1
|
Persyn E, Duyck PF, François MC, Mille C, Jacob V, Jacquin-Joly E. Transcriptomic analyses in thirteen Tephritidae species provide insights into the ecological driving force behind odorant receptor evolution. Mol Phylogenet Evol 2025; 206:108322. [PMID: 40049262 DOI: 10.1016/j.ympev.2025.108322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 02/27/2025] [Accepted: 03/02/2025] [Indexed: 03/12/2025]
Abstract
The insect olfactory system has evolved while guiding species to specific mating partners, different food sources, and oviposition sites. How species repertoires of odorant receptors (ORs), responsible for the detection of volatile cues, have been shaped by ecologically driven forces remains poorly understood. Due to several host switches back and forth throughout their evolutionary history, fruit flies of the Tephritidae family (Diptera) show highly diverse host preferences, making them good models to address this question. For instance, a comparative analysis of genomic and transcriptomic resources on a large variety of fruit fly species could provide statistical conclusions. Here, we used a RNAseq approach to identify the OR repertoires of thirteen Tephritidae species with different host ranges, namely Bactrocera curvipennis, Bactrocera dorsalis, Bactrocera psidii, Bactrocera tryoni, Bactrocera umbrosa, Bactrocera zonata, Ceratitis capitata, Ceratitis catoirii, Ceratitis quilicii, Dacus ciliatus, Dacus demmerezi, Neoceratitis cyanescens, and Zeugodacus cucurbitae. Manual curation allowed us to annotate 60-80 OR transcripts per species, including the obligatory coreceptor Orco. In total, we reported 698 new OR sequences. Differential expression analyses between antennae and maxillary palps and between the two sexes, performed in three species, revealed some organ- and sex-biased OR expression. Moreover, after adjusting for phylogenetic distance, we found significant correlations between some characteristics of the OR repertoire and species host range: sequences and relative expression level of several ORs were more conserved in polyphagous than in oligophagous species and, in addition, other ORs were found specifically in polyphagous species. Our results provide molecular insights into the ecological driving forces behind Tephritidae OR evolution.
Collapse
Affiliation(s)
- Emma Persyn
- CIRAD, Université de la Réunion, UMR PVBMT, 7, ch. de l'IRAT, F-97410 Saint-Pierre, La Réunion, France; INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université Paris Cité, Institute of Ecology & Environmental Sciences of Paris, Route de Saint-Cyr, F-78026 Versailles Cedex, France
| | - Pierre-François Duyck
- IAC, Institut Agronomique néo-Calédonien, Équipe ARBOREAL, Laboratoire d'Entomologie Appliquée, Station de Recherches Fruitières de Pocquereux, F-98880, La Foa, New Caledonia; CIRAD, UMR PVBMT, F-98488 Nouméa, New Caledonia
| | - Marie-Christine François
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université Paris Cité, Institute of Ecology & Environmental Sciences of Paris, Route de Saint-Cyr, F-78026 Versailles Cedex, France
| | - Christian Mille
- IAC, Institut Agronomique néo-Calédonien, Équipe ARBOREAL, Laboratoire d'Entomologie Appliquée, Station de Recherches Fruitières de Pocquereux, F-98880, La Foa, New Caledonia
| | - Vincent Jacob
- CIRAD, Université de la Réunion, UMR PVBMT, 7, ch. de l'IRAT, F-97410 Saint-Pierre, La Réunion, France.
| | - Emmanuelle Jacquin-Joly
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université Paris Cité, Institute of Ecology & Environmental Sciences of Paris, Route de Saint-Cyr, F-78026 Versailles Cedex, France.
| |
Collapse
|
2
|
Wu Y, Li J, Xiao Z, Li W, Xiao Y. Genomic insights into ORs gene family of G protein-coupled receptors expansion driving omnivorous feeding in Spotted knifejaw (Oplegnathus punctatus). Int J Biol Macromol 2025; 309:142674. [PMID: 40164253 DOI: 10.1016/j.ijbiomac.2025.142674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/26/2025] [Accepted: 03/28/2025] [Indexed: 04/02/2025]
Abstract
The Spotted knifejaw was previously considered a predominantly carnivorous species, but emerging evidence suggests that it exhibits omnivorous characteristics. However, the mechanisms underpinning its dietary remain poorly understood; Behavioral experiments have demonstrated that the fish shows preferences for both carnivorous and herbivorous foods and olfactory dysfunction was found to significantly reduced the responsiveness to food stimuli. Anatomical and histological analyses revealed a well-developed olfactory system, with increases in the number of olfactory lamellae and epithelial cells at 50 and 120 dph, which were consistent with spatio-temporal gene expression patterns. Genomic analyses identified ORs within the GPCR family, including 164 MORs, 77 TAARs, 4 V1Rs, and 7 V2Rs. Notably, a significant expansion of the δ subtype of MORs was observed suggesting a role in omnivorous adaptation. Transcriptomic WGCNA revealed the pathways related to protein digestion and absorption, pancreatic secretion, olfactory transduction, and gastric acid secretion. It is hypothesized that the expansion of TAAR13c is related to the carnivorous nature of O. punctatus. In situ hybridization confirmed the expression of key ORs in olfactory epithelial cells, sensory neurons, and intestinal endocrine cells, and functional validation of ORs using the dual luciferase assay, providing new insights into the molecular mechanisms governing omnivory in the Spotted knifejaw.
Collapse
Affiliation(s)
- Yanduo Wu
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture Qingdao, Institute of Oceanology, Chinese Academy of Sciences (IOCAS), Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China
| | - Jun Li
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture Qingdao, Institute of Oceanology, Chinese Academy of Sciences (IOCAS), Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China; Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
| | - Zhizhong Xiao
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture Qingdao, Institute of Oceanology, Chinese Academy of Sciences (IOCAS), Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China; Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Wensheng Li
- Laizhou Mingbo Aquatic Products Co., Ltd., Yantai, China
| | - Yongshuang Xiao
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture Qingdao, Institute of Oceanology, Chinese Academy of Sciences (IOCAS), Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China; Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
| |
Collapse
|
3
|
Chen J, Wei F, Li Q, Wang J, Shao H, Hu J. Functional Characterization and Small Molecule Drug Screening of Sex Pheromone Receptors in Ectropis obliqua. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:9261-9270. [PMID: 40178067 DOI: 10.1021/acs.jafc.4c11828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Ectropis obliqua (Lepidoptera: Geometridae) is a major pest of tea plants in China. Sex pheromone traps are effective for monitoring and controlling its population. However, the specific mechanisms of sex pheromone recognition in this pest remain unclear. Fifty-seven candidate odorant receptors were identified using antennal transcriptome analysis, including two potential pheromone receptors (EoblOR17 and EoblOR45). Expression profiles indicated that EoblOR17 and EoblOR45 were highly expressed in the males. Among them, EoblOR17 was identified in response to the primary pheromone components of E. obliqua, Z3,epo6,Z9-18:H and Z3,Z6,Z9-18:H. The in vivo function of EoblOR17 was confirmed using RNA interference (RNAi) analysis. A small molecule (T7392) targeting EoblOR17 significantly reduced the mating rate of E. obliqua. Our findings provide a better understanding of the mechanisms of sex pheromone recognition in E. obliqua and provide a class of potential compounds to control this pest.
Collapse
Affiliation(s)
- Jing Chen
- College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou 311300, Zhejiang, China
| | - Fengyuan Wei
- College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou 311300, Zhejiang, China
| | - Quan Li
- College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou 311300, Zhejiang, China
| | - Jinghan Wang
- College of Life Sciences, Huzhou University, Huzhou 313000, Zhejiang, China
| | - Hudie Shao
- College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou 311300, Zhejiang, China
| | - Jiafu Hu
- College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou 311300, Zhejiang, China
| |
Collapse
|
4
|
Lin PA, Chan WP, Cai L, Hsiao Y, Dankowicz E, Gilbert KJ, Pierce NE, Felton G. The Salient Aroma Hypothesis: host plant specialization is linked with plant volatile availability in Lepidoptera. Proc Biol Sci 2025; 292:20242426. [PMID: 40068825 PMCID: PMC11896709 DOI: 10.1098/rspb.2024.2426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/26/2025] [Accepted: 02/13/2025] [Indexed: 03/15/2025] Open
Abstract
Host plant use in Lepidoptera has been a primary focus in studies of ecological specialization, and multiple factors are likely to be involved in shaping the evolution of diet breadth. Here, we first describe the Salient Aroma Hypothesis, suggesting that the availability of chemical information, particularly host-associated aromas, plays a critical role in shaping dietary specialization. According to the Salient Aroma Hypothesis, herbivores active during periods when chemical information is abundant, particularly during the daytime hours when plant aromas are hypothesized to be more prevalent, are more likely to evolve specialized diets. First, with meta-analysis, we show that plants release more diverse and abundant volatile compounds during daylight hours, increasing the availability of chemical information. We found that diurnal Lepidoptera tend to have specialized diets, while nocturnal species are more generalized, consistent with the prediction of the Salient Aroma Hypothesis. We further observed that morphological differences in the antennae of female Lepidoptera are correlated with variation in diet breadth and diel activity patterns, indirectly supporting the Salient Aroma Hypothesis. While multiple factors influence host plant specialization, the Salient Aroma Hypothesis offers a useful framework linking chemical information availability (e.g. plant volatiles) and ecological specialization.
Collapse
Affiliation(s)
- Po-An Lin
- Department of Entomology, National Taiwan University, Taipei, Taiwan
| | - Wei-Ping Chan
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Liming Cai
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, USA
| | - Yun Hsiao
- Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei, Taiwan
| | - Even Dankowicz
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Kadeem J. Gilbert
- Department of Plant Biology, Michigan State University, W K Kellogg Biological Station, Hickory Corners, MI, USA
| | - Naomi E. Pierce
- Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA
| | - Gary Felton
- Department of Entomology, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
5
|
Xiao Y, Lei C, Wang X, Batool R, Yin F, Peng Z, Jing X, Li Z. Foraging in the darkness: Highly selective tuning of below-ground larval olfaction to Brassicaceae volatiles in striped flea beetle. INSECT MOLECULAR BIOLOGY 2025; 34:151-161. [PMID: 39306699 DOI: 10.1111/imb.12960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/16/2024] [Indexed: 01/11/2025]
Abstract
The olfactory system of above-ground insects is among the best described perceptual architectures. However, remarkably little is known about how below-ground insects navigate in the dark for foraging. Here, we investigated host plant preferences, olfactory sensilla and characterise olfactory proteins in below-ground larvae of the striped flea beetle (SFB) Phyllotreta striolata Fabricius (Coleoptera: Chrysomelidae). Both the adults and larvae of this coleopteran pest cause serious damage to Brassicaceous crops above and below ground, respectively. To elucidate the role of olfactory system in host location of below-ground larvae, we initially demonstrated that SFB larvae distinctly favoured Brassicaceae over other plant families by two-choice behavioural bioassay. Subsequently, scanning electron microscopy of sensilla in SFB larval head showed a significant reduction in the number of olfactory sensilla in larvae compared with adults. However, essential olfactory sensilla such as sensilla basiconica are underscoring the indispensability of the larval olfactory system. We selected four larval-specific odorant binding proteins for functional validation from our previous transcriptome data. Functional studies revealed that PstrOBP23 exhibits robust binding affinity to 24 volatiles of Brassicaceae plants, including seven isothiocyanate compounds. This suggests a pivotal role of PstrOBP23 in the foraging behaviour of the larvae below the ground. Moreover, two ligands displaying strong binding capacity exhibit apparent attractive or repellent activity towards SFB larvae. Our findings provide a crucial insight into the olfactory system of below-ground larvae in SFB, highlighting the highly selective tuning of larvae specific OBP to host plant volatiles. These results offer potential avenues for developing effective pest control strategies against SFB.
Collapse
Affiliation(s)
- Yong Xiao
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Chunmei Lei
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Xue Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Raufa Batool
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Fei Yin
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Zhengke Peng
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Xiangfeng Jing
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Zhenyu Li
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| |
Collapse
|
6
|
Hou XQ, Zhang DD, Zhao H, Liu Y, Löfstedt C, Wang G. Attraction and aversion of noctuid moths to fermented food sources coordinated by olfactory receptors from distinct gene families. BMC Biol 2025; 23:1. [PMID: 39757197 DOI: 10.1186/s12915-024-02102-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 12/20/2024] [Indexed: 01/07/2025] Open
Abstract
BACKGROUND Alternative food sources are crucial for the survival and reproduction of moths during nectar scarcity. Noctuid moths make a better use of fermented food sources than moths from other families, while the underlying molecular and genetic basis remain unexplored. As the fermentation progresses, yeasts lysis and the accumulation of metabolic byproducts alter the composition and the volatile release of the sugary substrates. However, it is unclear whether and how this would affect the feeding preference of moths. RESULTS Here, we identified eight compounds abundant in the dynamic volatile profiles of several sugary substrates during yeast fermentation. We showed that the cotton bollworm moths were attracted to the fermented sugary substrates while being repelled when the sugary substrates were over-fermented. The attraction and aversion were respectively mediated by isoamyl alcohol and octanoic acid. We deorphanized the olfactory receptors detecting these two compounds and found that they belonged to two distinct gene families and were functionally conserved across four noctuid subfamilies; HarmOR52 orthologues responded to the attractive isoamyl alcohol and HarmIR75q.1 orthologues responded to the aversive octanoic acid. CONCLUSIONS Our findings suggest that this functional conservation is an olfactory adaptation that has allowed noctuid moths to extend their diet to fermented food sources.
Collapse
Affiliation(s)
- Xiao-Qing Hou
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Synthetic Biology Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Xianghu Laboratory, Hangzhou, Zhejiang, China
| | - Dan-Dan Zhang
- Department of Biology, Lund University, Lund, Sweden
| | - Hanbo Zhao
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Synthetic Biology Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yang Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Christer Löfstedt
- Department of Biology, Lund University, Lund, Sweden
- Xianghu Laboratory, Hangzhou, Zhejiang, China
| | - Guirong Wang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Synthetic Biology Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
7
|
Tom MT, Brand P, Bucks S, Zhang J, Escobar Huezo ME, Hansson BS, Bisch-Knaden S. Gene expansion in the hawkmoth Manduca sexta drives evolution of food-associated odorant receptors. iScience 2024; 27:111317. [PMID: 39640564 PMCID: PMC11617253 DOI: 10.1016/j.isci.2024.111317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/30/2024] [Accepted: 10/30/2024] [Indexed: 12/07/2024] Open
Abstract
In insects, odorant receptors (ORs) are required for the detection of most olfactory cues. We investigated the function of a clade of four duplicated ORs in the hawkmoth Manduca sexta and found that these paralogs encode broadly tuned receptors with overlapping but distinct response spectra. Two paralogs, which arose after divergence from a related lineage, show high sensitivity to floral esters released by a nectar-rich plant frequently visited by M. sexta. Functional imaging in mutant moths lacking one of the paralogs suggests that olfactory sensory neurons expressing this OR target a previously identified feeding-associated glomerulus in the primary olfactory center of the brain. However, only the response of this glomerulus to the single ligand unique to the now mutated OR disappeared, suggesting neuronal coexpression of the paralogs. Our results suggest a link between the studied OR expansion and enhanced detection of odors emitted by valuable nectar sources in M. sexta.
