1
|
Notch signaling pathway: architecture, disease, and therapeutics. Signal Transduct Target Ther 2022; 7:95. [PMID: 35332121 PMCID: PMC8948217 DOI: 10.1038/s41392-022-00934-y] [Citation(s) in RCA: 531] [Impact Index Per Article: 177.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/16/2022] [Accepted: 02/16/2022] [Indexed: 02/07/2023] Open
Abstract
The NOTCH gene was identified approximately 110 years ago. Classical studies have revealed that NOTCH signaling is an evolutionarily conserved pathway. NOTCH receptors undergo three cleavages and translocate into the nucleus to regulate the transcription of target genes. NOTCH signaling deeply participates in the development and homeostasis of multiple tissues and organs, the aberration of which results in cancerous and noncancerous diseases. However, recent studies indicate that the outcomes of NOTCH signaling are changeable and highly dependent on context. In terms of cancers, NOTCH signaling can both promote and inhibit tumor development in various types of cancer. The overall performance of NOTCH-targeted therapies in clinical trials has failed to meet expectations. Additionally, NOTCH mutation has been proposed as a predictive biomarker for immune checkpoint blockade therapy in many cancers. Collectively, the NOTCH pathway needs to be integrally assessed with new perspectives to inspire discoveries and applications. In this review, we focus on both classical and the latest findings related to NOTCH signaling to illustrate the history, architecture, regulatory mechanisms, contributions to physiological development, related diseases, and therapeutic applications of the NOTCH pathway. The contributions of NOTCH signaling to the tumor immune microenvironment and cancer immunotherapy are also highlighted. We hope this review will help not only beginners but also experts to systematically and thoroughly understand the NOTCH signaling pathway.
Collapse
|
2
|
Zhu S, Li S, Yi M, Li N, Wu K. Roles of Microvesicles in Tumor Progression and Clinical Applications. Int J Nanomedicine 2021; 16:7071-7090. [PMID: 34703228 PMCID: PMC8536885 DOI: 10.2147/ijn.s325448] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 10/08/2021] [Indexed: 12/20/2022] Open
Abstract
Microvesicles are extracellular vesicles with diameter ranging from 100 to 1000 nm that are secreted by tumor cells or other cells in the tumor microenvironment. A growing number of studies demonstrate that tumor-derived microvesicles are involved in tumor initiation and progression, as well as drug resistance. In addition, tumor-derived microvesicles carry a variety of immunogenic molecules and inhibit tumor response to immunotherapy; therefore, they can be exploited for use in tumor vaccines. Moreover, because of their high stability, tumor-derived microvesicles extracted from body fluids can be used as biomarkers for cancer diagnosis or assessment of prognosis. Tumor-derived microvesicles can also be deployed to reverse drug resistance of tumor regenerative cells, or to deliver chemotherapeutic drugs and oncolytic adenovirus for the treatment of cancer patients. This review summarizes the general characteristics of tumor-derived microvesicles, focusing on their biological characteristics, their involvement in tumor progression, and their clinical applications.
Collapse
Affiliation(s)
- Shuangli Zhu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Shiyu Li
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Ming Yi
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Ning Li
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, People's Republic of China
| | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.,Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, People's Republic of China
| |
Collapse
|
3
|
Li B, Wong C, Gao SM, Zhang R, Sun R, Li Y, Song Y. The retromer complex safeguards against neural progenitor-derived tumorigenesis by regulating Notch receptor trafficking. eLife 2018; 7:38181. [PMID: 30176986 PMCID: PMC6140715 DOI: 10.7554/elife.38181] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 08/17/2018] [Indexed: 12/14/2022] Open
Abstract
The correct establishment and maintenance of unidirectional Notch signaling are critical for the homeostasis of various stem cell lineages. However, the molecular mechanisms that prevent cell-autonomous ectopic Notch signaling activation and deleterious cell fate decisions remain unclear. Here we show that the retromer complex directly and specifically regulates Notch receptor retrograde trafficking in Drosophila neuroblast lineages to ensure the unidirectional Notch signaling from neural progenitors to neuroblasts. Notch polyubiquitination mediated by E3 ubiquitin ligase Itch/Su(dx) is inherently inefficient within neural progenitors, relying on retromer-mediated trafficking to avoid aberrant endosomal accumulation of Notch and cell-autonomous signaling activation. Upon retromer dysfunction, hypo-ubiquitinated Notch accumulates in Rab7+ enlarged endosomes, where it is ectopically processed and activated in a ligand-dependent manner, causing progenitor-originated tumorigenesis. Our results therefore unveil a safeguard mechanism whereby retromer retrieves potentially harmful Notch receptors in a timely manner to prevent aberrant Notch activation-induced neural progenitor dedifferentiation and brain tumor formation. Most cells in the animal body are tailored to perform particular tasks, but stem cells have not yet made their choice. Instead, they have unlimited capacity to divide and, with the right signals, they can start to specialize to become a given type of cells. In the brain, this process starts with a stem cell dividing. One of the daughters will remain a stem cell, while the other, the neural progenitor, will differentiate to form a mature cell such as a neuron. Keeping this tight balance is crucial for the health of the organ: if the progenitor reverts back to being a stem cell, there will be a surplus of undifferentiated cells that can lead to a tumor. A one-way signal driven by the protein Notch partly controls the distinct fates of the two daughter cells. While the neural progenitor carries Notch at its surface, its neural stem cell sister has a Notch receptor on its membrane instead. This ensures that the Notch signaling goes in one direction, from the cell with Notch to the one sporting the receptor. When a stem cell divides, one daughter gets more of a protein called Numb than the other. Numb pulls Notch receptors away from the external membrane and into internal capsules called endosomes. This guarantees that only one of the siblings will be carrying the receptors at its surface. Yet, sometimes the Notch receptors can get activated in the endosomes, which may make neural progenitors revert to being stem cells. It is still unclear what tools the cells have to stop this abnormal activation. Here, Li et al. screened brain cells from fruit fly larvae to find out the genes that might play a role in suppressing the inappropriate Notch signaling. This highlighted a protein complex known as the retromer, which normally helps to transport proteins in the cell. Experiments showed that, in progenitors, the retromer physically interacts with Notch receptors and retrieves them from the endosomes back to the cell surface. If the retromer is inactive, the Notch receptors accumulate in the endosomes, where they can be switched on. It seems that, in fruit flies, the retromer acts as a bomb squad that recognizes and retrieves potentially harmful Notch receptors, thereby preventing brain tumor formation. Several retromer components are less present in patients with various cancers, including glioblastoma, an aggressive form of brain cancer. The results by Li et al. may therefore shed light on the link between the protein complex and the emergence of the disease in humans.
