1
|
Malla S, Oelz D, Roy S. Simulation of a Free Boundary Cell Migration Model through Physics Informed Neural Networks. J Mech Behav Biomed Mater 2025; 167:106961. [PMID: 40058062 DOI: 10.1016/j.jmbbm.2025.106961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 02/10/2025] [Accepted: 02/18/2025] [Indexed: 04/12/2025]
Abstract
Understanding the complexities of single-cell migration is facilitated by computational modeling, which provides important insights into the physiological processes that underlie migration mechanisms. This study developed a computational model for one-dimensional actomyosin flow in a migrating cell with moving boundaries. The model incorporates the complex interplay of actin polymerization, substrate adhesion, and actomyosin dynamics through a system of coupled nonlinear partial differential equations. A physics-informed neural network is designed to understand the dynamic behavior of actin flow and actin concentration within the cell along with the unknown moving boundaries, taking into account the computational cost of solving a dynamic model with a deformable domain. The model's capacity to depict the complex interaction between biological and physical processes within the cell is demonstrated by the numerical results, which qualitatively agree with experimental and computational data available in the literature. This study demonstrates the application of a deep learning method to simulate a challenging biophysical problem with moving boundaries. The model does not require synthetic data for training and accurately reflects the intricate biophysics of cell migration.
Collapse
Affiliation(s)
- Sanchita Malla
- UQ-IITD Research Academy (UQIDRA), Indian Institute of Technology Delhi, New Delhi, 110016, India; School of Mathematics and Physics, University of Queensland, QLD 4072, Australia; Department of Applied Mechanics, Indian Institute of Technology Delhi, New Delhi, 110016, India.
| | - Dietmar Oelz
- School of Mathematics and Physics, University of Queensland, QLD 4072, Australia.
| | - Sitikantha Roy
- Department of Applied Mechanics, Indian Institute of Technology Delhi, New Delhi, 110016, India.
| |
Collapse
|
2
|
Raj P, Gupta H, Anantha P, Barman I. Cell-TIMP: Cellular Trajectory Inference Based on Morphological Parameters. NANO LETTERS 2025; 25:7845-7852. [PMID: 40317256 DOI: 10.1021/acs.nanolett.5c01009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
Traditional approaches to studying cellular morphology rely on geometric metrics from stained images. However, staining processes can disrupt the cell's natural state and diminish accuracy due to photobleaching, while conventional analysis techniques, which categorize cells based on shape to discern pathophysiological conditions, often fail to capture the continuous and asynchronous nature of biological processes such as cell differentiation, immune responses, and cancer progression. In this work, we propose the use of quantitative phase imaging for morphological assessment due to its label-free nature. For analysis, we repurposed the genomic analysis toolbox to perform trajectory inference analysis purely based on morphology information. We applied the developed framework to study the progression of leukemia and breast cancer metastasis. Applying this framework to leukemia and breast cancer metastasis, we identified key shape changes linked to disease progression, highlighting the method's potential to enhance understanding of complex biological dynamics.
Collapse
Affiliation(s)
- Piyush Raj
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Himanshu Gupta
- Centre for Applied Autonomous Sensor Systems (AASS), Örebro University, Örebro 70182, Sweden
| | - Pooja Anantha
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Ishan Barman
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University, School of Medicine, Baltimore, Maryland 21205, United States
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
| |
Collapse
|
3
|
Shi W, Gupta S, Copos C, Mogilner A. Collective mechanics of small migrating cell groups. Semin Cell Dev Biol 2025; 166:1-12. [PMID: 39647189 DOI: 10.1016/j.semcdb.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/30/2024] [Accepted: 12/04/2024] [Indexed: 12/10/2024]
Abstract
Migration of adhesive cell groups is a fundamental part of wound healing, development and carcinogenesis. Intense research has been conducted on mechanisms of collective migration of adhesive groups of cells. Here we focus on mechanical and mechanistic lessons from small migrating cell groups. We review forces and locomotory dynamics of two- and three-cell clusters, rotation of cell doublets, self-organization of one-dimensional cell trains, nascent efforts to understand three-dimensional collective migration and border cell clusters in Drosophila embryo.
Collapse
Affiliation(s)
- Wenzheng Shi
- Courant Institute, New York University, New York, NY 10012, USA.
| | - Selena Gupta
- Department of Biology, New York University, New York, NY 10012, USA.
| | - Calina Copos
- Departments of Biology and Mathematics, Northeastern University, Boston, MA 02115, USA.
| | - Alex Mogilner
- Courant Institute, New York University, New York, NY 10012, USA; Department of Biology, New York University, New York, NY 10012, USA.
| |
Collapse
|
4
|
Gutiérrez–Medina B. Quantification of bacterial shape using moment invariants enables distinguishing populations during cellular plasmolysis. MethodsX 2024; 13:103036. [PMID: 39687588 PMCID: PMC11647837 DOI: 10.1016/j.mex.2024.103036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 11/04/2024] [Indexed: 12/18/2024] Open
Abstract
The analysis of geometrical cell shape is fundamental to understand motility, development, and responses to external stimuli. The moment invariants framework quantifies cellular shape and size, although its applicability has not been explored for rod-shaped bacteria. In this work, we use moment invariants to evaluate the extent of cell shape change (projected area and volume) during plasmolysis, as Escherichia coli cells are subjected to hyperosmotic shock. The characteristic cell size descriptors width, length and area show systematic decrease as external salt (NaCl) conditions increase-except for high salt, where a small population of cells shows evidence of membrane rupture. We use these two-dimensional results to estimate cell volume during plasmolysis, finding a minimum volume that is not reduced further with increase in salt concentration. Next, we computed elongation and dispersion, metrics that quantify how cell shape is stretched out or differs from an ellipse, respectively. For dispersion, we observe the development of a long tail for the distribution at high salt. Moreover, the use of elongation-dispersion plots enables distinction of plasmolyzed and normal cells despite the presence of broad distributions. Altogether, a protocol is provided to evaluate bacterial shape, highlighting a set of metrics that help distinguish among bacterial populations.•Moment invariants enable quantitative description of bacterial morphology in two dimensions, and estimation of volume•We apply the moment invariants framework to describe changes in bacterial shape during plasmolysis•The proposed methodology shows suitability to distinguish among cellular populations.
Collapse
Affiliation(s)
- Braulio Gutiérrez–Medina
- Division of Advanced Materials, Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa San José 2055, San Luis Potosí 78216, Mexico
| |
Collapse
|
5
|
Ho Thanh MT, Poudel A, Ameen S, Carroll B, Wu M, Soman P, Zhang T, Schwarz JM, Patteson AE. Vimentin promotes collective cell migration through collagen networks via increased matrix remodeling and spheroid fluidity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.17.599259. [PMID: 38948855 PMCID: PMC11212918 DOI: 10.1101/2024.06.17.599259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
The intermediate filament (IF) protein vimentin is associated with many diseases with phenotypes of enhanced cellular migration and aggressive invasion through the extracellular matrix (ECM) of tissues, but vimentin's role in in-vivo cell migration is still largely unclear. Vimentin is important for proper cellular adhesion and force generation, which are critical to cell migration; yet the vimentin cytoskeleton also hinders the ability of cells to squeeze through small pores in ECM, resisting migration. To identify the role of vimentin in collective cell migration, we generate spheroids of wide-type and vimentin-null mouse embryonic fibroblasts (mEFs) and embed them in a 3D collagen matrix. We find that loss of vimentin significantly impairs the ability of the spheroid to collectively expand through collagen networks and remodel the collagen network. Traction force analysis reveals that vimentin null spheroids exert less contractile force than their wild-type counterparts. In addition, spheroids made of mEFs with only vimentin unit length filaments (ULFs) exhibit similar behavior as vimentin-null spheroids, suggesting filamentous vimentin is required to promote 3D collective cell migration. We find the vimentin-mediated collective cell expansion is dependent on matrix metalloproteinase (MMP) degradation of the collagen matrix. Further, 3D vertex model simulation of spheroid and embedded ECM indicates that wild-type spheroids behave more fluid-like, enabling more active pulling and reconstructing the surrounding collagen network. Altogether, these results signify that VIF plays a critical role in enhancing migratory persistence in 3D matrix environments through MMP transportation and tissue fluidity.
Collapse
Affiliation(s)
- Minh Tri Ho Thanh
- Physics Department, Syracuse University; Syracuse, New York, USA
- BioInspired Institute, Syracuse University; Syracuse, New York, USA
| | - Arun Poudel
- BioInspired Institute, Syracuse University; Syracuse, New York, USA
- Biomedical and Chemical Engineering Department, Syracuse University; Syracuse, New York, USA
| | - Shabeeb Ameen
- Physics Department, Syracuse University; Syracuse, New York, USA
- BioInspired Institute, Syracuse University; Syracuse, New York, USA
| | - Bobby Carroll
- Physics Department, Syracuse University; Syracuse, New York, USA
- BioInspired Institute, Syracuse University; Syracuse, New York, USA
| | - M Wu
- Department of Biological and Environmental Engineering, Cornell University; Ithaca, New York, USA
| | - Pranav Soman
- BioInspired Institute, Syracuse University; Syracuse, New York, USA
- Biomedical and Chemical Engineering Department, Syracuse University; Syracuse, New York, USA
| | - Tao Zhang
- Department of Polymer Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - J M Schwarz
- Physics Department, Syracuse University; Syracuse, New York, USA
- BioInspired Institute, Syracuse University; Syracuse, New York, USA
- Indian Creek Farm, Ithaca, New York, USA
| | - Alison E Patteson
- Physics Department, Syracuse University; Syracuse, New York, USA
- BioInspired Institute, Syracuse University; Syracuse, New York, USA
| |
Collapse
|
6
|
Mukhopadhyay U, Mandal T, Chakraborty M, Sinha B. The Plasma Membrane and Mechanoregulation in Cells. ACS OMEGA 2024; 9:21780-21797. [PMID: 38799362 PMCID: PMC11112598 DOI: 10.1021/acsomega.4c01962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/26/2024] [Accepted: 04/30/2024] [Indexed: 05/29/2024]
Abstract
Cells inhabit a mechanical microenvironment that they continuously sense and adapt to. The plasma membrane (PM), serving as the boundary of the cell, plays a pivotal role in this process of adaptation. In this Review, we begin by examining well-studied processes where mechanoregulation proves significant. Specifically, we highlight examples from the immune system and stem cells, besides discussing processes involving fibroblasts and other cell types. Subsequently, we discuss the common molecular players that facilitate the sensing of the mechanical signal and transform it into a chemical response covering integrins YAP/TAZ and Piezo. We then review how this understanding of molecular elements is leveraged in drug discovery and tissue engineering alongside a discussion of the methodologies used to measure mechanical properties. Focusing on the processes of endocytosis, we discuss how cells may respond to altered membrane mechanics using endo- and exocytosis. Through the process of depleting/adding the membrane area, these could also impact membrane mechanics. We compare pathways from studies illustrating the involvement of endocytosis in mechanoregulation, including clathrin-mediated endocytosis (CME) and the CLIC/GEEC (CG) pathway as central examples. Lastly, we review studies on cell-cell fusion during myogenesis, the mechanical integrity of muscle fibers, and the reported and anticipated roles of various molecular players and processes like endocytosis, thereby emphasizing the significance of mechanoregulation at the PM.
Collapse
Affiliation(s)
- Upasana Mukhopadhyay
- Department of Biological
Sciences, Indian Institute of Science Education
and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Tithi Mandal
- Department of Biological
Sciences, Indian Institute of Science Education
and Research Kolkata, Mohanpur, West Bengal 741246, India
| | | | - Bidisha Sinha
- Department of Biological
Sciences, Indian Institute of Science Education
and Research Kolkata, Mohanpur, West Bengal 741246, India
| |
Collapse
|
7
|
Raj P, Gupta H, Anantha P, Barman I. Cell-TIMP: Cellular Trajectory Inference based on Morphological Parameter. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.18.590109. [PMID: 38712120 PMCID: PMC11071304 DOI: 10.1101/2024.04.18.590109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Cellular morphology, shaped by various genetic and environmental influences, is pivotal to studying experimental cell biology, necessitating precise measurement and analysis techniques. Traditional approaches, which rely on geometric metrics derived from stained images, encounter obstacles stemming from both the imaging and analytical domains. Staining processes can disrupt the cell's natural state and diminish accuracy due to photobleaching, while conventional analysis techniques, which categorize cells based on shape to discern pathophysiological conditions, often fail to capture the continuous and asynchronous nature of biological processes such as cell differentiation, immune responses, and cancer progression. In this work, we propose the use of quantitative phase imaging for morphological assessment due to its label-free nature. For analysis, we repurposed the genomic analysis toolbox to perform trajectory inference analysis purely based on morphology information. We applied the developed framework to study the progression of leukemia and breast cancer metastasis. Our approach revealed a clear pattern of morphological evolution tied to the diseases' advancement, highlighting the efficacy of our method in identifying functionally significant shape changes where conventional techniques falter. This advancement offers a fresh perspective on analyzing cellular morphology and holds significant potential for the broader research community, enabling a deeper understanding of complex biological dynamics.
Collapse
Affiliation(s)
- Piyush Raj
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Himanshu Gupta
- Centre for Applied Autonomous Sensor Systems (AASS), Örebro University, Örebro, Sweden
| | - Pooja Anantha
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Ishan Barman
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
- Department of Oncology, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
8
|
Winn-Nuñez ET, Witt H, Bhaskar D, Huang RY, Reichner JS, Wong IY, Crawford L. Generative modeling of biological shapes and images using a probabilistic α-shape sampler. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.09.574919. [PMID: 38260340 PMCID: PMC10802457 DOI: 10.1101/2024.01.09.574919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Understanding morphological variation is an important task in many areas of computational biology. Recent studies have focused on developing computational tools for the task of sub-image selection which aims at identifying structural features that best describe the variation between classes of shapes. A major part in assessing the utility of these approaches is to demonstrate their performance on both simulated and real datasets. However, when creating a model for shape statistics, real data can be difficult to access and the sample sizes for these data are often small due to them being expensive to collect. Meanwhile, the current landscape of generative models for shapes has been mostly limited to approaches that use black-box inference-making it difficult to systematically assess the power and calibration of sub-image models. In this paper, we introduce the α -shape sampler: a probabilistic framework for generating realistic 2D and 3D shapes based on probability distributions which can be learned from real data. We demonstrate our framework using proof-of-concept examples and in two real applications in biology where we generate (i) 2D images of healthy and septic neutrophils and (ii) 3D computed tomography (CT) scans of primate mandibular molars. The α -shape sampler R package is open-source and can be downloaded at https://github.com/lcrawlab/ashapesampler.