Collapse
Affiliation(s)
- Megha Treesa Tom
- Department of Evolutionary Neuroethology, Max-Planck Institute for Chemical Ecology, Jena, Germany
| | - Philipp Brand
- Laboratory of Neurophysiology and Behavior, The Rockefeller University, New York, NY, USA
| | - Sascha Bucks
- Department of Evolutionary Neuroethology, Max-Planck Institute for Chemical Ecology, Jena, Germany
| | - Jin Zhang
- Department of Evolutionary Neuroethology, Max-Planck Institute for Chemical Ecology, Jena, Germany
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | | | - Bill S. Hansson
- Department of Evolutionary Neuroethology, Max-Planck Institute for Chemical Ecology, Jena, Germany
| | - Sonja Bisch-Knaden
- Department of Evolutionary Neuroethology, Max-Planck Institute for Chemical Ecology, Jena, Germany
| |
Collapse
|
8
|
Dikmen F, Dabak T, Özgişi BD, Özenirler Ç, Kuralay SC, Çay SB, Çınar YU, Obut O, Balcı MA, Akbaba P, Aksel EG, Zararsız G, Solares E, Eldem V. Transcriptome-wide analysis uncovers regulatory elements of the antennal transcriptome repertoire of bumblebee at different life stages. INSECT MOLECULAR BIOLOGY 2024; 33:571-588. [PMID: 38676460 DOI: 10.1111/imb.12914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/09/2024] [Indexed: 04/29/2024]
Abstract
Bumblebees are crucial pollinators, providing essential ecosystem services and global food production. The success of pollination services relies on the interaction between sensory organs and the environment. The antenna functions as a versatile multi-sensory organ, pivotal in mediating chemosensory/olfactory information, and governs adaptive responses to environmental changes. Despite an increasing number of RNA-sequencing studies on insect antenna, comprehensive antennal transcriptome studies at the different life stages were not elucidated systematically. Here, we quantified the expression profile and dynamics of coding/microRNA genes of larval head and antennal tissues from early- and late-stage pupa to the adult of Bombus terrestris as suitable model organism among pollinators. We further performed Pearson correlation analyses on the gene expression profiles of the antennal transcriptome from larval head tissue to adult stages, exploring both positive and negative expression trends. The positively correlated coding genes were primarily enriched in sensory perception of chemical stimuli, ion transport, transmembrane transport processes and olfactory receptor activity. Negatively correlated genes were mainly enriched in organic substance biosynthesis and regulatory mechanisms underlying larval body patterning and the formation of juvenile antennal structures. As post-transcriptional regulators, miR-1000-5p, miR-13b-3p, miR-263-5p and miR-252-5p showed positive correlations, whereas miR-315-5p, miR-92b-3p, miR-137-3p, miR-11-3p and miR-10-3p exhibited negative correlations in antennal tissue. Notably, based on the inverse expression relationship, positively and negatively correlated microRNA (miRNA)-mRNA target pairs revealed that differentially expressed miRNAs predictively targeted genes involved in antennal development, shaping antennal structures and regulating antenna-specific functions. Our data serve as a foundation for understanding stage-specific antennal transcriptomes and large-scale comparative analysis of transcriptomes in different insects.
Collapse
Affiliation(s)
- Fatih Dikmen
- Department of Biology, Istanbul University, İstanbul, Turkey
| | - Tunç Dabak
- Department of Biology, The Pennsylvania State University, State College, Pennsylvania, USA
| | | | | | | | | | | | - Onur Obut
- Department of Biology, Istanbul University, İstanbul, Turkey
| | | | - Pınar Akbaba
- Department of Biology, Istanbul University, İstanbul, Turkey
| | - Esma Gamze Aksel
- Faculty of Veterinary Medicine, Department of Genetics, Erciyes University, Kayseri, Turkey
| | - Gökmen Zararsız
- Department of Biostatistics, Erciyes University, Kayseri, Turkey
- Drug Application and Research Center (ERFARMA), Erciyes University, Kayseri, Turkey
| | - Edwin Solares
- Computer Science & Engineering Department, University of California, San Diego, California, USA
| | - Vahap Eldem
- Department of Biology, Istanbul University, İstanbul, Turkey
| |
Collapse
|
9
|
Yang J, Mo BT, Li GC, Huang LQ, Guo H, Wang CZ. Identification and functional characterization of chemosensory genes in olfactory and taste organs of Spodoptera litura (Lepidoptera: Noctuidae). INSECT SCIENCE 2024; 31:1721-1742. [PMID: 38485691 DOI: 10.1111/1744-7917.13350] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 12/12/2024]
Abstract
The tobacco cutworm Spodoptera litura is one of the most destructive polyphagous crop pests. Olfaction and taste play a crucial role in its host plant selection and sexual communication, but the expression profile of chemosensory genes remains unclear. In this study, we identified 185 chemosensory genes from 7 organs in S. litura by transcriptome sequencing, of which 72 genes were published for the first time, including 27 odorant receptors (ORs), 26 gustatory receptors (GRs), 1 ionotropic receptor (IR), 16 odorant-binding proteins (OBPs), and 2 chemosensory proteins (CSPs). Phylogenetic analyses revealed that ORs, IRs, OBPs, and sensory neuron membrane proteins (SNMPs) were mainly expressed in antennae and sequence-conserved among Noctuidae species. The most differentially expressed genes (DEGs) between sexes were ORs and OBPs, and no DEGs were found in GRs. GR transcripts were enriched in proboscis, and the expression of sugar receptors was the highest. Carbon dioxide receptors, sugar receptor-SliuGR6, and bitter GRs-SlituGR43 and SlituGR66 had higher sequence identities between Noctuidae species. CSPs were broadly expressed in various organs, and SlituCSP13 was a DEG in adult antennae. The functional analysis in the Drosophila OR67d expression system found that SlituOR50, a receptor highly expressed in female antennae, is selectively tuned to farnesyl acetate. The results provide a solid foundation for understanding the molecular mechanisms by which chemosensory genes operate to elicit behavioral responses in polyphagous insects.
Collapse
Affiliation(s)
- Jun Yang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Plant Protection, Shanxi Agricultural University, Taiyuan, Shanxi, China
| | - Bao-Tong Mo
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Guo-Cheng Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Ling-Qiao Huang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Hao Guo
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Chen-Zhu Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
10
|
Jiang L, Wang P, Li C, Shen D, Chen A, Qian H, Zhao Q. Compensatory effects of other olfactory genes after CRISPR/cas9 editing of BmOR56 in silkworm, Bombyx mori. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 52:101275. [PMID: 38901107 DOI: 10.1016/j.cbd.2024.101275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 06/07/2024] [Accepted: 06/09/2024] [Indexed: 06/22/2024]
Abstract
Bombyx mori is an oligophagous economic insect. Cis-Jasmone is one of the main substances in mulberry leaf that attract silkworm for feeding and BmOR56 is its receptor. Potential interaction ways between BmOR56 and cis-Jasmone were explored, which included some crucial amino acids such as Gln172, Val173, Ser176, Lys182, His322, and Arg345. BmOR56 was edited using CRISPR/cas9 for Qiufeng, and a homozygous knockout strain QiufengM was obtained. Compared with Qiufeng, the feeding ability of QiufengM on mulberry leaf did not change significantly, but on artificial diet decreased significantly. QiufengM also showed a dependence on the concentration of mulberry leaf powder. The result indicated that other olfactory genes had a compensatory effect on the attractance of mulberry leaf after the loss of BmOR56. Transcriptome analysis of antennae showed that many genes differentially expressed between Qiufeng and QiufengM, which involved in olfactory system, glucose metabolism, protein metabolism, amino acid metabolism, and insect hormone biosynthesis. Particularly, BmIR21, BmOR53 and BmOR27 were significantly up-regulated, which may have a compensatory effect on BmOR56 loss. In addition, detoxification mechanism was activated and may cause the passivation of feeling external signals in silkworm.
Collapse
Affiliation(s)
- Li Jiang
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China.
| | - Pingyang Wang
- Guangxi Key Laboratory of Sericultural Genetic Improvement and Efficient Breeding, Guangxi Research Academy of Sericultural Science, Nanning, Guangxi Zhuang Autonomous Region, China.
| | - Cong Li
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China.
| | - Dongxu Shen
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China.
| | - Anli Chen
- Key Sericultural Laboratory of Shaanxi, Ankang University, Ankang, Shaanxi 725000, China.
| | - Heying Qian
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China.
| | - Qiaoling Zhao
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China.
| |
Collapse
|
11
|
Zou Y, Wu W, Luo T, Tang Y, Hu H, Ye A, Xu L, Dai F, Tong X. Disruption of Zfh3 abolishes mulberry-specific monophagy in silkworm larvae. INSECT SCIENCE 2024; 31:1397-1411. [PMID: 38622976 DOI: 10.1111/1744-7917.13354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/29/2024] [Accepted: 02/13/2024] [Indexed: 04/17/2024]
Abstract
Feeding behavior is critical for insect survival and fitness. Most researchers have explored the molecular basis of feeding behaviors by identifying and elucidating the function of olfactory receptors (ORs) and gustatory receptors (GRs). Other types of genes, such as transcription factors, have rarely been investigated, and little is known about their potential roles. The silkworm (Bombyx mori) is a well-studied monophagic insect which primarily feeds on mulberry leaves, but the genetic basis of its monophagy is still not understood. In this report, we focused on a transcription factor encoded by the Zfh3 gene, which is highly expressed in the silkworm central and peripheral nervous systems, including brain, antenna, and maxilla. To investigate its function, Zfh3 was abrogated using clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated protein 9 (Cas9) mutagenesis. Since Zfh3 knockout homozygotes are not viable, we studied feeding behavior in heterozygotes, and found that disruption of Zfh3 affects both gustation and olfaction. Mutant larvae lose preference for mulberry leaves, acquire the ability to consume an expanded range of diets, and exhibit improved adaptation to the M0 artificial diet, which contains no mulberry leaves. These results provide the first demonstration that a transcription factor modulates feeding behaviors in an insect.
Collapse
Affiliation(s)
- Yunlong Zou
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Wentao Wu
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Tianfu Luo
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Yuxia Tang
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Hai Hu
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Aijun Ye
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Lifeng Xu
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Fangyin Dai
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Xiaoling Tong
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| |
Collapse
|
12
|
Takaku T, Tonooka Y, Takahashi Y, Kitamoto S. Enhanced sensitivity of chimeric insect olfactory co-receptors for detecting odorant molecules. Biochem Biophys Res Commun 2024; 726:150273. [PMID: 38914041 DOI: 10.1016/j.bbrc.2024.150273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/04/2024] [Accepted: 06/15/2024] [Indexed: 06/26/2024]
Abstract
Insect olfactory receptors (ORs) are seven-transmembrane domain ion channels that function by forming heteromeric complexes with olfactory receptor co-receptors (Orcos). In this study, we investigated the potential for enhancing sensitivity of odor detection and responsivity through genetic modification of Orcos, considering its wider application in odor sensing. First, we measured the intensity of response to 1-octen-3-ol for the mosquito Aedes aegypti OR (AaOR8) when complexed individually with an Orco from the same mosquito (AaOrco), the honeybee Apis mellifera (AmOrco), the silkworm Bombyx mori (BmOrco), or the fruit fly Drosophila melanogaster (DmOrco). Relative to the other Orcos, AmOrco demonstrated higher sensitivity and responsivity, with a 1.8 to 21-fold decrease in the half-maximal effective concentration (EC50) and a 1.6-8.8-fold increase in the maximal effect (Emax), respectively. Furthermore, AmOrco co-expressed with AaOR10, BmOR56, or DmOR47a showed higher sensitivity and responsivity than AaOrco, BmOrco, or DmOrco co-expressed with their respective ORs. To further increase sensitivity and responsivity, we engineered chimeric Orcos by fusing AmOrco with DmOrco, considering the domain characteristics of Orcos. The response to 1-octen-3-ol was evaluated for AaOR8 when complexed individually with AmOrco, as well as for a mutant that combines DmOrco from the N-terminal (NT) to the C-terminal region of the fourth transmembrane domain (TM4) with the region of AmOrco following TM4 (Dm[NT-TM4]AmOrco). When compared to AmOrco, Dm(NT-TM4)AmOrco showed higher sensitivity and responsivity, with a 1.4-fold decrease in the EC50 and a 1.4-fold increase in the Emax, respectively. In addition, Dm(NT-TM4)AmOrco co-expressed with either DmOR47a or BmOR56 demonstrated higher sensitivity and responsivity than AmOrco co-expressed with their respective ORs. These results suggest that AmOrco could be a relatively more sensitive Orco, and further enhancement of sensitivity and responsivity could be achieved through recombination with heterologous Orcos near the TM4 of AmOrco.
