1
|
Sharma A, Homayoon A, Weyler M, Frazer C, Ramírez-Zavala B, Morschhäuser J, Bennett RJ. Transcriptional control of C. albicans white-opaque switching and modulation by environmental cues and strain background. mBio 2025; 16:e0058125. [PMID: 40202334 PMCID: PMC12077150 DOI: 10.1128/mbio.00581-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Accepted: 03/10/2025] [Indexed: 04/10/2025] Open
Abstract
The opportunistic fungal pathogen Candida albicans can undergo cellular transitions in response to environmental cues that impact its lifestyle and its interactions with the human host. This is exemplified by the white-opaque switch, which is a heritable transition between two phenotypic states that is regulated by a highly interconnected network of transcription factors (TFs). To obtain greater understanding of the transcriptional regulation of the switch, we generated a genome-wide, tetracycline-inducible TF library in the WO-1 strain background and identified those TFs whose forced expression induces white cells to switch to the opaque state. This set of opaque-inducing TFs was also evaluated for their ability to induce switching in a second strain background, that of the standard reference strain SC5314, as well as during growth on different laboratory media. These experiments identify 14 TFs that can drive white-to-opaque switching when overexpressed but that do so in a highly strain- and media-specific manner. In particular, changes in pH, amino acids, and zinc concentrations had marked effects on the ability of TFs to drive phenotypic switching. These results provide insights into the complex transcriptional regulation of switching in C. albicans and reveal that an interplay between genetic and environmental factors determines TF function and cell fate.IMPORTANCEThe white-opaque switch in Candida albicans represents a model system for understanding an epigenetic switch in a eukaryotic pathogen. Here, we generated an inducible library of the set of transcription factors (TFs) present in C. albicans and identify 14 TFs that can drive the white-to-opaque transition when ectopically expressed. We demonstrate that several of these TFs induce the switch in a highly strain- and media-specific manner. This highlights that both strain background and changes in experimental conditions (including different water sources) can profoundly impact the phenotypic consequences of TF overexpression. Moreover, the inducible TF library provides an invaluable tool for the further analysis of TF function in this important human pathogen.
Collapse
Affiliation(s)
- Anupam Sharma
- Department of Molecular and Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| | - Ameen Homayoon
- Department of Molecular and Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| | - Michael Weyler
- Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Bavaria, Germany
| | - Corey Frazer
- Department of Molecular and Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| | - Bernardo Ramírez-Zavala
- Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Bavaria, Germany
| | - Joachim Morschhäuser
- Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Bavaria, Germany
| | - Richard J. Bennett
- Department of Molecular and Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
2
|
Martínez Tolibia SE, Díaz Pacheco A, Villalobos López MÁ, Pacheco Cabañas RK, Cabrera R, Rocha J, López Y López VE. The role of AbrB from plate to bioreactor: implications of induced expression on physiological and metabolic responses in Bacillus thuringiensis. World J Microbiol Biotechnol 2025; 41:120. [PMID: 40164926 DOI: 10.1007/s11274-025-04334-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 03/19/2025] [Indexed: 04/02/2025]
Abstract
Transition state regulators from Bacillus can control diverse physiological responses such as growth, metabolism, motility, virulence, and sporulation. The AbrB protein is a transcriptional regulator involved in multiple functions during exponential phase and intricated regulatory pathways that control adaptive states differentially. Despite its importance, the AbrB role has not been well characterized during the growth cycle, and its implication in metabolic functions remains elusive, especially in the Bacillus cereus group. In this work, we characterized the role of AbrB on phenotypes such as spreading motility, growth profiles, sporulation, and on activity of core metabolic pathways of Bacillus thuringiensis. For this, a strain with inducible abrB expression was generated in the wild type Bt HD73 background. In vitro evaluations of phenotypic traits demonstrated differences in sporulation and motility, where induction of abrB presumably affected these functions under nutrient-limited media. In addition, AbrB induction during bioreactor fermentations led to higher biomass production and changes dissolved oxygen (DO) profile, which was also accompanied with a delay in sporulation. Based on these results, metabolic pathways such as glycolysis and the Krebs cycle were explored to address the effect of AbrB overproduction on transcription of genes coding for pyruvate dehydrogenase (pdHA), lactate dehydrogenase (ldH), citrate synthase (citZ) and aconitase (citB). Our findings suggest variations in the carbon-flux in the central carbon metabolism due to abrB overexpression. This work contributes to the elucidation of AbrB involvement in regulatory networks of B. thuringiensis, to develop engineering-based strategies to use these bacteria in other biotechnological applications besides as biological control agent.
Collapse
Affiliation(s)
- Shirlley Elizabeth Martínez Tolibia
- Centro de Investigación en Biotecnología Aplicada del Instituto Politécnico Nacional, Carretera Estatal Santa Inés Tecuexcomac-Tepetitla, Km 1.5. Tepetitla de Lardizábal, Tlaxcala, C.P. 90700, México
| | - Adrián Díaz Pacheco
- Unidad Profesional Interdisciplinaria de Ingeniería Campus Tlaxcala, Instituto Politécnico Nacional, Guillermo Valle, Tlaxcala, 90000, Mexico
| | - Miguel Ángel Villalobos López
- Centro de Investigación en Biotecnología Aplicada del Instituto Politécnico Nacional, Carretera Estatal Santa Inés Tecuexcomac-Tepetitla, Km 1.5. Tepetitla de Lardizábal, Tlaxcala, C.P. 90700, México
| | - Rita Karen Pacheco Cabañas
- Unidad Profesional Interdisciplinaria de Ingeniería Campus Palenque del Instituto Politécnico Nacional, Carretera Palenque-Pakal-Na S/N, Centro, Palenque, Chiapas, 29960, Mexico
| | - Rosina Cabrera
- Centro de Investigación en Alimentación y Desarrollo, CONAHCYT- Unidad Regional Hidalgo, A.C, Pachuca Ciudad del Conocimiento y la Cultura. Blvd. Santa Catarina, San Agustín Tlaxiaca, Hidalgo, C.P. 42163, SN, México
| | - Jorge Rocha
- Programa de Agricultura en Zonas Áridas, Centro de Investigaciones Biológicas del Noroeste, Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S., C.P. 23096, México
| | - Víctor Eric López Y López
- Centro de Investigación en Biotecnología Aplicada del Instituto Politécnico Nacional, Carretera Estatal Santa Inés Tecuexcomac-Tepetitla, Km 1.5. Tepetitla de Lardizábal, Tlaxcala, C.P. 90700, México.
| |
Collapse
|
3
|
Zhang T, Gong Z, Zhou B, Rao L, Liao X. Recent progress in proteins regulating the germination of Bacillus subtilis spores. J Bacteriol 2025; 207:e0028524. [PMID: 39772627 PMCID: PMC11841064 DOI: 10.1128/jb.00285-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025] Open
Abstract
Bacterial spores can remain dormant for years, but they maintain the ability to recommence life through a process termed germination. Although spore germination has been reviewed many times, recent work has provided novel conceptual and molecular understandings of this important process. By using Bacillus subtilis as a model organism, here we thoroughly describe the signal transduction pathway and events that lead to spore germination, incorporating the latest findings on transcription and translation that are likely detected during germination. Then, we comprehensively review the proteins associated with germination and their respective functions. Notably, the typical germinant receptor GerA and the SpoVAF/FigP complex have been newly established as channels for ions release at early stage of germination. Moreover, given that germination is also affected by spore quality, such as molecular cargo, we collect the data about the proteins regulating sporulation to affect spore quality. Specifically, RocG-mediated glutamate catabolism during sporulation to ensure spore quality; GerE-regulated coat protein expression, and CotH-modified coat protein by phosphorylation to ensure normal coat assembly; and RNase Y-degraded RNA in newly released spores to promote dormancy. The latest progress in our understanding of these germination proteins provides valuable insights into the mechanism underlying germination.
Collapse
Affiliation(s)
- Tianyu Zhang
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing of Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Non-Thermal Processing, China Agricultural University, Beijing, China
| | - Ziqi Gong
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing of Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Non-Thermal Processing, China Agricultural University, Beijing, China
| | - Bing Zhou
- Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
| | - Lei Rao
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing of Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Non-Thermal Processing, China Agricultural University, Beijing, China
| | - Xiaojun Liao
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing of Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Non-Thermal Processing, China Agricultural University, Beijing, China
| |
Collapse
|
4
|
Jalil K, Tahara YO, Miyata M. Visualization of Bacillus subtilis spore structure and germination using quick-freeze deep-etch electron microscopy. Microscopy (Oxf) 2024; 73:463-472. [PMID: 38819330 PMCID: PMC11630275 DOI: 10.1093/jmicro/dfae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/15/2024] [Accepted: 04/24/2024] [Indexed: 06/01/2024] Open
Abstract
Bacterial spores, known for their complex and resilient structures, have been the focus of visualization using various methodologies. In this study, we applied quick-freeze and replica electron microscopy techniques, allowing observation of Bacillus subtilis spores in high-contrast and three-dimensional detail. This method facilitated visualization of the spore structure with enhanced resolution and provided new insights into the spores and their germination processes. We identified and described five distinct structures: (i) hair-like structures on the spore surface, (ii) spike formation on the surface of lysozyme-treated spores, (iii) the fractured appearance of the spore cortex during germination, (iv) potential connections between small vesicles and the core membrane and (v) the evolving surface structure of nascent vegetative cells during germination.
Collapse
Affiliation(s)
- Kiran Jalil
- Graduate School of Science, Osaka Metropolitan University, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Yuhei O Tahara
- Graduate School of Science, Osaka Metropolitan University, Sumiyoshi-ku, Osaka 558-8585, Japan
- The OCU Advanced Research Institute for Natural Science and Technology (OCARINA), Osaka Metropolitan University, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Makoto Miyata
- Graduate School of Science, Osaka Metropolitan University, Sumiyoshi-ku, Osaka 558-8585, Japan
- The OCU Advanced Research Institute for Natural Science and Technology (OCARINA), Osaka Metropolitan University, Sumiyoshi-ku, Osaka 558-8585, Japan
| |
Collapse
|
5
|
Heydenreich R, Delbrück AI, Trunet C, Mathys A. Strategies for effective high pressure germination or inactivation of Bacillus spores involving nisin. Appl Environ Microbiol 2024; 90:e0229923. [PMID: 39311577 PMCID: PMC11505639 DOI: 10.1128/aem.02299-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 08/10/2024] [Indexed: 10/25/2024] Open
Abstract
The major challenge in employing high pressure (HP) at moderate temperature for sterilization is the remarkable resistance of bacterial spores. High isostatic pressure can initiate spore germination, enabling subsequent inactivation under mild conditions. However, not all spores could be triggered to germinate under pressure at temperatures ≤80°C so far. In this study, germination treatment combinations were evaluated for Bacillus spores involving moderate HP (150 MPa, 37°C, 5 min), very HP (vHP, 550 MPa, 60°C, 2.5 or 9 min), simple and complex nutrient germinants [L-valine, L-alanine, and tryptic soy broth (TSB)], nisin, and incubation at atmospheric pressure (37°C). The most effective combinations for Bacillus subtilis resulted in a reduction of culturable dormant spores by 8 log10 units. The combinations involved nisin, a nutrient germinant (L-valine or TSB), a first vHP treatment (550 MPa, 60°C, 2.5 min), incubation at atmospheric pressure (37°C, 6 h), and a second vHP treatment (550 MPa, 60°C, 2.5 min). Such treatment combination with L-valine reduced Bacillus amyloliquefaciens spores by only 2 log10 units. B. amyloliquefaciens, thus, proved to be substantially more HP-resistant compared to B. subtilis, validating previous studies. Despite combining different germination mechanisms, complete germination could not be achieved for either species. The natural bacteriocin nisin did seemingly not promote HP germination initiation under chosen HP conditions, contrary to previous literature. Nevertheless, nisin might be beneficial to inhibit the growth of HP-germinated or remaining ungerminated spores. Future germination experiments might consider that nisin could not be completely removed from spores by washing, thereby affecting plate count enumeration. IMPORTANCE Extremely resistant spore-forming bacteria are widely distributed in nature. They infiltrate the food chain and processing environments, posing risks of spoilage and food safety. Traditional heat-intensive inactivation methods often negatively affect the product quality. HP germination-inactivation offers a potential solution for better preserving sensitive ingredients while inactivating spores. However, the presence of ungerminated (superdormant) spores hampers the strategy's success and safety. Knowledge of strategies to overcome resistance to HP germination is vital to progress mild spore control technologies. Our study contributes to the evaluation and development of mild preservation processes by evaluating strategies to enhance the HP germination-inactivation efficacy. Mild preservation processes can fulfill the consumers' demand for safe and minimally processed food.
Collapse
Affiliation(s)
- Rosa Heydenreich
- Sustainable Food
Processing Laboratory, Institute of Food, Nutrition, and Health,
Department of Health Science and Technology, ETH
Zurich, Zurich,
Switzerland
| | - Alessia I. Delbrück
- Sustainable Food
Processing Laboratory, Institute of Food, Nutrition, and Health,
Department of Health Science and Technology, ETH
Zurich, Zurich,
Switzerland
| | - Clément Trunet
- Univ Brest, INRAE,
Laboratoire Universitaire de Biodiversité et Écologie
Microbienne, UMT ACTIA 19.03
ALTER’iX, Quimper,
France
| | - Alexander Mathys
- Sustainable Food
Processing Laboratory, Institute of Food, Nutrition, and Health,
Department of Health Science and Technology, ETH
Zurich, Zurich,
Switzerland
| |
Collapse
|
6
|
Bidnenko V, Chastanet A, Péchoux C, Redko-Hamel Y, Pellegrini O, Durand S, Condon C, Boudvillain M, Jules M, Bidnenko E. Complex sporulation-specific expression of transcription termination factor Rho highlights its involvement in Bacillus subtilis cell differentiation. J Biol Chem 2024; 300:107905. [PMID: 39427753 PMCID: PMC11599450 DOI: 10.1016/j.jbc.2024.107905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 10/13/2024] [Accepted: 10/14/2024] [Indexed: 10/22/2024] Open
Abstract
Termination factor Rho, responsible for the main factor-dependent pathway of transcription termination and the major inhibitor of antisense transcription, is an emerging regulator of various physiological processes in microorganisms. In Gram-positive bacterium Bacillus subtilis, Rho is involved in the control of cell adaptation to starvation and, in particular, in the control of sporulation, a complex differentiation program leading to the formation of a highly resistant dormant spore. While the initiation of sporulation requires a decrease in Rho protein levels during the transition to stationary phase, the mechanisms regulating the expression of rho gene throughout the cell cycle remain largely unknown. Here we show that a drop in the activity of the vegetative SigA-dependent rho promoter causes the inhibition of rho expression in stationary phase. However, after the initiation of sporulation, rho gene is specifically reactivated in two compartments of the sporulating cell using distinct mechanisms. In the mother cell, rho expression occurs by read-through transcription initiated at the SigH-dependent promoter of the distal spo0F gene. In the forespore, rho gene is transcribed from the intrinsic promoter recognized by the alternative sigma factor SigF. These regulatory elements ensure the activity of Rho during sporulation, which appears important for the proper formation of spores. We provide experimental evidence that disruption of the spatiotemporal expression of rho during sporulation affects the resistance properties of spores, their morphology, and the ability to return to vegetative growth under favorable growth conditions.
