1
|
de Bresser CJM, de Krijger RR. The Molecular Classification of Pheochromocytomas and Paragangliomas: Discovering the Genomic and Immune Landscape of Metastatic Disease. Endocr Pathol 2024; 35:279-292. [PMID: 39466488 DOI: 10.1007/s12022-024-09830-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/15/2024] [Indexed: 10/30/2024]
Abstract
Pheochromocytomas (PCCs) and paragangliomas (PGLs, together PPGLs) are the most hereditary tumors known. PPGLs were considered benign, but the fourth edition of the World Health Organisation (WHO) classification redefined all PPGLs as malignant neoplasms with variable metastatic potential. The metastatic rate differs based on histopathology, genetic background, size, and location of the tumor. The challenge in predicting metastatic disease lies in the absence of a clear genotype-phenotype correlation among the more than 20 identified genetic driver variants. Recent advances in molecular clustering based on underlying genetic alterations have paved the way for improved cluster-specific personalized treatments. However, despite some clusters demonstrating a higher propensity for metastatic disease, cluster-specific therapies have not yet been widely adopted in clinical practice. Comprehensive genomic profiling and transcriptomic analyses of large PPGL cohorts have identified potential new biomarkers that may influence metastatic potential. It appears that no single biomarker alone can reliably predict metastatic risk; instead, a combination of these biomarkers may be necessary to develop an effective prediction model for metastatic disease. This review evaluates current guidelines and recent genomic and transcriptomic findings, with the aim of accurately identifying novel biomarkers that could contribute to a predictive model for mPPGLs, thereby enhancing patient care and outcomes.
Collapse
Affiliation(s)
- Carolijn J M de Bresser
- Department of Vascular Surgery, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Ronald R de Krijger
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands.
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands.
| |
Collapse
|
2
|
Grit JL, McGee LE, Tovar EA, Essenburg CJ, Wolfrum E, Beddows I, Williams K, Sheridan RTC, Schipper JL, Adams M, Arumugam M, Vander Woude T, Gurunathan S, Field JM, Wulfkuhle J, Petricoin EF, Graveel CR, Steensma MR. p53 modulates kinase inhibitor resistance and lineage plasticity in NF1-related MPNSTs. Oncogene 2024; 43:1411-1430. [PMID: 38480916 PMCID: PMC11068581 DOI: 10.1038/s41388-024-03000-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 02/16/2024] [Accepted: 03/01/2024] [Indexed: 05/05/2024]
Abstract
Malignant peripheral nerve sheath tumors (MPNSTs) are chemotherapy resistant sarcomas that are a leading cause of death in neurofibromatosis type 1 (NF1). Although NF1-related MPNSTs derive from neural crest cell origin, they also exhibit intratumoral heterogeneity. TP53 mutations are associated with significantly decreased survival in MPNSTs, however the mechanisms underlying TP53-mediated therapy responses are unclear in the context of NF1-deficiency. We evaluated the role of two commonly altered genes, MET and TP53, in kinome reprograming and cellular differentiation in preclinical MPNST mouse models. We previously showed that MET amplification occurs early in human MPNST progression and that Trp53 loss abrogated MET-addiction resulting in MET inhibitor resistance. Here we demonstrate a novel mechanism of therapy resistance whereby p53 alters MET stability, localization, and downstream signaling leading to kinome reprogramming and lineage plasticity. Trp53 loss also resulted in a shift from RAS/ERK to AKT signaling and enhanced sensitivity to MEK and mTOR inhibition. In response to MET, MEK and mTOR inhibition, we observed broad and heterogeneous activation of key differentiation genes in Trp53-deficient lines suggesting Trp53 loss also impacts lineage plasticity in MPNSTs. These results demonstrate the mechanisms by which p53 loss alters MET dependency and therapy resistance in MPNSTS through kinome reprogramming and phenotypic flexibility.
Collapse
Affiliation(s)
- Jamie L Grit
- Department of Cell Biology, Van Andel Research Institute, Grand Rapids, MI, 49503, USA
| | - Lauren E McGee
- Department of Cell Biology, Van Andel Research Institute, Grand Rapids, MI, 49503, USA
| | - Elizabeth A Tovar
- Department of Cell Biology, Van Andel Research Institute, Grand Rapids, MI, 49503, USA
| | - Curt J Essenburg
- Department of Cell Biology, Van Andel Research Institute, Grand Rapids, MI, 49503, USA
| | - Emily Wolfrum
- Bioinformatics & Biostatistics Core, Van Andel Research Institute, Grand Rapids, MI, 49503, USA
| | - Ian Beddows
- Department of Cell Biology, Van Andel Research Institute, Grand Rapids, MI, 49503, USA
| | - Kaitlin Williams
- Department of Cell Biology, Van Andel Research Institute, Grand Rapids, MI, 49503, USA
| | | | - Joshua L Schipper
- Flow Cytometry Core, Van Andel Research Institute, Grand Rapids, MI, 49503, USA
| | - Marie Adams
- Genomics Core, Van Andel Research Institute, Grand Rapids, MI, 49503, USA
| | - Menusha Arumugam
- Department of Cell Biology, Van Andel Research Institute, Grand Rapids, MI, 49503, USA
| | - Thomas Vander Woude
- Department of Cell Biology, Van Andel Research Institute, Grand Rapids, MI, 49503, USA
| | - Sharavana Gurunathan
- Department of Pharmacology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Jeffrey M Field
- Department of Pharmacology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Julia Wulfkuhle
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, 20110, USA
| | - Emanuel F Petricoin
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, 20110, USA
| | - Carrie R Graveel
- Department of Cell Biology, Van Andel Research Institute, Grand Rapids, MI, 49503, USA
| | - Matthew R Steensma
- Department of Cell Biology, Van Andel Research Institute, Grand Rapids, MI, 49503, USA.
- Helen DeVos Children's Hospital, Corewell Health System, Grand Rapids, MI, 49503, USA.
- Michigan State University College of Human Medicine, Grand Rapids, MI, 49503, USA.
| |
Collapse
|
3
|
Na B, Shah S, Nghiemphu PL. Cancer Predisposition Syndromes in Neuro-oncology. Semin Neurol 2024; 44:16-25. [PMID: 38096910 DOI: 10.1055/s-0043-1777702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Although most primary central and peripheral nervous system (NS) tumors occur sporadically, there are a subset that may arise in the context of a cancer predisposition syndrome. These syndromes occur due to a pathogenic mutation in a gene that normally functions as a tumor suppressor. With increased understanding of the molecular pathogenesis of these tumors, more people have been identified with a cancer predisposition syndrome. Identification is crucial, as this informs surveillance, diagnosis, and treatment options. Moreover, relatives can also be identified through genetic testing. Although there are many cancer predisposition syndromes that increase the risk of NS tumors, in this review, we focus on three of the most common cancer predisposition syndromes, neurofibromatosis type 1, neurofibromatosis type 2, and tuberous sclerosis complex type 1 and type 2, emphasizing the clinical manifestations, surveillance guidelines, and treatment options.
Collapse
Affiliation(s)
- Brian Na
- Department of Neurology, UCLA David Geffen School of Medicine, Los Angeles, California
| | - Shilp Shah
- Department of Bioengineering, UCLA Samueli School of Engineering, Los Angeles, California
| | | |
Collapse
|
4
|
Wang J, Calizo A, Zhang L, Pino JC, Lyu Y, Pollard K, Zhang X, Larsson AT, Conniff E, Llosa NJ, Wood DK, Largaespada DA, Moody SE, Gosline SJ, Hirbe AC, Pratilas CA. CDK4/6 inhibition enhances SHP2 inhibitor efficacy and is dependent upon RB function in malignant peripheral nerve sheath tumors. SCIENCE ADVANCES 2023; 9:eadg8876. [PMID: 38000020 PMCID: PMC10672174 DOI: 10.1126/sciadv.adg8876] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023]
Abstract
Malignant peripheral nerve sheath tumors (MPNSTs) are highly aggressive soft tissue sarcomas with limited treatment options, and new effective therapeutic strategies are desperately needed. We observe antiproliferative potency of genetic depletion of PTPN11 or pharmacological inhibition using the SHP2 inhibitor (SHP2i) TNO155. Our studies into the signaling response to SHP2i reveal that resistance to TNO155 is partially mediated by reduced RB function, and we therefore test the addition of a CDK4/6 inhibitor (CDK4/6i) to enhance RB activity and improve TNO155 efficacy. In combination, TNO155 attenuates the adaptive response to CDK4/6i, potentiates its antiproliferative effects, and converges on enhancement of RB activity, with greater suppression of cell cycle and inhibitor-of-apoptosis proteins, leading to deeper and more durable antitumor activity in in vitro and in vivo patient-derived models of MPNST, relative to either single agent. Overall, our study provides timely evidence to support the clinical advancement of this combination strategy in patients with MPNST and other tumors driven by loss of NF1.
Collapse
Affiliation(s)
- Jiawan Wang
- Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center (SKCCC) at Johns Hopkins, Department of Oncology and Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ana Calizo
- Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center (SKCCC) at Johns Hopkins, Department of Oncology and Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lindy Zhang
- Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center (SKCCC) at Johns Hopkins, Department of Oncology and Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - James C. Pino
- Pacific Northwest National Laboratory (PNNL), Seattle, WA, USA
| | - Yang Lyu
- Division of Oncology, Department of Internal Medicine, Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO, USA
| | - Kai Pollard
- Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center (SKCCC) at Johns Hopkins, Department of Oncology and Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Xiaochun Zhang
- Division of Oncology, Department of Internal Medicine, Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO, USA
| | - Alex T. Larsson
- Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Eric Conniff
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Nicolas J. Llosa
- Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center (SKCCC) at Johns Hopkins, Department of Oncology and Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - David K. Wood
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - David A. Largaespada
- Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Susan E. Moody
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Sara J. Gosline
- Pacific Northwest National Laboratory (PNNL), Seattle, WA, USA
| | - Angela C. Hirbe
- Division of Oncology, Department of Internal Medicine, Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO, USA
| | - Christine A. Pratilas
- Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center (SKCCC) at Johns Hopkins, Department of Oncology and Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
5
|
Giraud JS, Bièche I, Pasmant É, Tlemsani C. NF1 alterations in cancers: therapeutic implications in precision medicine. Expert Opin Investig Drugs 2023; 32:941-957. [PMID: 37747491 DOI: 10.1080/13543784.2023.2263836] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 09/24/2023] [Indexed: 09/26/2023]
Abstract
INTRODUCTION NF1 is a tumor suppressor gene encoding neurofibromin, an inhibitor of the RAS/MAPK and PI3K-AKT-mTOR signaling pathways. NF1 germline pathogenic variants cause the tumor predisposition syndrome neurofibromatosis type 1. Targeted therapies (MEK inhibitors) have been approved for benign nerve sheath tumors in neurofibromatosis type 1 patients. NF1 somatic alterations are present in ~5% of all human sporadic cancers. In melanomas, acute myeloid leukemias and lung adenocarcinomas, the NF1 somatic alteration frequency is higher (~15%). However, to date, the therapeutic impact of NF1 somatic alterations is poorly investigated. AREAS COVERED This review presents a comprehensive overview of targeted therapies and immunotherapies currently developed and evaluated in vitro and in vivo for NF1-altered cancer treatment. A PubMed database literature review was performed to select relevant original articles. Active clinical trials were researched in ClinicalTrials.gov database in August 2022. TCGA and HGMD® databases were consulted. EXPERT OPINION This review highlights the need to better understand the molecular mechanisms of NF1-altered tumors and the development of innovative strategies to effectively target NF1-loss in human cancers. One of the current major challenges in cancer management is the targeting of tumor suppressor genes such as NF1 gene. Currently, most studies are focusing on inhibitors of the RAS/MAPK and PI3K-AKT-mTOR pathways and immunotherapies.
Collapse
Affiliation(s)
- Jean-Stéphane Giraud
- Institut Cochin, Inserm U1016, CNRS UMR8104, Université Paris Cité, CARPEM, Paris, France
| | - Ivan Bièche
- Institut Cochin, Inserm U1016, CNRS UMR8104, Université Paris Cité, CARPEM, Paris, France
- Genetic Department, Curie Institute, Paris, France
| | - Éric Pasmant
- Institut Cochin, Inserm U1016, CNRS UMR8104, Université Paris Cité, CARPEM, Paris, France
- Genetic Department, Hôpital Cochin, AP-HP.Centre-Université Paris Cité, Paris, France
| | - Camille Tlemsani
- Institut Cochin, Inserm U1016, CNRS UMR8104, Université Paris Cité, CARPEM, Paris, France
- Oncology Department, Hôpital Cochin, AP-HP.Centre-Université Paris Cité, Paris, France
| |
Collapse
|
6
|
Nakamura K, Asanuma K, Okamoto T, Iino T, Hagi T, Nakamura T, Sudo A. Combination of Everolimus and Bortezomib Inhibits the Growth and Metastasis of Bone and Soft Tissue Sarcomas via JNK/p38/ERK MAPK and AKT Pathways. Cancers (Basel) 2023; 15:cancers15092468. [PMID: 37173935 PMCID: PMC10177427 DOI: 10.3390/cancers15092468] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/20/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
The combination of the mammalian target of rapamycin and proteasome inhibitors is a new treatment strategy for various tumors. Herein, we investigated the synergistic effect of everolimus and bortezomib on tumor growth and metastasis in bone and soft tissue sarcomas. The antitumor effects of everolimus and bortezomib were assessed in a human fibrosarcoma (FS) cell line (HT1080) and mouse osteosarcoma (OS) cell line (LM8) by MTS assays and Western blotting. The effects of everolimus and bortezomib on HT1080 and LM8 tumor growth in xenograft mouse models were evaluated using tumor volume and the number of metastatic nodes of the resected lungs. Immunohistochemistry was used to evaluate cleaved PARP expression. The combination therapy decreased FS and OS cell proliferation compared with either drug alone. This combination induced more intense p-p38, p-JNK, and p-ERK and activated apoptosis signals, such as caspase-3, compared with single-agent treatment. The combination treatment reduced p-AKT and MYC expression, decreased FS and OS tumor volumes, and suppressed lung metastases of OS. The combination therapy inhibited tumor growth in FS and OS and metastatic progression of OS via the JNK/p38/ERK MAPK and AKT pathways. These results could aid in the development of new therapeutic strategies for sarcomas.