Collapse
Affiliation(s)
| | - Hadley Witt
- Graduate Program in Pathobiology, Brown University, Providence, RI, USA
- Division of Surgical Research, Department of Surgery, Rhode Island Hospital, Providence, RI, USA
| | | | - Ryan Y. Huang
- Department of Computer Science, Brown University, Providence, RI USA
| | - Jonathan S. Reichner
- Graduate Program in Pathobiology, Brown University, Providence, RI, USA
- Division of Surgical Research, Department of Surgery, Rhode Island Hospital, Providence, RI, USA
| | - Ian Y. Wong
- Graduate Program in Pathobiology, Brown University, Providence, RI, USA
- School of Engineering, Legoretta Cancer Center, Brown University, Providence, RI USA
| | - Lorin Crawford
- Microsoft Research, Cambridge, MA, USA
- Department of Biostatistics, Brown University, Providence, RI, USA
- Center for Computational Molecular Biology, Brown University, Providence, RI, USA
| |
Collapse
|
9
|
Kołodziej T, Mielnicka A, Dziob D, Chojnacka AK, Rawski M, Mazurkiewicz J, Rajfur Z. Morphomigrational description as a new approach connecting cell's migration with its morphology. Sci Rep 2023; 13:11006. [PMID: 37419901 PMCID: PMC10328925 DOI: 10.1038/s41598-023-35827-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 05/24/2023] [Indexed: 07/09/2023] Open
Abstract
The examination of morphology and migration of cells plays substantial role in understanding the cellular behaviour, being described by plethora of quantitative parameters and models. These descriptions, however, treat cell migration and morphology as independent properties of temporal cell state, while not taking into account their strong interdependence in adherent cells. Here we present the new and simple mathematical parameter called signed morphomigrational angle (sMM angle) that links cell geometry with translocation of cell centroid, considering them as one morphomigrational behaviour. The sMM angle combined with pre-existing quantitative parameters enabled us to build a new tool called morphomigrational description, used to assign the numerical values to several cellular behaviours. Thus, the cellular activities that until now were characterized using verbal description or by complex mathematical models, are described here by a set of numbers. Our tool can be further used in automatic analysis of cell populations as well as in studies focused on cellular response to environmental directional signals.
Collapse
Affiliation(s)
- Tomasz Kołodziej
- Department of Pharmaceutical Biophysics, Faculty of Pharmacy, Jagiellonian University Medical College, ul. Medyczna 9, 30-688, Kraków, Poland.
- Department of Molecular and Interfacial Biophysics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, ul. Lojasiewicza 11, 30-348, Kraków, Poland.
| | - Aleksandra Mielnicka
- Department of Molecular and Interfacial Biophysics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, ul. Lojasiewicza 11, 30-348, Kraków, Poland
- BRAINCITY, Laboratory of Neurobiology, The Nencki Institute of Experimental Biology, PAS, ul. Ludwika Pasteura 3, 02-093, Warsaw, Poland
| | - Daniel Dziob
- Department of Pharmaceutical Biophysics, Faculty of Pharmacy, Jagiellonian University Medical College, ul. Medyczna 9, 30-688, Kraków, Poland
| | - Anna Katarzyna Chojnacka
- Department of Molecular and Interfacial Biophysics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, ul. Lojasiewicza 11, 30-348, Kraków, Poland
- Cellular Signalling and Cytoskeletal Function Laboratory, The Francis Crick Institute, 1 Midland Road, NW1 1AT, London, United Kingdom
| | - Mateusz Rawski
- Laboratory of Inland Fisheries and Aquaculture, Department of Zoology, Faculty of Veterinary Medicine and Animal Science, Poznań University of Life Sciences, ul. Wojska Polskiego 71C, 60-625, Poznań, Poland
| | - Jan Mazurkiewicz
- Laboratory of Inland Fisheries and Aquaculture, Department of Zoology, Faculty of Veterinary Medicine and Animal Science, Poznań University of Life Sciences, ul. Wojska Polskiego 71C, 60-625, Poznań, Poland
| | - Zenon Rajfur
- Department of Molecular and Interfacial Biophysics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, ul. Lojasiewicza 11, 30-348, Kraków, Poland.
- Jagiellonian Center of Biomedical Imaging, Jagiellonian University, 30-348, Kraków, Poland.
| |
Collapse
|
10
|
Sharma R, Chen KT, Sharma R. Emerging evidence on Monkeypox: resurgence, global burden, molecular insights, genomics and possible management. Front Cell Infect Microbiol 2023; 13:1134712. [PMID: 37153147 PMCID: PMC10154632 DOI: 10.3389/fcimb.2023.1134712] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/20/2023] [Indexed: 05/09/2023] Open
Abstract
An outbreak of monkeypox (encoded enveloped double stranded DNA), resurgence and expansion has emerged in early 2022, posing a new threat to global health. Even though, many reports are available on monkeypox, still a comprehensive updated review is needed. Present updated review is focused to fill the research gaps pertaining to the monkeypox, and an extensive search was conducted in a number of databases, including Google Scholar, Scopus, Web of Science, and Science Direct. Although the disease usually progresses self-limiting, some patients require admission for kidney injury, pharyngitis, myocarditis, and soft tissue super infections. There is no well-known treatment available yet; still there has been a push for the use of antiviral therapy and tecovirimat as a promising option when dealing with co-morbidities. In this study, we mapped and discussed the updates and scientific developments surrounding monkeypox, including its potential molecular mechanisms, genomics, transmission, risk factors, diagnosis, prevention, vaccines, treatment, possible plant-based treatment along with their proposed mechanisms. Each day, a growing number of monkeypox cases are reported, and more cases are expected in the near future. As of now, monkeypox does not have a well-established and proven treatment, and several investigations are underway to find the best possible treatment from natural or synthetic drug sources. Multiple molecular mechanisms on pathophysiological cascades of monkeypox virus infection are discussed here along with updates on genomics, and possible preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Ruchi Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University (BHU), Varanasi, Uttar Pradesh, India
| | - Kow-Tong Chen
- Department of Occupational Medicine, Tainan Municipal Hospital (managed by Show Chwan Medical Care Corporation), Tainan, Taiwan
- Department of Public Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University (BHU), Varanasi, Uttar Pradesh, India
| |
Collapse
|
11
|
Peng Q, Vermolen FJ, Weihs D. Physical confinement and cell proximity increase cell migration rates and invasiveness: A mathematical model of cancer cell invasion through flexible channels. J Mech Behav Biomed Mater 2023; 142:105843. [PMID: 37104897 DOI: 10.1016/j.jmbbm.2023.105843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 03/28/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023]
Abstract
Cancer cell migration between different body parts is the driving force behind cancer metastasis, which is the main cause of mortality of patients. Migration of cancer cells often proceeds by penetration through narrow cavities in locally stiff, yet flexible tissues. In our previous work, we developed a model for cell geometry evolution during invasion, which we extend here to investigate whether leader and follower (cancer) cells that only interact mechanically can benefit from sequential transmigration through narrow micro-channels and cavities. We consider two cases of cells sequentially migrating through a flexible channel: leader and follower cells being closely adjacent or distant. Using Wilcoxon's signed-rank test on the data collected from Monte Carlo simulations, we conclude that the modelled transmigration speed for the follower cell is significantly larger than for the leader cell when cells are distant, i.e. follower cells transmigrate after the leader has completed the crossing. Furthermore, it appears that there exists an optimum with respect to the width of the channel such that cell moves fastest. On the other hand, in the case of closely adjacent cells, effectively performing collective migration, the leader cell moves 12% faster since the follower cell pushes it. This work shows that mechanical interactions between cells can increase the net transmigration speed of cancer cells, resulting in increased invasiveness. In other words, interaction between cancer cells can accelerate metastatic invasion.
Collapse
Affiliation(s)
- Qiyao Peng
- Mathematical Institute, Faculty of Science, Leiden University, Neils Bohrweg 1, 2333 CA, Leiden, The Netherlands.
| | - Fred J Vermolen
- Computational Mathematics Group, Department of Mathematics and Statistics, Faculty of Science, University of Hasselt, 3590 Diepenbeek, Belgium
| | - Daphne Weihs
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, 3200003 Haifa, Israel
| |
Collapse
|
12
|
Zhang B, Li X, Tang K, Xin Y, Hu G, Zheng Y, Li K, Zhang C, Tan Y. Adhesion to the Brain Endothelium Selects Breast Cancer Cells with Brain Metastasis Potential. Int J Mol Sci 2023; 24:ijms24087087. [PMID: 37108248 PMCID: PMC10138870 DOI: 10.3390/ijms24087087] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Tumor cells metastasize from a primary lesion to distant organs mainly through hematogenous dissemination, in which tumor cell re-adhesion to the endothelium is essential before extravasating into the target site. We thus hypothesize that tumor cells with the ability to adhere to the endothelium of a specific organ exhibit enhanced metastatic tropism to this target organ. This study tested this hypothesis and developed an in vitro model to mimic the adhesion between tumor cells and brain endothelium under fluid shear stress, which selected a subpopulation of tumor cells with enhanced adhesion strength. The selected cells up-regulated the genes related to brain metastasis and exhibited an enhanced ability to transmigrate through the blood-brain barrier. In the soft microenvironments that mimicked brain tissue, these cells had elevated adhesion and survival ability. Further, tumor cells selected by brain endothelium adhesion expressed higher levels of MUC1, VCAM1, and VLA-4, which were relevant to breast cancer brain metastasis. In summary, this study provides the first piece of evidence to support that the adhesion of circulating tumor cells to the brain endothelium selects the cells with enhanced brain metastasis potential.
Collapse
Affiliation(s)
- Bai Zhang
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518000, China
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Xueyi Li
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518000, China
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Kai Tang
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518000, China
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Ying Xin
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518000, China
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Guanshuo Hu
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518000, China
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Yufan Zheng
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518000, China
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Keming Li
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518000, China
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Cunyu Zhang
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518000, China
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Youhua Tan
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518000, China
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
| |
Collapse
|
13
|
Angeloni L, Popa B, Nouri-Goushki M, Minneboo M, Zadpoor AA, Ghatkesar MK, Fratila-Apachitei LE. Fluidic Force Microscopy and Atomic Force Microscopy Unveil New Insights into the Interactions of Preosteoblasts with 3D-Printed Submicron Patterns. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2204662. [PMID: 36373704 DOI: 10.1002/smll.202204662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Physical patterns represent potential surface cues for promoting osteogenic differentiation of stem cells and improving osseointegration of orthopedic implants. Understanding the early cell-surface interactions and their effects on late cellular functions is essential for a rational design of such topographies, yet still elusive. In this work, fluidic force microscopy (FluidFM) and atomic force microscopy (AFM) combined with optical and electron microscopy are used to quantitatively investigate the interaction of preosteoblasts with 3D-printed patterns after 4 and 24 h of culture. The patterns consist of pillars with the same diameter (200 nm) and interspace (700 nm) but distinct heights (500 and 1000 nm) and osteogenic properties. FluidFM reveals a higher cell adhesion strength after 24 h of culture on the taller pillars (32 ± 7 kPa versus 21.5 ± 12.5 kPa). This is associated with attachment of cells partly on the sidewalls of these pillars, thus requiring larger normal forces for detachment. Furthermore, the higher resistance to shear forces observed for these cells indicates an enhanced anchorage and can be related to the persistence and stability of lamellipodia. The study explains the differential cell adhesion behavior induced by different pillar heights, enabling advancements in the rational design of osteogenic patterns.
Collapse
Affiliation(s)
- Livia Angeloni
- Department of Precision and Microsystems Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology, Mekelweg 2, Delft, 2628CD, The Netherlands
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology, Mekelweg 2, Delft, 2628CD, The Netherlands
| | - Bogdan Popa
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology, Mekelweg 2, Delft, 2628CD, The Netherlands
| | - Mahdiyeh Nouri-Goushki
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology, Mekelweg 2, Delft, 2628CD, The Netherlands
| | - Michelle Minneboo
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology, Mekelweg 2, Delft, 2628CD, The Netherlands
| | - Amir A Zadpoor
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology, Mekelweg 2, Delft, 2628CD, The Netherlands
| | - Murali K Ghatkesar
- Department of Precision and Microsystems Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology, Mekelweg 2, Delft, 2628CD, The Netherlands
| | - Lidy E Fratila-Apachitei
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology, Mekelweg 2, Delft, 2628CD, The Netherlands
| |
Collapse
|
14
|
Ghosh S, Alcover A, Haran G. Microvillar Cartography: A Super-Resolution Single-Molecule Imaging Method to Map the Positions of Membrane Proteins with Respect to Cellular Surface Topography. Methods Mol Biol 2023; 2654:169-199. [PMID: 37106183 DOI: 10.1007/978-1-0716-3135-5_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
We describe microvillar cartography (MC), a method to map proteins on cellular surfaces with respect to the membrane topography. The surfaces of many cells are not smooth, but are rather covered with various protrusions such as microvilli. These protrusions may play key roles in multiple cellular functions, due to their ability to control the distribution of specific protein assemblies on the cell surface. Thus, for example, we have shown that the T-cell receptor and several of its proximal signaling proteins reside on microvilli, while others are excluded from these projections. These results have indicated that microvilli can function as key signaling hubs for the initiation of the immune response. MC has facilitated our observations of particular surface proteins and their specialized distribution on microvillar and non-microvillar compartments. MC combines membrane topography imaging, using variable-angle total internal microscopy, with stochastic localization nanoscopy, which generates deep sub-diffraction maps of protein distribution. Since the method is based on light microscopy, it avoids some of the pitfalls inherent to electron-microscopy-based techniques, such as dehydration, the need for carbon coating, and immunogold clustering, and is amenable to future developments involving, for example, live-cell imaging. This protocol details the procedures we developed for MC, which can be readily adopted to study a broad range of cell-surface molecules and dissect their distribution within distinct surface assemblies under multiple cell activation states.