Collapse
Affiliation(s)
- Tomoyuki Takaku
- Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., 1-98, 3-Chome, Kasugade-Naka, Konohana-Ku, Osaka, 554-8558, Japan.
| | - Yoshino Tonooka
- Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., 1-98, 3-Chome, Kasugade-Naka, Konohana-Ku, Osaka, 554-8558, Japan
| | - Yasuhiko Takahashi
- Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., 1-98, 3-Chome, Kasugade-Naka, Konohana-Ku, Osaka, 554-8558, Japan
| | - Sachiko Kitamoto
- Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., 1-98, 3-Chome, Kasugade-Naka, Konohana-Ku, Osaka, 554-8558, Japan
| |
Collapse
|
13
|
Sato R. Molecular Functions and Physiological Roles of Gustatory Receptors of the Silkworm Bombyx mori. Int J Mol Sci 2024; 25:10157. [PMID: 39337641 PMCID: PMC11432556 DOI: 10.3390/ijms251810157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Complete elucidation of members of the gustatory receptor (Gr) family in lepidopteran insects began in the silkworm Bombyx mori. Grs of lepidopteran insects were initially classified into four subfamilies based on the results of phylogenetic studies and analyses of a few ligands. However, with further ligand analysis, it has become clear that plant secondary metabolites are important targets not only for Grs in the bitter subfamily but also for the Drosophila melanogaster Gr43a orthologue subfamily and Grs in the sugar subfamily. Gene knockout experiments showed that B. mori Gr6 (BmGr6) and BmGr9 are involved in the recognition of the feeding-promoting compounds chlorogenic acid and isoquercetin in mulberry leaves by the maxillary palps, suggesting that these Grs are responsible for palpation-dependent host recognition without biting. On the other hand, BmGr expression was also confirmed in nonsensory organs. Midgut enteroendocrine cells that produce specific neuropeptides were shown to express specific BmGrs, suggesting that BmGrs are involved in the induction of endocrine secretion in response to changes in the midgut contents. Furthermore, gene knockout experiments indicated that BmGr6 is indeed involved in the secretion of myosuppressin. On the other hand, BmGr9 was shown to induce signal transduction that is not derived from the intracellular signaling cascade mediated by G proteins but from the fructose-regulated cation channel of BmGr9 itself. Cryogenic electron microscopy revealed the mechanism by which the ion channel of the BmGr9 homotetramer opens upon binding of fructose to the ligand-binding pocket. Research on BmGrs has contributed greatly to our understanding of the functions and roles of Grs in insects.
Collapse
Affiliation(s)
- Ryoichi Sato
- Graduate School of Bio-Application and Systems Engineering, Tokyo University of Agriculture and Technology, Naka 2-24-16, Koganei 184-8588, Tokyo, Japan
| |
Collapse
|
14
|
Hou XQ, Jia Z, Zhang DD, Wang G. Odorant receptor orthologues from moths display conserved responses to cis-jasmone. INSECT SCIENCE 2024; 31:1107-1120. [PMID: 38009986 DOI: 10.1111/1744-7917.13296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/13/2023] [Accepted: 10/05/2023] [Indexed: 11/29/2023]
Abstract
In insects, the odorant receptor (OR) multigene family evolves by the birth-and-death evolutionary model, according to which the OR repertoire of each species has undergone specific gene gains and losses depending on their chemical environment, resulting in taxon-specific OR lineage radiations with different sizes in the phylogenetic trees. Despite the general divergence in the gene family across different insect orders, the ORs in moths seem to be genetically conserved across species, clustered into 23 major clades containing multiple orthologous groups with single-copy gene from each species. We hypothesized that ORs in these orthologous groups are tuned to ecologically important compounds and functionally conserved. cis-Jasmone is one of the compounds that not only primes the plant defense of neighboring receiver plants, but also functions as a behavior regulator to various insects. To test our hypothesis, using Xenopus oocyte recordings, we functionally assayed the orthologues of BmorOR56, which has been characterized as a specific receptor for cis-jasmone. Our results showed highly conserved response specificity of the BmorOR56 orthologues, with all receptors within this group exclusively responding to cis-jasmone. This is supported by the dN/dS analysis, showing that strong purifying selection is acting on this group. Moreover, molecular docking showed that the ligand binding pockets of BmorOR56 orthologues to cis-jasmone are similar. Taken together, our results suggest the high conservation of OR for ecologically important compounds across Heterocera.
Collapse
Affiliation(s)
- Xiao-Qing Hou
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Synthetic Biology Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong Province, China
| | - Zhongqiang Jia
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Synthetic Biology Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong Province, China
| | - Dan-Dan Zhang
- Department of Biology, Lund University, Lund, Sweden
| | - Guirong Wang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Synthetic Biology Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong Province, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
15
|
Wang Z, Wang X, Liu W, Chen R, Liu Y. Functional Characterization of an Odorant Receptor Expressed in Newly Hatched Larvae of Fall Armyworm Spodoptera frugiperda. INSECTS 2024; 15:564. [PMID: 39194769 DOI: 10.3390/insects15080564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/18/2024] [Accepted: 07/24/2024] [Indexed: 08/29/2024]
Abstract
In the past decade, Spodoptera frugiperda has emerged as a significant invasive pest globally, posing a serious threat to agriculture due to its broad diet, migratory behavior, and ability to cause extensive plant damage. While extensive research has focused on the olfactory capabilities of adult S. frugiperda, understanding of the olfactory process in larvae remains limited, despite larvae playing a crucial role in crop damage. To address this gap, we identified an odorant receptor (OR), SfruOR40, expressed in the first-instar larvae through phylogenetic analysis. Using quantitative real-time PCR, we compared SfruOR40 expression levels in larvae and adults. We then characterized the function of SfruOR40 against 67 compounds using the Xenopus oocyte expression system and found that SfruOR40 responded to three plant volatiles. Further, behavioral experiments revealed a larval attraction to (-)-trans-Caryophyllene oxide. This study elucidates SfruOR40's role in the olfactory recognition of newly hatched S. frugiperda larvae, expanding our knowledge of such mechanisms in Noctuid moths. Furthermore, it highlights the potential of plant-derived natural products for biological pest control from a behavioral ecology perspective.
Collapse
Affiliation(s)
- Zhiqiang Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaoqing Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Weihao Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Run Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yang Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
16
|
Huang C, Ou X, Wang Y, Zhou Y, Zhang G, Liu W, Wan F, Jiang H, Zhang Y. Genome-Wide Identification, Evolution, and Female-Biased Expression Analysis of Odorant Receptors in Tuta absoluta (Lepidoptera: Gelechiidae). Life (Basel) 2024; 14:872. [PMID: 39063624 PMCID: PMC11277591 DOI: 10.3390/life14070872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
The tomato leafminer, Tuta absoluta (Lepidoptera: Gelechiidae), is a highly destructive invasive pest targeting Solanaceae crops. Its olfactory system plays a crucial role in host location, mate finding, and other behavioral activities. However, there is a notable gap in the literature regarding the characterization of its chemosensory genes. In this study, we conducted a genome-wide identification of 58 odorant receptors (ORs) of T. absoluta. The identified ORs exhibit coding sequence (CDS) lengths ranging from 1062 bp to 1419 bp, encoding proteins of 354 to 473 amino acids. Gene structure analysis showed that the majority of these ORs consist of five, seven, eight, or nine exons, collectively representing 67% of the total ORs identified. Through chromosomal mapping, we identified several tandemly duplicate genes, including TabsOR12a, TabsOR12b, TabsOR12c, TabsOR21a, TabsOR21b, TabsOR34a, TabsOR34b, TabsOR34c, TabsOR62a, and TabsOR62b. The phylogenetic analysis indicated that six TabsORs were clustered within the lepidopteran sex pheromone receptor clade, while an expansion clade containing ten TabsORs resulted from tandem duplication events. Additionally, five TabsORs were classified into a specific OR clade in T. absoluta. Furthermore, through RNA-Seq and RT-qPCR analyses, we identified five TabsORs (TabsOR21a, TabsOR26a, TabsOR34a, TabsOR34c, and TabsOR36) exhibiting female-antennae-biased expression. Our study provides a valuable foundation to further investigations into the molecular and ecological functions of TabsORs, particularly in relation to oviposition behavior. These findings provide foundational data for the future exploration of the functions of female-biased expression OR genes in T. absoluta, thereby facilitating the further development of eco-friendly attract-and-kill techniques for the prevention and control of T. absoluta.
Collapse
Affiliation(s)
- Cong Huang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China; (C.H.); (X.O.)
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.W.); (Y.Z.); (G.Z.); (W.L.); (F.W.)
| | - Xiaolan Ou
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China; (C.H.); (X.O.)
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.W.); (Y.Z.); (G.Z.); (W.L.); (F.W.)
| | - Yusheng Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.W.); (Y.Z.); (G.Z.); (W.L.); (F.W.)
| | - Yanan Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.W.); (Y.Z.); (G.Z.); (W.L.); (F.W.)
| | - Guifen Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.W.); (Y.Z.); (G.Z.); (W.L.); (F.W.)
| | - Wanxue Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.W.); (Y.Z.); (G.Z.); (W.L.); (F.W.)
| | - Fanghao Wan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.W.); (Y.Z.); (G.Z.); (W.L.); (F.W.)
| | - Hongbo Jiang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China; (C.H.); (X.O.)
| | - Yibo Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.W.); (Y.Z.); (G.Z.); (W.L.); (F.W.)
| |
Collapse
|
17
|
Wang C, Cao S, Shi C, Guo M, Sun D, Liu Z, Xiu P, Wang Y, Wang G, Liu Y. The novel function of an orphan pheromone receptor reveals the sensory specializations of two potential distinct types of sex pheromones in noctuid moth. Cell Mol Life Sci 2024; 81:259. [PMID: 38878072 PMCID: PMC11335300 DOI: 10.1007/s00018-024-05303-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 05/22/2024] [Accepted: 05/29/2024] [Indexed: 08/22/2024]
Abstract
Sex pheromones play crucial role in mating behavior of moths, involving intricate recognition mechanisms. While insect chemical biology has extensively studied type I pheromones, type II pheromones remain largely unexplored. This study focused on Helicoverpa armigera, a representative species of noctuid moth, aiming to reassess its sex pheromone composition. Our research unveiled two previously unidentified candidate type II sex pheromones-3Z,6Z,9Z-21:H and 3Z,6Z,9Z-23:H-in H. armigera. Furthermore, we identified HarmOR11 as an orphan pheromone receptor of 3Z,6Z,9Z-21:H. Through AlphaFold2 structural prediction, molecular docking, and molecular dynamics simulations, we elucidated the structural basis and key residues governing the sensory nuances of both type I and type II pheromone receptors, particularly HarmOR11 and HarmOR13. This study not only reveals the presence and recognition of candidate type II pheromones in a noctuid moth, but also establishes a comprehensive structural framework for PRs, contributing to the understanding of connections between evolutionary adaptations and the emergence of new pheromone types.
Collapse
Affiliation(s)
- Chenrui Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Song Cao
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
- Institute of Evolution and Ecology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Chen Shi
- Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
| | - Mengbo Guo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- Department of Plant Protection, Advanced College of Agricultural Sciences, Zhejiang A & F University, Hangzhou, 311300, China
| | - Dongdong Sun
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Zheyi Liu
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Peng Xiu
- Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
| | - Yong Wang
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
- The Provincial International Science and Technology Cooperation Base on Engineering Biology, International Campus of Zhejiang University, Haining, 314499, China.
| | - Guirong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China.
| | - Yang Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
18
|
Chen R, Yan J, Wickham JD, Gao Y. Genomic identification and evolutionary analysis of chemosensory receptor gene families in two Phthorimaea pest species: insights into chemical ecology and host adaptation. BMC Genomics 2024; 25:493. [PMID: 38762533 PMCID: PMC11102633 DOI: 10.1186/s12864-024-10428-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/17/2024] [Indexed: 05/20/2024] Open
Abstract
BACKGROUND Insects rely on sophisticated sensitive chemosensory systems to sense their complex chemical environment. This sensory process involves a combination of odorant receptors (ORs), gustatory receptors (GRs) and ionotropic receptors (IRs) in the chemosensory system. This study focused on the identification and characterization of these three types of chemosensory receptor genes in two closely related Phthorimaea pest species, Phthorimaea operculella (potato tuber moth) and Phthorimaea absoluta (tomato leaf miner). RESULTS Based on manual annotation of the genome, we identified a total of 349 chemoreceptor genes from the genome of P. operculella, including 93 OR, 206 GR and 50 IR genes, while for P. absoluta, we identified 72 OR, 122 GR and 46 IR genes. Through phylogenetic analysis, we observed minimal differences in the number and types of ORs and IRs between the potato tuber moth and tomato leaf miner. In addition, we found that compared with those of tomato leaf miners, the gustatory receptor branch of P. operculella has undergone a large expansion, which may be related to P. absoluta having a narrower host range than P. operculella. Through analysis of differentially expressed genes (DEGs) of male and female antennae, we uncovered 45 DEGs (including 32ORs, 9 GRs, and 4 IRs). CONCLUSIONS Our research provides a foundation for exploring the chemical ecology of these two pests and offers new insights into the dietary differentiation of lepidopteran insects, while simultaneously providing molecular targets for developing environmentally friendly pest control methods based on insect chemoreception.
Collapse
Affiliation(s)
- Ruipeng Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Junjie Yan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jacob D Wickham
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, 119071, Russia
- Department of Entomology, Rutgers University, 93 Lipman Drive, New Brunswick, New Jersey, USA
| | - Yulin Gao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
19
|
Tang R, Guo H, Chen JQ, Huang C, Kong XX, Cao L, Wan FH, Han RC. Tandemly expanded OR17b in Himalaya ghost moth facilitates larval food allocation via olfactory reception of plant-derived tricosane. Int J Biol Macromol 2024; 268:131503. [PMID: 38663697 DOI: 10.1016/j.ijbiomac.2024.131503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 04/30/2024]
Abstract
Herbivorous insects utilize intricate olfactory mechanisms to locate food plants. The chemical communication of insect-plant in primitive lineage offers insights into evolutionary milestones of divergent olfactory modalities. Here, we focus on a system endemic to the Qinghai-Tibetan Plateau to unravel the chemical and molecular basis of food preference in ancestral Lepidoptera. We conducted volatile profiling, neural electrophysiology, and chemotaxis assays with a panel of host plant organs to identify attractants for Himalaya ghost moth Thitarodes xiaojinensis larvae, the primitive host of medicinal Ophiocordyceps sinensis fungus. Using a DREAM approach based on odorant induced transcriptomes and subsequent deorphanization tests, we elucidated the odorant receptors responsible for coding bioactive volatiles. Contrary to allocation signals in most plant-feeding insects, T. xiaojinensis larvae utilize tricosane from the bulbil as the main attractant for locating native host plant. We deorphanized a TxiaOR17b, an indispensable odorant receptor resulting from tandem duplication of OR17, for transducing olfactory signals in response to tricosane. The discovery of this ligand-receptor pair suggests a survival strategy based on food location via olfaction in ancestral Lepidoptera, which synchronizes both plant asexual reproduction and peak hatch periods of insect larvae.
