1
|
Yip C, Wyler SC, Liang K, Yamazaki S, Cobb T, Safdar M, Metai A, Merchant W, Wessells R, Rothenfluh A, Lee S, Elmquist J, You YJ. Neuronal E93 is required for adaptation to adult metabolism and behavior. Mol Metab 2024; 84:101939. [PMID: 38621602 PMCID: PMC11053319 DOI: 10.1016/j.molmet.2024.101939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/07/2024] [Accepted: 04/09/2024] [Indexed: 04/17/2024] Open
Abstract
OBJECTIVE Metamorphosis is a transition from growth to reproduction, through which an animal adopts adult behavior and metabolism. Yet the neural mechanisms underlying the switch are unclear. Here we report that neuronal E93, a transcription factor essential for metamorphosis, regulates the adult metabolism, physiology, and behavior in Drosophila melanogaster. METHODS To find new neuronal regulators of metabolism, we performed a targeted RNAi-based screen of 70 Drosophila orthologs of the mammalian genes enriched in ventromedial hypothalamus (VMH). Once E93 was identified from the screen, we characterized changes in physiology and behavior when neuronal expression of E93 is knocked down. To identify the neurons where E93 acts, we performed an additional screen targeting subsets of neurons or endocrine cells. RESULTS E93 is required to control appetite, metabolism, exercise endurance, and circadian rhythms. The diverse phenotypes caused by pan-neuronal knockdown of E93, including obesity, exercise intolerance and circadian disruption, can all be phenocopied by knockdown of E93 specifically in either GABA or MIP neurons, suggesting these neurons are key sites of E93 action. Knockdown of the Ecdysone Receptor specifically in MIP neurons partially phenocopies the MIP neuron-specific knockdown of E93, suggesting the steroid signal coordinates adult metabolism via E93 and a neuropeptidergic signal. Finally, E93 expression in GABA and MIP neurons also serves as a key switch for the adaptation to adult behavior, as animals with reduced expression of E93 in the two subsets of neurons exhibit reduced reproductive activity. CONCLUSIONS Our study reveals that E93 is a new monogenic factor essential for metabolic, physiological, and behavioral adaptation from larval behavior to adult behavior.
Collapse
Affiliation(s)
- Cecilia Yip
- The Center for Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Steven C Wyler
- The Center for Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Katrina Liang
- The Center for Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Shin Yamazaki
- Department of Neuroscience and Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Tyler Cobb
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Maryam Safdar
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Aarav Metai
- The Center for Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Warda Merchant
- The Center for Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Robert Wessells
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Adrian Rothenfluh
- Huntsman Mental Health Institute, Department of Psychiatry, University of Utah, Salt Lake City, UT, USA; Molecular Medicine Program, University of Utah, Salt Lake City, UT, USA
| | - Syann Lee
- The Center for Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Joel Elmquist
- The Center for Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Young-Jai You
- The Center for Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
2
|
Liu F, Wu L, Zhang Y, Li Q, Li L, Huang ZY, Zhao H. Mblk-1 regulates sugar responsiveness in honey bee (Apis mellifera) foragers. INSECT SCIENCE 2022; 29:683-690. [PMID: 34580998 DOI: 10.1111/1744-7917.12971] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/05/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
Brain transcriptional regulatory network for behavior demonstrates that brain gene expression in the honey bee can be accurately predicted from the expression transcription factors (TFs), but roles for specific TFs are less understood. Mushroom bodies (MBs) are important for learning, memory and sensory integration in the honey bee brain. A TFs, Mblk-1, expressed preferentially in the large-type Kenyon cells of the honeybee MBs is predicted to be involved in brain function by regulating transcription of its target genes in honey bee. However, its function and the mechanism of regulation in behavior of honey bee is still obscure. Here we show that Mblk-1 had significantly higher expression in the brains of forager bees relative to nurse bees. Mblk-1 was significantly inhibited in bees fed small interfering RNA. In addition, inhibition of Mblk-1 decreased sucrose responsiveness in foragers. Finally, we determined that Mblk-1 regulated the messenger RNA of AmGR1. These findings suggest that Mblk-1 may target AmGR1 to regulate the sucrose responsiveness of foragers.
Collapse
Affiliation(s)
- Fang Liu
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, China
| | - Lixian Wu
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, China
| | - Yuan Zhang
- Yunnan Academy of Biodiversity, Southwest Forestry University, Kunming, Yunnan, 650224, China
| | - Qiang Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, China
| | - Liangbin Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, China
| | - Zachary Y Huang
- Department of Entomology, Michigan State University, East Lansing, Michigan, USA
| | - Hongxia Zhao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, China
| |
Collapse
|
3
|
Godini R, Handley A, Pocock R. Transcription Factors That Control Behavior-Lessons From C. elegans. Front Neurosci 2021; 15:745376. [PMID: 34646119 PMCID: PMC8503520 DOI: 10.3389/fnins.2021.745376] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/02/2021] [Indexed: 11/15/2022] Open
Abstract
Behavior encompasses the physical and chemical response to external and internal stimuli. Neurons, each with their own specific molecular identities, act in concert to perceive and relay these stimuli to drive behavior. Generating behavioral responses requires neurons that have the correct morphological, synaptic, and molecular identities. Transcription factors drive the specific gene expression patterns that define these identities, controlling almost every phenomenon in a cell from development to homeostasis. Therefore, transcription factors play an important role in generating and regulating behavior. Here, we describe the transcription factors, the pathways they regulate, and the neurons that drive chemosensation, mechanosensation, thermosensation, osmolarity sensing, complex, and sex-specific behaviors in the animal model Caenorhabditis elegans. We also discuss the current limitations in our knowledge, particularly our minimal understanding of how transcription factors contribute to the adaptive behavioral responses that are necessary for organismal survival.
Collapse
|
4
|
Kumagai H, Kunieda T, Nakamura K, Matsumura Y, Namiki M, Kohno H, Kubo T. Developmental stage-specific distribution and phosphorylation of Mblk-1, a transcription factor involved in ecdysteroid-signaling in the honey bee brain. Sci Rep 2020; 10:8735. [PMID: 32457433 PMCID: PMC7250831 DOI: 10.1038/s41598-020-65327-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 04/28/2020] [Indexed: 01/18/2023] Open
Abstract
In the honey bee, the mushroom bodies (MBs), a higher-order center in insect brain, comprise interneurons termed Kenyon cells (KCs). We previously reported that Mblk-1, which encodes a transcription factor involved in ecdysteroid-signaling, is expressed preferentially in the large-type KCs (lKCs) in the pupal and adult worker brain and that phosphorylation by the Ras/MAPK pathway enhances the transcriptional activity of Mblk-1 in vitro. In the present study, we performed immunoblotting and immunofluorescence studies using affinity-purified anti-Mblk-1 and anti-phosphorylated Mblk-1 antibodies to analyze the distribution and phosphorylation of Mblk-1 in the brains of pupal and adult workers. Mblk-1 was preferentially expressed in the lKCs in both pupal and adult worker brains. In contrast, some Mblk-1 was phosphorylated almost exclusively in the pupal stages, and phosphorylated Mblk-1 was preferentially expressed in the MB neuroblasts and lKCs in pupal brains. Immunofluorescence studies revealed that both Mblk-1 and phosphorylated Mblk-1 are located in both the cytoplasm and nuclei of the lKC somata in the pupal and adult worker brains. These findings suggest that Mblk-1 plays a role in the lKCs in both pupal and adult stages and that phosphorylated Mblk-1 has pupal stage-specific functions in the MB neuroblasts and lKCs in the honey bee brain.