Collapse
Affiliation(s)
- Bo Li
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China
| | - Chouin Wong
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China
| | - Shihong Max Gao
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China
| | - Rulan Zhang
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China
| | - Rongbo Sun
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, China.,PKU-IDG/McGovern Institute for Brain Research, Beijing, China
| | - Yulong Li
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, China.,PKU-IDG/McGovern Institute for Brain Research, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Yan Song
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| |
Collapse
|
4
|
Cong B, Ohsawa S, Igaki T. JNK and Yorkie drive tumor progression by generating polyploid giant cells in Drosophila. Oncogene 2018. [DOI: 10.1038/s41388-018-0201-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
5
|
Börger V, Bremer M, Ferrer-Tur R, Gockeln L, Stambouli O, Becic A, Giebel B. Mesenchymal Stem/Stromal Cell-Derived Extracellular Vesicles and Their Potential as Novel Immunomodulatory Therapeutic Agents. Int J Mol Sci 2017; 18:ijms18071450. [PMID: 28684664 PMCID: PMC5535941 DOI: 10.3390/ijms18071450] [Citation(s) in RCA: 276] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 06/28/2017] [Accepted: 06/30/2017] [Indexed: 11/16/2022] Open
Abstract
Extracellular vesicles (EVs), such as exosomes and microvesicles, have been identified as mediators of a newly-discovered intercellular communication system. They are essential signaling mediators in various physiological and pathophysiological processes. Depending on their origin, they fulfill different functions. EVs of mesenchymal stem/stromal cells (MSCs) have been found to promote comparable therapeutic activities as MSCs themselves. In a variety of in vivo models, it has been observed that they suppress pro-inflammatory processes and reduce oxidative stress and fibrosis. By switching pro-inflammatory into tolerogenic immune responses, MSC-EVs very likely promote tissue regeneration by creating a pro-regenerative environment allowing endogenous stem and progenitor cells to successfully repair affected tissues. Accordingly, MSC-EVs provide a novel, very promising therapeutic agent, which has already been successfully applied to humans. However, the MSC-EV production process has not been standardized, yet. Indeed, a collection of different protocols has been used for the MSC-EV production, characterization and application. By focusing on kidney, heart, liver and brain injuries, we have reviewed the major outcomes of published MSC-EV in vivo studies.
Collapse
Affiliation(s)
- Verena Börger
- Institute for Transfusion Medicine, University Hospital Essen, University Duisburg-Essen, Virchowstr. 179, 45147 Essen, Germany.
| | - Michel Bremer
- Institute for Transfusion Medicine, University Hospital Essen, University Duisburg-Essen, Virchowstr. 179, 45147 Essen, Germany.
| | - Rita Ferrer-Tur
- Institute for Transfusion Medicine, University Hospital Essen, University Duisburg-Essen, Virchowstr. 179, 45147 Essen, Germany.
| | - Lena Gockeln
- Institute for Transfusion Medicine, University Hospital Essen, University Duisburg-Essen, Virchowstr. 179, 45147 Essen, Germany.
| | - Oumaima Stambouli
- Institute for Transfusion Medicine, University Hospital Essen, University Duisburg-Essen, Virchowstr. 179, 45147 Essen, Germany.
| | - Amina Becic
- Institute for Transfusion Medicine, University Hospital Essen, University Duisburg-Essen, Virchowstr. 179, 45147 Essen, Germany.
| | - Bernd Giebel
- Institute for Transfusion Medicine, University Hospital Essen, University Duisburg-Essen, Virchowstr. 179, 45147 Essen, Germany.
| |
Collapse
|
6
|
Abstract
The highly conserved Notch signalling pathway functions in many different developmental and homeostatic processes, which raises the question of how this pathway can achieve such diverse outcomes. With a direct route from the membrane to the nucleus, the Notch pathway has fewer opportunities for regulation than do many other signalling pathways, yet it generates exquisitely patterned structures, including sensory hair cells and branched arterial networks. More confusingly, its activity promotes tissue growth and cancers in some circumstances but cell death and tumour suppression in others. Many different regulatory mechanisms help to shape the activity of the Notch pathway, generating functional outputs that are appropriate for each context. These mechanisms include the receptor-ligand landscape, the tissue topology, the nuclear environment and the connectivity of the regulatory networks.
Collapse
Affiliation(s)
- Sarah J Bray
- Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| |
Collapse
|
7
|
Takino K, Ohsawa S, Igaki T. Loss of Rab5 drives non-autonomous cell proliferation through TNF and Ras signaling in Drosophila. Dev Biol 2014; 395:19-28. [PMID: 25224221 DOI: 10.1016/j.ydbio.2014.09.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 08/26/2014] [Accepted: 09/05/2014] [Indexed: 01/16/2023]
Abstract
Deregulation of the endocytic machinery has been implicated in human cancers. However, the mechanism by which endocytic defects drive cancer development remains to be clarified. Here, we find through a genetic screen in Drosophila that loss of Rab5, a protein required for early endocytic trafficking, drives non-autonomous cell proliferation in imaginal epithelium. Our genetic data indicate that dysfunction of Rab5 leads to cell-autonomous accumulation of Eiger (a TNF homolog) and EGF receptor (EGFR), which causes activation of downstream JNK and Ras signaling, respectively. JNK signaling and its downstream component Cdc42 cooperate with Ras signaling to induce upregulation of a secreted growth factor Upd (an IL-6 homolog) through inactivation of the Hippo pathway. Such non-autonomous tissue growth triggered by Rab5 defect could contribute to epithelial homeostasis as well as cancer development within heterogeneous tumor microenvironment.
