1
|
Knittel TL, Montgomery BE, Tate AJ, Deihl EW, Nawrocki AS, Hoerndli FJ, Montgomery TA. A low-abundance class of Dicer-dependent siRNAs produced from a variety of features in C. elegans. Genome Res 2024; 34:2203-2216. [PMID: 39622635 PMCID: PMC11694761 DOI: 10.1101/gr.279083.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 10/03/2024] [Indexed: 12/25/2024]
Abstract
Canonical small interfering RNAs (siRNAs) are processed from double-stranded RNA (dsRNA) by Dicer and associate with Argonautes to direct RNA silencing. In Caenorhabditis elegans, 22G-RNAs and 26G-RNAs are often referred to as siRNAs but display distinct characteristics. For example, 22G-RNAs do not originate from dsRNA and do not depend on Dicer, whereas 26G-RNAs require Dicer but derive from an atypical RNA duplex and are produced exclusively antisense to their messenger RNA (mRNA) templates. To identify canonical siRNAs in C. elegans, we first characterized the siRNAs produced via the exogenous RNA interference (RNAi) pathway. During RNAi, dsRNA is processed into ∼23 nt duplexes with ∼2 nt, 3'-overhangs, ultimately yielding siRNAs devoid of 5'G-containing sequences that bind with high affinity to the Argonaute RDE-1, but also to the microRNA (miRNA) pathway Argonaute, ALG-1. Using these characteristics, we searched for their endogenous counterparts and identified thousands of endogenous loci representing dozens of unique elements that give rise to mostly low to moderate levels of siRNAs, called 23H-RNAs. These loci include repetitive elements, putative coding genes, pseudogenes, noncoding RNAs, and unannotated features, many of which adopt hairpin (hp) structures reminiscent of the hpRNA/RNAi pathway in flies and mice. RDE-1 competes with other Argonautes for binding to 23H-RNAs. When RDE-1 is depleted, these siRNAs are enriched in ALG-1 and ALG-2 complexes. Our results expand the known repertoire of C. elegans small RNAs and their Argonaute interactors, and demonstrate that key features of the endogenous siRNA pathway are relatively unchanged in animals.
Collapse
Affiliation(s)
- Thiago L Knittel
- Department of Biology, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Brooke E Montgomery
- Department of Biology, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Alex J Tate
- Department of Biology, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Ennis W Deihl
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Anastasia S Nawrocki
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Frederic J Hoerndli
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado 80523, USA
- Cell and Molecular Biology Program, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Taiowa A Montgomery
- Department of Biology, Colorado State University, Fort Collins, Colorado 80523, USA;
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado 80523, USA
| |
Collapse
|
2
|
Stojkovic M, Petrovic M, Capovilla M, Milojevic S, Makevic V, Budimirovic DB, Corscadden L, He S, Protic D. Using a Combination of Novel Research Tools to Understand Social Interaction in the Drosophila melanogaster Model for Fragile X Syndrome. BIOLOGY 2024; 13:432. [PMID: 38927312 PMCID: PMC11200401 DOI: 10.3390/biology13060432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/31/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024]
Abstract
Fragile X syndrome (FXS), the most common monogenic cause of inherited intellectual disability and autism spectrum disorder, is caused by a full mutation (>200 CGG repeats) in the Fragile X Messenger Ribonucleoprotein 1 (FMR1) gene. Individuals with FXS experience various challenges related to social interaction (SI). Animal models, such as the Drosophila melanogaster model for FXS where the only ortholog of human FMR1 (dFMR1) is mutated, have played a crucial role in the understanding of FXS. The aim of this study was to investigate SI in the dFMR1B55 mutants (the groups of flies of both sexes simultaneously) using the novel Drosophila Shallow Chamber and a Python data processing pipeline based on social network analysis (SNA). In comparison with wild-type flies (w1118), SNA analysis in dFMR1B55 mutants revealed hypoactivity, fewer connections in their networks, longer interaction duration, a lower ability to transmit information efficiently, fewer alternative pathways for information transmission, a higher variability in the number of interactions they achieved, and flies tended to stay near the boundaries of the testing chamber. These observed alterations indicate the presence of characteristic strain-dependent social networks in dFMR1B55 flies, commonly referred to as the group phenotype. Finally, combining novel research tools is a valuable method for SI research in fruit flies.
Collapse
Affiliation(s)
- Maja Stojkovic
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (M.S.); (S.M.)
| | - Milan Petrovic
- Department of Informatics, University of Rijeka, 51000 Rijeka, Croatia;
- Center for Artificial Intelligence and Cybersecurity, University of Rijeka, 51000 Rijeka, Croatia
| | - Maria Capovilla
- UMR7275 CNRS-UCA, Institut de Pharmacologie Moléculaire et Cellulaire, 06560 Valbonne Sophia Antipolis, France;
| | - Sara Milojevic
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (M.S.); (S.M.)
| | - Vedrana Makevic
- Department of Pathophysiology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Dejan B. Budimirovic
- Department of Psychiatry, Fragile X Clinic, Kennedy Krieger Institute, Baltimore, MD 21205, USA;
- Department of Psychiatry & Behavioral Sciences-Child Psychiatry, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | | | - Shuhan He
- Lab of Computer Science, Department of Internal Medicine, Harvard Medical School, Boston, MA 02115, USA;
| | - Dragana Protic
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (M.S.); (S.M.)
- Fragile X Clinic, Special Hospital for Cerebral Palsy and Developmental Neurology, 11000 Belgrade, Serbia
| |
Collapse
|
3
|
Li S, Liu H, Siddiqui MA, Li Y, Wang H, Zhang SY, Ren L, Yang K. Corrosion Behavior and Bio-Functions of the Ultrafine-Grained Ti6Al4V-5Cu Alloy with a Dual-Phase Honeycomb Shell Structure in Simulated Body Fluid. ACS Biomater Sci Eng 2023; 9:2362-2375. [PMID: 37024434 DOI: 10.1021/acsbiomaterials.2c01316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
Titanium alloys are widely used in biomedical applications. However, cases of implant failure due to fatigue fracture and bacterial infection are common. In addition, implants are susceptible to metal ions (Al, V) released by long-term exposure to human body fluids, which causes neuropathy, mental disorders, and other diseases. Thus, development of novel materials to achieve long-term safety of implants is currently a research hotspot. Recently, our research group has developed an ultrafine-grained Ti6Al4V-5Cu alloy with a unique "dual-phase honeycomb shell" (DPHS) structure, which possesses high fatigue strength and stability. This study further affirmed its higher corrosion behavior, antibacterial properties, and cytocompatibility compared to the coarse-grained Ti6Al4V and Ti6Al4V-5Cu alloys. The ultrafine-grained structure of Ti6Al4V-5Cu having DPHS increased the proportion of phases (Cu-rich phases, β-phase, and Ti2Cu intermetallic phase) with a lower surface potential. It was observed that the developed microstructure was conducive to a stable configuration of the oxide (passive) layer on the alloy surface. In addition, the low-phase interfacial energies of the ultrafine-grained structure with DPHS even facilitated the improvement of the denseness of the protective passive film and eventually enhanced the corrosion behavior. Besides, the fine-Cu-rich phases and the micro-galvanic couples formed between them and the matrix significantly increased the contact frequency of bacteria, thus increasing the contact sterilization efficiency of the ultrafine-grained Ti6Al4V-5Cu alloy. These results showed that the new ultrafine-grained Ti6Al4V-5Cu alloy has excellent corrosion resistance and biological functions for clinical application.
Collapse
Affiliation(s)
- Susu Li
- Shi-changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, 72 Wenhua Road, Shenyang 110016, China
| | - Hui Liu
- Shi-changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China
| | - Muhammad Ali Siddiqui
- Shi-changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China
- Department of Metallurgical Engineering, NED University of Engineering and Technology, Karachi 75270, Pakistan
| | - Yi Li
- Shi-changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, 72 Wenhua Road, Shenyang 110016, China
| | - Hai Wang
- Shi-changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China
| | - Shu Yuan Zhang
- Shi-changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China
| | - Ling Ren
- Shi-changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China
- Binzhou Institute of Technology, Shandong Key Laboratory of Advanced Aluminum Materials and Technology, Binzhou 256606, China
| | - Ke Yang
- Shi-changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China
| |
Collapse
|
4
|
Trajković J, Makevic V, Pesic M, Pavković-Lučić S, Milojevic S, Cvjetkovic S, Hagerman R, Budimirovic DB, Protic D. Drosophila melanogaster as a Model to Study Fragile X-Associated Disorders. Genes (Basel) 2022; 14:genes14010087. [PMID: 36672829 PMCID: PMC9859539 DOI: 10.3390/genes14010087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 12/30/2022] Open
Abstract
Fragile X syndrome (FXS) is a global neurodevelopmental disorder caused by the expansion of CGG trinucleotide repeats (≥200) in the Fragile X Messenger Ribonucleoprotein 1 (FMR1) gene. FXS is the hallmark of Fragile X-associated disorders (FXD) and the most common monogenic cause of inherited intellectual disability and autism spectrum disorder. There are several animal models used to study FXS. In the FXS model of Drosophila, the only ortholog of FMR1, dfmr1, is mutated so that its protein is missing. This model has several relevant phenotypes, including defects in the circadian output pathway, sleep problems, memory deficits in the conditioned courtship and olfactory conditioning paradigms, deficits in social interaction, and deficits in neuronal development. In addition to FXS, a model of another FXD, Fragile X-associated tremor/ataxia syndrome (FXTAS), has also been established in Drosophila. This review summarizes many years of research on FXD in Drosophila models.