Collapse
Affiliation(s)
- Hitomi Kumagai
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Takekazu Kunieda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Korefumi Nakamura
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yasuhiro Matsumura
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Manami Namiki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Hiroki Kohno
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Takeo Kubo
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
5
|
Leyva-Díaz E, Masoudi N, Serrano-Saiz E, Glenwinkel L, Hobert O. Brn3/POU-IV-type POU homeobox genes-Paradigmatic regulators of neuronal identity across phylogeny. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2020; 9:e374. [PMID: 32012462 DOI: 10.1002/wdev.374] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 12/18/2019] [Accepted: 01/07/2020] [Indexed: 02/06/2023]
Abstract
One approach to understand the construction of complex systems is to investigate whether there are simple design principles that are commonly used in building such a system. In the context of nervous system development, one may ask whether the generation of its highly diverse sets of constituents, that is, distinct neuronal cell types, relies on genetic mechanisms that share specific common features. Specifically, are there common patterns in the function of regulatory genes across different neuron types and are those regulatory mechanisms not only used in different parts of one nervous system, but are they conserved across animal phylogeny? We address these questions here by focusing on one specific, highly conserved and well-studied regulatory factor, the POU homeodomain transcription factor UNC-86. Work over the last 30 years has revealed a common and paradigmatic theme of unc-86 function throughout most of the neuron types in which Caenorhabditis elegans unc-86 is expressed. Apart from its role in preventing lineage reiterations during development, UNC-86 operates in combination with distinct partner proteins to initiate and maintain terminal differentiation programs, by coregulating a vast array of functionally distinct identity determinants of specific neuron types. Mouse orthologs of unc-86, the Brn3 genes, have been shown to fulfill a similar function in initiating and maintaining neuronal identity in specific parts of the mouse brain and similar functions appear to be carried out by the sole Drosophila ortholog, Acj6. The terminal selector function of UNC-86 in many different neuron types provides a paradigm for neuronal identity regulation across phylogeny. This article is categorized under: Gene Expression and Transcriptional Hierarchies > Regulatory Mechanisms Invertebrate Organogenesis > Worms Nervous System Development > Vertebrates: Regional Development.
Collapse
Affiliation(s)
- Eduardo Leyva-Díaz
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, New York
| | - Neda Masoudi
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, New York
| | | | - Lori Glenwinkel
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, New York
| | - Oliver Hobert
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, New York
| |
Collapse
|
6
|
Long-term activity drives dendritic branch elaboration of a C. elegans sensory neuron. Dev Biol 2020; 461:66-74. [PMID: 31945343 PMCID: PMC7170766 DOI: 10.1016/j.ydbio.2020.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 12/13/2022]
Abstract
Neuronal activity often leads to alterations in gene expression and cellular architecture. The nematode Caenorhabditis elegans, owing to its compact translucent nervous system, is a powerful system in which to study conserved aspects of the development and plasticity of neuronal morphology. Here we focus on one pair of sensory neurons, termed URX, which the worm uses to sense and avoid high levels of environmental oxygen. Previous studies have reported that the URX neuron pair has variable branched endings at its dendritic sensory tip. By controlling oxygen levels and analyzing mutants, we found that these microtubule-rich branched endings grow over time as a consequence of neuronal activity in adulthood. We also find that the growth of these branches correlates with an increase in cellular sensitivity to particular ranges of oxygen that is observable in the behavior of older worms. Given the strengths of C. elegans as a model organism, URX may serve as a potent system for uncovering genes and mechanisms involved in activity-dependent morphological changes in neurons and possible adaptive changes in the aging nervous system. The dendritic tip of an oxygen-sensing neuron grows elaborate microtubule-rich processes in adult C. elegans. Dendritic tip elaboration depends on the long-term activity of the neuron and calcium. The elaboration correlates with increased sensitivity of the neuron to certain ranges of oxygen as well as higher avoidance of oxygen during bordering behavior. The dendritic tip changes may reflect adaptive changes in physiology and behavior during adulthood.
Collapse
|
7
|
Lu M, Mizumoto K. Gradient-independent Wnt signaling instructs asymmetric neurite pruning in C. elegans. eLife 2019; 8:e50583. [PMID: 31804181 PMCID: PMC6894928 DOI: 10.7554/elife.50583] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 11/13/2019] [Indexed: 12/11/2022] Open
Abstract
During development, the nervous system undergoes a refinement process by which neurons initially extend an excess number of neurites, the majority of which will be eliminated by the mechanism called neurite pruning. Some neurites undergo stereotyped and developmentally regulated pruning. However, the signaling cues that instruct stereotyped neurite pruning are yet to be fully elucidated. Here we show that Wnt morphogen instructs stereotyped neurite pruning for proper neurite projection patterning of the cholinergic motor neuron called PDB in C. elegans. In lin-44/wnt and lin-17/frizzled mutant animals, the PDB neurites often failed to prune and grew towards the lin-44-expressing cells. Surprisingly, membrane-tethered lin-44 is sufficient to induce proper neurite pruning in PDB, suggesting that neurite pruning does not require a Wnt gradient. LIN-17 and DSH-1/Dishevelled proteins were recruited to the pruning neurites in lin-44-dependent manners. Our results revealed the novel gradient-independent role of Wnt signaling in instructing neurite pruning.
Collapse
Affiliation(s)
- Menghao Lu
- Department of ZoologyUniversity of British ColumbiaVancouverCanada
| | - Kota Mizumoto
- Department of ZoologyUniversity of British ColumbiaVancouverCanada
- Life Sciences Institute, University of British ColumbiaVancouverCanada
| |
Collapse
|
8
|
Mao Y, Li Y, Gao H, Lin X. The Direct Interaction between E93 and Kr-h1 Mediated Their Antagonistic Effect on Ovary Development of the Brown Planthopper. Int J Mol Sci 2019; 20:ijms20102431. [PMID: 31100930 PMCID: PMC6566557 DOI: 10.3390/ijms20102431] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/13/2019] [Accepted: 05/14/2019] [Indexed: 11/22/2022] Open
Abstract
The juvenile hormone (JH) signalling and ecdysone signalling pathways are crucial endocrine signalling pathways that orchestrate the metamorphosis of insects. The metamorphic process, the morphological change from the immature to adult forms, is orchestrated by the dramatic reduction of JH and downstream transcription factors. The Krüppel-homologue 1 (Kr-h1), a downstream transcription factor of the JH signalling pathway, represses E93 expression with an anti-metamorphic effect. However, the biochemical interaction between Kr-h1 and E93 and how the interaction regulates ovary development, a sensitive readout for endocrine regulation, remain unknown. In brown planthopper, Nilaparvata lugens, we found that the downregulation of Kr-h1 partially recovered the deteriorating effect of E93 knock-down on metamorphosis. Dual knock down of E93 and Kr-h1 increased ovary development and the number of eggs laid when compared to the effects of the knock down of E93 alone, indicating that the knock down of Kr-h1 partially recovered the deteriorating effect of the E93 knock-down on ovary development. In summary, our results indicated that E93 and Kr-h1 have antagonistic effects on regulating metamorphosis and ovary development. We tested the biochemical interaction between these two proteins and found that these molecules interact directly. Kr-h1 V and E93 II undergo strong and specific interactions, indicating that the potential interacting domain may be located in these two regions. We inferred that the nuclear receptor interaction motif (NR-box) and helix-turn-helix DNA binding motifs of the pipsqueak family (RHF1) are candidate domains responsible for the protein–protein interaction between E93 and Kr-h1. Moreover, the HA-tagged E93 and FLAG-tagged Kr-h1 were co-localized in the nucleus, and the expression of E93 was increased when Kr-h1 was downregulated, supporting that these two proteins may interact antagonistically. JH and ecdysone signalling are critical for the control of ovary development and pest populations. Our result is important for understanding the interactions between E93 and related proteins, which makes it possible to identify potential targets and develop new pesticides for pest management.