Collapse
Affiliation(s)
- Koichi Nakamura
- Department of Orthopaedic Surgery, Mie University Graduate School of Medicine, Tsu 514-0001, Japan
| | - Kunihiro Asanuma
- Department of Orthopaedic Surgery, Mie University Graduate School of Medicine, Tsu 514-0001, Japan
| | - Takayuki Okamoto
- Department of Pharmacology, Faculty of Medicine, Shimane University, Izumo 693-8501, Japan
| | - Takahiro Iino
- Department of Orthopaedic Surgery, Mie University Graduate School of Medicine, Tsu 514-0001, Japan
| | - Tomohito Hagi
- Department of Orthopaedic Surgery, Mie University Graduate School of Medicine, Tsu 514-0001, Japan
| | - Tomoki Nakamura
- Department of Orthopaedic Surgery, Mie University Graduate School of Medicine, Tsu 514-0001, Japan
| | - Akihiro Sudo
- Department of Orthopaedic Surgery, Mie University Graduate School of Medicine, Tsu 514-0001, Japan
| |
Collapse
|
7
|
Fareez F, Wang BH, Brain I, Lu JQ. Lymphomas in patients with neurofibromatosis type 1 (NF1): another malignancy in the NF1 syndrome? Pathology 2023; 55:302-314. [PMID: 36774237 DOI: 10.1016/j.pathol.2023.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 12/22/2022] [Accepted: 01/06/2023] [Indexed: 01/21/2023]
Abstract
Neurofibromatosis type 1 (NF1) is an autosomal dominant multisystem syndrome caused by mutations in the neurofibromin 1 (NF1) gene that encodes for the protein neurofibromin acting as a tumour suppressor. Neurofibromin functions primarily as a GTPase-activating protein for the Ras family of oncogenes, which activates many signalling pathways for cell proliferation and differentiation; without neurofibromin, Ras is constitutively activated, thereby turning on many downstream signalling pathways related to oncogenesis. Patients with NF1 have a well known predisposition for certain types of malignancies including malignant peripheral nerve sheath tumours, gliomas, and breast cancers, as well as a potential association of NF1 with lymphoproliferative disorders such as lymphomas. In this article, we review the pathophysiology and tumourigenesis of NF1, previously reported cases of cutaneous lymphomas in NF1 patients along with our case demonstration of a NF1-associated scalp B-cell lymphoma, and NF1-associated extra cutaneous lymphomas. The diagnosis of lymphomas particularly cutaneous lymphomas may be difficult in NF1 patients as they often have skin lesions and/or cutaneous/subcutaneous nodules or tumours like neurofibromas, which raises the possibility of underdiagnosed cutaneous lymphomas in NF1 patients. We also comprehensively discuss the association between NF1 and lymphomas. In summary, most studies support a potential association between NF1 and lymphomas. Further investigation is needed to clarify the association between NF1 and lymphomas in order to bring clinical awareness of possibly underdiagnosed NF1-associated lymphomas and individualised management of NF1 patients to practice.
Collapse
Affiliation(s)
- Faiha Fareez
- Department of Pathology and Molecular Medicine, Hamilton, Ontario, Canada
| | - Bill H Wang
- Department of Surgery/Neurosurgery, McMaster University, Hamilton, Ontario, Canada
| | - Ian Brain
- Department of Laboratory Medicine and Pathobiology/Hematopathology, University of Toronto, Toronto, Ontario, Canada
| | - Jian-Qiang Lu
- Department of Pathology and Molecular Medicine, Hamilton, Ontario, Canada; Department of Pathology and Molecular Medicine/Neuropathology, Hamilton General Hospital, Hamilton, Ontario, Canada.
| |
Collapse
|
8
|
Wang J, Calizo A, Zhang L, Pino JC, Lyu Y, Pollard K, Zhang X, Larsson AT, Conniff E, Llosa N, Wood DK, Largaespada DA, Moody SE, Gosline SJ, Hirbe AC, Pratilas CA. CDK4/6 inhibition enhances SHP2 inhibitor efficacy and is dependent upon restoration of RB function in malignant peripheral nerve sheath tumors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.02.526674. [PMID: 36778419 PMCID: PMC9915673 DOI: 10.1101/2023.02.02.526674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Malignant peripheral nerve sheath tumors (MPNST) are highly aggressive soft tissue sarcomas with limited treatment options, and novel effective therapeutic strategies are desperately needed. We observe anti-proliferative efficacy of genetic depletion or pharmacological inhibition using the clinically available SHP2 inhibitor (SHP2i) TNO155. Our studies into the signaling response to SHP2i reveal that resistance to TNO155 is partially mediated by reduced RB function, and we therefore test the addition of a CDK4/6 inhibitor (CDK4/6i) to enhance RB activity and improve TNO155 efficacy. In combination, TNO155 attenuates the adaptive response to CDK4/6i, potentiates its anti-proliferative effects, and converges on enhancement of RB activity, with greater suppression of cell cycle and inhibitor-of-apoptosis proteins, leading to deeper and more durable anti-tumor activity in in vitro and in vivo patient-derived models of MPNST, relative to either single agent. Overall, our study provides timely evidence to support the clinical advancement of this combination strategy in patients with MPNST and other tumors driven by loss of NF1.
Collapse
Affiliation(s)
- Jiawan Wang
- Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Department of Oncology and Pediatrics, Johns Hopkins University School of Medicine; Baltimore, MD, USA
| | - Ana Calizo
- Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Department of Oncology and Pediatrics, Johns Hopkins University School of Medicine; Baltimore, MD, USA
| | - Lindy Zhang
- Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Department of Oncology and Pediatrics, Johns Hopkins University School of Medicine; Baltimore, MD, USA
| | - James C. Pino
- Pacific Northwest National Laboratory; Seattle, WA, USA
| | - Yang Lyu
- Division of Oncology, Department of Internal Medicine, Siteman Cancer Center, Washington University in St. Louis; St. Louis, MO, USA
| | - Kai Pollard
- Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Department of Oncology and Pediatrics, Johns Hopkins University School of Medicine; Baltimore, MD, USA
| | - Xiaochun Zhang
- Division of Oncology, Department of Internal Medicine, Siteman Cancer Center, Washington University in St. Louis; St. Louis, MO, USA
| | - Alex T. Larsson
- Department of Pediatrics, Masonic Cancer Center, University of Minnesota; Minneapolis, MN, USA
| | - Eric Conniff
- Department of Biomedical Engineering, University of Minnesota; Minneapolis, MN, USA
| | - Nicolas Llosa
- Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Department of Oncology and Pediatrics, Johns Hopkins University School of Medicine; Baltimore, MD, USA
| | - David K. Wood
- Department of Biomedical Engineering, University of Minnesota; Minneapolis, MN, USA
| | - David A. Largaespada
- Department of Pediatrics, Masonic Cancer Center, University of Minnesota; Minneapolis, MN, USA
| | - Susan E. Moody
- Novartis Institutes for Biomedical Research; Cambridge, MA, USA
| | | | - Angela C. Hirbe
- Division of Oncology, Department of Internal Medicine, Siteman Cancer Center, Washington University in St. Louis; St. Louis, MO, USA
| | - Christine A. Pratilas
- Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Department of Oncology and Pediatrics, Johns Hopkins University School of Medicine; Baltimore, MD, USA
| |
Collapse
|
9
|
Zhang L, Lemberg KM, Calizo A, Varadhan R, Siegel AH, Meyer CF, Blakeley JO, Pratilas CA. Analysis of treatment sequence and outcomes in patients with relapsed malignant peripheral nerve sheath tumors. Neurooncol Adv 2023; 5:vdad156. [PMID: 38130899 PMCID: PMC10733661 DOI: 10.1093/noajnl/vdad156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
Background Malignant peripheral nerve sheath tumors (MPNST) are aggressive soft tissue sarcomas originating from cellular components within the nerve sheath. The incidence of MPNST is highest in people with neurofibromatosis type 1 (NF1), and MPNST is the leading cause of death for these individuals. Complete surgical resection is the only curative therapeutic option, but is often unfeasible due to tumor location, size, or presence of metastases. Evidence-based choices of chemotherapy for recurrent/refractory MPNST remain elusive. To address this gap, we conducted a retrospective analysis of our institutional experience in treating patients with relapsed MPNST in order to describe patient outcomes related to salvage regimens. Methods We conducted a retrospective electronic health record analysis of patients with MPNST who were treated at Johns Hopkins Hospital from January 2010 to June 2021. We calculated time to progression (TTP) based on salvage chemotherapy regimens. Results Sixty-five patients were included in the analysis. Upfront therapy included single or combined modalities of surgery, chemotherapy, or radiotherapy. Forty-eight patients received at least 1 line of chemotherapy, which included 23 different regimens (excluding active clinical studies). Most patients (n = 42, 87.5%) received a combination of doxorubicin, ifosfamide, or etoposide as first-line chemotherapy. Salvage chemotherapy regimens and their TTP varied greatly, with irinotecan/temozolomide-based regimens having the longest average TTP (255.5 days, among 4 patients). Conclusions Patients with advanced or metastatic MPNST often succumb to their disease despite multiple lines of therapy. These data may be used as comparative information in decision-making for future patients and clinical trials.
Collapse
Affiliation(s)
- Lindy Zhang
- Sidney Kimmel Comprehensive Cancer Center and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Cellular and Molecular Medicine Graduate Program, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kathryn M Lemberg
- Sidney Kimmel Comprehensive Cancer Center and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ana Calizo
- Cellular and Molecular Medicine Graduate Program, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ravi Varadhan
- Sidney Kimmel Comprehensive Cancer Center and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Alan H Siegel
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Christian F Meyer
- Sidney Kimmel Comprehensive Cancer Center and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jaishri O Blakeley
- Sidney Kimmel Comprehensive Cancer Center and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Neurology and Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Christine A Pratilas
- Sidney Kimmel Comprehensive Cancer Center and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
10
|
Patel AJ, Warda S, Maag JL, Misra R, Miranda-Román MA, Pachai MR, Lee CJ, Li D, Wang N, Bayshtok G, Fishinevich E, Meng Y, Wong EW, Yan J, Giff E, Pappalardi MB, McCabe MT, Fletcher JA, Rudin CM, Chandarlapaty S, Scandura JM, Koche RP, Glass JL, Antonescu CR, Zheng D, Chen Y, Chi P. PRC2-Inactivating Mutations in Cancer Enhance Cytotoxic Response to DNMT1-Targeted Therapy via Enhanced Viral Mimicry. Cancer Discov 2022; 12:2120-2139. [PMID: 35789380 PMCID: PMC9437570 DOI: 10.1158/2159-8290.cd-21-1671] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 05/19/2022] [Accepted: 06/29/2022] [Indexed: 02/01/2023]
Abstract
Polycomb repressive complex 2 (PRC2) has oncogenic and tumor-suppressive roles in cancer. There is clinical success of targeting this complex in PRC2-dependent cancers, but an unmet therapeutic need exists in PRC2-loss cancer. PRC2-inactivating mutations are a hallmark feature of high-grade malignant peripheral nerve sheath tumor (MPNST), an aggressive sarcoma with poor prognosis and no effective targeted therapy. Through RNAi screening in MPNST, we found that PRC2 inactivation increases sensitivity to genetic or small-molecule inhibition of DNA methyltransferase 1 (DNMT1), which results in enhanced cytotoxicity and antitumor response. Mechanistically, PRC2 inactivation amplifies DNMT inhibitor-mediated expression of retrotransposons, subsequent viral mimicry response, and robust cell death in part through a protein kinase R (PKR)-dependent double-stranded RNA sensor. Collectively, our observations posit DNA methylation as a safeguard against antitumorigenic cell-fate decisions in PRC2-loss cancer to promote cancer pathogenesis, which can be therapeutically exploited by DNMT1-targeted therapy. SIGNIFICANCE PRC2 inactivation drives oncogenesis in various cancers, but therapeutically targeting PRC2 loss has remained challenging. Here we show that PRC2-inactivating mutations set up a tumor context-specific liability for therapeutic intervention via DNMT1 inhibitors, which leads to innate immune signaling mediated by sensing of derepressed retrotransposons and accompanied by enhanced cytotoxicity. See related commentary by Guil and Esteller, p. 2020. This article is highlighted in the In This Issue feature, p. 2007.
Collapse
Affiliation(s)
- Amish J. Patel
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sarah Warda
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jesper L.V. Maag
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Rohan Misra
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York
| | - Miguel A. Miranda-Román
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Louis V. Gerstner, Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Mohini R. Pachai
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Cindy J. Lee
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Dan Li
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Naitao Wang
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Gabriella Bayshtok
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Eve Fishinevich
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Yinuo Meng
- Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, New York
| | - Elissa W.P. Wong
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Juan Yan
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Emily Giff
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Melissa B. Pappalardi
- Cancer Epigenetics Research Unit, Oncology, GlaxoSmithKline, Collegeville, Pennsylvania
| | - Michael T. McCabe
- Cancer Epigenetics Research Unit, Oncology, GlaxoSmithKline, Collegeville, Pennsylvania
| | - Jonathan A. Fletcher
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Charles M. Rudin
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, New York
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sarat Chandarlapaty
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Breast Medicine Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Weill Cornell Medical College, New York, New York
| | - Joseph M. Scandura
- Laboratory of Molecular Hematopoiesis, Hematology and Oncology, Weill Cornell Medicine, New York, New York
- Richard T. Silver MD Myeloproliferative Neoplasm Center, Weill Cornell Medicine, New York, New York
- Regenerative Medicine, Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Richard P. Koche
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jacob L. Glass
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, New York
- Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Deyou Zheng
- The Saul R. Korey Department of Neurology, Albert Einstein College of Medicine, Bronx, New York
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York
| | - Yu Chen
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Louis V. Gerstner, Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, New York
- Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, New York
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Ping Chi
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Louis V. Gerstner, Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, New York
- Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, New York
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Weill Cornell Medical College, New York, New York
| |
Collapse
|
11
|
Somatilaka BN, Sadek A, McKay RM, Le LQ. Malignant peripheral nerve sheath tumor: models, biology, and translation. Oncogene 2022; 41:2405-2421. [PMID: 35393544 PMCID: PMC9035132 DOI: 10.1038/s41388-022-02290-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/16/2022] [Accepted: 03/21/2022] [Indexed: 01/29/2023]
Abstract
Malignant peripheral nerve sheath tumors (MPNSTs) are aggressive, invasive cancer that comprise around 10% of all soft tissue sarcomas and develop in about 8-13% of patients with Neurofibromatosis Type 1. They are associated with poor prognosis and are the leading cause of mortality in NF1 patients. MPNSTs can also develop sporadically or following exposure to radiation. There is currently no effective targeted therapy to treat MPNSTs and surgical removal remains the mainstay treatment. Unfortunately, surgery is not always possible due to the size and location of the tumor, thus, a better understanding of MPNST initiation and development is required to design novel therapeutics. Here, we provide an overview of MPNST biology and genetics, discuss findings regarding the developmental origin of MPNST, and summarize the various model systems employed to study MPNST. Finally, we discuss current management strategies for MPNST, as well as recent developments in translating basic research findings into potential therapies.