Collapse
Affiliation(s)
- Jelena Trajković
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia
| | - Vedrana Makevic
- Department of Pathophysiology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Milica Pesic
- Institute of Human Genetics, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | | | - Sara Milojevic
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Smiljana Cvjetkovic
- Department of Humanities, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Randi Hagerman
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis, 2825 50th Street, Sacramento, CA 95817, USA
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, CA 95817, USA
| | - Dejan B. Budimirovic
- Department of Psychiatry, Fragile X Clinic, Kennedy Krieger Institute, Baltimore, MD 21205, USA
- Department of Psychiatry & Behavioral Sciences-Child Psychiatry, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Dragana Protic
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
- Correspondence:
| |
Collapse
|
5
|
Starke EL, Zius K, Barbee SA. FXS causing missense mutations disrupt FMRP granule formation, dynamics, and function. PLoS Genet 2022; 18:e1010084. [PMID: 35202393 PMCID: PMC8903291 DOI: 10.1371/journal.pgen.1010084] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 03/08/2022] [Accepted: 02/08/2022] [Indexed: 01/01/2023] Open
Abstract
Fragile X Syndrome (FXS) is the most prevalent cause of inherited mental deficiency and is the most common monogenetic cause of autism spectral disorder (ASD). Here, we demonstrate that disease-causing missense mutations in the conserved K homology (KH) RNA binding domains (RBDs) of FMRP cause defects in its ability to form RNA transport granules in neurons. Using molecular, genetic, and imaging approaches in the Drosophila FXS model system, we show that the KH1 and KH2 domains of FMRP regulate distinct aspects of neuronal FMRP granule formation, dynamics, and transport. Furthermore, mutations in the KH domains disrupt translational repression in cells and the localization of known FMRP target mRNAs in neurons. These results suggest that the KH domains play an essential role in neuronal FMRP granule formation and function which may be linked to the molecular pathogenesis of FXS. Fragile X Syndrome (FXS) is the most common inherited neurodevelopmental disorder in humans and single gene cause of autism. Most cases of FXS are caused by the complete loss of a single protein (called FMRP). This has made it particularly difficult to understand which of the normal functions of FMRP are disrupted in cases of FXS. Recently, advances in high-throughput sequencing technologies have led to the discovery of patients with severe FXS caused by single mutations in important regions of the FMRP protein. Using a well-characterized FXS model system, we have found that two disease-causing mutations in FMRP disrupt the formation, dynamics, and function of RNA- and protein-containing granules in neurons. These granules have been shown to be involved in the transport of mRNA cargos in axons and dendrites. Disruption of these granules is linked to defects in synaptic development and plasticity. Our results show that two regions of the FMRP protein play a critical role in the control of FMRP granules. These findings suggest the disruption of these processes may be linked to FXS pathogenesis.
Collapse
Affiliation(s)
- Emily L. Starke
- Department of Biological Sciences, University of Denver, Denver, Colorado, United States of America
| | - Keelan Zius
- Department of Biological Sciences, University of Denver, Denver, Colorado, United States of America
| | - Scott A. Barbee
- Department of Biological Sciences, University of Denver, Denver, Colorado, United States of America
- Molecular and Cellular Biophysics Program, University of Denver, Denver, Colorado, United States of America
- * E-mail:
| |
Collapse
|
6
|
Jauhari A, Singh T, Yadav S. Neurodevelopmental Disorders and Neurotoxicity: MicroRNA in Focus. J Chem Neuroanat 2022; 120:102072. [DOI: 10.1016/j.jchemneu.2022.102072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 01/16/2022] [Accepted: 01/17/2022] [Indexed: 10/19/2022]
|
7
|
Nguyen U, Tinsley B, Sen Y, Stein J, Palacios Y, Ceballos A, Welch C, Nzenkue K, Penn A, Murphy L, Leodones K, Casiquin J, Ivory I, Ghenta K, Danziger K, Widman E, Newman J, Triplehorn M, Hindi Z, Mulligan K. Exposure to bisphenol A differentially impacts neurodevelopment and behavior in Drosophila melanogaster from distinct genetic backgrounds. Neurotoxicology 2020; 82:146-157. [PMID: 33309840 DOI: 10.1016/j.neuro.2020.12.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/30/2020] [Accepted: 12/06/2020] [Indexed: 12/13/2022]
Abstract
Bisphenol A (BPA) is a ubiquitous environmental chemical that has been linked to behavioral differences in children and shown to impact critical neurodevelopmental processes in animal models. Though data is emerging, we still have an incomplete picture of how BPA disrupts neurodevelopment; in particular, how its impacts may vary across different genetic backgrounds. Given the genetic tractability of Drosophila melanogaster, they present a valuable model to address this question. Fruit flies are increasingly being used for assessment of neurotoxicants because of their relatively simple brain structure and variety of measurable behaviors. Here we investigated the neurodevelopmental impacts of BPA across two genetic strains of Drosophila-w1118 (control) and the Fragile X Syndrome (FXS) model-by examining both behavioral and neuronal phenotypes. We show that BPA induces hyperactivity in larvae, increases repetitive grooming behavior in adults, reduces courtship behavior, impairs axon guidance in the mushroom body, and disrupts neural stem cell development in the w1118 genetic strain. Remarkably, for every behavioral and neuronal phenotype examined, the impact of BPA in FXS flies was either insignificant or contrasted with the phenotypes observed in the w1118 strain. This data indicates that the neurodevelopmental impacts of BPA can vary widely depending on genetic background and suggests BPA may elicit a gene-environment interaction with Drosophila fragile X mental retardation 1 (dFmr1)-the ortholog of human FMR1, which causes Fragile X Syndrome and is associated with autism spectrum disorder.
Collapse
Affiliation(s)
- U Nguyen
- Department of Biological Sciences, California State University, Sacramento, 6000 J Street, Sacramento, CA, 95819, United States
| | - B Tinsley
- Department of Biological Sciences, California State University, Sacramento, 6000 J Street, Sacramento, CA, 95819, United States
| | - Y Sen
- Department of Biological Sciences, California State University, Sacramento, 6000 J Street, Sacramento, CA, 95819, United States
| | - J Stein
- Department of Biological Sciences, California State University, Sacramento, 6000 J Street, Sacramento, CA, 95819, United States
| | - Y Palacios
- Department of Biological Sciences, California State University, Sacramento, 6000 J Street, Sacramento, CA, 95819, United States
| | - A Ceballos
- Department of Biological Sciences, California State University, Sacramento, 6000 J Street, Sacramento, CA, 95819, United States
| | - C Welch
- Department of Biological Sciences, California State University, Sacramento, 6000 J Street, Sacramento, CA, 95819, United States
| | - K Nzenkue
- Department of Biological Sciences, California State University, Sacramento, 6000 J Street, Sacramento, CA, 95819, United States
| | - A Penn
- Department of Biological Sciences, California State University, Sacramento, 6000 J Street, Sacramento, CA, 95819, United States
| | - L Murphy
- Department of Biological Sciences, California State University, Sacramento, 6000 J Street, Sacramento, CA, 95819, United States
| | - K Leodones
- Department of Biological Sciences, California State University, Sacramento, 6000 J Street, Sacramento, CA, 95819, United States
| | - J Casiquin
- Department of Biological Sciences, California State University, Sacramento, 6000 J Street, Sacramento, CA, 95819, United States
| | - I Ivory
- Department of Biological Sciences, California State University, Sacramento, 6000 J Street, Sacramento, CA, 95819, United States
| | - K Ghenta
- Department of Biological Sciences, California State University, Sacramento, 6000 J Street, Sacramento, CA, 95819, United States
| | - K Danziger
- Department of Biological Sciences, California State University, Sacramento, 6000 J Street, Sacramento, CA, 95819, United States
| | - E Widman
- Department of Biological Sciences, California State University, Sacramento, 6000 J Street, Sacramento, CA, 95819, United States
| | - J Newman
- Department of Biological Sciences, California State University, Sacramento, 6000 J Street, Sacramento, CA, 95819, United States
| | - M Triplehorn
- Department of Biological Sciences, California State University, Sacramento, 6000 J Street, Sacramento, CA, 95819, United States
| | - Z Hindi
- Department of Biological Sciences, California State University, Sacramento, 6000 J Street, Sacramento, CA, 95819, United States
| | - K Mulligan
- Department of Biological Sciences, California State University, Sacramento, 6000 J Street, Sacramento, CA, 95819, United States.
| |
Collapse
|
8
|
Functional Mammalian Amyloids and Amyloid-Like Proteins. Life (Basel) 2020; 10:life10090156. [PMID: 32825636 PMCID: PMC7555005 DOI: 10.3390/life10090156] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/12/2020] [Accepted: 08/19/2020] [Indexed: 02/06/2023] Open
Abstract
Amyloids are highly ordered fibrous cross-β protein aggregates that are notorious primarily because of association with a variety of incurable human and animal diseases (termed amyloidoses), including Alzheimer’s disease (AD), Parkinson’s disease (PD), type 2 diabetes (T2D), and prion diseases. Some amyloid-associated diseases, in particular T2D and AD, are widespread and affect hundreds of millions of people all over the world. However, recently it has become evident that many amyloids, termed “functional amyloids,” are involved in various activities that are beneficial to organisms. Functional amyloids were discovered in diverse taxa, ranging from bacteria to mammals. These amyloids are involved in vital biological functions such as long-term memory, storage of peptide hormones and scaffolding melanin polymerization in animals, substrate attachment, and biofilm formation in bacteria and fungi, etc. Thus, amyloids undoubtedly are playing important roles in biological and pathological processes. This review is focused on functional amyloids in mammals and summarizes approaches used for identifying new potentially amyloidogenic proteins and domains.