Collapse
Affiliation(s)
- Rui Tang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China
| | - Hao Guo
- College of Life Science, Institute of life Science and Green Development, Hebei University, Baoding 071002, China
| | - Jia-Qi Chen
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China
| | - Cong Huang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiang-Xin Kong
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China
| | - Li Cao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China
| | - Fang-Hao Wan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Ri-Chou Han
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China.
| |
Collapse
|
20
|
Ali J, Mukarram M, Ojo J, Dawam N, Riyazuddin R, Ghramh HA, Khan KA, Chen R, Kurjak D, Bayram A. Harnessing Phytohormones: Advancing Plant Growth and Defence Strategies for Sustainable Agriculture. PHYSIOLOGIA PLANTARUM 2024; 176:e14307. [PMID: 38705723 DOI: 10.1111/ppl.14307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 04/07/2024] [Accepted: 04/10/2024] [Indexed: 05/07/2024]
Abstract
Phytohormones, pivotal regulators of plant growth and development, are increasingly recognized for their multifaceted roles in enhancing crop resilience against environmental stresses. In this review, we provide a comprehensive synthesis of current research on utilizing phytohormones to enhance crop productivity and fortify their defence mechanisms. Initially, we introduce the significance of phytohormones in orchestrating plant growth, followed by their potential utilization in bolstering crop defences against diverse environmental stressors. Our focus then shifts to an in-depth exploration of phytohormones and their pivotal roles in mediating plant defence responses against biotic stressors, particularly insect pests. Furthermore, we highlight the potential impact of phytohormones on agricultural production while underscoring the existing research gaps and limitations hindering their widespread implementation in agricultural practices. Despite the accumulating body of research in this field, the integration of phytohormones into agriculture remains limited. To address this discrepancy, we propose a comprehensive framework for investigating the intricate interplay between phytohormones and sustainable agriculture. This framework advocates for the adoption of novel technologies and methodologies to facilitate the effective deployment of phytohormones in agricultural settings and also emphasizes the need to address existing research limitations through rigorous field studies. By outlining a roadmap for advancing the utilization of phytohormones in agriculture, this review aims to catalyse transformative changes in agricultural practices, fostering sustainability and resilience in agricultural settings.
Collapse
Affiliation(s)
- Jamin Ali
- College of Plant Protection, Jilin Agricultural University, Changchun, PR China
| | - Mohammad Mukarram
- Food and Plant Biology Group, Department of Plant Biology, Universidad de la República, Montevideo, Uruguay
| | - James Ojo
- Department of Crop Production, Kwara State University, Malete, Nigeria
| | - Nancy Dawam
- Department of Zoology, Faculty of Natural and Applied Sciences, Plateau State University Bokkos, Diram, Nigeria
| | | | - Hamed A Ghramh
- Centre of Bee Research and its Products, Research Centre for Advanced Materials Science, King Khalid University, Abha, Saudi Arabia
- Biology Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | - Khalid Ali Khan
- Centre of Bee Research and its Products, Research Centre for Advanced Materials Science, King Khalid University, Abha, Saudi Arabia
- Applied College, King Khalid University, Abha, Saudi Arabia
| | - Rizhao Chen
- College of Plant Protection, Jilin Agricultural University, Changchun, PR China
| | - Daniel Kurjak
- Institute of Forest Ecology, Slovak Academy of Sciences, Zvolen, Slovakia
- Faculty of Forestry, Technical University in Zvolen, Zvolen, Slovakia
| | - Ahmet Bayram
- Plant Protection, Faculty of Agriculture, Technical University in Zvolen, Zvolen, Slovakia
| |
Collapse
|
21
|
Zhang S, Jacquin-Joly E, Montagné N, Liu F, Liu Y, Wang G. Identification of an odorant receptor responding to sex pheromones in Spodoptera frugiperda extends the novel type-I PR lineage in moths. INSECT SCIENCE 2024; 31:489-502. [PMID: 37573259 DOI: 10.1111/1744-7917.13248] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 05/14/2023] [Accepted: 06/09/2023] [Indexed: 08/14/2023]
Abstract
In moths, pheromone receptors (PRs) are crucial for intraspecific sexual communication between males and females. Moth PRs are considered as an ideal model for studying the evolution of insect PRs, and a large number of PRs have been identified and functionally characterized in different moth species. Moth PRs were initially thought to fall into a single monophyletic clade in the odorant receptor (OR) family, but recent studies have shown that ORs in another lineage also bind type-I sex pheromones, which indicates that type-I PRs have multiple independent origins in the Lepidoptera. In this study, we investigated whether ORs of the pest moth Spodoptera frugiperda belonging to clades closely related to this novel PR lineage may also have the capacity to bind type-I pheromones and serve as male PRs. Among the 7 ORs tested, only 1 (SfruOR23) exhibited a male-biased expression pattern. Importantly, in vitro functional characterization showed that SfruOR23 could bind several type-I sex pheromone compounds with Z-9-tetradecenal (Z9-14:Ald), a minor component found in female sex pheromone glands, as the optimal ligand. In addition, SfruOR23 also showed weak responses to plant volatile organic compounds. Altogether, we characterized an S. frugiperda PR positioned in a lineage closely related to the novel PR clade, indicating that the type-I PR lineage can be extended in moths.
Collapse
Affiliation(s)
- Sai Zhang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Institute of Ecology and Environmental Sciences of Paris, INRAE, Sorbonne University, CNRS, IRD, UPEC, University of Paris, Versailles, France
| | - Emmanuelle Jacquin-Joly
- Institute of Ecology and Environmental Sciences of Paris, INRAE, Sorbonne University, CNRS, IRD, UPEC, University of Paris, Versailles, France
| | - Nicolas Montagné
- Institute of Ecology and Environmental Sciences of Paris, INRAE, Sorbonne University, CNRS, IRD, UPEC, University of Paris, Versailles, France
| | - Fang Liu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Yang Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guirong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| |
Collapse
|
22
|
Schuh E, Cassau S, Ismaieel AR, Stieber R, Krieger J, Hansson BS, Sachse S, Bisch-Knaden S. Females smell differently: characteristics and significance of the most common olfactory sensilla of female silkmoths. Proc Biol Sci 2024; 291:20232578. [PMID: 38228178 DOI: 10.1098/rspb.2023.2578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 12/13/2023] [Indexed: 01/18/2024] Open
Abstract
In the silkmoth Bombyx mori, the role of male sensilla trichodea in pheromone detection is well established. Here we study the corresponding female sensilla, which contain two olfactory sensory neurons (OSNs) and come in two lengths, each representing a single physiological type. Only OSNs in medium trichoids respond to the scent of mulberry, the silkworm's exclusive host plant, and are more sensitive in mated females, suggesting a role in oviposition. In long trichoids, one OSN is tuned to (+)-linalool and the other to benzaldehyde and isovaleric acid, both odours emitted by silkworm faeces. While the significance of (+)-linalool detection remains unclear, isovaleric acid repels mated females and may therefore play a role in avoiding crowded oviposition sites. When we examined the underlying molecular components of neurons in female trichoids, we found non-canonical co-expression of Ir8a, the co-receptor for acid responses, and ORco, the co-receptor of odorant receptors, in long trichoids, and the unexpected expression of a specific odorant receptor in both trichoid sensillum types. In addition to elucidating the function of female trichoids, our results suggest that some accepted organizational principles of the insect olfactory system may not apply to the predominant sensilla on the antenna of female B. mori.
Collapse
Affiliation(s)
- Elisa Schuh
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Straße 8, 07745 Jena, Germany
- Research Group Olfactory Coding, Max Planck Institute for Chemical Ecology, Hans-Knoell-Straße 8, 07745 Jena, Germany
| | - Sina Cassau
- Institute of Biology/Zoology, Department of Animal Physiology, Martin Luther University Halle-Wittenberg, Hoher Weg 8, 06120 Halle (Saale), Germany
| | - Ahmed R Ismaieel
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Straße 8, 07745 Jena, Germany
- Entomology Department, Faculty of Science, Ain Shams University, Abbassia, Cairo 11566, Egypt
| | - Regina Stieber
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Straße 8, 07745 Jena, Germany
| | - Jürgen Krieger
- Institute of Biology/Zoology, Department of Animal Physiology, Martin Luther University Halle-Wittenberg, Hoher Weg 8, 06120 Halle (Saale), Germany
| | - Bill S Hansson
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Straße 8, 07745 Jena, Germany
| | - Silke Sachse
- Research Group Olfactory Coding, Max Planck Institute for Chemical Ecology, Hans-Knoell-Straße 8, 07745 Jena, Germany
| | - Sonja Bisch-Knaden
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Straße 8, 07745 Jena, Germany
| |
Collapse
|
23
|
Li H, Hong X, Zeng F, Bai C. Identification and expression profiles of olfactory-related genes based on transcriptome analysis in Plodia interpunctella (Lepidoptera: Pyralidae). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2023; 114:e22061. [PMID: 37905450 DOI: 10.1002/arch.22061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/09/2023] [Accepted: 10/15/2023] [Indexed: 11/02/2023]
Abstract
The sophisticated olfactory system of insects is plays a critical role in detecting chemical signals and guiding insect behaviors, such as selecting mates, finding hosts, evading predators, and discovering oviposition sites. Therefore, exploring and clarifying the molecular processes of this system is crucial for developing new insecticides or efficient pest control methods. Plodia interpunctella (Hübner) is a disruptive insect pest damaging the stored grains over the world. However, the olfactory processes of P. interpunctella remain unclear. Herein, we employed a transcriptome analysis to identify olfactory and differentially expressed genes to characterize their expression patterns in different developmental stages and antennal tissue. Subsequently, a total of 172 potential olfactory-related genes included 42 odorant-binding proteins, 12 chemosensory proteins, 51 odorant receptors, 13 gustatory receptors, three sensory neuron membrane proteins, and 51 ionotropic receptors. Furthermore, phylogenetic analysis and BLASTx best-hit analyses showed that these olfactory genes were closely linked with those identified in other lepidopterans. Transcriptome analysis revealed 49 differentially expressed olfactory-related genes, and a semiquantitative reverse transcription polymerase chain reaction showed that 11 olfactory genes were particularly expressed in the legs and wings of female P. interpunctella. Meanwhile, PintOBP29 was notably expressed in female antennae and legs. Genes with high expression levels in the abdomen showed high expression in the legs, but low expression in the antennae. Our findings provide the candidate genetic factors for analysis of the olfactory processes in P. interpunctella.
Collapse
Affiliation(s)
- Hui Li
- School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou, Henan, China
- Henan Collaborative Innovation Center of Grain Storage and Security, Henan University of Technology, Zhengzhou, Henan, China
- Collaborative Innovation Center of Henan Grain Crops, Henan University of Technology, Zhengzhou, Henan, China
| | - Xiwen Hong
- School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou, Henan, China
| | - Fangfang Zeng
- School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou, Henan, China
- Henan Collaborative Innovation Center of Grain Storage and Security, Henan University of Technology, Zhengzhou, Henan, China
| | - Chunqi Bai
- School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou, Henan, China
- Henan Collaborative Innovation Center of Grain Storage and Security, Henan University of Technology, Zhengzhou, Henan, China
- Collaborative Innovation Center of Henan Grain Crops, Henan University of Technology, Zhengzhou, Henan, China
| |
Collapse
|
24
|
Du HT, Lu JQ, Ji K, Wang CC, Yao ZC, Liu F, Li Y. Comparative Transcriptomic Assessment of Chemosensory Genes in Adult and Larval Olfactory Organs of Cnaphalocrocis medinalis. Genes (Basel) 2023; 14:2165. [PMID: 38136987 PMCID: PMC10742765 DOI: 10.3390/genes14122165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
The rice leaf folder, Cnaphalocrocis medinalis (Lepidoptera: Pyralidae), is a notorious pest of rice in Asia. The larvae and adults of C. medinalis utilize specialized chemosensory systems to adapt to different environmental odors and physiological behaviors. However, the differences in chemosensory genes between the olfactory organs of these two different developmental stages remain unclear. Here, we conducted a transcriptome analysis of larvae heads, male antennae, and female antennae in C. medinalis and identified 131 putative chemosensory genes, including 32 OBPs (8 novel OBPs), 23 CSPs (2 novel CSPs), 55 ORs (17 novel ORs), 19 IRs (5 novel IRs) and 2 SNMPs. Comparisons between larvae and adults of C. medinalis by transcriptome and RT-qPCR analysis revealed that the number and expression of chemosensory genes in larval heads were less than that of adult antennae. Only 17 chemosensory genes (7 OBPs and 10 CSPs) were specifically or preferentially expressed in the larval heads, while a total of 101 chemosensory genes (21 OBPs, 9 CSPs, 51 ORs, 18 IRs, and 2 SNMPs) were specifically or preferentially expressed in adult antennae. Our study found differences in chemosensory gene expression between larvae and adults, suggesting their specialized functions at different developmental stages of C. medinalis. These results provide a theoretical basis for screening chemosensory genes as potential molecular targets and developing novel management strategies to control C. medinalis.
Collapse
Affiliation(s)
- Hai-Tao Du
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China; (H.-T.D.); (J.-Q.L.); (K.J.); (C.-C.W.); (Z.-C.Y.)
| | - Jia-Qi Lu
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China; (H.-T.D.); (J.-Q.L.); (K.J.); (C.-C.W.); (Z.-C.Y.)
| | - Kun Ji
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China; (H.-T.D.); (J.-Q.L.); (K.J.); (C.-C.W.); (Z.-C.Y.)
| | - Chu-Chu Wang
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China; (H.-T.D.); (J.-Q.L.); (K.J.); (C.-C.W.); (Z.-C.Y.)
| | - Zhi-Chao Yao
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China; (H.-T.D.); (J.-Q.L.); (K.J.); (C.-C.W.); (Z.-C.Y.)
| | - Fang Liu
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China; (H.-T.D.); (J.-Q.L.); (K.J.); (C.-C.W.); (Z.-C.Y.)