Collapse
Affiliation(s)
- Kyoko Takino
- Laboratory of Genetics, Graduate School of Biostudies, Kyoto University, Yoshida-Konoecho-cho, Sakyo-ku, Kyoto 606-8501, Japan; Division of Genetics, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Shizue Ohsawa
- Laboratory of Genetics, Graduate School of Biostudies, Kyoto University, Yoshida-Konoecho-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Tatsushi Igaki
- Laboratory of Genetics, Graduate School of Biostudies, Kyoto University, Yoshida-Konoecho-cho, Sakyo-ku, Kyoto 606-8501, Japan; PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan.
| |
Collapse
|
8
|
ARF1-GTP regulates Asrij to provide endocytic control of Drosophila blood cell homeostasis. Proc Natl Acad Sci U S A 2014; 111:4898-903. [PMID: 24707047 DOI: 10.1073/pnas.1303559111] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Drosophila melanogaster larval hematopoiesis is a well-established model to study mechanisms that regulate hematopoietic niche maintenance and control of blood cell precursor (prohemocyte) differentiation. Molecules that perturb niche function affect the balance between prohemocytes and differentiated hemocytes. The conserved hemocyte-specific endosomal protein Asrij is essential for niche function and prohemocyte maintenance. Elucidating how subcellular trafficking molecules can regulate signaling presents an important challenge. Here we show that Asrij function is mediated by the Ras family GTPase Arf79F, the Drosophila homolog of ADP ribosylation factor 1 (ARF1), essential for clathrin coat assembly, Golgi architecture, and vesicular trafficking. ARF1 is expressed in the larval lymph gland and in circulating hemocytes and interacts with Asrij. ARF1-depleted lymph glands show loss of niche cells and prohemocyte maintenance with increased differentiation. Inhibiting ARF1 activation by knocking down its guanine nucleotide exchange factor (Gartenzwerg) or overexpressing its GTPAse-activating protein showed that ARF1-GTP is essential for regulating niche size and maintaining stemness. Activated ARF1 regulates Asrij levels in blood cells thereby mediating Asrij function. Asrij controls crystal cell differentiation by affecting Notch trafficking. ARF1 perturbation also leads to aberrant Notch trafficking and the Notch intracellular domain is stalled in sorting endosomes. Thus, ARF1 can regulate Drosophila blood cell homeostasis by regulating Asrij endocytic function. ARF1 also regulates signals arising from the niche and differentiated cells by integrating the insulin-mediated and PDGF-VEGF receptor signaling pathways. We propose that the conserved ARF1-Asrij endocytic axis modulates signals that govern hematopoietic development. Thus, Asrij affords tissue-specific control of global mechanisms involved in molecular traffic.
Collapse
|
9
|
Abstract
The endosomal system provides a route whereby nutrients, viruses, and receptors are internalized. During the course of endocytosis, activated receptors can accumulate within endosomal structures and certain signal-transducing molecules can be recruited to endosomal membranes. In the context of signaling and cancer, they provide platforms within the cell from which signals can be potentiated or attenuated. Regulation of the duration of receptor signaling is a pivotal means of refining growth responses in cells. In cancers, this is often considered in terms of mutations that affect receptor tyrosine kinases and maintain them in hyperactivated states of dimerization and/or phosphorylation. However, disruption to the regulatory control exerted by the assembly of protein complexes within the endosomal network can also contribute to disease among which oncogenesis is characterized in part by dysregulated growth, enhanced cell survival, and changes in the expression of markers of differentiation. In this chapter, we will discuss the role of proteins that regulate in endocytosis as tumor suppressors or oncogenes and how changing the fate of internalized receptors and concomitant endosomal signaling can contribute to cancer.
Collapse
Affiliation(s)
- Nikolai Engedal
- Prostate Cancer Research Group, Centre for Molecular Medicine Norway, Nordic EMBL Partnership, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Ian G Mills
- Prostate Cancer Research Group, Centre for Molecular Medicine Norway, Nordic EMBL Partnership, University of Oslo and Oslo University Hospital, Oslo, Norway; Department of Cancer Prevention, Institute of Cancer Research, Oslo University Hospital, Oslo, Norway; Department of Urology, Oslo University Hospital, Oslo, Norway; Uro-Oncology Research Group, Cambridge Research Institute, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
10
|
Cytoplasmic interaction of the tumour suppressor protein hSNF5 with dynamin-2 controls endocytosis. Oncogene 2013; 33:3064-74. [PMID: 23851497 DOI: 10.1038/onc.2013.276] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 05/17/2013] [Accepted: 05/19/2013] [Indexed: 12/21/2022]
Abstract
Human SNF5 (hSNF5; INI1, SMARCB1 or BAF47) is a component of the human SWI/SNF chromatin remodelling complex and a tumour suppressor mutated in rhabdoid tumours. It also associates with the integrase of the human immunodeficiency virus (HIV)-1. We show by fluorescence loss in photobleaching that hSNF5 is constantly shuttling between the nucleus and the cytoplasm, raising the question of what the role of hSNF5 is in the cytoplasm. Here, we demonstrate that hSNF5 directly interacts with the GTPase dynamin-2 (DNM2) in the cytoplasm. DNM2 is a large GTPase involved in endocytosis and vesicle dynamics, which has been related to HIV-1 internalization. We show that hSNF5 colocalizes with DNM2 in endocytic vesicles. Depletion of hSNF5, but not of other components of the SWI/SNF complex, destabilizes DNM2 and impairs DNM2-dependent endocytosis. Furthermore, we show that hSNF5 inhibits assembly-stimulated DNM2 GTPase activity but not basal GTPase activity in vitro. Altogether, these results indicate that hSNF5 affects both the stability and the activity of DNM2, uncovering an unexpected role of hSNF5 in modulating endocytosis, and open new perspectives in understanding the role of hSNF5 in tumour genesis.
Collapse
|
11
|
The Scribble-Dlg-Lgl polarity module in development and cancer: from flies to man. Essays Biochem 2012; 53:141-68. [PMID: 22928514 DOI: 10.1042/bse0530141] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The Scribble, Par and Crumbs modules were originally identified in the vinegar (fruit) fly, Drosophila melanogaster, as being critical regulators of apico-basal cell polarity. In the present chapter we focus on the Scribble polarity module, composed of Scribble, discs large and lethal giant larvae. Since the discovery of the role of the Scribble polarity module in apico-basal cell polarity, these proteins have also been recognized as having important roles in other forms of polarity, as well as regulation of the actin cytoskeleton, cell signalling and vesicular trafficking. In addition to these physiological roles, an important role for polarity proteins in cancer progression has also been uncovered, with loss of polarity and tissue architecture being strongly correlated with metastatic disease.