Collapse
|
9
|
Kennedy T, Rinker D, Broadie K. Genetic background mutations drive neural circuit hyperconnectivity in a fragile X syndrome model. BMC Biol 2020; 18:94. [PMID: 32731855 PMCID: PMC7392683 DOI: 10.1186/s12915-020-00817-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 06/19/2020] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Neural circuits are initially assembled during development when neurons synapse with potential partners and later refined as appropriate connections stabilize into mature synapses while inappropriate contacts are eliminated. Disruptions to this synaptogenic process impair connectivity optimization and can cause neurodevelopmental disorders. Intellectual disability (ID) and autism spectrum disorder (ASD) are often characterized by synaptic overgrowth, with the maintenance of immature or inappropriate synapses. Such synaptogenic defects can occur through mutation of a single gene, such as fragile X mental retardation protein (FMRP) loss causing the neurodevelopmental disorder fragile X syndrome (FXS). FXS represents the leading heritable cause of ID and ASD, but many other genes that play roles in ID and ASD have yet to be identified. RESULTS In a Drosophila FXS disease model, one dfmr150M null mutant stock exhibits previously unreported axonal overgrowths at developmental and mature stages in the giant fiber (GF) escape circuit. These excess axon projections contain both chemical and electrical synapse markers, indicating mixed synaptic connections. Extensive analyses show these supernumerary synapses connect known GF circuit neurons, rather than new, inappropriate partners, indicating hyperconnectivity within the circuit. Despite the striking similarities to well-characterized FXS synaptic defects, this new GF circuit hyperconnectivity phenotype is driven by genetic background mutations in this dfmr150M stock. Similar GF circuit synaptic overgrowth is not observed in independent dfmr1 null alleles. Bulked segregant analysis (BSA) was combined with whole genome sequencing (WGS) to identify the quantitative trait loci (QTL) linked to neural circuit hyperconnectivity. The results reveal 8 QTL associated with inappropriate synapse formation and maintenance in the dfmr150M mutant background. CONCLUSIONS Synaptogenesis is a complex, precisely orchestrated neurodevelopmental process with a large cohort of gene products coordinating the connectivity, synaptic strength, and excitatory/inhibitory balance between neuronal partners. This work identifies a number of genetic regions that contain mutations disrupting proper synaptogenesis within a particularly well-mapped neural circuit. These QTL regions contain potential new genes involved in synapse formation and refinement. Given the similarity of the synaptic overgrowth phenotype to known ID and ASD inherited conditions, identifying these genes should increase our understanding of these devastating neurodevelopmental disease states.
Collapse
Affiliation(s)
- Tyler Kennedy
- Department of Biological Sciences, Vanderbilt University and Medical Center, Nashville, TN, 37235, USA
| | - David Rinker
- Department of Biological Sciences, Vanderbilt University and Medical Center, Nashville, TN, 37235, USA
| | - Kendal Broadie
- Department of Biological Sciences, Vanderbilt University and Medical Center, Nashville, TN, 37235, USA.
- Department of Cell and Developmental Biology, Vanderbilt University and Medical Center, Nashville, TN, 37235, USA.
- Vanderbilt Brain Institute, Vanderbilt University and Medical Center, Nashville, TN, 37235, USA.
| |
Collapse
|
10
|
Laudadio I, Carissimi C, Fulci V. How RNAi machinery enters the world of telomerase. Cell Cycle 2019; 18:1056-1067. [PMID: 31014212 PMCID: PMC6592256 DOI: 10.1080/15384101.2019.1609834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/01/2019] [Accepted: 04/14/2019] [Indexed: 12/27/2022] Open
Abstract
Human telomerase holoenzyme consists of the catalytic component TERT and the template RNA TERC. However, a network of accessory proteins plays key roles in its assembly, localization and stability. Defects in genes involved in telomerase biology affect the renewal of critical stem cell populations and cause disorders such as telomeropathies. Moreover, activation of telomerase in somatic cells allows neoplastic cells to proliferate indefinitely, thus contributing to tumorigenesis. For these reasons, identification of new players involved in telomerase regulation is crucial for the determination of novel therapeutic targets and biomarkers. In the very last years, increasing evidence describes components of the RNAi machinery as a new layer of complexity in human telomerase activity. In this review, we will discuss how AGO2 and other proteins which collaborate with AGO2 in RNAi pathway play a pivotal role in TERC stability and function.
Collapse
Affiliation(s)
- Ilaria Laudadio
- Department of Molecular Medicine, “Sapienza” University of Rome, Rome, Italy
| | - Claudia Carissimi
- Department of Molecular Medicine, “Sapienza” University of Rome, Rome, Italy
| | - Valerio Fulci
- Department of Molecular Medicine, “Sapienza” University of Rome, Rome, Italy
| |
Collapse
|
11
|
Orr BO, Gorczyca D, Younger MA, Jan LY, Jan YN, Davis GW. Composition and Control of a Deg/ENaC Channel during Presynaptic Homeostatic Plasticity. Cell Rep 2018; 20:1855-1866. [PMID: 28834749 DOI: 10.1016/j.celrep.2017.07.074] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 04/10/2017] [Accepted: 07/25/2017] [Indexed: 01/08/2023] Open
Abstract
The homeostatic control of presynaptic neurotransmitter release stabilizes information transfer at synaptic connections in the nervous system of organisms ranging from insect to human. Presynaptic homeostatic signaling centers upon the regulated membrane insertion of an amiloride-sensitive degenerin/epithelial sodium (Deg/ENaC) channel. Elucidating the subunit composition of this channel is an essential step toward defining the underlying mechanisms of presynaptic homeostatic plasticity (PHP). Here, we demonstrate that the ppk1 gene encodes an essential subunit of this Deg/ENaC channel, functioning in motoneurons for the rapid induction and maintenance of PHP. We provide genetic and biochemical evidence that PPK1 functions together with PPK11 and PPK16 as a presynaptic, hetero-trimeric Deg/ENaC channel. Finally, we highlight tight control of Deg/ENaC channel expression and activity, showing increased PPK1 protein expression during PHP and evidence for signaling mechanisms that fine tune the level of Deg/ENaC activity during PHP.
Collapse
Affiliation(s)
- Brian O Orr
- Department of Biochemistry and Biophysics, Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA
| | - David Gorczyca
- Howard Hughes Medical Institute, Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Meg A Younger
- Department of Biochemistry and Biophysics, Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Lily Y Jan
- Howard Hughes Medical Institute, Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Yuh-Nung Jan
- Howard Hughes Medical Institute, Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Graeme W Davis
- Department of Biochemistry and Biophysics, Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
12
|
Drozd M, Bardoni B, Capovilla M. Modeling Fragile X Syndrome in Drosophila. Front Mol Neurosci 2018; 11:124. [PMID: 29713264 PMCID: PMC5911982 DOI: 10.3389/fnmol.2018.00124] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 03/29/2018] [Indexed: 01/18/2023] Open
Abstract
Intellectual disability (ID) and autism are hallmarks of Fragile X Syndrome (FXS), a hereditary neurodevelopmental disorder. The gene responsible for FXS is Fragile X Mental Retardation gene 1 (FMR1) encoding the Fragile X Mental Retardation Protein (FMRP), an RNA-binding protein involved in RNA metabolism and modulating the expression level of many targets. Most cases of FXS are caused by silencing of FMR1 due to CGG expansions in the 5'-UTR of the gene. Humans also carry the FXR1 and FXR2 paralogs of FMR1 while flies have only one FMR1 gene, here called dFMR1, sharing the same level of sequence homology with all three human genes, but functionally most similar to FMR1. This enables a much easier approach for FMR1 genetic studies. Drosophila has been widely used to investigate FMR1 functions at genetic, cellular, and molecular levels since dFMR1 mutants have many phenotypes in common with the wide spectrum of FMR1 functions that underlay the disease. In this review, we present very recent Drosophila studies investigating FMRP functions at genetic, cellular, molecular, and electrophysiological levels in addition to research on pharmacological treatments in the fly model. These studies have the potential to aid the discovery of pharmacological therapies for FXS.
Collapse
Affiliation(s)
- Małgorzata Drozd
- Université Côte d'Azur, CNRS, IPMC, Valbonne, France.,CNRS LIA (Neogenex), Valbonne, France
| | - Barbara Bardoni
- CNRS LIA (Neogenex), Valbonne, France.,Université Côte d'Azur, INSERM, CNRS, IPMC, Valbonne, France
| | - Maria Capovilla
- Université Côte d'Azur, CNRS, IPMC, Valbonne, France.,CNRS LIA (Neogenex), Valbonne, France
| |
Collapse
|
13
|
Hutson RL, Thompson RL, Bantel AP, Tessier CR. Acamprosate rescues neuronal defects in the Drosophila model of Fragile X Syndrome. Life Sci 2018; 195:65-70. [PMID: 29317220 DOI: 10.1016/j.lfs.2018.01.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 01/04/2018] [Accepted: 01/05/2018] [Indexed: 10/18/2022]
Abstract
AIMS Several off-label studies have shown that acamprosate can provide some clinical benefits in youth with Fragile X Syndrome (FXS), an autism spectrum disorder caused by loss of function of the highly conserved FMR1 gene. This study investigated the ability of acamprosate to rescue cellular, molecular and behavioral defects in the Drosophila model of FXS. MAIN METHODS A high (100μM) and low (10μM) dose of acamprosate was fed to Drosophila FXS (dfmr1 null) or genetic control (w1118) larvae and then analyzed in multiple paradigms. A larval crawling assay was used to monitor aberrant FXS behavior, overgrowth of the neuromuscular junction (NMJ) was quantified to assess neuronal development, and quantitative RT-PCR was used to evaluate expression of deregulated cbp53E mRNA. KEY FINDINGS Acamprosate treatment partially or completely rescued all of the FXS phenotypes analyzed, according to dose. High doses rescued cellular overgrowth and dysregulated cbp53E mRNA expression, but aberrant crawling behavior was not affected. Low doses of acamprosate, however, did not affect synapse number at the NMJ, but could rescue NMJ overgrowth, locomotor defects, and cbp53E mRNA expression. This dual nature of acamprosate suggests multiple molecular mechanisms may be involved in acamprosate function depending on the dosage used. SIGNIFICANCE Acamprosate may be a useful therapy for FXS and potentially other autism spectrum disorders. However, understanding the molecular mechanisms involved with different doses of this drug will likely be necessary to obtain optimal results.
