1
|
Campbell I, Sharifpour R, Balda Aizpurua JF, Beckers E, Paparella I, Berger A, Koshmanova E, Mortazavi N, Read J, Zubkov M, Talwar P, Collette F, Sherif S, Phillips C, Lamalle L, Vandewalle G. Regional response to light illuminance across the human hypothalamus. eLife 2024; 13:RP96576. [PMID: 39466317 PMCID: PMC11517251 DOI: 10.7554/elife.96576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024] Open
Abstract
Light exerts multiple non-image-forming biological effects on physiology including the stimulation of alertness and cognition. However, the subcortical circuitry underlying the stimulating impact of light is not established in humans. We used 7 Tesla functional magnetic resonance imaging to assess the impact of variations in light illuminance on the regional activity of the hypothalamus while healthy young adults (N=26; 16 women; 24.3±2.9 y) were completing two auditory cognitive tasks. We find that, during both the executive and emotional tasks, higher illuminance triggered an activity increase over the posterior part of the hypothalamus, which includes part of the tuberomamillary nucleus and the posterior part of the lateral hypothalamus. In contrast, increasing illuminance evoked a decrease in activity over the anterior and ventral parts of the hypothalamus, encompassing notably the suprachiasmatic nucleus and another part of the tuberomammillary nucleus. Critically, the performance of the executive task was improved under higher illuminance and was negatively correlated with the activity of the posterior hypothalamus area. These findings reveal the distinct local dynamics of different hypothalamus regions that underlie the impact of light on cognition.
Collapse
Affiliation(s)
| | | | | | - Elise Beckers
- GIGA-CRC Human Imaging, University of LiègeLiègeBelgium
- Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht UniversityMaastrichtNetherlands
| | | | - Alexandre Berger
- GIGA-CRC Human Imaging, University of LiègeLiègeBelgium
- Synergia Medical SAMont-Saint-GuibertBelgium
- Institute of Neuroscience (IoNS), Department of Clinical Neuroscience, Université Catholique de Louvain (UCLouvain)Woluwe-Saint-LambertBelgium
| | | | | | - John Read
- GIGA-CRC Human Imaging, University of LiègeLiègeBelgium
| | | | - Puneet Talwar
- GIGA-CRC Human Imaging, University of LiègeLiègeBelgium
| | | | - Siya Sherif
- GIGA-CRC Human Imaging, University of LiègeLiègeBelgium
| | | | | | | |
Collapse
|
2
|
Zhang R, Tomasi D, Shokri-Kojori E, Manza P, Demiral SB, Wang GJ, Volkow ND. Seasonality in regional brain glucose metabolism. Psychol Med 2024; 54:2264-2272. [PMID: 38634486 DOI: 10.1017/s0033291724000436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
BACKGROUND Daylength and the rates of changes in daylength have been associated with seasonal fluctuations in psychiatric symptoms and in cognition and mood in healthy adults. However, variations in human brain glucose metabolism in concordance with seasonal changes remain under explored. METHODS In this cross-sectional study, we examined seasonal effects on brain glucose metabolism, which we measured using 18F-fluorodeoxyglucose-PET in 97 healthy participants. To maximize the sensitivity of regional effects, we computed relative metabolic measures by normalizing the regional measures to white matter metabolism. Additionally, we explored the role of rest-activity rhythms/sleep-wake activity measured with actigraphy in the seasonal variations of regional brain metabolic activity. RESULTS We found that seasonal variations of cerebral glucose metabolism differed across brain regions. Glucose metabolism in prefrontal regions increased with longer daylength and with greater day-to-day increases in daylength. The cuneus and olfactory bulb had the maximum and minimum metabolic values around the summer and winter solstice respectively (positively associated with daylength), whereas the temporal lobe, brainstem, and postcentral cortex showed maximum and minimum metabolic values around the spring and autumn equinoxes, respectively (positively associated with faster daylength gain). Longer daylength was associated with greater amplitude and robustness of diurnal activity rhythms suggesting circadian involvement. CONCLUSIONS The current findings advance our knowledge of seasonal patterns in a key indicator of brain function relevant for mood and cognition. These data could inform treatment interventions for psychiatric symptoms that peak at specific times of the year.
Collapse
Affiliation(s)
- Rui Zhang
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dardo Tomasi
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ehsan Shokri-Kojori
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peter Manza
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sukru Baris Demiral
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gene-Jack Wang
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nora D Volkow
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
3
|
Wang K, Chen K, Wei Z, Wang T, Wei A, Gao X, Qin Y, Zhu Y, Ge Y, Cui B, Zhu M. Visual light flicker stimulation: enhancing alertness in sleep-deprived rats. Front Neurosci 2024; 18:1415614. [PMID: 38903600 PMCID: PMC11188382 DOI: 10.3389/fnins.2024.1415614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 05/24/2024] [Indexed: 06/22/2024] Open
Abstract
Introduction In the evolving field of neurophysiological research, visual light flicker stimulation is recognized as a promising non-invasive intervention for cognitive enhancement, particularly in sleep-deprived conditions. Methods This study explored the effects of specific flicker frequencies (40 Hz and 20-30 Hz random flicker) on alertness recovery in sleep-deprived rats. We employed a multidisciplinary approach that included behavioral assessments with the Y-maze, in vivo electrophysiological recordings, and molecular analyses such as c-FOS immunohistochemistry and hormone level measurements. Results Both 40 Hz and 20-30 Hz flicker significantly enhanced behavioral performance in the Y-maze test, suggesting an improvement in alertness. Neurophysiological data indicated activation of neural circuits in key brain areas like the thalamus and hippocampus. Additionally, flicker exposure normalized cortisol and serotonin levels, essential for stress response and mood regulation. Notably, increased c-FOS expression in brain regions related to alertness and cognitive functions suggested heightened neural activity. Discussion These findings underscore the potential of light flicker stimulation not only to mitigate the effects of sleep deprivation but also to enhance cognitive functions. The results pave the way for future translational research into light-based therapies in human subjects, with possible implications for occupational health and cognitive ergonomics.
Collapse
Affiliation(s)
- Kun Wang
- Military Medical Sciences Academy, Tianjin, China
- Medical Support Technology Research Department, Systems Engineering Institute, Tianjin, China
| | - Kang Chen
- Military Medical Sciences Academy, Tianjin, China
- Tianjin Key Lab of Exercise Physiology and Sports Medicine, Tianjin University of Sport, Tianjin, China
| | - Zilin Wei
- Military Medical Sciences Academy, Tianjin, China
| | - Tianhui Wang
- Military Medical Sciences Academy, Tianjin, China
| | - Aili Wei
- Military Medical Sciences Academy, Tianjin, China
| | - Xiujie Gao
- Military Medical Sciences Academy, Tianjin, China
| | - Yingkai Qin
- Military Medical Sciences Academy, Tianjin, China
| | - Yingwen Zhu
- Military Medical Sciences Academy, Tianjin, China
| | - Yi Ge
- Logistic Support Department of Central Military Commission, Beijing, China
| | - Bo Cui
- Military Medical Sciences Academy, Tianjin, China
| | - Mengfu Zhu
- Medical Support Technology Research Department, Systems Engineering Institute, Tianjin, China
| |
Collapse
|
4
|
Gagné V, Turgeon R, Jomphe V, Demers CMH, Hébert M. Evaluation of the effects of blue-enriched white light on cognitive performance, arousal, and overall appreciation of lighting. Front Public Health 2024; 12:1390614. [PMID: 38813427 PMCID: PMC11133540 DOI: 10.3389/fpubh.2024.1390614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/06/2024] [Indexed: 05/31/2024] Open
Abstract
Introduction Light's non-visual effects on the biological clock, cognitive performance, alertness, and mental health are getting more recognized. These are primarily driven by blue light, which triggers specific retinal cells containing melanopsin. Traditionally, research on light has relied on correlated color temperature (CCT) as a metric of its biological influence, given that bluer light corresponds to higher Kelvin values. However, CCT proves to be an inadequate proxy of light's biological effects. A more precise metric is melanopic Equivalent Daylight Illuminance (mel-EDI), which aligns with melanopsin spectrum. Studies have reported positive cognitive impacts of blue-enriched white light. It's unclear if the mixed results are due to different mel-EDI levels since this factor wasn't assessed. Method Given recent recommendations from experts to aim for at least 250 mel-EDI exposure daily for cognitive benefits, our aim was to assess if a 50-minute exposure to LED light with 250 mel-EDI could enhance concentration and alertness, without affecting visual performance or comfort compared to conventional lighting producing around 150 mel-EDI. To ensure mel-EDI's impact, photopic lux levels were kept constant across conditions. Conditions were counterbalanced, parameters included subjective sleepiness (KSS; Karolinska Sleepiness Scale), concentration (d2-R test), visual performance (FrACT; Freiburg Visual Acuity and Contrast Test), general appreciation (VAS; Visual Analogous Scale), preferences and comfort (modified OLS; Office Lighting Survey). Results The experimental light significantly reduced sleepiness (p = 0.03, Cohen's d = 0.42) and also decreased contrast sensitivity (p = 0.01, Cohen's d = 0.50). The conventional light was found to be more comfortable (p = 0.002, Cohen's d = 0.62), cheerful (p = 0.02, Cohen's d = 0.46) and pleasant (p = 0.005, Cohen's d = 0.55) while the experimental light was perceived as brighter (p = 0.004, Cohen's d = 0.58) and tended to be more stimulating (p = 0.10). Notably, there was a preference for conventional lighting (p = 0.004, Cohen's d=0.56) and concentration was equally improved in both conditions. Discussion Despite the lack of further improvement in concentration from exposure to blue-enriched light, given the observed benefits in terms of vigilance, further research over an extended period would be justified. These findings could subsequently motivate cognitive optimization through lighting for workers that would benefit from artificial lighting such as in northern regions.
Collapse
Affiliation(s)
- Valérie Gagné
- CERVO Brain Research Centre, Centre Intégré Universitaire de Santé et des Services Sociaux de la Capitale Nationale, Quebec, QC, Canada
| | - Rose Turgeon
- CERVO Brain Research Centre, Centre Intégré Universitaire de Santé et des Services Sociaux de la Capitale Nationale, Quebec, QC, Canada
| | - Valérie Jomphe
- CERVO Brain Research Centre, Centre Intégré Universitaire de Santé et des Services Sociaux de la Capitale Nationale, Quebec, QC, Canada
| | - Claude M. H. Demers
- CERVO Brain Research Centre, Centre Intégré Universitaire de Santé et des Services Sociaux de la Capitale Nationale, Quebec, QC, Canada
- École d’Architecture, Faculté d’aménagement, d’architecture, d’art et de design, Université Laval, Quebec, QC, Canada
| | - Marc Hébert
- CERVO Brain Research Centre, Centre Intégré Universitaire de Santé et des Services Sociaux de la Capitale Nationale, Quebec, QC, Canada
- Département d’Ophtalmologie et Otorhinolaryngologie – Chirurgie Cervico-Faciale, Faculté de Médecine, Université Laval, Quebec, QC, Canada
| |
Collapse
|
5
|
Huang X, Tao Q, Ren C. A Comprehensive Overview of the Neural Mechanisms of Light Therapy. Neurosci Bull 2024; 40:350-362. [PMID: 37555919 PMCID: PMC10912407 DOI: 10.1007/s12264-023-01089-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 04/22/2023] [Indexed: 08/10/2023] Open
Abstract
Light is a powerful environmental factor influencing diverse brain functions. Clinical evidence supports the beneficial effect of light therapy on several diseases, including depression, cognitive dysfunction, chronic pain, and sleep disorders. However, the precise mechanisms underlying the effects of light therapy are still not well understood. In this review, we critically evaluate current clinical evidence showing the beneficial effects of light therapy on diseases. In addition, we introduce the research progress regarding the neural circuit mechanisms underlying the modulatory effects of light on brain functions, including mood, memory, pain perception, sleep, circadian rhythm, brain development, and metabolism.