Collapse
|
12
|
Mitochondrial defect drives non-autonomous tumour progression through Hippo signalling in Drosophila. Nature 2012; 490:547-51. [PMID: 23023132 DOI: 10.1038/nature11452] [Citation(s) in RCA: 151] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 07/30/2012] [Indexed: 12/17/2022]
Abstract
Mitochondrial respiratory function is frequently impaired in human cancers. However, the mechanisms by which mitochondrial dysfunction contributes to tumour progression remain elusive. Here we show in Drosophila imaginal epithelium that defects in mitochondrial function potently induce tumour progression of surrounding tissue in conjunction with oncogenic Ras. Our data show that Ras activation and mitochondrial dysfunction cooperatively stimulate production of reactive oxygen species, which causes activation of c-Jun amino (N)-terminal kinase (JNK) signalling. JNK cooperates with oncogenic Ras to inactivate the Hippo pathway, leading to upregulation of its targets Unpaired (an interleukin-6 homologue) and Wingless (a Wnt homologue). Mitochondrial dysfunction in Ras-activated cells further cooperates with Ras signalling in neighbouring cells with normal mitochondrial function, causing benign tumours to exhibit metastatic behaviour. Our findings provide a mechanistic basis for interclonal tumour progression driven by mitochondrial dysfunction and oncogenic Ras.
Collapse
|
13
|
D'Souza-Schorey C, Clancy JW. Tumor-derived microvesicles: shedding light on novel microenvironment modulators and prospective cancer biomarkers. Genes Dev 2012; 26:1287-99. [PMID: 22713869 DOI: 10.1101/gad.192351.112] [Citation(s) in RCA: 421] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Recent advances in the study of tumor-derived microvesicles reveal new insights into the cellular basis of disease progression and the potential to translate this knowledge into innovative approaches for cancer diagnostics and personalized therapy. Tumor-derived microvesicles are heterogeneous membrane-bound sacs that are shed from the surfaces of tumor cells into the extracellular environment. They have been thought to deposit paracrine information and create paths of least resistance, as well as be taken up by cells in the tumor microenvironment to modulate the molecular makeup and behavior of recipient cells. The complexity of their bioactive cargo-which includes proteins, RNA, microRNA, and DNA-suggests multipronged mechanisms by which microvesicles can condition the extracellular milieu to facilitate disease progression. The formation of these shed vesicles likely involves both a redistribution of surface lipids and the vertical trafficking of cargo to sites of microvesicle biogenesis at the cell surface. Current research also suggests that molecular profiling of these structures could unleash their potential as circulating biomarkers as well as platforms for personalized medicine. Thus, new and improved strategies for microvesicle identification, isolation, and capture will have marked implications in point-of-care diagnostics for cancer patients.
Collapse
Affiliation(s)
- Crislyn D'Souza-Schorey
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556, USA.
| | | |
Collapse
|
14
|
Song Y, Lu B. Interaction of Notch signaling modulator Numb with α-Adaptin regulates endocytosis of Notch pathway components and cell fate determination of neural stem cells. J Biol Chem 2012; 287:17716-17728. [PMID: 22474327 DOI: 10.1074/jbc.m112.360719] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The ability to balance self-renewal and differentiation is a hallmark of stem cells. In Drosophila neural stem cells (NSCs), Numb/Notch (N) signaling plays a key role in this process. However, the molecular and cellular mechanisms underlying Numb function in a stem cell setting remain poorly defined. Here we show that α-Adaptin (α-Ada), a subunit of the endocytic AP-2 complex, interacts with Numb through a new mode of interaction to regulate NSC homeostasis. In α-ada mutants, N pathway component Sanpodo and the N receptor itself exhibited altered trafficking, and N signaling was up-regulated in the intermediate progenitors of type II NSC lineages, leading to their transformation into ectopic NSCs. Surprisingly, although the Ear domain of α-Ada interacts with the C terminus of Numb and is important for α-Ada function in the sensory organ precursor lineage, it was dispensable in the NSCs. Instead, α-Ada could regulate Sanpodo, N trafficking, and NSC homeostasis by interacting with Numb through new domains in both proteins previously not known to mediate their interaction. This interaction could be bypassed when α-Ada was directly fused to the phospho-tyrosine binding domain of Numb. Our results identify a critical role for the AP-2-mediated endocytosis in regulating NSC behavior and reveal a new mechanism by which Numb regulates NSC behavior through N. These findings are likely to have important implications for cancer biology.
Collapse
Affiliation(s)
- Yan Song
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305
| | - Bingwei Lu
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305.
| |
Collapse
|
15
|
Robinson BS, Moberg KH. Drosophila endocytic neoplastic tumor suppressor genes regulate Sav/Wts/Hpo signaling and the c-Jun N-terminal kinase pathway. Cell Cycle 2011; 10:4110-8. [PMID: 22101275 DOI: 10.4161/cc.10.23.18243] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Genetic screens in the fruit fly Drosophila melanogaster have identified a class of neoplastic tumor suppressor genes (endocytic nTSGs), which encode proteins that localize to endosomes and facilitate the trafficking of membrane-bound receptors and adhesion molecules into the degradative lysosome. Loss of endocytic nTSGs transforms imaginal disc epithelia into highly proliferative, invasive tissues that fail to differentiate and display defects in cellular apicobasal polarity, adhesion and tissue architecture. As vertebrate homologs of some Drosophila nTSGs are linked to tumor formation, identifying molecular changes in signaling associated with nTSG loss could inform understanding of neoplastic transformation in vertebrates. Here we show that mutations in genes that act at multiple steps of the endolysosomal pathway lead to autonomous activation of the Sav/Wts/Hpo (SWH) transcriptional effector Yki (YAP/TAZ in vertebrates) and the Jun N-terminal kinase (JNK), which is known to promote Yki activity in cells with disrupted polarity. Yki and JNK activity are elevated by mutations at multiple steps in the endolysosomal pathway including mutations in the AP-2σ gene, which encodes a component of the AP-2 adaptor complex that recruits cargoes into clathrin-coated pits for subsequent internalization. Moreover, reduction of JNK activity can decrease elevated Yki-signaling caused by altered endocytosis. These studies reveal a broad requirement for components of the endocytic pathway in regulating SWH and JNK outputs, and place Drosophila endocytic nTSGs into a network that involving two major signaling pathways implicated in oncogenesis.