Collapse
Affiliation(s)
- Russell L Hutson
- Department of Biological Sciences, University of Notre Dame, South Bend, IN, United States
| | - Rachel L Thompson
- Department of Biological Sciences, University of Notre Dame, South Bend, IN, United States
| | - Andrew P Bantel
- Department of Medical and Molecular Genetics, Indiana University School of Medicine-South Bend, South Bend, IN, United States
| | - Charles R Tessier
- Department of Medical and Molecular Genetics, Indiana University School of Medicine-South Bend, South Bend, IN, United States.
| |
Collapse
|
14
|
Paces J, Nic M, Novotny T, Svoboda P. Literature review of baseline information to support the risk assessment of RNAi‐based GM plants. ACTA ACUST UNITED AC 2017. [PMCID: PMC7163844 DOI: 10.2903/sp.efsa.2017.en-1246] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jan Paces
- Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic (IMG)
| | | | | | - Petr Svoboda
- Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic (IMG)
| |
Collapse
|
15
|
Kashima R, Redmond PL, Ghatpande P, Roy S, Kornberg TB, Hanke T, Knapp S, Lagna G, Hata A. Hyperactive locomotion in a Drosophila model is a functional readout for the synaptic abnormalities underlying fragile X syndrome. Sci Signal 2017; 10:10/477/eaai8133. [PMID: 28465421 DOI: 10.1126/scisignal.aai8133] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Fragile X syndrome (FXS) is the most common cause of heritable intellectual disability and autism and affects ~1 in 4000 males and 1 in 8000 females. The discovery of effective treatments for FXS has been hampered by the lack of effective animal models and phenotypic readouts for drug screening. FXS ensues from the epigenetic silencing or loss-of-function mutation of the fragile X mental retardation 1 (FMR1) gene, which encodes an RNA binding protein that associates with and represses the translation of target mRNAs. We previously found that the activation of LIM kinase 1 (LIMK1) downstream of augmented synthesis of bone morphogenetic protein (BMP) type 2 receptor (BMPR2) promotes aberrant synaptic development in mouse and Drosophila models of FXS and that these molecular and cellular markers were correlated in patients with FXS. We report that larval locomotion is augmented in a Drosophila FXS model. Genetic or pharmacological intervention on the BMPR2-LIMK pathway ameliorated the synaptic abnormality and locomotion phenotypes of FXS larvae, as well as hyperactivity in an FXS mouse model. Our study demonstrates that (i) the BMPR2-LIMK pathway is a promising therapeutic target for FXS and (ii) the locomotion phenotype of FXS larvae is a quantitative functional readout for the neuromorphological phenotype associated with FXS and is amenable to the screening novel FXS therapeutics.
Collapse
Affiliation(s)
- Risa Kashima
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Patrick L Redmond
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Prajakta Ghatpande
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Sougata Roy
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Thomas B Kornberg
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Thomas Hanke
- Institute of Pharmaceutical Chemistry and Buchmann Institute for Life Sciences, Goethe University, Frankfurt, Germany
| | - Stefan Knapp
- Institute of Pharmaceutical Chemistry and Buchmann Institute for Life Sciences, Goethe University, Frankfurt, Germany.,Department of Clinical Medicine, Structural Genomics Consortium, University of Oxford, Oxford OX3 7DQ, U.K
| | - Giorgio Lagna
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Akiko Hata
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
16
|
Sabat D, Patnaik A, Ekka B, Dash P, Mishra M. Investigation of titania nanoparticles on behaviour and mechanosensory organ of Drosophila melanogaster. Physiol Behav 2016; 167:76-85. [DOI: 10.1016/j.physbeh.2016.08.032] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 08/06/2016] [Accepted: 08/30/2016] [Indexed: 12/13/2022]
|
17
|
Swenson JM, Colmenares SU, Strom AR, Costes SV, Karpen GH. The composition and organization of Drosophila heterochromatin are heterogeneous and dynamic. eLife 2016; 5:e16096. [PMID: 27514026 PMCID: PMC4981497 DOI: 10.7554/elife.16096] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 07/06/2016] [Indexed: 12/13/2022] Open
Abstract
Heterochromatin is enriched for specific epigenetic factors including Heterochromatin Protein 1a (HP1a), and is essential for many organismal functions. To elucidate heterochromatin organization and regulation, we purified Drosophila melanogaster HP1a interactors, and performed a genome-wide RNAi screen to identify genes that impact HP1a levels or localization. The majority of the over four hundred putative HP1a interactors and regulators identified were previously unknown. We found that 13 of 16 tested candidates (83%) are required for gene silencing, providing a substantial increase in the number of identified components that impact heterochromatin properties. Surprisingly, image analysis revealed that although some HP1a interactors and regulators are broadly distributed within the heterochromatin domain, most localize to discrete subdomains that display dynamic localization patterns during the cell cycle. We conclude that heterochromatin composition and architecture is more spatially complex and dynamic than previously suggested, and propose that a network of subdomains regulates diverse heterochromatin functions.
Collapse
Affiliation(s)
- Joel M Swenson
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, United States
| | - Serafin U Colmenares
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, United States
| | - Amy R Strom
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, United States
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Sylvain V Costes
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, United States
| | - Gary H Karpen
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, United States
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| |
Collapse
|
18
|
Günther MN, Nettesheim G, Shubeita GT. Quantifying and predicting Drosophila larvae crawling phenotypes. Sci Rep 2016; 6:27972. [PMID: 27323901 PMCID: PMC4914969 DOI: 10.1038/srep27972] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 05/26/2016] [Indexed: 11/09/2022] Open
Abstract
The fruit fly Drosophila melanogaster is a widely used model for cell biology, development, disease, and neuroscience. The fly's power as a genetic model for disease and neuroscience can be augmented by a quantitative description of its behavior. Here we show that we can accurately account for the complex and unique crawling patterns exhibited by individual Drosophila larvae using a small set of four parameters obtained from the trajectories of a few crawling larvae. The values of these parameters change for larvae from different genetic mutants, as we demonstrate for fly models of Alzheimer's disease and the Fragile X syndrome, allowing applications such as genetic or drug screens. Using the quantitative model of larval crawling developed here we use the mutant-specific parameters to robustly simulate larval crawling, which allows estimating the feasibility of laborious experimental assays and aids in their design.
Collapse
Affiliation(s)
- Maximilian N. Günther
- Center for Nonlinear Dynamics and Department of Physics, The University of Texas at Austin, Austin, TX 78712, USA
| | - Guilherme Nettesheim
- Center for Nonlinear Dynamics and Department of Physics, The University of Texas at Austin, Austin, TX 78712, USA
| | - George T. Shubeita
- Center for Nonlinear Dynamics and Department of Physics, The University of Texas at Austin, Austin, TX 78712, USA
- New York University Abu Dhabi, P. O. Box 129188, Abu Dhabi, United Arab Emirates
| |
Collapse
|
19
|
Cao C, Magwire MM, Bayer F, Jiggins FM. A Polymorphism in the Processing Body Component Ge-1 Controls Resistance to a Naturally Occurring Rhabdovirus in Drosophila. PLoS Pathog 2016; 12:e1005387. [PMID: 26799957 PMCID: PMC4723093 DOI: 10.1371/journal.ppat.1005387] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 12/17/2015] [Indexed: 12/30/2022] Open
Abstract
Hosts encounter an ever-changing array of pathogens, so there is continual selection for novel ways to resist infection. A powerful way to understand how hosts evolve resistance is to identify the genes that cause variation in susceptibility to infection. Using high-resolution genetic mapping we have identified a naturally occurring polymorphism in a gene called Ge-1 that makes Drosophila melanogaster highly resistant to its natural pathogen Drosophila melanogaster sigma virus (DMelSV). By modifying the sequence of the gene in transgenic flies, we identified a 26 amino acid deletion in the serine-rich linker region of Ge-1 that is causing the resistance. Knocking down the expression of the susceptible allele leads to a decrease in viral titre in infected flies, indicating that Ge-1 is an existing restriction factor whose antiviral effects have been increased by the deletion. Ge-1 plays a central role in RNA degradation and the formation of processing bodies (P bodies). A key effector in antiviral immunity, the RNAi induced silencing complex (RISC), localises to P bodies, but we found that Ge-1-based resistance is not dependent on the small interfering RNA (siRNA) pathway. However, we found that Decapping protein 1 (DCP1) protects flies against sigma virus. This protein interacts with Ge-1 and commits mRNA for degradation by removing the 5’ cap, suggesting that resistance may rely on this RNA degradation pathway. The serine-rich linker domain of Ge-1 has experienced strong selection during the evolution of Drosophila, suggesting that this gene may be under long-term selection by viruses. These findings demonstrate that studying naturally occurring polymorphisms that increase resistance to infections enables us to identify novel forms of antiviral defence, and support a pattern of major effect polymorphisms controlling resistance to viruses in Drosophila. Hosts and their pathogens are engaged in a never-ending arms race, and hosts must continually evolve new defences to protect themselves from infection. In the fruit fly Drosophila melanogaster we show that virus resistance can evolve through a single mutation. In flies that are highly resistant to a naturally occurring virus called sigma virus we identified a deletion in the protein-coding region of a gene called Ge-1. We experimentally confirmed that this was the cause of resistance by deleting this region in transgenic flies. Furthermore, we show that even the susceptible allele of Ge-1 helps protect flies against the virus, suggesting that this mutation has made an existing antiviral defence more effective. Ge-1 plays a central role in RNA degradation in regions of the cytoplasm called P bodies, and our results suggest that this pathway has been recruited during evolution to protect D. melanogaster against sigma virus. The protein domain that contains the deletion has experienced strong selection during its evolution, suggesting that it may be involved in an ongoing arms race with viruses.
Collapse
Affiliation(s)
- Chuan Cao
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| | - Michael M. Magwire
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Florian Bayer
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Francis M. Jiggins
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
20
|
Weisz ED, Monyak RE, Jongens TA. Deciphering discord: How Drosophila research has enhanced our understanding of the importance of FMRP in different spatial and temporal contexts. Exp Neurol 2015; 274:14-24. [PMID: 26026973 PMCID: PMC12047081 DOI: 10.1016/j.expneurol.2015.05.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 05/18/2015] [Accepted: 05/23/2015] [Indexed: 01/06/2023]
Abstract
Fragile X Syndrome (FXS) is the most common heritable form of intellectual impairment as well as the leading monogenetic cause of autism. In addition to its canonical definition as a neurodevelopmental disease, recent findings in the clinic suggest that FXS is a systemic disorder that is characterized by a variety of heterogeneous phenotypes. Efforts to study FXS pathogenesis have been aided by the development and characterization of animal models of the disease. Research efforts in Drosophila melanogaster have revealed key insights into the mechanistic underpinnings of FXS. While much remains unknown, it is increasingly apparent that FXS involves a myriad of spatially and temporally specific alterations in cellular function. Consequently, the literature is filled with numerous discordant findings. Researchers and clinicians alike must be cognizant of this dissonance, as it will likely be important for the design of preclinical studies to assess the efficacy of therapeutic strategies to improve the lives of FXS patients.
