1
|
de Keijzer J, van Spoordonk R, van der Meer-Verweij JE, Janson M, Ketelaar T. Kinesin-4 optimizes microtubule orientations for responsive tip growth guidance in moss. J Cell Biol 2023; 222:e202202018. [PMID: 37389658 PMCID: PMC10316633 DOI: 10.1083/jcb.202202018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/18/2023] [Accepted: 06/06/2023] [Indexed: 07/01/2023] Open
Abstract
Tip-growing cells of, amongst others, plants and fungi secrete wall materials in a highly polarized fashion for fast and efficient colonization of the environment. A polarized microtubule cytoskeleton, in which most microtubule ends are directed toward the growing apex, has been implicated in directing growth. Its organizing principles, in particular regarding maintenance of network unipolarity, have remained elusive. We show that a kinesin-4 protein, hitherto best known for a role in cytokinesis, suppresses encounters between antiparallel microtubules. Without this activity, microtubules hyper-aligned along the growth axis and increasingly grew away from the apex. Cells themselves displayed an overly straight growth path and a delayed gravitropic response. This result revealed conflicting systemic needs for a stable growth direction and an ability to change course in response to extracellular cues. Thus, the use of selective inhibition of microtubule growth at antiparallel overlaps constitutes a new organizing principle within a unipolar microtubule array.
Collapse
Affiliation(s)
- Jeroen de Keijzer
- Laboratory of Cell Biology, Wageningen University, Wageningen, Netherlands
| | | | | | - Marcel Janson
- Laboratory of Cell Biology, Wageningen University, Wageningen, Netherlands
| | - Tijs Ketelaar
- Laboratory of Cell Biology, Wageningen University, Wageningen, Netherlands
| |
Collapse
|
2
|
Jain I, Rao M, Tran PT. Reliable and robust control of nucleus centering is contingent on nonequilibrium force patterns. iScience 2023; 26:106665. [PMID: 37182105 PMCID: PMC10173738 DOI: 10.1016/j.isci.2023.106665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 02/23/2023] [Accepted: 04/09/2023] [Indexed: 05/16/2023] Open
Abstract
Cell centers their division apparatus to ensure symmetric cell division, a challenging task when the governing dynamics is stochastic. Using fission yeast, we show that the patterning of nonequilibrium polymerization forces of microtubule (MT) bundles controls the precise localization of spindle pole body (SPB), and hence the division septum, at the onset of mitosis. We define two cellular objectives, reliability, the mean SPB position relative to the geometric center, and robustness, the variance of the SPB position, which are sensitive to genetic perturbations that change cell length, MT bundle number/orientation, and MT dynamics. We show that simultaneous control of reliability and robustness is required to minimize septum positioning error achieved by the wild type (WT). A stochastic model for the MT-based nucleus centering, with parameters measured directly or estimated using Bayesian inference, recapitulates the maximum fidelity of WT. Using this, we perform a sensitivity analysis of the parameters that control nuclear centering.
Collapse
Affiliation(s)
- Ishutesh Jain
- Institut Curie, PSL Universite, Sorbonne Universite, CNRS UMR 144, 75005 Paris, France
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences - TIFR, Bangalore 560065, India
| | - Madan Rao
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences - TIFR, Bangalore 560065, India
- Corresponding author
| | - Phong T. Tran
- Institut Curie, PSL Universite, Sorbonne Universite, CNRS UMR 144, 75005 Paris, France
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Corresponding author
| |
Collapse
|
3
|
Neeli-Venkata R, Diaz CM, Celador R, Sanchez Y, Minc N. Detection of surface forces by the cell-wall mechanosensor Wsc1 in yeast. Dev Cell 2021; 56:2856-2870.e7. [PMID: 34666001 DOI: 10.1016/j.devcel.2021.09.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 07/13/2021] [Accepted: 09/24/2021] [Indexed: 11/19/2022]
Abstract
Surface receptors of animal cells, such as integrins, promote mechanosensation by forming clusters as signaling hubs that transduce tensile forces. Walled cells of plants and fungi also feature surface sensors, with long extracellular domains that are embedded in their cell walls (CWs) and are thought to detect injuries and promote repair. How these sensors probe surface forces remains unknown. By studying the conserved CW sensor Wsc1 in fission yeast, we uncovered the formation of micrometer-sized clusters at sites of force application onto the CW. Clusters assembled within minutes of CW compression, in dose dependence with mechanical stress and disassembled upon relaxation. Our data support that Wsc1 accumulates to sites of enhanced mechanical stress through reduced lateral diffusivity, mediated by the binding of its extracellular WSC domain to CW polysaccharides, independent of canonical polarity, trafficking, and downstream CW regulatory pathways. Wsc1 may represent an autonomous module to detect and transduce local surface forces onto the CW.
Collapse
Affiliation(s)
- Ramakanth Neeli-Venkata
- Université de Paris, CNRS, Institut Jacques Monod, 75006 Paris, France; Equipe Labellisée LIGUE Contre le Cancer, Paris, France
| | - Celia Municio Diaz
- Université de Paris, CNRS, Institut Jacques Monod, 75006 Paris, France; Equipe Labellisée LIGUE Contre le Cancer, Paris, France
| | - Ruben Celador
- Instituto de Biología Funcional y Genómica, CSIC/Universidad de Salamanca and Departamento de Microbiología y Genética, Universidad de Salamanca, C/ Zacarías González, 37007 Salamanca, Spain
| | - Yolanda Sanchez
- Instituto de Biología Funcional y Genómica, CSIC/Universidad de Salamanca and Departamento de Microbiología y Genética, Universidad de Salamanca, C/ Zacarías González, 37007 Salamanca, Spain
| | - Nicolas Minc
- Université de Paris, CNRS, Institut Jacques Monod, 75006 Paris, France; Equipe Labellisée LIGUE Contre le Cancer, Paris, France.
| |
Collapse
|
4
|
Damle VG, Sharmin R, Morita A, Nie L, Schirhagl R. Micro Versus Macro - The Effect of Environmental Confinement on Cellular Nanoparticle Uptake. Front Bioeng Biotechnol 2020; 8:869. [PMID: 32793585 PMCID: PMC7393206 DOI: 10.3389/fbioe.2020.00869] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 07/06/2020] [Indexed: 02/05/2023] Open
Abstract
While the microenvironment is known to alter the cellular behavior in terms of metabolism, growth and the degree of endoplasmic reticulum stress, its influence on the nanoparticle uptake is not yet investigated. Specifically, it is not clear if the cells cultured in a microenvironment ingest different amounts of nanoparticles than cells cultured in a macroenvironment (for example a petri dish). To answer this question, here we used J774 murine macrophages and fluorescent nanodiamonds (FND) as a model system to systematically compare the uptake efficiency of cells cultured in a petri dish and in a microfluidic channel. Specifically, equal numbers of cells were cultured in two devices followed by the FND incubation. Then cells were fixed, stained and imaged to quantify the FND uptake. We show that the FND uptake in the cells cultured in petri dishes is significantly higher than the uptake in a microfluidic chip where the alteration in CO2 environment, the cell culture medium pH and the surface area to volume ratio seem to be the underlying causes leading to this observed difference.
Collapse
Affiliation(s)
- Viraj G. Damle
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Rokshana Sharmin
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Aryan Morita
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Department of Dental Biomedical Sciences, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Linyan Nie
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Romana Schirhagl
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
5
|
Aguilar-Aragon M, Fletcher G, Thompson BJ. The cytoskeletal motor proteins Dynein and MyoV direct apical transport of Crumbs. Dev Biol 2020; 459:126-137. [PMID: 31881198 PMCID: PMC7090908 DOI: 10.1016/j.ydbio.2019.12.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 12/17/2019] [Accepted: 12/17/2019] [Indexed: 12/12/2022]
Abstract
Crumbs (Crb in Drosophila; CRB1-3 in mammals) is a transmembrane determinant of epithelial cell polarity and a regulator of Hippo signalling. Crb is normally localized to apical cell-cell contacts, just above adherens junctions, but how apical trafficking of Crb is regulated in epithelial cells remains unclear. We use the Drosophila follicular epithelium to demonstrate that polarized trafficking of Crb is mediated by transport along microtubules by the motor protein Dynein and along actin filaments by the motor protein Myosin-V (MyoV). Blocking transport of Crb-containing vesicles by Dynein or MyoV leads to accumulation of Crb within Rab11 endosomes, rather than apical delivery. The final steps of Crb delivery and stabilisation at the plasma membrane requires the exocyst complex and three apical FERM domain proteins - Merlin, Moesin and Expanded - whose simultaneous loss disrupts apical localization of Crb. Accordingly, a knock-in deletion of the Crb FERM-binding motif (FBM) also impairs apical localization. Finally, overexpression of Crb challenges this system, creating a sensitized background to identify components involved in cytoskeletal polarization, apical membrane trafficking and stabilisation of Crb at the apical domain.