Collapse
Affiliation(s)
- Xiaodan Huang
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, 510632, China
| | - Qian Tao
- Psychology Department, School of Medicine, Jinan University, Guangzhou, 510632, China.
| | - Chaoran Ren
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
6
|
Gobert F, Corneyllie A, Bastuji H, Berthomier C, Thevenet M, Abernot J, Raverot V, Dailler F, Guérin C, Gronfier C, Luauté J, Perrin F. Twenty-four-hour rhythmicities in disorders of consciousness are associated with a favourable outcome. Commun Biol 2023; 6:1213. [PMID: 38030756 PMCID: PMC10687012 DOI: 10.1038/s42003-023-05588-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 11/15/2023] [Indexed: 12/01/2023] Open
Abstract
Fluctuations of consciousness and their rhythmicities have been rarely studied in patients with a disorder of consciousness after acute brain injuries. 24-h assessment of brain (EEG), behaviour (eye-opening), and circadian (clock-controlled hormones secretion from urine) functions was performed in acute brain-injured patients. The distribution, long-term predictability, and rhythmicity (circadian/ultradian) of various EEG features were compared with the initial clinical status, the functional outcome, and the circadian rhythmicities of behaviour and clock-controlled hormones. Here we show that more physiological and favourable patterns of fluctuations are associated with a higher 24 h predictability and sharp up-and-down shape of EEG switches, reminiscent of the Flip-Flop model of sleep. Multimodal rhythmic analysis shows that patients with simultaneous circadian rhythmicity for brain, behaviour, and hormones had a favourable outcome. Finally, both re-emerging EEG fluctuations and homogeneous 24-h cycles for EEG, eye-opening, and hormones appeared as surrogates for preserved functionality in brainstem and basal forebrain, which are key prognostic factors for later improvement. While the recovery of consciousness has previously been related to a high short-term complexity, we suggest in this exploratory study the importance of the high predictability of the 24 h long-term generation of brain rhythms and highlight the importance of circadian body-brain rhythms in awakening.
Collapse
Affiliation(s)
- Florent Gobert
- Neuro-Intensive care unit, Hospices Civils de Lyon, Neurological hospital Pierre-Wertheimer, 59 Boulevard Pinel, Bron, France.
- Trajectoires Team, Lyon Neuroscience Research Centre (Université Claude Bernard Lyon 1, INSERM U1028, CNRS UMR5292), Bâtiment Inserm 16 avenue Doyen Lépine, Bron, France.
- CAP Team (Cognition Auditive et Psychoacoustique), Lyon Neuroscience Research Centre (Université Claude Bernard Lyon 1, INSERM U1028, CNRS UMR5292), 95 boulevard Pinel, Bron, France.
| | - Alexandra Corneyllie
- CAP Team (Cognition Auditive et Psychoacoustique), Lyon Neuroscience Research Centre (Université Claude Bernard Lyon 1, INSERM U1028, CNRS UMR5292), 95 boulevard Pinel, Bron, France
| | - Hélène Bastuji
- Sleep medicine centre, Hospices Civils de Lyon, Bron, F-69677, France
- Neuropain Team, Lyon Neuroscience Research Centre (Université Claude Bernard Lyon 1, INSERM U1028, CNRS UMR5292), 59 Boulevard Pinel, Bron, France
| | | | - Marc Thevenet
- CAP Team (Cognition Auditive et Psychoacoustique), Lyon Neuroscience Research Centre (Université Claude Bernard Lyon 1, INSERM U1028, CNRS UMR5292), 95 boulevard Pinel, Bron, France
| | - Jonas Abernot
- CAP Team (Cognition Auditive et Psychoacoustique), Lyon Neuroscience Research Centre (Université Claude Bernard Lyon 1, INSERM U1028, CNRS UMR5292), 95 boulevard Pinel, Bron, France
| | - Véronique Raverot
- Hormone Laboratory, Hospices Civils de Lyon, Neurological hospital Pierre-Wertheimer, 59 Boulevard Pinel, Bron, France
| | - Frédéric Dailler
- Neuro-Intensive care unit, Hospices Civils de Lyon, Neurological hospital Pierre-Wertheimer, 59 Boulevard Pinel, Bron, France
| | - Claude Guérin
- Intensive care unit, Hospices Civils de Lyon, Croix-Rousse hospital, 103 Grande-Rue de la Croix-Rousse, Lyon, France
- Intensive care unit, Hospices Civils de Lyon, Édouard Herriot hospital, 5 Place d'Arsonval, 69003, Lyon, France
| | - Claude Gronfier
- Waking team (Integrative Physiology of the Brain Arousal Systems), Lyon Neuroscience Research Centre, INSERM UMRS 1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | - Jacques Luauté
- Trajectoires Team, Lyon Neuroscience Research Centre (Université Claude Bernard Lyon 1, INSERM U1028, CNRS UMR5292), Bâtiment Inserm 16 avenue Doyen Lépine, Bron, France
- Neuro-rehabilitation unit, Hospices Civils de Lyon, Neurological hospital Pierre-Wertheimer, 59 Boulevard Pinel, Bron, France
| | - Fabien Perrin
- CAP Team (Cognition Auditive et Psychoacoustique), Lyon Neuroscience Research Centre (Université Claude Bernard Lyon 1, INSERM U1028, CNRS UMR5292), 95 boulevard Pinel, Bron, France
| |
Collapse
|
7
|
Campbell I, Sharifpour R, Vandewalle G. Light as a Modulator of Non-Image-Forming Brain Functions—Positive and Negative Impacts of Increasing Light Availability. Clocks Sleep 2023; 5:116-140. [PMID: 36975552 PMCID: PMC10047820 DOI: 10.3390/clockssleep5010012] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/17/2023] [Accepted: 03/13/2023] [Indexed: 03/19/2023] Open
Abstract
Light use is rising steeply, mainly because of the advent of light-emitting diode (LED) devices. LEDs are frequently blue-enriched light sources and may have different impacts on the non-image forming (NIF) system, which is maximally sensitive to blue-wavelength light. Most importantly, the timing of LED device use is widespread, leading to novel light exposure patterns on the NIF system. The goal of this narrative review is to discuss the multiple aspects that we think should be accounted for when attempting to predict how this situation will affect the NIF impact of light on brain functions. We first cover both the image-forming and NIF pathways of the brain. We then detail our current understanding of the impact of light on human cognition, sleep, alertness, and mood. Finally, we discuss questions concerning the adoption of LED lighting and screens, which offer new opportunities to improve well-being, but also raise concerns about increasing light exposure, which may be detrimental to health, particularly in the evening.
Collapse
|
8
|
Brighter Time: A Smartphone App Recording Cognitive Task Performance and Illuminance in Everyday Life. Clocks Sleep 2022; 4:577-594. [PMID: 36278538 PMCID: PMC9589962 DOI: 10.3390/clockssleep4040045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/20/2022] [Accepted: 10/17/2022] [Indexed: 11/07/2022] Open
Abstract
Light is an influential regulator of behavioural and physiological state in mammals. Features of cognitive performance such as memory, vigilance and alertness can be altered by bright light exposure under laboratory and field conditions. However, the importance of light as a regulator of performance in everyday life is hard to assess and has so far remained largely unclear. We set out to address this uncertainty by developing a tool to capture measures of cognitive performance and light exposure, at scale, and during everyday life. To this end, we generated an app (Brighter Time) which incorporated a psychomotor vigilance (PVT), an N-back and a visual search task with questionnaire-based assessments of demographic characteristics, general health, chronotype and sleep. The app also measured illuminance during task completion using the smartphone's intrinsic light meter. We undertook a pilot feasibility study of Brighter Time based on 91-week-long acquisition phases within a convenience sample (recruited by local advertisements and word of mouth) running Brighter Time on their own smartphones over two study phases in winter and summer. Study compliance was suitable (median = 20/21 requested task completions per subject). Statistically significant associations were observed between subjective sleepiness and performance in all tasks. Significant daily variations in PVT and visual search performance were also observed. Higher illuminance was associated with reduced reaction time and lower inverse efficiency score in the visual search. Brighter Time thus represents a viable option for large-scale collection of cognitive task data in everyday life, and is able to reveal associations between task performance and sleepiness, time of day and current illuminance. Brighter Time's utility could be extended to exploring associations with longer-term patterns of light exposure and/or other light metrics by integrating with wearable light meters.
Collapse
|
9
|
Abstract
SignificanceThe function of our biological clock is dependent on environmental light. Rodent studies have shown that there are multiple colors that affect the clock, but indirect measures in humans suggest blue light is key. We performed functional MRI studies in human subjects with unprecedented spatial resolution to investigate color sensitivity of our clock. Here, we show that narrowband blue, green, and orange light were all effective in changing neuronal activity of the clock. While the clock of nocturnal rodents is excited by light, the human clock responds with a decrease in neuronal activity as indicated by a negative BOLD response. The sensitivity of the clock to multiple colors should be integrated in light therapy aimed to strengthen our 24-h rhythms.
Collapse
|
10
|
Luo X, Ru T, Chen Q, Li Y, Chen Y, Zhou G. Influence of daytime blue-enriched bright light on heart rate variability in healthy subjects. Chronobiol Int 2022; 39:826-835. [PMID: 35209793 DOI: 10.1080/07420528.2022.2040526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Heart rate variability (HRV), the indicator of the autonomic nervous system-induced modulation of heart rate, is a focal topic in psychophysiological research. The effect of indoor light on HRV may be related to various psychophysiological functions. The current study (N = 20) examined the response of the autonomic nervous system (ANS) to bright vs. dim blue-enriched light (1200 lx or 200 lx at eye level, 6500 K) exposure for five hours in the afternoon among healthy young adults. The results revealed a significant main effect of light condition on the time-domain indicators, with the significantly higher HRV (SDNN and RMSSD) under 200 lx versus 1200 lx condition, and the same case was revealed for the standard deviations of the Poincaré plot in non-linear effects. Conversely, no significant effects were revealed for the frequency- domain indicators of HRV measured with the subjects' eyes open. These findings suggested that the autonomic nervous system modulation of HRV was stronger under bright light conditions.
Collapse
Affiliation(s)
- Xue Luo
- School of Psychology, South China Normal University, Guangzhou, China
| | - Taotao Ru
- Lab of Light and Physiopsychological Health, National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Optical Information Materials and Technology and Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, China
| | - Qingwei Chen
- Lab of Light and Physiopsychological Health, National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Optical Information Materials and Technology and Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, China
| | - Yun Li
- School of Psychology, South China Normal University, Guangzhou, China
| | - Yuping Chen
- School of Psychology, South China Normal University, Guangzhou, China.,Lab of Light and Physiopsychological Health, National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou, China
| | - Guofu Zhou
- Lab of Light and Physiopsychological Health, National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Optical Information Materials and Technology and Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, China
| |
Collapse
|
11
|
Maruani J, Geoffroy PA. Multi-Level Processes and Retina-Brain Pathways of Photic Regulation of Mood. J Clin Med 2022; 11:jcm11020448. [PMID: 35054142 PMCID: PMC8781294 DOI: 10.3390/jcm11020448] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 02/06/2023] Open
Abstract
Light exerts powerful biological effects on mood regulation. Whereas the source of photic information affecting mood is well established at least via intrinsically photosensitive retinal ganglion cells (ipRGCs) secreting the melanopsin photopigment, the precise circuits that mediate the impact of light on depressive behaviors are not well understood. This review proposes two distinct retina–brain pathways of light effects on mood: (i) a suprachiasmatic nucleus (SCN)-dependent pathway with light effect on mood via the synchronization of biological rhythms, and (ii) a SCN-independent pathway with light effects on mood through modulation of the homeostatic process of sleep, alertness and emotion regulation: (1) light directly inhibits brain areas promoting sleep such as the ventrolateral preoptic nucleus (VLPO), and activates numerous brain areas involved in alertness such as, monoaminergic areas, thalamic regions and hypothalamic regions including orexin areas; (2) moreover, light seems to modulate mood through orexin-, serotonin- and dopamine-dependent pathways; (3) in addition, light activates brain emotional processing areas including the amygdala, the nucleus accumbens, the perihabenular nucleus, the left hippocampus and pathways such as the retina–ventral lateral geniculate nucleus and intergeniculate leaflet–lateral habenula pathway. This work synthetizes new insights into the neural basis required for light influence mood
Collapse
Affiliation(s)
- Julia Maruani
- Département de Psychiatrie et d’Addictologie, AP-HP, GHU Paris Nord, DMU Neurosciences, Hôpital Bichat—Claude Bernard, F-75018 Paris, France
- NeuroDiderot, INSERM U1141, Université de Paris, F-75019 Paris, France
- Correspondence: (J.M.); (P.A.G.); Tel.: +33-(0)1-40-25-82-62 (J.M. & P.A.G.)
