1
|
Rodríguez-Ramos J, Sadler N, Zegeye EK, Farris Y, Purvine S, Couvillion S, Nelson WC, Hofmockel KS. Environmental matrix and moisture influence soil microbial phenotypes in a simplified porous media incubation. mSystems 2025; 10:e0161624. [PMID: 39992132 PMCID: PMC11915792 DOI: 10.1128/msystems.01616-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 01/16/2025] [Indexed: 02/25/2025] Open
Abstract
Soil moisture and porosity regulate microbial metabolism by influencing factors, such as system chemistry, substrate availability, and soil connectivity. However, accurately representing the soil environment and establishing a tractable microbial community that limits confounding variables is difficult. Here, we use a reduced-complexity microbial consortium grown in a glass bead porous media amended with chitin to test the effects of moisture and a structural matrix on microbial phenotypes. Leveraging metagenomes, metatranscriptomes, metaproteomes, and metabolomes, we saw that our porous media system significantly altered microbial phenotypes compared with the liquid incubations, denoting the importance of incorporating pores and surfaces for understanding microbial phenotypes in soils. These phenotypic shifts were mainly driven by differences in expression of Streptomyces and Ensifer, which included a significant decrease in overall chitin degradation between porous media and liquid. Our findings suggest that the success of Ensifer in porous media is likely related to its ability to repurpose carbon via the glyoxylate shunt amidst a lack of chitin degradation byproducts while potentially using polyhydroxyalkanoate granules as a C source. We also identified traits expressed by Ensifer and others, including motility, stress resistance, and carbon conservation, that likely influence the metabolic profiles observed across treatments. Together, these results demonstrate that porous media incubations promote structure-induced microbial phenotypes and are likely a better proxy for soil conditions than liquid culture systems. Furthermore, they emphasize that microbial phenotypes encompass not only the multi-enzyme pathways involved in metabolism but also include the complex interactions with the environment and other community members.IMPORTANCESoil moisture and porosity are critical in shaping microbial metabolism. However, accurately representing the soil environment in tractable laboratory experiments remains a challenging frontier. Through our reduced complexity microbial consortium experiment in porous media, we reveal that predicting microbial metabolism from gene-based pathways alone often falls short of capturing the intricate phenotypes driven by cellular interactions. Our findings highlight that porosity and moisture significantly affect chitin decomposition, with environmental matrix (i.e., glass beads) shifting community metabolism towards stress tolerance, reduced resource acquisition, and increased carbon conservation, ultimately invoking unique microbial strategies not evident in liquid cultures. Moreover, we find evidence that changes in moisture relate to community shifts regarding motility, transporters, and biofilm formation, which likely influence chitin degradation. Ultimately, our incubations showcase how reduced complexity communities can be informative of microbial metabolism and present a useful alternative to liquid cultures for studying soil microbial phenotypes.
Collapse
Affiliation(s)
- Josué Rodríguez-Ramos
- Pacific Northwest National Laboratory, Earth and Biological Sciences Directorate, Richland, Washington, USA
| | - Natalie Sadler
- Pacific Northwest National Laboratory, Earth and Biological Sciences Directorate, Richland, Washington, USA
| | - Elias K. Zegeye
- Pacific Northwest National Laboratory, Earth and Biological Sciences Directorate, Richland, Washington, USA
| | - Yuliya Farris
- Pacific Northwest National Laboratory, Earth and Biological Sciences Directorate, Richland, Washington, USA
| | - Samuel Purvine
- Pacific Northwest National Laboratory, Earth and Biological Sciences Directorate, Richland, Washington, USA
| | - Sneha Couvillion
- Pacific Northwest National Laboratory, Earth and Biological Sciences Directorate, Richland, Washington, USA
| | - William C. Nelson
- Pacific Northwest National Laboratory, Earth and Biological Sciences Directorate, Richland, Washington, USA
| | - Kirsten S. Hofmockel
- Pacific Northwest National Laboratory, Earth and Biological Sciences Directorate, Richland, Washington, USA
| |
Collapse
|
2
|
Tang S, Liu Y, Zhu J, Cheng X, Liu L, Hammerschmidt K, Zhou J, Cai Z. Bet hedging in a unicellular microalga. Nat Commun 2024; 15:2063. [PMID: 38453919 PMCID: PMC10920660 DOI: 10.1038/s41467-024-46297-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 02/22/2024] [Indexed: 03/09/2024] Open
Abstract
Understanding how organisms have adapted to persist in unpredictable environments is a fundamental goal in biology. Bet hedging, an evolutionary adaptation observed from microbes to humans, facilitates reproduction and population persistence in randomly fluctuating environments. Despite its prevalence, empirical evidence in microalgae, crucial primary producers and carbon sinks, is lacking. Here, we report a bet-hedging strategy in the unicellular microalga Haematococcus pluvialis. We show that isogenic populations reversibly diversify into heterophenotypic mobile and non-mobile cells independently of environmental conditions, likely driven by stochastic gene expression. Mobile cells grow faster but are stress-sensitive, while non-mobile cells prioritise stress resistance over growth. This is due to shifts from growth-promoting activities (cell division, photosynthesis) to resilience-promoting processes (thickened cell wall, cell enlargement, aggregation, accumulation of antioxidant and energy-storing compounds). Our results provide empirical evidence for bet hedging in a microalga, indicating the potential for adaptation to current and future environmental conditions and consequently conservation of ecosystem functions.