Collapse
Affiliation(s)
- M Aguilar-Aragon
- The Francis Crick Institute, 1 Midland Rd, NW1 1AT, London, United Kingdom
| | - G Fletcher
- The Francis Crick Institute, 1 Midland Rd, NW1 1AT, London, United Kingdom
| | - B J Thompson
- The Francis Crick Institute, 1 Midland Rd, NW1 1AT, London, United Kingdom; The John Curtin School of Medical Research, The Australian National University, 131 Garran Rd, Acton, ACT 2601, Canberra, Australia.
| |
Collapse
|
6
|
Vendel KJA, Tschirpke S, Shamsi F, Dogterom M, Laan L. Minimal in vitro systems shed light on cell polarity. J Cell Sci 2019; 132:132/4/jcs217554. [PMID: 30700498 DOI: 10.1242/jcs.217554] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Cell polarity - the morphological and functional differentiation of cellular compartments in a directional manner - is required for processes such as orientation of cell division, directed cellular growth and motility. How the interplay of components within the complexity of a cell leads to cell polarity is still heavily debated. In this Review, we focus on one specific aspect of cell polarity: the non-uniform accumulation of proteins on the cell membrane. In cells, this is achieved through reaction-diffusion and/or cytoskeleton-based mechanisms. In reaction-diffusion systems, components are transformed into each other by chemical reactions and are moving through space by diffusion. In cytoskeleton-based processes, cellular components (i.e. proteins) are actively transported by microtubules (MTs) and actin filaments to specific locations in the cell. We examine how minimal systems - in vitro reconstitutions of a particular cellular function with a minimal number of components - are designed, how they contribute to our understanding of cell polarity (i.e. protein accumulation), and how they complement in vivo investigations. We start by discussing the Min protein system from Escherichia coli, which represents a reaction-diffusion system with a well-established minimal system. This is followed by a discussion of MT-based directed transport for cell polarity markers as an example of a cytoskeleton-based mechanism. To conclude, we discuss, as an example, the interplay of reaction-diffusion and cytoskeleton-based mechanisms during polarity establishment in budding yeast.
Collapse
Affiliation(s)
- Kim J A Vendel
- Bionanoscience Department, Kavli Institute of Nanoscience, Delft University of Technology, Delft 2600 GA, The Netherlands
| | - Sophie Tschirpke
- Bionanoscience Department, Kavli Institute of Nanoscience, Delft University of Technology, Delft 2600 GA, The Netherlands
| | - Fayezeh Shamsi
- Bionanoscience Department, Kavli Institute of Nanoscience, Delft University of Technology, Delft 2600 GA, The Netherlands
| | - Marileen Dogterom
- Bionanoscience Department, Kavli Institute of Nanoscience, Delft University of Technology, Delft 2600 GA, The Netherlands
| | - Liedewij Laan
- Bionanoscience Department, Kavli Institute of Nanoscience, Delft University of Technology, Delft 2600 GA, The Netherlands
| |
Collapse
|
7
|
Haupt A, Ershov D, Minc N. A Positive Feedback between Growth and Polarity Provides Directional Persistency and Flexibility to the Process of Tip Growth. Curr Biol 2018; 28:3342-3351.e3. [DOI: 10.1016/j.cub.2018.09.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 07/24/2018] [Accepted: 09/11/2018] [Indexed: 12/12/2022]
|
8
|
Tay YD, Leda M, Goryachev AB, Sawin KE. Local and global Cdc42 guanine nucleotide exchange factors for fission yeast cell polarity are coordinated by microtubules and the Tea1-Tea4-Pom1 axis. J Cell Sci 2018; 131:jcs.216580. [PMID: 29930085 PMCID: PMC6080602 DOI: 10.1242/jcs.216580] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 06/14/2018] [Indexed: 12/30/2022] Open
Abstract
The conserved Rho-family GTPase Cdc42 plays a central role in eukaryotic cell polarity. The rod-shaped fission yeast Schizosaccharomyces pombe has two Cdc42 guanine nucleotide exchange factors (GEFs), Scd1 and Gef1, but little is known about how they are coordinated in polarized growth. Although the microtubule cytoskeleton is normally not required for polarity maintenance in fission yeast, we show here that when scd1 function is compromised, disruption of microtubules or the polarity landmark proteins Tea1, Tea4 or Pom1 leads to disruption of polarized growth. Instead, cells adopt an isotropic-like pattern of growth, which we term PORTLI growth. Surprisingly, PORTLI growth is caused by spatially inappropriate activity of Gef1. Although most Cdc42 GEFs are membrane associated, we find that Gef1 is a broadly distributed cytosolic protein rather than a membrane-associated protein at cell tips like Scd1. Microtubules and the Tea1–Tea4–Pom1 axis counteract inappropriate Gef1 activity by regulating the localization of the Cdc42 GTPase-activating protein Rga4. Our results suggest a new model of fission yeast cell polarity regulation, involving coordination of ‘local’ (Scd1) and ‘global’ (Gef1) Cdc42 GEFs via microtubules and microtubule-dependent polarity landmarks. Highlighted Article: Cell polarity in fission yeast is regulated by two different Cdc42 guanine nucleotide exchange factors, coordinated by the microtubule-dependent landmark system.
Collapse
Affiliation(s)
- Ye Dee Tay
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Marcin Leda
- SynthSys - Centre for Synthetic and Systems Biology, School of Biological Sciences, University of Edinburgh, CH Waddington Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Andrew B Goryachev
- SynthSys - Centre for Synthetic and Systems Biology, School of Biological Sciences, University of Edinburgh, CH Waddington Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Kenneth E Sawin
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| |
Collapse
|
9
|
Haupt A, Minc N. How cells sense their own shape - mechanisms to probe cell geometry and their implications in cellular organization and function. J Cell Sci 2018; 131:131/6/jcs214015. [PMID: 29581183 DOI: 10.1242/jcs.214015] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Cells come in a variety of shapes that most often underlie their functions. Regulation of cell morphogenesis implies that there are mechanisms for shape sensing that still remain poorly appreciated. Global and local cell geometry features, such as aspect ratio, size or membrane curvature, may be probed by intracellular modules, such as the cytoskeleton, reaction-diffusion systems or molecular complexes. In multicellular tissues, cell shape emerges as an important means to transduce tissue-inherent chemical and mechanical cues into intracellular organization. One emergent paradigm is that cell-shape sensing is most often based upon mechanisms of self-organization, rather than determinism. Here, we review relevant work that has elucidated some of the core principles of how cellular geometry may be conveyed into spatial information to guide processes, such as polarity, signaling, morphogenesis and division-plane positioning.
Collapse
Affiliation(s)
- Armin Haupt
- Institut Jacques Monod, CNRS UMR7592 and Université Paris Diderot, 15 rue Hélène Brion, 75205 Paris Cedex 13, France
| | - Nicolas Minc
- Institut Jacques Monod, CNRS UMR7592 and Université Paris Diderot, 15 rue Hélène Brion, 75205 Paris Cedex 13, France
| |
Collapse
|
10
|
Abstract
A conserved molecular machinery centered on the Cdc42 GTPase regulates cell polarity in diverse organisms. Here we review findings from budding and fission yeasts that reveal both a conserved core polarity circuit and several adaptations that each organism exploits to fulfill the needs of its lifestyle. The core circuit involves positive feedback by local activation of Cdc42 to generate a cluster of concentrated GTP-Cdc42 at the membrane. Species-specific pathways regulate the timing of polarization during the cell cycle, as well as the location and number of polarity sites.
