1
|
Fan Y, Tian Y, Han J. The Glutamate-gated Chloride Channel Facilitates Sleep by Enhancing the Excitability of Two Pairs of Neurons in the Ventral Nerve Cord of Drosophila. Neurosci Bull 2025:10.1007/s12264-025-01397-1. [PMID: 40304877 DOI: 10.1007/s12264-025-01397-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 01/12/2025] [Indexed: 05/02/2025] Open
Abstract
Sleep, an essential and evolutionarily conserved behavior, is regulated by numerous neurotransmitter systems. In mammals, glutamate serves as the wake-promoting signaling agent, whereas in Drosophila, it functions as the sleep-promoting signal. However, the precise molecular and cellular mechanisms through which glutamate promotes sleep remain elusive. Our study reveals that disruption of glutamate signaling significantly diminishes nocturnal sleep, and a neural cell-specific knockdown of the glutamate-gated chloride channel (GluClα) markedly reduces nocturnal sleep. We identified two pairs of neurons in the ventral nerve cord (VNC) that receive glutamate signaling input, and the GluClα derived from these neurons is crucial for sleep promotion. Furthermore, we demonstrated that GluClα mediates the glutamate-gated inhibitory input to these VNC neurons, thereby promoting sleep. Our findings elucidate that GluClα enhances nocturnal sleep by mediating the glutamate-gated inhibitory input to two pairs of VNC neurons, providing insights into the mechanism of sleep promotion in Drosophila.
Collapse
Affiliation(s)
- Yaqian Fan
- School of Life Science and Technology, The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, 210096, China
| | - Yao Tian
- School of Life Science and Technology, The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, 210096, China.
| | - Junhai Han
- School of Life Science and Technology, The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, 210096, China.
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226000, China.
| |
Collapse
|
2
|
Akaarir M, Nicolau MC, Cañellas F, Rubiño JA, Barceló P, Gamundí A, Martin-Reina A, Rial RV. The Disputable Costs of Sleeping. BIOLOGY 2025; 14:352. [PMID: 40282216 PMCID: PMC12024767 DOI: 10.3390/biology14040352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 12/04/2024] [Accepted: 12/12/2024] [Indexed: 04/29/2025]
Abstract
It is currently affirmed that sleep detracts from time for foraging, reproductive, and anti-predatory activities. In contrast, we show that the sleep-related reductions in food intake and reproductive activities may, in fact, be benefits. Furthermore, the present report shows that the optimal prey are the immature, weak, sick, and senescent animals and rarely the sleeping fit adults. Indeed, the reduced sleeping time observed in prey animals occurs, not because of an evolutionary antipredation pressure but because of the time-expensive foraging-related activities and the digestion of the high-cellulose content in the herbivores' diet, an activity that leaves reduced amounts of daily time for sleeping. We conclude that the need for sleep ranks lower than those of foraging, reproduction, and antipredation activities.
Collapse
Affiliation(s)
- Mourad Akaarir
- Balearic Islands Health Research Institute (IUNICS), Universitat de les Illes Balears, 07122 Palma, Spain; (M.A.); (M.C.N.); (P.B.); (A.G.); (A.M.-R.)
| | - M. Cristina Nicolau
- Balearic Islands Health Research Institute (IUNICS), Universitat de les Illes Balears, 07122 Palma, Spain; (M.A.); (M.C.N.); (P.B.); (A.G.); (A.M.-R.)
| | - Francesca Cañellas
- Balearic Islands Health Research Institute (IUNICS), Hospital Universitario Son Espases, Universitat de les Illes Balears, 07122 Palma, Spain; (F.C.)
| | - Jose A. Rubiño
- Balearic Islands Health Research Institute (IUNICS), Universitat de les Illes Balears, 07122 Palma, Spain; (M.A.); (M.C.N.); (P.B.); (A.G.); (A.M.-R.)
| | - Pere Barceló
- Balearic Islands Health Research Institute (IUNICS), Universitat de les Illes Balears, 07122 Palma, Spain; (M.A.); (M.C.N.); (P.B.); (A.G.); (A.M.-R.)
| | - Antonio Gamundí
- Balearic Islands Health Research Institute (IUNICS), Universitat de les Illes Balears, 07122 Palma, Spain; (M.A.); (M.C.N.); (P.B.); (A.G.); (A.M.-R.)
| | - Aida Martin-Reina
- Balearic Islands Health Research Institute (IUNICS), Universitat de les Illes Balears, 07122 Palma, Spain; (M.A.); (M.C.N.); (P.B.); (A.G.); (A.M.-R.)
| | - Rubén V. Rial
- Balearic Islands Health Research Institute (IUNICS), Universitat de les Illes Balears, 07122 Palma, Spain; (M.A.); (M.C.N.); (P.B.); (A.G.); (A.M.-R.)
| |
Collapse
|
3
|
Sitaraman D, Vecsey CG, Koochagian C. Activity Monitoring for Analysis of Sleep in Drosophila melanogaster. Cold Spring Harb Protoc 2024; 2024:pdb.top108095. [PMID: 38336390 PMCID: PMC11827337 DOI: 10.1101/pdb.top108095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
Sleep is important for survival, and the need for sleep is conserved across species. In the past two decades, the fruit fly Drosophila melanogaster has emerged as a promising system in which to study the genetic, neural, and physiological bases of sleep. Through significant advances in our understanding of the regulation of sleep in flies, the field is poised to address several open questions about sleep, such as how the need for sleep is encoded, how molecular regulators of sleep are situated within brain networks, and what the functions of sleep are. Here, we describe key findings, open questions, and commonly used methods that have been used to inform existing theories and develop new ways of thinking about the function, regulation, and adaptability of sleep behavior.
Collapse
Affiliation(s)
- Divya Sitaraman
- Department of Psychology, College of Science, California State University, Hayward, California 94542, USA
| | | | - Casey Koochagian
- Neuroscience Program, Skidmore College, Saratoga Springs, New York 12866, USA
| |
Collapse
|
4
|
Van De Poll M, Tainton-Heap L, Troup M, van Swinderen B. Whole-Brain Electrophysiology and Calcium Imaging in Drosophila during Sleep and Wake. Cold Spring Harb Protoc 2024; 2024:pdb.top108394. [PMID: 38148172 DOI: 10.1101/pdb.top108394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Sleep is likely a whole-brain phenomenon, with most of the brain probably benefiting from this state of decreased arousal. Recent advances in our understanding of some potential sleep functions, such as metabolite clearance and synaptic homeostasis, make it evident why the whole brain is likely impacted by sleep: All neurons have synapses, and all neurons produce waste metabolites. Sleep experiments in the fly Drosophila melanogaster suggest that diverse sleep functions appear to be conserved across all animals. Studies of brain activity during sleep in humans typically involve multidimensional data sets, such as those acquired by electroencephalograms (EEGs) or functional magnetic resonance imaging (fMRI), and these whole-brain read-outs often reveal important qualities of different sleep stages, such as changes in frequency dynamics or connectivity. Recently, various techniques have been developed that allow for the recording of neural activity simultaneously across multiple regions of the fly brain. These whole-brain-recording approaches will be important for better understanding sleep physiology and function, as they provide a more comprehensive view of neural dynamics during sleep and wake in a relevant model system. Here, we present a brief summary of some of the findings derived from sleep activity recording studies in sleeping Drosophila flies and discuss the value of electrophysiological versus calcium imaging techniques. Although these involve very different preparations, they both highlight the value of multidimensional data for studying sleep in this model system, like the use of both EEG and fMRI in humans.
Collapse
Affiliation(s)
- Matthew Van De Poll
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Lucy Tainton-Heap
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Michael Troup
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Bruno van Swinderen
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
5
|
Jagannathan SR, Jeans T, Van De Poll MN, van Swinderen B. Multivariate classification of multichannel long-term electrophysiology data identifies different sleep stages in fruit flies. SCIENCE ADVANCES 2024; 10:eadj4399. [PMID: 38381836 PMCID: PMC10881036 DOI: 10.1126/sciadv.adj4399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 01/18/2024] [Indexed: 02/23/2024]
Abstract
Identifying different sleep stages in humans and other mammals has traditionally relied on electroencephalograms. Such an approach is not feasible in certain animals such as invertebrates, although these animals could also be sleeping in stages. Here, we perform long-term multichannel local field potential recordings in the brains of behaving flies undergoing spontaneous sleep bouts. We acquired consistent spatial recordings of local field potentials across multiple flies, allowing us to compare brain activity across awake and sleep periods. Using machine learning, we uncover distinct temporal stages of sleep and explore the associated spatial and spectral features across the fly brain. Further, we analyze the electrophysiological correlates of microbehaviors associated with certain sleep stages. We confirm the existence of a distinct sleep stage associated with rhythmic proboscis extensions and show that spectral features of this sleep-related behavior differ significantly from those associated with the same behavior during wakefulness, indicating a dissociation between behavior and the brain states wherein these behaviors reside.
Collapse
Affiliation(s)
- Sridhar R. Jagannathan
- Department of Psychology, University of Cambridge, Cambridge, UK
- Institute of Neurophysiology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Travis Jeans
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD Australia
| | | | - Bruno van Swinderen
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD Australia
| |
Collapse
|
6
|
Bhattacharya D, Górska-Andrzejak J, Abaquita TAL, Pyza E. Effects of adenosine receptor overexpression and silencing in neurons and glial cells on lifespan, fitness, and sleep of Drosophila melanogaster. Exp Brain Res 2023:10.1007/s00221-023-06649-y. [PMID: 37335362 DOI: 10.1007/s00221-023-06649-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 05/28/2023] [Indexed: 06/21/2023]
Abstract
A single adenosine receptor gene (dAdoR) has been detected in Drosophila melanogaster. However, its function in different cell types of the nervous system is mostly unknown. Therefore, we overexpressed or silenced the dAdoR gene in eye photoreceptors, all neurons, or glial cells and examined the fitness of flies, the amount and daily pattern of sleep, and the influence of dAdoR silencing on Bruchpilot (BRP) presynaptic protein. Furthermore, we examined the dAdoR and brp gene expression in young and old flies. We found that a higher level of dAdoR in the retina photoreceptors, all neurons, and glial cells negatively influenced the survival rate and lifespan of male and female Drosophila in a cell-dependent manner and to a different extent depending on the age of the flies. In old flies, expression of both dAdoR and brp was higher than in young ones. An excess of dAdoR in neurons improved climbing in older individuals. It also influenced sleep by lengthening nighttime sleep and siesta. In turn, silencing of dAdoR decreased the lifespan of flies, although it increased the survival rate of young flies. It hindered the climbing of older males and females, but did not change sleep. Silencing also affected the daily pattern of BRP abundance, especially when dAdoR expression was decreased in glial cells. The obtained results indicate the role of adenosine and dAdoR in the regulation of fitness in flies that is based on communication between neurons and glial cells, and the effect of glial cells on synapses.