Collapse
Affiliation(s)
- Eliana D Weisz
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, United States
| | - Rachel E Monyak
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, United States
| | - Thomas A Jongens
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, United States.
| |
Collapse
|
21
|
Gorczyca DA, Younger S, Meltzer S, Kim SE, Cheng L, Song W, Lee HY, Jan LY, Jan YN. Identification of Ppk26, a DEG/ENaC Channel Functioning with Ppk1 in a Mutually Dependent Manner to Guide Locomotion Behavior in Drosophila. Cell Rep 2014; 9:1446-58. [PMID: 25456135 PMCID: PMC4254518 DOI: 10.1016/j.celrep.2014.10.034] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 09/25/2014] [Accepted: 10/17/2014] [Indexed: 10/24/2022] Open
Abstract
A major gap in our understanding of sensation is how a single sensory neuron can differentially respond to a multitude of different stimuli (polymodality), such as propio- or nocisensation. The prevailing hypothesis is that different stimuli are transduced through ion channels with diverse properties and subunit composition. In a screen for ion channel genes expressed in polymodal nociceptive neurons, we identified Ppk26, a member of the trimeric degenerin/epithelial sodium channel (DEG/ENaC) family, as being necessary for proper locomotion behavior in Drosophila larvae in a mutually dependent fashion with coexpressed Ppk1, another member of the same family. Mutants lacking Ppk1 and Ppk26 were defective in mechanical, but not thermal, nociception behavior. Mutants of Piezo, a channel involved in mechanical nociception in the same neurons, did not show a defect in locomotion, suggesting distinct molecular machinery for mediating locomotor feedback and mechanical nociception.
Collapse
Affiliation(s)
- David A Gorczyca
- Neuroscience Graduate Program, University of California San Francisco, San Francisco, CA 94158, USA; Departments of Physiology, Biochemistry, and Biophysics, University of California San Francisco, Howard Hughes Medical Institute, San Francisco, CA 94158, USA
| | - Susan Younger
- Neuroscience Graduate Program, University of California San Francisco, San Francisco, CA 94158, USA
| | - Shan Meltzer
- Neuroscience Graduate Program, University of California San Francisco, San Francisco, CA 94158, USA; Departments of Physiology, Biochemistry, and Biophysics, University of California San Francisco, Howard Hughes Medical Institute, San Francisco, CA 94158, USA
| | - Sung Eun Kim
- Neuroscience Graduate Program, University of California San Francisco, San Francisco, CA 94158, USA
| | - Li Cheng
- Neuroscience Graduate Program, University of California San Francisco, San Francisco, CA 94158, USA
| | - Wei Song
- Neuroscience Graduate Program, University of California San Francisco, San Francisco, CA 94158, USA
| | - Hye Young Lee
- Neuroscience Graduate Program, University of California San Francisco, San Francisco, CA 94158, USA
| | - Lily Yeh Jan
- Neuroscience Graduate Program, University of California San Francisco, San Francisco, CA 94158, USA
| | - Yuh Nung Jan
- Neuroscience Graduate Program, University of California San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
22
|
Santos AR, Kanellopoulos AK, Bagni C. Learning and behavioral deficits associated with the absence of the fragile X mental retardation protein: what a fly and mouse model can teach us. ACTA ACUST UNITED AC 2014; 21:543-55. [PMID: 25227249 PMCID: PMC4175497 DOI: 10.1101/lm.035956.114] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The Fragile X syndrome (FXS) is the most frequent form of inherited mental disability and is considered a monogenic cause of autism spectrum disorder. FXS is caused by a triplet expansion that inhibits the expression of the FMR1 gene. The gene product, the Fragile X Mental Retardation Protein (FMRP), regulates mRNA metabolism in brain and nonneuronal cells. During brain development, FMRP controls the expression of key molecules involved in receptor signaling, cytoskeleton remodeling, protein synthesis and, ultimately, spine morphology. Symptoms associated with FXS include neurodevelopmental delay, cognitive impairment, anxiety, hyperactivity, and autistic-like behavior. Twenty years ago the first Fmr1 KO mouse to study FXS was generated, and several years later other key models including the mutant Drosophila melanogaster, dFmr1, have further helped the understanding of the cellular and molecular causes behind this complex syndrome. Here, we review to which extent these biological models are affected by the absence of FMRP, pointing out the similarities with the observed human dysfunction. Additionally, we discuss several potential treatments under study in animal models that are able to partially revert some of the FXS abnormalities.
Collapse
Affiliation(s)
- Ana Rita Santos
- VIB Center for the Biology of Disease, 3000 Leuven, Belgium Center for Human Genetics, KU Leuven, 3000 Leuven, Belgium Leuven Institute for Neurodegenerative Diseases (LIND), KU Leuven, 3000 Leuven, Belgium
| | - Alexandros K Kanellopoulos
- VIB Center for the Biology of Disease, 3000 Leuven, Belgium Center for Human Genetics, KU Leuven, 3000 Leuven, Belgium Leuven Institute for Neurodegenerative Diseases (LIND), KU Leuven, 3000 Leuven, Belgium
| | - Claudia Bagni
- VIB Center for the Biology of Disease, 3000 Leuven, Belgium Center for Human Genetics, KU Leuven, 3000 Leuven, Belgium Leuven Institute for Neurodegenerative Diseases (LIND), KU Leuven, 3000 Leuven, Belgium Department of Biomedicine and Prevention, University of Rome "Tor Vergata" 00133, Rome, Italy
| |
Collapse
|
23
|
MicroRNAs with a role in gene regulation and in human diseases. Mol Biol Rep 2013; 41:225-32. [PMID: 24197698 DOI: 10.1007/s11033-013-2855-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 10/30/2013] [Indexed: 12/22/2022]
Abstract
MicroRNAs (miRNAs) are short 20-22 nucleotide non-coding RNA sequences. Recently identified, these are novel regulators of gene expression at translational level as well as transcriptional level. Alteration in miRNAs level has been observed in a number of human diseases and studies have been conducted on the effect of altered expression level of miRNAs on the development and progression of different diseases. The miRNAs can be used as molecular biomarkers in a number of diseases. Also, miRNAs are promising in providing a new platform for molecular therapeutics of previously incurable diseases. This review will focus on the introduction, recent advances in the field of miRNA and its importance in some human disorders.
Collapse
|
24
|
Transcriptome Profiling Following Neuronal and Glial Expression of ALS-Linked SOD1 in Drosophila. G3-GENES GENOMES GENETICS 2013; 3:695-708. [PMID: 23550139 PMCID: PMC3618356 DOI: 10.1534/g3.113.005850] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) generally is a late-onset neurodegenerative disease. Mutations in the Cu/Zn superoxide dismutase 1 (SOD1) gene account for approximately 20% of familial ALS and 2% of all ALS cases. Although a number of hypotheses have been proposed to explain mutant SOD1 toxicity, the molecular mechanisms of the disease remain unclear. SOD1-linked ALS is thought to function in a non-cell-autonomous manner such that motoneurons are critical for the onset, and glia contribute to progression of the disease. Recently, it has been shown in Drosophila melanogaster that expression of human SOD1 in a subset of neuronal cells causes synaptic transmission defects, modified motor function, and altered sensitivity to compounds that induce oxidative stress. Here we used the Gal4-UAS (Upstream Activation Sequence) system to further characterize flies expressing wild-type Drosophila SOD1 (dSOD1) and the mutant human SOD1G85R (G85R) allele in motoneurons and glia. Cell-specific expression of both dSOD1 and G85R was found to influence lifespan, affect sensitivity to hydrogen peroxide, and alter lipid peroxidation levels. To better understand the genetic consequences of G85R expression in motoneurons and glia, we conducted microarray analysis of both young flies (5 days old) and old flies (45 days old) expressing G85R selectively in motoneurons or glia and concurrently in motoneurons and glia. Results from this microarray experiment identified candidate genes for further investigation and may help elucidate the individual and combined contributions of motoneurons and glia in ALS.
Collapse
|
25
|
Taliaferro JM, Aspden JL, Bradley T, Marwha D, Blanchette M, Rio DC. Two new and distinct roles for Drosophila Argonaute-2 in the nucleus: alternative pre-mRNA splicing and transcriptional repression. Genes Dev 2013; 27:378-89. [PMID: 23392611 DOI: 10.1101/gad.210708.112] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Transcription and pre-mRNA alternative splicing are highly regulated processes that play major roles in modulating eukaryotic gene expression. It is increasingly apparent that other pathways of RNA metabolism, including small RNA biogenesis, can regulate these processes. However, a direct link between alternative pre-mRNA splicing and small RNA pathways has remained elusive. Here we show that the small RNA pathway protein Argonaute-2 (Ago-2) regulates alternative pre-mRNA splicing patterns of specific transcripts in the Drosophila nucleus using genome-wide methods in conjunction with RNAi in cell culture and Ago-2 deletion or catalytic site mutations in Drosophila adults. Moreover, we show that nuclear Argonaute-2 binds to specific chromatin sites near gene promoters and negatively regulates the transcription of the Ago-2-associated target genes. These transcriptional target genes are also bound by Polycomb group (PcG) transcriptional repressor proteins and change during development, implying that Ago-2 may regulate Drosophila development. Importantly, both of these activities were independent of the catalytic activity of Ago-2, suggesting new roles for Ago-2 in the nucleus. Finally, we determined the nuclear RNA-binding profile of Ago-2, found it bound to several splicing target transcripts, and identified a G-rich RNA-binding site for Ago-2 that was enriched in these transcripts. These results suggest two new nuclear roles for Ago-2: one in pre-mRNA splicing and one in transcriptional repression.
Collapse
Affiliation(s)
- J Matthew Taliaferro
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720, USA
| | | | | | | | | | | |
Collapse
|
26
|
Lee S, Vasudevan S. Post-transcriptional stimulation of gene expression by microRNAs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 768:97-126. [PMID: 23224967 DOI: 10.1007/978-1-4614-5107-5_7] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
MicroRNAs are small noncoding RNA regulatory molecules that control gene expression by guiding associated effector complexes to other RNAs via sequence-specific recognition of target sites. Misregulation of microRNAs leads to a wide range of diseases including cancers, inflammatory and developmental disorders. MicroRNAs were found to mediate deadenylation-dependent decay and translational repression of messages through partially complementary microRNA target sites in the 3'-UTR (untranslated region). A growing series of studies has demonstrated that microRNAs and their associated complexes (microRNPs) elicit alternate functions that enable stimulation of gene expression in addition to their assigned repressive roles. These reports, discussed in this chapter, indicate that microRNA-mediated effects via natural 3' and 5'-UTRs can be selective and controlled, dictated by the RNA sequence context, associated complex, and cellular conditions. Similar to the effects of repression, upregulated gene expression by microRNAs varies from small refinements to significant amplifications in expression. An emerging theme from this literature is that microRNAs have a versatile range of abilities to manipulate post-transcriptional control mechanisms leading to controlled gene expression. These studies reveal new potentials for microRNPs in gene expression control that develop as responses to specific cellular conditions.