Collapse
Affiliation(s)
- Jian-Geng Chiou
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710;
| | - Mohan K Balasubramanian
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Daniel J Lew
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710;
| |
Collapse
|
11
|
Abstract
Live cell imaging complements the array of biochemical and molecular genetic approaches to provide a comprehensive insight into functional dependencies and molecular interactions in fission yeast. Fluorescent proteins and vital dyes reveal dynamic changes in the spatial distribution of organelles and the proteome and how each alters in response to changes in environmental and genetic composition. This introduction discusses key issues and basic image analysis for live cell imaging of fission yeast.
Collapse
Affiliation(s)
- Daniel P Mulvihill
- School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, United Kingdom
| |
Collapse
|
12
|
Liu Z, Wu S, Chen Y, Han X, Gu Q, Yin Y, Ma Z. The microtubule end-binding protein FgEB1 regulates polar growth and fungicide sensitivity via different interactors in Fusarium graminearum. Environ Microbiol 2017; 19:1791-1807. [PMID: 28028881 DOI: 10.1111/1462-2920.13651] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 12/18/2016] [Indexed: 11/30/2022]
Abstract
In yeasts, the end-binding protein 1 (EB1) homologs regulate microtubule dynamics, cell polarization, and chromosome stability. However, functions of EB1 orthologs in plant pathogenic fungi have not been characterized yet. Here, we observed that the FgEB1 deletion mutant (ΔFgEB1) of Fusarium graminearum exhibits twisted hyphae, increased hyphal branching and curved conidia, indicating that FgEB1 is involved in the regulation of cellular polarity. Microscopic examination further showed that the microtubules of ΔFgEB1 exhibited less organized in comparison with those of the wild type. In addition, the lack of FgEB1 also altered the distribution of polarity-related class I myosin via the interaction with the actin. On the other hand, we identified four core septins as FgEB1-interacting proteins, and found that FgEB1 and septins regulated conidial polar growth in the opposite orientation. Interestingly, FgEB1 and FgKar9 constituted another complex that modulated the response to carbendazim, a microtubule-damaging agent specifically. In addition, the deletion of FgEB1 led to dramatically decreased deoxynivalenol (DON) biosynthesis. Taken together, results of this study indicate that FgEB1 regulates cellular polarity, fungicide sensitivity and DON biosynthesis via different interactors in F. graminarum, which provides a novel insight into understanding of the biological functions of EB1 in filamentous fungi.
Collapse
Affiliation(s)
- Zunyong Liu
- Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Sisi Wu
- Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Yun Chen
- Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Xinyue Han
- Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Qin Gu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yanni Yin
- Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Zhonghua Ma
- Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China.,State Key Laboratory of Rice Biology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| |
Collapse
|
13
|
Gomez JM, Chumakova L, Bulgakova NA, Brown NH. Microtubule organization is determined by the shape of epithelial cells. Nat Commun 2016; 7:13172. [PMID: 27779189 PMCID: PMC5093320 DOI: 10.1038/ncomms13172] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 09/08/2016] [Indexed: 11/09/2022] Open
Abstract
Interphase microtubule organization is critical for cell function and tissue architecture. In general, physical mechanisms are sufficient to drive microtubule organization in single cells, whereas cells within tissues are thought to utilize signalling mechanisms. By improving the imaging and quantitation of microtubule alignment within developing Drosophila embryos, here we demonstrate that microtubule alignment underneath the apical surface of epithelial cells follows cell shape. During development, epidermal cell elongation and microtubule alignment occur simultaneously, but by perturbing cell shape, we discover that microtubule organization responds to cell shape, rather than the converse. A simple set of microtubule behaviour rules is sufficient for a computer model to mimic the observed responses to changes in cell surface geometry. Moreover, we show that microtubules colliding with cell boundaries zip-up or depolymerize in an angle-dependent manner, as predicted by the model. Finally, we show microtubule alignment responds to cell shape in diverse epithelia.
Collapse
Affiliation(s)
- Juan Manuel Gomez
- Department of Physiology, Development and Neuroscience, and the Gurdon Institute, The University of Cambridge, Cambridge CB2 3DY, UK
| | - Lyubov Chumakova
- School of Mathematics and Maxwell Institute for Mathematical Sciences, The University of Edinburgh, Edinburgh EH9 3FD, UK
| | - Natalia A. Bulgakova
- Department of Physiology, Development and Neuroscience, and the Gurdon Institute, The University of Cambridge, Cambridge CB2 3DY, UK
| | - Nicholas H. Brown
- Department of Physiology, Development and Neuroscience, and the Gurdon Institute, The University of Cambridge, Cambridge CB2 3DY, UK
| |
Collapse
|
14
|
Makushok T, Alves P, Huisman SM, Kijowski AR, Brunner D. Sterol-Rich Membrane Domains Define Fission Yeast Cell Polarity. Cell 2016; 165:1182-1196. [PMID: 27180904 DOI: 10.1016/j.cell.2016.04.037] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Revised: 11/20/2015] [Accepted: 04/13/2016] [Indexed: 12/26/2022]
Abstract
Cell polarization is crucial for the functioning of all organisms. The cytoskeleton is central to the process but its role in symmetry breaking is poorly understood. We study cell polarization when fission yeast cells exit starvation. We show that the basis of polarity generation is de novo sterol biosynthesis, cell surface delivery of sterols, and their recruitment to the cell poles. This involves four phases occurring independent of the polarity factor cdc42p. Initially, multiple, randomly distributed sterol-rich membrane (SRM) domains form at the plasma membrane, independent of the cytoskeleton and cell growth. These domains provide platforms on which the growth and polarity machinery assembles. SRM domains are then polarized by the microtubule-dependent polarity factor tea1p, which prepares for monopolar growth initiation and later switching to bipolar growth. SRM polarization requires F-actin but not the F-actin organizing polarity factors for3p and bud6p. We conclude that SRMs are key to cell polarization.
Collapse
Affiliation(s)
- Tatyana Makushok
- University of California, San Francisco, 600 16(th) Street, San Francisco, CA 94143, USA
| | - Paulo Alves
- IGBMC, 1 Rue Laurent Fries, 67404 Illkirch Cedex, France
| | - Stephen Michiel Huisman
- Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Adam Rafal Kijowski
- Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Damian Brunner
- Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| |
Collapse
|
15
|
Chimera proteins with affinity for membranes and microtubule tips polarize in the membrane of fission yeast cells. Proc Natl Acad Sci U S A 2016; 113:1811-6. [PMID: 26831106 DOI: 10.1073/pnas.1419248113] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cell polarity refers to a functional spatial organization of proteins that is crucial for the control of essential cellular processes such as growth and division. To establish polarity, cells rely on elaborate regulation networks that control the distribution of proteins at the cell membrane. In fission yeast cells, a microtubule-dependent network has been identified that polarizes the distribution of signaling proteins that restricts growth to cell ends and targets the cytokinetic machinery to the middle of the cell. Although many molecular components have been shown to play a role in this network, it remains unknown which molecular functionalities are minimally required to establish a polarized protein distribution in this system. Here we show that a membrane-binding protein fragment, which distributes homogeneously in wild-type fission yeast cells, can be made to concentrate at cell ends by attaching it to a cytoplasmic microtubule end-binding protein. This concentration results in a polarized pattern of chimera proteins with a spatial extension that is very reminiscent of natural polarity patterns in fission yeast. However, chimera levels fluctuate in response to microtubule dynamics, and disruption of microtubules leads to disappearance of the pattern. Numerical simulations confirm that the combined functionality of membrane anchoring and microtubule tip affinity is in principle sufficient to create polarized patterns. Our chimera protein may thus represent a simple molecular functionality that is able to polarize the membrane, onto which additional layers of molecular complexity may be built to provide the temporal robustness that is typical of natural polarity patterns.
Collapse
|
16
|
Abenza JF, Couturier E, Dodgson J, Dickmann J, Chessel A, Dumais J, Salas REC. Wall mechanics and exocytosis define the shape of growth domains in fission yeast. Nat Commun 2015; 6:8400. [PMID: 26455310 PMCID: PMC4618311 DOI: 10.1038/ncomms9400] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 08/19/2015] [Indexed: 11/14/2022] Open
Abstract
The amazing structural variety of cells is matched only by their functional diversity, and reflects the complex interplay between biochemical and mechanical regulation. How both regulatory layers generate specifically shaped cellular domains is not fully understood. Here, we report how cell growth domains are shaped in fission yeast. Based on quantitative analysis of cell wall expansion and elasticity, we develop a model for how mechanics and cell wall assembly interact and use it to look for factors underpinning growth domain morphogenesis. Surprisingly, we find that neither the global cell shape regulators Cdc42-Scd1-Scd2 nor the major cell wall synthesis regulators Bgs1-Bgs4-Rgf1 are reliable predictors of growth domain geometry. Instead, their geometry can be defined by cell wall mechanics and the cortical localization pattern of the exocytic factors Sec6-Syb1-Exo70. Forceful re-directioning of exocytic vesicle fusion to broader cortical areas induces proportional shape changes to growth domains, demonstrating that both features are causally linked. Cell shape is determined by a combination of biochemical regulation and mechanical forces. By imaging the dynamic behaviour of growth regulatory proteins in fission yeast and integrating these data within a mechanical model, Abenza et al. find that exocytosis plays a dominant role in shaping growth domains.