Collapse
Affiliation(s)
| | | | | | - Elżbieta Pyza
- Department of Cell Biology and Imaging, Jagellonian University, Kraków, Poland.
| |
Collapse
|
7
|
Jagannathan SR, Jeans R, Van De Poll MN, van Swinderen B. Multivariate classification of multichannel long-term electrophysiology data identifies different sleep stages in fruit flies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.12.544704. [PMID: 37398087 PMCID: PMC10312633 DOI: 10.1101/2023.06.12.544704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Sleep is observed in most animals, which suggests it subserves a fundamental process associated with adaptive biological functions. However, the evidence to directly associate sleep with a specific function is lacking, in part because sleep is not a single process in many animals. In humans and other mammals, different sleep stages have traditionally been identified using electroencephalograms (EEGs), but such an approach is not feasible in different animals such as insects. Here, we perform long-term multichannel local field potential (LFP) recordings in the brains of behaving flies undergoing spontaneous sleep bouts. We developed protocols to allow for consistent spatial recordings of LFPs across multiple flies, allowing us to compare the LFP activity across awake and sleep periods and further compare the same to induced sleep. Using machine learning, we uncover the existence of distinct temporal stages of sleep and explore the associated spatial and spectral features across the fly brain. Further, we analyze the electrophysiological correlates of micro-behaviours associated with certain sleep stages. We confirm the existence of a distinct sleep stage associated with rhythmic proboscis extensions and show that spectral features of this sleep-related behavior differ significantly from those associated with the same behavior during wakefulness, indicating a dissociation between behavior and the brain states wherein these behaviors reside.
Collapse
Affiliation(s)
- Sridhar R. Jagannathan
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
- Institute of Neurophysiology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Rhiannon Jeans
- Queensland Brain Institute, The University of Queensland, St Lucia, Australia
| | | | - Bruno van Swinderen
- Queensland Brain Institute, The University of Queensland, St Lucia, Australia
| |
Collapse
|
8
|
Liu F, Li D, Li Y, Xiang Z, Chen Y, Xu Z, Lin Q, Ruan Y. Atomic Magnetometer Achieves Visual Salience Analysis in Drosophila. SENSORS (BASEL, SWITZERLAND) 2023; 23:1092. [PMID: 36772132 PMCID: PMC9921713 DOI: 10.3390/s23031092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
An atomic magnetometer (AM) was used to non-invasively detect the tiny magnetic field generated by the brain of a single Drosophila. Combined with a visual stimulus system, the AM was used to study the relationship between visual salience and oscillatory activity of the Drosophila brain by analyzing changes in the magnetic field. Oscillatory activity of Drosophila in the 1-20 Hz frequency band was measured with a sensitivity of 20 fT/Hz. The field in the 20-30 Hz band under periodic light stimulation was used to explore the correlation between short-term memory and visual salience. Our method opens a new path to a more flexible method for the investigation of brain activity in Drosophila and other small insects.
Collapse
|
9
|
Jin X, Tian Y, Zhang ZC, Gu P, Liu C, Han J. A subset of DN1p neurons integrates thermosensory inputs to promote wakefulness via CNMa signaling. Curr Biol 2021; 31:2075-2087.e6. [PMID: 33740429 DOI: 10.1016/j.cub.2021.02.048] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 12/15/2020] [Accepted: 02/17/2021] [Indexed: 11/29/2022]
Abstract
Sleep is an essential and evolutionarily conserved behavior that is modulated by many environmental factors. Ambient temperature shifting usually occurs during climatic or seasonal change or travel from high-latitude area to low-latitude area that affects animal physiology. Increasing ambient temperature modulates sleep in both humans and Drosophila. Although several thermosensory molecules and neurons have been identified, the neural mechanisms that integrate temperature sensation into the sleep neural circuit remain poorly understood. Here, we reveal that prolonged increasing of ambient temperature induces a reversible sleep reduction and impaired sleep consolidation in Drosophila via activating the internal thermosensory anterior cells (ACs). ACs form synaptic contacts with a subset of posterior dorsal neuron 1 (DN1p) neurons and release acetylcholine to promote wakefulness. Furthermore, we identify that this subset of DN1ps promotes wakefulness by releasing CNMamide (CNMa) neuropeptides to inhibit the Dh44-positive pars intercerebralis (PI) neurons through CNMa receptors. Our study demonstrates that the AC-DN1p-PI neural circuit is responsible for integrating thermosensory inputs into the sleep neural circuit. Moreover, we identify the CNMa signaling pathway as a newly recognized wakefulness-promoting DN1 pathway.
Collapse
Affiliation(s)
- Xi Jin
- School of Life Science and Technology, the Key Laboratory of Developmental Genes and Human Disease, Southeast University, 2 Sipailou Road, Nanjing 210096, China
| | - Yao Tian
- School of Life Science and Technology, the Key Laboratory of Developmental Genes and Human Disease, Southeast University, 2 Sipailou Road, Nanjing 210096, China
| | - Zi Chao Zhang
- School of Life Science and Technology, the Key Laboratory of Developmental Genes and Human Disease, Southeast University, 2 Sipailou Road, Nanjing 210096, China
| | - Pengyu Gu
- School of Life Science and Technology, the Key Laboratory of Developmental Genes and Human Disease, Southeast University, 2 Sipailou Road, Nanjing 210096, China
| | - Chang Liu
- CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Junhai Han
- School of Life Science and Technology, the Key Laboratory of Developmental Genes and Human Disease, Southeast University, 2 Sipailou Road, Nanjing 210096, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226021, China.
| |
Collapse
|
10
|
Qiu S, Sun K, Di Z. Collective Dynamics of Neural Networks With Sleep-Related Biological Drives in Drosophila. Front Comput Neurosci 2021; 15:616193. [PMID: 34012388 PMCID: PMC8126628 DOI: 10.3389/fncom.2021.616193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 03/29/2021] [Indexed: 11/18/2022] Open
Abstract
The collective electrophysiological dynamics of the brain as a result of sleep-related biological drives in Drosophila are investigated in this paper. Based on the Huber-Braun thermoreceptor model, the conductance-based neurons model is extended to a coupled neural network to analyze the local field potential (LFP). The LFP is calculated by using two different metrics: the mean value and the distance-dependent LFP. The distribution of neurons around the electrodes is assumed to have a circular or grid distribution on a two-dimensional plane. Regardless of which method is used, qualitatively similar results are obtained that are roughly consistent with the experimental data. During wake, the LFP has an irregular or a regular spike. However, the LFP becomes regular bursting during sleep. To further analyze the results, wavelet analysis and raster plots are used to examine how the LFP frequencies changed. The synchronization of neurons under different network structures is also studied. The results demonstrate that there are obvious oscillations at approximately 8 Hz during sleep that are absent during wake. Different time series of the LFP can be obtained under different network structures and the density of the network will also affect the magnitude of the potential. As the number of coupled neurons increases, the neural network becomes easier to synchronize, but the sleep and wake time described by the LFP spectrogram do not change. Moreover, the parameters that affect the durations of sleep and wake are analyzed.
Collapse
Affiliation(s)
- Shuihan Qiu
- International Academic Center of Complex Systems, Beijing Normal University at Zhuhai, Beijing, China.,School of Systems Science, Beijing Normal University, Beijing, China
| | - Kaijia Sun
- School of Systems Science, Beijing Normal University, Beijing, China
| | - Zengru Di
- International Academic Center of Complex Systems, Beijing Normal University at Zhuhai, Beijing, China.,School of Systems Science, Beijing Normal University, Beijing, China
| |
Collapse
|
11
|
Xu X, Yang W, Tian B, Sui X, Chi W, Rao Y, Tang C. Quantitative investigation reveals distinct phases in Drosophila sleep. Commun Biol 2021; 4:364. [PMID: 33742082 PMCID: PMC7979771 DOI: 10.1038/s42003-021-01883-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 02/19/2021] [Indexed: 11/26/2022] Open
Abstract
The fruit fly, Drosophila melanogaster, has been used as a model organism for the molecular and genetic dissection of sleeping behaviors. However, most previous studies were based on qualitative or semi-quantitative characterizations. Here we quantified sleep in flies. We set up an assay to continuously track the activity of flies using infrared camera, which monitored the movement of tens of flies simultaneously with high spatial and temporal resolution. We obtained accurate statistics regarding the rest and sleep patterns of single flies. Analysis of our data has revealed a general pattern of rest and sleep: the rest statistics obeyed a power law distribution and the sleep statistics obeyed an exponential distribution. Thus, a resting fly would start to move again with a probability that decreased with the time it has rested, whereas a sleeping fly would wake up with a probability independent of how long it had slept. Resting transits to sleeping at time scales of minutes. Our method allows quantitative investigations of resting and sleeping behaviors and our results provide insights for mechanisms of falling into and waking up from sleep.