Collapse
Affiliation(s)
- Yiwen Mao
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China.
| | - Yan Li
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China.
| | - Han Gao
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China.
| | - Xinda Lin
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China.
| |
Collapse
|
9
|
Suenami S, Oya S, Kohno H, Kubo T. Kenyon Cell Subtypes/Populations in the Honeybee Mushroom Bodies: Possible Function Based on Their Gene Expression Profiles, Differentiation, Possible Evolution, and Application of Genome Editing. Front Psychol 2018; 9:1717. [PMID: 30333766 PMCID: PMC6176018 DOI: 10.3389/fpsyg.2018.01717] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 08/24/2018] [Indexed: 12/20/2022] Open
Abstract
Mushroom bodies (MBs), a higher-order center in the honeybee brain, comprise some subtypes/populations of interneurons termed as Kenyon cells (KCs), which are distinguished by their cell body size and location in the MBs, as well as their gene expression profiles. Although the role of MBs in learning ability has been studied extensively in the honeybee, the roles of each KC subtype and their evolution in hymenopteran insects remain mostly unknown. This mini-review describes recent progress in the analysis of gene/protein expression profiles and possible functions of KC subtypes/populations in the honeybee. Especially, the discovery of novel KC subtypes/populations, the “middle-type KCs” and “KC population expressing FoxP,” necessitated a redefinition of the KC subtype/population. Analysis of the effects of inhibiting gene function in a KC subtype-preferential manner revealed the function of the gene product as well as of the KC subtype where it is expressed. Genes expressed in a KC subtype/population-preferential manner can be used to trace the differentiation of KC subtypes during the honeybee ontogeny and the possible evolution of KC subtypes in hymenopteran insects. Current findings suggest that the three KC subtypes are unique characteristics to the aculeate hymenopteran insects. Finally, prospects regarding future application of genome editing for the study of KC subtype functions in the honeybee are described. Genes expressed in a KC subtype-preferential manner can be good candidate target genes for genome editing, because they are likely related to highly advanced brain functions and some of them are dispensable for normal development and sexual maturation in honeybees.
Collapse
Affiliation(s)
- Shota Suenami
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Satoyo Oya
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Hiroki Kohno
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Takeo Kubo
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
10
|
Kaletsky R, Yao V, Williams A, Runnels AM, Tadych A, Zhou S, Troyanskaya OG, Murphy CT. Transcriptome analysis of adult Caenorhabditis elegans cells reveals tissue-specific gene and isoform expression. PLoS Genet 2018; 14:e1007559. [PMID: 30096138 PMCID: PMC6105014 DOI: 10.1371/journal.pgen.1007559] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 08/22/2018] [Accepted: 07/13/2018] [Indexed: 12/19/2022] Open
Abstract
The biology and behavior of adults differ substantially from those of developing animals, and cell-specific information is critical for deciphering the biology of multicellular animals. Thus, adult tissue-specific transcriptomic data are critical for understanding molecular mechanisms that control their phenotypes. We used adult cell-specific isolation to identify the transcriptomes of C. elegans' four major tissues (or "tissue-ome"), identifying ubiquitously expressed and tissue-specific "enriched" genes. These data newly reveal the hypodermis' metabolic character, suggest potential worm-human tissue orthologies, and identify tissue-specific changes in the Insulin/IGF-1 signaling pathway. Tissue-specific alternative splicing analysis identified a large set of collagen isoforms. Finally, we developed a machine learning-based prediction tool for 76 sub-tissue cell types, which we used to predict cellular expression differences in IIS/FOXO signaling, stage-specific TGF-β activity, and basal vs. memory-induced CREB transcription. Together, these data provide a rich resource for understanding the biology governing multicellular adult animals.
Collapse
Affiliation(s)
- Rachel Kaletsky
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
| | - Victoria Yao
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
- Department of Computer Science, Princeton University, Princeton, New Jersey, United States of America
| | - April Williams
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
| | - Alexi M. Runnels
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
| | - Alicja Tadych
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
| | - Shiyi Zhou
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
| | - Olga G. Troyanskaya
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
- Department of Computer Science, Princeton University, Princeton, New Jersey, United States of America
- Flatiron Institute, Simons Foundation, New York, New York, United States of America
| | - Coleen T. Murphy
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
| |
Collapse
|
11
|
Liu F, Shi T, Yin W, Su X, Qi L, Huang ZY, Zhang S, Yu L. The microRNA ame-miR-279a regulates sucrose responsiveness of forager honey bees (Apis mellifera). INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2017; 90:34-42. [PMID: 28941994 DOI: 10.1016/j.ibmb.2017.09.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 08/20/2017] [Accepted: 09/14/2017] [Indexed: 06/07/2023]
Abstract
Increasing evidence demonstrates that microRNAs (miRNA) play an important role in the regulation of animal behaviours. Honey bees (Apis mellifera) are eusocial insects, with honey bee workers displaying age-dependent behavioural maturation. Many different miRNAs have been implicated in the change of behaviours in honey bees and ame-miR-279a was previously shown to be more highly expressed in nurse bee heads than in those of foragers. However, it was not clear whether this difference in expression was associated with age or task performance. Here we show that ame-miR-279a shows significantly higher expression in the brains of nurse bees relative to forager bees regardless of their ages, and that ame-miR-279a is primarily localized in the Kenyon cells of the mushroom body in both foragers and nurses. Overexpression of ame-miR-279a attenuates the sucrose responsiveness of foragers, while its absence enhances their sucrose responsiveness. Lastly, we determined that ame-miR-279a directly target the mRNA of Mblk-1. These findings suggest that ame-miR-279a plays important roles in regulating honey bee division of labour.
Collapse
Affiliation(s)
- Fang Liu
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, 230000, Hefei, Anhui, China.
| | - Tengfei Shi
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, 230000, Hefei, Anhui, China
| | - Wei Yin
- Core Facilities, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Xin Su
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, 230000, Hefei, Anhui, China
| | - Lei Qi
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, 230000, Hefei, Anhui, China
| | - Zachary Y Huang
- Department of Entomology, Michigan State University, East Lansing, MI, United States.
| | - Shaowu Zhang
- Research School of Biology, College of Medicine, Biology and Environment, The Australian National University, Australia
| | - Linsheng Yu
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, 230000, Hefei, Anhui, China
| |
Collapse
|
12
|
Fukuda Y, Li Y, Segal RA. A Mechanistic Understanding of Axon Degeneration in Chemotherapy-Induced Peripheral Neuropathy. Front Neurosci 2017; 11:481. [PMID: 28912674 PMCID: PMC5583221 DOI: 10.3389/fnins.2017.00481] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 08/14/2017] [Indexed: 12/12/2022] Open
Abstract
Chemotherapeutic agents cause many short and long term toxic side effects to peripheral nervous system (PNS) that drastically alter quality of life. Chemotherapy-induced peripheral neuropathy (CIPN) is a common and enduring disorder caused by several anti-neoplastic agents. CIPN typically presents with neuropathic pain, numbness of distal extremities, and/or oversensitivity to thermal or mechanical stimuli. This adverse side effect often requires a reduction in chemotherapy dosage or even discontinuation of treatment. Currently there are no effective treatment options for CIPN. While the underlying mechanisms for CIPN are not understood, current data identify a “dying back” axon degeneration of distal nerve endings as the major pathology in this disorder. Therefore, mechanistic understanding of axon degeneration will provide insights into the pathway and molecular players responsible for CIPN. Here, we review recent findings that expand our understanding of the pathogenesis of CIPN and discuss pathways that may be shared with the axonal degeneration that occurs during developmental axon pruning and during injury-induced Wallerian degeneration. These mechanistic insights provide new avenues for development of therapies to prevent or treat CIPN.