Collapse
Affiliation(s)
- Bandarigoda N. Somatilaka
- Department of Dermatology, University of Texas Southwestern
Medical Center at Dallas, Dallas, Texas, 75390-9069, USA
| | - Ali Sadek
- Department of Dermatology, University of Texas Southwestern
Medical Center at Dallas, Dallas, Texas, 75390-9069, USA
| | - Renee M. McKay
- Department of Dermatology, University of Texas Southwestern
Medical Center at Dallas, Dallas, Texas, 75390-9069, USA
| | - Lu Q. Le
- Department of Dermatology, University of Texas Southwestern
Medical Center at Dallas, Dallas, Texas, 75390-9069, USA,Simmons Comprehensive Cancer Center, University of Texas
Southwestern Medical Center at Dallas, Dallas, Texas, 75390-9069, USA,UTSW Comprehensive Neurofibromatosis Clinic, University of
Texas Southwestern Medical Center at Dallas, Dallas, Texas, 75390-9069, USA,Hamon Center for Regenerative Science and Medicine,
University of Texas Southwestern Medical Center at Dallas, Dallas, Texas,
75390-9069, USA,O’Donnell Brain Institute, University of Texas
Southwestern Medical Center at Dallas, Dallas, Texas, 75390-9069, USA
| |
Collapse
|
12
|
Patritti Cram J, Wu J, Coover RA, Rizvi TA, Chaney KE, Ravindran R, Cancelas JA, Spinner RJ, Ratner N. P2RY14 cAMP signaling regulates Schwann cell precursor self-renewal, proliferation, and nerve tumor initiation in a mouse model of neurofibromatosis. eLife 2022; 11:73511. [PMID: 35311647 PMCID: PMC8959601 DOI: 10.7554/elife.73511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 01/19/2022] [Indexed: 01/05/2023] Open
Abstract
Neurofibromatosis type 1 (NF1) is characterized by nerve tumors called neurofibromas, in which Schwann cells (SCs) show deregulated RAS signaling. NF1 is also implicated in regulation of cAMP. We identified the G-protein-coupled receptor (GPCR) P2ry14 in human neurofibromas, neurofibroma-derived SC precursors (SCPs), mature SCs, and mouse SCPs. Mouse Nf1-/- SCP self-renewal was reduced by genetic or pharmacological inhibition of P2ry14. In a mouse model of NF1, genetic deletion of P2ry14 rescued low cAMP signaling, increased mouse survival, delayed neurofibroma initiation, and improved SC Remak bundles. P2ry14 signals via Gi to increase intracellular cAMP, implicating P2ry14 as a key upstream regulator of cAMP. We found that elevation of cAMP by either blocking the degradation of cAMP or by using a P2ry14 inhibitor diminished NF1-/- SCP self-renewal in vitro and neurofibroma SC proliferation in in vivo. These studies identify P2ry14 as a critical regulator of SCP self-renewal, SC proliferation, and neurofibroma initiation.
Collapse
Affiliation(s)
- Jennifer Patritti Cram
- Division of Experimental Hematology and Cancer Biology, Cancer & Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, United States.,Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, United States
| | - Jianqiang Wu
- Division of Experimental Hematology and Cancer Biology, Cancer & Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, United States
| | - Robert A Coover
- Division of Experimental Hematology and Cancer Biology, Cancer & Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
| | - Tilat A Rizvi
- Division of Experimental Hematology and Cancer Biology, Cancer & Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
| | - Katherine E Chaney
- Division of Experimental Hematology and Cancer Biology, Cancer & Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
| | - Ramya Ravindran
- Molecular and Developmental Biology, Cincinnati Children's Hospital, Cincinnati, United States
| | - Jose A Cancelas
- Division of Experimental Hematology and Cancer Biology, Cancer & Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, United States.,Hoxworth Blood Center, College of Medicine, University of Cincinnati, Cincinnati, United States
| | - Robert J Spinner
- Department of Neurosurgery, Mayo Clinic, Rochester, United States
| | - Nancy Ratner
- Division of Experimental Hematology and Cancer Biology, Cancer & Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, United States
| |
Collapse
|
13
|
Early Complications of Radioisotope Therapy with Lutetium-177 and Yttrium-90 in Patients with Neuroendocrine Neoplasms-A Preliminary Study. J Clin Med 2022; 11:jcm11040919. [PMID: 35207193 PMCID: PMC8874379 DOI: 10.3390/jcm11040919] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/06/2022] [Accepted: 02/07/2022] [Indexed: 12/12/2022] Open
Abstract
Neuroendocrine neoplasms (NENs) constitute a heterogenous group of tumors originating from neuroendocrine cells scattered throughout the body. Peptide Receptor Radionuclide Therapy (PRRT) is a treatment of choice of unresectable metastasized progressive and well-differentiated NENs. The aim of the study was to assess early bone marrow and kidney injury after administration of Lutetium-177 or Lutetium-177 combined with Yttrium-90. Thirty-one patients received treatment with [177Lu]Lu-DOTATATE with the activity of 7.4 GBq. Eleven patients received tandem treatment with [90Y]Y-DOTATATE with the activity of 1.85 GBq + [177Lu]Lu-DOTATATE with the activity of 1.85 GBq. After PRRT a significant decrease in leukocyte, neutrophil, and lymphocyte counts was noted. Tandem treatment demonstrated a more marked decrease in white blood cell count compared to Lutetium-177 therapy only. Conversely, no significant influence on glomerular filtration was found in this assessment. However, PRRT triggered acute renal tubule dysfunction, regardless of the treatment type. Regarding the acute complications, PRRT appeared to be a safe modality in the treatment of patients with NEN.
Collapse
|
14
|
Anastasaki C, Orozco P, Gutmann DH. RAS and beyond: the many faces of the neurofibromatosis type 1 protein. Dis Model Mech 2022; 15:274437. [PMID: 35188187 PMCID: PMC8891636 DOI: 10.1242/dmm.049362] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Neurofibromatosis type 1 is a rare neurogenetic syndrome, characterized by pigmentary abnormalities, learning and social deficits, and a predisposition for benign and malignant tumor formation caused by germline mutations in the NF1 gene. With the cloning of the NF1 gene and the recognition that the encoded protein, neurofibromin, largely functions as a negative regulator of RAS activity, attention has mainly focused on RAS and canonical RAS effector pathway signaling relevant to disease pathogenesis and treatment. However, as neurofibromin is a large cytoplasmic protein the RAS regulatory domain of which occupies only 10% of its entire coding sequence, both canonical and non-canonical RAS pathway modulation, as well as the existence of potential non-RAS functions, are becoming apparent. In this Special article, we discuss our current understanding of neurofibromin function.
Collapse
Affiliation(s)
- Corina Anastasaki
- Department of Neurology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Paola Orozco
- Department of Neurology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - David H Gutmann
- Department of Neurology, Washington University School of Medicine, St Louis, MO 63110, USA
| |
Collapse
|
15
|
Wurtzel JGT, Lazar S, Sikder S, Cai KQ, Astsaturov I, Weyrich AS, Rowley JW, Goldfinger LE. Platelet microRNAs inhibit primary tumor growth via broad modulation of tumor cell mRNA expression in ectopic pancreatic cancer in mice. PLoS One 2021; 16:e0261633. [PMID: 34936674 PMCID: PMC8694476 DOI: 10.1371/journal.pone.0261633] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 12/06/2021] [Indexed: 11/19/2022] Open
Abstract
We investigated the contributions of platelet microRNAs (miRNAs) to the rate of growth and regulation of gene expression in primary ectopic tumors using mouse models. We previously identified an inhibitory role for platelets in solid tumor growth, mediated by tumor infiltration of platelet microvesicles (microparticles) which are enriched in platelet-derived miRNAs. To investigate the specific roles of platelet miRNAs in tumor growth models, we implanted pancreatic ductal adenocarcinoma cells as a bolus into mice with megakaryocyte-/platelet-specific depletion of mature miRNAs. We observed an ~50% increase in the rate of growth of ectopic primary tumors in these mice compared to controls including at early stages, associated with reduced apoptosis in the tumors, in particular in tumor cells associated with platelet microvesicles-which were depleted of platelet-enriched miRNAs-demonstrating a specific role for platelet miRNAs in modulation of primary tumor growth. Differential expression RNA sequencing of tumor cells isolated from advanced primary tumors revealed a broad cohort of mRNAs modulated in the tumor cells as a function of host platelet miRNAs. Altered genes comprised 548 up-regulated transcripts and 43 down-regulated transcripts, mostly mRNAs altogether spanning a variety of growth signaling pathways-notably pathways related to epithelial-mesenchymal transition-in tumor cells from platelet miRNA-deleted mice compared with those from control mice. Tumors in platelet miRNA-depleted mice showed more sarcomatoid growth and more advanced tumor grade, indicating roles for host platelet miRNAs in tumor plasticity. We further validated increased protein expression of selected genes associated with increased cognate mRNAs in the tumors due to platelet miRNA depletion in the host animals, providing proof of principle of widespread effects of platelet miRNAs on tumor cell functional gene expression in primary tumors in vivo. Together, these data demonstrate that platelet-derived miRNAs modulate solid tumor growth in vivo by broad-spectrum restructuring of the tumor cell transcriptome.
Collapse
Affiliation(s)
- Jeremy G. T. Wurtzel
- Division of Hematology, Department of Medicine, Cardeza Center for Hemostasis, Thrombosis, and Vascular Biology, Cardeza Foundation for Hematologic Research, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States of America
| | - Sophia Lazar
- Division of Hematology, Department of Medicine, Cardeza Center for Hemostasis, Thrombosis, and Vascular Biology, Cardeza Foundation for Hematologic Research, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States of America
| | - Sonali Sikder
- Molecular Therapeutics Program and The Marvin & Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Philadelphia, PA, United States of America
| | - Kathy Q. Cai
- Cancer Biology Program and Histopathology Facility, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA, United States of America
| | - Igor Astsaturov
- Molecular Therapeutics Program and The Marvin & Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Philadelphia, PA, United States of America
| | - Andrew S. Weyrich
- Molecular Medicine Program, Pathology Division, Department of Internal Medicine, University of Utah, Salt Lake City, UT, United States of America
| | - Jesse W. Rowley
- Molecular Medicine Program, Pulmonary Division, Department of Internal Medicine, University of Utah, Salt Lake City, UT, United States of America
| | - Lawrence E. Goldfinger
- Division of Hematology, Department of Medicine, Cardeza Center for Hemostasis, Thrombosis, and Vascular Biology, Cardeza Foundation for Hematologic Research, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States of America
| |
Collapse
|
16
|
Blockade of Serotonin 5-HT 6 Receptor Constitutive Activity Alleviates Cognitive Deficits in a Preclinical Model of Neurofibromatosis Type 1. Int J Mol Sci 2021; 22:ijms221810178. [PMID: 34576341 PMCID: PMC8467191 DOI: 10.3390/ijms221810178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 02/04/2023] Open
Abstract
Neurofibromatosis type 1 (NF1) is a common inherited disorder caused by mutations of the NF1 gene that encodes the Ras-GTPase activating protein neurofibromin, leading to overactivation of Ras-dependent signaling pathways such as the mTOR pathway. It is often characterized by a broad range of cognitive symptoms that are currently untreated. The serotonin 5-HT6 receptor is a potentially relevant target in view of its ability to associate with neurofibromin and to engage the mTOR pathway to compromise cognition in several cognitive impairment paradigms. Here, we show that constitutively active 5-HT6 receptors contribute to increased mTOR activity in the brain of Nf1+/− mice, a preclinical model recapitulating some behavioral alterations of NF1. Correspondingly, peripheral administration of SB258585, a 5-HT6 receptor inverse agonist, or rapamycin, abolished deficits in long-term social and associative memories in Nf1+/− mice, whereas administration of CPPQ, a neutral antagonist, did not produce cognitive improvement. These results show a key influence of mTOR activation by constitutively active 5-HT6 receptors in NF1 cognitive symptoms. They provide a proof of concept that 5-HT6 receptor inverse agonists already in clinical development as symptomatic treatments to reduce cognitive decline in dementia and psychoses, might be repurposed as therapies alleviating cognitive deficits in NF1 patients.
Collapse
|
17
|
Walczak A, Radek M, Majsterek I. The Role of ER Stress-Related Phenomena in the Biology of Malignant Peripheral Nerve Sheath Tumors. Int J Mol Sci 2021; 22:ijms22179405. [PMID: 34502310 PMCID: PMC8430526 DOI: 10.3390/ijms22179405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/11/2021] [Accepted: 08/19/2021] [Indexed: 11/16/2022] Open
Abstract
Malignant peripheral nerve sheath tumors (MPNST) are rare but one of the most aggressive types of cancer. Currently, there are no effective chemotherapy strategies for these malignancies. The inactivation of the neurofibromatosis type I (NF1) gene, followed by loss of TP53, is an early stage in MPNST carcinogenesis. NF1 is a negative regulator of the Ras proteins family, which are key factors in regulating cell growth, homeostasis and survival. Cell cycle dysregulation induces a stress phenotype, such as proteotoxic stress, metabolic stress, and oxidative stress, which should result in cell death. However, in the case of neoplastic cells, we observe not only the avoidance of apoptosis, but also the impact of stress factors on the treatment effectiveness. This review focuses on the pathomechanisms underlying MPNST cells physiology, and discusses the possible ways to develop a successful treatment based on the molecular background of the disease.
Collapse
Affiliation(s)
- Anna Walczak
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 90-647 Lodz, Poland;
| | - Maciej Radek
- Department of Neurosurgery and Peripheral Nerve Surgery, Medical University of Lodz, 90-647 Lodz, Poland;
| | - Ireneusz Majsterek
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 90-647 Lodz, Poland;
- Correspondence:
| |
Collapse
|
18
|
Rabab’h O, Gharaibeh A, Al-Ramadan A, Ismail M, Shah J. Pharmacological Approaches in Neurofibromatosis Type 1-Associated Nervous System Tumors. Cancers (Basel) 2021; 13:cancers13153880. [PMID: 34359780 PMCID: PMC8345673 DOI: 10.3390/cancers13153880] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/28/2021] [Accepted: 07/28/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Neurofibromatosis type 1 (NF1) is a common cancer predisposition genetic disease that is associated with significant morbidity and mortality. In this literature review, we discuss the major pathways in the nervous system that are affected by NF1, tumors that are associated with NF1, drugs that target these pathways, and genetic models of NF1. We also summarize the latest updates from clinical trials that are evaluating pharmacological agents to treat these tumors and discuss the efforts that are being made to cure the disease in the future Abstract Neurofibromatosis type 1 is an autosomal dominant genetic disease and a common tumor predisposition syndrome that affects 1 in 3000 to 4000 patients in the USA. Although studies have been conducted to better understand and manage this disease, the underlying pathogenesis of neurofibromatosis type 1 has not been completely elucidated, and this disease is still associated with significant morbidity and mortality. Treatment options are limited to surgery with chemotherapy for tumors in cases of malignant transformation. In this review, we summarize the advances in the development of targeted pharmacological interventions for neurofibromatosis type 1 and related conditions.
Collapse
Affiliation(s)
- Omar Rabab’h
- Insight Research Institute, Flint, MI 48507, USA; (O.R.); (A.G.); (A.A.-R.); (M.I.)
- Center for Cognition and Neuroethics, University of Michigan-Flint, Flint, MI 48502, USA
| | - Abeer Gharaibeh
- Insight Research Institute, Flint, MI 48507, USA; (O.R.); (A.G.); (A.A.-R.); (M.I.)
- Center for Cognition and Neuroethics, University of Michigan-Flint, Flint, MI 48502, USA
- Insight Institute of Neurosurgery & Neuroscience, Flint, MI 48507, USA
- Insight Surgical Hospital, Warren, MI 48091, USA
| | - Ali Al-Ramadan
- Insight Research Institute, Flint, MI 48507, USA; (O.R.); (A.G.); (A.A.-R.); (M.I.)
- Center for Cognition and Neuroethics, University of Michigan-Flint, Flint, MI 48502, USA
| | - Manar Ismail
- Insight Research Institute, Flint, MI 48507, USA; (O.R.); (A.G.); (A.A.-R.); (M.I.)
| | - Jawad Shah
- Insight Research Institute, Flint, MI 48507, USA; (O.R.); (A.G.); (A.A.-R.); (M.I.)