Collapse
Affiliation(s)
- Vladimir Bidnenko
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Arnaud Chastanet
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Christine Péchoux
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France; MIMA2 Imaging Core Facility, Microscopie et Imagerie des Microorganismes, Animaux et Aliments, INRAE, Jouy-en-Josas, France
| | - Yulia Redko-Hamel
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Olivier Pellegrini
- Expression Génétique Microbienne, UMR8261 CNRS, Université Paris Cité, Institut de Biologie Physico-Chimique, Paris, France
| | - Sylvain Durand
- Expression Génétique Microbienne, UMR8261 CNRS, Université Paris Cité, Institut de Biologie Physico-Chimique, Paris, France
| | - Ciarán Condon
- Expression Génétique Microbienne, UMR8261 CNRS, Université Paris Cité, Institut de Biologie Physico-Chimique, Paris, France
| | - Marc Boudvillain
- Centre de Biophysique moléculaire, CNRS UPR4301, Orléans, France; Affiliated with Université d'Orléans, Orléans, France
| | - Matthieu Jules
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Elena Bidnenko
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France.
| |
Collapse
|
7
|
Heydenreich R, Delbrück AI, Peternell C, Trunet C, Mathys A. Characterization of high-pressure-treated Bacillus subtilis spore populations using flow cytometry - Shedding light on spore superdormancy at 550 MPa. Int J Food Microbiol 2024; 422:110812. [PMID: 38970996 DOI: 10.1016/j.ijfoodmicro.2024.110812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/04/2024] [Accepted: 06/23/2024] [Indexed: 07/08/2024]
Abstract
Mild spore inactivation can be challenging in industry because of the remarkable resistance of bacterial spores. High pressure (HP) can trigger spore germination, which reduces the spore's resistance, and thereby allows mild spore inactivation. However, spore germination is heterogenous. Some slowly germinating or non-germinating spores called superdormant spores remain resistant and can survive. Therefore, superdormant spores need to be characterized to understand the causes of their germination deficiency. Bacillus subtilis spores were pressurized for 50 s - 6 min at a very high pressure (vHP) level of 550 MPa and 60 °C in buffer to trigger germination. For a rapid quantification of the remaining ungerminated superdormant spores, flow cytometry (FCM) analysis was validated using single cell sorting and growth analysis. FCM based on propidium iodide (PI) and SYTO16 can be used for 550 MPa-superdormant spores after short vHP treatments of ≤1 min and post-HP incubation at 37 °C or 60 °C. The need for a post-HP incubation is particular for vHP treatments. The incubation was successful to separate FCM signals from superdormant and germinated spores, thus allowing superdormant spore quantification. The SYTO16 and PI fluorescence levels did not necessarily indicate superdormancy or apparent viability. This highlights the general need for FCM validation for different HP treatment conditions. The ∼7 % of ungerminated, i.e., superdormant, spores were isolated after a vHP treatment (550 MPa, 60 °C, 43-52 s). This allowed the characterization of vHP superdormant spores for the first time. The superdormant spores had a similar dipicolinic acid content as spores of the initial dormant population. Descendants of superdormant spores had a normal vHP germination capacity. The causes of vHP superdormancy were thus unlikely linked to the dipicolinic acid content or a permanent genetic change. Isolated superdormant spores germinated better in a second vHP treatment compared to the initial spore population. This has not been observed for other germination stimuli so far. In addition, the germination capacity of the initial spore population was time-dependent. A vHP germination deficiency can therefore be lost over time and seems to be caused by transient factors. Permanent cellular properties played a minor role as causes of superdormancy under chosen HP treatment conditions. The study gained new fundamental insights in vHP superdormancy which are of applied interest. Understanding superdormancy helps to efficiently develop a strategy to avoid superdormant spores and hence to inactivate all spores. The development of a mild HP spore germination-inactivation process aims at better preserving the food quality.
Collapse
Affiliation(s)
- Rosa Heydenreich
- Sustainable Food Processing Laboratory, Institute of Food, Nutrition, and Health, Department of Health Science and Technology, ETH Zurich, Zurich, Switzerland
| | - Alessia I Delbrück
- Sustainable Food Processing Laboratory, Institute of Food, Nutrition, and Health, Department of Health Science and Technology, ETH Zurich, Zurich, Switzerland
| | - Christina Peternell
- Sustainable Food Processing Laboratory, Institute of Food, Nutrition, and Health, Department of Health Science and Technology, ETH Zurich, Zurich, Switzerland
| | - Clément Trunet
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, Quimper, France.
| | - Alexander Mathys
- Sustainable Food Processing Laboratory, Institute of Food, Nutrition, and Health, Department of Health Science and Technology, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
8
|
Yang M, Guo Y, Yang F, Wang J, Gao Y, Wang M, Liang X, He S. Dynamic changes in and correlations between microbial communities and physicochemical properties during the composting of cattle manure with Penicillium oxalicum. BMC Microbiol 2024; 24:301. [PMID: 39134942 PMCID: PMC11318117 DOI: 10.1186/s12866-024-03449-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 07/30/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND Penicillium oxalicum is an important fungal agent in the composting of cattle manure, but the changes that occur in the microbial community, physicochemical factors, and potential functions of microorganisms at different time points are still unclear. To this end, the dynamic changes occurring in the microbial community and physicochemical factors and their correlations during the composting of cattle manure with Penicillium oxalicum were analysed. RESULTS The results showed that the main phyla observed throughout the study period were Firmicutes, Actinobacteria, Proteobacteria, Bacteroidetes, Halanaerobiaeota, Apicomplexa and Ascomycota. Linear discriminant analysis effect size (LEfSe) illustrated that Chitinophagales and Eurotiomycetes were biomarker species of bacteria and eukaryote in samples from Days 40 and 35, respectively. Bacterial community composition was significantly correlated with temperature and pH, and eukaryotic microorganism community composition was significantly correlated with moisture content and NH4+-N according to redundancy analysis (RDA). The diversity of the microbial communities changed significantly, especially that of the main pathogenic microorganisms, which showed a decreasing trend or even disappeared after composting. CONCLUSIONS In conclusion, a combination of high-throughput sequencing and physicochemical analysis was used to identify the drivers of microbial community succession and the composition of functional microbiota during cattle manure composting with Penicillium oxalicum. The results offer a theoretical framework for explaining microecological assembly during cattle manure composting with Penicillium oxalicum.
Collapse
Affiliation(s)
- Mengmeng Yang
- College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, Ningxia, China
- Institute of Animal Science, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan, 750002, Ningxia, China
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750002, China
| | - Yanan Guo
- Institute of Animal Science, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan, 750002, Ningxia, China.
| | - Fei Yang
- College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, Ningxia, China
| | - Jiandong Wang
- Institute of Animal Science, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan, 750002, Ningxia, China
| | - Yunhang Gao
- School of Animal Science and Technology, Jilin Agricultural University, Changchun, 130000, China
| | - Mingcheng Wang
- School of Biological and Food Engineering, Huanghuai University, Zhumadian, 463000, China
| | - Xiaojun Liang
- Institute of Animal Science, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan, 750002, Ningxia, China
| | - Shenghu He
- College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, Ningxia, China.
| |
Collapse
|
9
|
Martins D, Nerber HN, Roughton CG, Fasquelle A, Barwinska-Sendra A, Vollmer D, Gray J, Vollmer W, Sorg JA, Salgado PS, Henriques AO, Serrano M. Cleavage of an engulfment peptidoglycan hydrolase by a sporulation signature protease in Clostridioides difficile. Mol Microbiol 2024; 122:213-229. [PMID: 38922761 PMCID: PMC11309906 DOI: 10.1111/mmi.15291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/05/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024]
Abstract
In the model organism Bacillus subtilis, a signaling protease produced in the forespore, SpoIVB, is essential for the activation of the sigma factor σK, which is produced in the mother cell as an inactive pro-protein, pro-σK. SpoIVB has a second function essential to sporulation, most likely during cortex synthesis. The cortex is composed of peptidoglycan (PG) and is essential for the spore's heat resistance and dormancy. Surprisingly, the genome of the intestinal pathogen Clostridioides difficile, in which σK is produced without a pro-sequence, encodes two SpoIVB paralogs, SpoIVB1 and SpoIVB2. Here, we show that spoIVB1 is dispensable for sporulation, while a spoIVB2 in-frame deletion mutant fails to produce heat-resistant spores. The spoIVB2 mutant enters sporulation, undergoes asymmetric division, and completes engulfment of the forespore by the mother cell but fails to synthesize the spore cortex. We show that SpoIIP, a PG hydrolase and part of the engulfasome, the machinery essential for engulfment, is cleaved by SpoIVB2 into an inactive form. Within the engulfasome, the SpoIIP amidase activity generates the substrates for the SpoIID lytic transglycosylase. Thus, following engulfment completion, the cleavage and inactivation of SpoIIP by SpoIVB2 curtails the engulfasome hydrolytic activity, at a time when synthesis of the spore cortex peptidoglycan begins. SpoIVB2 is also required for normal late gene expression in the forespore by a currently unknown mechanism. Together, these observations suggest a role for SpoIVB2 in coordinating late morphological and gene expression events between the forespore and the mother cell.
Collapse
Affiliation(s)
- Diogo Martins
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República EAN, 2780-157 Oeiras, Portugal
| | - Hailee N. Nerber
- Texas A&M University, College Station, TX, Biology Department, Texas, USA
| | - Charlotte G. Roughton
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Amaury Fasquelle
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República EAN, 2780-157 Oeiras, Portugal
| | - Anna Barwinska-Sendra
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Daniela Vollmer
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- Centre for Bacterial Cell Biology, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Joe Gray
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Waldemar Vollmer
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- Centre for Bacterial Cell Biology, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Australia
| | - Joseph A. Sorg
- Texas A&M University, College Station, TX, Biology Department, Texas, USA
| | - Paula S. Salgado
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- Centre for Bacterial Cell Biology, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Adriano O. Henriques
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República EAN, 2780-157 Oeiras, Portugal
| | - Mónica Serrano
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República EAN, 2780-157 Oeiras, Portugal
| |
Collapse
|
10
|
Taoka M, Kuwana R, Fukube T, Kashima A, Nobe Y, Uekita T, Ichimura T, Takamatsu H. Ionic liquid-assisted sample preparation mediates sensitive proteomic analysis of Bacillus subtilis spores. Sci Rep 2024; 14:17366. [PMID: 39075114 PMCID: PMC11286849 DOI: 10.1038/s41598-024-67010-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 07/08/2024] [Indexed: 07/31/2024] Open
Abstract
Endospore-forming bacteria are ubiquitous. Bacterial endospores are multilayered proteinaceous structures that protects the bacterial genome during stress conditions. They are also responsible for a wide range of critical clinical infections in humans. Precise analysis of spore-forming pathogens remains a major challenge in the field of proteomics because spore structures are highly resistant to conventional solubilizers and denaturing agents, such as sodium dodecyl sulfate and urea. We present an ionic liquid-assisted (i-soln) technique of sample preparation, called pTRUST, which enables shotgun analysis of Bacillus subtilis spores even when the starting materials are in the sub-microgram range. In proteomic analysis, this technique shows 50-2000-fold higher sensitivity than other conventional gel-based or gel-free methods (including one-pot sample processing). Using this technique, we identified 445 proteins with high confidence from trace amounts of highly pure spore preparations, including 52 of the 79 proteins (approximately 70%) previously demonstrated to be localized in spores in the SubtiWiki database and detected through direct protein analysis. Consequently, 393 additional proteins were identified as candidates for spore constitutive proteins. Twenty of these newly identified candidates were produced as green fluorescent protein fusion proteins, and each was evaluated for authenticity as a spore constituent using fluorescence microscopy analysis. The pTRUST method's sensitivity and reliability using the i-soln system, together with hitherto unreported proteins in spores, will enable an array of spore research for biological and clinical applications.