Collapse
Affiliation(s)
- Yusuke Fukuda
- Department of Neurobiology, Harvard Medical SchoolBoston, MA, United States.,Department of Cancer Biology, Dana-Farber Cancer InstituteBoston, MA, United States
| | - Yihang Li
- Department of Neurobiology, Harvard Medical SchoolBoston, MA, United States.,Department of Cancer Biology, Dana-Farber Cancer InstituteBoston, MA, United States
| | - Rosalind A Segal
- Department of Neurobiology, Harvard Medical SchoolBoston, MA, United States.,Department of Cancer Biology, Dana-Farber Cancer InstituteBoston, MA, United States
| |
Collapse
|
13
|
Mblk-1 Transcription Factor Family: Its Roles in Various Animals and Regulation by NOL4 Splice Variants in Mammals. Int J Mol Sci 2017; 18:ijms18020246. [PMID: 28125049 PMCID: PMC5343783 DOI: 10.3390/ijms18020246] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 01/15/2017] [Accepted: 01/20/2017] [Indexed: 11/30/2022] Open
Abstract
Transcription factors play critical roles in regulation of neural development and functions. A transcription factor Mblk-1 was previously reported from a screen for factors possibly important for the higher brain functions of the honeybee. This review first summarizes how Mblk-1 was identified, and then provides an overview of the studies of Mblk-1 and their homologs. Mblk-1 family proteins are found broadly in animals and are shown to affect transcription activities. Studies have revealed that the mammalian homologs can interact with several cofactors and together regulate transcription. Interestingly, a recent study using the mouse homologs, Mlr1 and Mlr2, showed that one of their cofactor proteins, NOL4, have several splice variants with different effects on the transactivation activities of Mlr proteins. These findings suggest that there is an additional layer of the regulation of Mblk-1 family proteins by cofactor splice variants and provide novel insights into our current understanding of the roles of the conserved transcription factor family.
Collapse
|
14
|
Roberts-Galbraith RH, Brubacher JL, Newmark PA. A functional genomics screen in planarians reveals regulators of whole-brain regeneration. eLife 2016; 5. [PMID: 27612384 PMCID: PMC5055394 DOI: 10.7554/elife.17002] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 09/02/2016] [Indexed: 12/17/2022] Open
Abstract
Planarians regenerate all body parts after injury, including the central nervous system (CNS). We capitalized on this distinctive trait and completed a gene expression-guided functional screen to identify factors that regulate diverse aspects of neural regeneration in Schmidtea mediterranea. Our screen revealed molecules that influence neural cell fates, support the formation of a major connective hub, and promote reestablishment of chemosensory behavior. We also identified genes that encode signaling molecules with roles in head regeneration, including some that are produced in a previously uncharacterized parenchymal population of cells. Finally, we explored genes downregulated during planarian regeneration and characterized, for the first time, glial cells in the planarian CNS that respond to injury by repressing several transcripts. Collectively, our studies revealed diverse molecules and cell types that underlie an animal’s ability to regenerate its brain. DOI:http://dx.doi.org/10.7554/eLife.17002.001 Animals differ in the extent to which they can regenerate missing body parts after injury. Humans regenerate poorly after many injuries, especially when the brain becomes damaged after stroke, disease or trauma. On the other hand, planarians – small worms that live in fresh water – regenerate exceptionally well. A whole planarian can regenerate from small pieces of tissue. The ability of planarians to regenerate their nervous system relies on stem cells called neoblasts, which can migrate through the body and divide to replace lost cells. However, the specific mechanisms responsible for regenerating nervous tissue are largely unknown. Roberts-Galbraith et al. carried out a screen to identify genes that tell planarians whether to regenerate a new brain, what cells to make and how to arrange them. The study revealed over thirty genes that allow planarians to regenerate their brains after their heads have been amputated. These genes play several different roles in the animal. Some of the genes help neoblasts to make decisions about what kinds of cells they should become. One gene is needed to make an important connection in the planarian brain after injury. Another helps to restore the ability of the planarian to sense its food. The experiments also show that some key genes are switched on in a new cell type that might produce signals to support regeneration. Lastly, Roberts-Galbraith et al. found that the planarian nervous system contains cells called glia. Previous studies have shown that many of the cells in the human brain are glia and that these cells help nerve cells to survive and work properly. The discovery of glia in planarians means that it will be possible to use these worms to study how glia support brain regeneration and how glia themselves are replaced after injury. In the long term, this work might lead to discoveries that shed light on how tissue regeneration could be improved in humans. DOI:http://dx.doi.org/10.7554/eLife.17002.002
Collapse
Affiliation(s)
- Rachel H Roberts-Galbraith
- Department of Cell and Developmental Biology, Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, United States
| | - John L Brubacher
- Department of Biology, Canadian Mennonite University, Winnipeg, Canada
| | - Phillip A Newmark
- Department of Cell and Developmental Biology, Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, United States
| |
Collapse
|
15
|
Kaneko K, Suenami S, Kubo T. Gene expression profiles and neural activities of Kenyon cell subtypes in the honeybee brain: identification of novel 'middle-type' Kenyon cells. ZOOLOGICAL LETTERS 2016; 2:14. [PMID: 27478620 PMCID: PMC4967334 DOI: 10.1186/s40851-016-0051-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 07/18/2016] [Indexed: 05/23/2023]
Abstract
In the honeybee (Apis mellifera L.), it has long been thought that the mushroom bodies, a higher-order center in the insect brain, comprise three distinct subtypes of intrinsic neurons called Kenyon cells. In class-I large-type Kenyon cells and class-I small-type Kenyon cells, the somata are localized at the edges and in the inner core of the mushroom body calyces, respectively. In class-II Kenyon cells, the somata are localized at the outer surface of the mushroom body calyces. The gene expression profiles of the large- and small-type Kenyon cells are distinct, suggesting that each exhibits distinct cellular characteristics. We recently identified a novel gene, mKast (middle-type Kenyon cell-preferential arrestin-related gene-1), which has a distinctive expression pattern in the Kenyon cells. Detailed expression analyses of mKast led to the discovery of novel 'middle-type' Kenyon cells characterized by their preferential mKast-expression in the mushroom bodies. The somata of the middle-type Kenyon cells are localized between the large- and small-type Kenyon cells, and the size of the middle-type Kenyon cell somata is intermediate between that of large- and small-type Kenyon cells. Middle-type Kenyon cells appear to differentiate from the large- and/or small-type Kenyon cell lineage(s). Neural activity mapping using an immediate early gene, kakusei, suggests that the small-type and some middle-type Kenyon cells are prominently active in the forager brain, suggesting a potential role in processing information during foraging flight. Our findings indicate that honeybee mushroom bodies in fact comprise four types of Kenyon cells with different molecular and cellular characteristics: the previously known class-I large- and small-type Kenyon cells, class-II Kenyon cells, and the newly identified middle-type Kenyon cells described in this review. As the cellular characteristics of the middle-type Kenyon cells are distinct from those of the large- and small-type Kenyon cells, their careful discrimination will be required in future studies of honeybee Kenyon cell subtypes. In this review, we summarize recent progress in analyzing the gene expression profiles and neural activities of the honeybee Kenyon cell subtypes, and discuss possible roles of each Kenyon cell subtype in the honeybee brain.
