that cnidarians share a great part of their gene repertoire as well as genome synteny with vertebrates, with less gene losses in the anthozoan cnidarian lineage than for example in ecdysozoans like Drosophila melanogaster or Caenorhabditis elegans. The Hydra genome on the other hand has evolved more rapidly indicated by more divergent sequences, more cases of gene losses and many taxonomically restricted genes. Cnidarian genomes also contain a rich repertoire of transcription factors, including those that in bilaterian model organisms regulate the development of key bilaterian traits such as mesoderm, nervous system development and bilaterality. The sea anemone Nematostella vectensis, and possibly cnidarians in general, does not only share its complex gene repertoire with bilaterians, but also the regulation of crucial developmental regulatory genes via distal enhancer elements. In addition, epigenetic modifications on DNA and chromatin are shared among eumetazoans. This suggests that most conserved genes present in our genomes today, as well as the mechanisms guiding their expression, evolved before the divergence of cnidarians and bilaterians about 600 Myr ago.
Collapse
Affiliation(s)
- Ulrich Technau
- Department of Molecular Evolution and Development, Centre of Organismal Systems Biology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria.
| | - Michaela Schwaiger
- Department of Molecular Evolution and Development, Centre of Organismal Systems Biology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| |
Collapse
|
42
|
Kozmikova I, Kozmik Z. Gene regulation in amphioxus: An insight from transgenic studies in amphioxus and vertebrates. Mar Genomics 2015; 24 Pt 2:159-66. [PMID: 26094865 DOI: 10.1016/j.margen.2015.06.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 06/10/2015] [Accepted: 06/10/2015] [Indexed: 01/07/2023]
Abstract
Cephalochordates, commonly known as amphioxus or lancelets, are the most basal subphylum of chordates. Cephalochordates are thus key to understanding the origin of vertebrates and molecular mechanisms underlying vertebrate evolution. The evolution of developmental control mechanisms during invertebrate-to-vertebrate transition involved not only gene duplication events, but also specific changes in spatial and temporal expression of many genes. To get insight into the spatiotemporal regulation of gene expression during invertebrate-to-vertebrate transition, functional studies of amphioxus gene regulatory elements are highly warranted. Here, we review transgenic studies performed in amphioxus and vertebrates using promoters and enhancers derived from the genome of Branchiostoma floridae. We describe the current methods of transgenesis in amphioxus, provide evidence of Tol2 transposon-generated transgenic embryos of Branchiostoma lanceolatum and discuss possible future directions. We envision that comparative transgenic analysis of gene regulatory sequences in the context of amphioxus and vertebrate embryos will likely provide an important mechanistic insight into the evolution of vertebrate body plan.
Collapse
Affiliation(s)
- Iryna Kozmikova
- Institute of Molecular Genetics of the Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Zbynek Kozmik
- Institute of Molecular Genetics of the Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic.
| |
Collapse
|
43
|
Bicarbonate transporters in corals point towards a key step in the evolution of cnidarian calcification. Sci Rep 2015; 5:9983. [PMID: 26040894 PMCID: PMC4650655 DOI: 10.1038/srep09983] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 03/24/2015] [Indexed: 12/19/2022] Open
Abstract
The bicarbonate ion (HCO3−) is involved in two major physiological processes in corals, biomineralization and photosynthesis, yet no molecular data on bicarbonate transporters are available. Here, we characterized plasma membrane-type HCO3− transporters in the scleractinian coral Stylophora pistillata. Eight solute carrier (SLC) genes were found in the genome: five homologs of mammalian-type SLC4 family members, and three of mammalian-type SLC26 family members. Using relative expression analysis and immunostaining, we analyzed the cellular distribution of these transporters and conducted phylogenetic analyses to determine the extent of conservation among cnidarian model organisms. Our data suggest that the SLC4γ isoform is specific to scleractinian corals and responsible for supplying HCO3− to the site of calcification. Taken together, SLC4γ appears to be one of the key genes for skeleton building in corals, which bears profound implications for our understanding of coral biomineralization and the evolution of scleractinian corals within cnidarians.