Collapse
Affiliation(s)
- Masato Taoka
- Department of Chemistry, Tokyo Metropolitan University, Tokyo, 192-0397, Japan.
| | - Ritsuko Kuwana
- Faculty of Pharmaceutical Science, Setsunan University, Osaka, 573-0101, Japan
| | - Tatsumi Fukube
- Department of Applied Chemistry, National Defense Academy, Yokosuka, Kanagawa, 239-8686, Japan
| | - Akiko Kashima
- Carriere Reseau Co., Ltd., Kanagawa, 238-0011, Japan
| | - Yuko Nobe
- Department of Chemistry, Tokyo Metropolitan University, Tokyo, 192-0397, Japan
| | - Takamasa Uekita
- Department of Applied Chemistry, National Defense Academy, Yokosuka, Kanagawa, 239-8686, Japan
| | - Tohru Ichimura
- Department of Applied Chemistry, National Defense Academy, Yokosuka, Kanagawa, 239-8686, Japan.
| | - Hiromu Takamatsu
- Faculty of Pharmaceutical Science, Setsunan University, Osaka, 573-0101, Japan
| |
Collapse
|
11
|
Cassona CP, Ramalhete S, Amara K, Candela T, Kansau I, Denève-Larrazet C, Janoir-Jouveshomme C, Mota LJ, Dupuy B, Serrano M, Henriques AO. Spores of Clostridioides difficile are toxin delivery vehicles. Commun Biol 2024; 7:839. [PMID: 38987278 PMCID: PMC11237016 DOI: 10.1038/s42003-024-06521-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 06/28/2024] [Indexed: 07/12/2024] Open
Abstract
Clostridioides difficile causes a wide range of intestinal diseases through the action of two main cytotoxins, TcdA and TcdB. Ingested spores germinate in the intestine establishing a population of cells that produce toxins and spores. The pathogenicity locus, PaLoc, comprises several genes, including those coding for TcdA/B, for the holin-like TcdE protein, and for TcdR, an auto-regulatory RNA polymerase sigma factor essential for tcdA/B and tcdE expression. Here we show that tcdR, tcdA, tcdB and tcdE are expressed in a fraction of the sporulating cells, in either the whole sporangium or in the forespore. The whole sporangium pattern is due to protracted expression initiated in vegetative cells by σD, which primes the TcdR auto-regulatory loop. In contrast, the forespore-specific regulatory proteins σG and SpoVT control TcdR production and tcdA/tcdB and tcdE expression in this cell. We detected TcdA at the spore surface, and we show that wild type and ΔtcdA or ΔtcdB spores but not ΔtcdR or ΔtcdA/ΔtcdB spores are cytopathic against HT29 and Vero cells, indicating that spores may serve as toxin-delivery vehicles. Since the addition of TcdA and TcdB enhance binding of spores to epithelial cells, this effect may occur independently of toxin production by vegetative cells.
Collapse
Affiliation(s)
- Carolina P Cassona
- Instituto de Tecnologia Química e Biológica, NOVA University Lisbon, Oeiras, Portugal
| | - Sara Ramalhete
- Instituto de Tecnologia Química e Biológica, NOVA University Lisbon, Oeiras, Portugal
| | - Khira Amara
- Instituto de Tecnologia Química e Biológica, NOVA University Lisbon, Oeiras, Portugal
| | - Thomas Candela
- Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, Jouy-en-Josas, France
| | - Imad Kansau
- Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, Jouy-en-Josas, France
| | | | | | - Luís Jaime Mota
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
- UCIBIO, Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | - Bruno Dupuy
- Institut Pasteur, Université Paris-Cité, UMR-CNRS 6047, Laboratoire Pathogenèse des Bactéries Anaérobies, F-75015, Paris, France
| | - Mónica Serrano
- Instituto de Tecnologia Química e Biológica, NOVA University Lisbon, Oeiras, Portugal
| | - Adriano O Henriques
- Instituto de Tecnologia Química e Biológica, NOVA University Lisbon, Oeiras, Portugal.
| |
Collapse
|
12
|
Nerber HN, Baloh M, Brehm JN, Sorg JA. The small acid-soluble proteins of Clostridioides difficile regulate sporulation in a SpoIVB2-dependent manner. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.17.541253. [PMID: 37292792 PMCID: PMC10245694 DOI: 10.1101/2023.05.17.541253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Clostridioides difficile is a pathogen whose transmission relies on the formation of dormant endospores. Spores are highly resilient forms of bacteria that resist environmental and chemical insults. In recent work, we found that C. difficile SspA and SspB, two small acid-soluble proteins (SASPs), protect spores from UV damage and, interestingly, are necessary for the formation of mature spores. Here, we build upon this finding and show that C. difficile sspA and sspB are required for the formation of the spore cortex layer. Moreover, using an EMS mutagenesis selection strategy, we identified mutations that suppressed the defect in sporulation of C. difficile SASP mutants. Many of these strains contained mutations in CDR20291_0714 (spoIVB2) revealing a connection between the SpoIVB2 protease and the SASPs in the sporulation pathway. This work builds upon the hypothesis that the small acid-soluble proteins can regulate gene expression.
Collapse
Affiliation(s)
- Hailee N. Nerber
- Department of Biology, Texas A&M University, College Station, TX 77845
| | - Marko Baloh
- Department of Biology, Texas A&M University, College Station, TX 77845
| | - Joshua N. Brehm
- Department of Biology, Texas A&M University, College Station, TX 77845
| | - Joseph A. Sorg
- Department of Biology, Texas A&M University, College Station, TX 77845
| |
Collapse
|
13
|
Nerber HN, Sorg JA. The small acid-soluble proteins of spore-forming organisms: similarities and differences in function. Anaerobe 2024; 87:102844. [PMID: 38582142 PMCID: PMC11976030 DOI: 10.1016/j.anaerobe.2024.102844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/22/2024] [Accepted: 03/27/2024] [Indexed: 04/08/2024]
Abstract
The small acid-soluble proteins are found in all endospore-forming organisms and are a major component of spores. Through their DNA binding capabilities, the SASPs shield the DNA from outside insults (e.g., UV and genotoxic chemicals). The absence of the major SASPs results in spores with reduced viability when exposed to UV light and, in at least one case, the inability to complete sporulation. While the SASPs have been characterized for decades, some evidence suggests that using newer technologies to revisit the roles of the SASPs could reveal novel functions in spore regulation.
Collapse
Affiliation(s)
- Hailee N Nerber
- Department of Biology, Texas A&M University, College Station, TX, United States
| | - Joseph A Sorg
- Department of Biology, Texas A&M University, College Station, TX, United States.
| |
Collapse
|
14
|
Krupnik V. I like therefore I can, and I can therefore I like: the role of self-efficacy and affect in active inference of allostasis. Front Neural Circuits 2024; 18:1283372. [PMID: 38322807 PMCID: PMC10839114 DOI: 10.3389/fncir.2024.1283372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 01/02/2024] [Indexed: 02/08/2024] Open
Abstract
Active inference (AIF) is a theory of the behavior of information-processing open dynamic systems. It describes them as generative models (GM) generating inferences on the causes of sensory input they receive from their environment. Based on these inferences, GMs generate predictions about sensory input. The discrepancy between a prediction and the actual input results in prediction error. GMs then execute action policies predicted to minimize the prediction error. The free-energy principle provides a rationale for AIF by stipulating that information-processing open systems must constantly minimize their free energy (through suppressing the cumulative prediction error) to avoid decay. The theory of homeostasis and allostasis has a similar logic. Homeostatic set points are expectations of living organisms. Discrepancies between set points and actual states generate stress. For optimal functioning, organisms avoid stress by preserving homeostasis. Theories of AIF and homeostasis have recently converged, with AIF providing a formal account for homeo- and allostasis. In this paper, we present bacterial chemotaxis as molecular AIF, where mutual constraints by extero- and interoception play an essential role in controlling bacterial behavior supporting homeostasis. Extending this insight to the brain, we propose a conceptual model of the brain homeostatic GM, in which we suggest partition of the brain GM into cognitive and physiological homeostatic GMs. We outline their mutual regulation as well as their integration based on the free-energy principle. From this analysis, affect and self-efficacy emerge as the main regulators of the cognitive homeostatic GM. We suggest fatigue and depression as target neurocognitive phenomena for studying the neural mechanisms of such regulation.
Collapse
Affiliation(s)
- Valery Krupnik
- Department of Mental Health, Naval Hospital Camp Pendleton, Camp Pendleton, Oceanside, CA, United States
| |
Collapse
|
15
|
Serrano M, Martins D, Henriques AO. Clostridioides difficile Sporulation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1435:273-314. [PMID: 38175480 DOI: 10.1007/978-3-031-42108-2_13] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Some members of the Firmicutes phylum, including many members of the human gut microbiota, are able to differentiate a dormant and highly resistant cell type, the endospore (hereinafter spore for simplicity). Spore-formers can colonize virtually any habitat and, because of their resistance to a wide variety of physical and chemical insults, spores can remain viable in the environment for long periods of time. In the anaerobic enteric pathogen Clostridioides difficile the aetiologic agent is the oxygen-resistant spore, while the toxins produced by actively growing cells are the main cause of the disease symptoms. Here, we review the regulatory circuits that govern entry into sporulation. We also cover the role of spores in the infectious cycle of C. difficile in relation to spore structure and function and the main control points along spore morphogenesis.
Collapse
Affiliation(s)
- Mónica Serrano
- Instituto de Tecnologia Química e Biológica António Xavier, Oeiras, Portugal.
| | - Diogo Martins
- Instituto de Tecnologia Química e Biológica António Xavier, Oeiras, Portugal
| | - Adriano O Henriques
- Instituto de Tecnologia Química e Biológica António Xavier, Oeiras, Portugal
| |
Collapse
|
16
|
Shan G, Li W, Liu J, Tan W, Bao S, Wang S, Zhu L, Hu X, Xi B. Macrogenomic analysis of the effects of aqueous-phase from hydrothermal carbonation of sewage sludge on nitrogen metabolism pathways and associated bacterial communities during composting. BIORESOURCE TECHNOLOGY 2023; 389:129811. [PMID: 37776912 DOI: 10.1016/j.biortech.2023.129811] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/21/2023] [Accepted: 09/27/2023] [Indexed: 10/02/2023]
Abstract
The effects of aqueous phases (AP) formed from hydrothermal carbonation of sewage sludge (with or without rice husk) as moisture regulators of nitrogen metabolism pathways during composting are currently unclear. Macrogenomic analyses revealed that both APs resulted in notably changes in bacterial communities during composting; increased levels of nitrogen assimilation, nitrification, and denitrification metabolic pathways; and decreased levels of nitrogen mineralization metabolic pathways. Genes associated with nitrogen assimilation and mineralization accounted for 34-41% and 32-40% of the annotated reads related to nitrogen cycling during composting, respectively, representing them as the most abundant nitrogen metabolism processes. The gudB and norB were identified as key genes for nitrogen mineralization and nitrous oxide emission, respectively. This research offers a better understanding of the effects of additional nitrogen sources on nitrogen metabolism pathways during composting.
Collapse
Affiliation(s)
- Guangchun Shan
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Weiguang Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Jie Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Wenbing Tan
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Shanshan Bao
- Key Laboratory of Water Management and Water Security for Yellow River Basin, Ministry of Water Resources, Yellow River Engineering Consulting Co. Ltd., Zhengzhou 450003, China
| | - Shuncai Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Lin Zhu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xinhao Hu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Beidou Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
17
|
Marini E, Olivença C, Ramalhete S, Aguirre AM, Ingle P, Melo MN, Antunes W, Minton NP, Hernandez G, Cordeiro TN, Sorg JA, Serrano M, Henriques AO. A sporulation signature protease is required for assembly of the spore surface layers, germination and host colonization in Clostridioides difficile. PLoS Pathog 2023; 19:e1011741. [PMID: 37956166 PMCID: PMC10681294 DOI: 10.1371/journal.ppat.1011741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 11/27/2023] [Accepted: 10/09/2023] [Indexed: 11/15/2023] Open
Abstract
A genomic signature for endosporulation includes a gene coding for a protease, YabG, which in the model organism Bacillus subtilis is involved in assembly of the spore coat. We show that in the human pathogen Clostridioidesm difficile, YabG is critical for the assembly of the coat and exosporium layers of spores. YabG is produced during sporulation under the control of the mother cell-specific regulators σE and σK and associates with the spore surface layers. YabG shows an N-terminal SH3-like domain and a C-terminal domain that resembles single domain response regulators, such as CheY, yet is atypical in that the conserved phosphoryl-acceptor residue is absent. Instead, the CheY-like domain carries residues required for activity, including Cys207 and His161, the homologues of which form a catalytic diad in the B. subtilis protein, and also Asp162. The substitution of any of these residues by Ala, eliminates an auto-proteolytic activity as well as interdomain processing of CspBA, a reaction that releases the CspB protease, required for proper spore germination. An in-frame deletion of yabG or an allele coding for an inactive protein, yabGC207A, both cause misassemby of the coat and exosporium and the formation of spores that are more permeable to lysozyme and impaired in germination and host colonization. Furthermore, we show that YabG is required for the expression of at least two σK-dependent genes, cotA, coding for a coat protein, and cdeM, coding for a key determinant of exosporium assembly. Thus, YabG also impinges upon the genetic program of the mother cell possibly by eliminating a transcriptional repressor. Although this activity has not been described for the B. subtilis protein and most of the YabG substrates vary among sporeformers, the general role of the protease in the assembly of the spore surface is likely to be conserved across evolutionary distance.
Collapse
Affiliation(s)
- Eleonora Marini
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República EAN, Oeiras, Portugal
| | - Carmen Olivença
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República EAN, Oeiras, Portugal
| | - Sara Ramalhete
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República EAN, Oeiras, Portugal
| | - Andrea Martinez Aguirre
- Texas A&M University, Department of Biology, College Station, Texas, United States of America
| | - Patrick Ingle
- Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Manuel N Melo
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República EAN, Oeiras, Portugal
| | - Wilson Antunes
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República EAN, Oeiras, Portugal
| | - Nigel P Minton
- Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Guillem Hernandez
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República EAN, Oeiras, Portugal
| | - Tiago N Cordeiro
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República EAN, Oeiras, Portugal
| | - Joseph A Sorg
- Texas A&M University, Department of Biology, College Station, Texas, United States of America
| | - Mónica Serrano
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República EAN, Oeiras, Portugal
| | - Adriano O Henriques
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República EAN, Oeiras, Portugal
| |
Collapse
|
18
|
Furuya K, Kiyoshi K, Punjuy C, Yoshida N, Maruyama R, Yasuda T, Watanabe K, Kadokura T, Nakayama S. Effect of spo0A, sigE, sigG, and sigK disruption on butanol production and spore formation in Clostridium saccharoperbutylacetonicum strain N1-4 (ATCC13564). J Biosci Bioeng 2023; 136:198-204. [PMID: 37487916 DOI: 10.1016/j.jbiosc.2023.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 07/26/2023]
Abstract
Clostridium saccharoperbutylacetonicum strain N1-4 (ATCC13564) is a butanol-producing strain suitable for application to butanol production from cellulosic materials by co-culture with cellulolytic and thermophilic species, such as Hungateiclostridium thermocellum (synonym: Clostridium thermocellum). The optimal temperature for butanol production by strain N1-4 is 30 °C, and the strain is sensitive to a high culture temperature of 37 °C. Given that spore formation is observed at high frequency when strain N1-4 is cultivated at 37 °C, we assumed in a previous study that the initiation of sporulation is related to a decrease in butanol production. Therefore, to investigate the relationship between butanol production and spore formation, we generated strain N1-4 isolates in which genes related to spore formation were disrupted. The sporulation-related gene disruptants of spo0A, sigE, sigG, and sigK lost the ability to produce heat-resistant spores, irrespective of the culture temperature. Among the gene disruptants produced, only the spo0A disruptant lost butanol-producing ability when cultivated at 30 °C. Interestingly, the sigE disruptant maintained butanol productivity similar to that observed at 30 °C, even when cultivated at 37 °C. In addition, the sigE disruptant successfully produced butanol from Avicel cellulose by co-culture with H. thermocellum at a fermentation temperature of 37 °C.