| | - Pierre A. Geoffroy
- Département de Psychiatrie et d’Addictologie, AP-HP, GHU Paris Nord, DMU Neurosciences, Hôpital Bichat—Claude Bernard, F-75018 Paris, France
- NeuroDiderot, INSERM U1141, Université de Paris, F-75019 Paris, France
- CNRS UPR 3212, Institute for Cellular and Integrative Neurosciences, 5 rue Blaise Pascal, F-67000 Strasbourg, France
- GHU Paris—Psychiatry & Neurosciences, 1 Rue Cabanis, F-75014 Paris, France
- Correspondence: (J.M.); (P.A.G.); Tel.: +33-(0)1-40-25-82-62 (J.M. & P.A.G.)
| |
Collapse
|
12
|
Light-dependent effects on mood: Mechanistic insights from animal models. PROGRESS IN BRAIN RESEARCH 2022; 273:71-95. [DOI: 10.1016/bs.pbr.2022.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
13
|
Nobukawa S, Wagatsuma N, Nishimura H, Doho H, Takahashi T. An Approach for Stabilizing Abnormal Neural Activity in ADHD Using Chaotic Resonance. Front Comput Neurosci 2021; 15:726641. [PMID: 34539367 PMCID: PMC8442914 DOI: 10.3389/fncom.2021.726641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 08/09/2021] [Indexed: 12/02/2022] Open
Abstract
Reduced integrity of neural pathways from frontal to sensory cortices has been suggested as a potential neurobiological basis of attention-deficit hyperactivity disorder. Neurofeedback has been widely applied to enhance reduced neural pathways in attention-deficit hyperactivity disorder by repeated training on a daily temporal scale. Clinical and model-based studies have demonstrated that fluctuations in neural activity underpin sustained attention deficits in attention-deficit hyperactivity disorder. These aberrant neural fluctuations may be caused by the chaos–chaos intermittency state in frontal-sensory neural systems. Therefore, shifting the neural state from an aberrant chaos–chaos intermittency state to a normal stable state with an optimal external sensory stimulus, termed chaotic resonance, may be applied in neurofeedback for attention-deficit hyperactivity disorder. In this study, we applied a neurofeedback method based on chaotic resonance induced by “reduced region of orbit” feedback signals in the Baghdadi model for attention-deficit hyperactivity disorder. We evaluated the stabilizing effect of reduced region of orbit feedback and its robustness against noise from errors in estimation of neural activity. The effect of chaotic resonance successfully shifted the abnormal chaos-chaos intermittency of neural activity to the intended stable activity. Additionally, evaluation of the influence of noise due to measurement errors revealed that the efficiency of chaotic resonance induced by reduced region of orbit feedback signals was maintained over a range of certain noise strengths. In conclusion, applying chaotic resonance induced by reduced region of orbit feedback signals to neurofeedback methods may provide a promising treatment option for attention-deficit hyperactivity disorder.
Collapse
Affiliation(s)
- Sou Nobukawa
- Department of Computer Science, Chiba Institute of Technology, Chiba, Japan
| | - Nobuhiko Wagatsuma
- Department of Information Science, Faculty of Science, Toho University, Chiba, Japan
| | - Haruhiko Nishimura
- Graduate School of Applied Informatics, University of Hyogo, Kobe, Japan
| | - Hirotaka Doho
- Graduate School of Applied Informatics, University of Hyogo, Kobe, Japan.,Faculty of Education, Teacher Training Division, Kochi University, Kochi, Japan
| | - Tetsuya Takahashi
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan.,Department of Neuropsychiatry, University of Fukui, Fukui, Japan.,Uozu Shinkei Sanatorium, Uozu, Japan
| |
Collapse
|
14
|
Li Y, Ru T, Chen Q, Qian L, Luo X, Zhou G. Effects of illuminance and correlated color temperature of indoor light on emotion perception. Sci Rep 2021; 11:14351. [PMID: 34253773 PMCID: PMC8275593 DOI: 10.1038/s41598-021-93523-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 06/16/2021] [Indexed: 12/01/2022] Open
Abstract
The acute non-image forming (NIF) effects of daytime light on momentary mood had been-although not always-established in the current literature. It still remains largely unknown whether short-time light exposure would modulate emotion perception in healthy adults. The current study (N = 48) was conducted to explore the effects of illuminance (100 lx vs. 1000 lx at eye level) and correlated color temperature (CCT, 2700 K vs. 6500 K) on explicit and implicit emotion perception that was assessed with emotional face judgment task and emotional oddball task respectively. Results showed that lower CCT significantly decreased negative response bias in the face judgment task, with labeling ambiguous faces less fearful under 2700 K vs. 6500 K condition. Moreover, participants responded slightly faster for emotional pictures under 6500 K vs. 2700 K condition, but no significant effect of illuminance or CCT on negativity bias was revealed in the emotional oddball task. These findings highlighted the differential role of illuminance and CCT in regulating instant emotion perception and suggested a task-dependent moderation of light spectrum on negativity bias.
Collapse
Affiliation(s)
- Yun Li
- School of Psychology, South China Normal University, Guangzhou, 510631, China.,Lab of Light and Physio-psychological Health, National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou, 510006, China
| | - Taotao Ru
- Lab of Light and Physio-psychological Health, National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou, 510006, China. .,Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, China.
| | - Qingwei Chen
- School of Psychology, South China Normal University, Guangzhou, 510631, China.,Lab of Light and Physio-psychological Health, National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou, 510006, China
| | - Liu Qian
- School of Psychology, South China Normal University, Guangzhou, 510631, China.,Lab of Light and Physio-psychological Health, National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou, 510006, China
| | - Xianghang Luo
- School of Psychology, South China Normal University, Guangzhou, 510631, China
| | - Guofu Zhou
- Lab of Light and Physio-psychological Health, National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou, 510006, China.,Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, China
| |
Collapse
|
15
|
Sun W, Yang Y, Chen X, Cheng Y, Li X, An L. Light Promotes Neural Correlates of Fear Memory via Enhancing Brain-Derived Neurotrophic Factor (BDNF) Expression in the Prelimbic Cortex. ACS Chem Neurosci 2021; 12:1802-1810. [PMID: 33961393 DOI: 10.1021/acschemneuro.1c00081] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Exposure to light has been shown to enhance vigilance and improve working memory, possibly due to changes in prefrontal function. Ample evidence supports the critical role of prefrontal cortex (PFC) in fear memory performance. However, the effects of light on memory processing and its potential mechanisms remain unclear. Here, through rats exposure conditioned to light at different memory phases, we sought evidence for the influences by employing behavioral tests, pharmacological infusions, immunoblotting, and electrophysiological recording. Exposure to light immediately following conditioning of 30 min or longer could effectively improve consolidation of fear memory without altering short-term memory or upgrading the original fear. The absence of significant freezing during baseline and intertrial interval periods ruled out the possibility of a general induction of freezing by light. Meanwhile, rats exposed to light in homecages or conditioning chambers exhibited a similar memory phenotype, indicating that light specifically enhanced the fear stimulus rather than the contextual environment. Furthermore, light exposure elevated the training-induced brain-derived neurotrophic factor (BDNF) expression in the prelimbic, but not infralimbic, subregion of the PFC. Moreover, the BDNF-TrkB pathway, but not the BDNF-p75NTR pathway, was involved in light-mediated fear memory. The enhancement in BDNF activity effectively facilitated firing correlates of prelimbic pyramidal neurons but not fast-spiking interneurons. Blocking the training-induced BDNF by its antibody abolished the effects of light on neural function and fear memory. Therefore, our findings indicate that light enhances training-induced BDNF expression that promotes the neural correlate of memory function.
Collapse
Affiliation(s)
- Wei Sun
- Behavioral Neuroscience Laboratory, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550001, China
- Department of Pediatric, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550001, China
| | - Yang Yang
- Department of Pediatric, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550001, China
| | - Xiao Chen
- Behavioral Neuroscience Laboratory, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550001, China
| | - Yan Cheng
- Behavioral Neuroscience Laboratory, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550001, China
- Department of Pediatric, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550001, China
| | - Xiaolian Li
- Department of Neurology, Jinan Rehabilitation Hospital, Jinan 250013, China
| | - Lei An
- Behavioral Neuroscience Laboratory, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550001, China
- Department of Pediatric, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550001, China
- Department of Neurology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550001, China
- Department of Physiology, University of Saskatchewan, Saskatoon S7N 5E5, Canada
| |
Collapse
|
16
|
Zohdi H, Egli R, Guthruf D, Scholkmann F, Wolf U. Color-dependent changes in humans during a verbal fluency task under colored light exposure assessed by SPA-fNIRS. Sci Rep 2021; 11:9654. [PMID: 33958616 PMCID: PMC8102618 DOI: 10.1038/s41598-021-88059-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 04/01/2021] [Indexed: 02/03/2023] Open
Abstract
Light evokes robust visual and nonvisual physiological and psychological effects in humans, such as emotional and behavioral responses, as well as changes in cognitive brain activity and performance. The aim of this study was to investigate how colored light exposure (CLE) and a verbal fluency task (VFT) interact and affect cerebral hemodynamics, oxygenation, and systemic physiology as determined by systemic physiology augmented functional near-infrared spectroscopy (SPA-fNIRS). 32 healthy adults (17 female, 15 male, age: 25.5 ± 4.3 years) were exposed to blue and red light for 9 min while performing a VFT. Before and after the CLE, subjects were in darkness. We found that this long-term CLE-VFT paradigm elicited distinct changes in the prefrontal cortex and in most systemic physiological parameters. The subjects' performance depended significantly on the type of VFT and the sex of the subject. Compared to red light, blue evoked stronger responses in cerebral hemodynamics and oxygenation in the visual cortex. Color-dependent changes were evident in the recovery phase of several systemic physiological parameters. This study showed that the CLE has effects that endure at least 15 min after cessation of the CLE. This underlines the importance of considering the persistent influence of colored light on brain function, cognition, and systemic physiology in everyday life.
Collapse
Affiliation(s)
- Hamoon Zohdi
- University of Bern, Institute of Complementary and Integrative Medicine, Fabrikstrasse 8, 3012, Bern, Switzerland
| | - Rahel Egli
- University of Bern, Institute of Complementary and Integrative Medicine, Fabrikstrasse 8, 3012, Bern, Switzerland
| | - Daniel Guthruf
- University of Bern, Institute of Complementary and Integrative Medicine, Fabrikstrasse 8, 3012, Bern, Switzerland
| | - Felix Scholkmann
- University of Bern, Institute of Complementary and Integrative Medicine, Fabrikstrasse 8, 3012, Bern, Switzerland
- Biomedical Optics Research Laboratory, Neonatology Research, Department of Neonatology, University Hospital Zurich, University of Zurich, 8091, Zurich, Switzerland
| | - Ursula Wolf
- University of Bern, Institute of Complementary and Integrative Medicine, Fabrikstrasse 8, 3012, Bern, Switzerland.
| |
Collapse
|
17
|
Tabuchi M, Coates KE, Bautista OB, Zukowski LH. Light/Clock Influences Membrane Potential Dynamics to Regulate Sleep States. Front Neurol 2021; 12:625369. [PMID: 33854471 PMCID: PMC8039321 DOI: 10.3389/fneur.2021.625369] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 02/15/2021] [Indexed: 11/13/2022] Open
Abstract
The circadian rhythm is a fundamental process that regulates the sleep-wake cycle. This rhythm is regulated by core clock genes that oscillate to create a physiological rhythm of circadian neuronal activity. However, we do not know much about the mechanism by which circadian inputs influence neurons involved in sleep-wake architecture. One possible mechanism involves the photoreceptor cryptochrome (CRY). In Drosophila, CRY is receptive to blue light and resets the circadian rhythm. CRY also influences membrane potential dynamics that regulate neural activity of circadian clock neurons in Drosophila, including the temporal structure in sequences of spikes, by interacting with subunits of the voltage-dependent potassium channel. Moreover, several core clock molecules interact with voltage-dependent/independent channels, channel-binding protein, and subunits of the electrogenic ion pump. These components cooperatively regulate mechanisms that translate circadian photoreception and the timing of clock genes into changes in membrane excitability, such as neural firing activity and polarization sensitivity. In clock neurons expressing CRY, these mechanisms also influence synaptic plasticity. In this review, we propose that membrane potential dynamics created by circadian photoreception and core clock molecules are critical for generating the set point of synaptic plasticity that depend on neural coding. In this way, membrane potential dynamics drive formation of baseline sleep architecture, light-driven arousal, and memory processing. We also discuss the machinery that coordinates membrane excitability in circadian networks found in Drosophila, and we compare this machinery to that found in mammalian systems. Based on this body of work, we propose future studies that can better delineate how neural codes impact molecular/cellular signaling and contribute to sleep, memory processing, and neurological disorders.