Collapse
Affiliation(s)
- Shirsendu Ghosh
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Andres Alcover
- Institut Pasteur, Université Paris Cité, INSERM U1224, Unité Biologie Cellulaire des Lymphocytes, Paris, France
| | - Gilad Haran
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
15
|
Stotsky JA, Othmer HG. The effects of internal forces and membrane heterogeneity on three-dimensional cell shapes. J Math Biol 2022; 86:1. [PMID: 36427179 DOI: 10.1007/s00285-022-01836-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 11/27/2022]
Abstract
The shape of cells and the control thereof plays a central role in a variety of cellular processes, including endo- and exocytosis, cell division and cell movement. Intra- and extracellular forces control the shapes, and while the shape changes in some processes such as exocytosis are intracellularly-controlled and localized in the cell, movement requires force transmission to the environment, and the feedback from it can affect the cell shape and mode of movement used. The shape of a cell is determined by its cytoskeleton (CSK), and thus shape changes involved in various processes involve controlled remodeling of the CSK. While much is known about individual components involved in these processes, an integrated understanding of how intra- and extracellular signals are coupled to the control of the mechanical changes involved is not at hand for any of them. As a first step toward understanding the interaction between intracellular forces imposed on the membrane and cell shape, we investigate the role of distributed surrogates for cortical forces in producing the observed three-dimensional shapes. We show how different balances of applied forces lead to such shapes, that there are different routes to the same end state, and that state transitions between axisymmetric shapes need not all be axisymmetric. Examples of the force distributions that lead to protrusions are given, and the shape changes induced by adhesion of a cell to a surface are studied. The results provide a reference framework for developing detailed models of intracellular force distributions observed experimentally, and provide a basis for studying how movement of a cell in a tissue or fluid is influenced by its shape.
Collapse
Affiliation(s)
- Jay A Stotsky
- School of Mathematics, University of Minnesota, Minneapolis, MN, 100190, USA.
| | - Hans G Othmer
- School of Mathematics, University of Minnesota, Minneapolis, MN, 100190, USA
| |
Collapse
|
16
|
Callan-Jones A. Self-organization in amoeboid motility. Front Cell Dev Biol 2022; 10:1000071. [PMID: 36313569 PMCID: PMC9614430 DOI: 10.3389/fcell.2022.1000071] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/03/2022] [Indexed: 11/13/2022] Open
Abstract
Amoeboid motility has come to refer to a spectrum of cell migration modes enabling a cell to move in the absence of strong, specific adhesion. To do so, cells have evolved a range of motile surface movements whose physical principles are now coming into view. In response to external cues, many cells—and some single-celled-organisms—have the capacity to turn off their default migration mode. and switch to an amoeboid mode. This implies a restructuring of the migration machinery at the cell scale and suggests a close link between cell polarization and migration mediated by self-organizing mechanisms. Here, I review recent theoretical models with the aim of providing an integrative, physical picture of amoeboid migration.
Collapse
|
17
|
Gill MR, Jarman PJ, Hearnden V, Fairbanks SD, Bassetto M, Maib H, Palmer J, Ayscough KR, Thomas JA, Smythe C. A Ruthenium(II) Polypyridyl Complex Disrupts Actin Cytoskeleton Assembly and Blocks Cytokinesis. Angew Chem Int Ed Engl 2022; 61:e202117449. [PMID: 35416386 PMCID: PMC9323417 DOI: 10.1002/anie.202117449] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Indexed: 11/05/2022]
Abstract
The dinuclear RuII complex [(Ru(phen)2)2(tpphz)]4+ (phen=1,10‐phenanthroline, tpphz=tetrapyridophenazine) “RuRuPhen” blocks the transformation of G‐actin monomers to F‐actin filaments with no disassembly of pre‐formed F‐actin. Molecular docking studies indicate multiple RuRuPhen molecules bind to the surface of G‐actin but not the binding pockets of established actin polymerisation inhibitors. In cells, addition of RuRuPhen causes rapid disruption to actin stress fibre organisation, compromising actomyosin contractility and cell motility; due to this effect RuRuPhen interferes with late‐stage cytokinesis. Immunofluorescent microscopy reveals that RuRuPhen causes cytokinetic abscission failure by interfering with endosomal sorting complexes required for transport (ESCRT) complex recruitment.
Collapse
Affiliation(s)
- Martin R. Gill
- Department of Chemistry Faculty of Science and Engineering Swansea University UK
| | - Paul J. Jarman
- Department of Biomedical Science University of Sheffield UK
| | - Vanessa Hearnden
- Department of Materials Science and Engineering University of Sheffield UK
| | | | - Marcella Bassetto
- Department of Chemistry Faculty of Science and Engineering Swansea University UK
| | - Hannes Maib
- Department of Biomedical Science University of Sheffield UK
| | - John Palmer
- Department of Biomedical Science University of Sheffield UK
| | | | | | - Carl Smythe
- Department of Biomedical Science University of Sheffield UK
| |
Collapse
|
18
|
Gill MR, Jarman PJ, Hearnden V, Fairbanks SD, Bassetto M, Maib H, Palmer J, Ayscough KR, Thomas JA, Smythe C. A Ruthenium(II) Polypyridyl Complex Disrupts Actin Cytoskeleton Assembly and Blocks Cytokinesis. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 134:e202117449. [PMID: 38505667 PMCID: PMC10947085 DOI: 10.1002/ange.202117449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Indexed: 11/10/2022]
Abstract
The dinuclear RuII complex [(Ru(phen)2)2(tpphz)]4+ (phen=1,10-phenanthroline, tpphz=tetrapyridophenazine) "RuRuPhen" blocks the transformation of G-actin monomers to F-actin filaments with no disassembly of pre-formed F-actin. Molecular docking studies indicate multiple RuRuPhen molecules bind to the surface of G-actin but not the binding pockets of established actin polymerisation inhibitors. In cells, addition of RuRuPhen causes rapid disruption to actin stress fibre organisation, compromising actomyosin contractility and cell motility; due to this effect RuRuPhen interferes with late-stage cytokinesis. Immunofluorescent microscopy reveals that RuRuPhen causes cytokinetic abscission failure by interfering with endosomal sorting complexes required for transport (ESCRT) complex recruitment.
Collapse
Affiliation(s)
- Martin R. Gill
- Department of ChemistryFaculty of Science and EngineeringSwansea UniversityUK
| | - Paul J. Jarman
- Department of Biomedical ScienceUniversity of SheffieldUK
| | - Vanessa Hearnden
- Department of Materials Science and EngineeringUniversity of SheffieldUK
| | | | - Marcella Bassetto
- Department of ChemistryFaculty of Science and EngineeringSwansea UniversityUK
| | - Hannes Maib
- Department of Biomedical ScienceUniversity of SheffieldUK
| | - John Palmer
- Department of Biomedical ScienceUniversity of SheffieldUK
| | | | | | - Carl Smythe
- Department of Biomedical ScienceUniversity of SheffieldUK
| |
Collapse
|
19
|
Bálint M, Zsidó BZ, van der Spoel D, Hetényi C. Binding Networks Identify Targetable Protein Pockets for Mechanism-Based Drug Design. Int J Mol Sci 2022; 23:ijms23137313. [PMID: 35806314 PMCID: PMC9267029 DOI: 10.3390/ijms23137313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 06/22/2022] [Accepted: 06/28/2022] [Indexed: 02/01/2023] Open
Abstract
The human genome codes only a few thousand druggable proteins, mainly receptors and enzymes. While this pool of available drug targets is limited, there is an untapped potential for discovering new drug-binding mechanisms and modes. For example, enzymes with long binding cavities offer numerous prerequisite binding sites that may be visited by an inhibitor during migration from a bulk solution to the destination site. Drug design can use these prerequisite sites as new structural targets. However, identifying these ephemeral sites is challenging. Here, we introduce a new method called NetBinder for the systematic identification and classification of prerequisite binding sites at atomic resolution. NetBinder is based on atomistic simulations of the full inhibitor binding process and provides a networking framework on which to select the most important binding modes and uncover the entire binding mechanism, including previously undiscovered events. NetBinder was validated by a study of the binding mechanism of blebbistatin (a potent inhibitor) to myosin 2 (a promising target for cancer chemotherapy). Myosin 2 is a good test enzyme because, like other potential targets, it has a long internal binding cavity that provides blebbistatin with numerous potential prerequisite binding sites. The mechanism proposed by NetBinder of myosin 2 structural changes during blebbistatin binding shows excellent agreement with experimentally determined binding sites and structural changes. While NetBinder was tested on myosin 2, it may easily be adopted to other proteins with long internal cavities, such as G-protein-coupled receptors or ion channels, the most popular current drug targets. NetBinder provides a new paradigm for drug design by a network-based elucidation of binding mechanisms at an atomic resolution.
Collapse
Affiliation(s)
- Mónika Bálint
- Pharmacoinformatics Unit, Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti út 12., 7624 Pécs, Hungary; (M.B.); (B.Z.Z.)
| | - Balázs Zoltán Zsidó
- Pharmacoinformatics Unit, Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti út 12., 7624 Pécs, Hungary; (M.B.); (B.Z.Z.)
| | - David van der Spoel
- Department of Cell and Molecular Biology, Uppsala University, Box 596, SE-75124 Uppsala, Sweden;
| | - Csaba Hetényi
- Pharmacoinformatics Unit, Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti út 12., 7624 Pécs, Hungary; (M.B.); (B.Z.Z.)
- Correspondence:
| |
Collapse
|
20
|
Cadé M, Muñoz-Garcia J, Babuty A, Paré L, Cochonneau D, Fekir K, Chatelais M, Heymann MF, Lokajczyk A, Boisson-Vidal C, Heymann D. FVIII regulates the molecular profile of endothelial cells: functional impact on the blood barrier and macrophage behavior. Cell Mol Life Sci 2022; 79:145. [PMID: 35190870 PMCID: PMC11072670 DOI: 10.1007/s00018-022-04178-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/10/2022] [Accepted: 01/28/2022] [Indexed: 12/20/2022]
Abstract
Hemophilia A is an inherited X-linked recessive bleeding disorder caused by deficient activity of blood coagulation factor VIII (FVIII). In addition, hemophilia patients show associated diseases including osteopenia, altered inflammation and vascular fragility which may represent the consequence of recurrent bleeding or may be related to the direct FVIII deficiency. Nowadays, recombinant FVIII is proposed to treat hemophilia patients with no circulating FVIII inhibitor. Initially described as a coenzyme to factor IXa for initiating thrombin generation, there is emerging evidence that FVIII is involved in multiple biological systems, including bone, vascular and immune systems. The present study investigated: (i) the functional activities of recombinant human FVIII (rFVIII) on endothelial cells, and (ii) the impact of rFVIII activities on the functional interactions of human monocytes and endothelial cells. We then investigated whether rFVIII had a direct effect on the adhesion of monocytes to the endothelium under physiological flow conditions. We observed that direct biological activities for rFVIII in endothelial cells were characterized by: (i) a decrease in endothelial cell adhesion to the underlying extracellular matrix; (ii) regulation of the transcriptomic and protein profiles of endothelial cells; (iii) an increase in the vascular tubes formed and vascular permeability in vitro; and (iv) an increase in monocyte adhesion activated endothelium and transendothelial migration. By regulating vascular permeability plus leukocyte adhesion and transendothelial migration, the present work highlights new biological functions for FVIII.
Collapse
Affiliation(s)
- Marie Cadé
- Nantes Université, CNRS, US2B, UMR 6286, 44000, Nantes, France
- Institut de Cancérologie de l'Ouest, "Tumor Heterogeneity and Precision Medicine" Laboratory, Blvd Jacques Monod, 44805, Saint-Herblain cedex, France
| | - Javier Muñoz-Garcia
- Institut de Cancérologie de l'Ouest, "Tumor Heterogeneity and Precision Medicine" Laboratory, Blvd Jacques Monod, 44805, Saint-Herblain cedex, France
| | - Antoine Babuty
- Nantes Université, CNRS, US2B, UMR 6286, 44000, Nantes, France
- Department of Hemostasis, CHU de Nantes, Nantes, France
| | - Louis Paré
- Université de Paris, CNRS, Institut Jacques Monod, UMR 7592, Paris, France
| | - Denis Cochonneau
- Institut de Cancérologie de l'Ouest, "Tumor Heterogeneity and Precision Medicine" Laboratory, Blvd Jacques Monod, 44805, Saint-Herblain cedex, France
| | | | | | - Marie-Françoise Heymann
- Institut de Cancérologie de l'Ouest, "Tumor Heterogeneity and Precision Medicine" Laboratory, Blvd Jacques Monod, 44805, Saint-Herblain cedex, France
| | | | | | - Dominique Heymann
- Nantes Université, CNRS, US2B, UMR 6286, 44000, Nantes, France.
- Institut de Cancérologie de l'Ouest, "Tumor Heterogeneity and Precision Medicine" Laboratory, Blvd Jacques Monod, 44805, Saint-Herblain cedex, France.