Collapse
Affiliation(s)
- Juan F Abenza
- Genetics Department, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK.,Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
| | - Etienne Couturier
- Departamento de Física, Universidad de Santiago de Chile, Santiago, Chile
| | - James Dodgson
- Genetics Department, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK.,Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
| | - Johanna Dickmann
- Genetics Department, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK.,Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
| | - Anatole Chessel
- Genetics Department, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK.,Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
| | - Jacques Dumais
- Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Viña del Mar 2562307, Chile.,Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, Massachusetts 02138, USA
| | - Rafael E Carazo Salas
- Genetics Department, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK.,Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
| |
Collapse
|
17
|
Bonazzi D, Haupt A, Tanimoto H, Delacour D, Salort D, Minc N. Actin-Based Transport Adapts Polarity Domain Size to Local Cellular Curvature. Curr Biol 2015; 25:2677-83. [DOI: 10.1016/j.cub.2015.08.046] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 07/31/2015] [Accepted: 08/20/2015] [Indexed: 11/30/2022]
|
18
|
Martin SG. Spontaneous cell polarization: Feedback control of Cdc42 GTPase breaks cellular symmetry. Bioessays 2015; 37:1193-201. [PMID: 26338468 DOI: 10.1002/bies.201500077] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Spontaneous polarization without spatial cues, or symmetry breaking, is a fundamental problem of spatial organization in biological systems. This question has been extensively studied using yeast models, which revealed the central role of the small GTPase switch Cdc42. Active Cdc42-GTP forms a coherent patch at the cell cortex, thought to result from amplification of a small initial stochastic inhomogeneity through positive feedback mechanisms, which induces cell polarization. Here, I review and discuss the mechanisms of Cdc42 activity self-amplification and dynamic turnover. A robust Cdc42 patch is formed through the combined effects of Cdc42 activity promoting its own activation and active Cdc42-GTP displaying reduced membrane detachment and lateral diffusion compared to inactive Cdc42-GDP. I argue the role of the actin cytoskeleton in symmetry breaking is not primarily to transport Cdc42 to the active site. Finally, negative feedback and competition mechanisms serve to control the number of polarization sites.
Collapse
Affiliation(s)
- Sophie G Martin
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
19
|
Mechanics and morphogenesis of fission yeast cells. Curr Opin Microbiol 2015; 28:36-45. [PMID: 26291501 DOI: 10.1016/j.mib.2015.07.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 07/15/2015] [Accepted: 07/17/2015] [Indexed: 12/11/2022]
Abstract
The integration of biochemical and biomechanical elements is at the heart of morphogenesis. While animal cells are relatively soft objects which shape and mechanics is mostly regulated by cytoskeletal networks, walled cells including those of plants, fungi and bacteria are encased in a rigid cell wall which resist high internal turgor pressure. How these particular mechanical properties may influence basic cellular processes, such as growth, shape and division remains poorly understood. Recent work using the model fungal cell fission yeast, Schizosaccharomyces pombe, highlights important contribution of cell mechanics to various morphogenesis processes. We envision this genetically tractable system to serve as a novel standard for the mechanobiology of walled cell.
Collapse
|
20
|
Araya C, Ward LC, Girdler GC, Miranda M. Coordinating cell and tissue behavior during zebrafish neural tube morphogenesis. Dev Dyn 2015; 245:197-208. [PMID: 26177834 DOI: 10.1002/dvdy.24304] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 06/15/2015] [Accepted: 07/03/2015] [Indexed: 12/12/2022] Open
Abstract
The development of a vertebrate neural epithelium with well-organized apico-basal polarity and a central lumen is essential for its proper function. However, how this polarity is established during embryonic development and the potential influence of surrounding signals and tissues on such organization has remained less understood. In recent years the combined superior transparency and genetics of the zebrafish embryo has allowed for in vivo visualization and quantification of the cellular and molecular dynamics that govern neural tube structure. Here, we discuss recent studies revealing how co-ordinated cell-cell interactions coupled with adjacent tissue dynamics are critical to regulate final neural tissue architecture. Furthermore, new findings show how the spatial regulation and timing of orientated cell division is key in defining precise lumen formation at the tissue midline. In addition, we compare zebrafish neurulation with that of amniotes and amphibians in an attempt to understand the conserved cellular mechanisms driving neurulation and resolve the apparent differences among animals. Zebrafish neurulation not only offers fundamental insights into early vertebrate brain development but also the opportunity to explore in vivo cell and tissue dynamics during complex three-dimensional animal morphogenesis.
Collapse
Affiliation(s)
- Claudio Araya
- Laboratory of Developmental Biology, Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Campus Isla Teja s/n, Valdivia, Chile.,UACh Program in Cellular Dynamics and Microscopy.,Centro Interdisciplinario de Estudios del Sistema Nervioso (CISNe), UACh
| | - Laura C Ward
- University of Bristol, School of Physiology and Pharmacology, Medical Sciences, University Walk, Bristol, United Kingdom
| | - Gemma C Girdler
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge, United Kingdom
| | - Miguel Miranda
- Laboratory of Developmental Biology, Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Campus Isla Teja s/n, Valdivia, Chile
| |
Collapse
|
21
|
Taberner N, Lof A, Roth S, Lamers D, Zeijlemaker H, Dogterom M. In vitro systems for the study of microtubule-based cell polarity in fission yeast. Methods Cell Biol 2015; 128:1-22. [DOI: 10.1016/bs.mcb.2015.02.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
22
|
|
23
|
Galva C, Kirik V, Lindeboom JJ, Kaloriti D, Rancour DM, Hussey PJ, Bednarek SY, Ehrhardt DW, Sedbrook JC. The microtubule plus-end tracking proteins SPR1 and EB1b interact to maintain polar cell elongation and directional organ growth in Arabidopsis. THE PLANT CELL 2014; 26:4409-25. [PMID: 25415978 PMCID: PMC4277225 DOI: 10.1105/tpc.114.131482] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The microtubule plus-end tracking proteins (+TIPs) END BINDING1b (EB1b) and SPIRAL1 (SPR1) are required for normal cell expansion and organ growth. EB proteins are viewed as central regulators of +TIPs and cell polarity in animals; SPR1 homologs are specific to plants. To explore if EB1b and SPR1 fundamentally function together, we combined genetic, biochemical, and cell imaging approaches in Arabidopsis thaliana. We found that eb1b-2 spr1-6 double mutant roots exhibit substantially more severe polar expansion defects than either single mutant, undergoing right-looping growth and severe axial twisting instead of waving on tilted hard-agar surfaces. Protein interaction assays revealed that EB1b and SPR1 bind each other and tubulin heterodimers, which is suggestive of a microtubule loading mechanism. EB1b and SPR1 show antagonistic association with microtubules in vitro. Surprisingly, our combined analyses revealed that SPR1 can load onto microtubules and function independently of EB1 proteins, setting SPR1 apart from most studied +TIPs in animals and fungi. Moreover, we found that the severity of defects in microtubule dynamics in spr1 eb1b mutant hypocotyl cells correlated well with the severity of growth defects. These data indicate that SPR1 and EB1b have complex interactions as they load onto microtubule plus ends and direct polar cell expansion and organ growth in response to directional cues.