Collapse
Affiliation(s)
- Kazuhiko Furuya
- Department of Fermentation Science and Technology, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Keiji Kiyoshi
- Department of Biochemistry and Applied Bioscience, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadainishi, Miyazaki-shi, Miyazaki 889-2192, Japan
| | - Chaophaya Punjuy
- Department of Biochemistry and Applied Bioscience, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadainishi, Miyazaki-shi, Miyazaki 889-2192, Japan
| | - Naoto Yoshida
- Department of Biochemistry and Applied Bioscience, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadainishi, Miyazaki-shi, Miyazaki 889-2192, Japan
| | - Risa Maruyama
- Department of Fermentation Science and Technology, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Tatsuki Yasuda
- Department of Fermentation Science and Technology, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Kota Watanabe
- Department of Fermentation Science and Technology, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Toshimori Kadokura
- Department of Fermentation Science and Technology, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Shunichi Nakayama
- Department of Fermentation Science and Technology, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan.
| |
Collapse
|
19
|
Zhou JY, Zhong HM, An ZG, Niu KF, Zhang XX, Yao ZQ, Yuan J, Nie P, Yang LG. Dung treated by high-temperature composting is an optimal bedding material for suckling calves according to analyses of microbial composition, growth performance, health status, and behavior. J Dairy Sci 2023:S0022-0302(23)00288-6. [PMID: 37268590 DOI: 10.3168/jds.2022-22485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 01/29/2023] [Indexed: 06/04/2023]
Abstract
Bedding materials are important for suckling buffalo calves. Treated dung has been used as a bedding material for dairy cows but the lack of an appropriate safety assessment limits its application. In this study, we evaluated the feasibility of treated dung (TD) as a bedding material for suckling calves by comparing TD with rice husk (RH) and rice straw (RS) bedding materials. The TD was prepared through high-temperature composting by Bacillus subtilis. Thirty-three newborn suckling buffalo calves (Bubalus bubalis, 40.06 ± 5.79 kg) were randomly divided into 3 bedding material groups (TD, RH, and RS) and bedded with 1 of the 3 bedding materials for 60 d. We compared cost, moisture content, bacterial counts, and microbial composition of the 3 bedding materials, and investigated growth performance, health status, behavior, rumen fermentation, and blood parameters of bedded calves. The results showed that TD contained the fewest gram-negative bacteria and coliforms on d 1 and 30 and the lowest relative abundance of Staphylococcus throughout the experiment. The RH and TD bedding materials had the lowest cost. Calves in the TD and RS groups showed a higher dry matter intake, and final body weight and average daily gain in the TD and RS groups tended to be higher than in the RH group. Calves in the TD and RS groups had a lower disease incidence (diarrhea and fever), fewer antibiotic treatments, and lower fecal score than calves in the RH group. Higher contents of IgG, IgA, and IgM were observed in calves of the TD and RS groups than in calves of the RH group on d 10, indicating higher immune ability in TD and RS groups. Furthermore, TD bedding increased the butyric acid content in the calf's rumen, whereas RS bedding increased the acetate content, which might be attributed to the longer time and higher frequency of eating bedding material in the RS group. Considering all of the above indicators, we concluded that TD is the optimal bedding material for calves based on economics, bacterial count, microbial diversity, growth performance, and health status. Our findings provide a valuable reference for bedding material choice and calf farming.
Collapse
Affiliation(s)
- J Y Zhou
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Wuhan 430070, China
| | - H M Zhong
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Z G An
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Wuhan 430070, China
| | - K F Niu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Wuhan 430070, China
| | - X X Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Wuhan 430070, China
| | - Z Q Yao
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Wuhan 430070, China
| | - J Yuan
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Wuhan 430070, China
| | - P Nie
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Wuhan 430070, China
| | - L G Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Wuhan 430070, China; Hubei Province's Engineering Research Center in Buffalo Breeding and Products, Wuhan 430070, China.
| |
Collapse
|
20
|
Deng S. The origin of genetic and metabolic systems: Evolutionary structuralinsights. Heliyon 2023; 9:e14466. [PMID: 36967965 PMCID: PMC10036676 DOI: 10.1016/j.heliyon.2023.e14466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 02/27/2023] [Accepted: 03/06/2023] [Indexed: 03/16/2023] Open
Abstract
DNA is derived from reverse transcription and its origin is related to reverse transcriptase, DNA polymerase and integrase. The gene structure originated from the evolution of the first RNA polymerase. Thus, an explanation of the origin of the genetic system must also explain the evolution of these enzymes. This paper proposes a polymer structure model, termed the stable complex evolution model, which explains the evolution of enzymes and functional molecules. Enzymes evolved their functions by forming locally tightly packed complexes with specific substrates. A metabolic reaction can therefore be considered to be the result of adaptive evolution in this way when a certain essential molecule is lacking in a cell. The evolution of the primitive genetic and metabolic systems was thus coordinated and synchronized. According to the stable complex model, almost all functional molecules establish binding affinity and specific recognition through complementary interactions, and functional molecules therefore have the nature of being auto-reactive. This is thermodynamically favorable and leads to functional duplication and self-organization. Therefore, it can be speculated that biological systems have a certain tendency to maintain functional stability or are influenced by an inherent selective power. The evolution of dormant bacteria may support this hypothesis, and inherent selectivity can be unified with natural selection at the molecular level.
Collapse
Affiliation(s)
- Shaojie Deng
- Chongqing (Fengjie) Municipal Bureau of Planning and Natural Resources, China
| |
Collapse
|
21
|
Romero-Rodríguez A, Ruiz-Villafán B, Martínez-de la Peña CF, Sánchez S. Targeting the Impossible: A Review of New Strategies against Endospores. Antibiotics (Basel) 2023; 12:antibiotics12020248. [PMID: 36830159 PMCID: PMC9951900 DOI: 10.3390/antibiotics12020248] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/13/2023] [Accepted: 01/20/2023] [Indexed: 01/27/2023] Open
Abstract
Endospore-forming bacteria are ubiquitous, and their endospores can be present in food, in domestic animals, and on contaminated surfaces. Many spore-forming bacteria have been used in biotechnological applications, while others are human pathogens responsible for a wide range of critical clinical infections. Due to their resistant properties, it is challenging to eliminate spores and avoid the reactivation of latent spores that may lead to active infections. Furthermore, endospores play an essential role in the survival, transmission, and pathogenesis of some harmful strains that put human and animal health at risk. Thus, different methods have been applied for their eradication. Nevertheless, natural products are still a significant source for discovering and developing new antibiotics. Moreover, targeting the spore for clinical pathogens such as Clostridioides difficile is essential to disease prevention and therapeutics. These strategies could directly aim at the structural components of the spore or their germination process. This work summarizes the current advances in upcoming strategies and the development of natural products against endospores. This review also intends to highlight future perspectives in research and applications.
Collapse
Affiliation(s)
- Alba Romero-Rodríguez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
- Correspondence:
| | - Beatriz Ruiz-Villafán
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Claudia Fabiola Martínez-de la Peña
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla 72592, Mexico
| | - Sergio Sánchez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| |
Collapse
|
22
|
Fatton M, Filippidou S, Junier T, Cailleau G, Berge M, Poppleton D, Blum TB, Kaminek M, Odriozola A, Blom J, Johnson SL, Abrahams JP, Chain PS, Gribaldo S, Tocheva EI, Zuber B, Viollier PH, Junier P. Cryptosporulation in Kurthia spp. forces a rethinking of asporogenesis in Firmicutes. Environ Microbiol 2022; 24:6320-6335. [PMID: 36530021 PMCID: PMC10086788 DOI: 10.1111/1462-2920.16145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 07/20/2022] [Indexed: 01/12/2023]
Abstract
Endosporulation is a complex morphophysiological process resulting in a more resistant cellular structure that is produced within the mother cell and is called endospore. Endosporulation evolved in the common ancestor of Firmicutes, but it is lost in descendant lineages classified as asporogenic. While Kurthia spp. is considered to comprise only asporogenic species, we show here that strain 11kri321, which was isolated from an oligotrophic geothermal reservoir, produces phase-bright spore-like structures. Phylogenomics of strain 11kri321 and other Kurthia strains reveals little similarity to genetic determinants of sporulation known from endosporulating Bacilli. However, morphological hallmarks of endosporulation were observed in two of the four Kurthia strains tested, resulting in spore-like structures (cryptospores). In contrast to classic endospores, these cryptospores did not protect against heat or UV damage and successive sub-culturing led to the loss of the cryptosporulating phenotype. Our findings imply that a cryptosporulation phenotype may have been prevalent and subsequently lost by laboratory culturing in other Firmicutes currently considered as asporogenic. Cryptosporulation might thus represent an ancestral but unstable and adaptive developmental state in Firmicutes that is under selection under harsh environmental conditions.
Collapse
Affiliation(s)
- Mathilda Fatton
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Sevasti Filippidou
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland.,AstrobiologyOU, The Open University, Milton Keynes, UK
| | - Thomas Junier
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland.,Vital-IT group, Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Guillaume Cailleau
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Matthieu Berge
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Daniel Poppleton
- Unité de Biologie Moléculaire du Gène chez les Extrémophiles, Département de Microbiologie, Institut Pasteur, France
| | - Thorsten B Blum
- Biology and Chemistry, Laboratory of Biomolecular Research, Paul Scherrer Institute (PSI), Villigen, Switzerland
| | - Marek Kaminek
- Institute for Anatomy, University of Bern, Bern, Switzerland
| | | | - Jochen Blom
- Bioinformatics and Systems Biology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Shannon L Johnson
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | - Jan Pieter Abrahams
- Biology and Chemistry, Laboratory of Biomolecular Research, Paul Scherrer Institute (PSI), Villigen, Switzerland.,Center for Cellular Imaging and NanoAnalytics (C-CINA), Biozentrum, University of Basel, Basel, Switzerland.,Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Patrick S Chain
- Institute for Anatomy, University of Bern, Bern, Switzerland
| | - Simonetta Gribaldo
- Unité de Biologie Moléculaire du Gène chez les Extrémophiles, Département de Microbiologie, Institut Pasteur, France
| | - Elitza I Tocheva
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Benoît Zuber
- Institute for Anatomy, University of Bern, Bern, Switzerland
| | - Patrick H Viollier
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Pilar Junier
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| |
Collapse
|
23
|
Tolibia SEM, Pacheco AD, Balbuena SYG, Rocha J, López Y López VE. Engineering of global transcription factors in Bacillus, a genetic tool for increasing product yields: a bioprocess overview. World J Microbiol Biotechnol 2022; 39:12. [PMID: 36372802 DOI: 10.1007/s11274-022-03460-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/06/2022] [Indexed: 11/15/2022]
Abstract
Transcriptional factors are well studied in bacteria for their global interactions and the effects they produce at the phenotypic level. Particularly, Bacillus subtilis has been widely employed as a model Gram-positive microorganism used to characterize these network interactions. Bacillus species are currently used as efficient commercial microbial platforms to produce diverse metabolites such as extracellular enzymes, antibiotics, surfactants, industrial chemicals, heterologous proteins, among others. However, the pleiotropic effects caused by the genetic modification of specific genes that codify for global regulators (transcription factors) have not been implicated commonly from a bioprocess point of view. Recently, these strategies have attracted the attention in Bacillus species because they can have an application to increase production efficiency of certain commercial interest metabolites. In this review, we update the recent advances that involve this trend in the use of genetic engineering (mutations, deletion, or overexpression) performed to global regulators such as Spo0A, CcpA, CodY and AbrB, which can provide an advantage for the development or improvement of bioprocesses that involve Bacillus species as production platforms. Genetic networks, regulation pathways and their relationship to the development of growth stages are also discussed to correlate the interactions that occur between these regulators, which are important to consider for application in the improvement of commercial-interest metabolites. Reported yields from these products currently produced mostly under laboratory conditions and, in a lesser extent at bioreactor level, are also discussed to give valuable perspectives about their potential use and developmental level directed to process optimization at large-scale.