Collapse
Affiliation(s)
- Xiaochan Xu
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Wei Yang
- Capital Medical University, School of Life Sciences, Peking University, PKU-IDG/McGovern Institute for Brain Research, and Chinese Institute for Brain Research, Beijing, China
| | - Binghui Tian
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Xiuwen Sui
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Weilai Chi
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Yi Rao
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Capital Medical University, School of Life Sciences, Peking University, PKU-IDG/McGovern Institute for Brain Research, and Chinese Institute for Brain Research, Beijing, China
| | - Chao Tang
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
- School of Physics, Peking University, Beijing, China.
| |
Collapse
|
12
|
Tainton-Heap LAL, Kirszenblat LC, Notaras ET, Grabowska MJ, Jeans R, Feng K, Shaw PJ, van Swinderen B. A Paradoxical Kind of Sleep in Drosophila melanogaster. Curr Biol 2020; 31:578-590.e6. [PMID: 33238155 DOI: 10.1016/j.cub.2020.10.081] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 09/14/2020] [Accepted: 10/27/2020] [Indexed: 01/01/2023]
Abstract
The dynamic nature of sleep in many animals suggests distinct stages that serve different functions. Genetic sleep induction methods in animal models provide a powerful way to disambiguate these stages and functions, although behavioral methods alone are insufficient to accurately identify what kind of sleep is being engaged. In Drosophila, activation of the dorsal fan-shaped body (dFB) promotes sleep, but it remains unclear what kind of sleep this is, how the rest of the fly brain is behaving, or if any specific sleep functions are being achieved. Here, we developed a method to record calcium activity from thousands of neurons across a volume of the fly brain during spontaneous sleep and compared this to dFB-induced sleep. We found that spontaneous sleep typically transitions from an active "wake-like" stage to a less active stage. In contrast, optogenetic activation of the dFB promotes sustained wake-like levels of neural activity even though flies become unresponsive to mechanical stimuli. When we probed flies with salient visual stimuli, we found that the activity of visually responsive neurons in the central brain was blocked by transient dFB activation, confirming an acute disconnect from the external environment. Prolonged optogenetic dFB activation nevertheless achieved a key sleep function by correcting visual attention defects brought on by sleep deprivation. These results suggest that dFB activation promotes a distinct form of sleep in Drosophila, where brain activity appears similar to wakefulness, but responsiveness to external sensory stimuli is profoundly suppressed.
Collapse
Affiliation(s)
- Lucy A L Tainton-Heap
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Leonie C Kirszenblat
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia; RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Eleni T Notaras
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Martyna J Grabowska
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Rhiannon Jeans
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Kai Feng
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Paul J Shaw
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Bruno van Swinderen
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
13
|
Ajayi OM, Eilerts DF, Bailey ST, Vinauger C, Benoit JB. Do Mosquitoes Sleep? Trends Parasitol 2020; 36:888-897. [PMID: 32952061 PMCID: PMC8094063 DOI: 10.1016/j.pt.2020.08.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/17/2020] [Accepted: 08/20/2020] [Indexed: 10/23/2022]
Abstract
Sleep is a phenomenon conserved across the animal kingdom, where studies on Drosophila melanogaster have revealed that sleep phenotypes and molecular underpinnings are similar to those in mammals. However, little is known about sleep in blood-feeding arthropods, which have a critical role in public health as disease vectors. Specifically, sleep studies in mosquitoes are lacking despite considerable focus on how circadian processes, which have a central role in regulating sleep/wake cycles, impact activity, feeding, and immunity. Here, we review observations which suggest that sleep-like states likely occur in mosquitoes and discuss the potential role of sleep in relation to mosquito biology and their ability to function as disease vectors.
Collapse
Affiliation(s)
- Oluwaseun M Ajayi
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA. @mail.uc.edu
| | - Diane F Eilerts
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Samuel T Bailey
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Clément Vinauger
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Joshua B Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA. @uc.edu
| |
Collapse
|
14
|
De Jesús-Olmo LA, Rodríguez N, Francia M, Alemán-Rios J, Pacheco-Agosto CJ, Ortega-Torres J, Nieves R, Fuenzalida-Uribe N, Ghezzi A, Agosto JL. Pumilio Regulates Sleep Homeostasis in Response to Chronic Sleep Deprivation in Drosophila melanogaster. Front Neurosci 2020; 14:319. [PMID: 32362810 PMCID: PMC7182066 DOI: 10.3389/fnins.2020.00319] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 03/18/2020] [Indexed: 12/23/2022] Open
Abstract
Recent studies have identified the Drosophila brain circuits involved in the sleep/wake switch and have pointed to the modulation of neuronal excitability as one of the underlying mechanisms triggering sleep need. In this study we aimed to explore the link between the homeostatic regulation of neuronal excitability and sleep behavior in the circadian circuit. For this purpose, we selected Pumilio (Pum), whose main function is to repress protein translation and has been linked to modulation of neuronal excitability during chronic patterns of altered neuronal activity. Here we explore the effects of Pum on sleep homeostasis in Drosophila melanogaster, which shares most of the major features of mammalian sleep homeostasis. Our evidence indicates that Pum is necessary for sleep rebound and that its effect is more pronounced during chronic sleep deprivation (84 h) than acute deprivation (12 h). Knockdown of pum, results in a reduction of sleep rebound during acute sleep deprivation and the complete abolishment of sleep rebound during chronic sleep deprivation. Based on these findings, we propose that Pum is a critical regulator of sleep homeostasis through neural adaptations triggered during sleep deprivation.
Collapse
Affiliation(s)
| | - Norma Rodríguez
- Department of Biology, University of Puerto Rico, Rio Piedras, Puerto Rico
| | - Marcelo Francia
- Department of Biology, University of Puerto Rico, Rio Piedras, Puerto Rico
| | | | | | | | - Richard Nieves
- Department of Biology, University of Puerto Rico, Rio Piedras, Puerto Rico
| | | | - Alfredo Ghezzi
- Department of Biology, University of Puerto Rico, Rio Piedras, Puerto Rico
| | - José L Agosto
- Department of Biology, University of Puerto Rico, Rio Piedras, Puerto Rico
| |
Collapse
|
15
|
Lurie DJ, Kessler D, Bassett DS, Betzel RF, Breakspear M, Kheilholz S, Kucyi A, Liégeois R, Lindquist MA, McIntosh AR, Poldrack RA, Shine JM, Thompson WH, Bielczyk NZ, Douw L, Kraft D, Miller RL, Muthuraman M, Pasquini L, Razi A, Vidaurre D, Xie H, Calhoun VD. Questions and controversies in the study of time-varying functional connectivity in resting fMRI. Netw Neurosci 2020; 4:30-69. [PMID: 32043043 PMCID: PMC7006871 DOI: 10.1162/netn_a_00116] [Citation(s) in RCA: 338] [Impact Index Per Article: 67.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 11/22/2019] [Indexed: 12/12/2022] Open
Abstract
The brain is a complex, multiscale dynamical system composed of many interacting regions. Knowledge of the spatiotemporal organization of these interactions is critical for establishing a solid understanding of the brain's functional architecture and the relationship between neural dynamics and cognition in health and disease. The possibility of studying these dynamics through careful analysis of neuroimaging data has catalyzed substantial interest in methods that estimate time-resolved fluctuations in functional connectivity (often referred to as "dynamic" or time-varying functional connectivity; TVFC). At the same time, debates have emerged regarding the application of TVFC analyses to resting fMRI data, and about the statistical validity, physiological origins, and cognitive and behavioral relevance of resting TVFC. These and other unresolved issues complicate interpretation of resting TVFC findings and limit the insights that can be gained from this promising new research area. This article brings together scientists with a variety of perspectives on resting TVFC to review the current literature in light of these issues. We introduce core concepts, define key terms, summarize controversies and open questions, and present a forward-looking perspective on how resting TVFC analyses can be rigorously and productively applied to investigate a wide range of questions in cognitive and systems neuroscience.
Collapse
Affiliation(s)
- Daniel J. Lurie
- Department of Psychology, University of California, Berkeley, Berkeley, CA, USA
| | - Daniel Kessler
- Departments of Statistics and Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Danielle S. Bassett
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
- Department of Physics & Astronomy, College of Arts & Sciences, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Electrical & Systems Engineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Richard F. Betzel
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael Breakspear
- University of Newcastle, Callaghan, NSW, 2308, Australia
- QIMR Berghofer, Brisbane, Australia
| | - Shella Kheilholz
- Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, USA
| | - Aaron Kucyi
- Department of Neurology and Neurological Sciences, Stanford University, Stanford CA, USA
| | - Raphaël Liégeois
- Institute of Bioengineering, Center for Neuroprosthetics, Ecole Polytechnique Fédérale de Lausanne, Switzerland
- Department of Radiology and Medical Informatics, University of Geneva, Switzerland
| | | | - Anthony Randal McIntosh
- Rotman Research Institute - Baycrest Centre, Toronto, Canada
- Department of Psychology, University of Toronto, Toronto, Canada
| | | | - James M. Shine
- Brain and Mind Centre, University of Sydney, NSW, Australia
| | - William Hedley Thompson
- Department of Psychology, Stanford University, Stanford, CA, USA
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | | - Linda Douw
- Department of Anatomy and Neurosciences, VU University Medical Center, Amsterdam, The Netherlands
| | - Dominik Kraft
- Department of Psychology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | | | - Muthuraman Muthuraman
- Biomedical Statistics and Multimodal Signal Processing Unit, Movement Disorders and Neurostimulation, Department of Neurology, Focus Program Translational Neuroscience, Johannes-Gutenberg-University Hospital, Mainz, Germany
| | - Lorenzo Pasquini
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Adeel Razi
- Monash Institute of Cognitive and Clinical Neurosciences and Monash Biomedical Imaging, Monash University, Clayton, Australia
- Wellcome Centre for Human Neuroimaging, Institute of Neurology, University College London, London, United Kingdom
- Department of Electronic Engineering, NED University of Engineering and Technology, Karachi, Pakistan
| | - Diego Vidaurre
- Wellcome Trust Centre for Integrative Neuroimaging, Oxford Centre for Human Brain Activity, University of Oxford, United Kingdom
| | - Hua Xie
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Vince D. Calhoun
- The Mind Research Network, Albuquerque, NM, USA
- Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM, USA
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State, Georgia Tech, Emory, Atlanta, Georgia, USA
| |
Collapse
|
16
|
Toda H, Shi M, Williams JA, Sehgal A. Genetic Mechanisms Underlying Sleep. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2019; 83:57-61. [PMID: 30936393 DOI: 10.1101/sqb.2018.83.037705] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Sleep is important for cognitive ability, and perturbations of sleep are associated with a myriad of brain disorders. However, how sleep promotes health and function during wake is poorly understood. To address the cellular and molecular mechanisms underlying sleep, we use the fruit fly Drosophila melanogaster as a genetic model. Forward genetic approaches in flies were critical for deciphering molecular mechanisms of the circadian clock. Using similar approaches, we and others are gaining insights into the pathways that control sleep amount.