Collapse
Affiliation(s)
- Masashi Tabuchi
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | | | | | | |
Collapse
|
18
|
Modulation of recognition memory performance by light and its relationship with cortical EEG theta and gamma activities. Biochem Pharmacol 2021; 191:114404. [PMID: 33412102 PMCID: PMC8363935 DOI: 10.1016/j.bcp.2020.114404] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/28/2020] [Accepted: 12/30/2020] [Indexed: 12/26/2022]
Abstract
Acute exposure to light exerts widespread effects on physiology, in addition to its key role in photoentrainment. Although the modulatory effect of light on physiological arousal is well demonstrated in mice, its effect on memory performance is inconclusive, as the direction of the effect depends on the nature of the behavioural task employed and/or the type of stimulus utilised. Moreover, in all rodent studies that reported significant effects of light on performance, brain activity was not assessed during the task and thus it is unclear how brain activity was modulated by light or the exact relationship between light-modulated brain activity and performance. Here we examine the modulatory effects of light of varying intensities on recognition memory performance and frontoparietal waking electroencephalography (EEG) in mice using the spontaneous recognition memory task. We report a light-intensity-dependent disruptive effect on recognition memory performance at the group level, but inspection of individual-level data indicates that light-intensity-dependent facilitation is observed in some cases. Using linear mixed-effects models, we then demonstrate that EEG fast theta (θ) activity at the time of encoding negatively predicts recognition memory performance, whereas slow gamma (γ) activity at the time of retrieval positively predicts performance. These relationships between θ/γ activity and performance are strengthened by increasing light intensity. Thus, light modulates θ and γ band activities involved in attentional and mnemonic processes, thereby affecting recognition memory performance. However, extraneous factors including the phase of the internal clock at which light is presented and homeostatic sleep pressure may determine how photic input is translated into behavioural performance.
Collapse
|
19
|
Sletten TL, Raman B, Magee M, Ferguson SA, Kennaway DJ, Grunstein RR, Lockley SW, Rajaratnam SMW. A Blue-Enriched, Increased Intensity Light Intervention to Improve Alertness and Performance in Rotating Night Shift Workers in an Operational Setting. Nat Sci Sleep 2021; 13:647-657. [PMID: 34079409 PMCID: PMC8163632 DOI: 10.2147/nss.s287097] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 02/04/2021] [Indexed: 12/20/2022] Open
Abstract
PURPOSE This study examined the efficacy of a lighting intervention that increased both light intensity and short-wavelength (blue) light content to improve alertness, performance and mood in night shift workers in a chemical plant. PATIENTS AND METHODS During rostered night shifts, 28 workers (46.0±10.8 years; 27 male) were exposed to two light conditions each for two consecutive nights (~19:00-07:00 h) in a counterbalanced repeated measures design: traditional-spectrum lighting set at pre-study levels (43 lux, 4000 K) versus higher intensity, blue-enriched lighting (106 lux, 17,000 K), equating to a 4.5-fold increase in melanopic illuminance (24 to 108 melanopic illuminance). Participants completed the Karolinska Sleepiness Scale, subjective mood ratings, and the Psychomotor Vigilance Task (PVT) every 2-4 hours during the night shift. RESULTS A significant main effect of time indicated KSS, PVT mean reaction time, number of PVT lapses (reaction times > 500 ms) and subjective tension, misery and depression worsened over the course of the night shift (p<0.05). Percentage changes in KSS (p<0.05, partial η2=0.14) and PVT mean reaction time (p<0.05, partial η2=0.19) and lapses (p<0.05, partial η2=0.17) in the middle and end of night shift, expressed relative to start of shift, were significantly improved during the lighting intervention compared to the traditional lighting condition. Self-reported mood did not significantly differ between conditions (p>0.05). CONCLUSION Our findings, showing improvements in alertness and performance with exposure to blue-enriched, increased intensity light, provide support for light to be used as a countermeasure for impaired alertness in night shift work settings.
Collapse
Affiliation(s)
- Tracey L Sletten
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Bhairavi Raman
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Michelle Magee
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Sally A Ferguson
- Central Queensland University, Appleton Institute, Goodwood, SA, Australia
| | - David J Kennaway
- Robinson Research Institute, School of Medicine, Discipline of Obstetrics and Gynaecology, University of Adelaide, Adelaide, SA, Australia
| | - Ronald R Grunstein
- Woolcock Institute of Medical Research, University of Sydney, Sydney, NSW, Australia.,Department of Respiratory & Sleep Medicine, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Steven W Lockley
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, MA, USA.,Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| | - Shantha M W Rajaratnam
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia.,Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, MA, USA.,Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
20
|
Chen Y, Chen T, Cai X. Light-sensitive circuits related to emotional processing underlie the antidepressant neural targets of light therapy. Behav Brain Res 2020; 396:112862. [PMID: 32827569 DOI: 10.1016/j.bbr.2020.112862] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 07/13/2020] [Accepted: 08/11/2020] [Indexed: 02/05/2023]
Abstract
Since Aaron Beck proposed his cognitive model of depression, biased attention, biased processing, and biased rumination (different phases of biased cognition) have been considered as the key elements consistently linked with depression. Increasing evidence suggests that the functional failures in the "emotional processing system (EPS)" underlie the neurological foundation of the biased cognition of depression. Light therapy, a non-intrusive approach, exerts powerful effects on emotion and cognition and affects the activity, functional connectivity, and plasticity of multiple brain structures. Although numerous studies have reported its effectiveness in treating depression, the findings have not been integrated with Beck's cognitive model and EPS, and the neurobiological mechanisms of antidepressant light therapy remain largely unknown. In this review, integrated with the classical theories of Beck's cognitive model of depression and EPS, we identified the key neural circuits and abnormalities involved in the cognitive bias of depression and, accordingly, identified and depicted several light-sensitive circuits (LSCs, neural circuits in the EPS that are responsive to light stimulation) that may underlie the antidepressant neural targets of light therapy, as listed below: In summary, the LSCs above narrow down the research scope of identifying the neural targets of antidepressant light therapy and help elucidate the neuropsychological mechanism of antidepressant light therapy.
Collapse
Affiliation(s)
- Yaodong Chen
- School of Architecture and Design, Southwest JiaoTong University, Chengdu, China.
| | - Taolin Chen
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Xueli Cai
- School of Architecture and Design, Southwest JiaoTong University, Chengdu, China
| |
Collapse
|
21
|
Sunde E, Pedersen T, Mrdalj J, Thun E, Grønli J, Harris A, Bjorvatn B, Waage S, Skene DJ, Pallesen S. Blue-Enriched White Light Improves Performance but Not Subjective Alertness and Circadian Adaptation During Three Consecutive Simulated Night Shifts. Front Psychol 2020; 11:2172. [PMID: 33013558 PMCID: PMC7462016 DOI: 10.3389/fpsyg.2020.02172] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 08/03/2020] [Indexed: 01/28/2023] Open
Abstract
Use of blue-enriched light has received increasing interest regarding its activating and performance sustaining effects. However, studies assessing effects of such light during night work are few, and novel strategies for lighting using light emitting diode (LED) technology need to be researched. In a counterbalanced crossover design, we investigated the effects of a standard polychromatic blue-enriched white light (7000 K; ∼200 lx) compared to a warm white light (2500 K), of similar photon density (∼1.6 × 1014 photons/cm2/s), during three consecutive simulated night shifts. A total of 30 healthy participants [10 males, mean age 23.3 (SD = 2.9) years] were included in the study. Dependent variables comprised subjective alertness using the Karolinska Sleepiness Scale, a psychomotor vigilance task (PVT) and a digit symbol substitution test (DSST), all administered at five time points throughout each night shift. We also assessed dim-light melatonin onset (DLMO) before and after the night shifts, as well as participants' opinion of the light conditions. Subjective alertness and performance on the PVT and DSST deteriorated during the night shifts, but 7000 K light was more beneficial for performance, mainly in terms of fewer errors on the PVT, at the end of the first- and second- night shift, compared to 2500 K light. Blue-enriched light only had a minor impact on PVT response times (RTs), as only the fastest 10% of the RTs were significantly improved in 7000 K compared to 2500 K light. In both 7000 and 2500 K light, the DLMO was delayed in those participants with valid assessment of this parameter [n = 20 (69.0%) in 7000 K light, n = 22 (78.6%) in 2500 K light], with a mean of 2:34 (SE = 0:14) and 2:12 (SE = 0:14) hours, respectively, which was not significantly different between the light conditions. Both light conditions were positively rated, although participants found 7000 K to be more suitable for work yet evaluated 2500 K light as more pleasant. The data indicate minor, but beneficial, effects of 7000 K light compared to 2500 K light on performance during night work. Circadian adaptation did not differ significantly between light conditions, though caution should be taken when interpreting these findings due to missing data. Field studies are needed to investigate similar light interventions in real-life settings, to develop recommendations regarding illumination for night workers. Clinical Trial Registration: www.ClinicalTrials.gov, identifier NCT03203538.
Collapse
Affiliation(s)
- Erlend Sunde
- Department of Psychosocial Science, University of Bergen, Bergen, Norway
| | - Torhild Pedersen
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway
| | - Jelena Mrdalj
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway
| | - Eirunn Thun
- Department of Clinical Psychology, University of Bergen, Bergen, Norway
| | - Janne Grønli
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway
| | - Anette Harris
- Department of Psychosocial Science, University of Bergen, Bergen, Norway
| | - Bjørn Bjorvatn
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
- Norwegian Competence Center for Sleep Disorders, Haukeland University Hospital, Bergen, Norway
| | - Siri Waage
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
- Norwegian Competence Center for Sleep Disorders, Haukeland University Hospital, Bergen, Norway
| | - Debra J Skene
- Chronobiology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Ståle Pallesen
- Department of Psychosocial Science, University of Bergen, Bergen, Norway
- Norwegian Competence Center for Sleep Disorders, Haukeland University Hospital, Bergen, Norway
- Optentia, North-West University Vaal Triangle Campus, Vanderbijlpark, South Africa
| |
Collapse
|
22
|
West A, Simonsen SA, Zielinski A, Cyril N, Schønsted M, Jennum P, Sander B, Iversen HK. An exploratory investigation of the effect of naturalistic light on depression, anxiety, and cognitive outcomes in stroke patients during admission for rehabilitation: A randomized controlled trial. NeuroRehabilitation 2019; 44:341-351. [PMID: 31177236 DOI: 10.3233/nre-182565] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Patients admitted for rehabilitation often lack sufficient natural light to entrain their circadian rhythm. OBJECTIVE Installed diurnal naturalistic light may positively influence the outcome of depressive mood, anxiety, and cognition in such patients. METHODS A quasi-randomized controlled trial. Ninety stroke patients in need of rehabilitation were randomized between May 1, 2014, and June 1, 2015 to either a rehabilitation unit equipped entirely with always on naturalistic lighting (IU), or to a rehabilitation unit with standard indoor lighting (CU).Examinations were performed at inclusion and discharge. The following changes were investigated: depressive mood based on the Hamilton Depression scale (HAM-D6) and Major Depression Inventory scale (MDI), anxiety based on the Hospital Anxiety and Depression Scale (HADS), cognition based on the Montreal Cognitive Assessment (MoCA) and well-being based on the Well-being Index (WHO-5). RESULTS Depressive mood (MDI p = 0.0005, HAM-D6 p = 0.011) and anxiety (HADS anxiety p = 0.045) was reduced, and well-being (WHO-5 p = 0.046) was increased, in the IU at discharge compared to the CU. No difference was found in cognition (MoCA p = 0.969). CONCLUSIONS This study is the first to demonstrate that exposure to naturalistic light during admission may significantly improve mental health in rehabilitation patients. Further studies are needed to confirm these findings.