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
| | - Yao Li
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China; (H.-T.D.); (J.-Q.L.); (K.J.); (C.-C.W.); (Z.-C.Y.)
| |
Collapse
|
25
|
Wei ZQ, Wang JX, Guo JM, Liu XL, Yan Q, Zhang J, Dong SL. An odorant receptor tuned to an attractive plant volatile vanillin in Spodoptera litura. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 196:105619. [PMID: 37945255 DOI: 10.1016/j.pestbp.2023.105619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/02/2023] [Accepted: 09/11/2023] [Indexed: 11/12/2023]
Abstract
The insect olfaction plays crucial roles in many important behaviors, in which ORs are key determinants for signal transduction and the olfactory specificity. Spodoptera litura is a typical polyphagous pest, possessing a large repertoire of ORs tuning to broad range of plant odorants. However, the specific functions of those ORs remain mostly unknown. In this study, we functionally characterized one S. litura OR (OR51) that was highly expressed in the adult antennae. First, by using Xenopus oocyte expression and two-electrode voltage clamp recording system (XOE-TEVC), OR51 was found to be strongly and specifically responsive to vanillin (a volatile of S. litura host plants) among 77 tested odorants. Second, electroantennogram (EAG) and Y-tube behavioral experiment showed that vanillin elicited significant EAG response and attraction behavior especially of female adults. This female attraction was further confirmed by the oviposition experiment, in which the soybean plants treated with vanillin were significantly preferred by females for egg-laying. Third, 3D structural modelling and molecular docking were conducted to explore the interaction between OR51 and vanillin, which showed a high affinity (-4.46 kcal/mol) and three residues (Gln163, Phe164 and Ala305) forming hydrogen bonds with vanillin, supporting the specific binding of OR51 to vanillin. In addition, OR51 and its homologs from other seven noctuid species shared high amino acid identities (78-97%) and the same three hydrogen bond forming residues, suggesting a conserved function of the OR in these insects. Taken together, our study provides some new insights into the olfactory mechanisms of host plant finding and suggests potential applications of vanillin in S. litura control.
Collapse
Affiliation(s)
- Zhi-Qiang Wei
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education / College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Ji-Xiang Wang
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education / College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Jin-Meng Guo
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education / College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiao-Long Liu
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education / College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Qi Yan
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education / College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Jin Zhang
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education / College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Shuang-Lin Dong
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education / College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
26
|
Liu X, Shi L, Khashaveh A, Shan S, Lv B, Gu S, Zhang Y. Loss of Binding Capabilities in an Ecologically Important Odorant Receptor of the Fall Armyworm, Spodoptera frugiperda, by a Single Point Mutation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:13003-13013. [PMID: 37625381 DOI: 10.1021/acs.jafc.3c04247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2023]
Abstract
Olfaction plays a crucial role in locating food sources, mates, and spawning sites in the fall armyworm (FAW), Spodoptera frugiperda (Lepidoptera: Noctuidae). In the current study, SfruOR14, a highly conserved odorant receptor (OR) in lepidopteran species, was newly uncovered in S. frugiperda. In two-electrode voltage clamp recordings, the SfruOR14/Orco complex was narrowly tuned to six volatile compounds including phenylacetaldehyde (PAA), benzaldehyde, heptaldehyde, (E)-2-hexen-1-al, cinnamaldehyde, and 2-phenylethanol, among which PAA showed the strongest binding affinity. Subsequent homology modeling and molecular docking revealed that Phe79, His83, Tyr149, Pro176, Gln177, Leu202, and Thr348 in SfruOR14 were the key binding residues against the six ligands. Finally, as a result of site-directed mutagenesis, the SfruOR14His83Ala mutant completely lost its binding capabilities toward all ligands. Taken together, our findings provide valuable insights into understanding the interaction between SfruOR14 and the chemical ligands including PAA, which can help to design novel olfactory modulators for pest control.
Collapse
Affiliation(s)
- Xiaohe Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Longfei Shi
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Adel Khashaveh
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shuang Shan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Beibei Lv
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Institute of Cotton Research, Shanxi Agricultural University, YunCheng 044000, China
| | - Shaohua Gu
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Yongjun Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
27
|
Toyam T, Yamagishi T, Sato R. The roles of enteroendocrine cell distribution and gustatory receptor expression in regulating peptide hormone secretion in the midgut of Bombyx mori larvae. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2023; 114:e22032. [PMID: 37424326 DOI: 10.1002/arch.22032] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/08/2023] [Accepted: 06/15/2023] [Indexed: 07/11/2023]
Abstract
To regulate physiological homeostasis and behavior in Bombyx mori, more than 20 peptide hormones in the midgut of larvae are secreted upon detection of food substances at the lumen. Although it is logical to assume that the timings of peptide hormone secretions are regulated, little is known about the mechanisms. In this study, the distributions of enteroendocrine cells (EECs) producing five peptide hormones and EECs expressing gustatory receptors (Grs), as candidate receptors for luminal food substances and nutrients, were examined via immunostaining in B. mori larvae. Three patterns of peptide hormone distribution were observed. Tachykinin (Tk)- and K5-producing EECs were located throughout the midgut; myosuppressin-producing EECs were located in the middle-to-posterior midgut; and allatostatin C- and CCHamide-2-producing EECs were located in the anterior-to-middle midgut. BmGr4 was expressed in some Tk-producing EECs in the anterior midgut, where food and its digestive products arrived 5 min after feeding began. Enzyme-linked immunosorbent assay (ELISA) revealed secretion of Tk starting approximately 5 min after feeding began, suggesting that food sensing by BmGr4 may regulate Tk secretion. BmGr6 was expressed in a few Tk-producing EECs in the middle-to-posterior midgut, although its significance was unclear. BmGr6 was also expressed in many myosuppressin-producing EECs in the middle midgut, where food and its digestive products arrived 60 min after feeding began. ELISA revealed secretion of myosuppressin starting approximately 60 min after feeding began, suggesting that food sensing by BmGr6 may regulate myosuppressin secretion. Finally, BmGr9 was expressed in many BmK5-producing EECs throughout the midgut, suggesting that BmGr9 may function as a sensor for the secretion of BmK5.
Collapse
Affiliation(s)
- Tomoko Toyam
- Graduate School of Bio-Application and Systems Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Takayuki Yamagishi
- Graduate School of Bio-Application and Systems Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Ryoichi Sato
- Graduate School of Bio-Application and Systems Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| |
Collapse
|
28
|
Wang J, Wei J, Yi T, Li YY, Xu T, Chen L, Xu H. A green leaf volatile, (Z)-3-hexenyl-acetate, mediates differential oviposition by Spodoptera frugiperda on maize and rice. BMC Biol 2023; 21:140. [PMID: 37337192 DOI: 10.1186/s12915-023-01642-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 06/05/2023] [Indexed: 06/21/2023] Open
Abstract
BACKGROUND Insects rely on chemosensory perception, mainly olfaction, for the location of mates, food sources, and oviposition sites. Plant-released volatile compounds guide herbivorous insects to search for and locate their host plants, further helping them to identify suitable positions for oviposition. The fall armyworm Spodoptera frugiperda (S. frugiperda) was found to invade China in 2019 and has since seriously threatened multiple crops, particularly maize and rice. However, the chemical and molecular mechanisms underlying oviposition preference in this pest are not fully understood. Here, the oviposition preference of S. frugiperda on maize and rice plants was investigated. RESULTS GC-EAD and GC-MS/MS techniques were used to identify the antennally active volatiles from maize and rice plants. The attraction and oviposition stimulation of identified components to female adults were tested in both laboratory and field settings. The odorant receptors (ORs) on female antennae were expressed in Xenopus oocytes, and their functions evaluated by RNAi. Ten and eleven compounds of maize and rice plants, respectively, were identified to possess electrophysiological activity from headspace volatiles. Among these compounds, (Z)-3-hexenyl-acetate specifically presented in maize volatiles was found to play a critical role in attracting females and stimulating oviposition compared to rice volatiles. Among the cloned ORs on the antennae of both sexes, SfruOR23 with highly female-biased expression mediated the responses of females to (Z)-3-hexenyl-acetate. Knockdown of SfruOR23 using RNAi markedly reduced the electrophysiological response of female antennae and oviposition preference to the compound. CONCLUSIONS (Z)-3-Hexenyl-acetate is a key volatile mediating the host and oviposition preference of S. frugiperda on maize. The olfactory receptor of (Z)-3-hexenyl-acetate was identified to be SfruOR23, which is mainly expressed in the antennae of S. frugiperda.
Collapse
Affiliation(s)
- Jiali Wang
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, Guangdong, China
| | - Jiaqi Wei
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, Guangdong, China
| | - Ting Yi
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, Guangdong, China
| | - Ya-Ya Li
- School of Life Sciences/Hebei Basic Science Center for Biotic Interaction, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
| | - Tian Xu
- College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Li Chen
- School of Life Sciences/Hebei Basic Science Center for Biotic Interaction, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China.
| | - Hanhong Xu
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, Guangdong, China.
| |
Collapse
|
29
|
Jin S, Qian K, He L, Zhang Z. iORandLigandDB: A Website for Three-Dimensional Structure Prediction of Insect Odorant Receptors and Docking with Odorants. INSECTS 2023; 14:560. [PMID: 37367376 DOI: 10.3390/insects14060560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/28/2023] [Accepted: 06/09/2023] [Indexed: 06/28/2023]
Abstract
The use of insect-specific odorants to control the behavior of insects has always been a hot spot in research on "green" control strategies of insects. However, it is generally time-consuming and laborious to explore insect-specific odorants with traditional reverse chemical ecology methods. Here, an insect odorant receptor (OR) and ligand database website (iORandLigandDB) was developed for the specific exploration of insect-specific odorants by using deep learning algorithms. The website provides a range of specific odorants before molecular biology experiments as well as the properties of ORs in closely related insects. At present, the existing three-dimensional structures of ORs in insects and the docking data with related odorants can be retrieved from the database and further analyzed.
Collapse
Affiliation(s)
- Shuo Jin
- College of Plant Protection, Southwest University, Chongqing 400716, China
| | - Kun Qian
- College of Plant Protection, Southwest University, Chongqing 400716, China
| | - Lin He
- College of Plant Protection, Southwest University, Chongqing 400716, China
| | - Zan Zhang
- College of Plant Protection, Southwest University, Chongqing 400716, China
| |
Collapse
|
30
|
Wang Q, Dicke M, Haverkamp A. Sympatric Pieris butterfly species exhibit a high conservation of chemoreceptors. Front Cell Neurosci 2023; 17:1155405. [PMID: 37252192 PMCID: PMC10210156 DOI: 10.3389/fncel.2023.1155405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/17/2023] [Indexed: 05/31/2023] Open
Abstract
Sensory processes have often been argued to play a central role in the selection of ecological niches and in the formation of new species. Butterflies are among the best studied animal groups with regards to their evolutionary and behavioral ecology and thereby offer an attractive system to investigate the role of chemosensory genes in sympatric speciation. We focus on two Pieris butterflies with overlapping host-plant ranges: P. brassicae and P. rapae. Host-plant choice in lepidopterans is largely based on their olfactory and gustatory senses. Although the chemosensory responses of the two species have been well characterized at the behavioral and physiological levels, little is known about their chemoreceptor genes. Here, we compared the chemosensory genes of P. brassicae and P. rapae to investigate whether differences in these genes might have contributed to their evolutionary separation. We identified a total of 130 and 122 chemoreceptor genes in the P. brassicae genome and antennal transcriptome, respectively. Similarly, 133 and 124 chemoreceptors were identified in the P. rapae genome and antennal transcriptome. We found some chemoreceptors being differentially expressed in the antennal transcriptomes of the two species. The motifs and gene structures of chemoreceptors were compared between the two species. We show that paralogs share conserved motifs and orthologs have similar gene structures. Our study therefore found surprisingly few differences in the numbers, sequence identities and gene structures between the two species, indicating that the ecological differences between these two butterflies might be more related to a quantitative shift in the expression of orthologous genes than to the evolution of novel receptors as has been found in other insects. Our molecular data supplement the wealth of behavioral and ecological studies on these two species and will thereby help to better understand the role of chemoreceptor genes in the evolution of lepidopterans.
Collapse
|
31
|
Jiang L, Huang T, Liu Q, Zhong S, Shen D, Chen A, Zhao Q. Transcriptome analysis of anorexic and preferred silkworms (Bombyx mori) on artificial diet. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2023; 46:101086. [PMID: 37163839 DOI: 10.1016/j.cbd.2023.101086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/28/2023] [Accepted: 04/29/2023] [Indexed: 05/12/2023]
Abstract
The silkworm, Bombyx mori, is an important oligophagous economic insect and feeding habits of different silkworm varieties to artificial diet are different. Research on the mechanisms of feeding habits on artificial diet, and breeding of silkworm varieties adapted on artificial diet, which is a necessary condition for industrial silkworm rearing, is currently lacking. For an artificial diet, Xin was anorexic, whereas Haoyue A showed a strong appetite. When the two varieties were crossed, the F1 generation showed a poor appetite for the artificial diet and had a setae dispersion rate of <50 %. However, the F2 generation, self-bred progeny of F1, had a good appetite for the artificial diet, with a setae dispersion rate of 70 %. Herein, transcriptome analysis was conducted on the F2 generation, comparing individuals with anorexic and preferred feeding habits, and 2188 differential genes were identified, with 1524 genes up-regulated and 934 genes down-regulated. Several genes were identified to contribute to feeding habits, such as genes involved olfactory system, energy supply, and cell proliferation and differentiation. GO enrichment revealed a large number of DEGs related to behavior, growth, signaling, developmental process, response to stimulation, and other pathways. Furthermore, proteins closely related to feeding were expressed differently. Some DEGs were selected for qRT-PCR, and results indicated the reliability of the DEG results. The DEGs between individuals with anorexic and preferred feeding habits were screened by RNA-Seq technology, which provides a reliable reference to study molecule mechanisms of feeding habits on artificial diet.
Collapse
Affiliation(s)
- Li Jiang
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China; Key Sericultural Laboratory of Shaanxi, Ankang University, Ankang, Shaanxi 725000, China.
| | - Tianchen Huang
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China.
| | - Qiang Liu
- Key Sericultural Laboratory of Shaanxi, Ankang University, Ankang, Shaanxi 725000, China.
| | - Shanshan Zhong
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China.
| | - Dongxu Shen
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China.
| | - Anli Chen
- Key Sericultural Laboratory of Shaanxi, Ankang University, Ankang, Shaanxi 725000, China.
| | - Qiaoling Zhao
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China.
| |
Collapse
|
32
|
Zhang X, Wang X, Zhao S, Fang K, Wang Z, Liu J, Xi J, Wang S, Zhang J. Response of Odorant Receptors with Phenylacetaldehyde and the Effects on the Behavior of the Rice Water Weevil ( Lissorhoptrus oryzophilus). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:6541-6551. [PMID: 37058441 DOI: 10.1021/acs.jafc.2c07963] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The rice water weevil (RWW), Lissorhoptrus oryzophilus Kuschel (Coleoptera: Curculionidae), is a destructive rice pest that threatens the rice industry worldwide. Odorant receptors (ORs) and odorant receptor coreceptors (Orcos) play an important role in the process of insects' whole life activities; however, there are no related functional studies on RWW. On this basis, a heterologous study of LoryOR20/LoryOrco in Xenopus laevis oocytes was performed to detect the effects of certain natural compounds on RWWs and four active compounds were found. Electroantennogram (EAG) recordings and a behavior test showed that RWWs exhibited a significant response to phenylacetaldehyde (PAA) and an EAG measurement of dsRNA-LoryOR20-treated RWWs revealed a significant decrease in response to PAA. Our results revealed an olfactory molecular mechanism for the recognition of PAA by RWWs, thus providing a potential genetic target at the peripheral olfactory sensing level, contributing to the development of novel control strategies for pest management.