Collapse
Affiliation(s)
- Hirofumi Toda
- Howard Hughes Medical Institute, Perelman School of Medicine University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Mi Shi
- Howard Hughes Medical Institute, Perelman School of Medicine University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Julie A Williams
- Howard Hughes Medical Institute, Perelman School of Medicine University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Amita Sehgal
- Howard Hughes Medical Institute, Perelman School of Medicine University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
17
|
Blum ID, Bell B, Wu MN. Time for Bed: Genetic Mechanisms Mediating the Circadian Regulation of Sleep. Trends Genet 2018; 34:379-388. [PMID: 29395381 DOI: 10.1016/j.tig.2018.01.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/19/2017] [Accepted: 01/02/2018] [Indexed: 10/18/2022]
Abstract
Sleep is an evolutionarily conserved behavior that is increasingly recognized as important for human health. While its precise function remains controversial, sleep has been suggested to play a key role in a variety of biological phenomena ranging from synaptic plasticity to metabolic clearance. Although it is clear that sleep is regulated by the circadian clock, how this occurs remains enigmatic. Here we examine the genetic mechanisms by which the circadian clock regulates sleep, drawing on recent work in fruit flies, zebrafish, mice, and humans. These studies reveal that central and local clocks utilize diverse mechanisms to regulate different aspects of sleep, and a better understanding of this multilayered regulation may lead to a better understanding of the functions of sleep.
Collapse
Affiliation(s)
- Ian D Blum
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Benjamin Bell
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Mark N Wu
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| |
Collapse
|
18
|
Oscillatory brain activity in spontaneous and induced sleep stages in flies. Nat Commun 2017; 8:1815. [PMID: 29180766 PMCID: PMC5704022 DOI: 10.1038/s41467-017-02024-y] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 11/01/2017] [Indexed: 12/03/2022] Open
Abstract
Sleep is a dynamic process comprising multiple stages, each associated with distinct electrophysiological properties and potentially serving different functions. While these phenomena are well described in vertebrates, it is unclear if invertebrates have distinct sleep stages. We perform local field potential (LFP) recordings on flies spontaneously sleeping, and compare their brain activity to flies induced to sleep using either genetic activation of sleep-promoting circuitry or the GABAA agonist Gaboxadol. We find a transitional sleep stage associated with a 7–10 Hz oscillation in the central brain during spontaneous sleep. Oscillatory activity is also evident when we acutely activate sleep-promoting neurons in the dorsal fan-shaped body (dFB) of Drosophila. In contrast, sleep following Gaboxadol exposure is characterized by low-amplitude LFPs, during which dFB-induced effects are suppressed. Sleep in flies thus appears to involve at least two distinct stages: increased oscillatory activity, particularly during sleep induction, followed by desynchronized or decreased brain activity. Sleep in mammals comprises physiologically and functionally distinct stages. Here, the authors report a transitional sleep stage in Drosophila associated with 7–10 Hz oscillatory activity that can be obtained through activation of the sleep-promoting neurons of the dorsal fan-shaped body.
Collapse
|
19
|
Allada R, Cirelli C, Sehgal A. Molecular Mechanisms of Sleep Homeostasis in Flies and Mammals. Cold Spring Harb Perspect Biol 2017; 9:a027730. [PMID: 28432135 PMCID: PMC5538413 DOI: 10.1101/cshperspect.a027730] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Sleep is homeostatically regulated with sleep pressure accumulating with the increasing duration of prior wakefulness. Yet, a clear understanding of the molecular components of the homeostat, as well as the molecular and cellular processes they sense and control to regulate sleep intensity and duration, remain a mystery. Here, we will discuss the cellular and molecular basis of sleep homeostasis, first focusing on the best homeostatic sleep marker in vertebrates, slow wave activity; second, moving to the molecular genetic analysis of sleep homeostasis in the fruit fly Drosophila; and, finally, discussing more systemic aspects of sleep homeostasis.
Collapse
Affiliation(s)
- Ravi Allada
- Department of Neurobiology, Northwestern University, Evanston, Ilinois 60208
| | - Chiara Cirelli
- Department of Psychiatry, University of Wisconsin-Madison, Madison, Wisconsin 53719
| | - Amita Sehgal
- Department of Neuroscience, Perelman School of Medicine at University of Pennsylvania, Philadelphia, Pennsylvania 19104-6058
| |
Collapse
|
20
|
Neurexin regulates nighttime sleep by modulating synaptic transmission. Sci Rep 2016; 6:38246. [PMID: 27905548 PMCID: PMC5131284 DOI: 10.1038/srep38246] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 11/07/2016] [Indexed: 11/09/2022] Open
Abstract
Neurexins are cell adhesion molecules involved in synaptic formation and synaptic transmission. Mutations in neurexin genes are linked to autism spectrum disorders (ASDs), which are frequently associated with sleep problems. However, the role of neurexin-mediated synaptic transmission in sleep regulation is unclear. Here, we show that lack of the Drosophila α-neurexin homolog significantly reduces the quantity and quality of nighttime sleep and impairs sleep homeostasis. We report that neurexin expression in Drosophila mushroom body (MB) αβ neurons is essential for nighttime sleep. We demonstrate that reduced nighttime sleep in neurexin mutants is due to impaired αβ neuronal output, and show that neurexin functionally couples calcium channels (Cac) to regulate synaptic transmission. Finally, we determine that αβ surface (αβs) neurons release both acetylcholine and short neuropeptide F (sNPF), whereas αβ core (αβc) neurons release sNPF to promote nighttime sleep. Our findings reveal that neurexin regulates nighttime sleep by mediating the synaptic transmission of αβ neurons. This study elucidates the role of synaptic transmission in sleep regulation, and might offer insights into the mechanism of sleep disturbances in patients with autism disorders.
Collapse
|
21
|
Zalucki O, van Swinderen B. What is unconsciousness in a fly or a worm? A review of general anesthesia in different animal models. Conscious Cogn 2016; 44:72-88. [PMID: 27366985 DOI: 10.1016/j.concog.2016.06.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 05/31/2016] [Accepted: 06/20/2016] [Indexed: 12/14/2022]
Abstract
All animals are rendered unresponsive by general anesthetics. In humans, this is observed as a succession of endpoints from memory loss to unconsciousness to immobility. Across animals, anesthesia endpoints such as loss of responsiveness or immobility appear to require significantly different drug concentrations. A closer examination in key model organisms such as the mouse, fly, or the worm, uncovers a trend: more complex behaviors, either requiring several sub-behaviors, or multiple neural circuits working together, are more sensitive to volatile general anesthetics. This trend is also evident when measuring neural correlates of general anesthesia. Here, we review this complexity hypothesis in humans and model organisms, and attempt to reconcile these findings with the more recent view that general anesthetics potentiate endogenous sleep pathways in most animals. Finally, we propose a presynaptic mechanism, and thus an explanation for how these drugs might compromise a succession of brain functions of increasing complexity.
Collapse
Affiliation(s)
- Oressia Zalucki
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Bruno van Swinderen
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
22
|
Parisky KM, Agosto Rivera JL, Donelson NC, Kotecha S, Griffith LC. Reorganization of Sleep by Temperature in Drosophila Requires Light, the Homeostat, and the Circadian Clock. Curr Biol 2016; 26:882-92. [PMID: 26972320 DOI: 10.1016/j.cub.2016.02.011] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 01/11/2016] [Accepted: 02/03/2016] [Indexed: 12/17/2022]
Abstract
Increasing ambient temperature reorganizes the Drosophila sleep pattern in a way similar to the human response to heat, increasing daytime sleep while decreasing nighttime sleep. Mutation of core circadian genes blocks the immediate increase in daytime sleep, but not the heat-stimulated decrease in nighttime sleep, when animals are in a light:dark cycle. The ability of per(01) flies to increase daytime sleep in light:dark can be rescued by expression of PER in either LNv or DN1p clock cells and does not require rescue of locomotor rhythms. Prolonged heat exposure engages the homeostat to maintain daytime sleep in the face of nighttime sleep loss. In constant darkness, all genotypes show an immediate decrease in sleep in response to temperature shift during the subjective day, implying that the absence of light input uncovers a clock-independent pro-arousal effect of increased temperature. Interestingly, the effects of temperature on nighttime sleep are blunted in constant darkness and in cry(OUT) mutants in light:dark, suggesting that they are dependent on the presence of light the previous day. In contrast, flies of all genotypes kept in constant light sleep more at all times of day in response to high temperature, indicating that the presence of light can invert the normal nighttime response to increased temperature. The effect of temperature on sleep thus reflects coordinated regulation by light, the homeostat, and components of the clock, allowing animals to reorganize sleep patterns in response to high temperature with rough preservation of the total amount of sleep.