Collapse
Affiliation(s)
- Si Tang
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, Guangdong Province, PR China
| | - Yaqing Liu
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, Guangdong Province, PR China
| | - Jianming Zhu
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, Guangdong Province, PR China
| | - Xueyu Cheng
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, Guangdong Province, PR China
| | - Lu Liu
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, Guangdong Province, PR China
| | | | - Jin Zhou
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, Guangdong Province, PR China.
| | - Zhonghua Cai
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, Guangdong Province, PR China.
- Technology Innovation Center for Marine Ecology and Human Factor Assessment of Natural Resources Ministry, Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, Guangdong Province, PR China.
| |
Collapse
|
3
|
Dantzer B. Frank Beach Award Winner: The centrality of the hypothalamic-pituitary-adrenal axis in dealing with environmental change across temporal scales. Horm Behav 2023; 150:105311. [PMID: 36707334 DOI: 10.1016/j.yhbeh.2023.105311] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 01/02/2023] [Accepted: 01/06/2023] [Indexed: 01/26/2023]
Abstract
Understanding if and how individuals and populations cope with environmental change is an enduring question in evolutionary ecology that has renewed importance given the pace of change in the Anthropocene. Two evolutionary strategies of coping with environmental change may be particularly important in rapidly changing environments: adaptive phenotypic plasticity and/or bet hedging. Adaptive plasticity could enable individuals to match their phenotypes to the expected environment if there is an accurate cue predicting the selective environment. Diversifying bet hedging involves the production of seemingly random phenotypes in an unpredictable environment, some of which may be adaptive. Here, I review the central role of the hypothalamic-pituitary-adrenal (HPA) axis and glucocorticoids (GCs) in enabling vertebrates to cope with environmental change through adaptive plasticity and bet hedging. I first describe how the HPA axis mediates three types of adaptive plasticity to cope with environmental change (evasion, tolerance, recovery) over short timescales (e.g., 1-3 generations) before discussing how the implications of GCs on phenotype integration may depend upon the timescale under consideration. GCs can promote adaptive phenotypic integration, but their effects on phenotypic co-variation could also limit the dimensions of phenotypic space explored by animals over longer timescales. Finally, I discuss how organismal responses to environmental stressors can act as a bet hedging mechanism and therefore enhance evolvability by increasing genetic or phenotypic variability or reducing patterns of genetic and phenotypic co-variance. Together, this emphasizes the crucial role of the HPA axis in understanding fundamental questions in evolutionary ecology.
Collapse
Affiliation(s)
- Ben Dantzer
- Department of Psychology, University of Michigan, MI 48109 Ann Arbor, MI, USA; Department of Ecology and Evolutionary Biology, University of Michigan, MI 48109, Ann Arbor, MI, USA.
| |
Collapse
|
4
|
Collective decision-making in Pseudomonas aeruginosa involves transient segregation of quorum-sensing activities across cells. Curr Biol 2022; 32:5250-5261.e6. [PMID: 36417904 DOI: 10.1016/j.cub.2022.10.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/07/2022] [Accepted: 10/25/2022] [Indexed: 11/23/2022]
Abstract
A hallmark of bacterial sociality is that groups can coordinate cooperative actions through a cell-to-cell communication process called quorum sensing (QS). QS regulates key bacterial phenotypes such as virulence in infections and digestion of extracellular compounds in the environment. Although QS responses are typically studied as group-level phenotypes, it is unclear whether individuals coordinate their actions at the single-cell level or whether group phenotypes simply reflect the sum of their noisy members. Here, we studied the behavior of Pseudomonas aeruginosa individuals by tracking their temporal commitments to the two intertwined Las and Rhl-QS systems, from low to high population density. Using chromosomally integrated fluorescent gene reporters, we found that QS gene expression (signal, receptor, and cooperative exoproduct) was noisy with heterogeneity peaking during the build-up phase of QS. Moreover, we observed the formation of discrete subgroups of cells that transiently segregate into two gene expression states: low Las-receptor expressers that instantly activate exoproduct production and high Las-receptor expressers with delayed exoproduct production. Later, gene expression activities converged with all cells fully committing to QS. We developed general mathematical models to show that gene expression segregation can mechanistically be spurred by molecular resource limitations during the initiation phase of regulatory cascades such as QS. Moreover, our models indicate that gene expression segregation across cells can operate as a built-in brake enabling a temporary bet-hedging strategy in unpredictable environments. Altogether, our work reveals that studying the behavior of bacterial individuals is key to understanding emergent collective actions at the group level.