Collapse
Affiliation(s)
- Xinxin Zhang
- College of Plant Science, Jilin University, Changchun 130062, PR China
- College of Plant Protection, Northeast Agricultural University, Harbin 150030, PR China
| | - Xiao Wang
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Shiwen Zhao
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Kui Fang
- College of Plant Science, Jilin University, Changchun 130062, PR China
- Technical Center of Kunming Customs, Kunming 650228, PR China
| | - Zhun Wang
- Changchun Customs Technology Center, Changchun 130062, PR China
| | - Jianan Liu
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Jinghui Xi
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Shang Wang
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Juhong Zhang
- College of Plant Science, Jilin University, Changchun 130062, PR China
| |
Collapse
|
33
|
Zhang S, Tang J, Li Y, Li D, Chen G, Chen L, Yang Z, He N. The silkworm gustatory receptor BmGr63 is dedicated to the detection of isoquercetin in mulberry. Proc Biol Sci 2022; 289:20221427. [DOI: 10.1098/rspb.2022.1427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Gustatory systems in phytophagous insects are used to perceive feeding stimulants and deterrents, and are involved in insect decisions to feed on particular plants. During the process, gustatory receptors (Grs) can recognize diverse phytochemicals and provide a molecular basis for taste perception. The silkworm, as a representative Lepidoptera species, has developed a strong feeding preference for mulberry leaves. The mulberry-derived flavonoid glycoside, isoquercetin, is required to induce feeding behaviours. However, the corresponding Grs for isoquercetin and underlying molecular mechanisms remain unclear. In this study, we used molecular methods, voltage clamp recordings and feeding assays to identify silkworm BmGr63, which was tuned to isoquercetin. The use of qRT-PCR confirmed that
BmGr63
was highly expressed in the mouthpart of fourth and fifth instar larvae. Functional analysis showed that oocytes expressing
BmGr63
from the ‘bitter’ clade responded to mulberry extracts. Among 20 test chemicals, BmGr63 specifically recognized isoquercetin. The preference for isoquercetin was not observed in
BmGr63
knock-down groups. The tuning between BmGr63 and isoquercetin has been demonstrated, which is meaningful to explain the silkworm-mulberry feeding mechanism from molecular levels and thus provides evidence for further feeding relationship studies between phytophagous insects and host plants.
Collapse
Affiliation(s)
- Shaoyu Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, People's Republic of China
| | - Jiaqi Tang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, People's Republic of China
| | - Yunfeng Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, People's Republic of China
| | - Dong Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, People's Republic of China
| | - Guo Chen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, People's Republic of China
| | - Lin Chen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, People's Republic of China
| | - Zhen Yang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, People's Republic of China
| | - Ningjia He
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, People's Republic of China
| |
Collapse
|
34
|
Fan XB, Mo BT, Li GC, Huang LQ, Guo H, Gong XL, Wang CZ. Mutagenesis of the odorant receptor co-receptor (Orco) reveals severe olfactory defects in the crop pest moth Helicoverpa armigera. BMC Biol 2022; 20:214. [PMID: 36175945 PMCID: PMC9524114 DOI: 10.1186/s12915-022-01411-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 09/16/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Odorant receptors (ORs) as odorant-gated ion channels play a crucial role in insect olfaction. They are formed by a heteromultimeric complex of the odorant receptor co-receptor (Orco) and a ligand-selective Or. Other types of olfactory receptor proteins, such as ionotropic receptors (IRs) and some gustatory receptors (GRs), are also involved in the olfactory system of insects. Orco as an obligatory subunit of ORs is highly conserved, providing an opportunity to systematically evaluate OR-dependent olfactory responses. RESULTS Herein, we successfully established a homozygous mutant (Orco-/-) of Helicoverpa armigera, a notorious crop pest, using the CRISPR/Cas9 gene editing technique. We then compared the olfactory response characteristics of wild type (WT) and Orco-/- adults and larvae. Orco-/- males were infertile, while Orco-/- females were fertile. The lifespan of Orco-/- females was longer than that of WT females. The expressions of most Ors, Irs, and other olfaction-related genes in adult antennae of Orco-/- moths were not obviously affected, but some of them were up- or down-regulated. In addition, there was no change in the neuroanatomical phenotype of Orco-/- moths at the level of the antennal lobe (including the macroglomerular complex region of the male). Using EAG and SSR techniques, we discovered that electrophysiological responses of Orco-/- moths to sex pheromone components and many host plant odorants were absent. The upwind flight behaviors toward sex pheromones of Orco-/- males were severely reduced in a wind tunnel experiment. The oviposition selectivity of Orco-/- females to the host plant (green pepper) has completely disappeared, and the chemotaxis toward green pepper was also lost in Orco-/- larvae. CONCLUSIONS Our study indicates that OR-mediated olfaction is essential for pheromone communication, oviposition selection, and larval chemotaxis of H. armigera, suggesting a strategy in which mate searching and host-seeking behaviors of moth pests could be disrupted by inhibiting or silencing Orco expression.
Collapse
Affiliation(s)
- Xiao-Bin Fan
- grid.9227.e0000000119573309State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101 People’s Republic of China ,grid.410726.60000 0004 1797 8419CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Bao-Tong Mo
- grid.9227.e0000000119573309State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101 People’s Republic of China ,grid.410726.60000 0004 1797 8419CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Guo-Cheng Li
- grid.9227.e0000000119573309State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101 People’s Republic of China ,grid.410726.60000 0004 1797 8419CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Ling-Qiao Huang
- grid.9227.e0000000119573309State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101 People’s Republic of China
| | - Hao Guo
- grid.9227.e0000000119573309State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101 People’s Republic of China ,grid.410726.60000 0004 1797 8419CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Xin-Lin Gong
- grid.9227.e0000000119573309State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101 People’s Republic of China ,grid.410726.60000 0004 1797 8419CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Chen-Zhu Wang
- grid.9227.e0000000119573309State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101 People’s Republic of China ,grid.410726.60000 0004 1797 8419CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| |
Collapse
|
35
|
Sun YL, Jiang PS, Dong BX, Tian CH, Dong JF. Candidate chemosensory receptors in the antennae and maxillae of Spodoptera frugiperda (J. E. Smith) larvae. Front Physiol 2022; 13:970915. [PMID: 36187799 PMCID: PMC9520170 DOI: 10.3389/fphys.2022.970915] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
Although most of the damage caused by lepidopteran insects to plants is caused by the larval stage, chemosensory systems have been investigated much more frequently for lepidopteran adults than for larvae. The fall armyworm Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae) is a polyphagous and worldwide pest. To understand the larval chemosensory system in S. frugiperda, we sequenced and assembled the antennae and maxillae transcriptome of larvae in the sixth instar (larval a-m) using the Illumina platform. A total of 30 putative chemosensory receptor genes were identified, and these receptors included 11 odorant receptors (ORs), 4 gustatory receptors (GRs), and 15 ionotropic receptors/ionotropic glutamate receptors (IRs/iGluRs). Phylogeny tests with the candidate receptors and homologs from other insect species revealed some specific genes, including a fructose receptor, a pheromone receptor, IR co-receptors, CO2 receptors, and the OR co-receptor. Comparison of the expression of annotated genes between S. frugiperda adults and larvae (larval a-m) using RT-qPCR showed that most of the annotated OR and GR genes were predominantly expressed in the adult stage, but that 2 ORs and 1 GR were highly expressed in both the adult antennae and the larval a-m. Although most of the tested IR/iGluR genes were mainly expressed in adult antennae, transcripts of 3 iGluRs were significantly more abundant in the larval a-m than in the adult antennae of both sexes. Comparison of the expression levels of larval a-m expressed chemosensory receptors among the first, fourth, and sixth instars revealed that the expression of some of the genes varied significantly among different larval stages. These results increase our understanding of the chemosensory systems of S. frugiperda larvae and provide a basis for future functional studies aimed at the development of novel strategies to manage this pest.
Collapse
Affiliation(s)
- Ya-Lan Sun
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, China
| | - Peng-Shuo Jiang
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, China
| | - Bing-Xin Dong
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, China
| | - Cai-Hong Tian
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Jun-Feng Dong
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
36
|
Yin N, Xiao H, Yang A, Wu C, Liu N. Genome-Wide Analysis of Odorant and Gustatory Receptors in Six Papilio Butterflies (Lepidoptera: Papilionidae). INSECTS 2022; 13:779. [PMID: 36135480 PMCID: PMC9500883 DOI: 10.3390/insects13090779] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/20/2022] [Accepted: 08/26/2022] [Indexed: 06/16/2023]
Abstract
The chemical interactions of insects and host plants are shaping the evolution of chemosensory receptor gene families. However, the correlation between host range and chemoreceptor gene repertoire sizes is still elusive in Papilionidae. Here, we addressed the issue of whether host plant diversities are correlated with the expansions of odorant (ORs) or gustatory (GRs) receptors in six Papilio butterflies. By combining genomics, transcriptomics and bioinformatics approaches, 381 ORs and 328 GRs were annotated in the genomes of a generalist P. glaucus and five specialists, P. xuthus, P. polytes, P. memnon, P. machaon and P. dardanus. Orthologous ORs or GRs in Papilio had highly conserved gene structure. Five Papilio specialists exhibited a similar frequency of intron lengths for ORs or GRs, but which was different from those in the generalist. Phylogenetic analysis revealed 60 orthologous OR groups, 45 of which shared one-to-one relationships. Such a single gene in each butterfly also occurred in 26 GR groups. Intriguingly, bitter GRs had fewer introns than other GRs and clustered into a large clade. Focusing on the two chemoreceptor gene families in P. xuthus, most PxutORs (52/58) were expressed in antennae and 31 genes in reproductive tissues. Eleven out of 28 foretarsus-expressed PxutGRs were female-biased genes, as strong candidates for sensing oviposition stimulants. These results indicate that the host range may not shape the large-scale expansions of ORs and GRs in Papilio butterflies and identify important molecular targets involved in olfaction, oviposition or reproduction in P. xuthus.
Collapse
Affiliation(s)
| | | | | | | | - Naiyong Liu
- Correspondence: ; Tel./Fax: +86-871-63862665
| |
Collapse
|
37
|
Tom MT, Cortés Llorca L, Bucks S, Bisch-Knaden S, Hansson BS. Sex- and tissue-specific expression of chemosensory receptor genes in a hawkmoth. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.976521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
For the nocturnal hawkmoth Manduca sexta, olfactory and gustatory cues are essential for finding partners, food, and oviposition sites. Three chemosensory receptor families, odorant receptors (ORs), ionotropic receptors (IRs), and gustatory receptors (GRs) are involved in the detection of these stimuli. While many chemosensory receptor genes have been identified, knowledge of their expression profile in potentially chemoreceptive organs is incomplete. Here, we studied the expression patterns of chemosensory receptors in different tissues including the antennae, labial palps, proboscis, legs, wings and ovipositor. We compared the receptors’ expression in female and male moths both before and after mating by using the NanoString platform. This tool allowed us to measure expression levels of chemosensory receptor genes in a single reaction using probes designed against 71 OR, 29 IR and 49 GR transcripts. In all tissues investigated, we detected expression of genes from all three receptor families. The highest number of receptors was detected in the antennae (92), followed by the ovipositor (59), while the least number was detected in the hindlegs (21). The highest number of OR genes were expressed in the antennae (63), of which 24 were specific to this main olfactory organ. The highest number of IRs were also expressed in the antennae (16), followed by the ovipositor (15). Likewise, antennae and ovipositor expressed the highest number of GRs (13 and 14). Expression of the OR co-receptor MsexORCo, presumably a prerequisite for OR function, was found in the antennae, labial palps, forelegs and ovipositor. IR co-receptors MsexIR25a and MsexIR76b were expressed across all tested tissues, while expression of the IR co-receptor MsexIR8a was restricted to antennae and ovipositor. Comparing the levels of all 149 transcripts across the nine tested tissues allowed us to identify sex-biased gene expression in the antennae and the legs, two appendages that are also morphologically different between the sexes. However, none of the chemosensory receptors was differentially expressed based on the moths’ mating state. The observed gene expression patterns form a strong base for the functional characterization of chemosensory receptors and the understanding of olfaction and gustation at the molecular level in M. sexta.
Collapse
|
38
|
Shang L, Li ZC, Tian K, Yang B, Wang GR, Lin KJ. Identification and Functional Characterization of Sex Pheromone Receptors in the Oriental Fruit Moth, Grapholita molesta (Lepidoptera: Tortricidae). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:9845-9855. [PMID: 35917146 DOI: 10.1021/acs.jafc.2c02784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The oriental fruit moth, Grapholita molesta, is a worldwide pest that damages Rosaceae fruit trees. Sex pheromones play an important role in controlling this pest; however, the corresponding chemosensation mechanism is currently unknown. In this study, 60 candidate odorant receptors, including eight pheromone receptors (PRs), were identified by antennal transcriptome analysis. Expression profiles indicated that most PRs were highly expressed in the males, except GmolOR21 and GmolOR22, which were specifically expressed in the females. Among them, GmolOR2 was identified in response to the main sex pheromone Z8-12:OAc and E8-12:OAc, and its in vivo function was confirmed by RNA interference analysis. Electrophysiological analysis showed that the males had a significantly reduced sensitivity to the main pheromones after the knockdown of GmolOR2. Our research makes a better understanding of pheromone chemoreception and provides a theoretical basis to developing novel, efficient, and environmentally friendly insect attractants.