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK.
| |
Collapse
|
21
|
Bernadskaya YY, Yue H, Copos C, Christiaen L, Mogilner A. Supracellular organization confers directionality and mechanical potency to migrating pairs of cardiopharyngeal progenitor cells. eLife 2021; 10:e70977. [PMID: 34842140 PMCID: PMC8700272 DOI: 10.7554/elife.70977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 11/26/2021] [Indexed: 12/26/2022] Open
Abstract
Physiological and pathological morphogenetic events involve a wide array of collective movements, suggesting that multicellular arrangements confer biochemical and biomechanical properties contributing to tissue-scale organization. The Ciona cardiopharyngeal progenitors provide the simplest model of collective cell migration, with cohesive bilateral cell pairs polarized along the leader-trailer migration path while moving between the ventral epidermis and trunk endoderm. We use the Cellular Potts Model to computationally probe the distributions of forces consistent with shapes and collective polarity of migrating cell pairs. Combining computational modeling, confocal microscopy, and molecular perturbations, we identify cardiopharyngeal progenitors as the simplest cell collective maintaining supracellular polarity with differential distributions of protrusive forces, cell-matrix adhesion, and myosin-based retraction forces along the leader-trailer axis. 4D simulations and experimental observations suggest that cell-cell communication helps establish a hierarchy to align collective polarity with the direction of migration, as observed with three or more cells in silico and in vivo. Our approach reveals emerging properties of the migrating collective: cell pairs are more persistent, migrating longer distances, and presumably with higher accuracy. Simulations suggest that cell pairs can overcome mechanical resistance of the trunk endoderm more effectively when they are polarized collectively. We propose that polarized supracellular organization of cardiopharyngeal progenitors confers emergent physical properties that determine mechanical interactions with their environment during morphogenesis.
Collapse
Affiliation(s)
- Yelena Y Bernadskaya
- Center for Developmental Genetics, Department of Biology, New York UniversityNew YorkUnited States
| | - Haicen Yue
- Courant Institute of Mathematical Sciences and Department of Biology, New York UniversityNew YorkUnited States
| | - Calina Copos
- Mathematics and Computational Medicine, University of North Carolina at Chapel HillChapel HillUnited States
| | - Lionel Christiaen
- Center for Developmental Genetics, Department of Biology, New York UniversityNew YorkUnited States
- Sars International Centre for Marine Molecular BiologyBergenNorway
- Department of Heart Disease, Haukeland University HospitalBergenNorway
| | - Alex Mogilner
- Courant Institute of Mathematical Sciences and Department of Biology, New York UniversityNew YorkUnited States
| |
Collapse
|
22
|
Pajtók C, Veres-Székely A, Agócs R, Szebeni B, Dobosy P, Németh I, Veréb Z, Kemény L, Szabó AJ, Vannay Á, Tulassay T, Pap D. High salt diet impairs dermal tissue remodeling in a mouse model of IMQ induced dermatitis. PLoS One 2021; 16:e0258502. [PMID: 34723976 PMCID: PMC8559960 DOI: 10.1371/journal.pone.0258502] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 09/28/2021] [Indexed: 02/02/2023] Open
Abstract
Recent animal studies, as well as quantitative sodium MRI observations on humans demonstrated that remarkable amounts of sodium can be stored in the skin. It is also known that excess sodium in the tissues leads to inflammation in various organs, but its role in dermal pathophysiology has not been elucidated. Therefore, our aim was to study the effect of dietary salt loading on inflammatory process and related extracellular matrix (ECM) remodeling in the skin. To investigate the effect of high salt consumption on inflammation and ECM production in the skin mice were kept on normal (NSD) or high salt (HSD) diet and then dermatitis was induced with imiquimod (IMQ) treatment. The effect of high salt concentration on dermal fibroblasts (DF) and peripheral blood mononuclear cells (PBMC) was also investigated in vitro. The HSD resulted in increased sodium content in the skin of mice. Inflammatory cytokine Il17 expression was elevated in the skin of HSD mice. Expression of anti-inflammatory Il10 and Il13 decreased in the skin of HSD or HSD IMQ mice. The fibroblast marker Acta2 and ECM component Fn and Col1a1 decreased in HSD IMQ mice. Expression of ECM remodeling related Pdgfb and activation phosphorylated (p)-SMAD2/3 was lower in HSD IMQ mice. In PBMCs, production of IL10, IL13 and PDGFB was reduced due to high salt loading. In cultured DFs high salt concentration resulted in decreased cell motility and ECM production, as well. Our results demonstrate that high dietary salt intake is associated with increased dermal pro-inflammatory status. Interestingly, although inflammation induces the synthesis of ECM in most organs, the expression of ECM decreased in the inflamed skin of mice on high salt diet. Our data suggest that salt intake may alter the process of skin remodeling.
Collapse
Affiliation(s)
- Csenge Pajtók
- 1st Department of Paediatrics, Semmelweis University, Budapest, Hungary
| | - Apor Veres-Székely
- 1st Department of Paediatrics, Semmelweis University, Budapest, Hungary
- ELKH-SE Pediatrics and Nephrology Research Group, Budapest, Hungary
| | - Róbert Agócs
- 1st Department of Paediatrics, Semmelweis University, Budapest, Hungary
| | - Beáta Szebeni
- 1st Department of Paediatrics, Semmelweis University, Budapest, Hungary
- ELKH-SE Pediatrics and Nephrology Research Group, Budapest, Hungary
| | - Péter Dobosy
- Institute of Aquatic Ecology, Centre for Ecological Research, Budapest, Hungary
| | - István Németh
- Faculty of Medicine, Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary
| | - Zoltán Veréb
- Faculty of Medicine, Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary
| | - Lajos Kemény
- Faculty of Medicine, Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary
| | - Attila J. Szabó
- 1st Department of Paediatrics, Semmelweis University, Budapest, Hungary
- ELKH-SE Pediatrics and Nephrology Research Group, Budapest, Hungary
| | - Ádám Vannay
- ELKH-SE Pediatrics and Nephrology Research Group, Budapest, Hungary
| | - Tivadar Tulassay
- 1st Department of Paediatrics, Semmelweis University, Budapest, Hungary
- ELKH-SE Pediatrics and Nephrology Research Group, Budapest, Hungary
| | - Domonkos Pap
- 1st Department of Paediatrics, Semmelweis University, Budapest, Hungary
- ELKH-SE Pediatrics and Nephrology Research Group, Budapest, Hungary
| |
Collapse
|
23
|
Bagheri-Yarmand R, Busaidy NL, McBeath E, Danysh BP, Evans KW, Moss TJ, Akcakanat A, Ng PKS, Knippler CM, Golden JA, Williams MD, Multani AS, Cabanillas ME, Shaw KR, Meric-Bernstam F, Shah MH, Ringel MD, Hofmann MC. RAC1 Alterations Induce Acquired Dabrafenib Resistance in Association with Anaplastic Transformation in a Papillary Thyroid Cancer Patient. Cancers (Basel) 2021; 13:4950. [PMID: 34638434 PMCID: PMC8507731 DOI: 10.3390/cancers13194950] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/25/2021] [Accepted: 09/27/2021] [Indexed: 11/19/2022] Open
Abstract
BRAF-activating mutations are the most frequent driver mutations in papillary thyroid cancer (PTC). Targeted inhibitors such as dabrafenib have been used in advanced BRAF-mutated PTC; however, acquired resistance to the drug is common and little is known about other effectors that may play integral roles in this resistance. In addition, the induction of PTC dedifferentiation into highly aggressive KRAS-driven anaplastic thyroid cancer (ATC) has been reported. We detected a novel RAC1 (P34R) mutation acquired during dabrafenib treatment in a progressive metastatic lesion with ATC phenotype. To identify a potential functional link between this novel mutation and tumor dedifferentiation, we developed a cell line derived from the metastatic lesion and compared its behavior to isogenic cell lines and primary tumor samples. Our data demonstrated that RAC1 mutations induce changes in cell morphology, reorganization of F-actin almost exclusively at the cell cortex, and changes in cell adhesion properties. We also established that RAC1 amplification, with or without mutation, is sufficient to drive cell proliferation and resistance to BRAF inhibition. Further, we identified polyploidy of chromosome 7, which harbors RAC1, in both the metastatic lesion and its derived cell line. Copy number amplification and overexpression of other genes located on this chromosome, such as TWIST1, EGFR, and MET were also detected, which might also lead to dabrafenib resistance. Our study suggests that polyploidy leading to increased expression of specific genes, particularly those located on chromosome 7, should be considered when analyzing aggressive thyroid tumor samples and in further treatments.
Collapse
Affiliation(s)
- Rozita Bagheri-Yarmand
- Department of Endocrine Neoplasia and Hormonal Disorders, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (R.B.-Y.); (N.L.B.); (E.M.); (B.P.D.); (J.A.G.); (M.E.C.)
| | - Naifa L. Busaidy
- Department of Endocrine Neoplasia and Hormonal Disorders, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (R.B.-Y.); (N.L.B.); (E.M.); (B.P.D.); (J.A.G.); (M.E.C.)
| | - Elena McBeath
- Department of Endocrine Neoplasia and Hormonal Disorders, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (R.B.-Y.); (N.L.B.); (E.M.); (B.P.D.); (J.A.G.); (M.E.C.)
| | - Brian P. Danysh
- Department of Endocrine Neoplasia and Hormonal Disorders, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (R.B.-Y.); (N.L.B.); (E.M.); (B.P.D.); (J.A.G.); (M.E.C.)
| | - Kurt W. Evans
- Department of Investigative Cancer Therapeutics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (K.W.E.); (A.A.); (P.K.S.N.); (K.R.S.); (F.M.-B.)
| | - Tyler J. Moss
- Bioinformatics & Computational Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Argun Akcakanat
- Department of Investigative Cancer Therapeutics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (K.W.E.); (A.A.); (P.K.S.N.); (K.R.S.); (F.M.-B.)
| | - Patrick K. S. Ng
- Department of Investigative Cancer Therapeutics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (K.W.E.); (A.A.); (P.K.S.N.); (K.R.S.); (F.M.-B.)
| | - Christina M. Knippler
- Division of Endocrinology, Diabetes, and Metabolism, Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA; (C.M.K.); (M.D.R.)
- Department of Hematology and Medical Oncology, Emory University Winship Cancer Institute, Atlanta, GA 30322, USA
| | - Jalyn A. Golden
- Department of Endocrine Neoplasia and Hormonal Disorders, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (R.B.-Y.); (N.L.B.); (E.M.); (B.P.D.); (J.A.G.); (M.E.C.)
| | - Michelle D. Williams
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Asha S. Multani
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Maria E. Cabanillas
- Department of Endocrine Neoplasia and Hormonal Disorders, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (R.B.-Y.); (N.L.B.); (E.M.); (B.P.D.); (J.A.G.); (M.E.C.)
| | - Kenna R. Shaw
- Department of Investigative Cancer Therapeutics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (K.W.E.); (A.A.); (P.K.S.N.); (K.R.S.); (F.M.-B.)
| | - Funda Meric-Bernstam
- Department of Investigative Cancer Therapeutics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (K.W.E.); (A.A.); (P.K.S.N.); (K.R.S.); (F.M.-B.)
| | - Manisha H. Shah
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA;
| | - Matthew D. Ringel
- Division of Endocrinology, Diabetes, and Metabolism, Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA; (C.M.K.); (M.D.R.)
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA;
| | - Marie Claude Hofmann
- Department of Endocrine Neoplasia and Hormonal Disorders, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (R.B.-Y.); (N.L.B.); (E.M.); (B.P.D.); (J.A.G.); (M.E.C.)
| |
Collapse
|
24
|
Martínez-López A, García-Casas A, Bragado P, Orimo A, Castañeda-Saucedo E, Castillo-Lluva S. Inhibition of RAC1 activity in cancer associated fibroblasts favours breast tumour development through IL-1β upregulation. Cancer Lett 2021; 521:14-28. [PMID: 34419498 DOI: 10.1016/j.canlet.2021.08.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 08/11/2021] [Accepted: 08/14/2021] [Indexed: 11/26/2022]
Abstract
Cancer-associated fibroblasts (CAFs) are highly abundant stromal components in the tumour microenvironment. These cells contribute to tumorigenesis and indeed, they have been proposed as a target for anti-cancer therapies. Similarly, targeting the Rho-GTPase RAC1 has also been suggested as a potential therapeutic target in cancer. Here, we show that targeting RAC1 activity, either pharmacologically or by genetic silencing, increases the pro-tumorigenic activity of CAFs by upregulating IL-1β secretion. Moreover, inhibiting RAC1 activity shifts the CAF subtype to a more aggressive phenotype. Thus, as RAC1 suppresses the secretion of IL-1β by CAFs, reducing RAC1 activity in combination with the depletion of this cytokine should be considered as an interesting therapeutic option for breast cancer in which tumour cells retain intact IL-1β signalling.
Collapse
Affiliation(s)
- Angélica Martínez-López
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Biológicas, Universidad Complutense, Madrid, 28040, Spain; Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Mexico
| | - Ana García-Casas
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Biológicas, Universidad Complutense, Madrid, 28040, Spain; Instituto de Investigaciones Sanitarias San Carlos (IdISSC), Madrid, 28040, Spain
| | - Paloma Bragado
- Instituto de Investigaciones Sanitarias San Carlos (IdISSC), Madrid, 28040, Spain; Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense, Madrid, 28040, Spain
| | - Akira Orimo
- Department of Pathology and Oncology, Juntendo University School of Medicine, Tokyo, Japan
| | - Eduardo Castañeda-Saucedo
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Mexico
| | - Sonia Castillo-Lluva
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Biológicas, Universidad Complutense, Madrid, 28040, Spain; Instituto de Investigaciones Sanitarias San Carlos (IdISSC), Madrid, 28040, Spain.
| |
Collapse
|
25
|
Ceccacci S, De Lucia A, Tito A, Tortora A, Falanga D, Arciello S, Ausanio G, Di Cicco C, Monti MC, Apone F. An Oenothera biennis Cell Cultures Extract Endowed with Skin Anti-Ageing Activity Improves Cell Mechanical Properties. Metabolites 2021; 11:metabo11080527. [PMID: 34436468 PMCID: PMC8399800 DOI: 10.3390/metabo11080527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/04/2021] [Accepted: 08/04/2021] [Indexed: 11/16/2022] Open
Abstract
Skin aging is a very well-known process setting a gradual worsening of skin mechanical features due to a decline in the production of the extra-cellular matrix machinery and to a concurrent change in the contraction process. To slow this progression, it is crucial to induce the expression of several proteins able to promote elastic fibers formation and tissue repair. Here, the Oenothera biennis cell culture aqueous extract has been investigated from a chemical point of view and then it was tested in vitro, in cell, and in ex vivo experiments as adjuvant in counteracting skin aging. Accordingly, it has been shown that the Oenothera biennis extract was able, by increasing MYLK gene expression, to promote matrix collagen contraction, actin polymerization, and the production of essential ECM proteins.