Collapse
|
5
|
Dundas CM, Dinneny JR. Genetic Circuit Design in Rhizobacteria. BIODESIGN RESEARCH 2022; 2022:9858049. [PMID: 37850138 PMCID: PMC10521742 DOI: 10.34133/2022/9858049] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 07/31/2022] [Indexed: 10/19/2023] Open
Abstract
Genetically engineered plants hold enormous promise for tackling global food security and agricultural sustainability challenges. However, construction of plant-based genetic circuitry is constrained by a lack of well-characterized genetic parts and circuit design rules. In contrast, advances in bacterial synthetic biology have yielded a wealth of sensors, actuators, and other tools that can be used to build bacterial circuitry. As root-colonizing bacteria (rhizobacteria) exert substantial influence over plant health and growth, genetic circuit design in these microorganisms can be used to indirectly engineer plants and accelerate the design-build-test-learn cycle. Here, we outline genetic parts and best practices for designing rhizobacterial circuits, with an emphasis on sensors, actuators, and chassis species that can be used to monitor/control rhizosphere and plant processes.
Collapse
Affiliation(s)
| | - José R. Dinneny
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
6
|
Mridha S, Kümmerli R. Coordination of siderophore gene expression among clonal cells of the bacterium Pseudomonas aeruginosa. Commun Biol 2022; 5:545. [PMID: 35668142 PMCID: PMC9170778 DOI: 10.1038/s42003-022-03493-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/18/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractThere has been great progress in understanding how bacterial groups coordinate social actions, such as biofilm formation and public-goods secretion. Less clear is whether the seemingly coordinated group-level responses actually mirror what individual cells do. Here, we use a microscopy approach to simultaneously quantify the investment of individual cells of the bacterium Pseudomonas aeruginosa into two public goods, the siderophores pyochelin and pyoverdine. Using gene expression as a proxy for investment, we initially observe no coordination but high heterogeneity and bimodality in siderophore investment across cells. With increasing cell density, gene expression becomes more homogenized across cells, accompanied by a moderate shift from pyochelin to pyoverdine expression. We find positive associations in the expression of pyochelin and pyoverdine genes across cells, with cell-to-cell variation correlating with cellular metabolic states. Our work suggests that siderophore-mediated signalling aligns behaviour of individuals over time and spurs a coordinated three-phase siderophore investment cycle.
Collapse
|
7
|
Cangioli L, Vaccaro F, Fini M, Mengoni A, Fagorzi C. Scent of a Symbiont: The Personalized Genetic Relationships of Rhizobium-Plant Interaction. Int J Mol Sci 2022; 23:3358. [PMID: 35328782 PMCID: PMC8954435 DOI: 10.3390/ijms23063358] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 01/24/2023] Open
Abstract
Many molecular signals are exchanged between rhizobia and host legume plants, some of which are crucial for symbiosis to take place, while others are modifiers of the interaction, which have great importance in the competition with the soil microbiota and in the genotype-specific perception of host plants. Here, we review recent findings on strain-specific and host genotype-specific interactions between rhizobia and legumes, discussing the molecular actors (genes, gene products and metabolites) which play a role in the establishment of symbiosis, and highlighting the need for research including the other components of the soil (micro)biota, which could be crucial in developing rational-based strategies for bioinoculants and synthetic communities' assemblage.