Collapse
Affiliation(s)
- Charitha Galva
- School of Biological Sciences, Illinois State University, Normal, Illinois 61790
| | - Viktor Kirik
- School of Biological Sciences, Illinois State University, Normal, Illinois 61790
| | | | - Despoina Kaloriti
- School of Biological Sciences, Illinois State University, Normal, Illinois 61790
| | - David M Rancour
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706
| | - Patrick J Hussey
- School of Biological and Biomedical Sciences, Durham University, Durham DH1 3LE, United Kingdom
| | | | | | - John C Sedbrook
- School of Biological Sciences, Illinois State University, Normal, Illinois 61790
| |
Collapse
|
24
|
Abstract
Cell shape is an important cellular parameter that influences the spatial organization and function of cells. However, it has often been challenging to study the effects of cell shape because of difficulties in experimentally controlling cell shape in a defined way. We describe here a method of physically manipulating sea urchin cells into specified shapes by inserting them into micro-fabricated chambers of different shapes. This method allows for generation of large systematic and quantitative data sets and may be adaptable for different cell types and contexts.
Collapse
|
25
|
Abstract
The rod is a ubiquitous shape adopted by walled cells from diverse organisms ranging from bacteria to fungi to plants. Although rod-like shapes are found in cells of vastly different sizes and are constructed by diverse mechanisms, the geometric similarities among these shapes across kingdoms suggest that there are common evolutionary advantages, which may result from simple physical principles in combination with chemical and physiological constraints. Here, we review mechanisms of constructing rod-shaped cells and the bases of different biophysical models of morphogenesis, comparing and contrasting model organisms in different kingdoms. We then speculate on possible advantages of the rod shape, and suggest strategies for elucidating the relative importance of each of these advantages.
Collapse
|
26
|
Symmetry breaking in spore germination relies on an interplay between polar cap stability and spore wall mechanics. Dev Cell 2014; 28:534-46. [PMID: 24636258 DOI: 10.1016/j.devcel.2014.01.023] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 01/06/2014] [Accepted: 01/23/2014] [Indexed: 11/23/2022]
Abstract
The morphogenesis of single cells depends on their ability to coordinate surface mechanics and polarity. During germination, spores of many species develop a polar tube that hatches out of a rigid outer spore wall (OSW) in a process termed outgrowth. However, how these awakening cells reorganize to stabilize this first growth axis remains unknown. Here, using quantitative experiments and modeling, we reveal the mechanisms underlying outgrowth in fission yeast. We find that, following an isotropic growth phase during which a single polarity cap wanders around the surface, outgrowth occurs when spores have doubled their volume, concomitantly with the stabilization of the cap and a singular rupture in the OSW. This rupture happens when OSW mechanical stress exceeds a threshold, releases the constraints of the OSW on growth, and stabilizes polarity. Thus, outgrowth exemplifies a self-organizing morphogenetic process in which reinforcements between growth and polarity coordinate mechanics and internal organization.
Collapse
|
27
|
Govindaraghavan M, McGuire Anglin SL, Shen KF, Shukla N, De Souza CP, Osmani SA. Identification of interphase functions for the NIMA kinase involving microtubules and the ESCRT pathway. PLoS Genet 2014; 10:e1004248. [PMID: 24675878 PMCID: PMC3967960 DOI: 10.1371/journal.pgen.1004248] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 02/03/2014] [Indexed: 12/11/2022] Open
Abstract
The Never in Mitosis A (NIMA) kinase (the founding member of the Nek family of kinases) has been considered a mitotic specific kinase with nuclear restricted roles in the model fungus Aspergillus nidulans. By extending to A. nidulans the results of a synthetic lethal screen performed in Saccharomyces cerevisiae using the NIMA ortholog KIN3, we identified a conserved genetic interaction between nimA and genes encoding proteins of the Endosomal Sorting Complex Required for Transport (ESCRT) pathway. Absence of ESCRT pathway functions in combination with partial NIMA function causes enhanced cell growth defects, including an inability to maintain a single polarized dominant cell tip. These genetic insights suggest NIMA potentially has interphase functions in addition to its established mitotic functions at nuclei. We therefore generated endogenously GFP-tagged NIMA (NIMA-GFP) which was fully functional to follow its interphase locations using live cell spinning disc 4D confocal microscopy. During interphase some NIMA-GFP locates to the tips of rapidly growing cells and, when expressed ectopically, also locates to the tips of cytoplasmic microtubules, suggestive of non-nuclear interphase functions. In support of this, perturbation of NIMA function either by ectopic overexpression or through partial inactivation results in marked cell tip growth defects with excess NIMA-GFP promoting multiple growing cell tips. Ectopic NIMA-GFP was found to locate to the plus ends of microtubules in an EB1 dependent manner, while impairing NIMA function altered the dynamic localization of EB1 and the cytoplasmic microtubule network. Together, our genetic and cell biological analyses reveal novel non-nuclear interphase functions for NIMA involving microtubules and the ESCRT pathway for normal polarized fungal cell tip growth. These insights extend the roles of NIMA both spatially and temporally and indicate that this conserved protein kinase could help integrate cell cycle progression with polarized cell growth.
Collapse
Affiliation(s)
- Meera Govindaraghavan
- Molecular, Cellular and Developmental Biology Program, The Ohio State University, Columbus, Ohio, United States of America
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, United States of America
| | | | - Kuo-Fang Shen
- Molecular, Cellular and Developmental Biology Program, The Ohio State University, Columbus, Ohio, United States of America
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, United States of America
| | - Nandini Shukla
- Molecular, Cellular and Developmental Biology Program, The Ohio State University, Columbus, Ohio, United States of America
- Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio, United States of America
| | - Colin P. De Souza
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, United States of America
| | - Stephen A. Osmani
- Molecular, Cellular and Developmental Biology Program, The Ohio State University, Columbus, Ohio, United States of America
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, United States of America
- Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
28
|
Martin SG, Arkowitz RA. Cell polarization in budding and fission yeasts. FEMS Microbiol Rev 2014; 38:228-53. [DOI: 10.1111/1574-6976.12055] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 11/13/2013] [Accepted: 12/03/2013] [Indexed: 11/30/2022] Open
|
29
|
Mishra M, Huang J, Balasubramanian MK. The yeast actin cytoskeleton. FEMS Microbiol Rev 2014; 38:213-27. [PMID: 24467403 DOI: 10.1111/1574-6976.12064] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 01/18/2014] [Accepted: 01/20/2014] [Indexed: 11/29/2022] Open
Abstract
The actin cytoskeleton is a complex network of dynamic polymers, which plays an important role in various fundamental cellular processes, including maintenance of cell shape, polarity, cell division, cell migration, endocytosis, vesicular trafficking, and mechanosensation. Precise spatiotemporal assembly and disassembly of actin structures is regulated by the coordinated activity of about 100 highly conserved accessory proteins, which nucleate, elongate, cross-link, and sever actin filaments. Both in vivo studies in a wide range of organisms from yeast to metazoans and in vitro studies of purified proteins have helped shape the current understanding of actin dynamics and function. Molecular genetics, genome-wide functional analysis, sophisticated real-time imaging, and ultrastructural studies in concert with biochemical analysis have made yeast an attractive model to understand the actin cytoskeleton, its molecular dynamics, and physiological function. Studies of the yeast actin cytoskeleton have contributed substantially in defining the universal mechanism regulating actin assembly and disassembly in eukaryotes. Here, we review some of the important insights generated by the study of actin cytoskeleton in two important yeast models the budding yeast Saccharomyces cerevisiae and the fission yeast Schizosaccharomyces pombe.
Collapse
Affiliation(s)
- Mithilesh Mishra
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore
| | | | | |
Collapse
|
30
|
Kokkoris K, Gallo Castro D, Martin SG. The Tea4-PP1 landmark promotes local growth by dual Cdc42 GEF recruitment and GAP exclusion. J Cell Sci 2014; 127:2005-16. [PMID: 24554432 DOI: 10.1242/jcs.142174] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Cell polarization relies on small GTPases, such as Cdc42, which can break symmetry through self-organizing principles, and landmarks that define the axis of polarity. In fission yeast, microtubules deliver the Tea1-Tea4 complex to mark cell poles for growth, but how this complex activates Cdc42 is unknown. Here, we show that ectopic targeting of Tea4 to cell sides promotes the local activation of Cdc42 and cell growth. This activity requires that Tea4 binds the type I phosphatase (PP1) catalytic subunit Dis2 or Sds21, and ectopic targeting of either catalytic subunit is similarly instructive for growth. The Cdc42 guanine-nucleotide-exchange factor Gef1 and the GTPase-activating protein Rga4 are required for Tea4-PP1-dependent ectopic growth. Gef1 is recruited to ectopic Tea4 and Dis2 locations to promote Cdc42 activation. By contrast, Rga4 is locally excluded by Tea4, and its forced colocalization with Tea4 blocks ectopic growth, indicating that Rga4 must be present, but at sites distinct from Tea4. Thus, a Tea4-PP1 landmark promotes local Cdc42 activation and growth both through Cdc42 GEF recruitment and by creating a local trough in a Cdc42 GAP.