Collapse
|
44
|
Sakamaki K, Imai K, Tomii K, Miller DJ. Evolutionary analyses of caspase-8 and its paralogs: Deep origins of the apoptotic signaling pathways. Bioessays 2015; 37:767-76. [DOI: 10.1002/bies.201500010] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Kazuhiro Sakamaki
- Department of Animal Development and Physiology; Graduate School of Biostudies; Kyoto University; Kyoto Japan
| | - Kenichiro Imai
- Biotechnology Research Institute for Drug Discovery; National Institute of Advanced Industrial Science and Technology (AIST); Tokyo Japan
| | - Kentaro Tomii
- Biotechnology Research Institute for Drug Discovery; National Institute of Advanced Industrial Science and Technology (AIST); Tokyo Japan
| | - David J. Miller
- Department of Molecular and Cell Biology; ARC Centre of Excellence for Coral Reef Studies; James Cook University; Townsville Queensland Australia
| |
Collapse
|
45
|
Itoh N, Ohta H. Secreted bone morphogenetic protein antagonists of the Chordin family. Biomol Concepts 2015; 1:297-304. [PMID: 25962004 DOI: 10.1515/bmc.2010.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Chordin, Chordin-like 1, and Chordin-like 2 are secreted bone morphogenetic protein (BMP) antagonists with highly conserved Chordin-like cysteine-rich domains. Recently, Brorin and Brorin-like have been identified as new Chordin-like BMP antagonists. A Chordin ortholog, Short gastrulation, has been identified in Drosophila, a protostome, but not other orthologs. By contrast, Chordin, Chordin-like 1, and Chordin-like 2 have been identified in Ciona intestinalis, the closest living relatives of the vertebrates, but Brorin and Brorin-like have not. However, all these genes have been identified in most vertebrates. These results indicate that Chordin, Chordin-like 1, and Chordin-like 2 were generated early in the metazoan lineage. Later on, Brorin and Brorin-like were potentially generated by a genome duplication event in early vertebrate evolution. All four cysteine-rich domains of Chordin are essential for the regulation of its action. However, Chordin-like 1, Chordin-like 2, Brorin, and Brorin-like contain only two or three cysteine-rich domains. Although their mechanisms of action remain unclear, they might be distinct from that of Chordin. The expression profiles of these genes in mice and zebrafish indicate unique roles at embryonic and postnatal stages. Mutant/knockdown mouse and zebrafish phenotypes indicate roles in morphogenesis during gastrulation, dorsoventral axis formation, ear, pharyngeal, and neural development, and venous and arterial patterning. Aberrant Chordin expression might result in hereditary diseases and cancer. In addition, altered serum Chordin and Chordin-like 1 levels are also observed in non-hereditary diseases. Together, these results indicate pathophysiological roles.
Collapse
|
46
|
Krueger T, Fisher PL, Becker S, Pontasch S, Dove S, Hoegh-Guldberg O, Leggat W, Davy SK. Transcriptomic characterization of the enzymatic antioxidants FeSOD, MnSOD, APX and KatG in the dinoflagellate genus Symbiodinium. BMC Evol Biol 2015; 15:48. [PMID: 25887897 PMCID: PMC4416395 DOI: 10.1186/s12862-015-0326-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 02/24/2015] [Indexed: 11/26/2022] Open
Abstract
Background The diversity of the symbiotic dinoflagellate Symbiodinium sp., as assessed by genetic markers, is well established. To what extent this diversity is reflected on the amino acid level of functional genes such as enzymatic antioxidants that play an important role in thermal stress tolerance of the coral-Symbiodinium symbiosis is, however, unknown. Here we present a predicted structural analysis and phylogenetic characterization of the enzymatic antioxidant repertoire of the genus Symbiodinium. We also report gene expression and enzymatic activity under short-term thermal stress in Symbiodinium of the B1 genotype. Results Based on eight different ITS2 types, covering six clades, multiple protein isoforms for three of the four investigated antioxidants (ascorbate peroxidase [APX], catalase peroxidase [KatG], manganese superoxide dismutase [MnSOD]) are present in the genus Symbiodinium. Amino acid sequences of both SOD metalloforms (Fe/Mn), as well as KatG, exhibited a number of prokaryotic characteristics that were also supported by the protein phylogeny. In contrast to the bacterial form, KatG in Symbiodinium is characterized by extended functionally important loops and a shortened C-terminal domain. Intercladal sequence variations were found