Collapse
Affiliation(s)
- Lisa Cangioli
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy
| | - Francesca Vaccaro
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy
| | - Margherita Fini
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy
| | - Alessio Mengoni
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy
| | - Camilla Fagorzi
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
8
|
Morawska LP, Hernandez-Valdes JA, Kuipers OP. Diversity of bet-hedging strategies in microbial communities-Recent cases and insights. WIREs Mech Dis 2022; 14:e1544. [PMID: 35266649 PMCID: PMC9286555 DOI: 10.1002/wsbm.1544] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 10/05/2021] [Accepted: 10/07/2021] [Indexed: 12/12/2022]
Abstract
Microbial communities are continuously exposed to unpredictable changes in their environment. To thrive in such dynamic habitats, microorganisms have developed the ability to readily switch phenotypes, resulting in a number of differently adapted subpopulations expressing various traits. In evolutionary biology, a particular case of phenotypic heterogeneity that evolved in an unpredictably changing environment has been defined as bet‐hedging. Bet‐hedging is a risk‐spreading strategy where isogenic populations stochastically (randomly) diversify their phenotypes, often resulting in maladapted individuals that suffer lower reproductive success. This fitness trade‐off in a specific environment may have a selective advantage upon the sudden environmental shift. Thus, a bet‐hedging strategy allows populations to persist in very dynamic habitats, but with a particular fitness cost. In recent years, numerous examples of phenotypic heterogeneity in different microorganisms have been observed, some suggesting bet‐hedging. Here, we highlight the latest reports concerning bet‐hedging phenomena in various microorganisms to show how versatile this strategy is within the microbial realms. This article is categorized under:Infectious Diseases > Molecular and Cellular Physiology
Collapse
Affiliation(s)
- Luiza P Morawska
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, Groningen, The Netherlands
| | - Jhonatan A Hernandez-Valdes
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, Groningen, The Netherlands
| | - Oscar P Kuipers
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, Groningen, The Netherlands
| |
Collapse
|
9
|
Microbial storage and its implications for soil ecology. THE ISME JOURNAL 2022; 16:617-629. [PMID: 34593996 PMCID: PMC8857262 DOI: 10.1038/s41396-021-01110-w] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 08/31/2021] [Accepted: 09/07/2021] [Indexed: 02/08/2023]
Abstract
Organisms throughout the tree of life accumulate chemical resources, in particular forms or compartments, to secure their availability for future use. Here we review microbial storage and its ecological significance by assembling several rich but disconnected lines of research in microbiology, biogeochemistry, and the ecology of macroscopic organisms. Evidence is drawn from various systems, but we pay particular attention to soils, where microorganisms play crucial roles in global element cycles. An assembly of genus-level data demonstrates the likely prevalence of storage traits in soil. We provide a theoretical basis for microbial storage ecology by distinguishing a spectrum of storage strategies ranging from surplus storage (storage of abundant resources that are not immediately required) to reserve storage (storage of limited resources at the cost of other metabolic functions). This distinction highlights that microorganisms can invest in storage at times of surplus and under conditions of scarcity. We then align storage with trait-based microbial life-history strategies, leading to the hypothesis that ruderal species, which are adapted to disturbance, rely less on storage than microorganisms adapted to stress or high competition. We explore the implications of storage for soil biogeochemistry, microbial biomass, and element transformations and present a process-based model of intracellular carbon storage. Our model indicates that storage can mitigate against stoichiometric imbalances, thereby enhancing biomass growth and resource-use efficiency in the face of unbalanced resources. Given the central roles of microbes in biogeochemical cycles, we propose that microbial storage may be influential on macroscopic scales, from carbon cycling to ecosystem stability.
Collapse
|
10
|
Koch M, Forchhammer K. Polyhydroxybutyrate: A Useful Product of Chlorotic Cyanobacteria. Microb Physiol 2021; 31:67-77. [PMID: 33979794 DOI: 10.1159/000515617] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/02/2021] [Indexed: 11/19/2022]
Abstract
Polyhydroxybutyrate (PHB) is a carbon polymer with diverse functions, varying greatly on the organism producing it. This microreview describes the current knowledge about PHB metabolism, structure, and different physiological roles with a special focus on cyanobacteria. Despite the physiological function of PHB in the cyanobacterial phylum still being unknown, these organisms provide the unique opportunity to directly convert atmospheric CO2 into bioplastic using a solar-based process. Recent research on PHB metabolism in the cyanobacterial model organism Synechocystis revealed a sophisticated control of PHB granule formation. Novel insights about the metabolic background of PHB synthesis resulted in the engineering of the first cyanobacterial superproducer strain.