Collapse
Affiliation(s)
- Shirlley Elizabeth Martínez Tolibia
- Centro de Investigación en Biotecnología Aplicada del Instituto Politécnico Nacional, Carretera Estatal Santa Inés Tecuexcomac-Tepetitla, Km 1.5, C.P. 90700, Tepetitla de Lardizábal, Tlaxcala, Mexico
| | - Adrián Díaz Pacheco
- Unidad Profesional Interdisciplinaria de Ingeniería Campus Tlaxcala del Instituto Politécnico Nacional, CP 90000, Guillermo Valle, Tlaxcala, Mexico
| | - Sulem Yali Granados Balbuena
- Centro de Investigación en Biotecnología Aplicada del Instituto Politécnico Nacional, Carretera Estatal Santa Inés Tecuexcomac-Tepetitla, Km 1.5, C.P. 90700, Tepetitla de Lardizábal, Tlaxcala, Mexico
| | - Jorge Rocha
- CONACyT - Unidad Regional Hidalgo, Centro de Investigación en Alimentación y Desarrollo, A.C. Blvd. Santa Catarina, SN, C.P. 42163, San Agustín Tlaxiaca, Hidalgo, Mexico
| | - Víctor Eric López Y López
- Centro de Investigación en Biotecnología Aplicada del Instituto Politécnico Nacional, Carretera Estatal Santa Inés Tecuexcomac-Tepetitla, Km 1.5, C.P. 90700, Tepetitla de Lardizábal, Tlaxcala, Mexico.
| |
Collapse
|
24
|
Shen L, Qiu T, Guo Y, Gao M, Gao H, Zhao G, Wang X. Enhancing control of multidrug-resistant plasmid and its host community with a prolonged thermophilic phase during composting. Front Microbiol 2022; 13:989085. [PMID: 36060751 PMCID: PMC9428157 DOI: 10.3389/fmicb.2022.989085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/05/2022] [Indexed: 12/02/2022] Open
Abstract
The plasmid-mediated horizontal transfer of antibiotic resistance genes (ARGs) among bacteria facilitates the evolution and dissemination of antibiotic resistance. Broad-host-range plasmids can be transferred to different bacterial hosts in soil, plant rhizospheres, and wastewater treatment plants. Although composting is an effective way to convert organic waste into fertilizer and reduce some ARGs, few studies have focused on its effects on the spread of ARG-carrying plasmids and their bacterial host communities during composting. In this study, a fluorescently labeled Pseudomonas putida (P. putida) harboring a broad-host-range plasmid RP4 carrying three ARGs was inoculated into a raw material microcosm and composted with different durations of the thermophilic phase. The fate of the donor and RP4 in composting was investigated. The prolonged thermophilic composting removed 95.1% of dsRed and 98.0% of gfp, and it inhibited the rebound of P. putida and RP4 during the maturation phase. The spread potential of RP4 decreased from 10−4 to 10−6 transconjugants per recipient after composting. In addition, we sorted and analyzed the composition of RP4 recipient bacteria using fluorescence-activated cell sorting combined with 16S rRNA gene amplicon sequencing. The recipient bacteria of RP4 belonged to eight phyla, and Firmicutes, accounting for 75.3%–90.1%, was the dominant phylum in the transconjugants. The diversity and richness of the RP4 recipient community were significantly reduced by prolonged thermophilic periods. Overall, these findings provide new insights for assessing the contribution of composting in mitigating the dissemination of plasmid-mediated ARGs, and the prolonged thermophilic phase of composting can limit the transfer of multidrug-resistant plasmids.
Collapse
Affiliation(s)
- Lei Shen
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- College of Life Sciences, Langfang Normal University, Langfang, China
| | - Tianlei Qiu
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Yajie Guo
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Min Gao
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Haoze Gao
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Guozhu Zhao
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- *Correspondence: Guozhu Zhao,
| | - Xuming Wang
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Xuming Wang,
| |
Collapse
|
25
|
Keren-Paz A, Maan H, Karunker I, Olender T, Kapishnikov S, Dersch S, Kartvelishvily E, Wolf SG, Gal A, Graumann PL, Kolodkin-Gal I. The roles of intracellular and extracellular calcium in Bacillus subtilis biofilms. iScience 2022; 25:104308. [PMID: 35663026 PMCID: PMC9160756 DOI: 10.1016/j.isci.2022.104308] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/26/2022] [Accepted: 04/22/2022] [Indexed: 11/06/2022] Open
Abstract
In nature, bacteria reside in biofilms– multicellular differentiated communities held together by an extracellular matrix. This work identified a novel subpopulation—mineral-forming cells—that is essential for biofilm formation in Bacillus subtilis biofilms. This subpopulation contains an intracellular calcium-accumulating niche, in which the formation of a calcium carbonate mineral is initiated. As the biofilm colony develops, this mineral grows in a controlled manner, forming a functional macrostructure that serves the entire community. Consistently, biofilm development is prevented by the inhibition of calcium uptake. Our results provide a clear demonstration of the orchestrated production of calcite exoskeleton, critical to morphogenesis in simple prokaryotes. The orchestrated formation of calcite scaffolds supports the morphogenesis of microbial biofilms A novel subpopulation—mineral-forming cells—is essential for biofilm formation This subpopulation contains an intracellular calcium-accumulating niche, supporting the formation of calcium carbonate Intracellular calcium homeostasis and calcium export are associated with a functional biofilm macrostructure
Collapse
Affiliation(s)
- Alona Keren-Paz
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Harsh Maan
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Iris Karunker
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Tsviya Olender
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Sergey Kapishnikov
- Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| | - Simon Dersch
- Centre for Synthetic Microbiology (SYNMIKRO), Fachbereich Chemie, Philipps-Universität Marburg, Marburg, Germany
| | | | - Sharon G Wolf
- Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| | - Assaf Gal
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Peter L Graumann
- Centre for Synthetic Microbiology (SYNMIKRO), Fachbereich Chemie, Philipps-Universität Marburg, Marburg, Germany
| | - Ilana Kolodkin-Gal
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.,Department of Plant Pathology and Microbiology, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
26
|
Conservation and Evolution of the Sporulation Gene Set in Diverse Members of the Firmicutes. J Bacteriol 2022; 204:e0007922. [PMID: 35638784 DOI: 10.1128/jb.00079-22] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The current classification of the phylum Firmicutes (new name, Bacillota) features eight distinct classes, six of which include known spore-forming bacteria. In Bacillus subtilis, sporulation involves up to 500 genes, many of which do not have orthologs in other bacilli and/or clostridia. Previous studies identified about 60 sporulation genes of B. subtilis that were shared by all spore-forming members of the Firmicutes. These genes are referred to as the sporulation core or signature, although many of these are also found in genomes of nonsporeformers. Using an expanded set of 180 firmicute genomes from 160 genera, including 76 spore-forming species, we investigated the conservation of the sporulation genes, in particular seeking to identify lineages that lack some of the genes from the conserved sporulation core. The results of this analysis confirmed that many small acid-soluble spore proteins (SASPs), spore coat proteins, and germination proteins, which were previously characterized in bacilli, are missing in spore-forming members of Clostridia and other classes of Firmicutes. A particularly dramatic loss of sporulation genes was observed in the spore-forming members of the families Planococcaceae and Erysipelotrichaceae. Fifteen species from diverse lineages were found to carry skin (sigK-interrupting) elements of different sizes that all encoded SpoIVCA-like recombinases but did not share any other genes. Phylogenetic trees built from concatenated alignments of sporulation proteins and ribosomal proteins showed similar topology, indicating an early origin and subsequent vertical inheritance of the sporulation genes. IMPORTANCE Many members of the phylum Firmicutes (Bacillota) are capable of producing endospores, which enhance the survival of important Gram-positive pathogens that cause such diseases as anthrax, botulism, colitis, gas gangrene, and tetanus. We show that the core set of sporulation genes, defined previously through genome comparisons of several bacilli and clostridia, is conserved in a wide variety of sporeformers from several distinct lineages of Firmicutes. We also detected widespread loss of sporulation genes in many organisms, particularly within the families Planococcaceae and Erysipelotrichaceae. Members of these families, such as Lysinibacillus sphaericus and Clostridium innocuum, could be excellent model organisms for studying sporulation mechanisms, such as engulfment, formation of the spore coat, and spore germination.
Collapse
|
27
|
A Sporulation-Specific sRNA Bvs196 Contributing to the Developing Spore in Bacillus velezensis. Microorganisms 2022; 10:microorganisms10051015. [PMID: 35630459 PMCID: PMC9147052 DOI: 10.3390/microorganisms10051015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/07/2022] [Accepted: 05/11/2022] [Indexed: 02/01/2023] Open
Abstract
Many putative sRNAs have been characterized using bioinformatic analysis and high-throughput sequencing in Gram-positive Bacillus strains, but there are only a few functional studies on the sRNAs involved in the spore formation developmental process. In particular, there is no sRNA confirmed experimentally to regulate the late stages of sporulation. Bvs196 is an sRNA with a length of 294 nucleotides that is abundantly expressed in the stationary phase of several media and independently transcribed in Bacillus velezensis strain PEBA20, as validated by RNA-seq and Northern blot,. It is also confirmed, by qRT-PCR, that Bvs196 is transcribed abundantly throughout the intermediate and late stages of sporulation. Using the gfpmut3a gene transcriptional reporter demonstrates that Bvs196 is expressed specifically in the forespore during sporulation and controlled by σF and σG (mainly by σG). This was observed by fluorescence microscopy and multi-function microplate reader. Further evolutionary conservation analysis found that Bvs196 is widely present in Bacillus with a strongly conserved and stable secondary structure. Resistance phenotypic assays of spores formed from the Bvs196 deletion mutant, the overexpressed Bvs196 mutant, and the wild-type strain revealed that the absence of Bvs196 led to reduced heat and UV resistance and enhanced formaldehyde resistance. We determined, by MST analysis, that Bvs196 can directly interact with spo0A and sspN-tlp mRNAs in vitro, and that short incomplete complementary paired bases affect the binding affinity of Bvs196 to target mRNAs. Our results suggest that Bvs196 is a novel sporulation-specific sRNA of B. velezensis, 294 nt in length, independently transcribed under the control of σF and σG in the forespore during sporulation, and that it affects spore resistance, and is able to directly interact with spo0A and sspN-tlp mRNAs. The remarkable conservation and impressive expression level of Bvs196 imply that it acts as an important conservative regulator, presumably by interacting with many other unknown targets in the forespore, and therefore contributing to spore properties. This work provides new clues for further understanding of the spore formation regulatory network.
Collapse
|
28
|
Yu Z, Fu Y, Zhang W, Zhu L, Yin W, Chou SH, He J. The RNA Chaperone Protein Hfq Regulates the Characteristic Sporulation and Insecticidal Activity of Bacillus thuringiensis. Front Microbiol 2022; 13:884528. [PMID: 35479624 PMCID: PMC9037596 DOI: 10.3389/fmicb.2022.884528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
Bacillus thuringiensis (Bt) is one of the most widely used bio-insecticides at present. It can produce many virulence factors and insecticidal crystal proteins during growth and sporulation. Hfq, on the other hand, is a bacterial RNA chaperone that can regulate the function of different kinds of RNAs, thereby affecting various bacterial phenotypes. To further explore the physiological functions of Hfq in Bt, we took BMB171 as the starting strain, knocked out one, two, or three hfq genes in its genome in different combinations, and compared the phenotypic differences between the deletion mutant strains and the starting strain. We did observe significant changes in several phenotypes, including motility, biofilm formation, sporulation, and insecticidal activity against cotton bollworm, among others. Afterward, we found through transcriptome studies that when all hfq genes were deleted, 32.5% of the genes in Bt were differentially transcribed, with particular changes in the sporulation-related and virulence-related genes. The above data demonstrated that Hfq plays a pivotal role in Bt and can regulate its various physiological functions. Our study on the regulatory mechanism of Hfq in Bt, especially the mining of the regulatory network of its sporulation and insecticidal activity, could lay a theoretical foundation for the better utilization of Bt as an effective insecticide.
Collapse
Affiliation(s)
- Zhaoqing Yu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yang Fu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China.,National Engineering Research Center of Edible Fungi, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Wei Zhang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Li Zhu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Wen Yin
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shan-Ho Chou
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jin He
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
29
|
Olenic S, Heo L, Feig M, Kroos L. Inhibitory proteins block substrate access by occupying the active site cleft of Bacillus subtilis intramembrane protease SpoIVFB. eLife 2022; 11:e74275. [PMID: 35471152 PMCID: PMC9042235 DOI: 10.7554/elife.74275] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 03/25/2022] [Indexed: 12/16/2022] Open
Abstract
Intramembrane proteases (IPs) function in numerous signaling pathways that impact health, but elucidating the regulation of membrane-embedded proteases is challenging. We examined inhibition of intramembrane metalloprotease SpoIVFB by proteins BofA and SpoIVFA. We found that SpoIVFB inhibition requires BofA residues in and near a predicted transmembrane segment (TMS). This segment of BofA occupies the SpoIVFB active site cleft based on cross-linking experiments. SpoIVFB inhibition also requires SpoIVFA. The inhibitory proteins block access of the substrate N-terminal region to the membrane-embedded SpoIVFB active site, based on additional cross-linking experiments; however, the inhibitory proteins did not prevent interaction between the substrate C-terminal region and the SpoIVFB soluble domain. We built a structural model of SpoIVFB in complex with BofA and parts of SpoIVFA and substrate, using partial homology and constraints from cross-linking and co-evolutionary analyses. The model predicts that conserved BofA residues interact to stabilize a TMS and a membrane-embedded C-terminal region. The model also predicts that SpoIVFA bridges the BofA C-terminal region and SpoIVFB, forming a membrane-embedded inhibition complex. Our results reveal a novel mechanism of IP inhibition with clear implications for relief from inhibition in vivo and design of inhibitors as potential therapeutics.
Collapse
Affiliation(s)
| | - Lim Heo
- Michigan State UniversityEast LansingUnited States
| | - Michael Feig
- Michigan State UniversityEast LansingUnited States
| | - Lee Kroos
- Michigan State UniversityEast LansingUnited States
| |
Collapse
|
30
|
Xavier JB, Monk JM, Poudel S, Norsigian CJ, Sastry AV, Liao C, Bento J, Suchard MA, Arrieta-Ortiz ML, Peterson EJ, Baliga NS, Stoeger T, Ruffin F, Richardson RA, Gao CA, Horvath TD, Haag AM, Wu Q, Savidge T, Yeaman MR. Mathematical models to study the biology of pathogens and the infectious diseases they cause. iScience 2022; 25:104079. [PMID: 35359802 PMCID: PMC8961237 DOI: 10.1016/j.isci.2022.104079] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Mathematical models have many applications in infectious diseases: epidemiologists use them to forecast outbreaks and design containment strategies; systems biologists use them to study complex processes sustaining pathogens, from the metabolic networks empowering microbial cells to ecological networks in the microbiome that protects its host. Here, we (1) review important models relevant to infectious diseases, (2) draw parallels among models ranging widely in scale. We end by discussing a minimal set of information for a model to promote its use by others and to enable predictions that help us better fight pathogens and the diseases they cause.