Collapse
Affiliation(s)
- Anders West
- Department of Neurology, Clinical Stroke Research Unit, Rigshospitalet Glostrup, Glostrup, Denmark.,Faculty of Health Sciences, University of Copenhagen, Denmark
| | - Sofie Amalie Simonsen
- Department of Neurology, Clinical Stroke Research Unit, Rigshospitalet Glostrup, Glostrup, Denmark
| | - Alexander Zielinski
- Department of Neurology, Clinical Stroke Research Unit, Rigshospitalet Glostrup, Glostrup, Denmark
| | - Niklas Cyril
- Department of Neurology, Clinical Stroke Research Unit, Rigshospitalet Glostrup, Glostrup, Denmark
| | - Marie Schønsted
- Department of Neurology, Clinical Stroke Research Unit, Rigshospitalet Glostrup, Glostrup, Denmark
| | - Poul Jennum
- Faculty of Health Sciences, University of Copenhagen, Denmark.,Department of Neurophysiology, Danish Center for Sleep Medicine, Rigshospitalet Glostrup, Glostrup, Denmark
| | - Birgit Sander
- Faculty of Health Sciences, University of Copenhagen, Denmark.,Department of Ophthalmology, Rigshospitalet Glostrup, Glostrup, Denmark
| | - Helle K Iversen
- Department of Neurology, Clinical Stroke Research Unit, Rigshospitalet Glostrup, Glostrup, Denmark.,Faculty of Health Sciences, University of Copenhagen, Denmark
| |
Collapse
|
23
|
Milosavljevic N. How Does Light Regulate Mood and Behavioral State? Clocks Sleep 2019; 1:319-331. [PMID: 33089172 PMCID: PMC7445808 DOI: 10.3390/clockssleep1030027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/05/2019] [Indexed: 01/21/2023] Open
Abstract
The idea that light affects mood and behavioral state is not new. However, not much is known about the particular mechanisms and circuits involved. To fully understand these, we need to know what properties of light are important for mediating changes in mood as well as what photoreceptors and pathways are responsible. Increasing evidence from both human and animal studies imply that a specialized class of retinal ganglion cells, intrinsically photosensitive retinal ganglion cells (ipRGCs), plays an important role in the light-regulated effects on mood and behavioral state, which is in line with their well-established roles in other non-visual responses (pupillary light reflex and circadian photoentrainment). This paper reviews our current understanding on the mechanisms and paths by which the light information modulates behavioral state and mood.
Collapse
Affiliation(s)
- Nina Milosavljevic
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK;
| |
Collapse
|
24
|
Gobert F, Luauté J, Raverot V, Cotton F, Dailler F, Claustrat B, Perrin F, Gronfier C. Is circadian rhythmicity a prerequisite to coma recovery? Circadian recovery concomitant to cognitive improvement in two comatose patients. J Pineal Res 2019; 66:e12555. [PMID: 30633817 DOI: 10.1111/jpi.12555] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 12/28/2018] [Accepted: 12/29/2018] [Indexed: 01/15/2023]
Abstract
Circadian rhythmicity (CR) is involved in the regulation of all integrated functions, from sleep-wake cycle regulation to metabolic function, mood and cognition. However, the interdependence of CR, cognition and consciousness has been poorly addressed. To clarify the state of CR in coma and to determine the chronological relationship between its recovery and consciousness after brain lesions, we conducted a longitudinal observational study investigating how the state of CR was chronologically related with the recovery of behavioural wakefulness, cognition and/or awareness. Among 16 acute comatose patients, we recruited two 37-year-old patients with a persistent disorder of consciousness, presenting diencephalic lesions caused by severe traumatic brain injuries. Two biological urinary markers of CR were explored every 2 hours during 24 hours (6-sulfatoxymelatonin, free cortisol) with a dedicated methodology to extract the endogenous component of rhythmicity (environmental light recording, near-constant-routine protocol, control of beta-blockers). They presented an initial absence of rhythmic secretions and a recovered CR 7-8 months later. This recovery was not associated with the restoration of behavioural wakefulness, but with an improvement of cognition and awareness (up to the minimally conscious state). MRI showed a lesion pattern compatible with the interruption of either the main hypothalamic-sympathetic pathway or the accessory habenular pathway. These results suggest that CR may be a prerequisite for coma recovery with a potential but still unproven favourable effect on brain function of the resorted circadian melatonin secretion and/or the functional recovery of the suprachiasmatic nucleus (SCN). Assessing circadian functions by urinary melatonin should be further explored as a biomarker of cognition reappearance and investigated to prognosticate functional recovery.
Collapse
Affiliation(s)
- Florent Gobert
- Neuro-Intensive Care Unit, Hospices Civils de Lyon, Neurological Hospital Pierre-Wertheimer, Bron, France
- ImpAct Team (Integrative, Multisensory, Perception, Action & Cognition), Lyon Neuroscience Research Centre (Université Claude Bernard Lyon 1, INSERM U1028, CNRS UMR5292), Bron, France
- CAP Team (Cognition Auditive et Psychoacoustique), Lyon Neuroscience Research Center (Université Claude Bernard Lyon 1, INSERM U1028, CNRS UMR5292), Lyon, France
| | - Jacques Luauté
- ImpAct Team (Integrative, Multisensory, Perception, Action & Cognition), Lyon Neuroscience Research Centre (Université Claude Bernard Lyon 1, INSERM U1028, CNRS UMR5292), Bron, France
- Neuro-Rehabilitation Unit, Hospices Civils de Lyon, Neurological Hospital Pierre-Wertheimer, Bron, France
| | - Véronique Raverot
- Hormone Laboratory, Hospices Civils de Lyon, Neurological Hospital Pierre-Wertheimer, Bron, France
| | - François Cotton
- Radiology Unit, Lyon-Sud Hospital, Hospices Civils de Lyon, Pierre-Benite, France
- CREATIS-LRMN (CNRS UMR 5220 - INSERM U630), Villeurbanne, France
| | - Frédéric Dailler
- Neuro-Intensive Care Unit, Hospices Civils de Lyon, Neurological Hospital Pierre-Wertheimer, Bron, France
| | - Bruno Claustrat
- Hormone Laboratory, Hospices Civils de Lyon, Neurological Hospital Pierre-Wertheimer, Bron, France
| | - Fabien Perrin
- CAP Team (Cognition Auditive et Psychoacoustique), Lyon Neuroscience Research Center (Université Claude Bernard Lyon 1, INSERM U1028, CNRS UMR5292), Lyon, France
| | - Claude Gronfier
- Lyon Neuroscience Research Center (CRNL), Integrative Physiology of the Brain Arousal Systems (Waking) team, INSERM UMRS 1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Université de Lyon, F-69000, Lyon, France
| |
Collapse
|
25
|
West AS, Sennels HP, Simonsen SA, Schønsted M, Zielinski AH, Hansen NC, Jennum PJ, Sander B, Wolfram F, Iversen HK. The Effects of Naturalistic Light on Diurnal Plasma Melatonin and Serum Cortisol Levels in Stroke Patients during Admission for Rehabilitation: A Randomized Controlled Trial. Int J Med Sci 2019; 16:125-134. [PMID: 30662336 PMCID: PMC6332482 DOI: 10.7150/ijms.28863] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 11/29/2018] [Indexed: 12/11/2022] Open
Abstract
Background: Stroke patients admitted for rehabilitation often lack sufficient daytime blue light exposure due to the absence of natural light and are often exposed to light at unnatural time points. We hypothesized that artificial light imitating daylight, termed naturalistic light, would stabilize the circadian rhythm of plasma melatonin and serum cortisol levels among long-term hospitalized stroke patients. Methods: A quasi-randomized controlled trial. Stroke patients in need of rehabilitation were randomized between May 1, 2014, and June 1, 2015 to either a rehabilitation unit equipped entirely with always on naturalistic lighting (IU), or to a rehabilitation unit with standard indoor lighting (CU). At both inclusion and discharge after a hospital stay of at least 2 weeks, plasma melatonin and serum cortisol levels were measured every 4 hours over a 24-hour period. Circadian rhythm was estimated using cosinor analysis, and variance between time-points. Results: A total of 43 were able to participate in the blood collection. Normal diurnal rhythm of melatonin was disrupted at both inclusion and discharge. In the IU group, melatonin plasma levels were increased at discharge compared to inclusion (n = 23; median diff, 2.9; IQR: -1.0 to 9.9, p = 0.030) and rhythmicity evolved (n = 23; p = 0.007). In the CU group, melatonin plasma levels were similar between discharge and inclusion and no rhythmicity evolved. Overall, both patient groups showed normal cortisol diurnal rhythms at both inclusion and discharge. Conclusions: This study is the first to demonstrate elevated melatonin plasma levels and evolved rhythmicity due to stimulation with naturalistic light.
Collapse
Affiliation(s)
- Anders S West
- Clinical Stroke Research Unit, Department of Neurology, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen
| | - Henriette P Sennels
- Department of Clinical Biochemistry, Rigshospitalet and Faculty of Health Sciences, University of Copenhagen
| | - Sofie A Simonsen
- Clinical Stroke Research Unit, Department of Neurology, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen
| | - Marie Schønsted
- Clinical Stroke Research Unit, Department of Neurology, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen
| | - Alexander H Zielinski
- Clinical Stroke Research Unit, Department of Neurology, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen
| | - Niklas C Hansen
- Clinical Stroke Research Unit, Department of Neurology, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen
| | - Poul J Jennum
- Danish Center for Sleep Medicine, Department of Neurophysiology Rigshospitalet, Faculty of Health Sciences, University of Copenhagen
| | - Birgit Sander
- Department of Ophthalmology, Rigshospitalet, Copenhagen University Hospital
| | - Frauke Wolfram
- Department of diagnostic, Radiologic clinic, Rigshospitalet and Faculty of Health Sciences, University of Copenhagen
| | - Helle K Iversen
- Clinical Stroke Research Unit, Department of Neurology, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen
| |
Collapse
|
26
|
Yoshiike T, Honma M, Yamada N, Kim Y, Kuriyama K. Effects of bright light exposure on human fear conditioning, extinction, and associated prefrontal activation. Physiol Behav 2018; 194:268-276. [DOI: 10.1016/j.physbeh.2018.06.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 05/31/2018] [Accepted: 06/11/2018] [Indexed: 12/12/2022]
|
27
|
Raikes AC, Killgore WDS. Potential for the development of light therapies in mild traumatic brain injury. Concussion 2018; 3:CNC57. [PMID: 30370058 PMCID: PMC6199671 DOI: 10.2217/cnc-2018-0006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 08/01/2018] [Indexed: 12/12/2022] Open
Abstract
Light affects almost all aspects of human physiological functioning, including circadian rhythms, sleep-wake regulation, alertness, cognition and mood. We review the existing relevant literature on the effects of various wavelengths of light on these major domains, particularly as they pertain to recovery from mild traumatic brain injuries. Evidence suggests that light, particularly in the blue wavelengths, has powerful alerting, cognitive and circadian phase shifting properties that could be useful for treatment. Other wavelengths, such as red and green may also have important effects that, if targeted appropriately, might also be useful for facilitating recovery. Despite the known effects of light, more research is needed. We recommend a personalized medicine approach to the use of light therapy as an adjunctive treatment for patients recovering from mild traumatic brain injury.
Collapse
Affiliation(s)
- Adam C Raikes
- Social, Cognitive & Affective Neuroscience Lab, Department of Psychiatry, College of Medicine, University of Arizona, Tucson, AZ, USA
- ORCID: 0000-0002-1609-6727
| | - William DS Killgore
- Social, Cognitive & Affective Neuroscience Lab, Department of Psychiatry, College of Medicine, University of Arizona, Tucson, AZ, USA
- ORCID: 0000-0002-5328-0208
| |
Collapse
|
28
|
Xu Q, Lang CP. Revisiting the alerting effect of light: A systematic review. Sleep Med Rev 2018; 41:39-49. [PMID: 29398582 DOI: 10.1016/j.smrv.2017.12.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 11/28/2017] [Accepted: 12/01/2017] [Indexed: 01/06/2023]
Abstract
Light plays an essential role in maintaining alertness levels. Like other non-image-forming responses, the alerting effect of light is influenced by its spectral wavelength, duration and intensity. Alertness levels are also dependent on circadian rhythm (process C) and homeostatic sleep pressure (process S), consistent with the classic two-process model of sleep regulation. Over the last decade, there has been increasing recognition of an additional process (referred to as the third process) in sleep regulation. This third process seems to receive sensory inputs from body systems such as digestion, and is usually synchronised with process C and process S. Previous studies on the alerting effect of light have been mostly conducted in laboratories. Although these studies are helpful in delineating the impact of process C and process S, their ability to assist in understanding the third process is limited. This systematic review investigated the factors that influence the alerting effect of light by examining randomised controlled trials and randomised or counterbalanced crossover studies. Factors that influence light's alerting effect were examined with reference to the three-process model. The post-illuminance alerting effect was examined separately due to its potential to offer flexible workplace-based light interventions to increase or maintain employees' alertness.