Collapse
Affiliation(s)
- Sara Ceccacci
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy;
- PhD Program in Drug Discovery and Development, Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy
| | - Adriana De Lucia
- Arterra Bioscience SpA, 80142 Naples, Italy; (A.D.L.); (A.T.); (A.T.); (D.F.); (S.A.); (F.A.)
| | - Annalisa Tito
- Arterra Bioscience SpA, 80142 Naples, Italy; (A.D.L.); (A.T.); (A.T.); (D.F.); (S.A.); (F.A.)
| | - Assunta Tortora
- Arterra Bioscience SpA, 80142 Naples, Italy; (A.D.L.); (A.T.); (A.T.); (D.F.); (S.A.); (F.A.)
| | - Danila Falanga
- Arterra Bioscience SpA, 80142 Naples, Italy; (A.D.L.); (A.T.); (A.T.); (D.F.); (S.A.); (F.A.)
| | - Stefania Arciello
- Arterra Bioscience SpA, 80142 Naples, Italy; (A.D.L.); (A.T.); (A.T.); (D.F.); (S.A.); (F.A.)
| | - Giovanni Ausanio
- CNR-SPIN Department of Physics, University of Naples “Federico II”, 80125 Naples, Italy;
| | - Chiara Di Cicco
- Department of Neuroscience and Reproductive and Odontostomatological Sciences, University of Naples “Federico II”, 80131 Naples, Italy;
| | - Maria Chiara Monti
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy;
- Correspondence:
| | - Fabio Apone
- Arterra Bioscience SpA, 80142 Naples, Italy; (A.D.L.); (A.T.); (A.T.); (D.F.); (S.A.); (F.A.)
- Vitalab Srl, 80142 Naples, Italy
| |
Collapse
|
26
|
Choi HJ, Wang C, Pan X, Jang J, Cao M, Brazzo JA, Bae Y, Lee K. Emerging machine learning approaches to phenotyping cellular motility and morphodynamics. Phys Biol 2021; 18:10.1088/1478-3975/abffbe. [PMID: 33971636 PMCID: PMC9131244 DOI: 10.1088/1478-3975/abffbe] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 05/10/2021] [Indexed: 12/22/2022]
Abstract
Cells respond heterogeneously to molecular and environmental perturbations. Phenotypic heterogeneity, wherein multiple phenotypes coexist in the same conditions, presents challenges when interpreting the observed heterogeneity. Advances in live cell microscopy allow researchers to acquire an unprecedented amount of live cell image data at high spatiotemporal resolutions. Phenotyping cellular dynamics, however, is a nontrivial task and requires machine learning (ML) approaches to discern phenotypic heterogeneity from live cell images. In recent years, ML has proven instrumental in biomedical research, allowing scientists to implement sophisticated computation in which computers learn and effectively perform specific analyses with minimal human instruction or intervention. In this review, we discuss how ML has been recently employed in the study of cell motility and morphodynamics to identify phenotypes from computer vision analysis. We focus on new approaches to extract and learn meaningful spatiotemporal features from complex live cell images for cellular and subcellular phenotyping.
Collapse
Affiliation(s)
- Hee June Choi
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA 01609, United States of America
- Vascular Biology Program and Department of Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, United States of America
| | - Chuangqi Wang
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA 01609, United States of America
- Present address. Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Xiang Pan
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA 01609, United States of America
- Vascular Biology Program and Department of Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, United States of America
| | - Junbong Jang
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA 01609, United States of America
- Vascular Biology Program and Department of Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, United States of America
| | - Mengzhi Cao
- Data Science Program, Worcester Polytechnic Institute, Worcester, MA 01609, United States of America
| | - Joseph A Brazzo
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, United States of America
| | - Yongho Bae
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, United States of America
| | - Kwonmoo Lee
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA 01609, United States of America
- Vascular Biology Program and Department of Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, United States of America
| |
Collapse
|
27
|
A Novel Method for Effective Cell Segmentation and Tracking in Phase Contrast Microscopic Images. SENSORS 2021; 21:s21103516. [PMID: 34070081 PMCID: PMC8158140 DOI: 10.3390/s21103516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/12/2021] [Accepted: 05/14/2021] [Indexed: 11/16/2022]
Abstract
Cell migration plays an important role in the identification of various diseases and physiological phenomena in living organisms, such as cancer metastasis, nerve development, immune function, wound healing, and embryo formulation and development. The study of cell migration with a real-time microscope generally takes several hours and involves analysis of the movement characteristics by tracking the positions of cells at each time interval in the images of the observed cells. Morphological analysis considers the shapes of the cells, and a phase contrast microscope is used to observe the shape clearly. Therefore, we developed a segmentation and tracking method to perform a kinetic analysis by considering the morphological transformation of cells. The main features of the algorithm are noise reduction using a block-matching 3D filtering method, k-means clustering to mitigate the halo signal that interferes with cell segmentation, and the detection of cell boundaries via active contours, which is an excellent way to detect boundaries. The reliability of the algorithm developed in this study was verified using a comparison with the manual tracking results. In addition, the segmentation results were compared to our method with unsupervised state-of-the-art methods to verify the proposed segmentation process. As a result of the study, the proposed method had a lower error of less than 40% compared to the conventional active contour method.
Collapse
|
28
|
SATB1 protein is associated with the epithelial‑mesenchymal transition process in non‑small cell lung cancers. Oncol Rep 2021; 45:118. [PMID: 33955522 PMCID: PMC8107643 DOI: 10.3892/or.2021.8069] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/25/2021] [Indexed: 12/12/2022] Open
Abstract
Lung cancer is one of the most frequently diagnosed neoplasms and the leading cause of cancer‑related mortality worldwide. Its predominant subtype is non‑small cell lung cancer (NSCLC), which accounts for over 80% of the cases. Surprisingly, the majority of lung cancer‑related deaths are caused not by a primary tumour itself, but by its metastasis to distant organs. Therefore, it becomes especially important to identify the factors involved in lung cancer metastatic spread. Special AT‑rich binding protein 1 (SATB1) is a nuclear matrix protein that mediates chromatin looping and plays the role of global transcriptional regulator. During the past decade, it has received much attention as a factor promoting tumour invasion. In breast, colorectal and prostate cancers, SATB1 has been shown to influence the epithelial‑mesenchymal transition (EMT) process, which is thought to be crucial for cancer metastasis. The aim of this study was to analyse the possible correlations between the expression of SATB1 and major EMT‑associated proteins in NSCLC clinical samples. Additionally, the impact of EMT induction in NSCLC cell lines on SATB1 mRNA expression was also investigated. Immunohistochemistry was used to assess the expression of SATB1, SNAIL, SLUG, Twist1, E‑cadherin, and N‑cadherin in 242 lung cancer clinical samples. EMT was induced by TGF‑β1 treatment in the A549 and NCI‑H1703 lung cancer cell lines. Changes in gene expression profiles were analyzed using real‑time PCR and Droplet Digital PCR. SATB1 expression was positively correlated with the expression of SNAIL (R=0.129; P=0.045), SLUG (R=0.449; P<0.0001), and Twist1 (R=0.264; P<0.0001). Moreover, SATB1 expression significantly increased after in vitro EMT induction in A549 and NCI‑H1703 cell lines. The results obtained may point to the role of SATB1 as one of the regulators of EMT in NSCLC.
Collapse
|
29
|
Alday-Parejo B, Ghimire K, Coquoz O, Albisetti GW, Tamò L, Zaric J, Stalin J, Rüegg C. MAGI1 localizes to mature focal adhesion and modulates endothelial cell adhesion, migration and angiogenesis. Cell Adh Migr 2021; 15:126-139. [PMID: 33823745 PMCID: PMC8115569 DOI: 10.1080/19336918.2021.1911472] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
MAGI1 is an intracellular adaptor protein that stabilizes cell junctions and regulates epithelial and endothelial integrity. Here, we report that that in endothelial cells MAGI1 colocalizes with paxillin, β3-integrin, talin 1, tensin 3 and α-4-actinin at mature focal adhesions and actin stress fibers, and regulates their dynamics. Downregulation of MAGI1 reduces focal adhesion formation and maturation, cell spreading, actin stress fiber formation and RhoA/Rac1 activation. MAGI1 silencing increases phosphorylation of paxillin at Y118, an indicator of focal adhesion turnover. MAGI1 promotes integrin-dependent endothelial cells adhesion to ECM, reduces invasion and tubulogenesisin vitro and suppresses angiogenesis in vivo. Our results identify MAGI1 as anovel component of focal adhesions, and regulator of focal adhesion dynamics, cell adhesion, invasion and angiogenesis.
Collapse
Affiliation(s)
- Begoña Alday-Parejo
- Laboratory of Experimental and Translational Oncology, Pathology, Department of Oncology, Microbiology and Immunology, Faculty of Sciences and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Kedar Ghimire
- Laboratory of Experimental and Translational Oncology, Pathology, Department of Oncology, Microbiology and Immunology, Faculty of Sciences and Medicine, University of Fribourg, Fribourg, Switzerland.,Westmead Institute for Medical Research, University of Sydney, Sydney, Australia
| | - Oriana Coquoz
- Laboratory of Experimental and Translational Oncology, Pathology, Department of Oncology, Microbiology and Immunology, Faculty of Sciences and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Gioele W Albisetti
- Laboratory of Experimental and Translational Oncology, Pathology, Department of Oncology, Microbiology and Immunology, Faculty of Sciences and Medicine, University of Fribourg, Fribourg, Switzerland.,Institute of Pharmacology and Toxicology, Section of Neuropharmacology, University of Zürich, Zürich, Switzerland
| | - Luca Tamò
- Laboratory of Experimental and Translational Oncology, Pathology, Department of Oncology, Microbiology and Immunology, Faculty of Sciences and Medicine, University of Fribourg, Fribourg, Switzerland.,Clinical Trials Unit, University of Bern, Bern, Switzerland
| | - Jelena Zaric
- Laboratory of Experimental and Translational Oncology, Pathology, Department of Oncology, Microbiology and Immunology, Faculty of Sciences and Medicine, University of Fribourg, Fribourg, Switzerland.,Swiss Institute for Experimental Cancer Research, Ecole Polytechnique Fédérale De Lausanne, Lausanne, Switzerland
| | - Jimmy Stalin
- Laboratory of Experimental and Translational Oncology, Pathology, Department of Oncology, Microbiology and Immunology, Faculty of Sciences and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Curzio Rüegg
- Laboratory of Experimental and Translational Oncology, Pathology, Department of Oncology, Microbiology and Immunology, Faculty of Sciences and Medicine, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
30
|
Chen D, Dunkers JP, Losert W, Sarkar S. Early time-point cell morphology classifiers successfully predict human bone marrow stromal cell differentiation modulated by fiber density in nanofiber scaffolds. Biomaterials 2021; 274:120812. [PMID: 33962216 DOI: 10.1016/j.biomaterials.2021.120812] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 02/12/2021] [Accepted: 04/03/2021] [Indexed: 12/21/2022]
Abstract
Nanofiber scaffolds can induce osteogenic differentiation and cell morphology alterations of human bone marrow stromal cells (hBMSCs) without introduction of chemical cues. In this study, we investigate the predictive power of day 1 cell morphology, quantified by a machine learning based method, as an indicator of osteogenic differentiation modulated by nanofiber density. Nanofiber scaffolds are fabricated via electrospinning. Microscopy, quantitative image processing and clustering analysis are used to systematically quantify scaffold properties as a function of fiber density. hBMSC osteogenic differentiation potential is evaluated after 14 days using osteogenic marker gene expression and after 50 days using calcium mineralization, showing enhanced osteogenic differentiation with an increase in nanofiber density. Cell morphology measurements at day 1 successfully predict differentiation potential when analyzed with the support vector machine (SVM)/supercell tools previously developed and trained on cells from a different donor. A correlation is observed between differentiation potential and cell morphology, demonstrating sensitivity of the morphology measurement to varying degrees of differentiation potential. To further understand how nanofiber density determines hBMSC morphology, both full 3-D morphology measurements as well as other measurements of the 2-D projected morphology are investigated in this study. To achieve predictive power on hBMSC osteogenic differentiation, at least two morphology metrics need to be considered together for each cell, with the majority of metric pairs including one 3-D morphology metric. Analysis of the local nanofiber structure surrounding each cell reveals a correlation with single-cell morphology and indicates that the osteogenic differentiation phenotype may be predictive at the single-cell level.
Collapse
Affiliation(s)
- Desu Chen
- University of Maryland, Department of Physics, 1147 Physical Sciences Complex, College Park, MD, 20742, USA.
| | - Joy P Dunkers
- National Institute of Standards & Technology, Biosystems & Biomaterials Division, 100 Bureau Dr. Stop 8543, Gaithersburg, MD, 20899, USA.
| | - Wolfgang Losert
- University of Maryland, Department of Physics, 1147 Physical Sciences Complex, College Park, MD, 20742, USA.
| | - Sumona Sarkar
- National Institute of Standards & Technology, Biosystems & Biomaterials Division, 100 Bureau Dr. Stop 8543, Gaithersburg, MD, 20899, USA.
| |
Collapse
|
31
|
A formalism for modelling traction forces and cell shape evolution during cell migration in various biomedical processes. Biomech Model Mechanobiol 2021; 20:1459-1475. [PMID: 33893558 PMCID: PMC8298374 DOI: 10.1007/s10237-021-01456-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/31/2021] [Indexed: 01/17/2023]
Abstract
The phenomenological model for cell shape deformation and cell migration Chen (BMM 17:1429–1450, 2018), Vermolen and Gefen (BMM 12:301–323, 2012), is extended with the incorporation of cell traction forces and the evolution of cell equilibrium shapes as a result of cell differentiation. Plastic deformations of the extracellular matrix are modelled using morphoelasticity theory. The resulting partial differential differential equations are solved by the use of the finite element method. The paper treats various biological scenarios that entail cell migration and cell shape evolution. The experimental observations in Mak et al. (LC 13:340–348, 2013), where transmigration of cancer cells through narrow apertures is studied, are reproduced using a Monte Carlo framework.