Collapse
Affiliation(s)
- Joao B. Xavier
- Program for Computational and Systems Biology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | | | - Saugat Poudel
- Department of Bioengineering, UC San Diego, San Diego, CA, USA
| | | | - Anand V. Sastry
- Department of Bioengineering, UC San Diego, San Diego, CA, USA
| | - Chen Liao
- Program for Computational and Systems Biology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Jose Bento
- Computer Science Department, Boston College, Chestnut Hill, MA, USA
| | - Marc A. Suchard
- Department of Computational Medicine, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA, USA
| | | | | | | | - Thomas Stoeger
- Department of Chemical and Biological Engineering; Northwestern University, Evanston, IL 60208, USA
- Successful Clinical Response in Pneumonia Therapy (SCRIPT) Systems Biology Center, Northwestern University, Chicago, IL, USA
| | - Felicia Ruffin
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Reese A.K. Richardson
- Department of Chemical and Biological Engineering; Northwestern University, Evanston, IL 60208, USA
- Successful Clinical Response in Pneumonia Therapy (SCRIPT) Systems Biology Center, Northwestern University, Chicago, IL, USA
| | - Catherine A. Gao
- Successful Clinical Response in Pneumonia Therapy (SCRIPT) Systems Biology Center, Northwestern University, Chicago, IL, USA
- Division of Pulmonary and Critical Care, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Thomas D. Horvath
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Pathology, Texas Children’s Microbiome Center, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Anthony M. Haag
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Pathology, Texas Children’s Microbiome Center, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Qinglong Wu
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Pathology, Texas Children’s Microbiome Center, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Tor Savidge
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Pathology, Texas Children’s Microbiome Center, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Michael R. Yeaman
- David Geffen School of Medicine at UCLA & Lundquist Institute for Infection & Immunity at Harbor UCLA Medical Center, Los Angeles, CA, USA
| |
Collapse
|
31
|
Paredes-Sabja D, Cid-Rojas F, Pizarro-Guajardo M. Assembly of the exosporium layer in Clostridioides difficile spores. Curr Opin Microbiol 2022; 67:102137. [PMID: 35182899 DOI: 10.1016/j.mib.2022.01.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/14/2022] [Accepted: 01/20/2022] [Indexed: 02/07/2023]
Abstract
Clostridioides difficile is a Gram-positive, spore-forming obligate anaerobe and a major threat to the healthcare system world-wide. Because of its strict anaerobic requirements, the infectious and transmissible morphotype is the dormant spore. During infection, C. difficile produces spores that can persist in the host and are responsible for disease recurrence and transmission, especially between hospitalized patients. Although the C. difficile spore surface mediates critical interactions with host surfaces, this outermost layer, known as the exosporium, is poorly conserved when compared to members of the Bacillus genus. Notably, the exosporium has been shown to be important for the persistence of C. difficile in the host. In this review, the ultrastructural properties, composition, and morphogenesis of the exosporium will be discussed.
Collapse
Affiliation(s)
- Daniel Paredes-Sabja
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA; ANID - Millennium Science Initiative Program - Millennium Nucleus in the Biology of the Intestinal Microbiota, Santiago, Chile.
| | - Francisca Cid-Rojas
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA; ANID - Millennium Science Initiative Program - Millennium Nucleus in the Biology of the Intestinal Microbiota, Santiago, Chile
| | - Marjorie Pizarro-Guajardo
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA; ANID - Millennium Science Initiative Program - Millennium Nucleus in the Biology of the Intestinal Microbiota, Santiago, Chile
| |
Collapse
|
32
|
Burgess SA, Palevich FP, Gardner A, Mills J, Brightwell G, Palevich N. Occurrence of genes encoding spore germination in Clostridium species that cause meat spoilage. Microb Genom 2022; 8. [PMID: 35166653 PMCID: PMC8942025 DOI: 10.1099/mgen.0.000767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Members of the genus Clostridium are frequently associated with meat spoilage. The ability for low numbers of spores of certain Clostridium species to germinate in cold-stored vacuum-packed meat can result in blown pack spoilage. However, little is known about the germination process of these clostridia, despite this characteristic being important for their ability to cause spoilage. This study sought to determine the genomic conditions for germination of 37 representative Clostridium strains from seven species (C. estertheticum, C. tagluense, C. frigoris, C. gasigenes, C. putrefaciens, C. aligidicarnis and C. frigdicarnis) by comparison with previously characterized germination genes from C. perfringens, C. sporogenes and C. botulinum. All the genomes analysed contained at least one gerX operon. Seven different gerX operon configuration types were identified across genomes from C. estertheticum, C. tagluense and C. gasigenes. Differences arose between the C. gasigenes genomes and those belonging to C. tagluense/C. estertheticum in the number and type of genes coding for cortex lytic enzymes, suggesting the germination pathway of C. gasigenes is different. However, the core components of the germination pathway were conserved in all the Clostridium genomes analysed, suggesting that these species undergo the same major steps as Bacillus subtilis for germination to occur.
Collapse
Affiliation(s)
- Sara A Burgess
- Molecular Epidemiology and Veterinary Public Health Laboratory (mEpiLab), Infectious Disease Research Centre, School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Faith P Palevich
- AgResearch Limited, Hopkirk Research Institute, Palmerston North, New Zealand
| | - Amanda Gardner
- AgResearch Limited, Hopkirk Research Institute, Palmerston North, New Zealand
| | - John Mills
- AgResearch Limited, Hopkirk Research Institute, Palmerston North, New Zealand
| | - Gale Brightwell
- AgResearch Limited, Hopkirk Research Institute, Palmerston North, New Zealand.,New Zealand Food Safety Science and Research Centre, Massey University, Palmerston North, New Zealand
| | - Nikola Palevich
- AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand
| |
Collapse
|
33
|
Insights into the Structure and Protein Composition of Moorella thermoacetica Spores Formed at Different Temperatures. Int J Mol Sci 2022; 23:ijms23010550. [PMID: 35008975 PMCID: PMC8745062 DOI: 10.3390/ijms23010550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 02/01/2023] Open
Abstract
The bacterium Moorella thermoacetica produces the most heat-resistant spores of any spoilage-causing microorganism known in the food industry. Previous work by our group revealed that the resistance of these spores to wet heat and biocides was lower when spores were produced at a lower temperature than the optimal temperature. Here, we used electron microcopy to characterize the ultrastructure of the coat of the spores formed at different sporulation temperatures; we found that spores produced at 55 °C mainly exhibited a lamellar inner coat tightly associated with a diffuse outer coat, while spores produced at 45 °C showed an inner and an outer coat separated by a less electron-dense zone. Moreover, misarranged coat structures were more frequently observed when spores were produced at the lower temperature. We then analyzed the proteome of the spores obtained at either 45 °C or 55 °C with respect to proteins putatively involved in the spore coat, exosporium, or in spore resistance. Some putative spore coat proteins, such as CotSA, were only identified in spores produced at 55 °C; other putative exosporium and coat proteins were significantly less abundant in spores produced at 45 °C. Altogether, our results suggest that sporulation temperature affects the structure and protein composition of M. thermoacetica spores.
Collapse
|
34
|
Centurion F, Basit AW, Liu J, Gaisford S, Rahim MA, Kalantar-Zadeh K. Nanoencapsulation for Probiotic Delivery. ACS NANO 2021; 15:18653-18660. [PMID: 34860008 DOI: 10.1021/acsnano.1c09951] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Gut microbiota dynamically participate in diverse physiological activities with direct impact on the host's health. A range of factors associated with the highly complex intestinal flora ecosystem poses challenges in regulating the homeostasis of microbiota. The consumption of live probiotic bacteria, in principle, can address these challenges and confer health benefits. In this context, one of the major problems is ensuring the survival of probiotic cells when faced with physical and chemical assaults during their intake and subsequent gastrointestinal passage to the gut. Advances in the field have focused on improving conventional encapsulation techniques in the microscale to achieve high cell viability, gastric and temperature resistance, and longer shelf lives. However, these microencapsulation approaches are known to have limitations with possible difficulties in clinical translation. In this Perspective, we present a brief overview of the current progress of different probiotic encapsulation methods and highlight the contemporary and emerging single-cell encapsulation strategies using nanocoatings for individual probiotic cells. Finally, we discuss the relative advantages of various nanoencapsulation approaches and the future trend toward developing coated probiotics with advanced features and health benefits.
Collapse
Affiliation(s)
- Franco Centurion
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
| | - Abdul W Basit
- UCL School of Pharmacy, University College London, London WC1N 1AX, United Kingdom
| | - Jinyao Liu
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Simon Gaisford
- UCL School of Pharmacy, University College London, London WC1N 1AX, United Kingdom
| | - Md Arifur Rahim
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
| | - Kourosh Kalantar-Zadeh
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
| |
Collapse
|
35
|
Mohiuddin SG, Ghosh S, Ngo HG, Sensenbach S, Karki P, Dewangan NK, Angardi V, Orman MA. Cellular Self-Digestion and Persistence in Bacteria. Microorganisms 2021; 9:2269. [PMID: 34835393 PMCID: PMC8626048 DOI: 10.3390/microorganisms9112269] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 11/30/2022] Open
Abstract
Cellular self-digestion is an evolutionarily conserved process occurring in prokaryotic cells that enables survival under stressful conditions by recycling essential energy molecules. Self-digestion, which is triggered by extracellular stress conditions, such as nutrient depletion and overpopulation, induces degradation of intracellular components. This self-inflicted damage renders the bacterium less fit to produce building blocks and resume growth upon exposure to fresh nutrients. However, self-digestion may also provide temporary protection from antibiotics until the self-digestion-mediated damage is repaired. In fact, many persistence mechanisms identified to date may be directly or indirectly related to self-digestion, as these processes are also mediated by many degradative enzymes, including proteases and ribonucleases (RNases). In this review article, we will discuss the potential roles of self-digestion in bacterial persistence.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Mehmet A. Orman
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77004, USA; (S.G.M.); (S.G.); (H.G.N.); (S.S.); (P.K.); (N.K.D.); (V.A.)
| |
Collapse
|
36
|
Nerber HN, Sorg JA. The small acid-soluble proteins of Clostridioides difficile are important for UV resistance and serve as a check point for sporulation. PLoS Pathog 2021; 17:e1009516. [PMID: 34496003 PMCID: PMC8452069 DOI: 10.1371/journal.ppat.1009516] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 09/20/2021] [Accepted: 09/01/2021] [Indexed: 12/17/2022] Open
Abstract
Clostridioides difficile is a nosocomial pathogen which causes severe diarrhea and colonic inflammation. C. difficile causes disease in susceptible patients when endospores germinate into the toxin-producing vegetative form. The action of these toxins results in diarrhea and the spread of spores into the hospital and healthcare environments. Thus, the destruction of spores is imperative to prevent disease transmission between patients. However, spores are resilient and survive extreme temperatures, chemical exposure, and UV treatment. This makes their elimination from the environment difficult and perpetuates their spread between patients. In the model spore-forming organism, Bacillus subtilis, the small acid-soluble proteins (SASPs) contribute to these resistances. The SASPs are a family of small proteins found in all endospore-forming organisms, C. difficile included. Although these proteins have high sequence similarity between organisms, the role(s) of the proteins differ. Here, we investigated the role of the main α/β SASPs, SspA and SspB, and two annotated putative SASPs, CDR20291_1130 and CDR20291_3080, in protecting C. difficile spores from environmental insults. We found that SspA is necessary for conferring spore UV resistance, SspB minorly contributes, and the annotated putative SASPs do not contribute to UV resistance. In addition, the SASPs minorly contribute to the resistance of nitrous acid. Surprisingly, the combined deletion of sspA and sspB prevented spore formation. Overall, our data indicate that UV resistance of C. difficile spores is dependent on SspA and that SspA and SspB regulate/serve as a checkpoint for spore formation, a previously unreported function of SASPs.
Collapse
Affiliation(s)
- Hailee N. Nerber
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
| | - Joseph A. Sorg
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
- * E-mail:
| |
Collapse
|
37
|
Luo C, Liu J, Bilal M, Liu X, Wang X, Dong F, Liu Y, Zang S, Yin X, Yang X, Zhu T, Zhang S, Zhang W, Li B. Extracellular lipopeptide bacillomycin L regulates serial expression of genes for modulating multicellular behavior in Bacillus velezensis Bs916. Appl Microbiol Biotechnol 2021; 105:6853-6870. [PMID: 34477941 DOI: 10.1007/s00253-021-11524-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/30/2021] [Accepted: 08/05/2021] [Indexed: 11/29/2022]
Abstract
In wild strains of Bacillus, a handful of extracellular natural products act as signals that can regulate multicellular behavior, but relatively little is known about molecular mechanisms' detail. We proposed a previously unreported molecular mechanism for triggering multicellularity in B. velezensis Bs916 by an endogenous cyclic lipopeptide, bacillomycin L. The genome-wide effect on gene expression was caused by the disruption of bacillomycin L gene cluster, and 100 µg/mL bacillomycin L was revealed by quantitative transcriptomics. A total of 878 differentially expressed genes among Bs916, Δbl, and Δbl + 100BL were identified and grouped into 9 functional categories. The transcription levels of 40 candidate genes were further evaluated by RT-qPCR analysis. The expression of eight candidate genes regulated by bacillomycin L in a dose-dependent manner was revealed by LacZ fusion experiment. Although the addition of bacillomycin L could not completely restore the expression levels of the differentially regulated genes in △bl, our results strongly suggest that bacillomycin L acts as a tuning signal of swarming motility and complex biofilm formation by indirectly regulating the expression levels of some two-component systems (TCSs) connector genes, particularly including several Raps that potentially regulate the phosphorylation levels of three major regulators ComA, DegU, and Spo0A.Key points• Proposed model for bacillomycin L regulation in B. velezensis Bs916.• Bacillomycin L can act as an extracellular signal to regulate the phosphorylation levels of three major regulators, ComA, DegU, and Spo0A and control the multicellular processes of vegetative growth, competent, motility, matrix production, sporulation, and autolysis.