Collapse
Affiliation(s)
- Brian S Robinson
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
| | | |
Collapse
|
16
|
Ortiz S, Lee W, Smith D, Forman SJ, Lee TD, Liu CP. Comparative analyses of differentially induced T-cell receptor-mediated phosphorylation pathways in T lymphoma cells. Exp Biol Med (Maywood) 2010; 235:1450-63. [PMID: 21127342 PMCID: PMC3247199 DOI: 10.1258/ebm.2010.010056] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Activation of T lymphoma cells expressing Syk, but not ZAP-70 tyrosine kinase, has been shown to negatively regulate cell activation and activation-induced cell death (AICD), perhaps due to differential induction of tyrosine phosphorylation modified proteins. To better understand the role of these proteins and their associated molecules/pathways, we studied a previously described model of T lymphoma cells expressing either a kinase-activated chimeric Syk or ZAP-70 genetically linked to T-cell receptor (TCR) ζ chain (Z/Syk or Z/ZAP cells, respectively). To help identify molecules and pathways linked to cell activation or AICD, a comparative semi-quantitative proteomics-based approach was utilized to analyze tyrosine-phosphorylated protein immunoprecipitates from two-minute short-term activated Z/Syk or Z/ZAP cells. Using the resulting bioinformatics data-sets, we identified several differentially immunoprecipitated proteins that could be validated biochemically. More tyrosine-phosphorylated and phosphotyrosine-associated proteins were found in Z/Syk than in Z/ZAP cells. Proteins involved in different unique functional pathways were induced in these cells and showed altered intermolecular interactions in varied pathways. Remarkably, 41% of differentially identified proteins in Z/Syk cells belonged to cell cycle or vesicle/trafficking pathways. In contrast, 21% of such proteins in Z/ZAP cells belonged to metabolism pathways. Therefore, molecular pathways involved in post-translational modifications linked to distinct cellular/physiological functions are differentially activated, which may contribute to varied activation and AICD responses of these cells. In summary, we identified proteins belonging to novel differentially activated pathways involved in TCR-mediated signaling, which may be targets for regulating activation and AICD of T lymphoma cells and for potential cancer therapy.
Collapse
Affiliation(s)
- Serina Ortiz
- Department of Immunology, Beckman Research Institute, City of Hope 1450 E. Duarte Rd., Duarte, CA 91010-3000
| | - Wenhui Lee
- Department of Immunology, Beckman Research Institute, City of Hope 1450 E. Duarte Rd., Duarte, CA 91010-3000
| | - David Smith
- Department of Information Sciences, Beckman Research Institute, City of Hope 1450 E. Duarte Rd., Duarte, CA 91010-3000
| | - Stephen J. Forman
- Department of Hematology, Beckman Research Institute, City of Hope 1450 E. Duarte Rd., Duarte, CA 91010-3000
| | - Terry D. Lee
- Department of Immunology, Beckman Research Institute, City of Hope 1450 E. Duarte Rd., Duarte, CA 91010-3000
| | - Chih-Pin Liu
- Department of Immunology, Beckman Research Institute, City of Hope 1450 E. Duarte Rd., Duarte, CA 91010-3000
- Department of Diabetes and Metabolism Research, Beckman Research Institute, City of Hope 1450 E. Duarte Rd., Duarte, CA 91010-3000
| |
Collapse
|
17
|
Tushir JS, Clancy J, Warren A, Wrobel C, Brugge JS, D'Souza-Schorey C. Unregulated ARF6 activation in epithelial cysts generates hyperactive signaling endosomes and disrupts morphogenesis. Mol Biol Cell 2010; 21:2355-66. [PMID: 20462959 PMCID: PMC2893997 DOI: 10.1091/mbc.e09-09-0824] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
This study shows that constitutive ARF6 activation during epithelial cyst morphogenesis promotes the formation of signaling endosomes that serve as platforms for hyperactive receptor signaling and leads to the generation of tumorigenic glandular phenotypes. Tumor development in glandular tissues is associated with structural alterations in the hollow ducts and spherical structures that comprise such tissues. We describe a signaling axis involving sustained activation of the GTP-binding protein, ARF6, that provokes dramatic changes in the organization of epithelial cysts, reminiscent of tumorigenic glandular phenotypes. In reconstituted basement membrane cultures of renal epithelial cysts, enhanced ARF6 activation induces the formation of cell-filled glandular structures with multiple lumens and disassembled cadherin-based cell–cell contacts. All of these alterations are accompanied by growth factor receptor internalization into signaling endosomes and reversed by blocking ARF6 activation or receptor endocytosis. Receptor localization in signaling endosomes results in hyperactive extracellular signal-regulated kinase signaling leading to Bcl-2 stabilization and aberrant cysts. Similarly, formation of hyperproliferative and disorganized mammary acini induced by chronic stimulation of colony-stimulating factor 1 receptor is coupled to endogenous ARF6 activation and constitutive receptor internalization and is reversed by ARF6 inhibition. These findings identify a previously unrecognized link between ARF6-regulated receptor internalization and events that drive dramatic alterations in cyst morphogenesis providing new mechanistic insight into the molecular processes that can promote epithelial glandular disruption.
Collapse
Affiliation(s)
- Jogender S Tushir
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | | | | | | | | | | |
Collapse
|
18
|
Bruce EA, Medcalf L, Crump CM, Noton SL, Stuart AD, Wise HM, Elton D, Bowers K, Digard P. Budding of filamentous and non-filamentous influenza A virus occurs via a VPS4 and VPS28-independent pathway. Virology 2009; 390:268-78. [PMID: 19524996 DOI: 10.1016/j.virol.2009.05.016] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Revised: 04/02/2009] [Accepted: 05/08/2009] [Indexed: 12/18/2022]
Abstract
The mechanism of membrane scission during influenza A virus budding has been the subject of controversy. We confirm that influenza M1 binds VPS28, a subunit of the ESCRT-1 complex. However, confocal microscopy of infected cells showed no marked colocalisation between M1 and VPS28 or VPS4 ESCRT proteins, or relocalisation of the cellular proteins. Trafficking of HA and M1 appeared normal when endosomal sorting was impaired by expression of inactive VPS4. Overexpression of either isoform of VPS28 or wildtype or dominant negative VPS4 proteins did not alter production of filamentous virions. SiRNA depletion of endogenous VPS28 had no significant effect on influenza virus replication. Furthermore, cells expressing wildtype or dominant-negative VPS4 replicated filamentous and non-filamentous strains of influenza to similar titres, indicating that influenza release is VPS4-independent. Overall, we see no role for the ESCRT pathway in influenza virus budding and the significance of the M1-VPS28 interaction remains to be determined.