Collapse
Affiliation(s)
- Qunyan Xu
- School of Nursing and Midwifery, University of South Australia, Australia.
| | - Cathryne P Lang
- School of Psychology, Australian Catholic University, Australia
| |
Collapse
|
29
|
Lok R, Smolders KCHJ, Beersma DGM, de Kort YAW. Light, Alertness, and Alerting Effects of White Light: A Literature Overview. J Biol Rhythms 2018; 33:589-601. [PMID: 30191746 PMCID: PMC6236641 DOI: 10.1177/0748730418796443] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Light is known to elicit non-image-forming responses, such as effects on alertness. This has been reported especially during light exposure at night. Nighttime results might not be translatable to the day. This article aims to provide an overview of (1) neural mechanisms regulating alertness, (2) ways of measuring and quantifying alertness, and (3) the current literature specifically regarding effects of different intensities of white light on various measures and correlates of alertness during the daytime. In general, the present literature provides inconclusive results on alerting effects of the intensity of white light during daytime, particularly for objective measures and correlates of alertness. However, the various research paradigms employed in earlier studies differed substantially, and most studies tested only a limited set of lighting conditions. Therefore, the alerting potential of exposure to more intense white light should be investigated in a systematic, dose-dependent manner with multiple correlates of alertness and within one experimental paradigm over the course of day.
Collapse
Affiliation(s)
- Renske Lok
- Chronobiology Unit, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands
| | - Karin C H J Smolders
- Human-Technology Interaction, School of Innovation Sciences, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Domien G M Beersma
- Chronobiology Unit, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands
| | - Yvonne A W de Kort
- Human-Technology Interaction, School of Innovation Sciences, Eindhoven University of Technology, Eindhoven, the Netherlands
| |
Collapse
|
30
|
Lok R, Woelders T, Gordijn MCM, Hut RA, Beersma DGM. White Light During Daytime Does Not Improve Alertness in Well-rested Individuals. J Biol Rhythms 2018; 33:637-648. [PMID: 30191761 PMCID: PMC6236585 DOI: 10.1177/0748730418796036] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Broad-spectrum light applied during the night has been shown to affect alertness in a
dose-dependent manner. The goal of this experiment was to investigate whether a similar
relationship could be established for light exposure during daytime. Fifty healthy
participants were subjected to a paradigm (0730-1730 h) in which they were intermittently
exposed to 1.5 h of dim light (<10 lux) and 1 h of experimental light (24-2000 lux).
The same intensity of experimental light was used throughout the day, resulting in groups
of 10 subjects per intensity. Alertness was assessed with subjective and multiple
objective measures. A significant effect of time of day was found in all parameters of
alertness (p < 0.05). Significant dose-response relationships between
light intensity and alertness during the day could be determined in a few of the
parameters of alertness at some times of the day; however, none survived correction for
multiple testing. We conclude that artificial light applied during daytime at intensities
up to 2000 lux does not elicit significant improvements in alertness in non-sleep-deprived
subjects.
Collapse
Affiliation(s)
- Renske Lok
- University of Groningen, Chronobiology Unit, Groningen Institute for Evolutionary Life Sciences, Groningen, the Netherlands
| | - Tom Woelders
- University of Groningen, Chronobiology Unit, Groningen Institute for Evolutionary Life Sciences, Groningen, the Netherlands
| | - Marijke C M Gordijn
- University of Groningen, Chronobiology Unit, Groningen Institute for Evolutionary Life Sciences, Groningen, the Netherlands.,Chrono@Work, Groningen, the Netherlands
| | - Roelof A Hut
- University of Groningen, Chronobiology Unit, Groningen Institute for Evolutionary Life Sciences, Groningen, the Netherlands
| | - Domien G M Beersma
- University of Groningen, Chronobiology Unit, Groningen Institute for Evolutionary Life Sciences, Groningen, the Netherlands
| |
Collapse
|
31
|
Yang M, Ma N, Zhu Y, Su YC, Chen Q, Hsiao FC, Ji Y, Yang CM, Zhou G. The Acute Effects of Intermittent Light Exposure in the Evening on Alertness and Subsequent Sleep Architecture. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:524. [PMID: 29543731 PMCID: PMC5877069 DOI: 10.3390/ijerph15030524] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 02/28/2018] [Accepted: 03/13/2018] [Indexed: 01/12/2023]
Abstract
Exposure to bright light is typically intermittent in our daily life. However, the acute effects of intermittent light on alertness and sleep have seldom been explored. To investigate this issue, we employed within-subject design and compared the effects of three light conditions: intermittent bright light (30-min pulse of blue-enriched bright light (~1000 lux, ~6000 K) alternating with 30-min dim normal light (~5 lux, ~3600 K) three times); continuous bright light; and continuous dim light on subjective and objective alertness and subsequent sleep structure. Each light exposure was conducted during the three hours before bedtime. Fifteen healthy volunteers (20 ± 3.4 years; seven males) were scheduled to stay in the sleep laboratory for four separated nights (one for adaptation and the others for the light exposures) with a period of at least one week between nights. The results showed that when compared with dim light, both intermittent light and continuous bright light significantly increased subjective alertness and decreased sleep efficiency (SE) and total sleep time (TST). Intermittent light significantly increased objective alertness than dim light did during the second half of the light-exposure period. Our results suggested that intermittent light was as effective as continuous bright light in their acute effects in enhancing subjective and objective alertness and in negatively impacting subsequent sleep.
Collapse
Affiliation(s)
- Minqi Yang
- School of Psychology, South China Normal University, Guangzhou 510631, China.
- Department of Psychology, National Chengchi University, Taipei 11605, Taiwan.
| | - Ning Ma
- School of Psychology, South China Normal University, Guangzhou 510631, China.
- Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China.
| | - Yingying Zhu
- School of Psychology, South China Normal University, Guangzhou 510631, China.
| | - Ying-Chu Su
- Department of Psychology, National Chengchi University, Taipei 11605, Taiwan.
| | - Qingwei Chen
- School of Psychology, South China Normal University, Guangzhou 510631, China.
| | - Fan-Chi Hsiao
- Department of Psychology, National Chengchi University, Taipei 11605, Taiwan.
| | - Yanran Ji
- School of Psychology, South China Normal University, Guangzhou 510631, China.
| | - Chien-Ming Yang
- Department of Psychology, National Chengchi University, Taipei 11605, Taiwan.
- The Research Center for Mind, Brain and Learning, National Chengchi University, Taipei 11605, Taiwan.
| | - Guofu Zhou
- School of Psychology, South China Normal University, Guangzhou 510631, China.
- National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, China.
- Shenzhen Guohua Optoelectronics Tech. Co., Ltd., Shenzhen 518110, China.
| |
Collapse
|
32
|
Fisk AS, Tam SKE, Brown LA, Vyazovskiy VV, Bannerman DM, Peirson SN. Light and Cognition: Roles for Circadian Rhythms, Sleep, and Arousal. Front Neurol 2018; 9:56. [PMID: 29479335 PMCID: PMC5811463 DOI: 10.3389/fneur.2018.00056] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 01/22/2018] [Indexed: 01/12/2023] Open
Abstract
Light exerts a wide range of effects on mammalian physiology and behavior. As well as synchronizing circadian rhythms to the external environment, light has been shown to modulate autonomic and neuroendocrine responses as well as regulating sleep and influencing cognitive processes such as attention, arousal, and performance. The last two decades have seen major advances in our understanding of the retinal photoreceptors that mediate these non-image forming responses to light, as well as the neural pathways and molecular mechanisms by which circadian rhythms are generated and entrained to the external light/dark (LD) cycle. By contrast, our understanding of the mechanisms by which lighting influences cognitive processes is more equivocal. The effects of light on different cognitive processes are complex. As well as the direct effects of light on alertness, indirect effects may also occur due to disrupted circadian entrainment. Despite the widespread use of disrupted LD cycles to study the role circadian rhythms on cognition, the different experimental protocols used have subtly different effects on circadian function which are not always comparable. Moreover, these protocols will also disrupt sleep and alter physiological arousal, both of which are known to modulate cognition. Studies have used different assays that are dependent on different cognitive and sensory processes, which may also contribute to their variable findings. Here, we propose that studies addressing the effects of different lighting conditions on cognitive processes must also account for their effects on circadian rhythms, sleep, and arousal if we are to fully understand the physiological basis of these responses.
Collapse
Affiliation(s)
- Angus S Fisk
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Shu K E Tam
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | - Laurence A Brown
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Vladyslav V Vyazovskiy
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - David M Bannerman
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | - Stuart N Peirson
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
33
|
Souman JL, Tinga AM, te Pas SF, van Ee R, Vlaskamp BN. Acute alerting effects of light: A systematic literature review. Behav Brain Res 2018; 337:228-239. [DOI: 10.1016/j.bbr.2017.09.016] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 09/01/2017] [Accepted: 09/07/2017] [Indexed: 10/18/2022]
|
34
|
Motamedzadeh M, Golmohammadi R, Kazemi R, Heidarimoghadam R. The effect of blue-enriched white light on cognitive performances and sleepiness of night-shift workers: A field study. Physiol Behav 2017; 177:208-214. [PMID: 28495465 DOI: 10.1016/j.physbeh.2017.05.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 04/09/2017] [Accepted: 05/05/2017] [Indexed: 11/28/2022]
Abstract
INTRODUCTION Night-shift works are basically accompanied by reduced cognitive performance, sleepiness, and higher possibility for human error and related incidents. It is therefore crucial to improve individuals' performance and alertness in sensitive places like industries' control room with the ultimate goal of increasing efficiency and reducing the number of possible incidents. Previous research has indicated that blue light is a critical cue for entraining circadian rhythm. As a result, the present study was an attempt to investigate whether blue-enriched white light illumination was a practical strategy to decrease sleepiness and improve cognitive performance during night shifts. MARTIAL AND METHODS The study, which adopted a before-after interventional design, was conducted among 30 control room staff members of petrochemical industry. After baseline assessments under existing lighting conditions, every participant was exposed to two new lighting conditions (namely, 17,000K and 6500K blue-enriched white light), each lasting for a week. Assessments were conducted again at the end of these treatments. In order to measure the subjective sleepiness, Karolinska Sleepiness Scale (KSS) was utilized. Subjects also performed the Conners' Continuous Performance Test II (CPT-II) and 1-back test in order to gauge their cognitive performance, and melatonin assessment was carried out using salivary and Eliza technique. The data was analyzed using two-way repeated measure ANOVA. RESULTS The results indicated that, compared to normal lighting conditions, participants' sleepiness and melatonin rhythm significantly declined when they were exposed to blue-enriched white light. Furthermore, the experimental condition had a significant effect on the reduction of working memory errors. It also decreased omission errors and the reaction time during the sustained attention task. CONCLUSIONS Thus, using blue-enriched white light may be a proper ergonomic strategy for improving performance and alertness, especially during night, in sensitive environments like control rooms.
Collapse
Affiliation(s)
- Majid Motamedzadeh
- Department of Ergonomics, School of Health, Hamedan University of Medical Sciences, Hamadan, Iran.
| | - Rostam Golmohammadi
- Department of Occupational Hygiene, School of Health, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Reza Kazemi
- Department of Ergonomics, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Rashid Heidarimoghadam
- Department of Ergonomics, School of Health, Hamedan University of Medical Sciences, Iran.
| |
Collapse
|
35
|
Hung SM, Milea D, Rukmini AV, Najjar RP, Tan JH, Viénot F, Dubail M, Tow SLC, Aung T, Gooley JJ, Hsieh PJ. Cerebral neural correlates of differential melanopic photic stimulation in humans. Neuroimage 2017; 146:763-769. [DOI: 10.1016/j.neuroimage.2016.09.061] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 09/21/2016] [Accepted: 09/25/2016] [Indexed: 12/31/2022] Open
|
36
|
Tam SKE, Hasan S, Hughes S, Hankins MW, Foster RG, Bannerman DM, Peirson SN. Modulation of recognition memory performance by light requires both melanopsin and classical photoreceptors. Proc Biol Sci 2016; 283:20162275. [PMID: 28003454 PMCID: PMC5204172 DOI: 10.1098/rspb.2016.2275] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 11/14/2016] [Indexed: 01/26/2023] Open
Abstract
Acute light exposure exerts various effects on physiology and behaviour. Although the effects of light on brain network activity in humans are well demonstrated, the effects of light on cognitive performance are inconclusive, with the size, as well as direction, of the effect depending on the nature of the task. Similarly, in nocturnal rodents, bright light can either facilitate or disrupt performance depending on the type of task employed. Crucially, it is unclear whether the effects of light on behavioural performance are mediated via the classical image-forming rods and cones or the melanopsin-expressing photosensitive retinal ganglion cells. Here, we investigate the modulatory effects of light on memory performance in mice using the spontaneous object recognition task. Importantly, we examine which photoreceptors are required to mediate the effects of light on memory performance. By using a cross-over design, we show that object recognition memory is disrupted when the test phase is conducted under a bright light (350 lux), regardless of the light level in the sample phase (10 or 350 lux), demonstrating that exposure to a bright light at the time of test, rather than at the time of encoding, impairs performance. Strikingly, the modulatory effect of light on memory performance is completely abolished in both melanopsin-deficient and rodless-coneless mice. Our findings provide direct evidence that melanopsin-driven and rod/cone-driven photoresponses are integrated in order to mediate the effect of light on memory performance.