Collapse
Affiliation(s)
- Chuping Luo
- Jiangsu Provincial Key Construction Laboratory of Probiotics Preparation, Huaiyin Institute of Technology, Huai'an, 223003, China. .,Institute of Veterinary Medicine, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.
| | - Jiachen Liu
- Jiangsu Provincial Key Construction Laboratory of Probiotics Preparation, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Muhammad Bilal
- Jiangsu Provincial Key Construction Laboratory of Probiotics Preparation, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Xuehui Liu
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiaohua Wang
- Jiangsu Provincial Key Construction Laboratory of Probiotics Preparation, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Fei Dong
- Jiangsu Provincial Key Construction Laboratory of Probiotics Preparation, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Yuan Liu
- Jiangsu Provincial Key Construction Laboratory of Probiotics Preparation, Huaiyin Institute of Technology, Huai'an, 223003, China.,Institute of Veterinary Medicine, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Shanshan Zang
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiulian Yin
- Jiangsu Provincial Key Construction Laboratory of Probiotics Preparation, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Xueting Yang
- Jiangsu Provincial Key Construction Laboratory of Probiotics Preparation, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Tao Zhu
- Jiangsu Provincial Key Construction Laboratory of Probiotics Preparation, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Shuangyu Zhang
- Jiangsu Provincial Key Construction Laboratory of Probiotics Preparation, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Weifeng Zhang
- Jiangsu Provincial Key Construction Laboratory of Probiotics Preparation, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Bin Li
- Jiangsu Provincial Key Construction Laboratory of Probiotics Preparation, Huaiyin Institute of Technology, Huai'an, 223003, China. .,Institute of Veterinary Medicine, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.
| |
Collapse
|
38
|
Tu Z, Dekker HL, Roseboom W, Swarge BN, Setlow P, Brul S, Kramer G. High Resolution Analysis of Proteome Dynamics during Bacillus subtilis Sporulation. Int J Mol Sci 2021; 22:ijms22179345. [PMID: 34502250 PMCID: PMC8431406 DOI: 10.3390/ijms22179345] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/19/2021] [Accepted: 08/24/2021] [Indexed: 12/27/2022] Open
Abstract
Bacillus subtilis vegetative cells switch to sporulation upon nutrient limitation. To investigate the proteome dynamics during sporulation, high-resolution time-lapse proteomics was performed in a cell population that was induced to sporulate synchronously. Here, we are the first to comprehensively investigate the changeover of sporulation regulatory proteins, coat proteins, and other proteins involved in sporulation and spore biogenesis. Protein co-expression analysis revealed four co-expressed modules (termed blue, brown, green, and yellow). Modules brown and green are upregulated during sporulation and contain proteins associated with sporulation. Module blue is negatively correlated with modules brown and green, containing ribosomal and metabolic proteins. Finally, module yellow shows co-expression with the three other modules. Notably, several proteins not belonging to any of the known transcription regulons were identified as co-expressed with modules brown and green, and might also play roles during sporulation. Finally, levels of some coat proteins, for example morphogenetic coat proteins, decreased late in sporulation.
Collapse
Affiliation(s)
- Zhiwei Tu
- Laboratory for Mass Spectrometry of Biomolecules, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands; (Z.T.); (H.L.D.); (W.R.); (B.N.S.)
- Laboratory for Molecular Biology and Microbial Food Safety, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Henk L. Dekker
- Laboratory for Mass Spectrometry of Biomolecules, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands; (Z.T.); (H.L.D.); (W.R.); (B.N.S.)
| | - Winfried Roseboom
- Laboratory for Mass Spectrometry of Biomolecules, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands; (Z.T.); (H.L.D.); (W.R.); (B.N.S.)
| | - Bhagyashree N. Swarge
- Laboratory for Mass Spectrometry of Biomolecules, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands; (Z.T.); (H.L.D.); (W.R.); (B.N.S.)
- Laboratory for Molecular Biology and Microbial Food Safety, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Peter Setlow
- Department of Molecular Biology and Biophysics, UCONN Health, Farmington, CT 06030-3305, USA;
| | - Stanley Brul
- Laboratory for Molecular Biology and Microbial Food Safety, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
- Correspondence: (S.B.); (G.K.); Tel.: +31-20-525-7079/6970 (S.B.); +31-20-525-5457 (G.K.)
| | - Gertjan Kramer
- Laboratory for Mass Spectrometry of Biomolecules, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands; (Z.T.); (H.L.D.); (W.R.); (B.N.S.)
- Correspondence: (S.B.); (G.K.); Tel.: +31-20-525-7079/6970 (S.B.); +31-20-525-5457 (G.K.)
| |
Collapse
|
39
|
Mappa C, Pible O, Armengaud J, Alpha-Bazin B. Assessing the ratio of Bacillus spores and vegetative cells by shotgun proteomics. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:25107-25115. [PMID: 30302730 DOI: 10.1007/s11356-018-3341-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 09/26/2018] [Indexed: 06/08/2023]
Abstract
Mass spectrometry for rapid identification of microorganisms is expanding over the last years because this approach is quick. This methodology provides a decisive interest to fight against bioterrorism as it is applicable whatever the pathogen to be considered and often allows subtyping which may be crucial for confirming a massive and widespread attack with biological agents. Here, we present a methodology based on next-generation proteomics and tandem mass spectrometry for discovering numerous protein biomarkers allowing the discrimination of spores and vegetative cells of Bacillus atrophaeus, a biowarfare simulant. We propose a global quantitative evaluation of the two groups of discriminant biomarkers based on their aggregated normalized spectral abundance factors.
Collapse
Affiliation(s)
- Charlotte Mappa
- Laboratoire Innovations technologiques pour la Détection et le Diagnostic (Li2D), Service de Pharmacologie et Immunoanalyse (SPI), CEA, INRA, 30207, Bagnols sur Cèze, France
| | - Olivier Pible
- Laboratoire Innovations technologiques pour la Détection et le Diagnostic (Li2D), Service de Pharmacologie et Immunoanalyse (SPI), CEA, INRA, 30207, Bagnols sur Cèze, France
| | - Jean Armengaud
- Laboratoire Innovations technologiques pour la Détection et le Diagnostic (Li2D), Service de Pharmacologie et Immunoanalyse (SPI), CEA, INRA, 30207, Bagnols sur Cèze, France.
| | - Béatrice Alpha-Bazin
- Laboratoire Innovations technologiques pour la Détection et le Diagnostic (Li2D), Service de Pharmacologie et Immunoanalyse (SPI), CEA, INRA, 30207, Bagnols sur Cèze, France
| |
Collapse
|
40
|
Soto-Avila L, Merce RC, Santos W, Castañeda N, Gutierrez-Ríos RM. Distribution and preservation of the components of the engulfment. What is beyond representative genomes? PLoS One 2021; 16:e0246651. [PMID: 33651833 PMCID: PMC7924749 DOI: 10.1371/journal.pone.0246651] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/24/2021] [Indexed: 12/16/2022] Open
Abstract
Engulfment requires the coordinated, targeted synthesis and degradation of peptidoglycan at the leading edge of the engulfing membrane to allow the mother cell to completely engulf the forespore. Proteins such as the DMP and Q:AH complexes in Bacillus subtilis are essential for engulfment, as are a set of accessory proteins including GerM and SpoIIB, among others. Experimental and bioinformatic studies of these proteins in bacteria distinct from Bacillus subtilis indicate that fundamental differences exist regarding the organization and mechanisms used to successfully perform engulfment. As a consequence, the distribution and prevalence of the proteins involved in engulfment and other proteins that participate in different sporulation stages have been studied using bioinformatic approaches. These works are based on the prediction of orthologs in the genomes of representative Firmicutes and have been helpful in tracing hypotheses about the origin and evolution of sporulation genes, some of which have been postulated as sporulation signatures. To date, an extensive study of these signatures outside of the representative Firmicutes is not available. Here, we asked whether phyletic profiles of proteins involved in engulfment can be used as signatures able to describe the sporulation phenotype. We tested this hypothesis in a set of 954 Firmicutes, finding preserved phyletic profiles defining signatures at the genus level. Finally, a phylogenetic reconstruction based on non-redundant phyletic profiles at the family level shows the non-monophyletic origin of these proteins due to gain/loss events along the phylum Firmicutes.
Collapse
Affiliation(s)
- Lizeth Soto-Avila
- Departamento de Microbiologia Molecular, Instituto de Biotecnologia, Universidad Nacional Autonoma de Mexico, Cuernavaca, Morelos, Mexico
- Centro de Investigacion en Dinamica Celular, Instituto de Investigacion en Ciencias Basicas y Aplicadas, Universidad Autonoma del Estado de Morelos (UAEM), Cuernavaca, Morelos, Mexico
| | - Ricardo Ciria Merce
- Departamento de Microbiologia Molecular, Instituto de Biotecnologia, Universidad Nacional Autonoma de Mexico, Cuernavaca, Morelos, Mexico
| | - Walter Santos
- Departamento de Microbiologia Molecular, Instituto de Biotecnologia, Universidad Nacional Autonoma de Mexico, Cuernavaca, Morelos, Mexico
| | - Nori Castañeda
- Departamento de Microbiologia Molecular, Instituto de Biotecnologia, Universidad Nacional Autonoma de Mexico, Cuernavaca, Morelos, Mexico
| | - Rosa-María Gutierrez-Ríos
- Departamento de Microbiologia Molecular, Instituto de Biotecnologia, Universidad Nacional Autonoma de Mexico, Cuernavaca, Morelos, Mexico
- * E-mail:
| |
Collapse
|
41
|
Abstract
Endospore formation is used by members of the phylum Firmicutes to withstand extreme environmental conditions. Several recent studies have proposed endospore formation in species outside of Firmicutes, particularly in Rhodobacter johrii and Serratia marcescens, members of the phylum Proteobacteria. Here, we aimed to investigate endospore formation in these two species by using advanced imaging and analytical approaches. Examination of the phase-bright structures observed in R. johrii and S. marcescens using cryo-electron tomography failed to identify endospores or stages of endospore formation. We determined that the phase-bright objects in R. johrii cells were triacylglycerol storage granules and those in S. marcescens were aggregates of cellular debris. In addition, R. johrii and S. marcescens containing phase-bright objects do not possess phenotypic and genetic features of endospores, including enhanced resistance to heat, presence of dipicolinic acid, or the presence of many of the genes associated with endospore formation. Our results support the hypothesis that endospore formation is restricted to the phylum Firmicutes.Importance: Bacterial endospore formation is an important process that allows the formation of dormant life forms called spores. As such, organisms able to sporulate can survive harsh environmental conditions for hundreds of years. Here, we follow up on previous claims that two members of Proteobacteria, Serratia marcescens and Rhodobacter johrii, are able to form spores. We conclude that those claims were incorrect and show that the putative spores in R. johrii and S. marcescens are storage granules and cellular debris, respectively. This study concludes that endospore formation is still unique to the phylum Firmicutes.
Collapse
|
42
|
Sun G, Yang M, Jiang L, Huang M. Regulation of pro-σ K activation: a key checkpoint in Bacillus subtilis sporulation. Environ Microbiol 2021; 23:2366-2373. [PMID: 33538382 DOI: 10.1111/1462-2920.15415] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 11/30/2022]
Abstract
The Gram-positive bacterium Bacillus subtilis initiates the sporulation process under conditions of nutrient limitation. Here, we review related work in this field, focusing on the protein processing of the pro-σK activation. The purpose of this review is to illustrate the mechanism of pro-σK activation and provide structural insights into the regulation of spore production. Sporulation is not only important in basic science but also provides mechanistic insight for bacterial control in applications in, e.g., food industry.
Collapse
Affiliation(s)
- Gaohui Sun
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350016, China
| | - Moua Yang
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Longguang Jiang
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350016, China.,Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Mingdong Huang
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350016, China
| |
Collapse
|
43
|
The Many Roles of the Bacterial Second Messenger Cyclic di-AMP in Adapting to Stress Cues. J Bacteriol 2020; 203:JB.00348-20. [PMID: 32839175 DOI: 10.1128/jb.00348-20] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Bacteria respond to changes in environmental conditions through adaptation to external cues. Frequently, bacteria employ nucleotide signaling molecules to mediate a specific, rapid response. Cyclic di-AMP (c-di-AMP) was recently discovered to be a bacterial second messenger that is essential for viability in many species. In this review, we highlight recent work that has described the roles of c-di-AMP in bacterial responses to various stress conditions. These studies show that depending on the lifestyle and environmental niche of the bacterial species, the c-di-AMP signaling network results in diverse outcomes, such as regulating osmolyte transport, controlling plant attachment, or providing a checkpoint for spore formation. c-di-AMP achieves this signaling specificity through expression of different classes of synthesis and catabolic enzymes as well as receptor proteins and RNAs, which will be summarized.
Collapse
|
44
|
Bang-Andreasen T, Anwar MZ, Lanzén A, Kjøller R, Rønn R, Ekelund F, Jacobsen CS. Total RNA sequencing reveals multilevel microbial community changes and functional responses to wood ash application in agricultural and forest soil. FEMS Microbiol Ecol 2020; 96:5721238. [PMID: 32009159 PMCID: PMC7028008 DOI: 10.1093/femsec/fiaa016] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 01/31/2020] [Indexed: 11/15/2022] Open
Abstract
Recycling of wood ash from energy production may counteract soil acidification and return essential nutrients to soils. However, wood ash amendment affects soil physicochemical parameters that control composition and functional expression of the soil microbial community. Here, we applied total RNA sequencing to simultaneously assess the impact of wood ash amendment on the active soil microbial communities and the expression of functional genes from all microbial taxa. Wood ash significantly affected the taxonomic (rRNA) as well as functional (mRNA) profiles of both agricultural and forest soil. Increase in pH, electrical conductivity, dissolved organic carbon and phosphate were the most important physicochemical drivers for the observed changes. Wood ash amendment increased the relative abundance of the copiotrophic groups Chitinonophagaceae (Bacteroidetes) and Rhizobiales (Alphaproteobacteria) and resulted in higher expression of genes involved in metabolism and cell growth. Finally, total RNA sequencing allowed us to show that some groups of bacterial feeding protozoa increased concomitantly to the enhanced bacterial growth, which shows their pivotal role in the regulation of bacterial abundance in soil.