Collapse
Affiliation(s)
- Emily A Bruce
- Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Di Fiore PP. Endocytosis, signaling and cancer, much more than meets the eye. Preface. Mol Oncol 2009; 3:273-9. [PMID: 19628439 DOI: 10.1016/j.molonc.2009.06.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Accepted: 06/12/2009] [Indexed: 11/24/2022] Open
Affiliation(s)
- Pier Paolo Di Fiore
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare at IFOM-IEO Campus, 20139 Milan, Italy.
| |
Collapse
|
20
|
Lahsnig C, Mikula M, Petz M, Zulehner G, Schneller D, van Zijl F, Huber H, Csiszar A, Beug H, Mikulits W. ILEI requires oncogenic Ras for the epithelial to mesenchymal transition of hepatocytes and liver carcinoma progression. Oncogene 2009; 28:638-50. [PMID: 19015638 PMCID: PMC2900603 DOI: 10.1038/onc.2008.418] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Revised: 09/11/2008] [Accepted: 10/01/2008] [Indexed: 12/13/2022]
Abstract
In human hepatocellular carcinoma (HCC), epithelial to mesenchymal transition (EMT) correlates with aggressiveness of tumors and poor survival. We employed a model of EMT based on immortalized p19(ARF) null hepatocytes (MIM), which display tumor growth upon expression of oncogenic Ras and undergo EMT through the synergism of Ras and transforming growth factor (TGF)-beta. Here, we show that the interleukin-related protein interleukin-like EMT inducer (ILEI), a novel EMT-, tumor- and metastasis-inducing protein, cooperates with oncogenic Ras to cause TGF-beta-independent EMT. Ras-transformed MIM hepatocytes overexpressing ILEI showed cytoplasmic E-cadherin, loss of ZO-1 and induction of alpha-smooth muscle actin as well as platelet-derived growth factor (PDGF)/PDGF-R isoforms. As shown by dominant-negative PDGF-R expression in these cells, ILEI-induced PDGF signaling was required for enhanced cell migration, nuclear accumulation of beta-catenin, nuclear pY-Stat3 and accelerated growth of lung metastases. In MIM hepatocytes expressing the Ras mutant V12-C40, ILEI collaborated with PI3K signaling resulting in tumor formation without EMT. Clinically, human HCC samples showed granular or cytoplasmic localization of ILEI correlating with well and poorly differentiated tumors, respectively. In conclusion, these data indicate that ILEI requires cooperation with oncogenic Ras to govern hepatocellular EMT through mechanisms involving PDGF-R/beta-catenin and PDGF-R/Stat3 signaling.
Collapse
Affiliation(s)
- C Lahsnig
- Division: Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Borschke-Gasse 8a, Vienna, Austria
| | - M Mikula
- Research Institute of Molecular Pathology, Dr Bohr-Gasse 7, Vienna, Austria
| | - M Petz
- Research Institute of Molecular Pathology, Dr Bohr-Gasse 7, Vienna, Austria
| | - G Zulehner
- Division: Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Borschke-Gasse 8a, Vienna, Austria
| | - D Schneller
- Division: Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Borschke-Gasse 8a, Vienna, Austria
| | - F van Zijl
- Division: Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Borschke-Gasse 8a, Vienna, Austria
| | - H Huber
- Division: Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Borschke-Gasse 8a, Vienna, Austria
| | - A Csiszar
- Research Institute of Molecular Pathology, Dr Bohr-Gasse 7, Vienna, Austria
| | - H Beug
- Research Institute of Molecular Pathology, Dr Bohr-Gasse 7, Vienna, Austria
| | - W Mikulits
- Division: Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Borschke-Gasse 8a, Vienna, Austria
| |
Collapse
|
21
|
Abstract
The neoplastic tumour suppressors, Scribble, Dlg and Lgl, originally discovered in the vinegar fly Drosophila melanogaster, are currently being actively studied for their potential role in mammalian tumourigenesis. In Drosophila, these tumour suppressors function in a common genetic pathway to regulate apicobasal cell polarity and also play important roles in the control of cell proliferation, survival, differentiation and in cell migration/invasion. The precise mechanism by which Scribble, Dlg and Lgl function is not clear; however, they have been implicated in the regulation of signalling pathways, vesicle trafficking and in the Myosin II-actin cytoskeleton. We review the evidence for the involvement of Scribble, Dlg, and Lgl in cancer, and how the various functions ascribed to these tumour suppressors in Drosophila and mammalian systems may impact on the process of tumourigenesis.
Collapse
|
22
|
Abstract
From the signaling point of view, endocytosis has long been regarded as a major mechanism of attenuation, through the degradation of signaling receptors and, in some cases, of their ligands. This outlook has changed, over the past decade, as it has become clear that signaling persists in the endocytic route, and that intracellular endocytic stations (the 'signaling endosomes') actually contribute to the sorting of signals in space and time. Endocytosis-mediated recycling of receptors and of signaling molecules to specific regions of the plasma membrane is also coming into focus as a major mechanism in the execution of spatially restricted functions, such as cell motility. In addition, emerging evidence connects endocytosis as a whole, or individual endocytic proteins, to complex cellular programs, such as the control of the cell cycle, mitosis, apoptosis and cell fate determination. Thus, endocytosis seems to be deeply ingrained into the cell regulation blueprint and its subversion is predicted to play an important role in human diseases: first and foremost, cancer.
Collapse
Affiliation(s)
- Letizia Lanzetti
- Dipartimento di Scienze Oncologiche, Università degli Studi di Torino, Istituto per la Ricerca e la Cura del Cancro, Candiolo, Turin, Italy
| | | |
Collapse
|
23
|
Karp CM, Tan TT, Mathew R, Nelson D, Mukherjee C, Degenhardt K, Karantza-Wadsworth V, White E. Role of the polarity determinant crumbs in suppressing mammalian epithelial tumor progression. Cancer Res 2008; 68:4105-15. [PMID: 18519669 PMCID: PMC2696887 DOI: 10.1158/0008-5472.can-07-6814] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Most tumors are epithelial-derived, and although disruption of polarity and aberrant cellular junction formation is a poor prognosticator in human cancer, the role of polarity determinants in oncogenesis is poorly understood. Using in vivo selection, we identified a mammalian orthologue of the Drosophila polarity regulator crumbs as a gene whose loss of expression promotes tumor progression. Immortal baby mouse kidney epithelial cells selected in vivo to acquire tumorigenicity displayed dramatic repression of crumbs3 (crb3) expression associated with disruption of tight junction formation, apicobasal polarity, and contact-inhibited growth. Restoration of crb3 expression restored junctions, polarity, and contact inhibition while suppressing migration and metastasis. These findings suggest a role for mammalian polarity determinants in suppressing tumorigenesis that may be analogous to the well-studied polarity tumor suppressor mechanisms in Drosophila.