- Center for Cognition and Neuroethics, University of Michigan-Flint, Flint, MI 48502, USA
- Insight Institute of Neurosurgery & Neuroscience, Flint, MI 48507, USA
- Insight Surgical Hospital, Warren, MI 48091, USA
- Department of Medicine, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA
- Correspondence:
| |
Collapse
|
19
|
Hassan A, Pestana RC, Parkes A. Systemic Options for Malignant Peripheral Nerve Sheath Tumors. Curr Treat Options Oncol 2021; 22:33. [PMID: 33641042 DOI: 10.1007/s11864-021-00830-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2021] [Indexed: 12/17/2022]
Abstract
OPINION STATEMENT Malignant peripheral nerve sheath tumors (MPNSTs) are rare mesenchymal neoplasms that represent a profound therapeutic challenge due to their high proclivity for recurrence and metastasis and relatively poor response to systemic therapy regimens. While our understanding of the pathophysiology of MPNST is growing, including loss of the tumor suppressor gene neurofibromin and subsequent activation of the Ras pathway, targeted therapy to modify the poor prognosis seen in MPNST patients has thus far been without success. Correspondingly, MPNST patients are treated as per soft tissue sarcoma treatment algorithms with anthracycline-based therapy as the front-line therapy of choice for patients with unresectable, locally advanced, or metastatic MPNST. Beyond first-line anthracycline-based therapy, other standard cytotoxic chemotherapy agents used in advanced MPNST include the alkylating agent ifosfamide and the topoisomerase II inhibitor etoposide. Notably, soft tissue sarcoma regimens are used in MPNST despite distinct systemic therapy sensitivity and prognosis. This is particularly notable for neurofibromatosis type 1 (NF1)-associated MPNST, which is associated with poorer response to systemic therapy and prognosis than sporadic MPNST. As such, NF1-associated MPNST is a particular area in need of novel therapeutic strategies. Given the lack of benefit in the targeting of unique aspects of MPNST disease biology thus far, pre-clinical studies to identify novel rational therapies are critical to inform future clinical trials.
Collapse
Affiliation(s)
- Ayesha Hassan
- Department of Medicine, Division of Hematology, Medical Oncology, and Palliative Care, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.,University of Wisconsin Carbone Cancer Center, 600 Highland Ave, CSC K6/518, Madison, WI, 53792, USA
| | - Roberto Carmagnani Pestana
- Centro de Oncologia e Hematologia Família Dayan-Daycoval, Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
| | - Amanda Parkes
- Department of Medicine, Division of Hematology, Medical Oncology, and Palliative Care, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA. .,University of Wisconsin Carbone Cancer Center, 600 Highland Ave, CSC K6/518, Madison, WI, 53792, USA.
| |
Collapse
|
20
|
Osum SH, Watson AL, Largaespada DA. Spontaneous and Engineered Large Animal Models of Neurofibromatosis Type 1. Int J Mol Sci 2021; 22:1954. [PMID: 33669386 PMCID: PMC7920315 DOI: 10.3390/ijms22041954] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/02/2021] [Accepted: 02/04/2021] [Indexed: 12/13/2022] Open
Abstract
Animal models are crucial to understanding human disease biology and developing new therapies. By far the most common animal used to investigate prevailing questions about human disease is the mouse. Mouse models are powerful tools for research as their small size, limited lifespan, and defined genetic background allow researchers to easily manipulate their genome and maintain large numbers of animals in general laboratory spaces. However, it is precisely these attributes that make them so different from humans and explains, in part, why these models do not accurately predict drug responses in human patients. This is particularly true of the neurofibromatoses (NFs), a group of genetic diseases that predispose individuals to tumors of the nervous system, the most common of which is Neurofibromatosis type 1 (NF1). Despite years of research, there are still many unanswered questions and few effective treatments for NF1. Genetically engineered mice have drastically improved our understanding of many aspects of NF1, but they do not exemplify the overall complexity of the disease and some findings do not translate well to humans due to differences in body size and physiology. Moreover, NF1 mouse models are heavily reliant on the Cre-Lox system, which does not accurately reflect the molecular mechanism of spontaneous loss of heterozygosity that accompanies human tumor development. Spontaneous and genetically engineered large animal models may provide a valuable supplement to rodent studies for NF1. Naturally occurring comparative models of disease are an attractive prospect because they occur on heterogeneous genetic backgrounds and are due to spontaneous rather than engineered mutations. The use of animals with naturally occurring disease has been effective for studying osteosarcoma, lymphoma, and diabetes. Spontaneous NF-like symptoms including neurofibromas and malignant peripheral nerve sheath tumors (MPNST) have been documented in several large animal species and share biological and clinical similarities with human NF1. These animals could provide additional insight into the complex biology of NF1 and potentially provide a platform for pre-clinical trials. Additionally, genetically engineered porcine models of NF1 have recently been developed and display a variety of clinical features similar to those seen in NF1 patients. Their large size and relatively long lifespan allow for longitudinal imaging studies and evaluation of innovative surgical techniques using human equipment. Greater genetic, anatomic, and physiologic similarities to humans enable the engineering of precise disease alleles found in human patients and make them ideal for preclinical pharmacokinetic and pharmacodynamic studies of small molecule, cellular, and gene therapies prior to clinical trials in patients. Comparative genomic studies between humans and animals with naturally occurring disease, as well as preclinical studies in large animal disease models, may help identify new targets for therapeutic intervention and expedite the translation of new therapies. In this review, we discuss new genetically engineered large animal models of NF1 and cases of spontaneous NF-like manifestations in large animals, with a special emphasis on how these comparative models could act as a crucial translational intermediary between specialized murine models and NF1 patients.
Collapse
Affiliation(s)
- Sara H. Osum
- Masonic Cancer Center, Department of Pediatrics, Division of Hematology and Oncology, University of Minnesota, Minneapolis, MN 55455, USA;
| | | | - David A. Largaespada
- Masonic Cancer Center, Department of Pediatrics, Division of Hematology and Oncology, University of Minnesota, Minneapolis, MN 55455, USA;
| |
Collapse
|
21
|
Tao J, Sun D, Dong L, Zhu H, Hou H. Advancement in research and therapy of NF1 mutant malignant tumors. Cancer Cell Int 2020; 20:492. [PMID: 33061844 PMCID: PMC7547409 DOI: 10.1186/s12935-020-01570-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/23/2020] [Indexed: 12/27/2022] Open
Abstract
The NF1 gene encodes neurofibromin, which is one of the primary negative regulatory factors of the Ras protein. Neurofibromin stimulates the GTPase activity of Ras to convert it from an active GTP-bound form to its inactive GDP-bound form through its GTPase activating protein-related domain (GRD). Therefore, neurofibromin serves as a shutdown signal for all vertebrate RAS GTPases. NF1 mutations cause a resultant decrease in neurofibromin expression, which has been detected in many human malignancies, including NSCLC, breast cancer and so on. NF1 mutations are associated with the underlying mechanisms of treatment resistance discovered in multiple malignancies. This paper reviews the possible mechanisms of NF1 mutation-induced therapeutic resistance to chemotherapy, endocrine therapy and targeted therapy in malignancies. Then, we further discuss advancements in targeted therapy for NF1-mutated malignant tumors. In addition, therapies targeting the downstream molecules of NF1 might be potential novel strategies for the treatment of advanced malignancies.
Collapse
Affiliation(s)
- Junyan Tao
- Precision Medicine Center of Oncology, the Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao, Shandong 266000 China
| | - Dantong Sun
- Precision Medicine Center of Oncology, the Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao, Shandong 266000 China
| | - Lina Dong
- Precision Medicine Center of Oncology, the Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao, Shandong 266000 China
| | - Hua Zhu
- Precision Medicine Center of Oncology, the Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao, Shandong 266000 China
| | - Helei Hou
- Precision Medicine Center of Oncology, the Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao, Shandong 266000 China
| |
Collapse
|
22
|
Peces R, Mena R, Martín Y, Hernández C, Peces C, Tellería D, Cuesta E, Selgas R, Lapunzina P, Nevado J. Co-occurrence of neurofibromatosis type 1 and optic nerve gliomas with autosomal dominant polycystic kidney disease type 2. Mol Genet Genomic Med 2020; 8:e1321. [PMID: 32533764 PMCID: PMC7434601 DOI: 10.1002/mgg3.1321] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 04/25/2020] [Accepted: 04/27/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Autosomal dominant polycystic kidney disease (ADPKD) and neurofibromatosis type 1 (NF1) are both autosomal dominant disorders with a high rate of novel mutations. However, the two disorders have distinct and well-delineated genetic, biochemical, and clinical findings. Only a few cases of coexistence of ADPKD and NF1 in a single individual have been reported, but the possible implications of this association are unknown. METHODS We report an ADPKD male belonging to a family of several affected members in three generations associated with NF1 and optic pathway gliomas. The clinical diagnosis of ADPKD and NF1 was performed by several image techniques. RESULTS Linkage analysis of ADPKD family was consistent to the PKD2 locus by a nonsense mutation, yielding a truncated polycystin-2 by means of next-generation sequencing. The diagnosis of NF1 was confirmed by mutational analysis of this gene showing a 4-bp deletion, resulting in a truncated neurofibromin, as well. The impact of this association was investigated by analyzing putative genetic interactions and by comparing the evolution of renal size and function in the proband with his older brother with ADPKD without NF1 and with ADPKD cohorts. CONCLUSION Despite the presence of both conditions there was not additive effect of NF1 and PKD2 in terms of the severity of tumor development and/or ADPKD progression.
Collapse
Affiliation(s)
- Ramón Peces
- Servicio de Nefrología, Hospital Universitario La Paz, IdiPAZ, Universidad Autónoma, Madrid, Spain
| | - Rocío Mena
- Instituto de Genética Médica y Molecular (INGEMM)-IdiPAZ, Hospital Universitario La Paz, Universidad Autónoma, Madrid, Spain.,CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain
| | - Yolanda Martín
- Servicio de Genética, Hospital Universitario Ramón y Cajal, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Concepción Hernández
- Servicio de Genética, Hospital Universitario Ramón y Cajal, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Carlos Peces
- Area de Tecnologías de la Información, SESCAM, Toledo, Spain
| | - Dolores Tellería
- Servicio de Genética, Hospital Universitario Ramón y Cajal, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Emilio Cuesta
- Servicio de Radiología, Hospital Universitario La Paz, IdiPAZ, Universidad Autónoma, Madrid, Spain
| | - Rafael Selgas
- Servicio de Nefrología, Hospital Universitario La Paz, IdiPAZ, Universidad Autónoma, Madrid, Spain
| | - Pablo Lapunzina
- Instituto de Genética Médica y Molecular (INGEMM)-IdiPAZ, Hospital Universitario La Paz, Universidad Autónoma, Madrid, Spain.,CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain
| | - Julián Nevado
- Instituto de Genética Médica y Molecular (INGEMM)-IdiPAZ, Hospital Universitario La Paz, Universidad Autónoma, Madrid, Spain.,CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain
| |
Collapse
|
23
|
Williams KB, Largaespada DA. New Model Systems and the Development of Targeted Therapies for the Treatment of Neurofibromatosis Type 1-Associated Malignant Peripheral Nerve Sheath Tumors. Genes (Basel) 2020; 11:E477. [PMID: 32353955 PMCID: PMC7290716 DOI: 10.3390/genes11050477] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/24/2020] [Accepted: 04/26/2020] [Indexed: 12/19/2022] Open
Abstract
Neurofibromatosis Type 1 (NF1) is a common genetic disorder and cancer predisposition syndrome (1:3000 births) caused by mutations in the tumor suppressor gene NF1. NF1 encodes neurofibromin, a negative regulator of the Ras signaling pathway. Individuals with NF1 often develop benign tumors of the peripheral nervous system (neurofibromas), originating from the Schwann cell linage, some of which progress further to malignant peripheral nerve sheath tumors (MPNSTs). Treatment options for neurofibromas and MPNSTs are extremely limited, relying largely on surgical resection and cytotoxic chemotherapy. Identification of novel therapeutic targets in both benign neurofibromas and MPNSTs is critical for improved patient outcomes and quality of life. Recent clinical trials conducted in patients with NF1 for the treatment of symptomatic plexiform neurofibromas using inhibitors of the mitogen-activated protein kinase (MEK) have shown very promising results. However, MEK inhibitors do not work in all patients and have significant side effects. In addition, preliminary evidence suggests single agent use of MEK inhibitors for MPNST treatment will fail. Here, we describe the preclinical efforts that led to the identification of MEK inhibitors as promising therapeutics for the treatment of NF1-related neoplasia and possible reasons they lack single agent efficacy in the treatment of MPNSTs. In addition, we describe work to find targets other than MEK for treatment of MPNST. These have come from studies of RAS biochemistry, in vitro drug screening, forward genetic screens for Schwann cell tumors, and synthetic lethal screens in cells with oncogenic RAS gene mutations. Lastly, we discuss new approaches to exploit drug screening and synthetic lethality with NF1 loss of function mutations in human Schwann cells using CRISPR/Cas9 technology.
Collapse
Affiliation(s)
- Kyle B. Williams
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - David A. Largaespada
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
24
|
Combined Targeting of AKT and mTOR Inhibits Proliferation of Human NF1-Associated Malignant Peripheral Nerve Sheath Tumour Cells In Vitro but not in a Xenograft Mouse Model In Vivo. Int J Mol Sci 2020; 21:ijms21041548. [PMID: 32102484 PMCID: PMC7073166 DOI: 10.3390/ijms21041548] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 02/19/2020] [Accepted: 02/19/2020] [Indexed: 11/17/2022] Open
Abstract
Persistent signalling via the PI3K/AKT/mTOR pathway is a major driver of malignancy in NF1-associated malignant peripheral nerve sheath tumours (MPNST). Nevertheless, single targeting of this pathway is not sufficient to inhibit MPNST growth. In this report, we demonstrate that combined treatment with the allosteric pan-AKT inhibitor MK-2206 and the mTORC1/mTORC2 inhibitor AZD8055 has synergistic effects on the viability of MPNST cell lines in comparison to the treatment with each compound alone. However, when treating animals bearing experimental MPNST with the combined AKT/mTOR regime, no influence on tumour growth was observed. Further analysis of the MPNST xenograft tumours resistant to AKT/mTOR treatment revealed a reactivation of both AKT and mTOR in several tumour samples. Additional targeting of the RAS/RAF/MEK/MAPK pathway with the allosteric MEK1/2 inhibitor AZD6244 showed synergistic effects on the viability of MPNST cell lines in vitro in comparison to the dual AKT/mTOR inhibition. In summary, these data indicate that combined treatment with AKT and mTOR inhibitors is effective on MPNST cells in vitro but tumour resistance can occur rapidly in vivo by restoration of AKT/mTOR signalling. Our data further suggest that a triple treatment with inhibitors against AKT, mTORC1/2 and MEK1/2 may be a promising treatment option that should be further analysed in an experimental MPNST mouse model in vivo.