Collapse
Affiliation(s)
- Kyriakos Kokkoris
- University of Lausanne, Department of Fundamental Microbiology, Biophore Building, CH-1015 Lausanne, Switzerland
| | | | | |
Collapse
|
31
|
Bonazzi D, Minc N. Dissecting the Molecular Mechanisms of Electrotactic Effects. Adv Wound Care (New Rochelle) 2014; 3:139-148. [PMID: 24761354 DOI: 10.1089/wound.2013.0438] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Accepted: 04/07/2013] [Indexed: 11/13/2022] Open
Abstract
Significance: Steady electric fields (EFs) surround cells and tissues in vivo and may regulate cellular behavior during development, wound healing, or tissue regeneration. Application of exogenous EFs of similar magnitude as those found in vivo can direct migration, growth, and division in most cell types, ranging from bacteria to mammalian cells. These EF effects have therapeutic potential, for instance, in accelerating wound healing or improving nerve repair. EFs are thought to signal through the plasma membrane to locally activate or recruit components of the cytoskeleton and the polarity machinery. How EFs might function to steer polarity is, however, poorly understood at a molecular level. Recent Advances: Here, we review recent work introducing genetically tractable systems, such as yeast and Dictyostelium cells, that begin to identify proteins and pathways involved in this response both at the level of ion transport at the membrane and at the level of cytoskeleton regulation. Critical Issues: These studies highlight the complexity of these EF effects and bring important novel views on core polarity regulation. Future Directions: Future work pursuing initial screening in model organisms should generate broad mechanistic understanding of electrotactic effects.
Collapse
Affiliation(s)
- Daria Bonazzi
- Subcellular Structure and Cellular Dynamics Research Group (UMR 144 CNRS/IC), Institut Curie, Paris, France
| | - Nicolas Minc
- Subcellular Structure and Cellular Dynamics Research Group (UMR 144 CNRS/IC), Institut Curie, Paris, France
| |
Collapse
|
32
|
Abstract
Polarized cell growth requires a well-orchestrated number of events, namely selection of growth site, organization of cytoskeleton elements and delivery of new material to the growth region. The small Rho GTPase Cdc42 has emerged as a major organizer of polarized growth through its participation in many of these events. In the present short review, we focus on the regulation of Cdc42 activity and localization as well as how it controls downstream events necessary for polarized cell growth in Schizosaccharomyces pombe. Owing to the high level of similarity of the polarity pathways, analogies between fission yeast and other model systems can be useful to decipher how cells can actively define their shape by polarized growth.
Collapse
|
33
|
Minc N. Microfabricated Chambers as Force Sensors for Probing Forces of Fungal Growth. Methods Cell Biol 2014; 120:215-26. [DOI: 10.1016/b978-0-12-417136-7.00014-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
34
|
Hamon M, Hong JW. New tools and new biology: recent miniaturized systems for molecular and cellular biology. Mol Cells 2013; 36:485-506. [PMID: 24305843 PMCID: PMC3887968 DOI: 10.1007/s10059-013-0333-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 11/14/2013] [Indexed: 01/09/2023] Open
Abstract
Recent advances in applied physics and chemistry have led to the development of novel microfluidic systems. Microfluidic systems allow minute amounts of reagents to be processed using μm-scale channels and offer several advantages over conventional analytical devices for use in biological sciences: faster, more accurate and more reproducible analytical performance, reduced cell and reagent consumption, portability, and integration of functional components in a single chip. In this review, we introduce how microfluidics has been applied to biological sciences. We first present an overview of the fabrication of microfluidic systems and describe the distinct technologies available for biological research. We then present examples of microsystems used in biological sciences, focusing on applications in molecular and cellular biology.
Collapse
Affiliation(s)
- Morgan Hamon
- Materials Research and Education Center, Department of Mechanical Engineering, Auburn University, Auburn, AL 36849,
USA
| | - Jong Wook Hong
- Materials Research and Education Center, Department of Mechanical Engineering, Auburn University, Auburn, AL 36849,
USA
- College of Pharmacy, Seoul National University, Seoul 151-741,
Korea
- Department of Bionano Engineering, Hanyang University, Ansan 426-791,
Korea
| |
Collapse
|
35
|
Model of fission yeast cell shape driven by membrane-bound growth factors and the cytoskeleton. PLoS Comput Biol 2013; 9:e1003287. [PMID: 24146607 PMCID: PMC3798282 DOI: 10.1371/journal.pcbi.1003287] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 09/02/2013] [Indexed: 11/19/2022] Open
Abstract
Fission yeast serves as a model for how cellular polarization machinery consisting of signaling molecules and the actin and microtubule cytoskeleton regulates cell shape. In this work, we develop mathematical models to investigate how these cells maintain a tubular shape of approximately constant diameter. Many studies identify active Cdc42, found in a cap at the inner membrane of growing cell tips, as an important regulator of local cell wall remodeling, likely through control of exocyst tethering and the targeting of other polarity-enhancing structures. First, we show that a computational model with Cdc42-dependent local cell wall remodeling under turgor pressure predicts a relationship between spatial extent of growth signal and cell diameter that is in agreement with prior experiments. Second, we model the consequences of feedback between cell shape and distribution of Cdc42 growth signal at cell tips. We show that stability of cell diameter over successive cell divisions places restrictions on their mutual dependence. We argue that simple models where the spatial extent of the tip growth signal relies solely on geometrical alignment of confined microtubules might lead to unstable width regulation. Third, we study a computational model that combines a growth signal distributed over a characteristic length scale (as, for example, by a reaction-diffusion mechanism) with an axis-sensing microtubules system that places landmarks at positions where microtubule tips touch the cortex. A two-dimensional implementation of this model leads to stable cell diameter for a wide range of parameters. Changes to the parameters of this model reproduce straight, bent, and bulged cell shapes, and we discuss how this model is consistent with other observed cell shapes in mutants. Our work provides an initial quantitative framework for understanding the regulation of cell shape in fission yeast, and a scaffold for understanding this process on a more molecular level in the future. Fission yeast is a rod-shaped organism that is studied, in part, as a model for how cells develop and regulate their shape. Despite extensive work identifying effects of genetic mutations and pharmacological treatments on the shape of these cells, there is a lack of mathematical and computational models examining how internal cell signals and the cytoskeleton organize to remodel the cell wall, direct growth at cell tips, and maintain tubular shape. In this work we describe how the spatial distribution of regulatory protein signal at growing cell tips relates to cell diameter. Further, we describe the consequences of this signal depending on the shape of the cell, namely its length and diameter. Finally, we propose a computational model for understanding growth and shape that includes an axis-sensing microtubule system, landmarks delivered to cell tips along those microtubules, and a growth zone signal that moves around but is attracted to the landmarks. This picture explains a large number of reported abnormal shapes in terms of only a few modular components.
Collapse
|
36
|
Hachet O, Bendezú FO, Martin SG. Fission yeast: in shape to divide. Curr Opin Cell Biol 2012; 24:858-64. [PMID: 23127610 DOI: 10.1016/j.ceb.2012.10.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 09/27/2012] [Accepted: 10/02/2012] [Indexed: 01/27/2023]
Abstract
How are cell morphogenesis and cell cycle coordinated? The fission yeast is a rod-shaped unicellular organism widely used to study how a cell self-organizes in space and time. Here, we discuss recent advances in understanding how the cell acquires and maintains its regular rod shape and uses it to control cell division. The cellular body plan is established by microtubules, which mark antipodal growth zones and medial division. In turn, cellular dimensions are defined by the small GTPase Cdc42 and downstream regulators of vesicle trafficking. Yeast cells then repetitively use their simple rod shape to orchestrate the position and timing of cell division.