Collapse
|
27
|
Jakubowski BR, Longoria RA, Shubeita GT. A high throughput and sensitive method correlates neuronal disorder genotypes to Drosophila larvae crawling phenotypes. Fly (Austin) 2012; 6:303-8. [PMID: 22992470 DOI: 10.4161/fly.21582] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Drosophila melanogaster is widely used as a model system for development and disease. Due to the homology between Drosophila and human genes, as well as the tractable genetics of the fly, its use as a model for neurologic disorders, in particular, has been rising. Locomotive impairment is a commonly used diagnostic for screening and characterization of these models, yet a fast, sensitive and model-free method to compare behavior is lacking. Here, we present a high throughput method to quantify the crawling behavior of larvae. We use the mean squared displacement as well as the direction autocorrelation of the crawling larvae as descriptors of their motion. By tracking larvae from wild-type strains and models of the Fragile X mental retardation as well as Alzheimer disease, we show these mutants exhibit impaired crawling. We further show that the magnitude of impairment correlates with the severity of the mutation, demonstrating the sensitivity and the dynamic range of the method. Finally, we study larvae with altered expression of the shaggy gene, a homolog of Glycogen Synthase Kinase-3 (GSK-3), which has been implicated in Alzheimer disease. Surprisingly, we find that both increased and decreased expression of dGSK-3 lead to similar larval crawling impairment. These findings have implications for the use of GSK-3 inhibitors recently proposed for Alzheimer treatment.
Collapse
Affiliation(s)
- Brandon R Jakubowski
- Center for Nonlinear Dynamics and Department of Physics, The University of Texas at Austin, Austin, TX, USA
| | | | | |
Collapse
|
28
|
Xu S, Poidevin M, Han E, Bi J, Jin P. Circadian rhythm-dependent alterations of gene expression in Drosophila brain lacking fragile X mental retardation protein. PLoS One 2012; 7:e37937. [PMID: 22655085 PMCID: PMC3360013 DOI: 10.1371/journal.pone.0037937] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 04/26/2012] [Indexed: 11/18/2022] Open
Abstract
Fragile X syndrome is caused by the loss of the FMR1 gene product, fragile X mental retardation protein (FMRP). The loss of FMRP leads to altered circadian rhythm behaviors in both mouse and Drosophila; however, the molecular mechanism behind this phenomenon remains elusive. Here we performed a series of gene expression analyses, including of both mRNAs and microRNAs (miRNAs), and identified a number of mRNAs and miRNAs (miRNA-1 and miRNA-281) with circadian rhythm-dependent altered expression in dfmr1 mutant flies. Identification of these RNAs lays the foundation for future investigations of the molecular pathway(s) underlying the altered circadian rhythms associated with loss of dFmr1.
Collapse
Affiliation(s)
- Shunliang Xu
- Department of Neurology, 2nd Hospital of Shandong University, Jinan City, Shandong Province, People's Republic of China.
| | | | | | | | | |
Collapse
|
29
|
Abstract
Translational regulation plays an essential role in many phases of the Drosophila life cycle. During embryogenesis, specification of the developing body pattern requires co-ordination of the translation of oskar, gurken and nanos mRNAs with their subcellular localization. In addition, dosage compensation is controlled by Sex-lethal-mediated translational regulation while dFMR1 (the Drosophila homologue of the fragile X mental retardation protein) controls translation of various mRNAs which function in the nervous system. Here we describe some of the mechanisms that are utilized to regulate these various processes. Our review highlights the complexity that can be involved with multiple factors employing different mechanisms to control the translation of a single mRNA.
Collapse
Affiliation(s)
- James E Wilhelm
- Department of Embryology, Carnegie Institution of Washington, Baltimore, MD 21210, USA
| | | |
Collapse
|
30
|
Abstract
This chapter will briefly tie together a captivating string of scientific discoveries that began in the 1800s and catapulted us into the current state of the field where trials are under way in humans that have arisen directly from the discoveries made in model organisms such as Drosophila (fruit flies) and mice. The hope is that research efforts in the field of fragile X currently represent a roadmap that demonstrates the utility of identifying a mutant gene responsible for human disease, tracking down the molecular underpinnings of pathogenic phenotypes, and utilizing model organisms to identify and validate potential pharmacologic targets for testing in afflicted humans. Indeed, in fragile X this roadmap has already yielded successful trials in humans (J. Med. Genetic 46(4) 266-271; Jacquemont et al. Sci Transl Med 3(64):64ra61), although the work in studying these interventions in humans is just getting underway as the work in model organisms continues to generate new potential therapeutic targets.
Collapse
Affiliation(s)
- Sean M McBride
- Department of Psychiatry, University of Pennsylvania School of Medicine, Philadelphia, PA, USA.
| | | | | |
Collapse
|
31
|
Molecular and genetic analysis of the Drosophila model of fragile X syndrome. Results Probl Cell Differ 2012; 54:119-56. [PMID: 22009350 DOI: 10.1007/978-3-642-21649-7_7] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The Drosophila genome contains most genes known to be involved in heritable disease. The extraordinary genetic malleability of Drosophila, coupled to sophisticated imaging, electrophysiology, and behavioral paradigms, has paved the way for insightful mechanistic studies on the causes of developmental and neurological disease as well as many possible interventions. Here, we focus on one of the most advanced examples of Drosophila genetic disease modeling, the Drosophila model of Fragile X Syndrome, which for the past decade has provided key advances into the molecular, cellular, and behavioral defects underlying this devastating disorder. We discuss the multitude of RNAs and proteins that interact with the disease-causing FMR1 gene product, whose function is conserved from Drosophila to human. In turn, we consider FMR1 mechanistic relationships in non-neuronal tissues (germ cells and embryos), peripheral motor and sensory circuits, and central brain circuits involved in circadian clock activity and learning/memory.
Collapse
|
32
|
Abstract
A major role of the RNAi pathway in Schizosaccharomyces pombe is to nucleate heterochromatin, but it remains unclear whether this mechanism is conserved. To address this question in Drosophila, we performed genome-wide localization of Argonaute2 (AGO2) by chromatin immunoprecipitation (ChIP)-seq in two different embryonic cell lines and found that AGO2 localizes to euchromatin but not heterochromatin. This localization pattern is further supported by immunofluorescence staining of polytene chromosomes and cell lines, and these studies also indicate that a substantial fraction of AGO2 resides in the nucleus. Intriguingly, AGO2 colocalizes extensively with CTCF/CP190 chromatin insulators but not with genomic regions corresponding to endogenous siRNA production. Moreover, AGO2, but not its catalytic activity or Dicer-2, is required for CTCF/CP190-dependent Fab-8 insulator function. AGO2 interacts physically with CTCF and CP190, and depletion of either CTCF or CP190 results in genome-wide loss of AGO2 chromatin association. Finally, mutation of CTCF, CP190, or AGO2 leads to reduction of chromosomal looping interactions, thereby altering gene expression. We propose that RNAi-independent recruitment of AGO2 to chromatin by insulator proteins promotes the definition of transcriptional domains throughout the genome.
Collapse
|
33
|
Vasudevan S. Posttranscriptional upregulation by microRNAs. WILEY INTERDISCIPLINARY REVIEWS-RNA 2011; 3:311-30. [PMID: 22072587 DOI: 10.1002/wrna.121] [Citation(s) in RCA: 345] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
MicroRNAs are small non-coding RNA guide molecules that regulate gene expression via association with effector complexes and sequence-specific recognition of target sites on other RNAs; misregulated microRNA expression and functions are linked to a variety of tumors, developmental disorders, and immune disease. MicroRNAs have primarily been demonstrated to mediate posttranscriptional downregulation of expression; translational repression, and deadenylation-dependent decay of messages through partially complementary microRNA target sites in mRNA untranslated regions (UTRs). However, an emerging assortment of studies, discussed in this review, reveal that microRNAs and their associated protein complexes (microribonucleoproteins or microRNPs) can additionally function to posttranscriptionally stimulate gene expression by direct and indirect mechanisms. These reports indicate that microRNA-mediated effects can be selective, regulated by the RNA sequence context, and associated with RNP factors and cellular conditions. Like repression, translation upregulation by microRNAs has been observed to range from fine-tuning effects to significant alterations in expression. These studies uncover remarkable, new abilities of microRNAs and associated microRNPs in gene expression control and underscore the importance of regulation, in cis and trans, in directing appropriate microRNP responses.
Collapse
|
34
|
Tauber JM, Vanlandingham PA, Zhang B. Elevated levels of the vesicular monoamine transporter and a novel repetitive behavior in the Drosophila model of fragile X syndrome. PLoS One 2011; 6:e27100. [PMID: 22087250 PMCID: PMC3206932 DOI: 10.1371/journal.pone.0027100] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 10/10/2011] [Indexed: 01/05/2023] Open
Abstract
Fragile X Syndrome (FXS) is characterized by mental impairment and autism in humans, and it often features hyperactivity and repetitive behaviors. The mechanisms for the disease, however, remain poorly understood. Here we report that the dfmr1 mutant in the Drosophila model of FXS grooms excessively, which may be regulated differentially by two signaling pathways. Blocking metabotropic glutamate receptor signaling enhances grooming in dfmr1 mutant flies, whereas blocking the vesicular monoamine transporter (VMAT) suppresses excessive grooming. dfmr1 mutant flies also exhibit elevated levels of VMAT mRNA and protein. These results suggest that enhanced monoamine signaling correlates with repetitive behaviors and hyperactivity associated with FXS.