Collapse
Affiliation(s)
- Katherine M Parisky
- Department of Biology and Volen Center for Complex Systems and National Center for Behavioral Genomics, Brandeis University, 415 South Street, Waltham, MA 02454-9110, USA
| | - José L Agosto Rivera
- Department of Biology and Volen Center for Complex Systems and National Center for Behavioral Genomics, Brandeis University, 415 South Street, Waltham, MA 02454-9110, USA
| | - Nathan C Donelson
- Department of Biology and Volen Center for Complex Systems and National Center for Behavioral Genomics, Brandeis University, 415 South Street, Waltham, MA 02454-9110, USA
| | - Sejal Kotecha
- Department of Biology and Volen Center for Complex Systems and National Center for Behavioral Genomics, Brandeis University, 415 South Street, Waltham, MA 02454-9110, USA
| | - Leslie C Griffith
- Department of Biology and Volen Center for Complex Systems and National Center for Behavioral Genomics, Brandeis University, 415 South Street, Waltham, MA 02454-9110, USA.
| |
Collapse
|
23
|
Donelson NC, Sanyal S. Use of Drosophila in the investigation of sleep disorders. Exp Neurol 2015; 274:72-9. [PMID: 26160555 DOI: 10.1016/j.expneurol.2015.06.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 06/26/2015] [Accepted: 06/30/2015] [Indexed: 12/24/2022]
Abstract
Genetic underpinnings for sleep disorders in humans remain poorly identified, investigated and understood. This is due to the inherent complexity of sleep and a disruption of normal sleep parameters in a number of neurological disorders. On the other hand, there have been steady and remarkable developments in the investigation of sleep using model organisms such as Drosophila. These studies have illuminated conserved genetic pathways, neural circuits and intra-cellular signaling modules in the regulation of sleep. Additionally, work in model systems is beginning to clarify the role of the circadian clock and basal sleep need in this process. There have also been initial efforts to directly model sleep disorders in flies in a few instances where a genetic basis has been suspected. Here, we discuss the opportunities and limitations of studying sleep disorders in Drosophila and propose that a greater convergence of basic sleep research in model organisms and human genetics should catalyze better understanding of sleep disorders and generate viable therapeutic options.
Collapse
Affiliation(s)
- Nathan C Donelson
- Neurology Research, 115 Broadway, Bio 6 Building, Biogen, Cambridge, MA 02142, USA
| | - Subhabrata Sanyal
- Neurology Research, 115 Broadway, Bio 6 Building, Biogen, Cambridge, MA 02142, USA.
| |
Collapse
|
24
|
Gibson WT, Gonzalez CR, Fernandez C, Ramasamy L, Tabachnik T, Du RR, Felsen PD, Maire MR, Perona P, Anderson DJ. Behavioral responses to a repetitive visual threat stimulus express a persistent state of defensive arousal in Drosophila. Curr Biol 2015; 25:1401-15. [PMID: 25981791 DOI: 10.1016/j.cub.2015.03.058] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 03/03/2015] [Accepted: 03/30/2015] [Indexed: 12/25/2022]
Abstract
The neural circuit mechanisms underlying emotion states remain poorly understood. Drosophila offers powerful genetic approaches for dissecting neural circuit function, but whether flies exhibit emotion-like behaviors has not been clear. We recently proposed that model organisms may express internal states displaying "emotion primitives," which are general characteristics common to different emotions, rather than specific anthropomorphic emotions such as "fear" or "anxiety." These emotion primitives include scalability, persistence, valence, and generalization to multiple contexts. Here, we have applied this approach to determine whether flies' defensive responses to moving overhead translational stimuli ("shadows") are purely reflexive or may express underlying emotion states. We describe a new behavioral assay in which flies confined in an enclosed arena are repeatedly exposed to an overhead translational stimulus. Repetitive stimuli promoted graded (scalable) and persistent increases in locomotor velocity and hopping, and occasional freezing. The stimulus also dispersed feeding flies from a food resource, suggesting both negative valence and context generalization. Strikingly, there was a significant delay before the flies returned to the food following stimulus-induced dispersal, suggestive of a slowly decaying internal defensive state. The length of this delay was increased when more stimuli were delivered for initial dispersal. These responses can be mathematically modeled by assuming an internal state that behaves as a leaky integrator of stimulus exposure. Our results suggest that flies' responses to repetitive visual threat stimuli express an internal state exhibiting canonical emotion primitives, possibly analogous to fear in mammals. The mechanistic basis of this state can now be investigated in a genetically tractable insect species.
Collapse
Affiliation(s)
- William T Gibson
- Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125, USA; Division of Biology & Biological Engineering 156-29, California Institute of Technology, Pasadena, CA 91125, USA; Division of Engineering & Applied Sciences 136-93, California Institute of Technology, Pasadena, CA 91125, USA.
| | - Carlos R Gonzalez
- Division of Engineering & Applied Sciences 136-93, California Institute of Technology, Pasadena, CA 91125, USA
| | - Conchi Fernandez
- Division of Engineering & Applied Sciences 136-93, California Institute of Technology, Pasadena, CA 91125, USA
| | - Lakshminarayanan Ramasamy
- Janelia Farm Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Tanya Tabachnik
- Janelia Farm Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Rebecca R Du
- Division of Biology & Biological Engineering 156-29, California Institute of Technology, Pasadena, CA 91125, USA
| | - Panna D Felsen
- Division of Engineering & Applied Sciences 136-93, California Institute of Technology, Pasadena, CA 91125, USA
| | - Michael R Maire
- Division of Engineering & Applied Sciences 136-93, California Institute of Technology, Pasadena, CA 91125, USA
| | - Pietro Perona
- Division of Engineering & Applied Sciences 136-93, California Institute of Technology, Pasadena, CA 91125, USA
| | - David J Anderson
- Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125, USA; Division of Biology & Biological Engineering 156-29, California Institute of Technology, Pasadena, CA 91125, USA; Janelia Farm Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA.
| |
Collapse
|
25
|
Sleep- and wake-dependent changes in neuronal activity and reactivity demonstrated in fly neurons using in vivo calcium imaging. Proc Natl Acad Sci U S A 2015; 112:4785-90. [PMID: 25825756 DOI: 10.1073/pnas.1419603112] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sleep in Drosophila shares many features with mammalian sleep, but it remains unknown whether spontaneous and evoked activity of individual neurons change with the sleep/wake cycle in flies as they do in mammals. Here we used calcium imaging to assess how the Kenyon cells in the fly mushroom bodies change their activity and reactivity to stimuli during sleep, wake, and after short or long sleep deprivation. As before, sleep was defined as a period of immobility of >5 min associated with a reduced behavioral response to a stimulus. We found that calcium levels in Kenyon cells decline when flies fall asleep and increase when they wake up. Moreover, calcium transients in response to two different stimuli are larger in awake flies than in sleeping flies. The activity of Kenyon cells is also affected by sleep/wake history: in awake flies, more cells are spontaneously active and responding to stimuli if the last several hours (5-8 h) before imaging were spent awake rather than asleep. By contrast, long wake (≥29 h) reduces both baseline and evoked neural activity and decreases the ability of neurons to respond consistently to the same repeated stimulus. The latter finding may underlie some of the negative effects of sleep deprivation on cognitive performance and is consistent with the occurrence of local sleep during wake as described in behaving rats. Thus, calcium imaging uncovers new similarities between fly and mammalian sleep: fly neurons are more active and reactive in wake than in sleep, and their activity tracks sleep/wake history.
Collapse
|
26
|
Vorster AP, Born J. Sleep and memory in mammals, birds and invertebrates. Neurosci Biobehav Rev 2015; 50:103-19. [DOI: 10.1016/j.neubiorev.2014.09.020] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 09/24/2014] [Accepted: 09/27/2014] [Indexed: 01/04/2023]
|
27
|
Gmeiner F, Kołodziejczyk A, Yoshii T, Rieger D, Nässel DR, Helfrich-Förster C. GABA(B) receptors play an essential role in maintaining sleep during the second half of the night in Drosophila melanogaster. ACTA ACUST UNITED AC 2014; 216:3837-43. [PMID: 24068350 DOI: 10.1242/jeb.085563] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
GABAergic signalling is important for normal sleep in humans and flies. Here we advance the current understanding of GABAergic modulation of daily sleep patterns by focusing on the role of slow metabotropic GABAB receptors in the fruit fly Drosophila melanogaster. We asked whether GABAB-R2 receptors are regulatory elements in sleep regulation in addition to the already identified fast ionotropic Rdl GABAA receptors. By immunocytochemical and reporter-based techniques we show that the pigment dispersing factor (PDF)-positive ventrolateral clock neurons (LNv) express GABAB-R2 receptors. Downregulation of GABAB-R2 receptors in the large PDF neurons (l-LNv) by RNAi reduced sleep maintenance in the second half of the night, whereas sleep latency at the beginning of the night that was previously shown to depend on ionotropic Rdl GABAA receptors remained unaltered. Our results confirm the role of the l-LNv neurons as an important part of the sleep circuit in D. melanogaster and also identify the GABAB-R2 receptors as the thus far missing component in GABA-signalling that is essential for sleep maintenance. Despite the significant effects on sleep, we did not observe any changes in circadian behaviour in flies with downregulated GABAB-R2 receptors, indicating that the regulation of sleep maintenance via l-LNv neurons is independent of their function in the circadian clock circuit.
Collapse
Affiliation(s)
- Florian Gmeiner
- Department of Neurobiology and Genetics, Theodor-Boveri Institute, Biocentre, University of Würzburg, Am Hubland, Würzburg D-97074, Germany
| | | | | | | | | | | |
Collapse
|
28
|
Anderson DJ, Adolphs R. A framework for studying emotions across species. Cell 2014; 157:187-200. [PMID: 24679535 PMCID: PMC4098837 DOI: 10.1016/j.cell.2014.03.003] [Citation(s) in RCA: 373] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 02/18/2014] [Accepted: 03/02/2014] [Indexed: 10/25/2022]
Abstract
Since the 19th century, there has been disagreement over the fundamental question of whether "emotions" are cause or consequence of their associated behaviors. This question of causation is most directly addressable in genetically tractable model organisms, including invertebrates such as Drosophila. Yet there is ongoing debate about whether such species even have "emotions," as emotions are typically defined with reference to human behavior and neuroanatomy. Here, we argue that emotional behaviors are a class of behaviors that express internal emotion states. These emotion states exhibit certain general functional and adaptive properties that apply across any specific human emotions like fear or anger, as well as across phylogeny. These general properties, which can be thought of as "emotion primitives," can be modeled and studied in evolutionarily distant model organisms, allowing functional dissection of their mechanistic bases and tests of their causal relationships to behavior. More generally, our approach not only aims at better integration of such studies in model organisms with studies of emotion in humans, but also suggests a revision of how emotion should be operationalized within psychology and psychiatry.