Collapse
Affiliation(s)
- Kumi Kaneko
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Shota Suenami
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Takeo Kubo
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033 Japan
| |
Collapse
|
16
|
Jin X, Pokala N, Bargmann CI. Distinct Circuits for the Formation and Retrieval of an Imprinted Olfactory Memory. Cell 2016; 164:632-43. [PMID: 26871629 PMCID: PMC5065712 DOI: 10.1016/j.cell.2016.01.007] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 12/13/2015] [Accepted: 12/31/2015] [Indexed: 12/22/2022]
Abstract
Memories formed early in life are particularly stable and influential, representing privileged experiences that shape enduring behaviors. We show that exposing newly hatched C. elegans to pathogenic bacteria results in persistent aversion to those bacterial odors, whereas adult exposure generates only transient aversive memory. Long-lasting imprinted aversion has a critical period in the first larval stage and is specific to the experienced pathogen. Distinct groups of neurons are required during formation (AIB, RIM) and retrieval (AIY, RIA) of the imprinted memory. RIM synthesizes the neuromodulator tyramine, which is required in the L1 stage for learning. AIY memory retrieval neurons sense tyramine via the SER-2 receptor, which is essential for imprinted, but not for adult-learned, aversion. Odor responses in several neurons, most notably RIA, are altered in imprinted animals. These findings provide insight into neuronal substrates of different forms of memory, and lay a foundation for further understanding of early learning.
Collapse
Affiliation(s)
- Xin Jin
- Howard Hughes Medical Institute (HHMI), Lulu and Anthony Wang Laboratory of Neural Circuits and Behavior, The Rockefeller University, New York, NY 10065, USA
| | - Navin Pokala
- Howard Hughes Medical Institute (HHMI), Lulu and Anthony Wang Laboratory of Neural Circuits and Behavior, The Rockefeller University, New York, NY 10065, USA
| | - Cornelia I Bargmann
- Howard Hughes Medical Institute (HHMI), Lulu and Anthony Wang Laboratory of Neural Circuits and Behavior, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
17
|
Hobert O. A map of terminal regulators of neuronal identity in Caenorhabditis elegans. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2016; 5:474-98. [PMID: 27136279 PMCID: PMC4911249 DOI: 10.1002/wdev.233] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Revised: 02/07/2016] [Accepted: 02/21/2016] [Indexed: 12/31/2022]
Abstract
Our present day understanding of nervous system development is an amalgam of insights gained from studying different aspects and stages of nervous system development in a variety of invertebrate and vertebrate model systems, with each model system making its own distinctive set of contributions. One aspect of nervous system development that has been among the most extensively studied in the nematode Caenorhabditis elegans is the nature of the gene regulatory programs that specify hardwired, terminal cellular identities. I first summarize a number of maps (anatomical, functional, and molecular) that describe the terminal identity of individual neurons in the C. elegans nervous system. I then provide a comprehensive summary of regulatory factors that specify terminal identities in the nervous system, synthesizing these past studies into a regulatory map of cellular identities in the C. elegans nervous system. This map shows that for three quarters of all neurons in the C. elegans nervous system, regulatory factors that control terminal identity features are known. In-depth studies of specific neuron types have revealed that regulatory factors rarely act alone, but rather act cooperatively in neuron-type specific combinations. In most cases examined so far, distinct, biochemically unlinked terminal identity features are coregulated via cooperatively acting transcription factors, termed terminal selectors, but there are also cases in which distinct identity features are controlled in a piecemeal fashion by independent regulatory inputs. The regulatory map also illustrates that identity-defining transcription factors are reemployed in distinct combinations in different neuron types. However, the same transcription factor can drive terminal differentiation in neurons that are unrelated by lineage, unrelated by function, connectivity and neurotransmitter deployment. Lastly, the regulatory map illustrates the preponderance of homeodomain transcription factors in the control of terminal identities, suggesting that these factors have ancient, phylogenetically conserved roles in controlling terminal neuronal differentiation in the nervous system. WIREs Dev Biol 2016, 5:474-498. doi: 10.1002/wdev.233 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Oliver Hobert
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, NY, USA
| |
Collapse
|
18
|
Lin T, Pan PY, Lai YT, Chiang KW, Hsieh HL, Wu YP, Ke JM, Lee MC, Liao SS, Shih HT, Tang CY, Yang SB, Cheng HC, Wu JT, Jan YN, Lee HH. Spindle-F Is the Central Mediator of Ik2 Kinase-Dependent Dendrite Pruning in Drosophila Sensory Neurons. PLoS Genet 2015; 11:e1005642. [PMID: 26540204 PMCID: PMC4634852 DOI: 10.1371/journal.pgen.1005642] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 10/11/2015] [Indexed: 11/18/2022] Open
Abstract
During development, certain Drosophila sensory neurons undergo dendrite pruning that selectively eliminates their dendrites but leaves the axons intact. How these neurons regulate pruning activity in the dendrites remains unknown. Here, we identify a coiled-coil protein Spindle-F (Spn-F) that is required for dendrite pruning in Drosophila sensory neurons. Spn-F acts downstream of IKK-related kinase Ik2 in the same pathway for dendrite pruning. Spn-F exhibits a punctate pattern in larval neurons, whereas these Spn-F puncta become redistributed in pupal neurons, a step that is essential for dendrite pruning. The redistribution of Spn-F from puncta in pupal neurons requires the phosphorylation of Spn-F by Ik2 kinase to decrease Spn-F self-association, and depends on the function of microtubule motor dynein complex. Spn-F is a key component to link Ik2 kinase to dynein motor complex, and the formation of Ik2/Spn-F/dynein complex is critical for Spn-F redistribution and for dendrite pruning. Our findings reveal a novel regulatory mechanism for dendrite pruning achieved by temporal activation of Ik2 kinase and dynein-mediated redistribution of Ik2/Spn-F complex in neurons.
Collapse
Affiliation(s)
- Tzu Lin
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Po-Yuan Pan
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Ting Lai
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Kai-Wen Chiang
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsin-Lun Hsieh
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yi-Ping Wu
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Jian-Ming Ke
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Myong-Chol Lee
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shih-Sian Liao
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsueh-Tzu Shih
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chiou-Yang Tang
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Shi-Bing Yang
- Howard Hughes Medical Institute, Department of Physiology, Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California, United States of America
| | - Hsu-Chen Cheng
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - June-Tai Wu
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yuh-Nung Jan
- Howard Hughes Medical Institute, Department of Physiology, Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California, United States of America
| | - Hsiu-Hsiang Lee
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
19
|
Lakhina V, Arey RN, Kaletsky R, Kauffman A, Stein G, Keyes W, Xu D, Murphy CT. Genome-wide functional analysis of CREB/long-term memory-dependent transcription reveals distinct basal and memory gene expression programs. Neuron 2015; 85:330-45. [PMID: 25611510 DOI: 10.1016/j.neuron.2014.12.029] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2014] [Indexed: 12/30/2022]
Abstract
Induced CREB activity is a hallmark of long-term memory, but the full repertoire of CREB transcriptional targets required specifically for memory is not known in any system. To obtain a more complete picture of the mechanisms involved in memory, we combined memory training with genome-wide transcriptional analysis of C. elegans CREB mutants. This approach identified 757 significant CREB/memory-induced targets and confirmed the involvement of known memory genes from other organisms, but also suggested new mechanisms and novel components that may be conserved through mammals. CREB mediates distinct basal and memory transcriptional programs at least partially through spatial restriction of CREB activity: basal targets are regulated primarily in nonneuronal tissues, while memory targets are enriched for neuronal expression, emanating from CREB activity in AIM neurons. This suite of novel memory-associated genes will provide a platform for the discovery of orthologous mammalian long-term memory components.