Collapse
Affiliation(s)
- Shu K E Tam
- Sleep and Circadian Neuroscience Institute (Nuffield Department of Clinical Neurosciences), Oxford Molecular Pathology Institute, Sir William Dunn School of Pathology, South Parks Road, Oxford OX1 3RE, UK
- Department of Experimental Psychology, Oxford University, Tinbergen Building, 9 South Parks Road, Oxford OX1 3UD, UK
| | - Sibah Hasan
- Sleep and Circadian Neuroscience Institute (Nuffield Department of Clinical Neurosciences), Oxford Molecular Pathology Institute, Sir William Dunn School of Pathology, South Parks Road, Oxford OX1 3RE, UK
| | - Steven Hughes
- Sleep and Circadian Neuroscience Institute (Nuffield Department of Clinical Neurosciences), Oxford Molecular Pathology Institute, Sir William Dunn School of Pathology, South Parks Road, Oxford OX1 3RE, UK
| | - Mark W Hankins
- Sleep and Circadian Neuroscience Institute (Nuffield Department of Clinical Neurosciences), Oxford Molecular Pathology Institute, Sir William Dunn School of Pathology, South Parks Road, Oxford OX1 3RE, UK
| | - Russell G Foster
- Sleep and Circadian Neuroscience Institute (Nuffield Department of Clinical Neurosciences), Oxford Molecular Pathology Institute, Sir William Dunn School of Pathology, South Parks Road, Oxford OX1 3RE, UK
| | - David M Bannerman
- Department of Experimental Psychology, Oxford University, Tinbergen Building, 9 South Parks Road, Oxford OX1 3UD, UK
| | - Stuart N Peirson
- Sleep and Circadian Neuroscience Institute (Nuffield Department of Clinical Neurosciences), Oxford Molecular Pathology Institute, Sir William Dunn School of Pathology, South Parks Road, Oxford OX1 3RE, UK
| |
Collapse
|
37
|
Kang SG, Yoon HK, Cho CH, Kwon S, Kang J, Park YM, Lee E, Kim L, Lee HJ. Decrease in fMRI brain activation during working memory performed after sleeping under 10 lux light. Sci Rep 2016; 6:36731. [PMID: 27827445 PMCID: PMC5101482 DOI: 10.1038/srep36731] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 10/20/2016] [Indexed: 11/09/2022] Open
Abstract
The aim of this study was to investigate the effect of exposure to dim light at night (dLAN) when sleeping on functional brain activation during a working-memory tasks. We conducted the brain functional magnetic resonance imaging (fMRI) analysis on 20 healthy male subjects. All participants slept in a polysomnography laboratory without light exposure on the first and second nights and under a dim-light condition of either 5 or 10 lux on the third night. The fMRI scanning was conducted during n-back tasks after second and third nights. Statistical parametric maps revealed less activation in the right inferior frontal gyrus (IFG) after exposure to 10-lux light. The brain activity in the right and left IFG areas decreased more during the 2-back task than during the 1- or 0-back task in the 10-lux group. The exposure to 5-lux light had no significant effect on brain activities. The exposure to dLAN might influence the brain function which is related to the cognition.
Collapse
Affiliation(s)
- Seung-Gul Kang
- Department of Psychiatry, Gil Medical Center, Gachon University, School of Medicine, Incheon, Korea
| | - Ho-Kyoung Yoon
- Department of Psychiatry, Korea University College of Medicine, Seoul, Korea
| | - Chul-Hyun Cho
- Department of Psychiatry, Korea University College of Medicine, Seoul, Korea
| | - Soonwook Kwon
- Department of Anatomy, Korea University College of Medicine, Seoul, Korea
| | - June Kang
- Department of Biomedical Science, Korea University College of Medicine, Seoul, Korea
| | - Young-Min Park
- Department of Psychiatry, Ilsan Paik Hospital, Inje University College of Medicine, Goyang, Korea
| | - Eunil Lee
- Department of Preventive Medicine, Korea University College of Medicine, Seoul, Korea
| | - Leen Kim
- Department of Psychiatry, Korea University College of Medicine, Seoul, Korea
| | - Heon-Jeong Lee
- Department of Psychiatry, Korea University College of Medicine, Seoul, Korea
| |
Collapse
|
38
|
Non-image forming effects of illuminance level: Exploring parallel effects on physiological arousal and task performance. Physiol Behav 2016; 164:129-39. [DOI: 10.1016/j.physbeh.2016.05.035] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 05/15/2016] [Accepted: 05/19/2016] [Indexed: 11/23/2022]
|
39
|
Ocular exposure to blue-enriched light has an asymmetric influence on neural activity and spatial attention. Sci Rep 2016; 6:27754. [PMID: 27291291 PMCID: PMC4904199 DOI: 10.1038/srep27754] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 05/23/2016] [Indexed: 11/13/2022] Open
Abstract
Brain networks subserving alertness in humans interact with those for spatial attention orienting. We employed blue-enriched light to directly manipulate alertness in healthy volunteers. We show for the first time that prior exposure to higher, relative to lower, intensities of blue-enriched light speeds response times to left, but not right, hemifield visual stimuli, via an asymmetric effect on right-hemisphere parieto-occipital α-power. Our data give rise to the tantalising possibility of light-based interventions for right hemisphere disorders of spatial attention.
Collapse
|
40
|
Daneault V, Dumont M, Massé É, Vandewalle G, Carrier J. Light-sensitive brain pathways and aging. J Physiol Anthropol 2016; 35:9. [PMID: 26980095 PMCID: PMC4791759 DOI: 10.1186/s40101-016-0091-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 03/01/2016] [Indexed: 01/08/2023] Open
Abstract
Notwithstanding its effects on the classical visual system allowing image formation, light acts upon several non-image-forming (NIF) functions including body temperature, hormonal secretions, sleep-wake cycle, alertness, and cognitive performance. Studies have shown that NIF functions are maximally sensitive to blue wavelengths (460–480 nm), in comparison to longer light wavelengths. Higher blue light sensitivity has been reported for melatonin suppression, pupillary constriction, vigilance, and performance improvement but also for modulation of cognitive brain functions. Studies investigating acute stimulating effects of light on brain activity during the execution of cognitive tasks have suggested that brain activations progress from subcortical regions involved in alertness, such as the thalamus, the hypothalamus, and the brainstem, before reaching cortical regions associated with the ongoing task. In the course of aging, lower blue light sensitivity of some NIF functions has been reported. Here, we first describe neural pathways underlying effects of light on NIF functions and we discuss eye and cerebral mechanisms associated with aging which may affect NIF light sensitivity. Thereafter, we report results of investigations on pupillary constriction and cognitive brain sensitivity to light in the course of aging. Whereas the impact of light on cognitive brain responses appears to decrease substantially, pupillary constriction seems to remain more intact over the lifespan. Altogether, these results demonstrate that aging research should take into account the diversity of the pathways underlying the effects of light on specific NIF functions which may explain their differences in light sensitivity.
Collapse
Affiliation(s)
- V Daneault
- Functional Neuroimaging Unit, University of Montreal Geriatric Institute, Montreal, QC, Canada. .,Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Cœur de Montréal, Montreal, QC, Canada. .,Department of Psychology, University of Montreal, Montreal, QC, Canada.
| | - M Dumont
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Cœur de Montréal, Montreal, QC, Canada
| | - É Massé
- Functional Neuroimaging Unit, University of Montreal Geriatric Institute, Montreal, QC, Canada.,Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Cœur de Montréal, Montreal, QC, Canada
| | - G Vandewalle
- Department of Psychology, University of Montreal, Montreal, QC, Canada.,Cyclotron Research Centre, University of Liège, Liège, Belgium
| | - J Carrier
- Functional Neuroimaging Unit, University of Montreal Geriatric Institute, Montreal, QC, Canada.,Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Cœur de Montréal, Montreal, QC, Canada.,Department of Psychology, University of Montreal, Montreal, QC, Canada
| |
Collapse
|
41
|
|
42
|
Human-Friendly Light-Emitting Diode Source Stimulates Broiler Growth. PLoS One 2015; 10:e0135330. [PMID: 26270988 PMCID: PMC4536231 DOI: 10.1371/journal.pone.0135330] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 07/21/2015] [Indexed: 11/19/2022] Open
Abstract
Previous study and our laboratory have reported that short-wavelength (blue and green) light and combination stimulate broiler growth. However, short-wavelength stimuli could have negative effects on poultry husbandry workers. The present study was conducted to evaluate the effects of human-friendly yellow LED light, which is acceptable to humans and close to green light, on broiler growth. We also aimed to investigate the potential quantitative relationship between the wavelengths of light used for artificial illumination and growth parameters in broilers. After hatching, 360 female chicks ("Meihuang" were evenly divided into six lighting treatment groups: white LED strips (400-700 nm, WL); red LED strips (620 nm, RL); yellow LED strips (580 nm, YL); green LED strips (514 nm, GL); blue LED strips (455 nm, BL); and fluorescent strips (400-700 nm, FL). From 30 to 72 days of age, broilers reared under YL and GL were heavier than broilers treated with FL (P < 0.05). Broilers reared under YL obtained the similar growth parameters with the broilers reared under GL and BL (P > 0.05). Moreover, YL significantly improved feeding efficiency when compared with GL and BL at 45 and 60 days of age (P < 0.05). In addition, we found an age-dependent effect of light spectra on broiler growth and a quantitative relationship between LED light spectra (455 to 620 nm) and the live body weights of broilers. The wavelength of light (455 to 620 nm) was found to be negatively related (R2 = 0.876) to live body weight at an early stage of development, whereas the wavelength of light (455 to 620 nm) was found to be positively correlated with live body weight (R2 = 0.925) in older chickens. Our results demonstrated that human-friendly yellow LED light (YL), which is friendly to the human, can be applied to the broilers production.
Collapse
|
43
|
Ide T, Toda I, Miki E, Tsubota K. Effect of Blue Light-Reducing Eye Glasses on Critical Flicker Frequency. Asia Pac J Ophthalmol (Phila) 2015; 4:80-5. [PMID: 26065349 DOI: 10.1097/apo.0000000000000069] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
PURPOSE This study aims to evaluate the effect of blocking short-wavelength light on critical flicker frequency (CFF). DESIGN This study is a prospective clinical study. METHODS Thirty-three participants (17 men and 16 women; age range, 28-39 years) were divided into 3 groups. Each group wore 1 of 3 types of lenses while performing an intensive computer task for 2 hours. To evaluate the effect of blocking short-wavelength light before and after the task, we measured the CFF and evaluated subjective questionnaires. We used the analysis of variance test to examine whether the type of lenses tested affected any of the visual fatigue-related parameters. RESULTS The type of lens worn significantly affected the CFF; however, answers to the subjective questionnaires did not differ significantly between the groups. Two of the 13 question items showed a statistical difference between lens transparency and increase in the CFF (lens 3 > lens 2 > lens 1). CONCLUSIONS The higher the blocking effect of the lens, the lower the reduction in the CFF, suggesting that blocking short-wavelength light can reduce eye fatigue.