Collapse
Affiliation(s)
- Lei Shang
- Key Laboratory of Biohazard Monitoring, Green Prevention and Control for Artificial Grassland, Ministry of Agriculture and Rural Affairs, Institute of Grassland Research of Chinese Academy of Agricultural Sciences, Inner Mongolia, Hohhot 010010, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zi-Cong Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Ke Tian
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Bin Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Gui-Rong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ke-Jian Lin
- Key Laboratory of Biohazard Monitoring, Green Prevention and Control for Artificial Grassland, Ministry of Agriculture and Rural Affairs, Institute of Grassland Research of Chinese Academy of Agricultural Sciences, Inner Mongolia, Hohhot 010010, China
| |
Collapse
|
39
|
Identification and Tissue Expression Profiles of Odorant Receptor Genes in the Green Peach Aphid Myzus persicae. INSECTS 2022; 13:insects13050398. [PMID: 35621734 PMCID: PMC9147661 DOI: 10.3390/insects13050398] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/15/2022] [Accepted: 04/19/2022] [Indexed: 12/04/2022]
Abstract
The green peach aphid Myzus persicae (Hemiptera: Aphididae) relies heavily on its olfactory system to locate plant hosts, find mates, and avoid parasitoids or predators. The insect odorant receptors (ORs) have been proven to play a critical role in the perception of odorants from the environment. In the present study, 33 odorant receptor candidate genes including the Orco gene were identified from the antennal, head, legs and body transcriptomes of M. persicae. Phylogenetic analysis of ORs from seven different orders of insect species suggests that ORs from different insect species are highly divergent and most ORs from the same species formed monophyletic groups. In addition, the aphid ORs were clustered into six different sub-clades in the same clade. Furthermore, the genomic structure of the OR genes also tends to be consistent, suggesting that ORs from the family Aphididae have a relatively close evolutionary relationship. Reads per kilobase per million (RPKM) and tissue expression profiles analyses revealed that 27 out of the 33 MperORs were uniquely or primarily expressed in the antennae, indicating their putative roles in chemoreception. This work provides a foundation to further investigate the molecular and ecological functions of MperORs in the aphid–aphid, aphid–plant and aphid–natural enemy interactions.
Collapse
|
40
|
Li J, Yang YM, Wang Y, Yang CQ, Wang GF, Wu CS, Zhang AB. Find My Way to You: A Comparative Study of Antennal Sensilla and Olfactory Genes in Slug Moth With Different Diet Ranges (Lepidoptera: Limacodidae). Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.845922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Insects and plants that provide them with foods have coexisted for several hundred million years, which leads to various defense approaches and insect-feeding strategies. The host plant provides insects with food sources, shelter materials, and oviposition sites for phytophagous insects. However, they need to find the most suitable host plants in complicated plant communities. The antenna is the main sensory organ of insects, housing different types of sensilla dedicated to detecting chemical cues, motion, humidity, and temperature. Phytophagous insects with different diets may possess various adaptations in their olfactory system. We selected three species of slug moth (Narosoideus flavidorsalis, Chalcoscelides castaneipars, and Setora postornata) with different diet breadths to detect the structural diversity of antennal sensilla using the scanning electron microscope. A total of nine types of sensilla were identified in these three species, in which two types of sensilla (sensilla uniporous peg and sensilla furcatea) were the first found and reported in Limacodidae. By comparing the number of sensilla types, there was a trend of gradually decreasing the number of sensory types with the gradual expansion of feeding habitats. To better understand the vital roles of olfactory proteins in localizing host plants, we investigated the chemosensory proteins in the antennal transcriptomes of N. flavidorsalis and S. postornata. However, there was no significant correlation between the number of olfactory genes and the increase of antennal sensilla types. Combining antennal morphology, transcriptome analysis, and the prediction of suitable areas, we better understood the olfactory systems with different feeding preferences, which will provide new prospects for plant–insect interactions and population control methods.
Collapse
|
41
|
Crava CM, Bobkov YV, Sollai G, Anfora G, Crnjar R, Cattaneo AM. Chemosensory Receptors in the Larval Maxilla of Papilio hospiton. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2021.795994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Among the butterflies of the genus Papilio (Lepidoptera: Papilionidae), Papilio hospiton (Géné) has a geographical distribution limited to the Mediterranean islands of Sardinia (Italy) and Corsica (France). This is mainly due to the host range that includes only a few plant species of Apiaceae and Rutaceae growing on these islands. In a previous electrophysiological investigation conducted on the maxillary gustatory system of larvae of P. hospiton and its closely phylogenetically related species Papilio machaon, a significantly higher spike activity was shown for the gustatory neurons of lateral and medial styloconic sensilla in P. hospiton when bitter compounds were tested. This effect was possibly correlated to the limited host choice range for P. hospiton. To shed light on the molecular aspects of this phenomenon, we investigated the expression pattern of sensory-related sequences by conducting a transcriptomic analysis from total RNA isolates of P. hospiton larval maxillae. We identified several transcripts that may be involved in taste (one gustatory receptor, one divergent ionotropic receptor, and several transient receptor potential channels, TRPs) as well as transcripts supporting an olfactory function for this appendage, including odorant receptors (ORs), antennal ionotropic receptors (A-IRs), sensory neuron membrane proteins (SNMPs), and odorant-binding proteins (OBPs). We used Human Embryonic Kidney (HEK293A) cells to heterologously express two of the identified receptors, PhospOR1 and PhospPain, together with their orthologs from P. machaon, for functional characterization. While our data suggest no activation of these two receptors by the ligands known so far to activate the electrophysiological response in larval maxillary neurons of Papilio species, nor temperature activation of both Papilio TRPA-channel Painless, they represent the first attempt in connecting neuronal activity with their molecular bases to unravel diet specialization between closely related Papilio species.
Collapse
|
42
|
Revadi SV, Giannuzzi VA, Rossi V, Hunger GM, Conchou L, Rondoni G, Conti E, Anderson P, Walker WB, Jacquin-Joly E, Koutroumpa F, Becher PG. Stage-specific expression of an odorant receptor underlies olfactory behavioral plasticity in Spodoptera littoralis larvae. BMC Biol 2021; 19:231. [PMID: 34706739 PMCID: PMC8555055 DOI: 10.1186/s12915-021-01159-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 09/27/2021] [Indexed: 11/21/2022] Open
Abstract
Background The detection of environmental cues and signals via the sensory system directs behavioral choices in diverse organisms. Insect larvae rely on input from the chemosensory system, mainly olfaction, for locating food sources. In several lepidopteran species, foraging behavior and food preferences change across larval instars; however, the molecular mechanisms underlying such behavioral plasticity during larval development are not fully understood. Here, we hypothesize that expression patterns of odorant receptors (ORs) change during development, as a possible mechanism influencing instar-specific olfactory-guided behavior and food preferences. Results We investigated the expression patterns of ORs in larvae of the cotton leafworm Spodoptera littoralis between the first and fourth instar and revealed that some of the ORs show instar-specific expression. We functionally characterized one OR expressed in the first instar, SlitOR40, as responding to the plant volatile, β-caryophyllene and its isomer α-humulene. In agreement with the proposed hypothesis, we showed that first but not fourth instar larvae responded behaviorally to β-caryophyllene and α-humulene. Moreover, knocking out this odorant receptor via CRISPR-Cas9, we confirmed that instar-specific responses towards its cognate ligands rely on the expression of SlitOR40. Conclusion Our results provide evidence that larvae of S. littoralis change their peripheral olfactory system during development. Furthermore, our data demonstrate an unprecedented instar-specific behavioral plasticity mediated by an OR, and knocking out this OR disrupts larval behavioral plasticity. The ecological relevance of such behavioral plasticity for S. littoralis remains to be elucidated, but our results demonstrate an olfactory mechanism underlying this plasticity in foraging behavior during larval development. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01159-1.
Collapse
Affiliation(s)
- Santosh V Revadi
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Box 190, 23422, Lomma, Sweden. .,INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université Paris Diderot, Institute of Ecology and Environmental Sciences of Paris, Department of Sensory Ecology, Route de Saint-Cyr, 78026, Versailles Cedex, France.
| | - Vito Antonio Giannuzzi
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Box 190, 23422, Lomma, Sweden.,Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121, Perugia, Italy
| | - Valeria Rossi
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Box 190, 23422, Lomma, Sweden.,Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121, Perugia, Italy
| | - Gert Martin Hunger
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Box 190, 23422, Lomma, Sweden
| | - Lucie Conchou
- AGRIODOR, 6 rue Pierre Joseph Colin, 35000, Rennes, France
| | - Gabriele Rondoni
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121, Perugia, Italy
| | - Eric Conti
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121, Perugia, Italy
| | - Peter Anderson
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Box 190, 23422, Lomma, Sweden
| | - William B Walker
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Box 190, 23422, Lomma, Sweden.,United States Department of Agriculture - Agricultural Research Service, Temperate Tree Fruit and Vegetable Research Unit, 5230 Konnowac Pass Road, Wapato, WA, 98951, USA
| | - Emmanuelle Jacquin-Joly
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université Paris Diderot, Institute of Ecology and Environmental Sciences of Paris, Department of Sensory Ecology, Route de Saint-Cyr, 78026, Versailles Cedex, France
| | - Fotini Koutroumpa
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université Paris Diderot, Institute of Ecology and Environmental Sciences of Paris, Department of Sensory Ecology, Route de Saint-Cyr, 78026, Versailles Cedex, France
| | - Paul G Becher
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Box 190, 23422, Lomma, Sweden
| |
Collapse
|
43
|
The Expression of UGT46A1 Gene and Its Effect on Silkworm Feeding. Processes (Basel) 2021. [DOI: 10.3390/pr9081473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The silkworm, Bombyx mori, uses a complex olfactory system to determine whether the food is edible. As an odor degrading enzyme, UDP-glycosyltransferase (UGT) participates in the degradation of odor molecules in the olfactory system of the silkworm. By sequencing the whole genome of the silkworm NB and using comparative genomics methods, we found that UGT46A1 is unique in species that eat mulberry leaves. Bioinformatics shows that its function may be related to the feeding habits of the silkworm. In this study, it was found through quantitative real-time polymerase chain reaction (qRT-PCR) that UGT46A1 was highly expressed in the heads of silkworms, which was consistent with the conjecture that UGT46A1 was involved in silkworm olfactory recognition. RNA interference (RNAi) was used to knock down the expression of UGT46A1. By observing the silkworm’s tendency toward mulberry leaves and food selectivity, it was found that the silkworms that successfully knocked down the UGT46A1 gene altered their feeding habits and that their ability to find food was weakened, but they could eat more leaves of plants other than mulberry leaves. This evidence indicates that UGT46A1 may affect the silkworm’s feeding by influencing the olfactory system of the silkworm.
Collapse
|
44
|
Guo M, Du L, Chen Q, Feng Y, Zhang J, Zhang X, Tian K, Cao S, Huang T, Jacquin-Joly E, Wang G, Liu Y. Odorant Receptors for Detecting Flowering Plant Cues Are Functionally Conserved across Moths and Butterflies. Mol Biol Evol 2021; 38:1413-1427. [PMID: 33231630 PMCID: PMC8042770 DOI: 10.1093/molbev/msaa300] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Odorant receptors (ORs) are essential for plant–insect interactions. However, despite the global impacts of Lepidoptera (moths and butterflies) as major herbivores and pollinators, little functional data are available about Lepidoptera ORs involved in plant-volatile detection. Here, we initially characterized the plant-volatile-sensing function(s) of 44 ORs from the cotton bollworm Helicoverpa armigera, and subsequently conducted a large-scale comparative analysis that establishes how most orthologous ORs have functionally diverged among closely related species whereas some rare ORs are functionally conserved. Specifically, our systematic analysis of H. armigera ORs cataloged the wide functional scope of the H. armigera OR repertoire, and also showed that HarmOR42 and its Spodoptera littoralis ortholog are functionally conserved. Pursuing this, we characterized the HarmOR42-orthologous ORs from 11 species across the Glossata suborder and confirmed the HarmOR42 orthologs form a unique OR lineage that has undergone strong purifying selection in Glossata species and whose members are tuned with strong specificity to phenylacetaldehyde, a floral scent component common to most angiosperms. In vivo studies via HarmOR42 knockout support that HarmOR42-related ORs are essential for host-detection by sensing phenylacetaldehyde. Our work also supports that these ORs coevolved with the tube-like proboscis, and has maintained functional stability throughout the long-term coexistence of Lepidoptera with angiosperms. Thus, beyond providing a rich empirical resource for delineating the precise functions of H. armigera ORs, our results enable a comparative analysis of insect ORs that have apparently facilitated and currently sustain the intimate adaptations and ecological interactions among nectar feeding insects and flowering plants.
Collapse
Affiliation(s)
- Mengbo Guo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.,Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Lixiao Du
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qiuyan Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yilu Feng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jin Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaxuan Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ke Tian
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Song Cao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tianyu Huang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Emmanuelle Jacquin-Joly
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université de Paris, Institute of Ecology and Environmental Sciences of Paris, Versailles, France
| | - Guirong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.,Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yang Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
45
|
Shii F, Mang D, Kasubuchi M, Tsuneto K, Toyama T, Endo H, Sasaki K, Sato R. Ultrasensitive detection by maxillary palp neurons allows non-host recognition without consumption of harmful allelochemicals. JOURNAL OF INSECT PHYSIOLOGY 2021; 132:104263. [PMID: 34052304 DOI: 10.1016/j.jinsphys.2021.104263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 05/25/2021] [Accepted: 05/25/2021] [Indexed: 06/12/2023]
Abstract
Most lepidopteran insect larvae exhibit stepwise feeding behaviors, such as palpation using the maxillary palps (MPs) followed by test biting and persistent biting. However, the purpose of palpation has been unclear. In particular, nothing is known about the neurons in the MP and their mode of recognition of undesired plants, although such neurons have been suggested to exist. In this study, we used larvae of the stenophagous insect Bombyx mori and compared the roles of palpation and test biting in the selection of feeding behavior. When the larvae were given non-host plant leaves, they did not initiate test biting, indicating that non-host plant leaves were recognized via palpation without biting, and that this behavior resulted in a lack of persistent biting, as the leaves were judged non-suitable for consumption. Surface extracts of inedible leaves significantly suppressed test biting of mulberry leaves, a host plant of B. mori, suggesting that secondary metabolites on the leaf surface of inedible leaves function as test biting suppressors, even when another conditions are suitable for test biting. The allelochemical coumarin, which is found in the inedible leaves of cherry, Cerasus speciosa, significantly suppressed test biting of mulberry leaves, suggesting that coumarin is a possible deterrent to the eating of cherry leaves. Using the electrophysiological method of tip recording and a leaf-surface extract as the test material, leaf-surface compound-responsive neurons were identified in the MP. In addition, several neurons that respond to coumarin in the attomolar range were identified, suggesting that the larvae use ultrasensitive neurons in the MP to recognize inedible leaves. In the HEK293T cell heterologous expression system, the B. mori gustatory receptors BmGr53 and BmGr19, which were previously found to be expressed in the MP and to respond to coumarin in the attomolar range, responded to a leaf-surface extract of C. speciosa, suggesting that these receptors may be present on the inedible-leaf-recognizing neurons of the MP. These findings suggest that ultrasensitive plant secondary metabolite-recognizing neurons in the MP allow for the recognition of non-host plants via palpation without risking damage caused by ingesting harmful allelochemicals.