Collapse
Affiliation(s)
- Vanisha Lakhina
- Department of Molecular Biology & LSI Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Rachel N Arey
- Department of Molecular Biology & LSI Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Rachel Kaletsky
- Department of Molecular Biology & LSI Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Amanda Kauffman
- Department of Molecular Biology & LSI Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Geneva Stein
- Department of Molecular Biology & LSI Genomics, Princeton University, Princeton, NJ 08544, USA
| | - William Keyes
- Department of Molecular Biology & LSI Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Daniel Xu
- Department of Molecular Biology & LSI Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Coleen T Murphy
- Department of Molecular Biology & LSI Genomics, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
20
|
Takayanagi-Kiya S, Misawa-Hojo K, Kiya T, Kunieda T, Kubo T. Splicing variants of NOL4 differentially regulate the transcription activity of Mlr1 and Mlr2 in cultured cells. Zoolog Sci 2015; 31:735-40. [PMID: 25366156 DOI: 10.2108/zs140049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Mlr1 (Mblk-1-related protein-1) and Mlr2 are mouse homologs of transcription factor Mblk-1 (Mushroom body large-type Kenyon cell-specific protein-1), which we originally identified from the honeybee brain. In the present study, aiming at identifying coregulator(s) of Mlr1 and Mlr2 from the mouse brain, we used yeast two-hybrid screening of mouse brain cDNA library to search for interaction partners of Mlr 1 and Mlr2, respectively. We identified nucleolar protein 4 (NOL4) splicing variants as major interaction partners for both Mlr1 and Mlr2. Among the three murine NOL4 splicing variants, we further characterized NOL4-S, which lacks an N-terminal part of NOL4-L, and NOL4-SΔ, which lacks nuclear localization signal (NLS)-containing domain of NOL4-S. A GST pull-down assay revealed that Mlr1 interacts with both NOL4-S and NOL4-SΔ, whereas Mlr2 interacts with NOL4-S, but not with NOL4-SΔ. These results indicate that the NLS-containing domain of NO4-S Is necessary for in vitro binding with Mlr2, but not for that with Mlr1. Furthermore, a luciferase assay using Schneider's Line 2 cells revealed that transactivation activity of Mlr1 was significantly suppressed by both NOL4-S and NOL4-SΔ, with almost complete suppression by NOL4-SΔ. In contrast, transactivation activity of Mlr2 was significantly suppressed by NOL4-S but rather activated by NOL4-SΔ. Our findings suggest that transactivation activities of Mlr1 and Mlr2 are differentially regulated by splicing variants of NOL4, which are expressed in a tissue-selective manner.
Collapse
Affiliation(s)
- Seika Takayanagi-Kiya
- 1 Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | | | | | | | | |
Collapse
|
21
|
Zhang H, Wang Y, Wong J, Lim KL, Liou YC, Wang H, Yu F. Endocytic Pathways Downregulate the L1-type Cell Adhesion Molecule Neuroglian to Promote Dendrite Pruning in Drosophila. Dev Cell 2014; 30:463-78. [DOI: 10.1016/j.devcel.2014.06.014] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 04/23/2014] [Accepted: 06/17/2014] [Indexed: 11/27/2022]
|
22
|
Serrano-Saiz E, Poole RJ, Felton T, Zhang F, De La Cruz ED, Hobert O. Modular control of glutamatergic neuronal identity in C. elegans by distinct homeodomain proteins. Cell 2013; 155:659-73. [PMID: 24243022 DOI: 10.1016/j.cell.2013.09.052] [Citation(s) in RCA: 202] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 08/14/2013] [Accepted: 09/23/2013] [Indexed: 10/26/2022]
Abstract
The choice of using one of many possible neurotransmitter systems is a critical step in defining the identity of an individual neuron type. We show here that the key defining feature of glutamatergic neurons, the vesicular glutamate transporter EAT-4/VGLUT, is expressed in 38 of the 118 anatomically defined neuron classes of the C. elegans nervous system. We show that distinct cis-regulatory modules drive expression of eat-4/VGLUT in distinct glutamatergic neuron classes. We identify 13 different transcription factors, 11 of them homeodomain proteins, that act in distinct combinations in 25 different glutamatergic neuron classes to initiate and maintain eat-4/VGLUT expression. We show that the adoption of a glutamatergic phenotype is linked to the adoption of other terminal identity features of a neuron, including cotransmitter phenotypes. Examination of mouse orthologs of these homeodomain proteins resulted in the identification of mouse LHX1 as a regulator of glutamatergic neurons in the brainstem.
Collapse
Affiliation(s)
- Esther Serrano-Saiz
- Department of Biochemistry and Molecular Biophysics, HHMI, Columbia University Medical Center, New York, NY 10032, USA.
| | | | | | | | | | | |
Collapse
|
23
|
Kaneko K, Ikeda T, Nagai M, Hori S, Umatani C, Tadano H, Ugajin A, Nakaoka T, Paul RK, Fujiyuki T, Shirai K, Kunieda T, Takeuchi H, Kubo T. Novel middle-type Kenyon cells in the honeybee brain revealed by area-preferential gene expression analysis. PLoS One 2013; 8:e71732. [PMID: 23990981 PMCID: PMC3749211 DOI: 10.1371/journal.pone.0071732] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Accepted: 07/01/2013] [Indexed: 11/19/2022] Open
Abstract
The mushroom bodies (a higher center) of the honeybee (Apis mellifera L) brain were considered to comprise three types of intrinsic neurons, including large- and small-type Kenyon cells that have distinct gene expression profiles. Although previous neural activity mapping using the immediate early gene kakusei suggested that small-type Kenyon cells are mainly active in forager brains, the precise Kenyon cell types that are active in the forager brain remain to be elucidated. We searched for novel gene(s) that are expressed in an area-preferential manner in the honeybee brain. By identifying and analyzing expression of a gene that we termed mKast (middle-type Kenyon cell-preferential arrestin-related protein), we discovered novel ‘middle-type Kenyon cells’ that are sandwiched between large- and small-type Kenyon cells and have a gene expression profile almost complementary to those of large– and small-type Kenyon cells. Expression analysis of kakusei revealed that both small-type Kenyon cells and some middle-type Kenyon cells are active in the forager brains, suggesting their possible involvement in information processing during the foraging flight. mKast expression began after the differentiation of small- and large-type Kenyon cells during metamorphosis, suggesting that middle-type Kenyon cells differentiate by modifying some characteristics of large– and/or small-type Kenyon cells. Interestingly, CaMKII and mKast, marker genes for large– and middle-type Kenyon cells, respectively, were preferentially expressed in a distinct set of optic lobe (a visual center) neurons. Our findings suggested that it is not simply the Kenyon cell-preferential gene expression profiles, rather, a ‘clustering’ of neurons with similar gene expression profiles as particular Kenyon cell types that characterize the honeybee mushroom body structure.
Collapse
Affiliation(s)
- Kumi Kaneko
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Tsubomi Ikeda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Mirai Nagai
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Sayaka Hori
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Chie Umatani
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Hiroto Tadano
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Atsushi Ugajin
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Takayoshi Nakaoka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Rajib Kumar Paul
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Tomoko Fujiyuki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Kenichi Shirai
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Takekazu Kunieda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Hideaki Takeuchi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Takeo Kubo
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- * E-mail:
| |
Collapse
|
24
|
PDF-1 neuropeptide signaling modulates a neural circuit for mate-searching behavior in C. elegans. Nat Neurosci 2012; 15:1675-82. [PMID: 23143519 PMCID: PMC3509246 DOI: 10.1038/nn.3253] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 10/01/2012] [Indexed: 12/20/2022]
Abstract
Appetitive behaviors require complex decision-making, involving the integration of environmental stimuli and physiological needs. C. elegans mate searching is a male-specific exploratory behavior regulated by two competing needs: food versus reproductive appetite. Here we show that the Pigment Dispersing Factor Receptor (PDFR-1) modulates the circuit that encodes the male reproductive drive promoting male exploration upon mate-deprivation. PDFR-1 and its ligand PDF-1 stimulate mate searching in the male but not in the hermaphrodite. pdf-1 is required in the gender-shared interneuron AIM and the receptor acts in internal and external environment-sensing neurons of the shared nervous system (URY, PQR and PHA) to produce mate-searching behavior. Thus, the pdf-1/pdfr-1 pathway functions in non sex-specific neurons to produce a male-specific, goal-oriented exploratory behavior. Our results indicate that secretin neuropeptidergic signaling plays an ancient role in regulating motivational internal states.