Collapse
|
25
|
Targeting Refractory Sarcomas and Malignant Peripheral Nerve Sheath Tumors in a Phase I/II Study of Sirolimus in Combination with Ganetespib (SARC023). Sarcoma 2020; 2020:5784876. [PMID: 32089640 PMCID: PMC7013290 DOI: 10.1155/2020/5784876] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 09/09/2019] [Indexed: 12/03/2022] Open
Abstract
Purpose Malignant peripheral nerve sheath tumors (MPNSTs) are aggressive soft tissue sarcomas. Combining Hsp90 inhibitors to enhance endoplasmic reticulum stress with mTOR inhibition results in dramatic MPNST shrinkage in a genetically engineered MPNST mouse model. Ganetespib is an injectable potent small molecule inhibitor of Hsp90. Sirolimus is an oral mTOR inhibitor. We sought to determine the safety, tolerability, and recommended dose of ganetespib and sirolimus in patients with refractory sarcomas and assess clinical benefits in patients with unresectable/refractory MPNSTs. Patients and Methods. In this multi-institutional, open-label, phase 1/2 study of ganetespib and sirolimus, patients ≥16 years with histologically confirmed refractory sarcoma (phase 1) or MPNST (phase 2) were eligible. A conventional 3 + 3 dose escalation design was used for phase 1. Pharmacokinetic and pharmacodynamic measures were evaluated. Primary objectives of phase 2 were to determine the clinical benefit rate (CBR) of this combination in MPNSTs. Patient-reported outcomes assessed pain. Results Twenty patients were enrolled (10 per phase). Toxicities were manageable; most frequent non-DLTs were diarrhea, elevated liver transaminases, and fatigue. The recommended dose of ganetespib was 200 mg/m2 intravenously on days 1, 8, and 15 with sirolimus 4 mg orally once daily with day 1 loading dose of 12 mg. In phase 1, one patient with leiomyosarcoma achieved a sustained partial response. In phase 2, no responses were observed. The median number of cycles treated was 2 (1–4). Patients did not meet the criteria for clinical benefit as defined per protocol. Pain ratings decreased or were stable. Conclusion Despite promising preclinical rationale and tolerability of the combination therapy, no responses were observed, and the study did not meet parameters for further evaluation in MPNSTs. This trial was registered with (NCT02008877).
Collapse
|
26
|
Fankhauser M, Bechmann N, Lauseker M, Goncalves J, Favier J, Klink B, William D, Gieldon L, Maurer J, Spöttl G, Rank P, Knösel T, Orth M, Ziegler CG, Aristizabal Prada ET, Rubinstein G, Fassnacht M, Spitzweg C, Grossman AB, Pacak K, Beuschlein F, Bornstein SR, Eisenhofer G, Auernhammer CJ, Reincke M, Nölting S. Synergistic Highly Potent Targeted Drug Combinations in Different Pheochromocytoma Models Including Human Tumor Cultures. Endocrinology 2019; 160:2600-2617. [PMID: 31322702 PMCID: PMC6795182 DOI: 10.1210/en.2019-00410] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 07/14/2019] [Indexed: 01/09/2023]
Abstract
There are no officially approved therapies for metastatic pheochromocytomas apart from ultratrace 131I-metaiodbenzylguanidine therapy, which is approved only in the United States. We have, therefore, investigated the antitumor potential of molecular-targeted approaches in murine pheochromocytoma cell lines [monocyte chemoattractant protein (MPC)/monocyte chemoattractant protein/3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT)], immortalized mouse chromaffin Sdhb-/- cells, three-dimensional pheochromocytoma tumor models (MPC/MTT spheroids), and human pheochromocytoma primary cultures. We identified the specific phosphatidylinositol-3-kinase α inhibitor BYL719 and the mammalian target of rapamycin inhibitor everolimus as the most effective combination in all models. Single treatment with clinically relevant doses of BYL719 and everolimus significantly decreased MPC/MTT and Sdhb-/- cell viability. A targeted combination of both inhibitors synergistically reduced MPC and Sdhb-/- cell viability and showed an additive effect on MTT cells. In MPC/MTT spheroids, treatment with clinically relevant doses of BYL719 alone or in combination with everolimus was highly effective, leading to a significant shrinkage or even a complete collapse of the spheroids. We confirmed the synergism of clinically relevant doses of BYL719 plus everolimus in human pheochromocytoma primary cultures of individual patient tumors with BYL719 attenuating everolimus-induced AKT activation. We have thus established a method to assess molecular-targeted therapies in human pheochromocytoma cultures and identified a highly effective combination therapy. Our data pave the way to customized combination therapy to target individual patient tumors.
Collapse
Affiliation(s)
- Maria Fankhauser
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität, LMU München, Munich, Germany
| | - Nicole Bechmann
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus at Technische Universität Dresden, Dresden, Germany
| | - Michael Lauseker
- Institute for Medical Information Sciences, Biometry, and Epidemiology, Campus Grosshadern, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Judith Goncalves
- Institut National de la Santé et de la Recherche Médicale, UMR970, Paris-Cardiovascular Research Center, Equipe Labellisée par la Ligue contre le Cancer, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Judith Favier
- Institut National de la Santé et de la Recherche Médicale, UMR970, Paris-Cardiovascular Research Center, Equipe Labellisée par la Ligue contre le Cancer, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France
| | - Barbara Klink
- Institute for Clinical Genetics, Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
- National Center of Genetics, Laboratoire National de Santé, Dudelange, Luxembourg
- German Cancer Consortium, Dresden, Germany
| | | | - Laura Gieldon
- Institute for Clinical Genetics, Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
- German Cancer Consortium, Dresden, Germany
- German Cancer Research Center, Heidelberg, Germany
- Core Unit for Molecular Tumor Diagnostics, National Center for Tumor Diseases, Heidelberg, Germany
| | - Julian Maurer
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität, LMU München, Munich, Germany
| | - Gerald Spöttl
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität, LMU München, Munich, Germany
| | - Petra Rank
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität, LMU München, Munich, Germany
| | - Thomas Knösel
- Institute of Pathology, Ludwig-Maximilians-University, Munich, Germany
| | - Michael Orth
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Christian G Ziegler
- Department of Medicine III, University Hospital Carl Gustav Carus Dresden, Dresden, Germany
| | | | - German Rubinstein
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität, LMU München, Munich, Germany
| | - Martin Fassnacht
- Department of Medicine I, Division of Endocrinology and Diabetology, University Hospital, University of Würzburg, Würzburg, Germany
| | - Christine Spitzweg
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität, LMU München, Munich, Germany
| | - Ashley B Grossman
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, United Kingdom
- Royal Free Hospital ENETS Centre of Excellence, London, United Kingdom
| | - Karel Pacak
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - Felix Beuschlein
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität, LMU München, Munich, Germany
- Klinik für Endokrinologie, Diabetologie und Klinische Ernährung, Universitätsspital Zürich, Zurich, Switzerland
| | - Stefan R Bornstein
- Department of Medicine III, University Hospital Carl Gustav Carus Dresden, Dresden, Germany
| | - Graeme Eisenhofer
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus at Technische Universität Dresden, Dresden, Germany
- Department of Medicine III, University Hospital Carl Gustav Carus Dresden, Dresden, Germany
| | - Christoph J Auernhammer
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität, LMU München, Munich, Germany
| | - Martin Reincke
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität, LMU München, Munich, Germany
| | - Svenja Nölting
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität, LMU München, Munich, Germany
- Correspondence: Svenja Nölting, MD, Med. Klinik und Poliklinik IV, Klinikum der Universität München, Ziemssenstraße 1, 80336 Munich, Germany. E-mail:
| |
Collapse
|
27
|
The PTEN Tumor Suppressor Gene in Soft Tissue Sarcoma. Cancers (Basel) 2019; 11:cancers11081169. [PMID: 31416195 PMCID: PMC6721622 DOI: 10.3390/cancers11081169] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 07/26/2019] [Accepted: 08/08/2019] [Indexed: 02/07/2023] Open
Abstract
Soft tissue sarcoma (STS) is a rare malignancy of mesenchymal origin classified into more than 50 different subtypes with distinct clinical and pathologic features. Despite the poor prognosis in the majority of patients, only modest improvements in treatment strategies have been achieved, largely due to the rarity and heterogeneity of these tumors. Therefore, the discovery of new prognostic and predictive biomarkers, together with new therapeutic targets, is of enormous interest. Phosphatase and tensin homolog (PTEN) is a well-known tumor suppressor that commonly loses its function via mutation, deletion, transcriptional silencing, or protein instability, and is frequently downregulated in distinct sarcoma subtypes. The loss of PTEN function has consequent alterations in important pathways implicated in cell proliferation, survival, migration, and genomic stability. PTEN can also interact with other tumor suppressors and oncogenic signaling pathways that have important implications for the pathogenesis in certain STSs. The aim of the present review is to summarize the biological significance of PTEN in STS and its potential role in the development of new therapeutic strategies.
Collapse
|
28
|
Targeting Sporadic and Neurofibromatosis Type 1 (NF1) Related Refractory Malignant Peripheral Nerve Sheath Tumors (MPNST) in a Phase II Study of Everolimus in Combination with Bevacizumab (SARC016). Sarcoma 2019; 2019:7656747. [PMID: 31427883 PMCID: PMC6681622 DOI: 10.1155/2019/7656747] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 06/13/2019] [Indexed: 01/30/2023] Open
Abstract
Purpose There are no known effective medical treatments for refractory MPNST. Inactivation of the NF1 tumor suppressor in MPNST results in upregulation of mTOR (mammalian target of rapamycin) signaling and angiogenesis, which contributes to disease progression. We conducted a phase II study for patients (pts) with refractory MPNST combining everolimus (10 mg PO once daily) with bevacizumab (10 mg/kg IV every 2 weeks) to determine the clinical benefit rate (CBR) (complete response, partial response (PR), or stable disease (SD) ≥ 4 months). Patients and Methods Patients ≥18 years old with chemotherapy refractory sporadic or NF1 MPNST were eligible. Tumor response was assessed after every 2 cycles (the WHO criteria). A two-stage design targeting a 25% CBR was used: if ≥ 1/15 pts in stage 1 responded, enrollment would be expanded by 10 pts, and if ≥ 4/25 patients had clinical benefit, the combination would be considered active. Results Twenty-five pts, 17 with NF1 and 8 with sporadic MPNST, enrolled. One of 15 pts in stage 1 had clinical benefit. Of 10 additional pts enrolled, 2 had clinical benefit. The median number of completed cycles was 3 (range 1–16). Adverse events were similar to those known for this combination. Conclusion With a CBR of 12% (3/25), the combination of everolimus and bevacizumab did not reach the study's target response rate and is not considered active in refractory MPNST.
Collapse
|
29
|
Tlemsani C, Pécuchet N, Gruber A, Laurendeau I, Danel C, Riquet M, Le Pimpec-Barthes F, Fabre E, Mansuet-Lupo A, Damotte D, Alifano M, Luscan A, Rousseau B, Vidaud D, Varin J, Parfait B, Bieche I, Leroy K, Laurent-Puig P, Terris B, Blons H, Vidaud M, Pasmant E. NF1 mutations identify molecular and clinical subtypes of lung adenocarcinomas. Cancer Med 2019; 8:4330-4337. [PMID: 31199580 PMCID: PMC6675708 DOI: 10.1002/cam4.2175] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 12/09/2018] [Accepted: 03/28/2019] [Indexed: 01/05/2023] Open
Abstract
The tumor suppressor gene neurofibromin 1 (NF1) is a major regulator of the RAS-MAPK pathway. NF1 mutations occur in lung cancer but were not extensively explored. We hypothesized that NF1-mutated tumors could define a specific population with a distinct clinical and molecular profile. We performed NF1 sequencing using next generation sequencing (NGS) in 154 lung adenocarcinoma surgical specimens with known KRAS, EGFR, TP53, BRAF, HER2, and PIK3CA status, to evaluate the molecular and clinical specificities of NF1-mutated lung cancers. Clinical data were retrospectively collected, and their associations with molecular profiles assessed. In this series, 24 tumors were NF1 mutated (17.5%) and 11 were NF1 deleted (8%). There was no mutation hotspot. NF1 mutations were rarely associated with other RAS-MAPK pathway mutations. Most of patients with NF1 alterations were males (74.3%) and smokers (74.3%). Overall survival and disease-free survival were statistically better in patients with NF1 alterations (N = 34) than in patients with KRAS mutations (N = 30) in univariate analysis. Our results confirm that NF1 is frequently mutated and represents a distinct molecular and clinical subtype of lung adenocarcinoma.