Collapse
Affiliation(s)
- Fumika Shii
- Graduate School of Bio-Application and Systems Engineering, Tokyo University of Agriculture and Technology, Naka-cho 2-24-16, Koganei, Tokyo 184-8588, Japan
| | - Dingze Mang
- Graduate School of Bio-Application and Systems Engineering, Tokyo University of Agriculture and Technology, Naka-cho 2-24-16, Koganei, Tokyo 184-8588, Japan
| | - Mayu Kasubuchi
- Graduate School of Bio-Application and Systems Engineering, Tokyo University of Agriculture and Technology, Naka-cho 2-24-16, Koganei, Tokyo 184-8588, Japan
| | - Kana Tsuneto
- Graduate School of Bio-Application and Systems Engineering, Tokyo University of Agriculture and Technology, Naka-cho 2-24-16, Koganei, Tokyo 184-8588, Japan
| | - Tomoko Toyama
- Graduate School of Bio-Application and Systems Engineering, Tokyo University of Agriculture and Technology, Naka-cho 2-24-16, Koganei, Tokyo 184-8588, Japan
| | - Haruka Endo
- Graduate School of Bio-Application and Systems Engineering, Tokyo University of Agriculture and Technology, Naka-cho 2-24-16, Koganei, Tokyo 184-8588, Japan
| | - Ken Sasaki
- Graduate School of Agriculture, Tamagawa University, Tamagawagakuen 6-1-1, Machida, Tokyo 194-8610, Japan
| | - Ryoichi Sato
- Graduate School of Bio-Application and Systems Engineering, Tokyo University of Agriculture and Technology, Naka-cho 2-24-16, Koganei, Tokyo 184-8588, Japan.
| |
Collapse
|
46
|
Jiang XC, Liu S, Jiang XY, Wang ZW, Xiao JJ, Gao Q, Sheng CW, Shi TF, Zeng HR, Yu LS, Cao HQ. Identification of Olfactory Genes From the Greater Wax Moth by Antennal Transcriptome Analysis. Front Physiol 2021; 12:663040. [PMID: 34093226 PMCID: PMC8172125 DOI: 10.3389/fphys.2021.663040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/22/2021] [Indexed: 11/23/2022] Open
Abstract
The olfactory system is used by insects to find hosts, mates, and oviposition sites. Insects have different types of olfactory proteins, including odorant-binding proteins (OBPs), chemosensory proteins (CSPs), odorant receptors (ORs), ionotropic receptors (IRs), and sensory neuron membrane proteins (SNMPs) to perceive chemical cues from the environment. The greater wax moth, Galleria mellonella, is an important lepidopteran pest of apiculture. However, the molecular mechanism underlying odorant perception in this species is unclear. In this study, we performed transcriptome sequencing of G. mellonella antennae to identify genes involved in olfaction. A total of 42,544 unigenes were obtained by assembling the transcriptome. Functional classification of these unigenes was determined by searching against the Gene Ontology (GO), eukaryotic orthologous groups (KOG), and the Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. We identified a total of 102 olfactory-related genes: 21 OBPs, 18 CSPs, 43 ORs, 18 IRs, and 2 SNMPs. Results from BLASTX best hit and phylogenetic analyses showed that most of the genes had a close relationship with orthologs from other Lepidoptera species. A large number of OBPs and CSPs were tandemly arrayed in the genomic scaffolds and formed gene clusters. Reverse transcription-quantitative PCR results showed that GmelOBP19 and GmelOR47 are mainly expressed in male antennae. This work provides a transcriptome resource for olfactory genes in G. mellonella, and the findings pave the way for studying the function of these genes.
Collapse
Affiliation(s)
- Xing-Chuan Jiang
- Anhui Provincial Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Su Liu
- Anhui Provincial Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Xiu-Yun Jiang
- Anhui Provincial Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Zheng-Wei Wang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
| | - Jin-Jing Xiao
- Anhui Provincial Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Quan Gao
- Anhui Provincial Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Cheng-Wang Sheng
- Anhui Provincial Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Teng-Fei Shi
- Anhui Provincial Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Hua-Rui Zeng
- Anhui Provincial Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Lin-Sheng Yu
- Anhui Provincial Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Hai-Qun Cao
- Anhui Provincial Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei, China
| |
Collapse
|
47
|
Wang C, Wang B, Wang G. Functional Characterization of Sex Pheromone Neurons and Receptors in the Armyworm, Mythimna separata (Walker). Front Neuroanat 2021; 15:673420. [PMID: 33994962 PMCID: PMC8113758 DOI: 10.3389/fnana.2021.673420] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 03/30/2021] [Indexed: 11/13/2022] Open
Abstract
Pheromone receptors (PRs) of moths are expressed on the dendritic membrane of odorant receptor neurons (ORNs) housed in the long trichoid sensilla (TS) of antennae and are essential to sex pheromone reception. The function of peripheral neurons of Mythimna separata in recognizing sex pheromones is still unclear. In this study, electroantennogram recordings were performed from male and female antennae of M. separata, and showed that the major component of sex pheromones, (Z)-11-hexadecenal (Z11-16:Ald), evoked the strongest response of male antennae with significant differences between sexes. Single sensillum recording was used to record responses of neurons housed in TS of male M. separata. The results revealed four types of TS with three neurons housed in each type, based on profiles of responses to sex pheromone components and pheromone analogs. ORN-B of type-I TS was specifically tuned to the major sex pheromone component Z11-16:Ald; ORN-Bs in type-III and type-IV TSs were, respectively, activated by minor components (Z)-11-hexadecen-1-yl acetate (Z11-16:OAc) and hexadecenal (16:Ald); and ORNs in type-II TS were mainly activated by the sex pheromone analogs. We further cloned full-length sequences of six putative PR genes and an Orco gene. Functional characterization of PRs in the Xenopus oocyte system demonstrated that male antennae-biased MsepPR1 responded strongly to (Z)-9-tetradecenal (Z9-14:Ald), suggesting that MsepPR1 may be expressed in type-II TS. MsepPR6 was exclusively tuned to (Z)-9-tetradecen-1-yl acetate (Z9-14:OAc). MsepPR2 and MsepPR4 showed no responses to any tested components. Female antennae-biased MespPR5 was broadly tuned to Z9-14:Ald, Z9-14:OAc, Z11-16:Ald, and (Z)-11-hexadecen-1-ol (Z11-16:OH). Our results further enriched the sex pheromone recognition mechanism in the peripheral nervous system of moth M. separata.
Collapse
Affiliation(s)
- Chan Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bing Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guirong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.,Guangdong Laboratory of Lingnan Modern Agriculture, Shenzhen, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| |
Collapse
|
48
|
Tian K, Liu W, Feng LK, Huang TY, Wang GR, Lin KJ. Functional characterization of pheromone receptor candidates in codling moth Cydia pomonella (Lepidoptera: Tortricidae). INSECT SCIENCE 2021; 28:445-456. [PMID: 32369668 DOI: 10.1111/1744-7917.12775] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 06/11/2023]
Abstract
Sex pheromones serve a critical role in Lepidopterans finding mates. Male moths perceive and react to sex pheromones emitted by conspecific females through a delicate pheromone communication system. Pheromone receptors (PRs) are the key sensory elements at the beginning of that process. The codling moth (Cydia pomnonella) is an important pome fruit pest globally and a serious invasive species in China. Pheromone-based techniques have been used successfully in monitoring and controlling this species. We conducted ribonucleic acid sequencing analysis of the codling moth antennal transcriptome and identified 66 odorant receptors (ORs) in a population from Xinjiang province, China, of which 14 were PRs, including two novel PRs (CpomOR2e and CpomOR73). Four PRs that contain full-length open reading frames (CpomOR1, OR2a, OR5, OR7) and four PRs with ligands that have not been reported previously (CpomOR1, OR2a, OR5, OR7) were selected to deorphanize in the heterologous Xenopus oocyte expression system. Specifically, we found that CpomOR2a and CpomOR5 responded to (E,E)-8, 10-dodecadien-1-yl acetate (codlemone acetate). Furthermore, CpomOR5 (EC50 = 1.379 × 10-8 mol/L) was much more sensitive to codlemone acetate than CpomOR2a (EC50 = 1.663 × 10-6 mol/L). Since codlemone acetate is an important component of C. pomonella sex pheromone, our results improve the current understanding of pheromone communication in codling moths and will be helpful for the development of pest management strategies.
Collapse
Affiliation(s)
- Ke Tian
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wei Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Li-Kai Feng
- Institute of Plant Protection, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, Xinjiang Uygur Autonomous Region, China
| | - Tian-Yu Huang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Gui-Rong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Lingnan Guangdong Laboratory of Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong Province, China
| | - Ke-Jian Lin
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
49
|
Liu J, Liu H, Yi J, Mao Y, Li J, Sun D, An Y, Wu H. Transcriptome Characterization and Expression Analysis of Chemosensory Genes in Chilo sacchariphagus (Lepidoptera Crambidae), a Key Pest of Sugarcane. Front Physiol 2021; 12:636353. [PMID: 33762968 PMCID: PMC7982955 DOI: 10.3389/fphys.2021.636353] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/04/2021] [Indexed: 11/13/2022] Open
Abstract
Insect chemoreception involves many families of genes, including odourant/pheromone binding proteins (OBP/PBPs), chemosensory proteins (CSPs), odourant receptors (ORs), ionotropic receptors (IRs), and sensory neuron membrane proteins (SNMPs), which play irreplaceable roles in mediating insect behaviors such as host location, foraging, mating, oviposition, and avoidance of danger. However, little is known about the molecular mechanism of olfactory reception in Chilo sacchariphagus, which is a major pest of sugarcane. A set of 72 candidate chemosensory genes, including 31 OBPs/PBPs, 15 CSPs, 11 ORs, 13 IRs, and two SNMPs, were identified in four transcriptomes from different tissues and genders of C. sacchariphagus. Phylogenetic analysis was conducted on gene families and paralogs from other model insect species. Quantitative real-time PCR (qRT-PCR) showed that most of these chemosensory genes exhibited antennae-biased expression, but some had high expression in bodies. Most of the identified chemosensory genes were likely involved in chemoreception. This study provides a molecular foundation for the function of chemosensory proteins, and an opportunity for understanding how C. sacchariphagus behaviors are mediated via chemical cues. This research might facilitate the discovery of novel strategies for pest management in agricultural ecosystems.
Collapse
Affiliation(s)
- Jianbai Liu
- Guangdong Engineering Research Center for Pesticide and Fertilizer, Institute of Bioengineering, Guangdong Academy of Sciences, Guangzhou, China
| | - Huan Liu
- Guangdong Engineering Research Center for Pesticide and Fertilizer, Institute of Bioengineering, Guangdong Academy of Sciences, Guangzhou, China
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, China
| | - Jiequn Yi
- Guangdong Engineering Research Center for Pesticide and Fertilizer, Institute of Bioengineering, Guangdong Academy of Sciences, Guangzhou, China
| | - Yongkai Mao
- Guangdong Engineering Research Center for Pesticide and Fertilizer, Institute of Bioengineering, Guangdong Academy of Sciences, Guangzhou, China
| | - Jihu Li
- Guangdong Engineering Research Center for Pesticide and Fertilizer, Institute of Bioengineering, Guangdong Academy of Sciences, Guangzhou, China
| | - Donglei Sun
- Guangdong Engineering Research Center for Pesticide and Fertilizer, Institute of Bioengineering, Guangdong Academy of Sciences, Guangzhou, China
| | - Yuxing An
- Guangdong Engineering Research Center for Pesticide and Fertilizer, Institute of Bioengineering, Guangdong Academy of Sciences, Guangzhou, China
| | - Han Wu
- Guangdong Engineering Research Center for Pesticide and Fertilizer, Institute of Bioengineering, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
50
|
Xiao Y, Sun L, Wang Q, An XK, Huang XZ, Khashaveh A, Li ZY, Zhang YJ. Host plants transfer induced regulation of the chemosensory genes repertoire in the alfalfa plant bug Adelphocoris lineolatus (Goeze). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2021; 38:100798. [PMID: 33581507 DOI: 10.1016/j.cbd.2021.100798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 01/21/2021] [Accepted: 01/23/2021] [Indexed: 10/22/2022]
Abstract
The alfalfa plant bug Adelphocoris lineolatus, an economically important pest, has representative behavioral characteristics with host plants transfer. Olfactory system is essential for insects to perceive ever-changing chemical signals in the external environment, and chemosensory genes play crucial roles in signals reception and transduction. In this work, we compared the differences in chemosensory genes expression before and after host plants transfer by constructing 12 antennal transcriptomes of male and female bugs, respectively. The results showed that the expression levels of most chemosensory genes in A. lineolatus changed to adapt to the transformation of the hosts plant. More remarkable, female bugs had more up-regulated chemosensory genes than males. Differentially expressed genes (DEGs) analysis revealed three odorant binding proteins (OBPs), three chemosensory proteins (CSPs), eight odorant receptors (ORs) and one ionotropic receptor (IR) showed significant differences when the host plant transferred. There were complex characteristics of up- and down- regulated genes in male and female adults, among which OBP19 showed higher expression in females exposing to the new host plant alfalfa, suggesting this OBP may be associated with the localization of the oviposition site. The OR54 and OR82 were up-regulated in both genders, indicating their possible roles in recognizing some alfalfa-specific volatiles. These findings will provide valuable insights in biological functions of chemosensory genes in A. lineolatus and facilitate the development of new targets for novel strategies to control the alfalfa plant bug and other herbivores.
Collapse
Affiliation(s)
- Yong Xiao
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences and Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou 510640, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Liang Sun
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Key Laboratory of Tea Quality and Safety Control, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Qi Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xing-Kui An
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xin-Zheng Huang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Adel Khashaveh
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zhen-Yu Li
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences and Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou 510640, China
| | - Yong-Jun Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|