Collapse
Affiliation(s)
- Moritz Koch
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Karl Forchhammer
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany
| |
Collapse
|
11
|
Müller-Santos M, Koskimäki JJ, Alves LPS, de Souza EM, Jendrossek D, Pirttilä AM. The protective role of PHB and its degradation products against stress situations in bacteria. FEMS Microbiol Rev 2021; 45:fuaa058. [PMID: 33118006 DOI: 10.1093/femsre/fuaa058] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 10/26/2020] [Indexed: 12/15/2022] Open
Abstract
Many bacteria produce storage biopolymers that are mobilized under conditions of metabolic adaptation, for example, low nutrient availability and cellular stress. Polyhydroxyalkanoates are often found as carbon storage in Bacteria or Archaea, and of these polyhydroxybutyrate (PHB) is the most frequently occurring PHA type. Bacteria usually produce PHB upon availability of a carbon source and limitation of another essential nutrient. Therefore, it is widely believed that the function of PHB is to serve as a mobilizable carbon repository when bacteria face carbon limitation, supporting their survival. However, recent findings indicate that bacteria switch from PHB synthesis to mobilization under stress conditions such as thermal and oxidative shock. The mobilization products, 3-hydroxybutyrate and its oligomers, show a protective effect against protein aggregation and cellular damage caused by reactive oxygen species and heat shock. Thus, bacteria should have an environmental monitoring mechanism directly connected to the regulation of the PHB metabolism. Here, we review the current knowledge on PHB physiology together with a summary of recent findings on novel functions of PHB in stress resistance. Potential applications of these new functions are also presented.
Collapse
Affiliation(s)
- Marcelo Müller-Santos
- Department of Biochemistry and Molecular Biology, Federal University of Paraná - UFPR, Setor de Ciências Biológicas, Centro Politécnico, Jardim da Américas, CEP: 81531-990, Caixa Postal: 190-46, Curitiba, Paraná, Brazil
| | - Janne J Koskimäki
- Ecology and Genetics Research Unit, University of Oulu, Pentti Kaiteran katu 1, P.O. Box 3000, FI-90014 Oulu, Finland
| | - Luis Paulo Silveira Alves
- Department of Biochemistry and Molecular Biology, Federal University of Paraná - UFPR, Setor de Ciências Biológicas, Centro Politécnico, Jardim da Américas, CEP: 81531-990, Caixa Postal: 190-46, Curitiba, Paraná, Brazil
| | - Emanuel Maltempi de Souza
- Department of Biochemistry and Molecular Biology, Federal University of Paraná - UFPR, Setor de Ciências Biológicas, Centro Politécnico, Jardim da Américas, CEP: 81531-990, Caixa Postal: 190-46, Curitiba, Paraná, Brazil
| | - Dieter Jendrossek
- Institute of Microbiology, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Anna Maria Pirttilä
- Ecology and Genetics Research Unit, University of Oulu, Pentti Kaiteran katu 1, P.O. Box 3000, FI-90014 Oulu, Finland
| |
Collapse
|
12
|
Sokolova I. Bioenergetics in environmental adaptation and stress tolerance of aquatic ectotherms: linking physiology and ecology in a multi-stressor landscape. J Exp Biol 2021; 224:224/Suppl_1/jeb236802. [PMID: 33627464 DOI: 10.1242/jeb.236802] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Energy metabolism (encompassing energy assimilation, conversion and utilization) plays a central role in all life processes and serves as a link between the organismal physiology, behavior and ecology. Metabolic rates define the physiological and life-history performance of an organism, have direct implications for Darwinian fitness, and affect ecologically relevant traits such as the trophic relationships, productivity and ecosystem engineering functions. Natural environmental variability and anthropogenic changes expose aquatic ectotherms to multiple stressors that can strongly affect their energy metabolism and thereby modify the energy fluxes within an organism and in the ecosystem. This Review focuses on the role of bioenergetic disturbances and metabolic adjustments in responses to multiple stressors (especially the general cellular stress response), provides examples of the effects of multiple stressors on energy intake, assimilation, conversion and expenditure, and discusses the conceptual and quantitative approaches to identify and mechanistically explain the energy trade-offs in multiple stressor scenarios, and link the cellular and organismal bioenergetics with fitness, productivity and/or ecological functions of aquatic ectotherms.