Collapse
Affiliation(s)
- David J Anderson
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125, USA.
| | - Ralph Adolphs
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Division of Humanities and Social Sciences, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
29
|
Yi W, Zhang Y, Tian Y, Guo J, Li Y, Guo A. A subset of cholinergic mushroom body neurons requires Go signaling to regulate sleep in Drosophila. Sleep 2013; 36:1809-21. [PMID: 24293755 DOI: 10.5665/sleep.3206] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
STUDY OBJECTIVES Identifying the neurochemistry and neural circuitry of sleep regulation is critical for understanding sleep and various sleep disorders. Fruit flies display sleep-like behavior, sharing essential features with sleep of vertebrate. In the fruit fly's central brain, the mushroom body (MB) has been highlighted as a sleep center; however, its neurochemical nature remains unclear, and whether it promotes sleep or wake is still a topic of controversy. DESIGN We used a video recording system to accurately monitor the locomotor activity and sleep status. Gene expression was temporally and regionally manipulated by heat induction and the Gal4/UAS system. MEASUREMENTS AND RESULTS We found that expressing pertussis toxin (PTX) in the MB by c309-Gal4 to block Go activity led to unique sleep defects as dramatic sleep increase in daytime and fragmented sleep in nighttime. We narrowed down the c309-Gal4 expressing brain regions to the MB α/β core neurons that are responsible for the Go-mediated sleep effects. Using genetic tools of neurotransmitter-specific Gal80 and RNA interference approach to suppress acetylcholine signal, we demonstrated that these MB α/β core neurons were cholinergic and sleep-promoting neurons, supporting that Go mediates an inhibitory signal. Interestingly, we found that adjacent MB α/β neurons were also cholinergic but wake-promoting neurons, in which Go signal was also required. CONCLUSION Our findings in fruit flies characterized a group of sleep-promoting neurons surrounded by a group of wake-promoting neurons. The two groups of neurons are both cholinergic and use Go inhibitory signal to regulate sleep.
Collapse
Affiliation(s)
- Wei Yi
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China ; University of Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | |
Collapse
|
30
|
Potdar S, Sheeba V. Lessons From Sleeping Flies: Insights fromDrosophila melanogasteron the Neuronal Circuitry and Importance of Sleep. J Neurogenet 2013; 27:23-42. [DOI: 10.3109/01677063.2013.791692] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
31
|
Burg ED, Langan ST, Nash HA. Drosophila social clustering is disrupted by anesthetics and in narrow abdomen ion channel mutants. GENES BRAIN AND BEHAVIOR 2013; 12:338-47. [PMID: 23398613 DOI: 10.1111/gbb.12025] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 12/06/2012] [Accepted: 02/05/2013] [Indexed: 12/11/2022]
Abstract
Members of many species tend to congregate, a behavioral strategy known as local enhancement. Selective advantages of local enhancement range from efficient use of resources to defense from predators. While previous studies have examined many types of social behavior in fruit flies, few have specifically investigated local enhancement. Resource-independent local enhancement (RILE) has recently been described in the fruit fly using a measure called social space index (SSI), although the neural mechanisms remain unknown. Here, we analyze RILE of Drosophila under conditions that allow us to elucidate its neural mechanisms. We have investigated the effects of general volatile anesthetics, compounds that compromise higher order functioning of the type typically required for responding to social cues. We exposed Canton-S flies to non-immobilizing concentrations of halothane and found that flies had a significantly decreased SSI compared with flies tested in air. Narrow abdomen (na) mutants, which display altered responses to anesthetics in numerous behavioral assays, also have a significantly reduced SSI, an effect that was fully reversed by restoring expression of na by driving a UAS-NA rescue construct with NA-GAL4. We found that na expression in cholinergic neurons fully rescued the behavioral defect, whereas expression of na in glutamatergic neurons did so only partially. Our results also suggest a role for na expression in the mushroom bodies (MBs), as suppressing na expression in the MBs of NA-GAL4 rescue flies diminishes SSI. Our data indicate that RILE, a simple behavioral strategy, requires complex neural processing.
Collapse
Affiliation(s)
- E D Burg
- Section on Neural Function, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
32
|
Call it sleep -- what animals without backbones can tell us about the phylogeny of intrinsically generated neuromotor rhythms during early development. Neurosci Bull 2013; 29:373-80. [PMID: 23471866 DOI: 10.1007/s12264-013-1313-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 10/16/2012] [Indexed: 12/24/2022] Open
Abstract
A comprehensive overview is presented of the literature dealing with the development of sleep-like motility and neuronal activity patterns in non-vertebrate animals. it has been established that spontaneous, periodically modulated, neurogenic bursts of movement appear to be a universal feature of prenatal behavior. New empirical data are presented showing that such' seismic sleep' or 'rapid-body-movement' bursts in cuttlefish persist for some time after birth. Extensive ontogenetic research in both vertebrates and non-vertebrates is thus essential before current hypotheses about the phylogeny of motorically active sleep-like states can be taken seriously.
Collapse
|
33
|
Le Glou E, Seugnet L, Shaw PJ, Preat T, Goguel V. Circadian modulation of consolidated memory retrieval following sleep deprivation in Drosophila. Sleep 2012; 35:1377-1384B. [PMID: 23024436 DOI: 10.5665/sleep.2118] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
OBJECTIVES Several lines of evidence indicate that sleep plays a critical role in learning and memory. The aim of this study was to evaluate anesthesia resistant memory following sleep deprivation in Drosophila. DESIGN Four to 16 h after aversive olfactory training, flies were sleep deprived for 4 h. Memory was assessed 24 h after training. Training, sleep deprivation, and memory tests were performed at different times during the day to evaluate the importance of the time of day for memory formation. The role of circadian rhythms was further evaluated using circadian clock mutants. RESULTS Memory was disrupted when flies were exposed to 4 h of sleep deprivation during the consolidation phase. Interestingly, normal memory was observed following sleep deprivation when the memory test was performed during the 2 h preceding lights-off, a period characterized by maximum wake in flies. We also show that anesthesia resistant memory was less sensitive to sleep deprivation in flies with disrupted circadian rhythms. CONCLUSIONS Our results indicate that anesthesia resistant memory, a consolidated memory less costly than long-term memory, is sensitive to sleep deprivation. In addition, we provide evidence that circadian factors influence memory vulnerability to sleep deprivation and memory retrieval. Taken together, the data show that memories weakened by sleep deprivation can be retrieved if the animals are tested at the optimal circadian time.
Collapse
Affiliation(s)
- Eric Le Glou
- Genes and Dynamics of Memory Systems, Neurobiology Unit, CNRS, ESPCI, Paris, France
| | | | | | | | | |
Collapse
|
34
|
Donelson N, Kim EZ, Slawson JB, Vecsey CG, Huber R, Griffith LC. High-resolution positional tracking for long-term analysis of Drosophila sleep and locomotion using the "tracker" program. PLoS One 2012; 7:e37250. [PMID: 22615954 PMCID: PMC3352887 DOI: 10.1371/journal.pone.0037250] [Citation(s) in RCA: 145] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 04/18/2012] [Indexed: 11/18/2022] Open
Abstract
Drosophila melanogaster has been used for decades in the study of circadian behavior, and more recently has become a popular model for the study of sleep. The classic method for monitoring fly activity involves counting the number of infrared beam crosses in individual small glass tubes. Incident recording methods such as this can measure gross locomotor activity, but they are unable to provide details about where the fly is located in space and do not detect small movements (i.e. anything less than half the enclosure size), which could lead to an overestimation of sleep and an inaccurate report of the behavior of the fly. This is especially problematic if the fly is awake, but is not moving distances that span the enclosure. Similarly, locomotor deficiencies could be incorrectly classified as sleep phenotypes. To address these issues, we have developed a locomotor tracking technique (the "Tracker" program) that records the exact location of a fly in real time. This allows for the detection of very small movements at any location within the tube. In addition to circadian locomotor activity, we are able to collect other information, such as distance, speed, food proximity, place preference, and multiple additional parameters that relate to sleep structure. Direct comparisons of incident recording and our motion tracking application using wild type and locomotor-deficient (CASK-β null) flies show that the increased temporal resolution in the data from the Tracker program can greatly affect the interpretation of the state of the fly. This is especially evident when a particular condition or genotype has strong effects on the behavior, and can provide a wealth of information previously unavailable to the investigator. The interaction of sleep with other behaviors can also be assessed directly in many cases with this method.
Collapse
Affiliation(s)
- Nathan Donelson
- Department of Biology, National Center for Behavioral Genomics and Volen Center for Complex Systems, Brandeis University, Waltham, Massachusetts, United States of America
| | - Eugene Z. Kim
- Department of Biology, National Center for Behavioral Genomics and Volen Center for Complex Systems, Brandeis University, Waltham, Massachusetts, United States of America
| | - Justin B. Slawson
- Department of Biology, National Center for Behavioral Genomics and Volen Center for Complex Systems, Brandeis University, Waltham, Massachusetts, United States of America
| | - Christopher G. Vecsey
- Department of Biology, National Center for Behavioral Genomics and Volen Center for Complex Systems, Brandeis University, Waltham, Massachusetts, United States of America
| | - Robert Huber
- Department of Biological Sciences, JP Scott Center for Neuroscience, Mind, & Behavior, Bowling Green State University, Bowling Green, Ohio, United States of America
| | - Leslie C. Griffith
- Department of Biology, National Center for Behavioral Genomics and Volen Center for Complex Systems, Brandeis University, Waltham, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
35
|
Stavropoulos N, Young MW. insomniac and Cullin-3 regulate sleep and wakefulness in Drosophila. Neuron 2012; 72:964-76. [PMID: 22196332 DOI: 10.1016/j.neuron.2011.12.003] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2011] [Indexed: 12/15/2022]
Abstract
In a forward genetic screen in Drosophila, we have isolated insomniac, a mutant that severely reduces the duration and consolidation of sleep. Anatomically restricted genetic manipulations indicate that insomniac functions within neurons to regulate sleep. insomniac expression does not oscillate in a circadian manner, and conversely, the circadian clock is intact in insomniac mutants, suggesting that insomniac regulates sleep by pathways distinct from the circadian clock. The protein encoded by insomniac is a member of the BTB/POZ superfamily, which includes many proteins that function as adaptors for the Cullin-3 (Cul3) ubiquitin ligase complex. We show that Insomniac can physically associate with Cul3, and that reduction of Cul3 activity in neurons recapitulates the insomniac phenotype. The extensive evolutionary conservation of insomniac and Cul3 suggests that protein degradation pathways may have a general role in governing the sleep and wakefulness of animals.