Collapse
Affiliation(s)
- Camille Tlemsani
- Service de Génétique et Biologie Moléculaires, Hôpital Cochin, Hôpitaux Universitaires Paris Centre, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France.,EA7331, Faculté de Pharmacie de Paris, Université Paris Descartes, Paris, France
| | | | - Aurelia Gruber
- EA7331, Faculté de Pharmacie de Paris, Université Paris Descartes, Paris, France
| | - Ingrid Laurendeau
- EA7331, Faculté de Pharmacie de Paris, Université Paris Descartes, Paris, France
| | - Claire Danel
- Service d'Anatomopathologie, Hôpital Bichat, AP-HP, Paris, France
| | - Marc Riquet
- Service de Chirurgie Thoracique, Hôpital Européen Georges Pompidou (HEGP), AP-HP, Paris, France
| | | | - Elizabeth Fabre
- INSERM UMR-S1147, Université Sorbonne-Paris-Cité, Paris, France.,Service d'Oncologie Médicale, Hôpital Européen Georges-Pompidou (HEGP), AP-HP, Paris, France
| | - Audrey Mansuet-Lupo
- Service d'Anatomopathologie, Hôpital Cochin, Hôpitaux Universitaires Paris Centre, AP-HP, Paris, France
| | - Diane Damotte
- Service d'Anatomopathologie, Hôpital Cochin, Hôpitaux Universitaires Paris Centre, AP-HP, Paris, France
| | - Marco Alifano
- Service de Chirurgie Thoracique, Hôpital Cochin, Hôpitaux Universitaires Paris Centre, AP-HP, Paris, France
| | - Armelle Luscan
- Service de Génétique et Biologie Moléculaires, Hôpital Cochin, Hôpitaux Universitaires Paris Centre, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France.,EA7331, Faculté de Pharmacie de Paris, Université Paris Descartes, Paris, France
| | - Benoit Rousseau
- Service d'Oncologie Médicale, hôpital Henri-Mondor, AP-HP, Créteil, France.,Faculté de médecine de Créteil, Université Paris Est, Créteil, France.,Faculté de médecine de Créteil, Institut Mondor de recherche biomédicale, Inserm U955 équipe 18, Créteil, France
| | - Dominique Vidaud
- Service de Génétique et Biologie Moléculaires, Hôpital Cochin, Hôpitaux Universitaires Paris Centre, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France.,EA7331, Faculté de Pharmacie de Paris, Université Paris Descartes, Paris, France
| | - Jennifer Varin
- EA7331, Faculté de Pharmacie de Paris, Université Paris Descartes, Paris, France
| | - Beatrice Parfait
- Service de Génétique et Biologie Moléculaires, Hôpital Cochin, Hôpitaux Universitaires Paris Centre, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France.,EA7331, Faculté de Pharmacie de Paris, Université Paris Descartes, Paris, France
| | - Ivan Bieche
- EA7331, Faculté de Pharmacie de Paris, Université Paris Descartes, Paris, France.,Service de Génétique, Institut Curie, Paris, France
| | - Karen Leroy
- Service de Génétique et Biologie Moléculaires, Hôpital Cochin, Hôpitaux Universitaires Paris Centre, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Pierre Laurent-Puig
- INSERM UMR-S1147, Université Sorbonne-Paris-Cité, Paris, France.,Service de Biochimie, Pharmacologie et Biologie Moléculaire, Hôpital Européen Georges-Pompidou (HEGP), AP-HP, Paris, France
| | - Benoit Terris
- Service d'Anatomopathologie, Hôpital Cochin, Hôpitaux Universitaires Paris Centre, AP-HP, Paris, France
| | - Helene Blons
- INSERM UMR-S1147, Université Sorbonne-Paris-Cité, Paris, France.,Service de Biochimie, Pharmacologie et Biologie Moléculaire, Hôpital Européen Georges-Pompidou (HEGP), AP-HP, Paris, France
| | - Michel Vidaud
- Service de Génétique et Biologie Moléculaires, Hôpital Cochin, Hôpitaux Universitaires Paris Centre, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France.,EA7331, Faculté de Pharmacie de Paris, Université Paris Descartes, Paris, France
| | - Eric Pasmant
- Service de Génétique et Biologie Moléculaires, Hôpital Cochin, Hôpitaux Universitaires Paris Centre, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France.,EA7331, Faculté de Pharmacie de Paris, Université Paris Descartes, Paris, France
| |
Collapse
|
30
|
Korfhage J, Lombard DB. Malignant Peripheral Nerve Sheath Tumors: From Epigenome to Bedside. Mol Cancer Res 2019; 17:1417-1428. [PMID: 31023785 DOI: 10.1158/1541-7786.mcr-19-0147] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/08/2019] [Accepted: 04/16/2019] [Indexed: 01/05/2023]
Abstract
Malignant peripheral nerve sheath tumors (MPNST) are aggressive sarcomas typically developing in the context of neurofibromatosis type 1 (NF-1). With the exception of surgical resection, these tumors are resistant to all current therapies, and unresectable, recurrent, or metastatic tumors are considered incurable. Preclinical studies have identified several novel candidate molecular targets for therapeutic intervention, but, to date, targeted therapies have proven ineffective. Recent studies have identified recurrent mutations in polycomb repressive complex 2 (PRC2) core components, embryonic ectoderm development protein (EED) and suppressor of zeste 12 homolog (SUZ12), in MPNST. These mutations result in global loss of the histone H3 lysine 27 trimethylation epigenetic mark, normally deposited by PRC2, and subsequent gain in acetylation at this residue. This altered chromatin state has been shown to promote MPNST malignancy; however, acetylation at this residue sensitizes MPNSTs to BRD4 and bromodomain and extra-terminal domain inhibition. Interestingly, the catalytic component of PRC2, enhancer of zeste homolog 2 (EZH2), is not mutated in MPNST, hinting that a noncanonical, PRC2-independent function of EZH2 may play a role in this cancer. This review examines the pathobiology of MPNST, the contribution of PRC2 subunits to this process, and the prospects for PRC2-related therapies for this cancer. IMPLICATIONS: Identification of mutations in the PRC2 components EED and SUZ12 in the majority of MPNSTs may imply noncanonical oncogenic activities of the intact component, EZH2, and provide new opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Justin Korfhage
- Department of Pathology and Institute of Gerontology, University of Michigan, Ann Arbor, Michigan
| | - David B Lombard
- Department of Pathology and Institute of Gerontology, University of Michigan, Ann Arbor, Michigan.
| |
Collapse
|
31
|
Concomitant pancreatic neuroendocrine tumors in hereditary tumor syndromes: who, when and how to operate? JOURNAL OF PANCREATOLOGY 2019. [DOI: 10.1097/jp9.0000000000000016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
32
|
Slopis JM, Arevalo O, Bell CS, Hebert AA, Northrup H, Riascos RF, Samuels JA, Smith KC, Tate P, Koenig MK. Treatment of Disfiguring Cutaneous Lesions in Neurofibromatosis-1 with Everolimus: A Phase II, Open-Label, Single-Arm Trial. Drugs R D 2019; 18:295-302. [PMID: 30284154 PMCID: PMC6277319 DOI: 10.1007/s40268-018-0248-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background Cutaneous neurofibromas cause disfigurement and discomfort in individuals with neurofibromatosis type 1 (NF-1). Methods The primary objective of this phase II, open-label, single-arm trial was to assess whether orally administered everolimus reduced the surface volume of cutaneous neurofibromas in patients with NF-1. Results Of 22 patients who took the study drug, 17 completed the trial; 5 patients withdrew due to adverse events. Sixteen patients had photographs of sufficient quality for assessment of the primary outcome. A significant reduction in lesion surface volume, defined as an end of trial volume > 2 standard errors (SE) less than baseline volume, was observed for 4/31 lesions (13%) from 3/16 patients (19%). Additionally, a statistically significant absolute change in average height for paired lesions was observed (p = 0.048). Although not a prespecified outcome measure, a dramatic reduction in the size of 3 large plexiform neurofibromas with a cutaneous component was also noted and documented by measurement of maximum circumference or magnetic resonance imaging-based volumetric analysis. Adverse events were common in this trial, but no serious adverse events occurred. Conclusions Although this was a small, exploratory trial that was not powered for significance, the reduction in surface volume observed in this study is noteworthy assuming that the natural course for untreated lesions is to maintain or increase in volume. Future studies are needed with larger study populations that incorporate longer durations of treatment and better standardization of volumetric measurements. Trial Registration ClinicalTrials.gov Identifier: NCT02332902 Electronic supplementary material The online version of this article (10.1007/s40268-018-0248-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- John M Slopis
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Octavio Arevalo
- Department of Diagnostic and Interventional Imaging, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Cynthia S Bell
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Adelaide A Hebert
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA.,Department of Dermatology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Hope Northrup
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Roy F Riascos
- Department of Diagnostic and Interventional Imaging, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Joshua A Samuels
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Keri C Smith
- Department of Pathology and Laboratory Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Patti Tate
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Mary Kay Koenig
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA. .,Department of Pediatrics, Division of Child and Adolescent Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, 6410 Fannin Street, UTPB 732, Houston, TX, 77030, USA.
| |
Collapse
|
33
|
Absence of Efficacy of Everolimus in Neurofibromatosis 1-Related Plexiform Neurofibromas: Results from a Phase 2a Trial. J Invest Dermatol 2019; 139:718-720. [DOI: 10.1016/j.jid.2018.09.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/02/2018] [Accepted: 09/10/2018] [Indexed: 11/15/2022]
|
34
|
A Drosophila genetic screen for suppressors of S6kinase-dependent growth identifies the F-box subunit Archipelago/FBXW7. Mol Genet Genomics 2019; 294:573-582. [PMID: 30656413 DOI: 10.1007/s00438-018-01529-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 12/26/2018] [Indexed: 12/12/2022]
Abstract
This study was designed to identify novel negative regulators of the Drosophila S6kinase (dS6K). S6K is a downstream effector of the growth-regulatory complex mTORC1 (mechanistic-Target-of-Rapamycin complex 1). Nutrients activate mTORC1, which in turn induces the phosphorylation of S6K to promote cell growth, whereas fasting represses mTORC1 activity. Here, we screened 11,000 RNA-interfering (RNAi) lines and retained those that enhanced a dS6K-dependent growth phenotype. Since RNAi induces gene knockdown, enhanced tissue growth supports the idea that the targeted gene acts as a growth suppressor. To validate the resulting candidate genes, we monitored dS6K phosphorylation and protein levels in double-stranded RNAi-treated S2 cells. We identified novel dS6K negative regulators, including gene products implicated in basal cellular functions, suggesting that feedback inputs modulate mTORC1/dS6K signaling. We also identified Archipelago (Ago), the Drosophila homologue of FBXW7, which is an E3-ubiquitin-ligase subunit that loads ubiquitin units onto target substrates for proteasome-mediated degradation. Despite a previous report showing an interaction between Ago/FBXW7 and dS6K in a yeast two-hybrid assay and the presence of an Ago/FBXW7-consensus motif in the dS6K polypeptide, we could not see a direct interaction in immunoprecipitation assay. Nevertheless, we observed that loss-of-ago/fbxw7 in larvae resulted in an increase in dS6K protein levels, but no change in the levels of phosphorylated dS6K or dS6K transcripts, suggesting that Ago/FBXW7 indirectly controls dS6K translation or stability. Through the identification of novel negative regulators of the downstream target, dS6K, our study may help deciphering the underlying mechanisms driving deregulations of mTORC1, which underlies several human diseases.
Collapse
|
35
|
Li Y, Li J, Zhou Q, Liu Y, Chen W, Xu H. mTORC1 signaling is essential for neurofibromatosis type I gene modulated osteogenic differentiation of BMSCs. J Cell Biochem 2018; 120:2886-2896. [DOI: 10.1002/jcb.26626] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 12/19/2017] [Indexed: 12/23/2022]
Affiliation(s)
- YiQiang Li
- Department of Pediatric Orthopaedics, GuangZhou Women and Children's Medical Center, Guangzhou Medical University Guangzhou China
| | - JingChun Li
- Department of Pediatric Orthopaedics, GuangZhou Women and Children's Medical Center, Guangzhou Medical University Guangzhou China
| | - QingHe Zhou
- Department of Pediatric Orthopaedics, GuangZhou Women and Children's Medical Center, Guangzhou Medical University Guangzhou China
| | - Yuanzhong Liu
- Department of Pediatric Orthopaedics, GuangZhou Women and Children's Medical Center, Guangzhou Medical University Guangzhou China
| | - WeiDong Chen
- Department of Pediatric Orthopaedics, GuangZhou Women and Children's Medical Center, Guangzhou Medical University Guangzhou China
| | - HongWen Xu
- Department of Pediatric Orthopaedics, GuangZhou Women and Children's Medical Center, Guangzhou Medical University Guangzhou China
| |
Collapse
|
36
|
Abstract
The mechanistic target of rapamycin (mTOR) is an important signaling hub that integrates environmental information regarding energy availability and stimulates anabolic molecular processes and cell growth. Abnormalities in this pathway have been identified in several syndromes in which autism spectrum disorder (ASD) is highly prevalent. Several studies have investigated mTOR signaling in developmental and neuronal processes that, when dysregulated, could contribute to the development of ASD. Although many potential mechanisms still remain to be fully understood, these associations are of great interest because of the clinical availability of mTOR inhibitors. Clinical trials evaluating the efficacy of mTOR inhibitors to improve neurodevelopmental outcomes have been initiated.
Collapse
Affiliation(s)
- Kellen D. Winden
- F.M. Kirby Neurobiology Center, Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Darius Ebrahimi-Fakhari
- F.M. Kirby Neurobiology Center, Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Mustafa Sahin
- F.M. Kirby Neurobiology Center, Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
37
|
Abstract
Translation is a key step in the regulation of gene expression and one of the most energy-consuming processes in the cell. In response to various stimuli, multiple signaling pathways converge on the translational machinery to regulate its function. To date, the roles of phosphoinositide 3-kinase (PI3K)/AKT and the mitogen-activated protein kinase (MAPK) pathways in the regulation of translation are among the best understood. Both pathways engage the mechanistic target of rapamycin (mTOR) to regulate a variety of components of the translational machinery. While these pathways regulate protein synthesis in homeostasis, their dysregulation results in aberrant translation leading to human diseases, including diabetes, neurological disorders, and cancer. Here we review the roles of the PI3K/AKT and MAPK pathways in the regulation of mRNA translation. We also highlight additional signaling mechanisms that have recently emerged as regulators of the translational apparatus.
Collapse
|
38
|
Deng Y, Qin Y, Srikantan S, Luo A, Cheng ZM, Flores SK, Vogel KS, Wang E, Dahia PLM. The TMEM127 human tumor suppressor is a component of the mTORC1 lysosomal nutrient-sensing complex. Hum Mol Genet 2018; 27:1794-1808. [PMID: 29547888 PMCID: PMC5932569 DOI: 10.1093/hmg/ddy095] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 03/07/2018] [Accepted: 03/12/2018] [Indexed: 12/22/2022] Open
Abstract
The TMEM127 tumor suppressor gene encodes a transmembrane protein of unknown function mutated in pheochromocytomas and, rarely, in renal cancers. Tumors with inactivating TMEM127 mutations have increased mTORC1 signaling by undefined mechanisms. Here we report that TMEM127 interacts with the lysosome-anchored complex comprised of Rag GTPases, the LAMTOR pentamer (or 'ragulator') and vATPase, which controls amino acid-mediated mTORC1 activation. We found that under nutrient-rich conditions TMEM127 expression reduces mTORC1 recruitment to Rags. In addition, TMEM127 interacts with LAMTOR in an amino acid-dependent manner and decreases the LAMTOR1-vATPase association, while TMEM127-vATPase binding requires intact lysosomal acidification but is amino acid independent. Conversely, both murine and human cells lacking TMEM127 accumulate LAMTOR proteins in the lysosome. Consistent with these findings, pheochromocytomas with TMEM127 mutations have increased levels of LAMTOR proteins. These results suggest that TMEM127 interactions with ragulator and vATPase at the lysosome contribute to restrain mTORC1 signaling in response to amino acids, thus explaining the increased mTORC1 activation seen in TMEM127-deficient tumors.
Collapse
Affiliation(s)
- Yilun Deng
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
- Department of Cell Systems & Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Yuejuan Qin
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Subramanya Srikantan
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Anqi Luo
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Zi-Ming Cheng
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Shahida K Flores
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Kris S Vogel
- Department of Cell Systems & Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Exing Wang
- Department of Cell Systems & Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Patricia L M Dahia
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
- Department of Cell Systems & Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
- Cancer Therapy and Research Center, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
39
|
Abstract
INTRODUCTION Neurofibromatosis type 1 (NF1) is an autosomal dominantly inherited tumor predisposition syndrome with an incidence of one in 3000-4000 individuals with no currently effective therapies. The NF1 gene encodes neurofibromin, which functions as a negative regulator of RAS. NF1 is a chronic multisystem disorder affecting many different tissues. Due to cell-specific complexities of RAS signaling, therapeutic approaches for NF1 will likely have to focus on a particular tissue and manifestation of the disease. Areas covered: We discuss the multisystem nature of NF1 and the signaling pathways affected due to neurofibromin deficiency. We explore the cell-/tissue-specific molecular and cellular consequences of aberrant RAS signaling in NF1 and speculate on their potential as therapeutic targets for the disease. We discuss recent genomic, transcriptomic, and proteomic studies combined with molecular, cellular, and biochemical analyses which have identified several targets for specific NF1 manifestations. We also consider the possibility of patient-specific gene therapy approaches for NF1. Expert opinion: The emergence of NF1 genotype-phenotype correlations, characterization of cell-specific signaling pathways affected in NF1, identification of novel biomarkers, and the development of sophisticated animal models accurately reflecting human pathology will continue to provide opportunities to develop therapeutic approaches to combat this multisystem disorder.