Collapse
Affiliation(s)
- Inna Sokolova
- Marine Biology Department, Institute of Biological Sciences, University of Rostock, 18059 Rostock, Germany .,Department of Maritime Systems, Interdisciplinary Faculty, University of Rostock, 18059 Rostock, Germany
| |
Collapse
|
13
|
Sathyamoorthy R, Kushmaro Y, Rotem O, Matan O, Kadouri DE, Huppert A, Jurkevitch E. To hunt or to rest: prey depletion induces a novel starvation survival strategy in bacterial predators. THE ISME JOURNAL 2021; 15:109-123. [PMID: 32884113 PMCID: PMC7852544 DOI: 10.1038/s41396-020-00764-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 08/12/2020] [Accepted: 08/25/2020] [Indexed: 02/06/2023]
Abstract
The small size of bacterial cells necessitates rapid adaption to sudden environmental changes. In Bdellovibrio bacteriovorus, an obligate predator of bacteria common in oligotrophic environments, the non-replicative, highly motile attack phase (AP) cell must invade a prey to ensure replication. AP cells swim fast and respire at high rates, rapidly consuming their own contents. How the predator survives in the absence of prey is unknown. We show that starvation for prey significantly alters swimming patterns and causes exponential decay in prey-searching cells over hours, until population-wide swim-arrest. Swim-arrest is accompanied by changes in energy metabolism, enabling rapid swim-reactivation upon introduction of prey or nutrients, and a sweeping change in gene expression and gene regulation that largely differs from those of the paradigmatic stationary phase. Swim-arrest is costly as it imposes a fitness penalty in the form of delayed growth. We track the control of the swim arrest-reactivation process to cyclic-di-GMP (CdG) effectors, including two motility brakes. CRISPRi transcriptional inactivation, and in situ localization of the brakes to the cell pole, demonstrated their essential role for effective survival under prey-induced starvation. Thus, obligate predators evolved a unique CdG-controlled survival strategy, enabling them to sustain their uncommon lifestyle under fluctuating prey supply.
Collapse
Affiliation(s)
- Rajesh Sathyamoorthy
- Department of Plant Pathology and Microbiology, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, 76100, Rehovot, Israel
| | - Yuval Kushmaro
- Department of Plant Pathology and Microbiology, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, 76100, Rehovot, Israel
| | - Or Rotem
- Department of Plant Pathology and Microbiology, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, 76100, Rehovot, Israel
- Seed-x., Magshimim, Israel
| | - Ofra Matan
- Department of Plant Pathology and Microbiology, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, 76100, Rehovot, Israel
| | - Daniel E Kadouri
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ, USA
| | - Amit Huppert
- Bio-statistical Unit, The Gertner Institute for Epidemiology and Health Policy Research, Chaim Sheba Medical Center, Tel Hashomer, Israel
| | - Edouard Jurkevitch
- Department of Plant Pathology and Microbiology, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, 76100, Rehovot, Israel.
| |
Collapse
|
14
|
Oamen HP, Lau Y, Caudron F. Prion-like proteins as epigenetic devices of stress adaptation. Exp Cell Res 2020; 396:112262. [DOI: 10.1016/j.yexcr.2020.112262] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/26/2020] [Accepted: 08/30/2020] [Indexed: 01/03/2023]
|
15
|
Programmed Proteolysis of Chemotaxis Proteins in Sinorhizobium meliloti: Features in the C-Terminal Region Control McpU Degradation. J Bacteriol 2020; 202:JB.00124-20. [PMID: 32571966 DOI: 10.1128/jb.00124-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 06/12/2020] [Indexed: 11/20/2022] Open
Abstract
Chemotaxis and motility are important traits that support bacterial survival in various ecological niches and in pathogenic and symbiotic host interaction. Chemotactic stimuli are sensed by chemoreceptors or methyl-accepting chemotaxis proteins (MCPs), which direct the swimming behavior of the bacterial cell. In this study, we present evidence that the cellular abundance of chemoreceptors in the plant symbiont Sinorhizobium meliloti can be altered by the addition of several to as few as one amino acid residues and by including common epitope tags such as 3×FLAG and 6×His at their C termini. To further dissect this phenomenon and its underlying molecular mechanism, we focused on a detailed analysis of the amino acid sensor McpU. Controlled proteolysis is important for the maintenance of an appropriate stoichiometry of chemoreceptors and between chemoreceptors and chemotactic signaling proteins, which is essential for an optimal chemotactic response. We hypothesized that enhanced stability is due to interference with protease binding, thus affecting proteolytic efficacy. Location of the protease recognition site was defined through McpU stability measurements in a series of deletion and amino acid substitution mutants. Deletions in the putative protease recognition site had similar effects on McpU abundance, as did extensions at the C terminus. Our results provide evidence that the programmed proteolysis of chemotaxis proteins in S. meliloti is cell cycle regulated. This posttranslational control, together with regulatory pathways on the transcriptional level, limits the chemotaxis machinery to the early exponential growth phase. Our study identified parallels to cell cycle-dependent processes during asymmetric cell division in Caulobacter crescentus IMPORTANCE The symbiotic bacterium Sinorhizobium meliloti contributes greatly to growth of the agriculturally valuable host plant alfalfa by fixing atmospheric nitrogen. Chemotaxis of S. meliloti cells toward alfalfa roots mediates this symbiosis. The present study establishes programmed proteolysis as a factor in the maintenance of the S. meliloti chemotaxis system. Knowledge about cell cycle-dependent, targeted, and selective proteolysis in S. meliloti is important to understand the molecular mechanisms of maintaining a suitable chemotaxis response. While the role of regulated protein turnover in the cell cycle progression of Caulobacter crescentus is well understood, these pathways are just beginning to be characterized in S. meliloti In addition, our study should alert about the cautionary use of epitope tags for protein quantification.