Collapse
Affiliation(s)
- John M. Tauber
- Department of Zoology, University of Oklahoma, Norman, Oklahoma, United States of America
| | | | - Bing Zhang
- Department of Zoology, University of Oklahoma, Norman, Oklahoma, United States of America
- * E-mail:
| |
Collapse
|
35
|
Winograd C, Ceman S. Fragile X family members have important and non-overlapping functions. Biomol Concepts 2011; 2:343-52. [DOI: 10.1515/bmc.2011.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Accepted: 06/29/2011] [Indexed: 01/15/2023] Open
Abstract
AbstractThe fragile X family of genes encodes a small family of RNA binding proteins including FMRP, FXR1P and FXR2P that were identified in the 1990s. All three members are encoded by 17 exons and show alternative splicing at the 3′ ends of their respective transcripts. They share significant homology in the protein functional domains, including the Tudor domains, the nuclear localization sequence, a protein-protein interaction domain, the KH1 and KH2 domains and the nuclear export sequence. Fragile X family members are found throughout the animal kingdom, although all three members are not consistently present in species outside of mammals: only two family members are present in the avian species examined, Gallus gallus and Taeniopygia guttata, and in the frog Xenopus tropicalis. Although present in many tissues, the functions of the fragile X family members differ, which are particularly evident in knockout studies performed in animals. The fragile X family members play roles in normal neuronal function and in the case of FXR1, in muscle function.
Collapse
Affiliation(s)
- Claudia Winograd
- 2Neuroscience Program and College of Medicine, University of Illinois, 601 S. Goodwin Avenue, Urbana–Champaign, IL 61801, USA
| | | |
Collapse
|
36
|
Dufourt J, Brasset E, Desset S, Pouchin P, Vaury C. Polycomb group-dependent, heterochromatin protein 1-independent, chromatin structures silence retrotransposons in somatic tissues outside ovaries. DNA Res 2011; 18:451-61. [PMID: 21908513 PMCID: PMC3223077 DOI: 10.1093/dnares/dsr031] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Somatic cells are equipped with different silencing mechanisms that protect the genome against retrotransposons. In Drosophila melanogaster, a silencing pathway implicating the argonaute protein PIWI represses retrotransposons in cells surrounding the oocyte, whereas a PIWI-independent pathway is involved in other somatic tissues. Here, we show that these two silencing mechanisms result in distinct chromatin structures. Using sensor transgenes, we found that, in somatic tissues outside of the ovaries, these transgenes adopt a heterochromatic configuration implicating hypermethylation of H3K9 and K27. We identified the Polycomb repressive complexes (PRC1 and 2), but not heterochromatin protein 1 to be necessary factors for silencing. Once established, the compact structure is stably maintained through cell divisions. By contrast, in cells where the silencing is PIWI-dependent, the transgenes display an open and labile chromatin structure. Our data suggest that a post-transcriptional gene silencing (PTGS) mechanism is responsible for the repression in the ovarian somatic cells, whereas a mechanism that couples PTGS to transcriptional gene silencing operates to silence retrotransposons in the other somatic tissues.
Collapse
Affiliation(s)
- J Dufourt
- Clermont Université, Université d'Auvergne, France
| | | | | | | | | |
Collapse
|
37
|
Mattis VB, Svendsen CN. Induced pluripotent stem cells: a new revolution for clinical neurology? Lancet Neurol 2011; 10:383-94. [PMID: 21435601 DOI: 10.1016/s1474-4422(11)70022-9] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Why specific neuronal populations are uniquely susceptible in neurodegenerative diseases remains a mystery. Brain tissue samples from patients are rarely available for testing, and animal models frequently do not recapitulate all features of a specific disorder; therefore, pathophysiological investigations are difficult. An exciting new avenue for neurological research and drug development is the discovery that patients' somatic cells can be reprogrammed to a pluripotent state; these cells are known as induced pluripotent stem cells. Once pluripotency is reinstated, cell colonies can be expanded and differentiated into specific neural populations. The availability of these cells enables the monitoring in vitro of temporal features of disease initiation and progression, and testing of new drug treatments on the patient's own cells. Hence, this swiftly growing area of research has the potential to contribute greatly to our understanding of the pathophysiology of neurodegenerative and neurodevelopmental diseases.
Collapse
Affiliation(s)
- Virginia B Mattis
- Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | | |
Collapse
|
38
|
Tessier CR, Broadie K. The fragile X mental retardation protein developmentally regulates the strength and fidelity of calcium signaling in Drosophila mushroom body neurons. Neurobiol Dis 2011; 41:147-59. [PMID: 20843478 PMCID: PMC2982942 DOI: 10.1016/j.nbd.2010.09.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Revised: 08/17/2010] [Accepted: 09/03/2010] [Indexed: 11/20/2022] Open
Abstract
Fragile X syndrome (FXS) is a broad-spectrum neurological disorder characterized by hypersensitivity to sensory stimuli, hyperactivity and severe cognitive impairment. FXS is caused by loss of the fragile X mental retardation 1 (FMR1) gene, whose FMRP product regulates mRNA translation downstream of synaptic activity to modulate changes in synaptic architecture, function and plasticity. Null Drosophila FMR1 (dfmr1) mutants exhibit reduced learning and loss of protein synthesis-dependent memory consolidation, which is dependent on the brain mushroom body (MB) learning and memory center. We targeted a transgenic GFP-based calcium reporter to the MB in order to analyze calcium dynamics downstream of neuronal activation. In the dfmr1 null MB, there was significant augmentation of the calcium transients induced by membrane depolarization, as well as elevated release of calcium from intracellular organelle stores. The severity of these calcium signaling defects increased with developmental age, although early stages were characterized by highly variable, low fidelity calcium regulation. At the single neuron level, both calcium transient and calcium store release defects were exhibited by dfmr1 null MB neurons in primary culture. Null dfmr1 mutants exhibit reduced brain mRNA expression of calcium-binding proteins, including calcium buffers calmodulin and calbindin, predicting that the inability to appropriately sequester cytosolic calcium may be the common mechanistic defect causing calcium accumulation following both influx and store release. Changes in the magnitude and fidelity of calcium signals in the absence of dFMRP likely contribute to defects in neuronal structure/function, leading to the hallmark learning and memory dysfunction of FXS.
Collapse
Affiliation(s)
- Charles R Tessier
- Department of Biological Sciences, Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37232, USA
| | | |
Collapse
|
39
|
MicroRNA function in the nervous system. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 102:47-100. [PMID: 21846569 DOI: 10.1016/b978-0-12-415795-8.00004-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
MicroRNAs (miRNAs) are an extensive class of small noncoding RNAs that control posttranscriptional gene expression. miRNAs are highly expressed in neurons where they play key roles during neuronal differentiation, synaptogenesis, and plasticity. It is also becoming increasingly evident that miRNAs have a profound impact on higher cognitive functions and are involved in the etiology of several neurological diseases and disorders. In this chapter, we summarize our current knowledge of miRNA functions during neuronal development, physiology, and dysfunction.
Collapse
|
40
|
|
41
|
Hain D, Bettencourt BR, Okamura K, Csorba T, Meyer W, Jin Z, Biggerstaff J, Siomi H, Hutvagner G, Lai EC, Welte M, Müller HAJ. Natural variation of the amino-terminal glutamine-rich domain in Drosophila argonaute2 is not associated with developmental defects. PLoS One 2010; 5:e15264. [PMID: 21253006 PMCID: PMC3002974 DOI: 10.1371/journal.pone.0015264] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Accepted: 11/08/2010] [Indexed: 11/20/2022] Open
Abstract
The Drosophila argonaute2 (ago2) gene plays a major role in siRNA mediated RNA silencing pathways. Unlike mammalian Argonaute proteins, the Drosophila protein has an unusual amino-terminal domain made up largely of multiple copies of glutamine-rich repeats (GRRs). We report here that the ago2 locus produces an alternative transcript that encodes a putative short isoform without this amino-terminal domain. Several ago2 mutations previously reported to be null alleles only abolish expression of the long, GRR-containing isoform. Analysis of drop out (dop) mutations had previously suggested that variations in GRR copy number result in defects in RNAi and embryonic development. However, we find that dop mutations genetically complement transcript-null alleles of ago2 and that ago2 alleles with variant GRR copy numbers support normal development. In addition, we show that the assembly of the central RNAi machinery, the RISC (RNA induced silencing complex), is unimpaired in embryos when GRR copy number is altered. In fact, we find that GRR copy number is highly variable in natural D. melanogaster populations as well as in laboratory strains. Finally, while many other insects share an extensive, glutamine-rich Ago2 amino-terminal domain, its primary sequence varies drastically between species. Our data indicate that GRR variation does not modulate an essential function of Ago2 and that the amino-terminal domain of Ago2 is subject to rapid evolution.
Collapse
Affiliation(s)
- Daniel Hain
- Division of Cell and Developmental Biology, College of Life Sciences,
University of Dundee, Dundee, United Kingdom
| | | | - Katsutomo Okamura
- Sloan-Kettering Institute, Department of Developmental Biology, New York,
New York, United States of America
| | - Tibor Csorba
- Wellcome Trust Centre for Gene Regulation and Expression, College of Life
Sciences, University of Dundee, Dundee, United Kingdom
| | - Wibke Meyer
- Institut für Genetik, Heinrich Heine Universität,
Düsseldorf, Germany
| | - Zhigang Jin
- Sloan-Kettering Institute, Department of Developmental Biology, New York,
New York, United States of America
| | | | - Haruhiko Siomi
- Department of Molecular Biology, Keio University School of Medicine,
Tokyo, Japan
| | - Gyorgy Hutvagner
- Wellcome Trust Centre for Gene Regulation and Expression, College of Life
Sciences, University of Dundee, Dundee, United Kingdom
| | - Eric C. Lai
- Sloan-Kettering Institute, Department of Developmental Biology, New York,
New York, United States of America
| | - Michael Welte
- Department of Biology, University of Rochester, Rochester, New York,
United States of America
| | - H.-Arno J. Müller
- Division of Cell and Developmental Biology, College of Life Sciences,
University of Dundee, Dundee, United Kingdom
| |
Collapse
|
42
|
Xiang Y, Yuan Q, Vogt N, Looger LL, Jan LY, Jan YN. Light-avoidance-mediating photoreceptors tile the Drosophila larval body wall. Nature 2010; 468:921-6. [PMID: 21068723 PMCID: PMC3026603 DOI: 10.1038/nature09576] [Citation(s) in RCA: 312] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Accepted: 10/13/2010] [Indexed: 11/09/2022]
Abstract
Photoreceptors for visual perception, phototaxis or light avoidance are typically clustered in eyes or related structures such as the Bolwig organ of Drosophila larvae. Unexpectedly, we found that the class IV dendritic arborization neurons of Drosophila melanogaster larvae respond to ultraviolet, violet and blue light, and are major mediators of light avoidance, particularly at high intensities. These class IV dendritic arborization neurons, which are present in every body segment, have dendrites tiling the larval body wall nearly completely without redundancy. Dendritic illumination activates class IV dendritic arborization neurons. These novel photoreceptors use phototransduction machinery distinct from other photoreceptors in Drosophila and enable larvae to sense light exposure over their entire bodies and move out of danger.