Collapse
Affiliation(s)
- Olivier Hachet
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland
| | | | | |
Collapse
|
37
|
Laan L, Roth S, Dogterom M. End-on microtubule-dynein interactions and pulling-based positioning of microtubule organizing centers. Cell Cycle 2012; 11:3750-7. [PMID: 22895049 PMCID: PMC3495818 DOI: 10.4161/cc.21753] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
During important cellular processes such as centrosome and spindle positioning, dynein at the cortex interacts with dynamic microtubules in an apparent "end-on" fashion. It is well-established that dynein can generate forces by moving laterally along the microtubule lattice, but much less is known about dynein's interaction with dynamic microtubule ends. In this paper, we review recent in vitro experiments that show that dynein, attached to an artificial cortex, is able to capture microtubule ends, regulate microtubule dynamics and mediate the generation of pulling forces on shrinking microtubules. We further review existing ideas on the involvement of dynein-mediated cortical pulling forces in the positioning of microtubule organizing centers such as centrosomes. Recent in vitro experiments have demonstrated that cortical pulling forces in combination with pushing forces can lead to reliable centering of microtubule asters in quasi two-dimensional microfabricated chambers. In these experiments, pushing leads to slipping of microtubule ends along the chamber boundaries, resulting in an anisotropic distribution of cortical microtubule contacts that favors centering, once pulling force generators become engaged. This effect is predicted to be strongly geometry-dependent, and we therefore finally discuss ongoing efforts to repeat these experiments in three-dimensional, spherical and deformable geometries.
Collapse
Affiliation(s)
- Liedewij Laan
- Faculty of Arts and Sciences; Center for Systems Biology; Harvard University; Cambridge, MA USA
| | - Sophie Roth
- FOM Institute AMOLF; Amsterdam, The Netherlands
| | | |
Collapse
|
38
|
Campetelli A, Bonazzi D, Minc N. Electrochemical regulation of cell polarity and the cytoskeleton. Cytoskeleton (Hoboken) 2012; 69:601-12. [PMID: 22736620 DOI: 10.1002/cm.21047] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 06/13/2012] [Accepted: 06/14/2012] [Indexed: 01/08/2023]
Abstract
Cell polarity plays a key role in regulating cell-cell communication, tissue architecture, and development. Both internal and external cues participate in directing polarity and feedback onto each other for robust polarization. One poorly appreciated layer of polarity regulation comes from electrochemical signals spatially organized at the level of the cell or the tissue. These signals which include ion fluxes, membrane potential gradients, or even steady electric fields, emerge from the polarized activation of specific ion transporters, and may guide polarity in wound-healing, development or regeneration. How a given electrochemical cue may influence cytoskeletal elements and cell polarity remains unclear. Here, we review recent progress highlighting the role of electrochemical signals in cell and tissue spatial organization, and elucidating the mechanisms for how such signals may regulate cytoskeletal assembly for cell polarity.
Collapse
Affiliation(s)
- Alexis Campetelli
- Institut Curie, UMR 144 CNRS/IC, 26 rue d'Ulm, 75248 Paris Cedex 05, France
| | | | | |
Collapse
|
39
|
Bendezú FO, Vincenzetti V, Martin SG. Fission yeast Sec3 and Exo70 are transported on actin cables and localize the exocyst complex to cell poles. PLoS One 2012; 7:e40248. [PMID: 22768263 PMCID: PMC3386988 DOI: 10.1371/journal.pone.0040248] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 06/03/2012] [Indexed: 02/02/2023] Open
Abstract
The exocyst complex is essential for many exocytic events, by tethering vesicles at the plasma membrane for fusion. In fission yeast, polarized exocytosis for growth relies on the combined action of the exocyst at cell poles and myosin-driven transport along actin cables. We report here the identification of fission yeast Schizosaccharomyces pombe Sec3 protein, which we identified through sequence homology of its PH-like domain. Like other exocyst subunits, sec3 is required for secretion and cell division. Cells deleted for sec3 are only conditionally lethal and can proliferate when osmotically stabilized. Sec3 is redundant with Exo70 for viability and for the localization of other exocyst subunits, suggesting these components act as exocyst tethers at the plasma membrane. Consistently, Sec3 localizes to zones of growth independently of other exocyst subunits but depends on PIP2 and functional Cdc42. FRAP analysis shows that Sec3, like all other exocyst subunits, localizes to cell poles largely independently of the actin cytoskeleton. However, we show that Sec3, Exo70 and Sec5 are transported by the myosin V Myo52 along actin cables. These data suggest that the exocyst holocomplex, including Sec3 and Exo70, is present on exocytic vesicles, which can reach cell poles by either myosin-driven transport or random walk.
Collapse
Affiliation(s)
- Felipe O. Bendezú
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Vincent Vincenzetti
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Sophie G. Martin
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
40
|
Smith EJ, Xi W, Makarov D, Mönch I, Harazim S, Bolaños Quiñones VA, Schmidt CK, Mei Y, Sanchez S, Schmidt OG. Lab-in-a-tube: ultracompact components for on-chip capture and detection of individual micro-/nanoorganisms. LAB ON A CHIP 2012; 12:1917-31. [PMID: 22437345 DOI: 10.1039/c2lc21175k] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
A review of present and future on-chip rolled-up devices, which can be used to develop lab-in-a-tube total analysis systems, is presented. Lab-in-a-tube is the integration of numerous rolled-up components into a single device constituting a microsystem of hundreds/thousands of independent units on a chip, each individually capable of sorting, detecting and analyzing singular organisms. Such a system allows for a scale-down of biosensing systems, while at the same time increasing the data collection through a large, smart array of individual biosensors. A close look at these ultracompact components which have been developed over the past decade is given. Methods for the capture of biomaterial are laid out and progress of cell culturing in three-dimensional scaffolding is detailed. Rolled-up optical sensors based on photoluminescence, optomechanics, optofluidics and metamaterials are presented. Magnetic sensors are introduced as well as electrical components including heating, energy storage and resistor devices.
Collapse
Affiliation(s)
- Elliot J Smith
- Institute for Integrative Nanosciences, IFW Dresden, Helmholtzstr. 20, 01069 Dresden, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Gleeson L, Squires S, Bisgrove SR. The microtubule associated protein END BINDING 1 represses root responses to mechanical cues. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2012; 187:1-9. [PMID: 22404827 DOI: 10.1016/j.plantsci.2012.01.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 12/28/2011] [Accepted: 01/23/2012] [Indexed: 05/31/2023]
Abstract
The ability of roots to navigate around rocks and other debris as they grow through the soil requires a mechanism for detecting and responding to input from both touch and gravity sensing systems. The microtubule associated protein END BINDING 1b (EB1b) is involved in this process as mutants have defects responding to combinations of touch and gravity cues. This study investigates the role of EB1b in root responses to mechanical cues. We find that eb1b-1 mutant roots exhibit an increase over wild type in their response to touch and that the expression of EB1b genes in transgenic mutants restores the response to wild type levels, indicating that EB1b is an inhibitor of the response. Mutant roots are also hypersensitive to increased levels of mechanical stimulation, revealing the presence of another process that activates the response. These findings are supported by analyses of double mutants between eb1b-1 and seedlings carrying mutations in PHOSPHOGLUCOMUTASE (PGM), ALTERED RESPONSE TO GRAVITY1 (ARG1), or TOUCH3 (TCH3), genes that encode proteins involved in gravity sensing, signaling, or touch responses, respectively. A model is proposed in which root responses to mechanical cues are modulated by at least two competing regulatory processes, one that promotes touch-mediated growth and another, regulated by EB1b, which dampens root responses to touch and enhances gravitropism.
Collapse
Affiliation(s)
- Laura Gleeson
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada V5A 1S6.
| | | | | |
Collapse
|
42
|
Predicting division plane position and orientation. Trends Cell Biol 2012; 22:193-200. [DOI: 10.1016/j.tcb.2012.01.003] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Revised: 01/06/2012] [Accepted: 01/10/2012] [Indexed: 01/06/2023]
|
43
|
Laan L, Pavin N, Husson J, Romet-Lemonne G, van Duijn M, López MP, Vale RD, Jülicher F, Reck-Peterson SL, Dogterom M. Cortical dynein controls microtubule dynamics to generate pulling forces that position microtubule asters. Cell 2012; 148:502-14. [PMID: 22304918 PMCID: PMC3292199 DOI: 10.1016/j.cell.2012.01.007] [Citation(s) in RCA: 285] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2011] [Revised: 09/08/2011] [Accepted: 01/03/2012] [Indexed: 10/14/2022]
Abstract
Dynein at the cortex contributes to microtubule-based positioning processes such as spindle positioning during embryonic cell division and centrosome positioning during fibroblast migration. To investigate how cortical dynein interacts with microtubule ends to generate force and how this functional association impacts positioning, we have reconstituted the 'cortical' interaction between dynein and dynamic microtubule ends in an in vitro system using microfabricated barriers. We show that barrier-attached dynein captures microtubule ends, inhibits growth, and triggers microtubule catastrophes, thereby controlling microtubule length. The subsequent interaction with shrinking microtubule ends generates pulling forces up to several pN. By combining experiments in microchambers with a theoretical description of aster mechanics, we show that dynein-mediated pulling forces lead to the reliable centering of microtubule asters in simple confining geometries. Our results demonstrate the intrinsic ability of cortical microtubule-dynein interactions to regulate microtubule dynamics and drive positioning processes in living cells.