Collapse
|
16
|
Wide lag time distributions break a trade-off between reproduction and survival in bacteria. Proc Natl Acad Sci U S A 2020; 117:18729-18736. [PMID: 32669426 DOI: 10.1073/pnas.2003331117] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Many microorganisms face a fundamental trade-off between reproduction and survival: Rapid growth boosts population size but makes microorganisms sensitive to external stressors. Here, we show that starved bacteria encountering new resources can break this trade-off by evolving phenotypic heterogeneity in lag time. We quantify the distribution of single-cell lag times of populations of starved Escherichia coli and show that population growth after starvation is primarily determined by the cells with shortest lag due to the exponential nature of bacterial population dynamics. As a consequence, cells with long lag times have no substantial effect on population growth resumption. However, we observe that these cells provide tolerance to stressors such as antibiotics. This allows an isogenic population to break the trade-off between reproduction and survival. We support this argument with an evolutionary model which shows that bacteria evolve wide lag time distributions when both rapid growth resumption and survival under stressful conditions are under selection. Our results can explain the prevalence of antibiotic tolerance by lag and demonstrate that the benefits of phenotypic heterogeneity in fluctuating environments are particularly high when minorities with extreme phenotypes dominate population dynamics.
Collapse
|
17
|
Koch M, Berendzen KW, Forchhammer K. On the Role and Production of Polyhydroxybutyrate (PHB) in the Cyanobacterium Synechocystis sp. PCC 6803. Life (Basel) 2020; 10:life10040047. [PMID: 32331427 PMCID: PMC7236017 DOI: 10.3390/life10040047] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/14/2020] [Accepted: 04/21/2020] [Indexed: 01/01/2023] Open
Abstract
The cyanobacterium Synechocystis sp. PCC 6803 is known for producing polyhydroxybutyrate (PHB) under unbalanced nutrient conditions. Although many cyanobacteria produce PHB, its physiological relevance remains unknown, since previous studies concluded that PHB is redundant. In this work, we try to better understand the physiological conditions that are important for PHB synthesis. The accumulation of intracellular PHB was higher when the cyanobacterial cells were grown under an alternating day–night rhythm as compared to continuous light. In contrast to previous reports, a reduction of PHB was observed when the cells were grown under conditions of limited gas exchange. Since previous data showed that PHB is not required for the resuscitation from nitrogen starvation, a series of different abiotic stresses were applied to test if PHB is beneficial for its fitness. However, under none of the tested conditions did cells containing PHB show a fitness advantage compared to a PHB-free-mutant (ΔphaEC). Additionally, the distribution of PHB in single cells of a population Synechocystis cells was analyzed via fluorescence-activated cell sorting (FACS). The results showed a considerable degree of phenotypic heterogeneity at the single cell level concerning the content of PHB, which was consistent over several generations. These results improve our understanding about how and why Synechocystis synthesizes PHB and gives suggestions how to further increase its production for a biotechnological process.
Collapse
Affiliation(s)
- Moritz Koch
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Eberhard-Karls-Universität Tübingen, 72076 Tübingen, Germany;
| | - Kenneth W. Berendzen
- Center for Plant Molecular Biology, Eberhard-Karls-Universität Tübingen, 72076 Tübingen, Germany;
| | - Karl Forchhammer
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Eberhard-Karls-Universität Tübingen, 72076 Tübingen, Germany;
- Correspondence: ; Tel.: +49-7071-29-72096
| |
Collapse
|
18
|
Vasdekis AE, Alanazi H, Silverman AM, Williams CJ, Canul AJ, Cliff JB, Dohnalkova AC, Stephanopoulos G. Eliciting the impacts of cellular noise on metabolic trade-offs by quantitative mass imaging. Nat Commun 2019; 10:848. [PMID: 30783105 PMCID: PMC6381102 DOI: 10.1038/s41467-019-08717-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 01/26/2019] [Indexed: 02/06/2023] Open
Abstract
Optimal metabolic trade-offs between growth and productivity are key constraints in strain optimization by metabolic engineering; however, how cellular noise impacts these trade-offs and drives the emergence of subpopulations with distinct resource allocation strategies, remains largely unknown. Here, we introduce a single-cell strategy for quantifying the trade-offs between triacylglycerol production and growth in the oleaginous microorganism Yarrowia lipolytica. The strategy relies on high-throughput quantitative-phase imaging and, enabled by nanoscale secondary ion mass spectrometry analyses and dedicated image processing, allows us to image how resources are partitioned between growth and productivity. Enhanced precision over population-averaging biotechnologies and conventional microscopy demonstrates how cellular noise impacts growth and productivity differently. As such, subpopulations with distinct metabolic trade-offs emerge, with notable impacts on strain performance and robustness. By quantifying the self-degradation of cytosolic macromolecules under nutrient-limiting conditions, we discover the cell-to-cell heterogeneity in protein and fatty-acid recycling, unmasking a potential bet-hedging strategy under starvation.