Collapse
Affiliation(s)
- James A Walker
- a Center for Genomic Medicine , Massachusetts General Hospital, Harvard Medical School , Boston , MA , USA
| | - Meena Upadhyaya
- b Division of Cancer and Genetics , Cardiff University , Cardiff , UK
| |
Collapse
|
40
|
Bergamaschi L, Bisogno G, Manzitti C, D'Angelo P, Milano GM, Scagnellato A, Cappelletti M, Chiaravalli S, Dall'Igna P, Alaggio R, Ruggiero A, Di Martino M, Affinita MC, Pierobon M, Garaventa A, Casanova M, Ferrari A. Salvage rates and prognostic factors after relapse in children and adolescents with malignant peripheral nerve sheath tumors. Pediatr Blood Cancer 2018; 65. [PMID: 28926683 DOI: 10.1002/pbc.26816] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Revised: 08/02/2017] [Accepted: 08/12/2017] [Indexed: 12/30/2022]
Abstract
BACKGROUND Malignant peripheral nerve sheath tumor (MPNST) is one of the most common nonrhabdomyosarcoma soft tissue sarcomas encountered in pediatric age, and it is generally characterized by poor outcome, particularly for relapsing patients. MATERIALS AND METHODS This study considered 73 patients <21 years of age with relapsing MPNST observed among 120 patients enrolled in Italian pediatric protocols from 1979 to 2004. With the aim of possibly establishing a risk-adapted stratification, patients' outcome was examined using univariate and multivariate analysis based on clinical features at onset, first-line treatments, clinical findings at the time of first relapse, and second-line treatments. RESULTS The time to relapse ranged from 1 to 204 months after first diagnosis (median 7 months). The first relapse event was mainly local. At the time of our analysis, nine patients were alive in remission. The median overall survival after first relapse was 11 months, and the survival rates were 39.2% at 1 year and 15.8% at 5 years. The factors revealing the greatest impact on prognosis were as follows: initial tumor invasiveness, time of relapse, and achievement of a secondary complete remission (which was related to the feasibility of radical surgery). CONCLUSIONS Our study confirmed the unsatisfactory prognosis for pediatric patients with relapsing MPNST and pointed to a risk-adapted stratification model for the purposes of deciding second-line treatments. For the time being, an aggressive surgical approach seems to be the only effective salvage treatment and should be recommended. New therapeutic approaches are under evaluation with a view to improving current outcomes.
Collapse
Affiliation(s)
- Luca Bergamaschi
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale Tumori, Milano, Italy
| | - Gianni Bisogno
- Pediatric Hemathology and Oncology Division, Padova University Hospital, Padova, Italy
| | - Carla Manzitti
- Department of Pediatric Hematology/Oncology, Giannina Gaslini Children's Hospital, Genova, Italy
| | - Paolo D'Angelo
- Pediatric Oncology Unit, G. Di Cristina Children's Hospital, Palermo, Italy
| | - Giuseppe Maria Milano
- Department of Hematology/Oncology, Ospedale Pediatrico Bambino Gesù IRCCS, Roma, Italy
| | - Angela Scagnellato
- Pediatric Hemathology and Oncology Division, Padova University Hospital, Padova, Italy
| | - Mirko Cappelletti
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale Tumori, Milano, Italy
| | - Stefano Chiaravalli
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale Tumori, Milano, Italy
| | | | - Rita Alaggio
- Pathology Department, Padova University Hospital, Padova, Italy
| | - Antonio Ruggiero
- Division of Pediatric Oncology, Catholic University of Roma, Roma, Italy
| | - Martina Di Martino
- Pediatric Oncology Service, Department of Pediatrics Second University, Napoli, Italy
| | - Maria Carmen Affinita
- Pediatric Hemathology and Oncology Division, Padova University Hospital, Padova, Italy
| | - Marta Pierobon
- Pediatric Hemathology and Oncology Division, Padova University Hospital, Padova, Italy
| | - Alberto Garaventa
- Department of Pediatric Hematology/Oncology, Giannina Gaslini Children's Hospital, Genova, Italy
| | - Michela Casanova
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale Tumori, Milano, Italy
| | - Andrea Ferrari
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale Tumori, Milano, Italy
| |
Collapse
|
41
|
CK2 blockade causes MPNST cell apoptosis and promotes degradation of β-catenin. Oncotarget 2018; 7:53191-53203. [PMID: 27448963 PMCID: PMC5288178 DOI: 10.18632/oncotarget.10668] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 06/07/2016] [Indexed: 12/24/2022] Open
Abstract
Malignant peripheral nerve sheath tumors (MPNSTs) are soft tissue sarcomas that are a major cause of mortality of Neurofibromatosis type 1 (NF1) patients. MPNST patients have few therapeutic options available and only complete surgical resection can be curative. MPNST formation and survival are dependent on activated β-catenin signaling. The goal of this study was to determine if inhibition of the CK2 enzyme can be therapeutically exploited in MPNSTs, given CK2's role in mainta ining oncogenic phenotypes including stabilization of β-catenin. We found that CK2α is over-expressed in MPNSTs and is critical for maintaining cell survival, as the CK2 inhibitor, CX-4945 (Silmitasertib), and shRNA targeting CK2α each significantly reduce MPNST cell viability. These effects were preceded by loss of critical signaling pathways in MPNSTs, including destabilization of β-catenin and TCF8. CX-4945 administration in vivo slowed tumor growth and extends survival time. We conclude that CK2 inhibition is a promising approach to blocking β-catenin in MPNST cells, although combinatorial therapies may be required for maximal efficacy.
Collapse
|
42
|
Varin J, Poulain L, Hivelin M, Nusbaum P, Hubas A, Laurendeau I, Lantieri L, Wolkenstein P, Vidaud M, Pasmant E, Chapuis N, Parfait B. Dual mTORC1/2 inhibition induces anti-proliferative effect in NF1-associated plexiform neurofibroma and malignant peripheral nerve sheath tumor cells. Oncotarget 2018; 7:35753-35767. [PMID: 26840085 PMCID: PMC5094959 DOI: 10.18632/oncotarget.7099] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 01/19/2016] [Indexed: 01/23/2023] Open
Abstract
Approximately 30-50% of individuals with Neurofibromatosis type 1 develop benign peripheral nerve sheath tumors, called plexiform neurofibromas (PNFs). PNFs can undergo malignant transformation to highly metastatic malignant peripheral nerve sheath tumors (MPNSTs) in 5-10% of NF1 patients, with poor prognosis. No effective systemic therapy is currently available for unresectable tumors. In tumors, the NF1 gene deficiency leads to Ras hyperactivation causing the subsequent activation of the AKT/mTOR and Raf/MEK/ERK pathways and inducing multiple cellular responses including cell proliferation. In this study, three NF1-null MPNST-derived cell lines (90-8, 88-14 and 96-2), STS26T sporadic MPNST cell line and PNF-derived primary Schwann cells were used to test responses to AZD8055, an ATP-competitive “active-site” mTOR inhibitor. In contrast to rapamycin treatment which only partially affected mTORC1 signaling, AZD8055 induced a strong inhibition of mTORC1 and mTORC2 signaling in MPNST-derived cell lines and PNF-derived Schwann cells. AZD8055 induced full blockade of mTORC1 leading to an efficient decrease of global protein synthesis. A higher cytotoxic effect was observed with AZD8055 compared to rapamycin in the NF1-null MPNST-derived cell lines with IC50 ranging from 70 to 140 nM and antiproliferative effect was confirmed in PNF-derived Schwann cells. Cell migration was impaired by AZD8055 treatment and cell cycle analysis showed a G0/G1 arrest. Combined effects of AZD8055 and PD0325901 MEK inhibitor as well as BRD4 (BromoDomain-containing protein 4) inhibitors showed a synergistic antiproliferative effect. These data suggest that NF1-associated peripheral nerve sheath tumors are an ideal target for AZD8055 as a single molecule or in combined therapies.
Collapse
Affiliation(s)
- Jennifer Varin
- EA7331, Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Laury Poulain
- Institut Cochin, Département d'Immuno-Hématologie, CNRS UMR8104, INSERM U1016, Paris, France
| | - Mikael Hivelin
- Service de Chirurgie Plastique et Reconstructrice, Hôpital Européen Georges Pompidou- AP-HP, Université Paris Descartes, Paris, France
| | - Patrick Nusbaum
- Service de Biochimie et de Génétique Moléculaire, Hôpital Cochin, AP-HP, Paris, France
| | - Arnaud Hubas
- Service de Biochimie et de Génétique Moléculaire, Hôpital Cochin, AP-HP, Paris, France
| | - Ingrid Laurendeau
- EA7331, Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Laurent Lantieri
- Service de Chirurgie Plastique et Reconstructrice, Hôpital Européen Georges Pompidou- AP-HP, Université Paris Descartes, Paris, France
| | - Pierre Wolkenstein
- Département de Dermatologie, Centre de Référence des Neurofibromatoses, Hôpital Henri-Mondor, AP-HP , Créteil, France.,EA 4393 LIC, Université Paris Est Créteil (UPEC), Créteil, France
| | - Michel Vidaud
- EA7331, Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Service de Biochimie et de Génétique Moléculaire, Hôpital Cochin, AP-HP, Paris, France
| | - Eric Pasmant
- EA7331, Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Service de Biochimie et de Génétique Moléculaire, Hôpital Cochin, AP-HP, Paris, France
| | - Nicolas Chapuis
- Institut Cochin, Département d'Immuno-Hématologie, CNRS UMR8104, INSERM U1016, Paris, France.,Service d'Hématologie Biologique, Hôpital Cochin, AP-HP, Paris, France
| | - Béatrice Parfait
- EA7331, Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Service de Biochimie et de Génétique Moléculaire, Hôpital Cochin, AP-HP, Paris, France
| |
Collapse
|
43
|
Dias Pereira B, Nunes da Silva T, Bernardo AT, César R, Vara Luiz H, Pacak K, Mota-Vieira L. A Clinical Roadmap to Investigate the Genetic Basis of Pediatric Pheochromocytoma: Which Genes Should Physicians Think About? Int J Endocrinol 2018; 2018:8470642. [PMID: 29755524 PMCID: PMC5884154 DOI: 10.1155/2018/8470642] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 01/18/2018] [Indexed: 01/06/2023] Open
Abstract
Pheochromocytoma is very rare at a pediatric age, and when it is present, the probability of a causative genetic mutation is high. Due to high costs of genetic surveys and an increasing number of genes associated with pheochromocytoma, a sequential genetic analysis driven by clinical and biochemical phenotypes is advised. The published literature regarding the genetic landscape of pediatric pheochromocytoma is scarce, which may hinder the establishment of genotype-phenotype correlations and the selection of appropriate genetic testing at this population. In the present review, we focus on the clinical phenotypes of pediatric patients with pheochromocytoma in an attempt to contribute to an optimized genetic testing in this clinical context. We describe epidemiological data on the prevalence of pheochromocytoma susceptibility genes, including new genes that are expanding the genetic etiology of this neuroendocrine tumor in pediatric patients. The clinical phenotypes associated with a higher pretest probability for hereditary pheochromocytoma are presented, focusing on differences between pediatric and adult patients. We also describe new syndromes, as well as rates of malignancy and multifocal disease associated with these syndromes and pheochromocytoma susceptibility genes published more recently. Finally, we discuss new tools for genetic screening of patients with pheochromocytoma, with an emphasis on its applicability in a pediatric population.
Collapse
Affiliation(s)
- Bernardo Dias Pereira
- Serviço de Endocrinologia e Nutrição, Hospital do Divino Espírito Santo de Ponta Delgada (EPER), Av. D. Manuel I, 9500-370 Ponta Delgada, Açores, Portugal
| | - Tiago Nunes da Silva
- Serviço de Endocrinologia e Diabetes, Hospital Garcia de Orta (EPE), Av. Torrado da Silva, 2851-951 Almada, Setúbal, Portugal
| | - Ana Teresa Bernardo
- Serviço de Cirurgia Geral, Hospital do Divino Espírito Santo de Ponta Delgada (EPER), Av. D. Manuel I, 9500-370 Ponta Delgada, Açores, Portugal
| | - Rui César
- Serviço de Endocrinologia e Nutrição, Hospital do Divino Espírito Santo de Ponta Delgada (EPER), Av. D. Manuel I, 9500-370 Ponta Delgada, Açores, Portugal
| | - Henrique Vara Luiz
- Serviço de Endocrinologia e Diabetes, Hospital Garcia de Orta (EPE), Av. Torrado da Silva, 2851-951 Almada, Setúbal, Portugal
| | - Karel Pacak
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver NICHD, NIH, Building 10 CRC 1E-3140 10 Center Drive MSC-1109, Bethesda, MD 20892-1109, USA
| | - Luísa Mota-Vieira
- Unidade de Genética e Patologia Moleculares, Hospital do Divino Espírito Santo de Ponta Delgada (EPER), Av. D. Manuel I, 9500-370 Ponta Delgada, Açores, Portugal
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisbon, Lisbon, Portugal
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| |
Collapse
|
44
|
Malone CF, Emerson C, Ingraham R, Barbosa W, Guerra S, Yoon H, Liu LL, Michor F, Haigis M, Macleod KF, Maertens O, Cichowski K. mTOR and HDAC Inhibitors Converge on the TXNIP/Thioredoxin Pathway to Cause Catastrophic Oxidative Stress and Regression of RAS-Driven Tumors. Cancer Discov 2017; 7:1450-1463. [PMID: 28963352 PMCID: PMC5718976 DOI: 10.1158/2159-8290.cd-17-0177] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 07/19/2017] [Accepted: 09/21/2017] [Indexed: 12/22/2022]
Abstract
Although agents that inhibit specific oncogenic kinases have been successful in a subset of cancers, there are currently few treatment options for malignancies that lack a targetable oncogenic driver. Nevertheless, during tumor evolution cancers engage a variety of protective pathways, which may provide alternative actionable dependencies. Here, we identify a promising combination therapy that kills NF1-mutant tumors by triggering catastrophic oxidative stress. Specifically, we show that mTOR and HDAC inhibitors kill aggressive nervous system malignancies and shrink tumors in vivo by converging on the TXNIP/thioredoxin antioxidant pathway, through cooperative effects on chromatin and transcription. Accordingly, TXNIP triggers cell death by inhibiting thioredoxin and activating apoptosis signal-regulating kinase 1 (ASK1). Moreover, this drug combination also kills NF1-mutant and KRAS-mutant non-small cell lung cancers. Together, these studies identify a promising therapeutic combination for several currently untreatable malignancies and reveal a protective nodal point of convergence between these important epigenetic and oncogenic enzymes.Significance: There are no effective therapies for NF1- or RAS-mutant cancers. We show that combined mTOR/HDAC inhibitors kill these RAS-driven tumors by causing catastrophic oxidative stress. This study identifies a promising therapeutic combination and demonstrates that selective enhancement of oxidative stress may be more broadly exploited for developing cancer therapies. Cancer Discov; 7(12); 1450-63. ©2017 AACR.This article is highlighted in the In This Issue feature, p. 1355.