Collapse
Affiliation(s)
- Takeshi Ide
- From the *Minamiaoyama Eye Clinic; and †Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | | | | | | |
Collapse
|
44
|
Chang AM, Aeschbach D, Duffy JF, Czeisler CA. Evening use of light-emitting eReaders negatively affects sleep, circadian timing, and next-morning alertness. Proc Natl Acad Sci U S A 2015; 112:1232-7. [PMID: 25535358 PMCID: PMC4313820 DOI: 10.1073/pnas.1418490112] [Citation(s) in RCA: 696] [Impact Index Per Article: 69.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
In the past 50 y, there has been a decline in average sleep duration and quality, with adverse consequences on general health. A representative survey of 1,508 American adults recently revealed that 90% of Americans used some type of electronics at least a few nights per week within 1 h before bedtime. Mounting evidence from countries around the world shows the negative impact of such technology use on sleep. This negative impact on sleep may be due to the short-wavelength-enriched light emitted by these electronic devices, given that artificial-light exposure has been shown experimentally to produce alerting effects, suppress melatonin, and phase-shift the biological clock. A few reports have shown that these devices suppress melatonin levels, but little is known about the effects on circadian phase or the following sleep episode, exposing a substantial gap in our knowledge of how this increasingly popular technology affects sleep. Here we compare the biological effects of reading an electronic book on a light-emitting device (LE-eBook) with reading a printed book in the hours before bedtime. Participants reading an LE-eBook took longer to fall asleep and had reduced evening sleepiness, reduced melatonin secretion, later timing of their circadian clock, and reduced next-morning alertness than when reading a printed book. These results demonstrate that evening exposure to an LE-eBook phase-delays the circadian clock, acutely suppresses melatonin, and has important implications for understanding the impact of such technologies on sleep, performance, health, and safety.
Collapse
Affiliation(s)
- Anne-Marie Chang
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, MA 02115; Division of Sleep Medicine, Harvard Medical School, Boston, MA 02115; and
| | - Daniel Aeschbach
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, MA 02115; Division of Sleep Medicine, Harvard Medical School, Boston, MA 02115; and Institute of Aerospace Medicine, German Aerospace Center, 51147 Cologne, Germany
| | - Jeanne F Duffy
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, MA 02115; Division of Sleep Medicine, Harvard Medical School, Boston, MA 02115; and
| | - Charles A Czeisler
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, MA 02115; Division of Sleep Medicine, Harvard Medical School, Boston, MA 02115; and
| |
Collapse
|
45
|
Leichtfried V, Mair-Raggautz M, Schaeffer V, Hammerer-Lercher A, Mair G, Bartenbach C, Canazei M, Schobersberger W. Intense illumination in the morning hours improved mood and alertness but not mental performance. APPLIED ERGONOMICS 2015; 46 Pt A:54-59. [PMID: 25106786 DOI: 10.1016/j.apergo.2014.07.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 05/13/2014] [Accepted: 07/01/2014] [Indexed: 06/03/2023]
Abstract
Cognitive performance and alertness are two determinants for work efficiency, varying throughout the day and depending on bright light. We conducted a prospective crossover study evaluating the impacts of exposure to an intense, early morning illumination on sustained attention, alertness, mood, and serum melatonin levels in 33 healthy individuals. Compared with a dim illumination, the intense illumination negatively impacted performance requiring sustained attention; however, it positively impacted subjective alertness and mood and had no impact on serum melatonin levels. These results suggest that brief exposure to bright light in the morning hours can improve subjective measures of mood and alertness, but can also have detrimental effects on mental performance as a result of visual distraction. Therefore, it is important that adequate lighting should correspond to both non-visual and visual demands.
Collapse
Affiliation(s)
- Veronika Leichtfried
- Institute for Sports Medicine, Alpine Medicine & Health Tourism, Department for Medical Sciences and Health Systems Management, UMIT Hall & TILAK/LKI Innsbruck, Eduard-Wallnöfer-Zentrum 1, A-6060 Hall in Tirol, Austria.
| | - Maria Mair-Raggautz
- Institute for Sports Medicine, Alpine Medicine & Health Tourism, Department for Medical Sciences and Health Systems Management, UMIT Hall & TILAK/LKI Innsbruck, Eduard-Wallnöfer-Zentrum 1, A-6060 Hall in Tirol, Austria
| | - Viktoria Schaeffer
- Institute for Sports Medicine, Alpine Medicine & Health Tourism, Department for Medical Sciences and Health Systems Management, UMIT Hall & TILAK/LKI Innsbruck, Eduard-Wallnöfer-Zentrum 1, A-6060 Hall in Tirol, Austria
| | - Angelika Hammerer-Lercher
- Central Institute for Medical and Chemical Laboratory Diagnostics, University Hospital Innsbruck, Tilak/LKI Innsbruck, Anichstraße 32, A-6020 Innsbruck, Austria
| | - Gerald Mair
- Institute for Sports Medicine, Alpine Medicine & Health Tourism, Department for Medical Sciences and Health Systems Management, UMIT Hall & TILAK/LKI Innsbruck, Eduard-Wallnöfer-Zentrum 1, A-6060 Hall in Tirol, Austria
| | | | - Markus Canazei
- Bartenbach LichtLabor, Rinner Straße 14, A-6071 Aldrans, Austria
| | - Wolfgang Schobersberger
- Institute for Sports Medicine, Alpine Medicine & Health Tourism, Department for Medical Sciences and Health Systems Management, UMIT Hall & TILAK/LKI Innsbruck, Eduard-Wallnöfer-Zentrum 1, A-6060 Hall in Tirol, Austria
| |
Collapse
|
46
|
Gabel V, Maire M, Reichert CF, Chellappa SL, Schmidt C, Hommes V, Cajochen C, Viola AU. Dawn simulation light impacts on different cognitive domains under sleep restriction. Behav Brain Res 2014; 281:258-66. [PMID: 25549858 DOI: 10.1016/j.bbr.2014.12.043] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 12/15/2014] [Accepted: 12/19/2014] [Indexed: 11/16/2022]
Abstract
Chronic sleep restriction (SR) has deleterious effects on cognitive performance that can be counteracted by light exposure. However, it is still unknown if naturalistic light settings (dawn simulating light) can enhance daytime cognitive performance in a sustainable matter. Seventeen participants were enrolled in a 24-h balanced cross-over study, subsequent to SR (6-h of sleep). Two different light settings were administered each morning: a) dawn simulating light (DsL; polychromatic light gradually increasing from 0 to 250 lx during 30 min before wake-up time, with light around 250 lx for 20 min after wake-up time) and b) control dim light (DL; <8 lx). Cognitive tests were performed every 2 h during scheduled wakefulness and questionnaires were completed hourly to assess subjective mood. The analyses yielded a main effect of "light condition" for the motor tracking task, sustained attention to response task and a working memory task (visual 1 and 3-back task), as well as for the Simple Reaction Time Task, such that participants showed better task performance throughout the day after morning DsL exposure compared to DL. Furthermore, low performers benefited more from the light effects compared to high performers. Conversely, no significant influences from the DsL were found for the Psychomotor Vigilance Task and a contrary effect was observed for the digit symbol substitution test. No light effects were observed for subjective perception of sleepiness, mental effort, concentration and motivation. Our data indicate that short exposure to artificial morning light may significantly enhance cognitive performance in a domain-specific manner under conditions of mild SR.
Collapse
Affiliation(s)
- Virginie Gabel
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, 4012 Basel, Switzerland.
| | - Micheline Maire
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, 4012 Basel, Switzerland
| | - Carolin F Reichert
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, 4012 Basel, Switzerland
| | - Sarah L Chellappa
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, 4012 Basel, Switzerland; Cyclotron Research Center, University of Liège, Liège, Belgium
| | - Christina Schmidt
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, 4012 Basel, Switzerland
| | - Vanja Hommes
- IT VitaLight I&D PC Drachten, Philips Consumer Lifestyle, the Netherlands
| | - Christian Cajochen
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, 4012 Basel, Switzerland
| | - Antoine U Viola
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, 4012 Basel, Switzerland
| |
Collapse
|
47
|
Abstract
Light regulates multiple non-visual circadian, neuroendocrine, and neurobehavioral functions, and conveys a strong stimulating signal for alert-ness and cognition. This review summarizes a series of neuroimaging studies investigating the brain mechanisms underlying the latter stimulating impact of light. Results of these studies are compatible with a scenario where light would first hit subcortical areas involved in arousal regulation before affecting cortical areas involved in the ongoing non-visual cognitive process, and then cognitive performance. Recent data demonstrated that the non-visual impact of light is most likely triggered via outputs from intrinsically photosensitive retinal ganglion cells (ipRGC) expressing the photopigment melanopsin, which are maximally sensitive to blue light. In addition, the stimulating impact of light is intimately related to wakefulness regulation as it changes with circadian phase and sleep pressure. Finally, markers of inter-individual difference have also been described: age, PERIOD3 genotype, and psychiatric status. This review emphasizes the importance of light for human brain cognitive function and for cognition in general.
Collapse
Affiliation(s)
- Gilles Vandewalle
- Université de Liège, centre de recherches du cyclotron, -bâtiment B30, 4000 Liège, Belgique
| |
Collapse
|
48
|
Effects of blue light and caffeine on mood. Psychopharmacology (Berl) 2014; 231:3677-83. [PMID: 24590053 DOI: 10.1007/s00213-014-3503-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 02/10/2014] [Indexed: 10/25/2022]
Abstract
RATIONALE Both short wavelength (blue) light and caffeine have been studied for their mood enhancing effects on humans. The ability of blue light to increase alertness, mood and cognitive function via non-image forming neuropathways has been suggested as a non-pharmacological countermeasure for depression across a range of occupational settings. OBJECTIVES This experimental study compared blue light and caffeine and aimed to test the effects of blue light/placebo (BLU), white light/240-mg caffeine (CAF), blue light/240-mg caffeine (BCAF) and white light/placebo (PLA), on mood. METHODS A randomised, controlled, crossover design study was used, in a convenience population of 20 healthy volunteers. The participants rated their mood on the Swedish Core Affect Scales (SCAS) prior to and after each experimental condition to assess the dimensions of valence and activation. RESULTS There was a significant main effect of light (p = 0.009), and the combination of blue light and caffeine had clear positive effects on core effects (ES, ranging from 0.41 to 1.20) and global mood (ES, 0.61 ± 0.53). CONCLUSIONS The benefits of the combination of blue light and caffeine should be further investigated across a range of applications due to the observed effects on the dimensions of arousal, valence and pleasant activation.
Collapse
|
49
|
Gaggioni G, Maquet P, Schmidt C, Dijk DJ, Vandewalle G. Neuroimaging, cognition, light and circadian rhythms. Front Syst Neurosci 2014; 8:126. [PMID: 25071478 PMCID: PMC4086398 DOI: 10.3389/fnsys.2014.00126] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 06/18/2014] [Indexed: 01/27/2023] Open
Abstract
In humans, sleep and wakefulness and the associated cognitive processes are regulated through interactions between sleep homeostasis and the circadian system. Chronic disruption of sleep and circadian rhythmicity is common in our society and there is a need for a better understanding of the brain mechanisms regulating sleep, wakefulness and associated cognitive processes. This review summarizes recent investigations which provide first neural correlates of the combined influence of sleep homeostasis and circadian rhythmicity on cognitive brain activity. Markers of interindividual variations in sleep-wake regulation, such as chronotype and polymorphisms in sleep and clock genes, are associated with changes in cognitive brain responses in subcortical and cortical areas in response to manipulations of the sleep-wake cycle. This review also includes recent data showing that cognitive brain activity is regulated by light, which is a powerful modulator of cognition and alertness and also directly impacts sleep and circadian rhythmicity. The effect of light varied with age, psychiatric status, PERIOD3 genotype and changes in sleep homeostasis and circadian phase. These data provide new insights into the contribution of demographic characteristics, the sleep-wake cycle, circadian rhythmicity and light to brain functioning.
Collapse
Affiliation(s)
- Giulia Gaggioni
- Cyclotron Research Centre, University of LiègeLiège, Belgium
| | - Pierre Maquet
- Cyclotron Research Centre, University of LiègeLiège, Belgium
| | - Christina Schmidt
- Cyclotron Research Centre, University of LiègeLiège, Belgium
- Centre for Chronobiology, Psychiatric Hospital of the University of BaselBasel, Switzerland
| | - Derk-Jan Dijk
- Surrey Sleep Research Centre, University of SurreyGuildford, UK
| | | |
Collapse
|
50
|
Abstract
Light has profoundly influenced the evolution of life on earth. As widely appreciated, light enables us to generate images of our environment. However, light - through intrinsically photosensitive retinal ganglion cells (ipRGCs) - also influences behaviours that are essential for our health and quality of life but are independent of image formation. These include the synchronization of the circadian clock to the solar day, tracking of seasonal changes and the regulation of sleep. Irregular light environments lead to problems in circadian rhythms and sleep, which eventually cause mood and learning deficits. Recently, it was found that irregular light can also directly affect mood and learning without producing major disruptions in circadian rhythms and sleep. In this Review, we discuss the indirect and direct influence of light on mood and learning, and provide a model for how light, the circadian clock and sleep interact to influence mood and cognitive functions.
Collapse
|