Collapse
|
25
|
Feng H, Reece-Hoyes JS, Walhout AJM, Hope IA. A regulatory cascade of three transcription factors in a single specific neuron, DVC, in Caenorhabditis elegans. Gene 2012; 494:73-84. [PMID: 22207033 PMCID: PMC3271191 DOI: 10.1016/j.gene.2011.11.042] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 11/16/2011] [Accepted: 11/18/2011] [Indexed: 01/13/2023]
Abstract
Homeobox proteins are critical regulators of developmental gene transcription and cell specification. Many insights into transcriptional regulation have been gained from studies in the nematode Caenorhabditis elegans. We investigated the expression and regulation of the C. elegans homeobox gene ceh-63, which encodes a single-homeodomain transcription factor of 152 amino acids. ceh-63 is expressed in the interneuron DVC in both sexes, from late embryogenesis through adulthood, and two pairs of uterine cells in reproductive hermaphrodites only. A reporter gene fusion, encoding GFP fused to the full-length CEH-63, also drove weak inconsistent expression in additional unidentified cells in the head and tail. A potential ceh-63 null mutant had no obvious abnormalities, except for a possible increase in subtle defects of the DVC axon projection. No behavioural responses were observed upon either laser ablation of DVC or activation of DVC through light stimulation of channelrhodopsin-2 specifically expressed in this neuron. The function of DVC therefore remains enigmatic. A transcriptional regulatory cascade operating in DVC was defined from the LIM-homeodomain protein CEH-14 through CEH-63 to the helix-turn-helix transcription factor MBR-1. Both CEH-14 and CEH-63 individually bound the mbr-1 promoter in a yeast one-hybrid assay. A model is proposed suggesting that CEH-14 activates ceh-63 and then along with CEH-63 co-ordinately activates mbr-1.
Collapse
Affiliation(s)
- Huiyun Feng
- Institute of Integrative and Comparative Biology, Faculty of Biological Sciences, The University of Leeds, Leeds, UK
| | | | | | | |
Collapse
|
26
|
Control of target gene specificity during metamorphosis by the steroid response gene E93. Proc Natl Acad Sci U S A 2012; 109:2949-54. [PMID: 22308414 DOI: 10.1073/pnas.1117559109] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Hormonal control of sexual maturation is a common feature in animal development. A particularly dramatic example is the metamorphosis of insects, in which pulses of the steroid hormone ecdysone drive the wholesale transformation of the larva into an adult. The mechanisms responsible for this transformation are not well understood. Work in Drosophila indicates that the larval and adult forms are patterned by the same underlying sets of developmental regulators, but it is not understood how the same regulators pattern two distinct forms. Recent studies indicate that this ability is facilitated by a global change in the responsiveness of target genes during metamorphosis. Here we show that this shift is controlled in part by the ecdysone-induced transcription factor E93. Although long considered a dedicated regulator of larval cell death, we find that E93 is expressed widely in adult cells at the pupal stage and is required for many patterning processes at this time. To understand the role of E93 in adult patterning, we focused on a simple E93-dependent process, the induction of the Dll gene within bract cells of the pupal leg by EGF receptor signaling. In this system, we show that E93 functions to cause Dll to become responsive to EGF receptor signaling. We demonstrate that E93 is both necessary and sufficient for directing this switch. E93 likely controls the responsiveness of many other target genes because it is required broadly for patterning during metamorphosis. The wide conservation of E93 orthologs suggests that similar mechanisms control life-cycle transitions in other organisms, including vertebrates.
Collapse
|
27
|
Jafari G, Xie Y, Kullyev A, Liang B, Sze JY. Regulation of extrasynaptic 5-HT by serotonin reuptake transporter function in 5-HT-absorbing neurons underscores adaptation behavior in Caenorhabditis elegans. J Neurosci 2011; 31:8948-57. [PMID: 21677178 PMCID: PMC3153855 DOI: 10.1523/jneurosci.1692-11.2011] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 04/27/2011] [Accepted: 04/28/2011] [Indexed: 11/21/2022] Open
Abstract
Serotonin [5-hydroxytryptamine (5-HT)]-absorbing neurons use serotonin reuptake transporter (SERT) to uptake 5-HT from extracellular space but do not synthesize it. While 5-HT-absorbing neurons have been identified in diverse organisms from Caenorhabditis elegans to humans, their function has not been elucidated. Here, we show that SERT in 5-HT-absorbing neurons controls behavioral response to food deprivation in C. elegans. The AIM and RIH interneurons uptake 5-HT released from chemosensory neurons and secretory neurons. Genetic analyses suggest that 5-HT secreted by both synaptic vesicles and dense core vesicles diffuse readily to the extrasynaptic space adjacent to the AIM and RIH neurons. Loss of mod-5/SERT function blocks the 5-HT absorption. mod-5/SERT mutants have been shown to exhibit exaggerated locomotor response to food deprivation. We found that transgenic expression of MOD-5/SERT in the 5-HT-absorbing neurons fully corrected the exaggerated behavior. Experiments of cell-specific inhibition of synaptic transmission suggest that the synaptic release of 5-HT from the 5-HT-absorbing neurons is not required for this behavioral modulation. Our data point to the role of 5-HT-absorbing neurons as temporal-spatial regulators of extrasynaptic 5-HT. Regulation of extrasynaptic 5-HT levels by 5-HT-absorbing neurons may represent a fundamental mechanism of 5-HT homeostasis, integrating the activity of 5-HT-producing neurons with distant targets in the neural circuits, and could be relevant to some actions of selective serotonin reuptake inhibitors in humans.
Collapse
Affiliation(s)
- Gholamali Jafari
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Yusu Xie
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Andrey Kullyev
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Bin Liang
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Ji Ying Sze
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461
| |
Collapse
|
28
|
Abstract
Axon pruning and neuronal cell death constitute two major regressive events that enable the establishment of fully mature brain architecture and connectivity. Although the cellular mechanisms for these two events are thought to be distinct, recent evidence has indicated the direct involvement of axon guidance molecules, including semaphorins, netrins, and ephrins, in controlling both processes. Here, we review how axon guidance cues regulate regressive events in paradigmatic models of neural development, from early control of apoptosis of neural progenitors, to later maintenance of neuronal survival and stereotyped pruning of axonal branches. These new findings are also discussed in the context of neural diseases and the potential links between axon pruning and degeneration.
Collapse
|
29
|
A trophic role for Wnt-Ror kinase signaling during developmental pruning in Caenorhabditis elegans. Nat Neurosci 2009; 12:981-7. [PMID: 19561603 DOI: 10.1038/nn.2347] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Accepted: 05/05/2009] [Indexed: 11/09/2022]
Abstract
The molecular mechanism by which neurites are selected for elimination or incorporation into the mature circuit during developmental pruning remains unknown. The trophic theory postulates that local cues provided by target or surrounding cells act to inhibit neurite elimination. However, no widely conserved factor mediating this trophic function has been identified. We found that the developmental survival of specific neurites in Caenorhabditis elegans largely depends on detection of the morphogen Wnt by the Ror kinase CAM-1, which is a transmembrane tyrosine kinase with a Frizzled domain. Mutations in Wnt genes or in cam-1 enhanced neurite elimination, whereas overexpression of cam-1 inhibited neurite elimination in a Wnt-dependent manner. Moreover, mutations in these genes counteracted the effect of a mutation in mbr-1, which encodes a transcription factor that promotes neurite elimination. These results reveal the trophic role of an atypical Wnt pathway and reinforce the classical model of developmental pruning.