Collapse
Affiliation(s)
- Yang Xiang
- Howard Hughes Medical Institute, Departments of Physiology, Biochemistry, and Biophysics, University of California San Francisco, San Francisco, California 94158, USA
| | | | | | | | | | | |
Collapse
|
43
|
Khera TK, Dick AD, Nicholson LB. Mechanisms of TNFα regulation in uveitis: Focus on RNA-binding proteins. Prog Retin Eye Res 2010; 29:610-21. [DOI: 10.1016/j.preteyeres.2010.08.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
44
|
Forero DA, van der Ven K, Callaerts P, Del-Favero J. miRNA genes and the brain: implications for psychiatric disordersa. Hum Mutat 2010; 31:1195-204. [DOI: 10.1002/humu.21344] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2010] [Accepted: 07/29/2010] [Indexed: 01/12/2023]
|
45
|
Bhogal B, Jongens TA. Fragile X syndrome and model organisms: identifying potential routes of therapeutic intervention. Dis Model Mech 2010; 3:693-700. [PMID: 20682752 DOI: 10.1242/dmm.002006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fragile X syndrome (FXS) is a cognitive disorder caused by silencing of the fragile X mental retardation 1 gene (FMR1). Since the discovery of the gene almost two decades ago, most scientific contributions have focused on identifying the molecular function of the fragile X mental retardation protein (FMRP) and understanding how absence of FMR1 gene expression gives rise to the disease phenotypes. The use of model organisms has allowed rapid progression in the FXS field and has given insight into the molecular basis of the disease. The mouse and fly FXS models have enabled studies to identify potential targets and pathways for pharmacological treatment. Here, we briefly review the two primary FXS model systems and describe how studies in these organisms have led us closer to therapeutic treatments for patients afflicted with FXS.
Collapse
Affiliation(s)
- Balpreet Bhogal
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6145, USA
| | | |
Collapse
|
46
|
Hirth F. Drosophila melanogaster in the study of human neurodegeneration. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2010; 9:504-23. [PMID: 20522007 PMCID: PMC2992341 DOI: 10.2174/187152710791556104] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Revised: 03/30/2010] [Accepted: 03/30/2010] [Indexed: 12/16/2022]
Abstract
Human neurodegenerative diseases are devastating illnesses that predominantly affect elderly people. The majority of the diseases are associated with pathogenic oligomers from misfolded proteins, eventually causing the formation of aggregates and the progressive loss of neurons in the brain and nervous system. Several of these proteinopathies are sporadic and the cause of pathogenesis remains elusive. Heritable forms are associated with genetic defects, suggesting that the affected protein is causally related to disease formation and/or progression. The limitations of human genetics, however, make it necessary to use model systems to analyse affected genes and pathways in more detail. During the last two decades, research using the genetically amenable fruitfly has established Drosophila melanogaster as a valuable model system in the study of human neurodegeneration. These studies offer reliable models for Alzheimer's, Parkinson's, and motor neuron diseases, as well as models for trinucleotide repeat expansion diseases, including ataxias and Huntington's disease. As a result of these studies, several signalling pathways including phosphatidylinositol 3-kinase (PI3K)/Akt and target of rapamycin (TOR), c-Jun N-terminal kinase (JNK) and bone morphogenetic protein (BMP) signalling, have been shown to be deregulated in models of proteinopathies, suggesting that two or more initiating events may trigger disease formation in an age-related manner. Moreover, these studies also demonstrate that the fruitfly can be used to screen chemical compounds for their potential to prevent or ameliorate the disease, which in turn can directly guide clinical research and the development of novel therapeutic strategies for the treatment of human neurodegenerative diseases.
Collapse
Affiliation(s)
- Frank Hirth
- King's College London, MRC Centre for Neurodegeneration Research, Institute of Psychiatry, Department of Neuroscience, London, UK.
| |
Collapse
|
47
|
Bolduc FV, Valente D, Nguyen AT, Mitra PP, Tully T. An assay for social interaction in Drosophila fragile X mutants. Fly (Austin) 2010; 4:216-25. [PMID: 20519966 PMCID: PMC3322501 DOI: 10.4161/fly.4.3.12280] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Revised: 04/06/2010] [Accepted: 05/05/2010] [Indexed: 01/10/2023] Open
Abstract
We developed a novel assay to examine social interactions in Drosophila and, as a first attempt, apply it here at examining the behavior of Drosophila Fragile X Mental Retardation gene (dfmr1) mutants. Fragile X syndrome is the most common cause of single gene intellectual disability (ID) and is frequently associated with autism. Our results suggest that dfmr1 mutants are less active than wild-type flies and interact with each other less often. In addition, mutants for one allele of dfmr1, dfmr1(B55), are more likely to come in close contact with a wild-type fly than another dfmr1(B55) mutant. Our results raise the possibility of defective social expression with preserved receptive abilities. We further suggest that the assay may be applied in a general strategy of examining endophenoypes of complex human neurological disorders in Drosophila, and specifically in order to understand the genetic basis of social interaction defects linked with ID.
Collapse
Affiliation(s)
- Francois V. Bolduc
- Watson School of Biological Sciences; Cold Spring Harbor, NY USA
- Cold Spring Harbor Laboratory; Cold Spring Harbor, NY USA
| | - Dan Valente
- Cold Spring Harbor Laboratory; Cold Spring Harbor, NY USA
| | | | - Partha P. Mitra
- Watson School of Biological Sciences; Cold Spring Harbor, NY USA
- Cold Spring Harbor Laboratory; Cold Spring Harbor, NY USA
| | - Tim Tully
- Watson School of Biological Sciences; Cold Spring Harbor, NY USA
- Cold Spring Harbor Laboratory; Cold Spring Harbor, NY USA
| |
Collapse
|
48
|
Hsc70/Hsp90 chaperone machinery mediates ATP-dependent RISC loading of small RNA duplexes. Mol Cell 2010; 39:292-9. [PMID: 20605501 DOI: 10.1016/j.molcel.2010.05.015] [Citation(s) in RCA: 354] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Revised: 05/10/2010] [Accepted: 05/13/2010] [Indexed: 01/25/2023]
Abstract
Small silencing RNAs--small interfering RNAs (siRNAs) or microRNAs (miRNAs)--direct posttranscriptional gene silencing of their mRNA targets as guides for the RNA-induced silencing complex (RISC). Both siRNAs and miRNAs are born double stranded. Surprisingly, loading these small RNA duplexes into Argonaute proteins, the core components of RISC, requires ATP, whereas separating the two small RNA strands within Argonaute does not. Here we show that the Hsc70/Hsp90 chaperone machinery is required to load small RNA duplexes into Argonaute proteins, but not for subsequent strand separation or target cleavage. We envision that the chaperone machinery uses ATP and mediates a conformational opening of Ago proteins so that they can receive bulky small RNA duplexes. Our data suggest that the chaperone machinery may serve as the driving force for the RISC assembly pathway.
Collapse
|
49
|
Abstract
An expanding assortment of small, noncoding RNAs identified in the nervous system suggests a strong connection between their combinatorial regulatory potential and the complexity of the nervous system. Misregulation of these small regulatory RNAs could contribute to the abnormalities in brain development that are associated with neurodevelopmental disorders. Here we give an overview of the diversity and unexpected abundance of small RNAs, as well as specific examples that illustrate their functional significance in neurodevelopmental disorders. We also discuss an intriguing, albeit elusive area of study: the potential impact of newly discovered classes of small RNAs in the nervous system.
Collapse
Affiliation(s)
- Abrar Qurashi
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | | |
Collapse
|
50
|
Zhong L, Hwang RY, Tracey WD. Pickpocket is a DEG/ENaC protein required for mechanical nociception in Drosophila larvae. Curr Biol 2010; 20:429-34. [PMID: 20171104 PMCID: PMC2995491 DOI: 10.1016/j.cub.2009.12.057] [Citation(s) in RCA: 200] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Revised: 12/29/2009] [Accepted: 12/30/2009] [Indexed: 11/17/2022]
Abstract
Highly branched class IV multidendritic sensory neurons of the Drosophila larva function as polymodal nociceptors that are necessary for behavioral responses to noxious heat (>39 degrees C) or noxious mechanical (>30 mN) stimuli. However, the molecular mechanisms that allow these cells to detect both heat and force are unknown. Here, we report that the pickpocket (ppk) gene, which encodes a Degenerin/Epithelial Sodium Channel (DEG/ENaC) subunit, is required for mechanical nociception but not thermal nociception in these sensory cells. Larvae mutant for pickpocket show greatly reduced nociception behaviors in response to harsh mechanical stimuli. However, pickpocket mutants display normal behavioral responses to gentle touch. Tissue-specific knockdown of pickpocket in nociceptors phenocopies the mechanical nociception impairment without causing defects in thermal nociception behavior. Finally, optogenetically triggered nociception behavior is unaffected by pickpocket RNAi, which indicates that ppk is not generally required for the excitability of the nociceptors. Interestingly, DEG/ENaCs are known to play a critical role in detecting gentle touch stimuli in Caenorhabditis elegans and have also been implicated in some aspects of harsh touch sensation in mammals. Our results suggest that neurons that detect harsh touch in Drosophila utilize similar mechanosensory molecules.
Collapse
Affiliation(s)
- Lixian Zhong
- Pharmacology Science Training Program, Duke University Medical Center, Durham, North Carolina, 27710
| | - Richard Y. Hwang
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, 27710
| | - W. Daniel Tracey
- Pharmacology Science Training Program, Duke University Medical Center, Durham, North Carolina, 27710
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, 27710
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, 27710
- Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina, 27710
| |
Collapse
|