Collapse
Affiliation(s)
- Cristina M. Karp
- Center for Advanced Biotechnology and Medicine Department of Molecular Biology and Biochemistry, Rutgers University, 679 Hoes Lane, Piscataway, New Jersey, 08854
| | - Ting Ting Tan
- Center for Advanced Biotechnology and Medicine Department of Molecular Biology and Biochemistry, Rutgers University, 679 Hoes Lane, Piscataway, New Jersey, 08854
| | - Robin Mathew
- Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, 675 Hoes Lane, Piscataway, New Jersey, 08854
| | - Deidre Nelson
- Center for Advanced Biotechnology and Medicine Department of Molecular Biology and Biochemistry, Rutgers University, 679 Hoes Lane, Piscataway, New Jersey, 08854
| | - Chandreyee Mukherjee
- Center for Advanced Biotechnology and Medicine Department of Molecular Biology and Biochemistry, Rutgers University, 679 Hoes Lane, Piscataway, New Jersey, 08854
| | - Kurt Degenhardt
- Center for Advanced Biotechnology and Medicine Department of Molecular Biology and Biochemistry, Rutgers University, 679 Hoes Lane, Piscataway, New Jersey, 08854
| | - Vassiliki Karantza-Wadsworth
- Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, 675 Hoes Lane, Piscataway, New Jersey, 08854
- The Cancer Institute of New Jersey, 195 Little Albany Street, New Brunswick, New Jersey, 08903
| | - Eileen White
- Center for Advanced Biotechnology and Medicine Department of Molecular Biology and Biochemistry, Rutgers University, 679 Hoes Lane, Piscataway, New Jersey, 08854
- The Cancer Institute of New Jersey, 195 Little Albany Street, New Brunswick, New Jersey, 08903
| |
Collapse
|
24
|
Gosens I, den Hollander AI, Cremers FPM, Roepman R. Composition and function of the Crumbs protein complex in the mammalian retina. Exp Eye Res 2008; 86:713-26. [PMID: 18407265 DOI: 10.1016/j.exer.2008.02.005] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2007] [Revised: 01/09/2008] [Accepted: 02/18/2008] [Indexed: 11/27/2022]
Abstract
The Crumbs proteins (CRBs) are transmembrane proteins, homologous to Drosophila Crumbs, with a key role in defining the apical membrane domain in photoreceptors as well as in embryonic epithelia. Crumbs proteins are conserved between species and their intracellular domains are involved in organizing a conserved macromolecular protein scaffold with important roles in cell polarity as well as morphogenesis and maintenance of the retina. Mutations in the gene encoding human CRB1, the first one identified out of the three human orthologs, have been associated with a number of retinal dystrophies including Leber amaurosis and retinitis pigmentosa type 12. Although no other mammalian Crumbs complex members as of yet have been associated with retinal degeneration, disruption of different zebrafish and fruitfly orthologs can lead to various retinal defects. The core Crumbs complex localizes apical to the outer limiting membrane, where photoreceptors and Müller glia contact each other. Correct functioning of Crumbs ensures adhesion between these cells by an unknown mechanism. This review summarizes the current view on the composition and function of the Crumbs prsotein complex in the mammalian retina. Recently, a number of new members of the Crumbs protein complex have been identified. These include most members of the membrane palmitoylated protein family (MPP), involved in assembly of macromolecular protein complexes. Some components of the complex are found to exert a function in the photoreceptor synapses and/or at the region of the connecting cilium. Studies using polarized cell cultures or model organisms, like Drosophila and zebrafish, suggest important links of the Crumbs protein complex to several biological processes in the mammalian eye, including retinal patterning, ciliogenesis and vesicular transport.
Collapse
Affiliation(s)
- Ilse Gosens
- Department of Human Genetics and Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Geert Grooteplein Zuid 10, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
25
|
Vaccari T, Lu H, Kanwar R, Fortini ME, Bilder D. Endosomal entry regulates Notch receptor activation in Drosophila melanogaster. J Cell Biol 2008; 180:755-62. [PMID: 18299346 PMCID: PMC2265571 DOI: 10.1083/jcb.200708127] [Citation(s) in RCA: 218] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2007] [Accepted: 01/25/2008] [Indexed: 11/26/2022] Open
Abstract
Signaling through the transmembrane receptor Notch is widely used throughout animal development and is a major regulator of cell proliferation and differentiation. During canonical Notch signaling, internalization and recycling of Notch ligands controls signaling activity, but the involvement of endocytosis in activation of Notch itself is not well understood. To address this question, we systematically assessed Notch localization, processing, and signaling in a comprehensive set of Drosophila melanogaster mutants that block access of cargo to different endocytic compartments. We find that gamma-secretase cleavage and signaling of endogenous Notch is reduced in mutants that impair entry into the early endosome but is enhanced in mutants that increase endosomal retention. In mutants that block endosomal entry, we also uncover an alternative, low-efficiency Notch trafficking route that can contribute to signaling. Our data show that endosomal access of the Notch receptor is critical to achieve physiological levels of signaling and further suggest that altered residence in distinct endocytic compartments could underlie pathologies involving aberrant Notch pathway activation.
Collapse
Affiliation(s)
- Thomas Vaccari
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | | | | | | | | |
Collapse
|
26
|
Roepstorff K, Grøvdal L, Grandal M, Lerdrup M, van Deurs B. Endocytic downregulation of ErbB receptors: mechanisms and relevance in cancer. Histochem Cell Biol 2008; 129:563-78. [PMID: 18288481 PMCID: PMC2323030 DOI: 10.1007/s00418-008-0401-3] [Citation(s) in RCA: 156] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2008] [Indexed: 12/14/2022]
Abstract
ErbB receptors (EGFR (ErbB1), ErbB2, ErbB3, and ErbB4) are important regulators of normal growth and differentiation, and they are involved in the pathogenesis of cancer. Following ligand binding and receptor activation, EGFR is endocytosed and transported to lysosomes where the receptor is degraded. This downregulation of EGFR is a complex and tightly regulated process. The functions of ErbB2, ErbB3, and ErbB4 are also regulated by endocytosis to some extent, although the current knowledge of these processes is sparse. Impaired endocytic downregulation of signaling receptors is frequently associated with cancer, since it can lead to increased and uncontrolled receptor signaling. In this review we describe the current knowledge of ErbB receptor endocytic downregulation. In addition, we outline how ErbB receptors can escape endocytic downregulation in cancer, and we discuss how targeted anti-cancer therapy may induce endocytic downregulation of ErbB receptors.