to be much higher in both peroxidases, compared to SODs. For APX, these variable residues involve binding sites for substrates and cofactors, and might therefore differentially affect the catalytic properties of this enzyme between clades. While expression of antioxidant genes was successfully measured in Symbiodinium B1, it was not possible to assess the link between gene expression and protein activity due to high variability in expression between replicates, and little response in their enzymatic activity over the three-day experimental period. Conclusions The genus Symbiodinium has a diverse enzymatic antioxidant repertoire that has similarities to prokaryotes, potentially as a result of horizontal gene transfer or events of secondary endosymbiosis. Different degrees of sequence evolution between SODs and peroxidases might be the result of potential selective pressure on the conserved molecular function of SODs as the first line of defence. In contrast, genetic redundancy of hydrogen peroxide scavenging enzymes might permit the observed variations in peroxidase sequences. Our data and successful measurement of antioxidant gene expression in Symbiodinium will serve as basis for further studies of coral health. Electronic supplementary material The online version of this article (doi:10.1186/s12862-015-0326-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Thomas Krueger
- School of Biological Sciences, Victoria University of Wellington, Wellington, 6140, New Zealand. .,Laboratory for Biological Geochemistry, ENAC, École polytechnique fédérale de Lausanne (EPFL), Lausanne, 1015, Switzerland.
| | - Paul L Fisher
- School of Biological Sciences, Victoria University of Wellington, Wellington, 6140, New Zealand. .,School of Civil Engineering, University of Queensland, St Lucia, QLD 4072, Australia.
| | - Susanne Becker
- School of Biological Sciences, Victoria University of Wellington, Wellington, 6140, New Zealand.
| | - Stefanie Pontasch
- School of Biological Sciences, Victoria University of Wellington, Wellington, 6140, New Zealand.
| | - Sophie Dove
- School of Biological Sciences & ARC Centre of Excellence for Coral Reef Studies, University of Queensland, Brisbane, QLD, 4072, Australia.
| | - Ove Hoegh-Guldberg
- Global Change Institute, University of Queensland, Brisbane, QLD 4072, Australia.
| | - William Leggat
- Comparative Genomics Centre, School of Pharmacy and Molecular Sciences & ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia.
| | - Simon K Davy
- School of Biological Sciences, Victoria University of Wellington, Wellington, 6140, New Zealand.
| |
Collapse
|
47
|
Keijzer F. Moving and sensing without input and output: early nervous systems and the origins of the animal sensorimotor organization. BIOLOGY & PHILOSOPHY 2015; 30:311-331. [PMID: 26005236 PMCID: PMC4438119 DOI: 10.1007/s10539-015-9483-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 02/18/2015] [Indexed: 05/28/2023]
Abstract
It remains a standing problem how and why the first nervous systems evolved. Molecular and genomic information is now rapidly accumulating but the macroscopic organization and functioning of early nervous systems remains unclear. To explore potential evolutionary options, a coordination centered view is discussed that diverges from a standard input-output view on early nervous systems. The scenario involved, the skin brain thesis (SBT), stresses the need to coordinate muscle-based motility at a very early stage. This paper addresses how this scenario with its focus on coordination also deals with sensory aspects. It will be argued that the neural structure required to coordinate extensive sheets of contractile tissue for motility provides the starting point for a new multicellular organized form of sensing. Moving a body by muscle contraction provides the basis for a multicellular organization that is sensitive to external surface structure at the scale of the animal body. Instead of thinking about early nervous systems as being connected to the environment merely through input and output, the implication developed here is that early nervous systems provide the foundation for a highly specific animal sensorimotor organization in which neural activity directly reflects bodily and environmental spatiotemporal structure. While the SBT diverges from the input-output view, it is closely linked to and supported by ongoing work on embodied approaches to intelligence to which it adds a new interpretation of animal embodiment and sensorimotor organization.