Collapse
Affiliation(s)
- Liedewij Laan
- FOM Institute AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Kelly FD, Nurse P. De novo growth zone formation from fission yeast spheroplasts. PLoS One 2011; 6:e27977. [PMID: 22194800 PMCID: PMC3240611 DOI: 10.1371/journal.pone.0027977] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Accepted: 10/28/2011] [Indexed: 11/18/2022] Open
Abstract
Eukaryotic cells often form polarized growth zones in response to internal or external cues. To understand the establishment of growth zones with specific dimensions we used fission yeast, which grows as a rod-shaped cell of near-constant width from growth zones located at the cell tips. Removing the cell wall creates a round spheroplast with a disorganized cytoskeleton and depolarized growth proteins. As spheroplasts recover, new growth zones form that resemble normal growing cell tips in shape and width, and polarized growth resumes. Regulators of the GTPase Cdc42, which control width in exponentially growing cells, also control spheroplast growth zone width. During recovery the Cdc42 scaffold Scd2 forms a polarized patch in the rounded spheroplast, demonstrating that a growth zone protein can organize independent of cell shape. Rga4, a Cdc42 GTPase activating protein (GAP) that is excluded from cell tips, is initially distributed throughout the spheroplast membrane, but is excluded from the growth zone after a stable patch of Scd2 forms. These results provide evidence that growth zones with normal width and protein localization can form de novo through sequential organization of cellular domains, and that the size of these growth zones is genetically controlled, independent of preexisting cell shape.
Collapse
Affiliation(s)
- Felice D Kelly
- The Rockefeller University, New York, New York, United States of America.
| | | |
Collapse
|
45
|
Cell polarity in fission yeast: A matter of confining, positioning, and switching growth zones. Semin Cell Dev Biol 2011; 22:799-805. [DOI: 10.1016/j.semcdb.2011.07.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 07/06/2011] [Accepted: 07/15/2011] [Indexed: 11/30/2022]
|
46
|
Goryachev AB. A common mechanism for protein cluster formation. Small GTPases 2011; 2:143-147. [PMID: 21776415 DOI: 10.4161/sgtp.2.3.15902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Revised: 04/16/2011] [Accepted: 04/20/2011] [Indexed: 11/19/2022] Open
Abstract
Polarized states on the membranes are characterized by focal accumulation of proteins and lipids at local concentrations far exceeding their levels typically found outside of these dense clusters. Principles of thermodynamics argue that formation and maintenance of such structures require continuous expenditure of cellular energy to combat the effect of molecular diffusion that relentlessly dissipates the clusters in favor of the spatially homogeneous state. Small GTPases are known to play a crucial role in the formation of several such polarized states. Their ability to consume stored energy and convert it into a potentially useful work by cyclically hydrolyzing GTP and coupling to various effectors in a nucleotide-dependent way, makes them eligible candidates to fulfill the requirements for the molecules involved in the mechanisms responsible for the maintenance of polarized states. Consistently, continuous nucleotide cycling of small GTPases has been found required for the emergence of structures in several well characterized cases. Despite this general awareness, the detailed molecular mechanisms remain largely unknown. In a recent study, not directly involving small GTPases, we proposed a mechanism explaining the emergence and maintenance of the stable cell-polarity landmark that manifests itself as a protein cluster positioned on the plasma membrane at the growing ends of fission yeast cells. Unexpectedly, this study has suggested a number of striking parallels with the mechanisms based on the activity of small GTPases. These findings highlight common design principles of cellular pattern-forming mechanisms that have been mixed and matched in various combinations in the course of evolution to achieve the same desired outcome-tightly controlled in space and time formation of dense protein clusters.
Collapse
Affiliation(s)
- Andrew B Goryachev
- Centre for Systems Biology; School of Biological Sciences; The University of Edinburgh; Edinburgh, UK
| |
Collapse
|
47
|
Pohl C. Left-right patterning in the C. elegans embryo: Unique mechanisms and common principles. Commun Integr Biol 2011; 4:34-40. [PMID: 21509174 DOI: 10.4161/cib.4.1.14144] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Accepted: 11/05/2010] [Indexed: 11/19/2022] Open
Abstract
The development of bilateral symmetry during the evolution of species probably 600 million years ago brought about several important innovations: It fostered efficient locomotion, streamlining and favored the development of a central nervous system through cephalization. However, to increase their functional capacities, many organisms exhibit chirality by breaking their superficial left-right (l-r) symmetry, which manifests in the lateralization of the nervous system or the l-r asymmetry of internal organs. In most bilateria, the mechanisms that maintain consistent l-r asymmetry throughout development are poorly understood. This review highlights insights into mechanisms that couple early embryonic l-r symmetry breaking to subsequent l-r patterning in the roundworm Caenorhabditis elegans. A recently identified strategy for l-r patterning in the early C. elegans embryo is discussed, the spatial separation of midline and anteroposterior axis, which relies on a rotational cellular rearrangement and non-canonical Wnt signaling. Evidence for a general relevance of rotational/torsional rearrangements during organismal l-r patterning and for non-canonical Wnt signaling/planar cell polarity as a common signaling mechanism to maintain l-r asymmetry is presented.
Collapse
Affiliation(s)
- Christian Pohl
- Developmental Biology Program; Sloan-Kettering Institute; New York, NY USA
| |
Collapse
|
48
|
Lichius A, Berepiki A, Read ND. Form follows function – The versatile fungal cytoskeleton. Fungal Biol 2011; 115:518-40. [DOI: 10.1016/j.funbio.2011.02.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 02/15/2011] [Accepted: 02/17/2011] [Indexed: 12/11/2022]
|
49
|
Thadani R, Huang D, Oliferenko S. Robust polarity specification operates above a threshold of microtubule dynamicity. Cytoskeleton (Hoboken) 2011; 68:290-9. [PMID: 21548112 DOI: 10.1002/cm.20512] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Revised: 04/06/2011] [Accepted: 04/18/2011] [Indexed: 11/12/2022]
Abstract
Microtubule arrays effect cell polarisation by directing cellular cues for cortical remodelling and growth. Their function depends crucially on the intrinsic dynamic properties of constituent microtubules. Microtubule dynamicity is restricted to a certain range within the confines of a cellular geometry. Thus it is of great interest to determine whether rescaling of dynamic properties of microtubules has consequences for cell polarity. We constructed fission yeast strains exhibiting depressed microtubule dynamics by mutating the β-tubulin gene, nda3. This interfered with efficient accumulation of a polarity factor Tea1 at cell tips. Interestingly, the polarity machinery in the mutant cells was highly susceptible to perturbations. Simulations of growth zone formation followed by imaging of actin distribution showed a significantly delayed onset of bipolar growth. We propose that there exists a threshold of microtubule dynamicity that allows robust cellular polarisation.
Collapse
Affiliation(s)
- Rahul Thadani
- Temasek Life Sciences Laboratory, 1 Research Link, Singapore
| | | | | |
Collapse
|
50
|
Abstract
In this issue, Pitaval et al. (2010. J. Cell Biol. doi:10.1083/jcb.201004003) demonstrate that cell geometry can regulate the elaboration of a primary cilium. Their findings and approaches are part of a historical line of inquiry investigating the role of cell shape in intracellular organization and cellular function.
Collapse
Affiliation(s)
- Jagesh V Shah
- Department of Systems Biology, Harvard Medical School, and 2 Renal Division, Brigham and Women's Hospital, Boston, MA 02115, USA.
| |
Collapse
|