Collapse
Affiliation(s)
- Kirstine Roepstorff
- Department of Cellular and Molecular Medicine, the Panum Institute, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark.
| | | | | | | | | |
Collapse
|
27
|
Vajjhala PR, Nguyen CH, Landsberg MJ, Kistler C, Gan AL, King GF, Hankamer B, Munn AL. The Vps4 C-terminal helix is a critical determinant for assembly and ATPase activity and has elements conserved in other members of the meiotic clade of AAA ATPases. FEBS J 2008; 275:1427-1449. [PMID: 18266866 DOI: 10.1111/j.1742-4658.2008.06300.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Sorting of membrane proteins into intralumenal endosomal vesicles, multivesicular body (MVB) sorting, is critical for receptor down regulation, antigen presentation and enveloped virus budding. Vps4 is an AAA ATPase that functions in MVB sorting. Although AAA ATPases are oligomeric, mechanisms that govern Vps4 oligomerization and activity remain elusive. Vps4 has an N-terminal microtubule interacting and trafficking domain required for endosome recruitment, an AAA domain containing the ATPase catalytic site and a beta domain, and a C-terminal alpha helix positioned close to the catalytic site in the 3D structure. Previous attempts to identify the role of the C-terminal helix have been unsuccessful. Here, we show that the C-terminal helix is important for Vps4 assembly and ATPase activity in vitro and function in vivo, but not endosome recruitment or interactions with Vta1 or ESCRT-III. Unlike the beta domain, which is also important for Vps4 assembly, the C-terminal helix is not required in vivo for Vps4 homotypic interaction or dominant-negative effects of Vps4-E233Q, carrying a mutation in the ATP hydrolysis site. Vta1 promotes assembly of hybrid complexes comprising Vps4-E233Q and Vps4 lacking an intact C-terminal helix in vitro. Formation of catalytically active hybrid complexes demonstrates an intersubunit catalytic mechanism for Vps4. One end of the C-terminal helix lies in close proximity to the second region of homology (SRH), which is important for assembly and intersubunit catalysis in AAA ATPases. We propose that Vps4 SRH function requires an intact C-terminal helix. Co-evolution of a distinct Vps4 SRH and C-terminal helix in meiotic clade AAA ATPases supports this possibility.
Collapse
Affiliation(s)
- Parimala R Vajjhala
- Institute for Molecular Bioscience, The University of Queensland, Australia., ARC Special Research Centre for Functional and Applied Genomics, The University of Queensland, Australia
| | - Chau H Nguyen
- Institute for Molecular Bioscience, The University of Queensland, Australia., ARC Special Research Centre for Functional and Applied Genomics, The University of Queensland, Australia
| | | | - Carol Kistler
- Institute for Molecular Bioscience, The University of Queensland, Australia., ARC Special Research Centre for Functional and Applied Genomics, The University of Queensland, Australia
| | - Ai-Lin Gan
- Institute for Molecular Bioscience, The University of Queensland, Australia., ARC Special Research Centre for Functional and Applied Genomics, The University of Queensland, Australia
| | - Glenn F King
- Institute for Molecular Bioscience, The University of Queensland, Australia
| | - Ben Hankamer
- Institute for Molecular Bioscience, The University of Queensland, Australia
| | - Alan L Munn
- Institute for Molecular Bioscience, The University of Queensland, Australia., ARC Special Research Centre for Functional and Applied Genomics, The University of Queensland, Australia., School of Biomedical Sciences, The University of Queensland, Australia., School of Medical Science, Griffith University, Australia
| |
Collapse
|
28
|
Doronkin S, Reiter LT. Drosophila orthologues to human disease genes: an update on progress. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2008; 82:1-32. [PMID: 18929137 DOI: 10.1016/s0079-6603(08)00001-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Sergey Doronkin
- Department of Neurology, Univeristy of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | | |
Collapse
|
29
|
Abstract
The development of cancer is a multistep process in which the DNA of a single cell accumulates mutations in genes that control essential cellular processes. Loss of cell-cell adhesion and cell polarity is commonly observed in advanced tumours and correlates well with their invasion into adjacent tissues and the formation of metastases. Growing evidence indicates that loss of cell-cell adhesion and cell polarity may also be important in early stages of cancer. The strongest hints in this direction come from studies on tumour suppressor genes in the fruitfly Drosophila melanogaster, which have revealed their importance in the control of apical-basal cell polarity.
Collapse
Affiliation(s)
- Andreas Wodarz
- Department of Stem Cell Biology, DFG Research Center for Molecular Physiology of the Brain (CMPB), University of Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany.
| | | |
Collapse
|
30
|
Sasamura T, Ishikawa HO, Sasaki N, Higashi S, Kanai M, Nakao S, Ayukawa T, Aigaki T, Noda K, Miyoshi E, Taniguchi N, Matsuno K. The O-fucosyltransferase O-fut1 is an extracellular component that is essential for the constitutive endocytic trafficking of Notch in Drosophila. Development 2007; 134:1347-1356. [PMID: 17329366 DOI: 10.1242/dev.02811] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Notch is a transmembrane receptor that mediates the cell-cell interactions necessary for many cell-fate decisions. Endocytic trafficking of Notch plays important roles in the activation and downregulation of this receptor. A Drosophila O-FucT-1 homolog, encoded by O-fut1, catalyzes the O-fucosylation of Notch, a modification essential for Notch signaling and ligand binding. It was recently proposed that O-fut1 acts as a chaperon for Notch in the endoplasmic reticulum and is required for Notch to exit the endoplasmic reticulum. Here, we report that O-fut1 has additional functions in the endocytic transportation of Notch. O-fut1 was indispensable for the constitutive transportation of Notch from the plasma membrane to the early endosome, which we show was independent of the O-fucosyltransferase activity of O-fut1. We also found that O-fut1 promoted the turnover of Notch, which consequently downregulated Notch signaling. O-fut1 formed a stable complex with the extracellular domain of Notch. In addition, O-fut1 protein added to conditioned medium and endocytosed was sufficient to rescue normal Notch transportation to the early endosome in O-fut1 knockdown cells. Thus, an extracellular interaction between Notch and O-fut1 is essential for the normal endocytic transportation of Notch. We propose that O-fut1 is the first example, except for ligands, of a molecule that is required extracellularly for receptor transportation by endocytosis.
Collapse
Affiliation(s)
- Takeshi Sasamura
- Precursory Research for Embryonic Science and Technology (PRESTO Science and Technology Agency, 4-1-8 Honcho Kawaguchi, Saitama, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|