Collapse
Affiliation(s)
- Fred Keijzer
- Department of Theoretical Philosophy, University of Groningen, Oude Boteringestraat 52, 9712 GL Groningen, The Netherlands
| |
Collapse
|
48
|
Bosch TCG, Grasis JA, Lachnit T. Microbial ecology in Hydra: why viruses matter. J Microbiol 2015; 53:193-200. [PMID: 25732740 DOI: 10.1007/s12275-015-4695-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 01/21/2015] [Accepted: 01/21/2015] [Indexed: 01/14/2023]
Abstract
While largely studied because of their harmful effects on human health, there is growing appreciation that viruses are also important members of the animal holobiont. This review highlights recent findings on viruses associated with Hydra and related Cnidaria. These early evolutionary diverging animals not only select their bacterial communities but also select for viral communities in a species-specific manner. The majority of the viruses associating with these animals are bacteriophages. We demonstrate that the animal host and its virome have evolved into a homeostatic, symbiotic relationship and propose that viruses are an important part of the Hydra holobiont by controlling the species-specific microbiome. We conclude that beneficial virus-bacterial-host interactions should be considered as an integral part of animal development and evolution.
Collapse
Affiliation(s)
- Thomas C G Bosch
- Zoological Institute, Christian-Albrechts-University Kiel, Olshausen Strasse 40, 24098, Kiel, Germany,
| | | | | |
Collapse
|
49
|
Kang J, Malhotra N. Transcription factor networks directing the development, function, and evolution of innate lymphoid effectors. Annu Rev Immunol 2015; 33:505-38. [PMID: 25650177 PMCID: PMC4674156 DOI: 10.1146/annurev-immunol-032414-112025] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Mammalian lymphoid immunity is mediated by fast and slow responders to pathogens. Fast innate lymphocytes are active within hours after infections in mucosal tissues. Slow adaptive lymphocytes are conventional T and B cells with clonal antigen receptors that function days after pathogen exposure. A transcription factor (TF) regulatory network guiding early T cell development is at the core of effector function diversification in all innate lymphocytes, and the kinetics of immune responses is set by developmental programming. Operational units within the innate lymphoid system are not classified by the types of pathogen-sensing machineries but rather by discrete effector functions programmed by regulatory TF networks. Based on the evolutionary history of TFs of the regulatory networks, fast effectors likely arose earlier in the evolution of animals to fortify body barriers, and in mammals they often develop in fetal ontogeny prior to the establishment of fully competent adaptive immunity.
Collapse
Affiliation(s)
- Joonsoo Kang
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts 01655;
| | | |
Collapse
|
50
|
Murthy M, Ram JL. Invertebrates as model organisms for research on aging biology. INVERTEBR REPROD DEV 2014; 59:1-4. [PMID: 26241448 PMCID: PMC4464166 DOI: 10.1080/07924259.2014.970002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 09/24/2014] [Indexed: 10/31/2022]
Abstract
Invertebrate model systems, such as nematodes and fruit flies, have provided valuable information about the genetics and cellular biology involved in aging. However, limitations of these simple, genetically tractable organisms suggest the need for other model systems, some of them invertebrate, to facilitate further advances in the understanding of mechanisms of aging and longevity in mammals, including humans. This paper introduces 10 review articles about the use of invertebrate model systems for the study of aging by authors who participated in an 'NIA-NIH symposium on aging in invertebrate model systems' at the 2013 International Congress for Invertebrate Reproduction and Development. In contrast to the highly derived characteristics of nematodes and fruit flies as members of the superphylum Ecdysozoa, cnidarians, such as Hydra, are more 'basal' organisms that have a greater number of genetic orthologs in common with humans. Moreover, some other new model systems, such as the urochordate Botryllus schlosseri, the tunicate Ciona, and the sea urchins (Echinodermata) are members of the Deuterostomia, the same superphylum that includes all vertebrates, and thus have mechanisms that are likely to be more closely related to those occurring in humans. Additional characteristics of these new model systems, such as the recent development of new molecular and genetic tools and a more similar pattern to humans of regeneration and stem cell function suggest that these new model systems may have unique advantages for the study of mechanisms of aging and longevity.
Collapse
Affiliation(s)
- Mahadev Murthy
- Division of Aging Biology, National Institute on Aging, National Institutes of Health , Bethesda , MD 20892 , USA
| | - Jeffrey L Ram
- Department of Physiology, Wayne State University , Detroit , MI 48201 , USA
| |
Collapse
|