Collapse
|
32
|
Frey F, Idema T. More than just a barrier: using physical models to couple membrane shape to cell function. SOFT MATTER 2021; 17:3533-3549. [PMID: 33503097 DOI: 10.1039/d0sm01758b] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The correct execution of many cellular processes, such as division and motility, requires the cell to adopt a specific shape. Physically, these shapes are determined by the interplay of the plasma membrane and internal cellular driving factors. While the plasma membrane defines the boundary of the cell, processes inside the cell can result in the generation of forces that deform the membrane. These processes include protein binding, the assembly of protein superstructures, and the growth and contraction of cytoskeletal networks. Due to the complexity of the cell, relating observed membrane deformations back to internal processes is a challenging problem. Here, we review cell shape changes in endocytosis, cell adhesion, cell migration and cell division and discuss how by modeling membrane deformations we can investigate the inner working principles of the cell.
Collapse
Affiliation(s)
- Felix Frey
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands.
| | | |
Collapse
|
33
|
Cell Cytoskeleton and Stiffness Are Mechanical Indicators of Organotropism in Breast Cancer. BIOLOGY 2021; 10:biology10040259. [PMID: 33805866 PMCID: PMC8064360 DOI: 10.3390/biology10040259] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/05/2021] [Accepted: 03/06/2021] [Indexed: 12/23/2022]
Abstract
Simple Summary Cancer cell dissemination exhibits organ preference or organotropism. Although the influence of intrinsic biochemical factors on organotropism has been intensely studied, little is known about the roles of mechanical properties of metastatic cancer cells. Our study suggests that there may be a correlation between cell cytoskeleton/stiffness and organotropism. We find that the cytoskeleton and stiffness of breast cancer cell subpopulations with different metastatic preference match the mechanics of the metastasized organs. The modification of cell cytoskeleton significantly influences the organotropism-related gene expression pattern and mechanoresponses on soft substrates which mimic brain tissue stiffness. These findings highlight the key role of cell cytoskeleton in specific organ metastasis, which may not only reflect but also impact the metastatic organ preference. Abstract Tumor metastasis involves the dissemination of tumor cells from the primary lesion to other organs and the subsequent formation of secondary tumors, which leads to the majority of cancer-related deaths. Clinical findings show that cancer cell dissemination is not random but exhibits organ preference or organotropism. While intrinsic biochemical factors of cancer cells have been extensively studied in organotropism, much less is known about the role of cell cytoskeleton and mechanics. Herein, we demonstrate that cell cytoskeleton and mechanics are correlated with organotropism. The result of cell stiffness measurements shows that breast cancer cells with bone tropism are much stiffer with enhanced F-actin, while tumor cells with brain tropism are softer with lower F-actin than their parental cells. The difference in cellular stiffness matches the difference in the rigidity of their metastasized organs. Further, disrupting the cytoskeleton of breast cancer cells with bone tropism not only elevates the expressions of brain metastasis-related genes but also increases cell spreading and proliferation on soft substrates mimicking the stiffness of brain tissue. Stabilizing the cytoskeleton of cancer cells with brain tropism upregulates bone metastasis-related genes while reduces the mechanoadaptation ability on soft substrates. Taken together, these findings demonstrate that cell cytoskeleton and biophysical properties of breast cancer subpopulations correlate with their metastatic preference in terms of gene expression pattern and mechanoadaptation ability, implying the potential role of cell cytoskeleton in organotropism.
Collapse
|
34
|
Wang N, Zhang H, Cui X, Ma C, Wang L, Liu W. Runx3 Induces a Cell Shape Change and Suppresses Migration and Metastasis of Melanoma Cells by Altering a Transcriptional Profile. Int J Mol Sci 2021; 22:2219. [PMID: 33672337 PMCID: PMC7926509 DOI: 10.3390/ijms22042219] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/08/2021] [Accepted: 02/18/2021] [Indexed: 11/17/2022] Open
Abstract
Runt-related transcription factor-3 (Runx3) is a tumor suppressor, and its contribution to melanoma progression remains unclear. We previously demonstrated that Runx3 re-expression in B16-F10 melanoma cells changed their shape and attenuated their migration. In this study, we found that Runx3 re-expression in B16-F10 cells also suppressed their pulmonary metastasis. We performed microarray analysis and uncovered an altered transcriptional profile underlying the cell shape change and the suppression of migration and metastasis. This altered transcriptional profile was rich in Gene Ontology/Kyoto Encyclopedia of Genes and Genomes (GO/KEGG) annotations relevant to adhesion and the actin cytoskeleton and included differentially expressed genes for some major extracellular matrix (ECM) proteins as well as genes that were inversely associated with the increase in the metastatic potential of B16-F10 cells compared to B16-F0 melanoma cells. Further, we found that this altered transcriptional profile could have prognostic value, as evidenced by myelin and lymphocyte protein (MAL) and vilin-like (VILL). Finally, Mal gene expression was correlated with metastatic potential among the cells and was targeted by histone deacetylase (HDAC) inhibitors in B16-F10 cells, and the knockdown of Mal gene expression in B16-F0 cells changed their shape and enhanced the migratory and invasive traits of their metastasis. Our study suggests that self-entrapping of metastatic Runx3-negative melanoma cells via adhesion and the actin cytoskeleton could be a powerful therapeutic strategy.
Collapse
Affiliation(s)
- Ning Wang
- Institute of Genetics and Cell Biology, School of Life Sciences, Northeast Normal University, No. 5268, Renmin St., Changchun 130024, China; (N.W.); (X.C.); (C.M.); (L.W.)
| | - Haiying Zhang
- Key Laboratory of Pathobiology of Ministry of Education, Norman Bethune College of Medicine, Jilin University, No. 126, Xinmin St., Changchun 130021, China;
| | - Xiulin Cui
- Institute of Genetics and Cell Biology, School of Life Sciences, Northeast Normal University, No. 5268, Renmin St., Changchun 130024, China; (N.W.); (X.C.); (C.M.); (L.W.)
| | - Chao Ma
- Institute of Genetics and Cell Biology, School of Life Sciences, Northeast Normal University, No. 5268, Renmin St., Changchun 130024, China; (N.W.); (X.C.); (C.M.); (L.W.)
| | - Linghui Wang
- Institute of Genetics and Cell Biology, School of Life Sciences, Northeast Normal University, No. 5268, Renmin St., Changchun 130024, China; (N.W.); (X.C.); (C.M.); (L.W.)
| | - Wenguang Liu
- Institute of Genetics and Cell Biology, School of Life Sciences, Northeast Normal University, No. 5268, Renmin St., Changchun 130024, China; (N.W.); (X.C.); (C.M.); (L.W.)
| |
Collapse
|
35
|
Khan R, Kulasiri D, Samarasinghe S. Functional repertoire of protein kinases and phosphatases in synaptic plasticity and associated neurological disorders. Neural Regen Res 2021; 16:1150-1157. [PMID: 33269764 PMCID: PMC8224123 DOI: 10.4103/1673-5374.300331] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Protein phosphorylation and dephosphorylation are two essential and vital cellular mechanisms that regulate many receptors and enzymes through kinases and phosphatases. Ca2+- dependent kinases and phosphatases are responsible for controlling neuronal processing; balance is achieved through opposition. During molecular mechanisms of learning and memory, kinases generally modulate positively while phosphatases modulate negatively. This review outlines some of the critical physiological and structural aspects of kinases and phosphatases involved in maintaining postsynaptic structural plasticity. It also explores the link between neuronal disorders and the deregulation of phosphatases and kinases.
Collapse
Affiliation(s)
- Raheel Khan
- Centre for Advanced Computational Solutions (C-fACS), Lincoln University; Department of Molecular Biosciences, Lincoln University, Christchurch, New Zealand
| | - Don Kulasiri
- Centre for Advanced Computational Solutions (C-fACS), Lincoln University; Department of Molecular Biosciences, Lincoln University, Christchurch, New Zealand
| | - Sandhya Samarasinghe
- Centre for Advanced Computational Solutions (C-fACS), Lincoln University, Christchurch, New Zealand
| |
Collapse
|
36
|
Vogel A, Bosse M, Gauglitz M, Wistuba S, Schmidt P, Kaiser A, Gurevich VV, Beck-Sickinger AG, Hildebrand PW, Huster D. The Dynamics of the Neuropeptide Y Receptor Type 1 Investigated by Solid-State NMR and Molecular Dynamics Simulation. Molecules 2020; 25:5489. [PMID: 33255213 PMCID: PMC7727705 DOI: 10.3390/molecules25235489] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/09/2020] [Accepted: 11/12/2020] [Indexed: 01/08/2023] Open
Abstract
We report data on the structural dynamics of the neuropeptide Y (NPY) G-protein-coupled receptor (GPCR) type 1 (Y1R), a typical representative of class A peptide ligand GPCRs, using a combination of solid-state NMR and molecular dynamics (MD) simulation. First, the equilibrium dynamics of Y1R were studied using 15N-NMR and quantitative determination of 1H-13C order parameters through the measurement of dipolar couplings in separated-local-field NMR experiments. Order parameters reporting the amplitudes of the molecular motions of the C-H bond vectors of Y1R in DMPC membranes are 0.57 for the Cα sites and lower in the side chains (0.37 for the CH2 and 0.18 for the CH3 groups). Different NMR excitation schemes identify relatively rigid and also dynamic segments of the molecule. In monounsaturated membranes composed of longer lipid chains, Y1R is more rigid, attributed to a higher hydrophobic thickness of the lipid membrane. The presence of an antagonist or NPY has little influence on the amplitude of motions, whereas the addition of agonist and arrestin led to a pronounced rigidization. To investigate Y1R dynamics with site resolution, we conducted extensive all-atom MD simulations of the apo and antagonist-bound state. In each state, three replicas with a length of 20 μs (with one exception, where the trajectory length was 10 μs) were conducted. In these simulations, order parameters of each residue were determined and showed high values in the transmembrane helices, whereas the loops and termini exhibit much lower order. The extracellular helix segments undergo larger amplitude motions than their intracellular counterparts, whereas the opposite is observed for the loops, Helix 8, and termini. Only minor differences in order were observed between the apo and antagonist-bound state, whereas the time scale of the motions is shorter for the apo state. Although these relatively fast motions occurring with correlation times of ns up to a few µs have no direct relevance for receptor activation, it is believed that they represent the prerequisite for larger conformational transitions in proteins.
Collapse
Affiliation(s)
- Alexander Vogel
- Institute for Medical Physics and Biophysics, University of Leipzig, Härtelstr. 16-18, D-04107 Leipzig, Germany; (A.V.); (M.B.); (M.G.); (S.W.); (P.S.)
| | - Mathias Bosse
- Institute for Medical Physics and Biophysics, University of Leipzig, Härtelstr. 16-18, D-04107 Leipzig, Germany; (A.V.); (M.B.); (M.G.); (S.W.); (P.S.)
| | - Marcel Gauglitz
- Institute for Medical Physics and Biophysics, University of Leipzig, Härtelstr. 16-18, D-04107 Leipzig, Germany; (A.V.); (M.B.); (M.G.); (S.W.); (P.S.)
| | - Sarah Wistuba
- Institute for Medical Physics and Biophysics, University of Leipzig, Härtelstr. 16-18, D-04107 Leipzig, Germany; (A.V.); (M.B.); (M.G.); (S.W.); (P.S.)
| | - Peter Schmidt
- Institute for Medical Physics and Biophysics, University of Leipzig, Härtelstr. 16-18, D-04107 Leipzig, Germany; (A.V.); (M.B.); (M.G.); (S.W.); (P.S.)
| | - Anette Kaiser
- Faculty of Life Sciences, Institute of Biochemistry, University of Leipzig, Brüderstr. 34, D-04103 Leipzig, Germany; (A.K.); (A.G.B.-S.)
| | - Vsevolod V. Gurevich
- Vanderbilt University Medical Center, 2200 Pierce Avenue, Nashville, TN 37232, USA;
| | - Annette G. Beck-Sickinger
- Faculty of Life Sciences, Institute of Biochemistry, University of Leipzig, Brüderstr. 34, D-04103 Leipzig, Germany; (A.K.); (A.G.B.-S.)
| | - Peter W. Hildebrand
- Institute for Medical Physics and Biophysics, University of Leipzig, Härtelstr. 16-18, D-04107 Leipzig, Germany; (A.V.); (M.B.); (M.G.); (S.W.); (P.S.)
| | - Daniel Huster
- Institute for Medical Physics and Biophysics, University of Leipzig, Härtelstr. 16-18, D-04107 Leipzig, Germany; (A.V.); (M.B.); (M.G.); (S.W.); (P.S.)
| |
Collapse
|
37
|
Bolle N, Mizuhara MS. Dynamics of a cell motility model near the sharp interface limit. J Theor Biol 2020; 505:110420. [PMID: 32739242 DOI: 10.1016/j.jtbi.2020.110420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/14/2020] [Accepted: 07/20/2020] [Indexed: 10/23/2022]
Abstract
Phase-field models have recently had great success in describing the dynamic morphologies and motility of eukaryotic cells. In this work we investigate the minimal phase-field model introduced in Berlyand et al. (2017). Rigorous analysis of its sharp interface limit dynamics was completed in Mizuhara et al. (2016) and Mizuhara et al. (2019), where it was observed that persistent cell motion was not stable. In this work we numerically study the pre-limiting phase-field model near the sharp interface limit, to better understand this lack of persistent motion. We find that immobile, persistent, and rotating states are all exhibited in this minimal model, and investigate the loss of persistent motion in the sharp interface limit.