Collapse
Affiliation(s)
- Nicholas Stavropoulos
- Laboratory of Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | | |
Collapse
|
36
|
Eban-Rothschild A, Bloch G. Social influences on circadian rhythms and sleep in insects. ADVANCES IN GENETICS 2012; 77:1-32. [PMID: 22902124 DOI: 10.1016/b978-0-12-387687-4.00001-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The diverse social lifestyle and the small and accessible nervous system of insects make them valuable for research on the adaptive value and the organization principles of circadian rhythms and sleep. We focus on two complementary model insects, the fruit fly Drosophila melanogaster, which is amenable to extensive transgenic manipulations, and the honey bee Apis mellifera, which has rich and well-studied social behaviors. Social entrainment of activity rhythms (social synchronization) has been studied in many animals. Social time givers appear to be specifically important in dark cavity-dwelling social animals, but here there are no other clear relationships between the degree of sociality and the effectiveness of social entrainment. The olfactory system is important for social entrainment in insects. Little is known, however, about the molecular and neuronal pathways linking olfactory neurons to the central clock. In the honey bee, the expression, phase, and development of circadian rhythms are socially regulated, apparently by different signals. Peripheral clocks regulating pheromone synthesis and the olfactory system have been implicated in social influences on circadian rhythms in the fruit fly. An enriched social environment increases the total amount of sleep in both fruit flies and honey bees. In fruit flies, these changes have been linked to molecular and neuronal processes involved in learning, memory, and synaptic plasticity. The studies on insects suggest that social influences on the clock are richer than previously appreciated and have led to important breakthroughs in our understanding of the mechanisms underlying social influences on sleep and circadian rhythms.
Collapse
Affiliation(s)
- Ada Eban-Rothschild
- Department of Ecology, Evolution and Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | |
Collapse
|
37
|
Abstract
Sleep remains one of the least understood phenomena in biology--even its role in synaptic plasticity remains debatable. Since sleep was recognized to be regulated genetically, intense research has launched on two fronts: the development of model organisms for deciphering the molecular mechanisms of sleep and attempts to identify genetic underpinnings of human sleep disorders. In this Review, we describe how unbiased, high-throughput screens in model organisms are uncovering sleep regulatory mechanisms and how pathways, such as the circadian clock network and specific neurotransmitter signals, have conserved effects on sleep from Drosophila to humans. At the same time, genome-wide association studies (GWAS) have uncovered ∼14 loci increasing susceptibility to sleep disorders, such as narcolepsy and restless leg syndrome. To conclude, we discuss how these different strategies will be critical to unambiguously defining the function of sleep.
Collapse
Affiliation(s)
- Amita Sehgal
- Howard Hughes Medical institute, Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.
| | | |
Collapse
|
38
|
Abstract
STUDY OBJECTIVES Sleep is a fundamental physiological process and its biological mechanisms are poorly understood. In Drosophila melanogaster, heterotrimeric Go protein is abundantly expressed in the brain. However, its post-developmental function has not been extensively explored. DESIGN Locomotor activity was measured using the Drosophila Activity Monitoring System under a 12:12 LD cycle. Sleep was defined as periods of 5 min with no recorded activity. RESULTS Pan-neuronal elevation of Go signaling induced quiescence accompanied by an increased arousal threshold in flies. By screening region-specific GAL4 lines, we mapped the sleep-regulatory function of Go signaling to mushroom bodies (MBs), a central brain region which modulates memory, decision making, and sleep in Drosophila. Up-regulation of Go activity in these neurons consolidated sleep while inhibition of endogenous Go via expression of Go RNAi or pertussis toxin reduced and fragmented sleep, indicating that the Drosophila sleep requirement is affected by levels of Go activity in the MBs. Genetic interaction results showed that Go signaling serves as a neuronal transmission inhibitor in a cAMP-independent pathway. CONCLUSION Go signaling is a novel signaling pathway in MBs that regulates sleep in Drosophila.
Collapse
Affiliation(s)
- Fang Guo
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | | | | | | |
Collapse
|
39
|
Bushey D, Cirelli C. From genetics to structure to function: exploring sleep in Drosophila. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2011; 99:213-44. [PMID: 21906542 DOI: 10.1016/b978-0-12-387003-2.00009-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Sleep consists of quiescent periods with reduced responsiveness to external stimuli. Despite being maladaptive in that when asleep, animals are less able to respond to dangerous stimuli; sleep behavior is conserved in all animal species studied to date. Thus, sleep must be performing at least one fundamental, conserved function that is necessary, and/or whose benefits outweigh its maladaptive consequences. Currently, there is no consensus on what that function might be. Over the last 10 years, multiple groups have started to characterize the molecular mechanisms and brain structures necessary for normal sleep in Drosophila melanogaster. These researchers are exploiting genetic tools developed in Drosophila over the past century to identify and manipulate gene expression. Forward genetic screens can identify molecular components in complex biological systems and once identified, these genes can be manipulated within specific brain areas to determine which neuronal groups are important to initiate and maintain sleep. Screening for mutations and brain regions necessary for normal sleep has revealed that several genes that affect sleep are involved in synaptic plasticity and have preferential expression in the mushroom bodies (MBs). Moreover, altering MB neuronal activity alters sleep. Previous genetic screens found that the same genes enriched in MB are necessary for learning and memory. Increasing evidence in mammals, including humans, points to a beneficial role for sleep in synaptic plasticity, learning and memory. Thus, results from both flies and mammals suggest a strong link between sleep need and wake plasticity.
Collapse
Affiliation(s)
- Daniel Bushey
- Department of Psychiatry, University of Wisconsin, 6001 Research Park Blvd.Madison, WI 53719, USA
| | | |
Collapse
|
40
|
Intrinsic activity in the fly brain gates visual information during behavioral choices. PLoS One 2010; 5:e14455. [PMID: 21209935 PMCID: PMC3012687 DOI: 10.1371/journal.pone.0014455] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Accepted: 12/06/2010] [Indexed: 11/19/2022] Open
Abstract
The small insect brain is often described as an input/output system that executes reflex-like behaviors. It can also initiate neural activity and behaviors intrinsically, seen as spontaneous behaviors, different arousal states and sleep. However, less is known about how intrinsic activity in neural circuits affects sensory information processing in the insect brain and variability in behavior. Here, by simultaneously monitoring Drosophila's behavioral choices and brain activity in a flight simulator system, we identify intrinsic activity that is associated with the act of selecting between visual stimuli. We recorded neural output (multiunit action potentials and local field potentials) in the left and right optic lobes of a tethered flying Drosophila, while its attempts to follow visual motion (yaw torque) were measured by a torque meter. We show that when facing competing motion stimuli on its left and right, Drosophila typically generate large torque responses that flip from side to side. The delayed onset (0.1–1 s) and spontaneous switch-like dynamics of these responses, and the fact that the flies sometimes oppose the stimuli by flying straight, make this behavior different from the classic steering reflexes. Drosophila, thus, seem to choose one stimulus at a time and attempt to rotate toward its direction. With this behavior, the neural output of the optic lobes alternates; being augmented on the side chosen for body rotation and suppressed on the opposite side, even though the visual input to the fly eyes stays the same. Thus, the flow of information from the fly eyes is gated intrinsically. Such modulation can be noise-induced or intentional; with one possibility being that the fly brain highlights chosen information while ignoring the irrelevant, similar to what we know to occur in higher animals.
Collapse
|
41
|
Greene RW, Frank MG. Slow wave activity during sleep: functional and therapeutic implications. Neuroscientist 2010; 16:618-33. [PMID: 20921564 DOI: 10.1177/1073858410377064] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Electroencephalographic slow-wave activity (EEG SWA) is an electrophysiological signature of slow (0.5 to 4.0 Hz), synchronized, oscillatory neocortical activity. In healthy individuals, EEG SWA is maximally expressed during non-rapid-eye-movement (non-REM) sleep, and intensifies as a function of prior wake duration. Many of the cellular and network mechanisms generating EEG SWA have been identified, but a number of questions remain unanswered. For example, although EEG SWA is a marker of sleep need, its precise relationship with sleep homeostasis and its roles in the brain are unknown. In this review, the authors discuss their current understanding of the neural mechanisms and possible functions of EEG SWA.
Collapse
Affiliation(s)
- Robert W Greene
- Department of Psychiatry, UTSW Medical Center, Dallas VA, Dallas, Texas 75390, USA.
| | | |
Collapse
|
42
|
Abstract
Background A complex relationship exists between diet and sleep but despite its impact on human health, this relationship remains uncharacterized and poorly understood. Drosophila melanogaster is an important model for the study of metabolism and behaviour, however the effect of diet upon Drosophila sleep remains largely unaddressed. Methodology/Principal Findings Using automated behavioural monitoring, a capillary feeding assay and pharmacological treatments, we examined the effect of dietary yeast and sucrose upon Drosophila sleep-wake behaviour for three consecutive days. We found that dietary yeast deconsolidated the sleep-wake behaviour of flies by promoting arousal from sleep in males and shortening periods of locomotor activity in females. We also demonstrate that arousal from nocturnal sleep exhibits a significant ultradian rhythmicity with a periodicity of 85 minutes. Increasing the dietary sucrose concentration from 5% to 35% had no effect on total sucrose ingestion per day nor any affect on arousal, however it did lengthen the time that males and females remained active. Higher dietary sucrose led to reduced total sleep by male but not female flies. Locomotor activity was reduced by feeding flies Metformin, a drug that inhibits oxidative phosphorylation, however Metformin did not affect any aspects of sleep. Conclusions We conclude that arousal from sleep is under ultradian control and regulated in a sex-dependent manner by dietary yeast and that dietary sucrose regulates the length of time that flies sustain periods of wakefulness. These findings highlight Drosophila as an important model with which to understand how diet impacts upon sleep and wakefulness in mammals and humans.