Collapse
|
30
|
O'Brien GS, Sagasti A. Fragile axons forge the path to gene discovery: a MAP kinase pathway regulates axon regeneration. Sci Signal 2009; 2:pe30. [PMID: 19417215 DOI: 10.1126/scisignal.269pe30] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The nematode Caenorhabditis elegans is emerging as a promising model for studying the molecular control of axon regeneration. A forward genetic screen identified the DLK-1 (dual leucine zipper-bearing kinase 1) MAP (mitogen-activated protein) kinase pathway as a positive regulator of growth cone formation during axon regeneration. Although DLK-1 pathway mutant animals display a dramatic defect in regeneration, their axons have no apparent defects in initial outgrowth. The DLK-1 pathway also plays a role in synaptogenesis, but this role appears to be separate from its function in regeneration. Understanding how the DLK-1 pathway acts in development, plasticity, and regeneration may shed light on the evolution of mechanisms regulating axon regeneration.
Collapse
Affiliation(s)
- Georgeann S O'Brien
- Department of Molecular, Cell and Developmental Biology, University of California-Los Angeles, Los Angeles, CA 90095, USA
| | | |
Collapse
|
31
|
Drosophila IKK-related kinase Ik2 and Katanin p60-like 1 regulate dendrite pruning of sensory neuron during metamorphosis. Proc Natl Acad Sci U S A 2009; 106:6363-8. [PMID: 19329489 DOI: 10.1073/pnas.0902051106] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pruning is a widely observed mechanism for developing nervous systems to refine their circuitry. During metamorphosis, certain Drosophila sensory neurons undergo large-scale dendrite pruning to remove their larval branches before regeneration of their adult dendrites. Dendrite pruning involves dendrite severing, followed with debris removal. Little is known about the molecular mechanisms underlying dendrite severing. Here, we show that both the Ik2 kinase and Katanin p60-like 1 (Kat-60L1) of the Katanin family of microtubule severing proteins are required for dendrite severing. Mutant neurons with disrupted Ik2 function have diminished ability in severing their larval dendrites in pupae. Conversely, premature activation of Ik2 triggers precocious dendrite severing in larvae, revealing a critical role of Ik2 in initiating dendrite severing. We found a role for Kat-60L1 in facilitating dendrite severing by breaking microtubule in proximal dendrites, where the dendrites subsequently separate from the soma. Our study thus implicates Ik2 and Kat-60L1 in dendrite severing that involves local microtubule disassembly.
Collapse
|
32
|
|
33
|
Ramos B, Gaudillière B, Bonni A, Gill G. Transcription factor Sp4 regulates dendritic patterning during cerebellar maturation. Proc Natl Acad Sci U S A 2007; 104:9882-7. [PMID: 17535924 PMCID: PMC1887555 DOI: 10.1073/pnas.0701946104] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Integration of inputs by a neuron depends on dendritic arborization patterns. In mammals, the genetic programs that regulate dynamic remodeling of dendrites during development and in response to activity are incompletely understood. Here we report that knockdown of the transcription factor Sp4 led to an increased number of highly branched dendrites during maturation of cerebellar granule neurons in dissociated cultures and in cerebellar cortex. Time-course analysis revealed that depletion of Sp4 led to persistent generation of dendritic branches and a failure in resorption of transient dendrites. Depolarization induced a reduction in the number of dendrites, and knockdown of Sp4 blocked depolarization-induced remodeling. Furthermore, overexpression of Sp4 wild type, but not a mutant lacking the DNA-binding domain, was sufficient to promote dendritic pruning in nondepolarizing conditions. These findings indicate that the transcription factor Sp4 controls dendritic patterning during cerebellar development by limiting branch formation and promoting activity-dependent pruning.
Collapse
Affiliation(s)
- Belén Ramos
- Department of Pathology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115
| | - Brice Gaudillière
- Department of Pathology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115
| | - Azad Bonni
- Department of Pathology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115
| | - Grace Gill
- Department of Pathology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
34
|
Low LK, Cheng HJ. Axon pruning: an essential step underlying the developmental plasticity of neuronal connections. Philos Trans R Soc Lond B Biol Sci 2007; 361:1531-44. [PMID: 16939973 PMCID: PMC1664669 DOI: 10.1098/rstb.2006.1883] [Citation(s) in RCA: 154] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Regressive events play a key role in modifying neural connectivity in early development. An important regressive event is the pruning of neuronal processes. Pruning is a strategy often used to selectively remove exuberant neuronal branches and connections in the immature nervous system to ensure the proper formation of functional circuitry. In the following review, we discuss our present understanding of the cellular and molecular mechanisms that regulate the pruning of axons during neuronal development as well as in neurological diseases. The evidence suggests that there are several similarities between the mechanisms that are involved in developmental axon pruning and axon elimination in disease. In summary, these findings provide researchers with a unique perspective on how developmental plasticity is achieved and how to develop strategies to treat complex neurological diseases.
Collapse
|
35
|
Kammenga JE, Doroszuk A, Riksen JAG, Hazendonk E, Spiridon L, Petrescu AJ, Tijsterman M, Plasterk RHA, Bakker J. A Caenorhabditis elegans wild type defies the temperature-size rule owing to a single nucleotide polymorphism in tra-3. PLoS Genet 2007; 3:e34. [PMID: 17335351 PMCID: PMC1808073 DOI: 10.1371/journal.pgen.0030034] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2006] [Accepted: 01/09/2007] [Indexed: 11/18/2022] Open
Abstract
Ectotherms rely for their body heat on surrounding temperatures. A key question in biology is why most ectotherms mature at a larger size at lower temperatures, a phenomenon known as the temperature-size rule. Since temperature affects virtually all processes in a living organism, current theories to explain this phenomenon are diverse and complex and assert often from opposing assumptions. Although widely studied, the molecular genetic control of the temperature-size rule is unknown. We found that the Caenorhabditis elegans wild-type N2 complied with the temperature-size rule, whereas wild-type CB4856 defied it. Using a candidate gene approach based on an N2 x CB4856 recombinant inbred panel in combination with mutant analysis, complementation, and transgenic studies, we show that a single nucleotide polymorphism in tra-3 leads to mutation F96L in the encoded calpain-like protease. This mutation attenuates the ability of CB4856 to grow larger at low temperature. Homology modelling predicts that F96L reduces TRA-3 activity by destabilizing the DII-A domain. The data show that size adaptation of ectotherms to temperature changes may be less complex than previously thought because a subtle wild-type polymorphism modulates the temperature responsiveness of body size. These findings provide a novel step toward the molecular understanding of the temperature-size rule, which has puzzled biologists for decades.
Collapse
Affiliation(s)
- Jan E Kammenga
- Laboratory of Nematology, Wageningen University, Wageningen, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
Axon pruning has recently been described in the simple nervous system of the nematode Caenorhabditis elegans. Generating excess processes and pruning may be a phylogenetically conserved feature reflecting a flexibility to modify neural circuits.
Collapse
Affiliation(s)
- William G Wadsworth
- UMDNJ-Robert Wood Johnson Medical School, Department of Pathology, Piscataway, NJ 08854-5635, USA.
| |
Collapse
|