Collapse
Affiliation(s)
- Nicolas Bolle
- Department of Mathematics and Statistics, The College of New Jersey Ewing Township, NJ, United States.
| | - Matthew S Mizuhara
- Department of Mathematics and Statistics, The College of New Jersey Ewing Township, NJ, United States.
| |
Collapse
|
38
|
Fleissner F, Kumar S, Klein N, Wirth D, Dhiman R, Schneider D, Bonn M, Parekh SH. Tension Causes Unfolding of Intracellular Vimentin Intermediate Filaments. ACTA ACUST UNITED AC 2020; 4:e2000111. [DOI: 10.1002/adbi.202000111] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 09/18/2020] [Indexed: 12/27/2022]
Affiliation(s)
- Frederik Fleissner
- Department of Molecular Spectroscopy Max Planck Institute for Polymer Research Mainz 55128 Germany
| | - Sachin Kumar
- Department of Molecular Spectroscopy Max Planck Institute for Polymer Research Mainz 55128 Germany
- Department of Biomedical Engineering University of Texas at Austin Austin TX 78712 USA
| | - Noreen Klein
- Institute of Pharmacy and Biochemistry Johannes Gutenberg‐University Mainz 55128 Germany
| | - Daniel Wirth
- Institute of Pharmacy and Biochemistry Johannes Gutenberg‐University Mainz 55128 Germany
| | - Ravi Dhiman
- Department of Molecular Spectroscopy Max Planck Institute for Polymer Research Mainz 55128 Germany
| | - Dirk Schneider
- Institute of Pharmacy and Biochemistry Johannes Gutenberg‐University Mainz 55128 Germany
| | - Mischa Bonn
- Department of Molecular Spectroscopy Max Planck Institute for Polymer Research Mainz 55128 Germany
| | - Sapun H. Parekh
- Department of Molecular Spectroscopy Max Planck Institute for Polymer Research Mainz 55128 Germany
- Department of Biomedical Engineering University of Texas at Austin Austin TX 78712 USA
| |
Collapse
|
39
|
Bodor DL, Pönisch W, Endres RG, Paluch EK. Of Cell Shapes and Motion: The Physical Basis of Animal Cell Migration. Dev Cell 2020; 52:550-562. [PMID: 32155438 DOI: 10.1016/j.devcel.2020.02.013] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 02/10/2020] [Accepted: 02/14/2020] [Indexed: 01/31/2023]
Abstract
Motile cells have developed a variety of migration modes relying on diverse traction-force-generation mechanisms. Before the behavior of intracellular components could be easily imaged, cell movements were mostly classified by different types of cellular shape dynamics. Indeed, even though some types of cells move without any significant change in shape, most cell propulsion mechanisms rely on global or local deformations of the cell surface. In this review, focusing mostly on metazoan cells, we discuss how different types of local and global shape changes underlie distinct migration modes. We then discuss mechanical differences between force-generation mechanisms and finish by speculating on how they may have evolved.
Collapse
Affiliation(s)
- Dani L Bodor
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK; Oncode Institute, Hubrecht Institute-KNAW, Utrecht, the Netherlands
| | - Wolfram Pönisch
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| | - Robert G Endres
- Department of Life Sciences and Centre for Integrative Systems Biology and Bioinformatics, Imperial College, London SW7 2AZ, UK
| | - Ewa K Paluch
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK.
| |
Collapse
|
40
|
Copos C, Mogilner A. A hybrid stochastic-deterministic mechanochemical model of cell polarization. Mol Biol Cell 2020; 31:1637-1649. [PMID: 32459563 PMCID: PMC7521800 DOI: 10.1091/mbc.e19-09-0549] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 05/11/2020] [Accepted: 05/20/2020] [Indexed: 12/15/2022] Open
Abstract
Polarization is a crucial component in cell differentiation, development, and motility, but its details are not yet well understood. At the onset of cell locomotion, cells break symmetry to form well-defined cell fronts and rears. This polarity establishment varies across cell types: in Dictyostelium discoideum cells, it is mediated by biochemical signaling pathways and can function in the absence of a cytoskeleton, while in keratocytes, it is tightly connected to cytoskeletal dynamics and mechanics. Theoretical models that have been developed to understand the onset of polarization have explored either signaling or mechanical pathways, yet few have explored mechanochemical mechanisms. However, many motile cells rely on both signaling modules and actin cytoskeleton to break symmetry and achieve a stable polarized state. We propose a general mechanochemical polarization model based on coupling between a stochastic model for the segregation of signaling molecules and a simplified mechanical model for actin cytoskeleton network competition. We find that local linear coupling between minimally nonlinear signaling and cytoskeletal systems, separately not supporting stable polarization, yields a robustly polarized cell state. The model captures the essence of spontaneous polarization of neutrophils, which has been proposed to emerge due to the competition between frontness and backness pathways.
Collapse
Affiliation(s)
- Calina Copos
- Courant Institute, New York University, New York, NY 10012
| | - Alex Mogilner
- Courant Institute, New York University, New York, NY 10012
- Department of Biology, New York University, New York, NY 10012
| |
Collapse
|
41
|
Pal DS, Li X, Banerjee T, Miao Y, Devreotes PN. The excitable signal transduction networks: movers and shapers of eukaryotic cell migration. THE INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY 2020; 63:407-416. [PMID: 31840779 DOI: 10.1387/ijdb.190265pd] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In response to a variety of external cues, eukaryotic cells display varied migratory modes to perform their physiological functions during development and in the adult. Aberrations in cell migration result in embryonic defects and cancer metastasis. The molecular components involved in cell migration are remarkably conserved between the social amoeba Dictyostelium and mammalian cells. This makes the amoeba an excellent model system for studies of eukaryotic cell migration. These migration-associated components can be grouped into three networks: input, signal transduction and cytoskeletal. In migrating cells, signal transduction events such as Ras or PI3K activity occur at the protrusion tips, referred to as 'front', whereas events such as dissociation of PTEN from these regions are referred to as 'back'. Asymmetric distribution of such front and back events is crucial for establishing polarity and guiding cell migration. The triggering of these signaling events displays properties of biochemical excitability including all-or-nothing responsiveness to suprathreshold stimuli, refractoriness, and wave propagation. These signal transduction waves originate from a point and propagate towards the edge of the cell, thereby driving cytoskeletal activity and cellular protrusions. Any change in the threshold for network activation alters the range of the propagating waves and the size of cellular protrusions which gives rise to various migratory modes in cells. Thus, this review highlights excitable signal transduction networks as key players for coordinating cytoskeletal activities to drive cell migration in all eukaryotes.
Collapse
Affiliation(s)
- Dhiman S Pal
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | | | | | | | | |
Collapse
|
42
|
Bilodeau P, Jacobsen D, Law-Vinh D, Lee JM. Phosphatidylinositol 4-kinase III beta regulates cell shape, migration, and focal adhesion number. Mol Biol Cell 2020; 31:1904-1916. [PMID: 32583740 PMCID: PMC7525810 DOI: 10.1091/mbc.e19-11-0600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Cell shape is regulated by cell adhesion and cytoskeletal and membrane dynamics. Cell shape, adhesion, and motility have a complex relationship and understanding them is important in understanding developmental patterning and embryogenesis. Here we show that the lipid kinase phosphatidylinositol 4-kinase III beta (PI4KIIIβ) regulates cell shape, migration, and focal adhesion (FA) number. PI4KIIIβ generates phosphatidylinositol 4-phosphate (PI4P) from phosphatidylinositol and is highly expressed in a subset of human breast cancers. PI4KIIIβ and the PI4P it generates regulate a variety of cellular functions, ranging from control of Golgi structure, fly fertility, and Akt signaling. Here, we show that loss of PI4KIIIβ expression decreases cell migration and alters cell shape in NIH3T3 fibroblasts. The changes are accompanied by an increase in the number of FA in cells lacking PI4KIIIβ. Furthermore, we find that PI4P-containing vesicles move to the migratory leading edge during migration and that some of these vesicles tether to and fuse with FA. Fusion is associated with FA disassembly. This suggests a novel regulatory role for PI4KIIIβ and PI4P in cell adhesion and cell shape maintenance.
Collapse
Affiliation(s)
- Patricia Bilodeau
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Daniel Jacobsen
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Denise Law-Vinh
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Jonathan M Lee
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
43
|
Zhang Z, Rosakis P, Hou TY, Ravichandran G. A minimal mechanosensing model predicts keratocyte evolution on flexible substrates. J R Soc Interface 2020; 17:20200175. [PMID: 32370690 DOI: 10.1098/rsif.2020.0175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
A mathematical model is proposed for shape evolution and locomotion of fish epidermal keratocytes on elastic substrates. The model is based on mechanosensing concepts: cells apply contractile forces onto the elastic substrate, while cell shape evolution depends locally on the substrate stress generated by themselves or external mechanical stimuli acting on the substrate. We use the level set method to study the behaviour of the model numerically, and predict a number of distinct phenomena observed in experiments, such as (i) symmetry breaking from the stationary centrosymmetric to the well-known steadily propagating crescent shape, (ii) asymmetric bipedal oscillations and travelling waves in the lamellipodium leading edge, (iii) response to remote mechanical stress externally applied to the substrate (tensotaxis) and (iv) changing direction of motion towards an interface with a rigid substrate (durotaxis).
Collapse
Affiliation(s)
- Zhiwen Zhang
- Department of Mathematics, The University of Hong Kong, Pokfulam Road, Hong Kong SAR
| | - Phoebus Rosakis
- Department of Mathematics and Applied Mathematics, University of Crete, Heraklion 70013 Crete, Greece.,Institute of Applied and Computational Mathematics, Foundation for Research and Technology-Hellas, Voutes 70013 Crete, Greece
| | - Thomas Y Hou
- Computing and Mathematical Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | - Guruswami Ravichandran
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
44
|
On the mechanical response of the actomyosin cortex during cell indentations. Biomech Model Mechanobiol 2020; 19:2061-2079. [PMID: 32356071 DOI: 10.1007/s10237-020-01324-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 04/02/2020] [Indexed: 01/01/2023]
Abstract
A mechanical model is presented to analyze the mechanics and dynamics of the cell cortex during indentation. We investigate the impact of active contraction on the cross-linked actin network for different probe sizes and indentation rates. The essential molecular mechanisms of filament stretching, cross-linking and motor activity, are represented by an active and viscous mechanical continuum. The filaments behave as worm-like chains linked either by passive rigid linkers or by myosin motors. In the first example, the effects of probe size and loading rate are evaluated using the model for an idealized rounded cell shape in which properties are based on the results of parallel-plate rheometry available in the literature. Extreme cases of probe size and indentation rate are taken into account. Afterward, AFM experiments were done by engaging smooth muscle cells with both sharp and spherical probes. By inverse analysis with finite element software, our simulations mimicking the experimental conditions show the model is capable of fitting the AFM data. The results provide spatiotemporal dependence on the size and rate of the mechanical stimuli. The model captures the general features of the cell response. It characterizes the actomyosin cortex as an active solid at short timescales and as a fluid at longer timescales by showing (1) higher levels of contraction in the zones of high curvature; (2) larger indentation forces as the probe size increases; and (3) increase in the apparent modulus with the indentation depth but no dependence on the rate of the mechanical stimuli. The methodology presented in this work can be used to address and predict microstructural dependence on the force generation of living cells, which can contribute to understanding the broad spectrum of results in cell experiments.
Collapse
|
45
|
Zhou F, Schaffer SA, Schreiber C, Segerer FJ, Goychuk A, Frey E, Rädler JO. Quasi-periodic migration of single cells on short microlanes. PLoS One 2020; 15:e0230679. [PMID: 32282802 PMCID: PMC7153896 DOI: 10.1371/journal.pone.0230679] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 03/05/2020] [Indexed: 12/02/2022] Open
Abstract
Cell migration on microlanes represents a suitable and simple platform for the exploration of the molecular mechanisms underlying cell cytoskeleton dynamics. Here, we report on the quasi-periodic movement of cells confined in stripe-shaped microlanes. We observe persistent polarized cell shapes and directed pole-to-pole motion within the microlanes. Cells depolarize at one end of a given microlane, followed by delayed repolarization towards the opposite end. We analyze cell motility via the spatial velocity distribution, the velocity frequency spectrum and the reversal time as a measure for depolarization and spontaneous repolarization of cells at the microlane ends. The frequent encounters of a boundary in the stripe geometry provides a robust framework for quantitative investigations of the cytoskeleton protrusion and repolarization dynamics. In a first advance to rigorously test physical models of cell migration, we find that the statistics of the cell migration is recapitulated by a Cellular Potts model with a minimal description of cytoskeleton dynamics. Using LifeAct-GFP transfected cells and microlanes with differently shaped ends, we show that the local deformation of the leading cell edge in response to the tip geometry can locally either amplify or quench actin polymerization, while leaving the average reversal times unaffected.