Collapse
|
43
|
Mendoza-Angeles K, Hernández-Falcón J, Ramón F. Slow waves during sleep in crayfish. Origin and spread. J Exp Biol 2010; 213:2154-64. [DOI: 10.1242/jeb.038240] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Previous results show that when unrestrained crayfish sleep, the electrical activity of the brain changes from multiple spikes (frequencies above 300 Hz) on a flat baseline to continuous slow waves at a frequency of 15–20 Hz. To study the temporal organization of such activity, we developed a tethered crayfish preparation that allows us to place electrodes on visually identified regions of the brain. Recording the electrical activity of different brain areas shows that when the animal is active (awake), slow waves are present only in the central complex. However, simultaneously with the animal becoming limp (sleeping), slow waves spread first to deuto- and then to protocerebrum, suggesting that the central complex of the crayfish brain acts as the sleep generator.
Collapse
Affiliation(s)
- Karina Mendoza-Angeles
- UNAM, Facultad de Ingeniería, División de Ingeniería Eléctrica, Av Universidad 3000, Mexico, D., 04510, Mexico
| | - Jesús Hernández-Falcón
- UNAM, Facultad de Medicina, Departamento de Fisiología, Av Universidad 3000, Mexico, D., 04510, Mexico
| | - Fidel Ramón
- UNAM, Facultad de Medicina, División de Investigación, Av Universidad 3000, Mexico, D., 04510, Mexico
| |
Collapse
|
44
|
Abstract
Schizophrenia is a debilitating mental illness that affects 1% of the population worldwide. Although its molecular etiology remains unclear, recent advances in human psychiatric genetics have identified a large number of candidate genetic risk factors involved in schizophrenia. Modeling the disease in genetically tractable animals is thus a challenging but increasingly important task. In this review, I discuss the potential problems and perspectives associated with modeling schizophrenia in fruit flies, and briefly review the recent studies analyzing the molecular and cellular functions of Disrupted-In-Schizophrenia-1 (DISC1) in transgenic flies.
Collapse
Affiliation(s)
- Katsuo Furukubo-Tokunaga
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tennodai, Tsukuba, Japan.
| |
Collapse
|
45
|
Behr GA, da Motta LL, de Oliveira MR, Oliveira MWS, Gelain DP, Moreira JCF. Modulation in Reproductive Tissue Redox Profile in Sexually Receptive Female Rats after Short-Term Exposure to Male Chemical Cues. Chem Senses 2009; 34:317-23. [DOI: 10.1093/chemse/bjp004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
46
|
Abstract
Disrupted-in-schizophrenia-1 (DISC1) is one of major susceptibility factors for a wide range of mental illnesses, including schizophrenia, bipolar disorder, major depression and autism spectrum conditions. DISC1 is located in several subcellular domains, such as the centrosome and the nucleus, and interacts with various proteins, including NudE-like (NUDEL/NDEL1) and activating transcription factor 4 (ATF4)/CREB2. Nevertheless, a role for DISC1 in vivo remains to be elucidated. Therefore, we have generated a Drosophila model for examining normal functions of DISC1 in living organisms. DISC1 transgenic flies with preferential accumulation of exogenous human DISC1 in the nucleus display disturbance in sleep homeostasis, which has been reportedly associated with CREB signaling/CRE-mediated gene transcription. Thus, in mammalian cells, we characterized nuclear DISC1, and identified a subset of nuclear DISC1 that colocalizes with the promyelocytic leukemia (PML) bodies, a nuclear compartment for gene transcription. Furthermore, we identified three functional cis-elements that regulate the nuclear localization of DISC1. We also report that DISC1 interacts with ATF4/CREB2 and a corepressor N-CoR, modulating CRE-mediated gene transcription.
Collapse
|
47
|
Ho KS, Sehgal A. Drosophila melanogaster: an insect model for fundamental studies of sleep. Methods Enzymol 2008; 393:772-93. [PMID: 15817324 DOI: 10.1016/s0076-6879(05)93041-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
In 2000, Drosophila melanogaster joined the ranks of vertebrates and invertebrates with a defined behavioral sleep state. The characterization of this sleep state revealed striking similarities to sleep in humans: sleep in flies has both circadian and homeostatic components, it is influenced by sex and age, and it is affected by pharmacological agents such as caffeine and antihistamines. As in mammals, arousal thresholds in flies increase with sleep deprivation. Furthermore, changes in brain electrical activity accompany the change from wake to sleep states. Not only do flies and vertebrates share these behavioral and physiological traits of sleep, but they are likely to share at least some genetic mechanisms underlying the regulation of sleep as well. This article reviews the methods currently used to identify and characterize the Drosophila sleep state. As these methods become more refined and our understanding of Drosophila sleep more detailed, the powerful techniques afforded by this organism are likely to unveil deep insights into the function(s) and regulatory mechanisms of sleep.
Collapse
Affiliation(s)
- Karen S Ho
- Department of Neuroscience, Howard Hughes Medical Institute, University of Pennsylvania Medical School, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
48
|
Drosophila vesicular monoamine transporter mutants can adapt to reduced or eliminated vesicular stores of dopamine and serotonin. Genetics 2008; 181:525-41. [PMID: 19033154 DOI: 10.1534/genetics.108.094110] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Physiologic and pathogenic changes in amine release induce dramatic behavioral changes, but the underlying cellular mechanisms remain unclear. To investigate these adaptive processes, we have characterized mutations in the Drosophila vesicular monoamine transporter (dVMAT), which is required for the vesicular storage of dopamine, serotonin, and octopamine. dVMAT mutant larvae show reduced locomotion and decreased electrical activity in motoneurons innervating the neuromuscular junction (NMJ) implicating central amines in the regulation of these activities. A parallel increase in evoked glutamate release by the motoneuron is consistent with a homeostatic adaptation at the NMJ. Despite the importance of aminergic signaling for regulating locomotion and other behaviors, adult dVMAT homozygous null mutants survive under conditions of low population density, thus allowing a phenotypic characterization of adult behavior. Homozygous mutant females are sterile and show defects in both egg retention and development; males also show reduced fertility. Homozygotes show an increased attraction to light but are mildly impaired in geotaxis and escape behaviors. In contrast, heterozygous mutants show an exaggerated escape response. Both hetero- and homozygous mutants demonstrate an altered behavioral response to cocaine. dVMAT mutants define potentially adaptive responses to reduced or eliminated aminergic signaling and will be useful to identify the underlying molecular mechanisms.
Collapse
|
49
|
Eban-Rothschild AD, Bloch G. Differences in the sleep architecture of forager and young honeybees(Apis mellifera). J Exp Biol 2008; 211:2408-16. [DOI: 10.1242/jeb.016915] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Honeybee (Apis mellifera) foragers are among the first invertebrates for which sleep behavior has been described. Foragers (typically older than 21 days) have strong circadian rhythms; they are active during the day, and sleep during the night. We explored whether young bees (∼3 days of age), which are typically active around-the-clock with no circadian rhythms, also exhibit sleep behavior. We combined 24-hour video recordings,detailed behavioral observations, and analyses of response thresholds to a light pulse for individually housed bees in various arousal states. We characterized three sleep stages in foragers on the basis of differences in body posture, bout duration, antennae movements and response threshold. Young bees exhibited sleep behavior consisting of the same three stages as observed in foragers. Sleep was interrupted by brief awakenings, which were as frequent in young bees as in foragers. Beyond these similarities, we found differences in the sleep architecture of young bees and foragers. Young bees passed more frequently between the three sleep stages, and stayed longer in the lightest sleep stage than foragers. These differences in sleep architecture may represent developmental and/or environmentally induced variations in the neuronal network underlying sleep in honeybees. To the best of our knowledge,this is the first evidence for plasticity in sleep behavior in insects.
Collapse
Affiliation(s)
- Ada D. Eban-Rothschild
- Department of Evolution, Systematics, and Ecology, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem,Jerusalem, 91904, Israel
| | - Guy Bloch
- Department of Evolution, Systematics, and Ecology, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem,Jerusalem, 91904, Israel
| |
Collapse
|
50
|
Modulation of GABAA receptor desensitization uncouples sleep onset and maintenance in Drosophila. Nat Neurosci 2008; 11:354-9. [PMID: 18223647 DOI: 10.1038/nn2046] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2007] [Accepted: 01/03/2008] [Indexed: 11/08/2022]
Abstract
Many lines of evidence indicate that GABA and GABA(A) receptors make important contributions to human sleep regulation. Pharmacological manipulation of these receptors has differential effects on sleep onset and sleep maintenance insomnia. Here we show that sleep is regulated by GABA in Drosophila and that a mutant GABA(A) receptor, Rdl(A302S), specifically decreases sleep latency. The drug carbamazepine (CBZ) has the opposite effect on sleep; it increases sleep latency as well as decreasing sleep. Behavioral and physiological experiments indicated that Rdl(A302S) mutant flies are resistant to the effects of CBZ on sleep latency and that mutant RDL(A302S) channels are resistant to the effects of CBZ on desensitization, respectively. These results suggest that this biophysical property of the channel, specifically channel desensitization, underlies the regulation of sleep latency in flies. These experiments uncouple the regulation of sleep latency from that of sleep duration and suggest that the kinetics of GABA(A) receptor signaling dictate sleep latency.
Collapse
|