Collapse
Affiliation(s)
- Clare F Malone
- Genetics Division, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Chloe Emerson
- Genetics Division, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Rachel Ingraham
- Genetics Division, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - William Barbosa
- Genetics Division, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Stephanie Guerra
- Genetics Division, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Haejin Yoon
- Department of Cell Biology, Ludwig Center at Harvard, Harvard Medical School, Boston, Massachusetts
| | - Lin L Liu
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Franziska Michor
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Marcia Haigis
- Department of Cell Biology, Ludwig Center at Harvard, Harvard Medical School, Boston, Massachusetts
| | - Kay F Macleod
- The Ben May Institute for Cancer Research, The University of Chicago, Chicago, Illinois
| | - Ophélia Maertens
- Genetics Division, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
- Ludwig Center at Harvard, Boston, Massachusetts
| | - Karen Cichowski
- Genetics Division, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts.
- Harvard Medical School, Boston, Massachusetts
- Ludwig Center at Harvard, Boston, Massachusetts
| |
Collapse
|
45
|
Maertens O, McCurrach ME, Braun BS, De Raedt T, Epstein I, Huang TQ, Lauchle JO, Lee H, Wu J, Cripe TP, Clapp DW, Ratner N, Shannon K, Cichowski K. A Collaborative Model for Accelerating the Discovery and Translation of Cancer Therapies. Cancer Res 2017; 77:5706-5711. [PMID: 28993414 DOI: 10.1158/0008-5472.can-17-1789] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 08/01/2017] [Accepted: 08/04/2017] [Indexed: 01/24/2023]
Abstract
Preclinical studies using genetically engineered mouse models (GEMM) have the potential to expedite the development of effective new therapies; however, they are not routinely integrated into drug development pipelines. GEMMs may be particularly valuable for investigating treatments for less common cancers, which frequently lack alternative faithful models. Here, we describe a multicenter cooperative group that has successfully leveraged the expertise and resources from philanthropic foundations, academia, and industry to advance therapeutic discovery and translation using GEMMs as a preclinical platform. This effort, known as the Neurofibromatosis Preclinical Consortium (NFPC), was established to accelerate new treatments for tumors associated with neurofibromatosis type 1 (NF1). At its inception, there were no effective treatments for NF1 and few promising approaches on the horizon. Since 2008, participating laboratories have conducted 95 preclinical trials of 38 drugs or combinations through collaborations with 18 pharmaceutical companies. Importantly, these studies have identified 13 therapeutic targets, which have inspired 16 clinical trials. This review outlines the opportunities and challenges of building this type of consortium and highlights how it can accelerate clinical translation. We believe that this strategy of foundation-academic-industry partnering is generally applicable to many diseases and has the potential to markedly improve the success of therapeutic development. Cancer Res; 77(21); 5706-11. ©2017 AACR.
Collapse
Affiliation(s)
- Ophélia Maertens
- Genetics Division, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts.,Ludwig Center at Dana-Farber/Harvard Cancer Center, Boston, Massachusetts
| | - Mila E McCurrach
- Children's Tumor Foundation, New York, New York.,NYU Langone Medical Center, School of Medicine, New York University, New York, New York
| | - Benjamin S Braun
- Department of Pediatrics and Comprehensive Cancer Center, University of California, San Francisco, California
| | - Thomas De Raedt
- Genetics Division, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Inbal Epstein
- Department of Pediatrics and Comprehensive Cancer Center, University of California, San Francisco, California
| | - Tannie Q Huang
- Department of Pediatrics and Comprehensive Cancer Center, University of California, San Francisco, California
| | - Jennifer O Lauchle
- Department of Pediatrics and Comprehensive Cancer Center, University of California, San Francisco, California.,Genentech, South San Francisco, California
| | - Hyerim Lee
- Children's Tumor Foundation, New York, New York
| | - Jianqiang Wu
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Dept. of Pediatrics, University of Cincinnati, Cincinnati, Ohio
| | - Timothy P Cripe
- Nationwide Children's Hospital, Hematology & Oncology, Columbus, Ohio
| | - D Wade Clapp
- Herman Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Nancy Ratner
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Dept. of Pediatrics, University of Cincinnati, Cincinnati, Ohio
| | - Kevin Shannon
- Department of Pediatrics and Comprehensive Cancer Center, University of California, San Francisco, California
| | - Karen Cichowski
- Genetics Division, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts. .,Harvard Medical School, Boston, Massachusetts.,Ludwig Center at Dana-Farber/Harvard Cancer Center, Boston, Massachusetts
| |
Collapse
|
46
|
Kim A, Pratilas CA. The promise of signal transduction in genetically driven sarcomas of the nerve. Exp Neurol 2017; 299:317-325. [PMID: 28859862 DOI: 10.1016/j.expneurol.2017.08.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 08/24/2017] [Accepted: 08/25/2017] [Indexed: 12/28/2022]
Abstract
Neurofibromatosis type 1 (NF1) is an autosomal dominant tumor predisposition syndrome. Malignant peripheral nerve sheath tumors (MPNST) are aggressive soft tissue sarcomas arising from peripheral nerve sheaths, and the most commonly lethal feature associated with NF1. The hallmark of NF1 and NF1-related MPNST is the loss of neurofibromin expression. Loss of neurofibromin is considered a tumor-promoting event, and leads to constitutive activation of RAS and its downstream effectors. However, RAS activation alone is not sufficient for MPNST formation, and additional tumor suppressors and signaling pathways have been implicated in tumorigenesis of MPNST. Taking advantage of the rapid development of novel therapeutics targeting key molecular pathways across all cancer types, the best-in-class modulators of these pathways can be assessed in pre-clinical models and translated into clinical trials for patients with MPNST. Here, we describe the genetic changes and molecular pathways that drive MPNST formation and highlight the promise of signal transduction to identify therapies that may treat these tumors more effectively.
Collapse
Affiliation(s)
- AeRang Kim
- Children's National Medical Center, Washington, D.C., United States
| | - Christine A Pratilas
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, United States.
| |
Collapse
|
47
|
Trousil S, Chen S, Mu C, Shaw FM, Yao Z, Ran Y, Shakuntala T, Merghoub T, Manstein D, Rosen N, Cantley LC, Zippin JH, Zheng B. Phenformin Enhances the Efficacy of ERK Inhibition in NF1-Mutant Melanoma. J Invest Dermatol 2017; 137:1135-1143. [PMID: 28143781 PMCID: PMC5392423 DOI: 10.1016/j.jid.2017.01.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 12/19/2016] [Accepted: 01/13/2017] [Indexed: 02/05/2023]
Abstract
Inactivation of the tumor suppressor neurofibromin 1 (NF1) presents a newly characterized melanoma subtype, for which currently no targeted therapies are clinically available. Preclinical studies suggest that extracellular signal-regulated kinase (ERK) inhibitors are likely to provide benefit, albeit with limited efficacy as a single agent; therefore, there is a need for rationally designed combination therapies. Here, we evaluate the combination of the ERK inhibitor SCH772984 and the biguanide phenformin. A combination of both compounds showed potent synergy in cell viability assays and cooperatively induced apoptosis. Treatment with both drugs was required to fully suppress mechanistic target of rapamycin signaling, a known effector of NF1 loss. Mechanistically, SCH772984 increased the oxygen consumption rate, indicating that these cells relied more on oxidative phosphorylation upon treatment. Consistently, SCH772984 increased expression of the mitochondrial transcriptional coactivator peroxisome proliferator-activated receptor gamma, coactivator 1-α. In contrast, cotreatment with phenformin, an inhibitor of complex I of the respiratory chain, decreased the oxygen consumption rate. SCH772984 also promoted the expansion of the H3K4 demethylase KDM5B (also known as JARID1B)-positive subpopulation of melanoma cells, which are slow-cycling and treatment-resistant. Importantly, phenformin suppressed this KDM5B-positive population, which reduced the emergence of SCH772984-resistant clones in long-term cultures. Our results warrant the clinical investigation of this combination therapy in patients with NF1 mutant melanoma.
Collapse
Affiliation(s)
- Sebastian Trousil
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| | - Shuang Chen
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA; Department of Dermatology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Department of Dermatovenereology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Chan Mu
- Department of Dermatovenereology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China; Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| | - Fiona M Shaw
- Department of Dermatology, Weill Cornell Medical College, New York, New York, USA
| | - Zhan Yao
- Division of Medicine, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Yuping Ran
- Department of Dermatovenereology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Tiwari Shakuntala
- Division of Medicine, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Taha Merghoub
- Division of Medicine, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Dieter Manstein
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| | - Neal Rosen
- Division of Medicine, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Lewis C Cantley
- Meyer Cancer Center, Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Jonathan H Zippin
- Department of Dermatology, Weill Cornell Medical College, New York, New York, USA
| | - Bin Zheng
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA.
| |
Collapse
|
48
|
Magdalon J, Sánchez-Sánchez SM, Griesi-Oliveira K, Sertié AL. Dysfunctional mTORC1 Signaling: A Convergent Mechanism between Syndromic and Nonsyndromic Forms of Autism Spectrum Disorder? Int J Mol Sci 2017; 18:ijms18030659. [PMID: 28335463 PMCID: PMC5372671 DOI: 10.3390/ijms18030659] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 03/13/2017] [Accepted: 03/14/2017] [Indexed: 12/28/2022] Open
Abstract
Whereas autism spectrum disorder (ASD) exhibits striking heterogeneity in genetics and clinical presentation, dysfunction of mechanistic target of rapamycin complex 1 (mTORC1) signaling pathway has been identified as a molecular feature common to several well-characterized syndromes with high prevalence of ASD. Additionally, recent findings have also implicated mTORC1 signaling abnormalities in a subset of nonsyndromic ASD, suggesting that defective mTORC1 pathway may be a potential converging mechanism in ASD pathology across different etiologies. However, the mechanistic evidence for a causal link between aberrant mTORC1 pathway activity and ASD neurobehavioral features varies depending on the ASD form involved. In this review, we first discuss six monogenic ASD-related syndromes, including both classical and potentially novel mTORopathies, highlighting their contribution to our understanding of the neurobiological mechanisms underlying ASD, and then we discuss existing evidence suggesting that aberrant mTORC1 signaling may also play a role in nonsyndromic ASD.
Collapse
Affiliation(s)
- Juliana Magdalon
- Hospital Israelita Albert Einstein, Centro de Pesquisa Experimental, São Paulo 05652-900, Brazil.
| | - Sandra M Sánchez-Sánchez
- Hospital Israelita Albert Einstein, Centro de Pesquisa Experimental, São Paulo 05652-900, Brazil.
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo 05508-090, Brazil.
| | - Karina Griesi-Oliveira
- Hospital Israelita Albert Einstein, Centro de Pesquisa Experimental, São Paulo 05652-900, Brazil.
| | - Andréa L Sertié
- Hospital Israelita Albert Einstein, Centro de Pesquisa Experimental, São Paulo 05652-900, Brazil.
| |
Collapse
|
49
|
Next-Generation Sequencing Reveals Pathway Activations and New Routes to Targeted Therapies in Cutaneous Metastatic Melanoma. Am J Dermatopathol 2017; 39:1-13. [PMID: 28045747 DOI: 10.1097/dad.0000000000000729] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Comprehensive genomic profiling of clinical samples by next-generation sequencing (NGS) can identify one or more therapy targets for the treatment of metastatic melanoma (MM) with a single diagnostic test. METHODS NGS was performed on hybridization-captured, adaptor ligation-based libraries using DNA extracted from 4 formalin-fixed paraffin-embedded sections cut at 10 microns from 30 MM cases. The exons of 182 cancer-related genes were fully sequenced using the Illumina HiSeq 2000 at an average sequencing depth of 1098X and evaluated for genomic alterations (GAs) including point mutations, insertions, deletions, copy number alterations, and select gene fusions/rearrangements. Clinically relevant GAs (CRGAs) were defined as those identifying commercially available targeted therapeutics or therapies in registered clinical trials. RESULTS The 30 American Joint Committee on Cancer Stage IV MM included 17 (57%) male and 13 (43%) female patients with a mean age of 59.5 years (range 41-83 years). All MM samples had at least 1 GA, and an average of 2.7 GA/sample (range 1-7) was identified. The mean number of GA did not differ based on age or sex; however, on average, significantly more GAs were identified in amelanotic and poorly differentiated MM. GAs were most commonly identified in BRAF (12 cases, 40%), CDKN2A (6 cases, 20%), NF1 (8 cases, 26.7%), and NRAS (6 cases, 20%). CRGAs were identified in all patients, and represented 77% of the GA (64/83) detected. The median and mean CRGAs per tumor were 2 and 2.1, respectively (range 1-7). CONCLUSION Comprehensive genomic profiling of MM, using a single diagnostic test, uncovers an unexpectedly high number of CRGA that would not be identified by standard of care testing. Moreover, NGS has the potential to influence therapy selection and can direct patients to enter relevant clinical trials evaluating promising targeted therapies.
Collapse
|
50
|
Switon K, Kotulska K, Janusz-Kaminska A, Zmorzynska J, Jaworski J. Molecular neurobiology of mTOR. Neuroscience 2017; 341:112-153. [PMID: 27889578 DOI: 10.1016/j.neuroscience.2016.11.017] [Citation(s) in RCA: 297] [Impact Index Per Article: 37.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 11/09/2016] [Accepted: 11/13/2016] [Indexed: 01/17/2023]
Abstract
Mammalian/mechanistic target of rapamycin (mTOR) is a serine-threonine kinase that controls several important aspects of mammalian cell function. mTOR activity is modulated by various intra- and extracellular factors; in turn, mTOR changes rates of translation, transcription, protein degradation, cell signaling, metabolism, and cytoskeleton dynamics. mTOR has been repeatedly shown to participate in neuronal development and the proper functioning of mature neurons. Changes in mTOR activity are often observed in nervous system diseases, including genetic diseases (e.g., tuberous sclerosis complex, Pten-related syndromes, neurofibromatosis, and Fragile X syndrome), epilepsy, brain tumors, and neurodegenerative disorders (Alzheimer's disease, Parkinson's disease, and Huntington's disease). Neuroscientists only recently began deciphering the molecular processes that are downstream of mTOR that participate in proper function of the nervous system. As a result, we are gaining knowledge about the ways in which aberrant changes in mTOR activity lead to various nervous system diseases. In this review, we provide a comprehensive view of mTOR in the nervous system, with a special focus on the neuronal functions of mTOR (e.g., control of translation, transcription, and autophagy) that likely underlie the contribution of mTOR to nervous system diseases.
Collapse
Affiliation(s)
- Katarzyna Switon
- International Institute of Molecular and Cell Biology, 4 Ks. Trojdena Street, Warsaw 02-109, Poland
| | - Katarzyna Kotulska
- Department of Neurology and Epileptology, Children's Memorial Health Institute, Aleja Dzieci Polskich 20, Warsaw 04-730, Poland
| | | | - Justyna Zmorzynska
- International Institute of Molecular and Cell Biology, 4 Ks. Trojdena Street, Warsaw 02-109, Poland
| | - Jacek Jaworski
- International Institute of Molecular and Cell Biology, 4 Ks. Trojdena Street, Warsaw 02-109, Poland.
| |
Collapse
|