Collapse
Affiliation(s)
- Fang Zhou
- Faculty of Physics and Center for NanoScience, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Sophia A. Schaffer
- Faculty of Physics and Center for NanoScience, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Christoph Schreiber
- Faculty of Physics and Center for NanoScience, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Felix J. Segerer
- Faculty of Physics and Center for NanoScience, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Andriy Goychuk
- Arnold-Sommerfeld-Center for Theoretical Physics, Faculty of Physics and Center for NanoScience, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Erwin Frey
- Arnold-Sommerfeld-Center for Theoretical Physics, Faculty of Physics and Center for NanoScience, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Joachim O. Rädler
- Faculty of Physics and Center for NanoScience, Ludwig-Maximilians-Universität München, Munich, Germany
- * E-mail:
| |
Collapse
|
46
|
Medyukhina A, Blickensdorf M, Cseresnyés Z, Ruef N, Stein JV, Figge MT. Dynamic spherical harmonics approach for shape classification of migrating cells. Sci Rep 2020; 10:6072. [PMID: 32269257 PMCID: PMC7142146 DOI: 10.1038/s41598-020-62997-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 03/24/2020] [Indexed: 11/19/2022] Open
Abstract
Cell migration involves dynamic changes in cell shape. Intricate patterns of cell shape can be analyzed and classified using advanced shape descriptors, including spherical harmonics (SPHARM). Though SPHARM have been used to analyze and classify migrating cells, such classification did not exploit SPHARM spectra in their dynamics. Here, we examine whether additional information from dynamic SPHARM improves classification of cell migration patterns. We combine the static and dynamic SPHARM approach with a support-vector-machine classifier and compare their classification accuracies. We demonstrate that the dynamic SPHARM analysis classifies cell migration patterns more accurately than the static one for both synthetic and experimental data. Furthermore, by comparing the computed accuracies with that of a naive classifier, we can identify the experimental conditions and model parameters that significantly affect cell shape. This capability should – in the future – help to pinpoint factors that play an essential role in cell migration.
Collapse
Affiliation(s)
- Anna Medyukhina
- Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (HKI), Jena, Germany.,Center for Bioimage Informatics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Marco Blickensdorf
- Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (HKI), Jena, Germany
| | - Zoltán Cseresnyés
- Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (HKI), Jena, Germany
| | - Nora Ruef
- Department of Oncology, Microbiology and Immunology, University of Fribourg, Fribourg, Switzerland
| | - Jens V Stein
- Department of Oncology, Microbiology and Immunology, University of Fribourg, Fribourg, Switzerland
| | - Marc Thilo Figge
- Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (HKI), Jena, Germany. .,Institute of Microbiology, Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany. .,Center for Sepsis Control and Care (CSCC), Jena University Hospital, Jena, Germany.
| |
Collapse
|
47
|
He F, Springer NL, Whitman MA, Pathi SP, Lee Y, Mohanan S, Marcott S, Chiou AE, Blank BS, Iyengar N, Morris PG, Jochelson M, Hudis CA, Shah P, Kunitake JAMR, Estroff LA, Lammerding J, Fischbach C. Hydroxyapatite mineral enhances malignant potential in a tissue-engineered model of ductal carcinoma in situ (DCIS). Biomaterials 2019; 224:119489. [PMID: 31546097 PMCID: PMC6878891 DOI: 10.1016/j.biomaterials.2019.119489] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 09/06/2019] [Accepted: 09/11/2019] [Indexed: 01/21/2023]
Abstract
While ductal carcinoma in situ (DCIS) is known as a precursor lesion to most invasive breast carcinomas, the mechanisms underlying this transition remain enigmatic. DCIS is typically diagnosed by the mammographic detection of microcalcifications (MC). MCs consisting of non-stoichiometric hydroxyapatite (HA) mineral are frequently associated with malignant disease, yet it is unclear whether HA can actively promote malignancy. To investigate this outstanding question, we compared phenotypic outcomes of breast cancer cells cultured in control or HA-containing poly(lactide-co-glycolide) (PLG) scaffolds. Exposure to HA mineral in scaffolds increased the expression of pro-tumorigenic interleukin-8 (IL-8) among transformed but not benign cells. Notably, MCF10DCIS.com cells cultured in HA scaffolds adopted morphological changes associated with increased invasiveness and exhibited increased motility that were dependent on IL-8 signaling. Moreover, MCF10DCIS.com xenografts in HA scaffolds displayed evidence of enhanced malignant progression relative to xenografts in control scaffolds. These experimental findings were supported by a pathological analysis of clinical DCIS specimens, which correlated the presence of MCs with increased IL-8 staining and ductal proliferation. Collectively, our work suggests that HA mineral may stimulate malignancy in preinvasive DCIS cells and validate PLG scaffolds as useful tools to study cell-mineral interactions.
Collapse
Affiliation(s)
- Frank He
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Nora L Springer
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA; Department of Diagnostic Medicine/Pathobiology, Kansas State University College of Veterinary Medicine, Manhattan, KS, 66506, USA
| | - Matthew A Whitman
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Siddharth P Pathi
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Yeonkyung Lee
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Sunish Mohanan
- Department of Biomedical Sciences, Baker Institute for Animal Health, Cornell University, Ithaca, NY, 14853, USA
| | - Stephen Marcott
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Aaron E Chiou
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Bryant S Blank
- Cornell Center for Animal Resources and Education, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Neil Iyengar
- Breast Medicine Service, Department of Medicine, Memorial Sloan Kettering Cancer Center/Evelyn H. Lauder Breast and Imaging Center, New York, NY, 10065, USA
| | - Patrick G Morris
- Breast Medicine Service, Department of Medicine, Memorial Sloan Kettering Cancer Center/Evelyn H. Lauder Breast and Imaging Center, New York, NY, 10065, USA
| | - Maxine Jochelson
- Department of Radiology, Memorial Sloan Kettering Cancer Center/Evelyn H. Lauder Breast and Imaging Center, New York, NY, 10065, USA
| | - Clifford A Hudis
- Breast Medicine Service, Department of Medicine, Memorial Sloan Kettering Cancer Center/Evelyn H. Lauder Breast and Imaging Center, New York, NY, 10065, USA
| | - Pragya Shah
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA; Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Jennie A M R Kunitake
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Lara A Estroff
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, 14853, USA; Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY, 14853, USA
| | - Jan Lammerding
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA; Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Claudia Fischbach
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA; Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
48
|
Miyasaka Y, Murakami K, Ito K, Kumaki J, Makabe K, Hatori K. Condensed desmin and actin cytoskeletal communication in lipid droplets. Cytoskeleton (Hoboken) 2019; 76:477-490. [DOI: 10.1002/cm.21573] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 10/14/2019] [Accepted: 10/15/2019] [Indexed: 12/23/2022]
Affiliation(s)
- Yoshiya Miyasaka
- Department of Bio‐Systems Engineering, Graduate School of Science and EngineeringYamagata University Yamagata Japan
| | - Keigo Murakami
- Department of Bio‐Systems Engineering, Graduate School of Science and EngineeringYamagata University Yamagata Japan
| | - Koji Ito
- Department of Bio‐Systems Engineering, Graduate School of Science and EngineeringYamagata University Yamagata Japan
| | - Jiro Kumaki
- Department of Organic Materials Science, Graduate School of Organic Materials ScienceYamagata University Yamagata Japan
| | - Koki Makabe
- Department of Biochemical Engineering, Graduate School of Science and EngineeringYamagata University Yamagata Japan
| | - Kuniyuki Hatori
- Department of Bio‐Systems Engineering, Graduate School of Science and EngineeringYamagata University Yamagata Japan
| |
Collapse
|
49
|
Nishimoto S, Tokuoka Y, Yamada TG, Hiroi NF, Funahashi A. Predicting the future direction of cell movement with convolutional neural networks. PLoS One 2019; 14:e0221245. [PMID: 31483827 PMCID: PMC6726366 DOI: 10.1371/journal.pone.0221245] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 08/02/2019] [Indexed: 12/16/2022] Open
Abstract
Image-based deep learning systems, such as convolutional neural networks (CNNs), have recently been applied to cell classification, producing impressive results; however, application of CNNs has been confined to classification of the current cell state from the image. Here, we focused on cell movement where current and/or past cell shape can influence the future cell movement. We demonstrate that CNNs prospectively predicted the future direction of cell movement with high accuracy from a single image patch of a cell at a certain time. Furthermore, by visualizing the image features that were learned by the CNNs, we could identify morphological features, e.g., the protrusions and trailing edge that have been experimentally reported to determine the direction of cell movement. Our results indicate that CNNs have the potential to predict the future direction of cell movement from current cell shape, and can be used to automatically identify those morphological features that influence future cell movement.
Collapse
Affiliation(s)
- Shori Nishimoto
- Department of Biosciences and Informatics, Keio University, Yokohama-shi, Kanagawa, Japan
| | - Yuta Tokuoka
- Department of Biosciences and Informatics, Keio University, Yokohama-shi, Kanagawa, Japan
| | - Takahiro G. Yamada
- Department of Biosciences and Informatics, Keio University, Yokohama-shi, Kanagawa, Japan
| | - Noriko F. Hiroi
- Department of Biosciences and Informatics, Keio University, Yokohama-shi, Kanagawa, Japan
- Faculty of Pharmacy, Sanyo-Onoda City University, Sanyo-Onoda, Yamaguchi, Japan
| | - Akira Funahashi
- Department of Biosciences and Informatics, Keio University, Yokohama-shi, Kanagawa, Japan
- * E-mail:
| |
Collapse
|
50
|
Altmann S, Choroba K, Skonieczna M, Zygadło D, Raczyńska-Szajgin M, Maroń A, Małecki JG, Szłapa-Kula A, Tomczyk M, Ratuszna A, Machura B, Szurko A. Platinum(II) coordination compounds with 4'-pyridyl functionalized 2,2':6',2″-terpyridines as an alternative to enhanced chemotherapy efficacy and reduced side-effects. J Inorg Biochem 2019; 201:110809. [PMID: 31494527 DOI: 10.1016/j.jinorgbio.2019.110809] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/22/2019] [Accepted: 08/24/2019] [Indexed: 10/26/2022]
Abstract
Two platinum(II) coordination compounds, [PtCl(4'-R1-terpy)](SO3CF3) (1) and [PtCl(4'-R2-terpy)](SO3CF3) (2), with 4'-(2-pyridyl)-2,2':6',2″-terpyridine (4'-R1-terpy) or 4'-(3-pyridyl)-2,2':6',2″-terpyridine (4'-R2-terpy) were synthesized and the impact of the pendant pyridyl ring on the structure and cytotoxic activity of Pt(II)-terpyridine complexes was explored. The single-crystal X-ray diffraction analysis confirmed square planar coordination of the cations [PtCl(4'-Rn-terpy)]+. The mode of binding of 1 and 2 to calf thymus DNA was examined by UV-Vis absorption titration, ethidium displacement assay and reaction with 9-ethylguanine, and the mixed covalent-intercalative mode was demonstrated. The cytotoxicity of the Pt(II) complexes against six cancer cell lines and three normal ones was determined using MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) assay and compared to cisplatin. The IC50 values for the compound 2 towards the cancer cell lines are in the low micromolar range. Most remarkably, 2 was over 4 times more effective than 1 and cisplatin against non-small lung adenocarcinoma (A549), and its selectivity index was ~60-80 times higher than that for 1 and cisplatin. The mechanisms underlying the loss of viability under treatment of 2 was further investigated including F-actin staining, mitotic index analysis, cytometric cell cycle analysis, Fluorescein isothiocyanate (FITC) -conjugated Annexin V antibody and propidium iodide (PI) staining, measurements of reactive oxygen species (ROS) in cells, analysis of changes in the mitochondrial mass and potential and quantitative real time polymerase chain reaction (qRT-PCR) genes analysis. The compound 2 was found to have a pro-oxidative effect by strong stimulation of cells for the production of reactive oxygen species and cytostatic effect through cell cycle arrest.
Collapse
Affiliation(s)
- Sandra Altmann
- Silesia Center for Education and Interdisciplinary Research, 75. Pułku Piechoty 1A, 41-500 Chorzów, Poland; August Chełkowski Institute of Physics, University of Silesia, 75. Pułku Piechoty 1A, 41-500 Chorzów, Poland
| | - Katarzyna Choroba
- Department of Crystallography, Institute of Chemistry, University of Silesia, Szkolna 9, 40-006 Katowice, Poland.
| | - Magdalena Skonieczna
- Systems Engineering Group, Silesian University of Technology, Institute of Automatic Control, Akademicka 16, 44-100 Gliwice, Poland; Biotechnology Centre, Silesian University of Technology, Krzywoustego 8, 44-100 Gliwice, Poland
| | - Dorota Zygadło
- Silesia Center for Education and Interdisciplinary Research, 75. Pułku Piechoty 1A, 41-500 Chorzów, Poland; August Chełkowski Institute of Physics, University of Silesia, 75. Pułku Piechoty 1A, 41-500 Chorzów, Poland
| | - Magdalena Raczyńska-Szajgin
- Silesia Center for Education and Interdisciplinary Research, 75. Pułku Piechoty 1A, 41-500 Chorzów, Poland; August Chełkowski Institute of Physics, University of Silesia, 75. Pułku Piechoty 1A, 41-500 Chorzów, Poland; Department of Biophysics and Morphogenesis of Plants, University of Silesia, Jagiellońska 28, 40-032 Katowice, Poland
| | - Anna Maroń
- Department of Crystallography, Institute of Chemistry, University of Silesia, Szkolna 9, 40-006 Katowice, Poland
| | - Jan Grzegorz Małecki
- Department of Crystallography, Institute of Chemistry, University of Silesia, Szkolna 9, 40-006 Katowice, Poland
| | - Agata Szłapa-Kula
- Department of Crystallography, Institute of Chemistry, University of Silesia, Szkolna 9, 40-006 Katowice, Poland
| | - Mateusz Tomczyk
- Faculty of Chemistry, Silesian University of Technology, Strzody 9, 44-100 Gliwice, Poland
| | - Alicja Ratuszna
- Silesia Center for Education and Interdisciplinary Research, 75. Pułku Piechoty 1A, 41-500 Chorzów, Poland; August Chełkowski Institute of Physics, University of Silesia, 75. Pułku Piechoty 1A, 41-500 Chorzów, Poland
| | - Barbara Machura
- Department of Crystallography, Institute of Chemistry, University of Silesia, Szkolna 9, 40-006 Katowice, Poland
| | - Agnieszka Szurko
- Silesia Center for Education and Interdisciplinary Research, 75. Pułku Piechoty 1A, 41-500 Chorzów, Poland; August Chełkowski Institute of Physics, University of Silesia, 75. Pułku Piechoty 1A, 41-500 Chorzów, Poland.
| |
Collapse
|