Collapse
Affiliation(s)
- Toke Bang-Andreasen
- Department of Environmental Science, Aarhus University, RISØ Campus, Roskilde, 4000, Denmark.,Department of Biology, University of Copenhagen, DK-2100, Copenhagen, Denmark
| | - Muhammad Zohaib Anwar
- Department of Environmental Science, Aarhus University, RISØ Campus, Roskilde, 4000, Denmark
| | - Anders Lanzén
- Department of Conservation of Natural Resources, NEIKER-Tecnalia, Bizkaia Technology Park, E-48160, Derio, Spain.,AZTI-Tecnalia, Herrera Kaia, E-20110, Pasaia, Spain.,Ikerbasque, Basque Foundation for Science, E-48013, Bilbao, Spain
| | - Rasmus Kjøller
- Department of Biology, University of Copenhagen, DK-2100, Copenhagen, Denmark
| | - Regin Rønn
- Department of Biology, University of Copenhagen, DK-2100, Copenhagen, Denmark.,Arctic Station, University of Copenhagen, 3953, Qeqertarsuaq, Greenland
| | - Flemming Ekelund
- Department of Biology, University of Copenhagen, DK-2100, Copenhagen, Denmark
| | - Carsten Suhr Jacobsen
- Department of Environmental Science, Aarhus University, RISØ Campus, Roskilde, 4000, Denmark
| |
Collapse
|
45
|
Cho WI, Chung MS. Bacillus spores: a review of their properties and inactivation processing technologies. Food Sci Biotechnol 2020; 29:1447-1461. [PMID: 33041624 PMCID: PMC7538368 DOI: 10.1007/s10068-020-00809-4] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 08/02/2020] [Accepted: 08/07/2020] [Indexed: 11/29/2022] Open
Abstract
Many factors determine the resistance properties of a Bacillus spore to heat, chemical and physical processing, including thick proteinaceous coats, peptidoglycan cortex and low water content, high levels of dipicolinic acid (DPA), and divalent cations in the spore core. Recently, attention has been focused on non-thermal inactivation methods based on high pressure, ultrasonic, high voltage electric fields and cold plasmas for inactivating Bacillus spores associated with deterioration in quality and safety. The important chemical sporicides are glutaraldehyde, chorine-releasing agents, peroxygens, and ethylene oxide. Some food-grade antimicrobial agents exhibit sporostatic and sporicidal activities, such as protamine, polylysine, sodium lactate, essential oils. Surfactants with hydrophilic and hydrophobic properties have been reported to have inactivation activity against spores. The combined treatment of physical and chemical treatment such as heating, UHP (ultra high pressure), PEF (pulsed electric field), UV (ultraviolet), IPL (intense pulsed light) and natural antimicrobial agents can act synergistically and effectively to kill Bacillus spores in the food industry.
Collapse
Affiliation(s)
- Won-Il Cho
- Department of Food Science and Engineering, Ewha Womans University, Seoul, Republic of Korea
| | - Myong-Soo Chung
- Department of Food Science and Engineering, Ewha Womans University, Seoul, Republic of Korea
| |
Collapse
|
46
|
Lee Y, Kim YS, Balaraju K, Seo YS, Park J, Ryu CM, Park SH, Kim JF, Kang S, Jeon Y. Molecular changes associated with spontaneous phenotypic variation of Paenibacillus polymyxa, a commonly used biocontrol agent, and temperature-dependent control of variation. Sci Rep 2020; 10:16586. [PMID: 33024195 PMCID: PMC7538429 DOI: 10.1038/s41598-020-73716-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 09/21/2020] [Indexed: 11/19/2022] Open
Abstract
There has been a growing interest in deploying plant growth-promoting rhizobacteria (PGPR) as a biological control agent (BCA) to reduce the use of agrochemicals. Spontaneous phenotypic variation of PGPR, which causes the loss of traits crucial for biocontrol, presents a large obstacle in producing commercial biocontrol products. Here, we report molecular changes associated with phenotypic variation in Paenibacillus polymyxa, a PGPR widely used for biocontrol worldwide, and a simple cultural change that can prevent the variation. Compared to B-type (non-variant) cells of P. polymyxa strain E681, its phenotypic variant, termed as F-type, fails to form spores, does not confer plant growth-promoting effect, and displays altered colony and cell morphology, motility, antagonism against other microbes, and biofilm formation. This variation was observed in all tested strains of P. polymyxa, but the frequency varied among them. RNA-seq analysis revealed differential regulation of many genes involved in sporulation, flagella synthesis, carbohydrate metabolism, and antimicrobial production in F-type cells, consistent with their pleiotropic phenotypic changes. F-type cells's sporulation was arrested at stage 0, and the key sporulation gene spo0A was upregulated only in B-type cells. The phenotypic variation could be prevented by altering the temperature for growth. When E681 was cultured at 20 °C or lower, it exhibited no variation for 7 days and still reached ~ 108 cfu/mL, the level sufficient for commercial-scale production of biocontrol products.
Collapse
Affiliation(s)
- Younmi Lee
- Department of Plant Medicals, Andong National University, Andong, 36729, Republic of Korea.,Agricultural Science and Technology Research Institute, Andong National University, Andong, 36729, Republic of Korea
| | - Young Soo Kim
- Department of Plant Medicals, Andong National University, Andong, 36729, Republic of Korea
| | - Kotnala Balaraju
- Agricultural Science and Technology Research Institute, Andong National University, Andong, 36729, Republic of Korea
| | - Young-Su Seo
- Department of Microbiology, Pusan National University, Pusan, 46241, Republic of Korea
| | - Jungwook Park
- Department of Microbiology, Pusan National University, Pusan, 46241, Republic of Korea
| | - Choong-Min Ryu
- Infectious Disease Research Centre, KRIBB, Daejeon, 34141, Republic of Korea.,Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, Korea University of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Seung-Hwan Park
- Infectious Disease Research Centre, KRIBB, Daejeon, 34141, Republic of Korea.,Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, Korea University of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Jihyun F Kim
- Department of Systems Biology, Division of Life Sciences, and Institute for Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea.,Strategic Initiative for Microbiomes in Agriculture and Food (iMAF), Yonsei University, Seoul, 03722, Republic of Korea
| | - Seogchan Kang
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, PA, 16802, USA
| | - Yongho Jeon
- Department of Plant Medicals, Andong National University, Andong, 36729, Republic of Korea.
| |
Collapse
|
47
|
Diallo M, Kint N, Monot M, Collas F, Martin-Verstraete I, van der Oost J, Kengen SWM, López-Contreras AM. Transcriptomic and Phenotypic Analysis of a spoIIE Mutant in Clostridium beijerinckii. Front Microbiol 2020; 11:556064. [PMID: 33042064 PMCID: PMC7522474 DOI: 10.3389/fmicb.2020.556064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/20/2020] [Indexed: 11/26/2022] Open
Abstract
SpoIIE is a phosphatase involved in the activation of the first sigma factor of the forespore, σ F , during sporulation. A ΔspoIIE mutant of Clostridium beijerinckii NCIMB 8052, previously generated by CRISPR-Cas9, did not sporulate but still produced granulose and solvents. Microscopy analysis also showed that the cells of the ΔspoIIE mutant are elongated with the presence of multiple septa. This observation suggests that in C. beijerinckii, SpoIIE is necessary for the completion of the sporulation process, as seen in Bacillus and Clostridium acetobutylicum. Moreover, when grown in reactors, the spoIIE mutant produced higher levels of solvents than the wild type strain. The impact of the spoIIE inactivation on gene transcription was assessed by comparative transcriptome analysis at three time points (4 h, 11 h and 23 h). Approximately 5% of the genes were differentially expressed in the mutant compared to the wild type strain at all time points. Out of those only 12% were known sporulation genes. As expected, the genes belonging to the regulon of the sporulation specific transcription factors (σ F , σ E , σ G , σ K ) were strongly down-regulated in the mutant. Inactivation of spoIIE also caused differential expression of genes involved in various cell processes at each time point. Moreover, at 23 h, genes involved in butanol formation and tolerance, as well as in cell motility, were up-regulated in the mutant. In contrast, several genes involved in cell wall composition, oxidative stress and amino acid transport were down-regulated. These results indicate an intricate interdependence of sporulation and stationary phase cellular events in C. beijerinckii.
Collapse
Affiliation(s)
- Mamou Diallo
- Wageningen Food and Biobased Research, Wageningen, Netherlands
- Laboratory of Microbiology, Wageningen University, Wageningen, Netherlands
| | - Nicolas Kint
- Laboratoire Pathogènese des Bactéries Anaérobies, Institut Pasteur, UMR CNRS 2001, Université de Paris, Paris, France
| | - Marc Monot
- Biomics platform, C2RT, Institut Pasteur, Paris, France
| | - Florent Collas
- Wageningen Food and Biobased Research, Wageningen, Netherlands
| | - Isabelle Martin-Verstraete
- Laboratoire Pathogènese des Bactéries Anaérobies, Institut Pasteur, UMR CNRS 2001, Université de Paris, Paris, France
- Institut Universitaire de France, Paris, France
| | - John van der Oost
- Laboratory of Microbiology, Wageningen University, Wageningen, Netherlands
| | - Servé W. M. Kengen
- Laboratory of Microbiology, Wageningen University, Wageningen, Netherlands
| | | |
Collapse
|
48
|
Arvizu Hernández I, Hernández Flores JL, Caballero Pérez J, Gutiérrez Sánchez H, Ramos López MÁ, Romero Gómez S, Cruz Hernández A, Saldaña Gutierrez C, Álvarez Hidalgo E, Jones GH, Campos Guillén J. Analysis of tRNA Cys processing under salt stress in Bacillus subtilis spore outgrowth using RNA sequencing data. F1000Res 2020; 9:501. [PMID: 33976872 PMCID: PMC8097732 DOI: 10.12688/f1000research.23780.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/12/2020] [Indexed: 11/20/2022] Open
Abstract
Background: In spore-forming bacteria, the molecular mechanisms of accumulation of transfer RNA (tRNA) during sporulation must be a priority as tRNAs play an essential role in protein synthesis during spore germination and outgrowth. However, tRNA processing has not been extensively studied in these conditions, and knowledge of these mechanisms is important to understand long-term stress survival. Methods:To gain further insight into tRNA processing during spore germination and outgrowth, the expression of the single copy tRNA Cys gene was analyzed in the presence and absence of 1.2 M NaCl in Bacillus subtilis using RNA-Seq data obtained from the Gene Expression Omnibus (GEO) database. The CLC Genomics work bench 12.0.2 (CLC Bio, Aarhus, Denmark, https://www.qiagenbioinformatics.com/) was used to analyze reads from the tRNA Cys gene. Results:The results show that spores store different populations of tRNA Cys-related molecules. One such population, representing 60% of total tRNA Cys, was composed of tRNA Cys fragments. Half of these fragments (3´-tRF) possessed CC, CCA or incorrect additions at the 3´end. tRNA Cys with correct CCA addition at the 3´end represented 23% of total tRNA Cys, while with CC addition represented 9% of the total and with incorrect addition represented 7%. While an accumulation of tRNA Cys precursors was induced by upregulation of the rrnD operon under the control of σ A -dependent promoters under both conditions investigated, salt stress produced only a modest effect on tRNA Cys expression and the accumulation of tRNA Cys related species. Conclusions:The results demonstrate that tRNA Cys molecules resident in spores undergo dynamic processing to produce functional molecules that may play an essential role during protein synthesis.
Collapse
Affiliation(s)
- Iván Arvizu Hernández
- Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, Querétaro, Qro., 76010, Mexico
| | - José Luis Hernández Flores
- Laboratorio de Bioseguridad y Análisis de Riesgo, Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Guanajuato, 36824, Mexico
| | | | - Héctor Gutiérrez Sánchez
- Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, Querétaro, Qro., 76010, Mexico
| | - Miguel Ángel Ramos López
- Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, Querétaro, Qro., 76010, Mexico
| | - Sergio Romero Gómez
- Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, Querétaro, Qro., 76010, Mexico
| | - Andrés Cruz Hernández
- Escuela de Agronomía, Universidad De La Salle Bajío, Campus Campestre, León, Guanajuato, 37150, Mexico
| | - Carlos Saldaña Gutierrez
- Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, Querétaro, Qro., 76010, Mexico
| | - Erika Álvarez Hidalgo
- Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, Querétaro, Qro., 76010, Mexico
| | - George H Jones
- Department of Biology, Emory University, Atlanta, Georgia, 30322, USA
| | - Juan Campos Guillén
- Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, Querétaro, Qro., 76010, Mexico
| |
Collapse
|
49
|
Ramos-Silva P, Serrano M, Henriques AO. From Root to Tips: Sporulation Evolution and Specialization in Bacillus subtilis and the Intestinal Pathogen Clostridioides difficile. Mol Biol Evol 2020; 36:2714-2736. [PMID: 31350897 PMCID: PMC6878958 DOI: 10.1093/molbev/msz175] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Bacteria of the Firmicutes phylum are able to enter a developmental pathway that culminates with the formation of highly resistant, dormant endospores. Endospores allow environmental persistence, dissemination and for pathogens, are also infection vehicles. In both the model Bacillus subtilis, an aerobic organism, and in the intestinal pathogen Clostridioides difficile, an obligate anaerobe, sporulation mobilizes hundreds of genes. Their expression is coordinated between the forespore and the mother cell, the two cells that participate in the process, and is kept in close register with the course of morphogenesis. The evolutionary mechanisms by which sporulation emerged and evolved in these two species, and more broadly across Firmicutes, remain largely unknown. Here, we trace the origin and evolution of sporulation using the genes known to be involved in the process in B. subtilis and C. difficile, and estimating their gain-loss dynamics in a comprehensive bacterial macroevolutionary framework. We show that sporulation evolution was driven by two major gene gain events, the first at the base of the Firmicutes and the second at the base of the B. subtilis group and within the Peptostreptococcaceae family, which includes C. difficile. We also show that early and late sporulation regulons have been coevolving and that sporulation genes entail greater innovation in B. subtilis with many Bacilli lineage-restricted genes. In contrast, C. difficile more often recruits new sporulation genes by horizontal gene transfer, which reflects both its highly mobile genome, the complexity of the gut microbiota, and an adjustment of sporulation to the gut ecosystem.
Collapse
Affiliation(s)
- Paula Ramos-Silva
- Instituto Gulbenkian de Ciência, Oeiras, Portugal.,Marine Biodiversity Group, Naturalis Biodiversity Center, Leiden, The Netherlands
| | - Mónica Serrano
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Adriano O Henriques
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
50
|
Ertekin O, Kutnu M, Taşkin AA, Demir M, Karataş AY, Özcengiz G. Analysis of a bac operon-silenced strain suggests pleiotropic effects of bacilysin in Bacillus subtilis. J Microbiol 2020; 58:297-313. [DOI: 10.1007/s12275-020-9064-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 12/11/2019] [Accepted: 12/24/2019] [Indexed: 11/24/2022]
|