Collapse
Affiliation(s)
- A E Vasdekis
- Department of Physics, University of Idaho, Moscow, ID, 83844, USA.
| | - H Alanazi
- Department of Physics, University of Idaho, Moscow, ID, 83844, USA
| | - A M Silverman
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - C J Williams
- Department of Statistical Science, University of Idaho, Moscow, ID, 83844, USA
| | - A J Canul
- Department of Physics, University of Idaho, Moscow, ID, 83844, USA
| | - J B Cliff
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - A C Dohnalkova
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - G Stephanopoulos
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
19
|
Muller KE, Denison RF. Resource acquisition and allocation traits in symbiotic rhizobia with implications for life-history outside of legume hosts. ROYAL SOCIETY OPEN SCIENCE 2018; 5:181124. [PMID: 30662731 PMCID: PMC6304121 DOI: 10.1098/rsos.181124] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 11/13/2018] [Indexed: 05/07/2023]
Abstract
Resources that microbial symbionts obtain from hosts may enhance fitness during free-living stages when resources are comparatively scarce. For rhizobia in legume root nodules, diverting resources from nitrogen fixation to polyhydroxybutyrate (PHB) has been discussed as a source of host-symbiont conflict. Yet, little is known about natural variation in PHB storage and its implications for rhizobial evolution. We therefore measured phenotypic variation in natural rhizobia populations and investigated how PHB might contribute to fitness in the free-living stage. We found that natural populations of rhizobia from Glycine max and Chamaecrista fasciculata had substantial, heritable variation in PHB acquisition during symbiosis. A model simulating temperature-dependent metabolic activity showed that the observed range of stored PHB per cell could support survival for a few days, for active cells, or over a century for sufficiently dormant cells. Experiments with field-isolated Bradyrhizobium in starvation culture suggest PHB is partitioned asymmetrically in dividing cells, consistent with individual-level bet-hedging previously demonstrated in E. meliloti. High-PHB isolates used more PHB over the first month, yet still retained more PHB for potential long-term survival in a dormant state. These results suggest that stored resources like PHB may support both short-term and long-term functions that contribute to fitness in the free-living stage.
Collapse
Affiliation(s)
- Katherine E. Muller
- Graduate Program in Plant and Microbial Biology, University of Minnesota, St Paul, MN 55108, USA
| | - R. Ford Denison
- Department of Ecology Evolution and Behavior, University of Minnesota, St Paul, MN, USA
| |
Collapse
|
20
|
Li S, Giardina DM, Siegal ML. Control of nongenetic heterogeneity in growth rate and stress tolerance of Saccharomyces cerevisiae by cyclic AMP-regulated transcription factors. PLoS Genet 2018; 14:e1007744. [PMID: 30388117 PMCID: PMC6241136 DOI: 10.1371/journal.pgen.1007744] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 11/14/2018] [Accepted: 10/05/2018] [Indexed: 01/01/2023] Open
Abstract
Genetically identical cells exhibit extensive phenotypic variation even under constant and benign conditions. This so-called nongenetic heterogeneity has important clinical implications: within tumors and microbial infections, cells show nongenetic heterogeneity in growth rate and in susceptibility to drugs or stress. The budding yeast, Saccharomyces cerevisiae, shows a similar form of nongenetic heterogeneity in which growth rate correlates positively with susceptibility to acute heat stress at the single-cell level. Using genetic and chemical perturbations, combined with high-throughput single-cell assays of yeast growth and gene expression, we show here that heterogeneity in intracellular cyclic AMP (cAMP) levels acting through the conserved Ras/cAMP/protein kinase A (PKA) pathway and its target transcription factors, Msn2 and Msn4, underlies this nongenetic heterogeneity. Lower levels of cAMP correspond to slower growth, as shown by direct comparison of cAMP concentration in subpopulations enriched for slower vs. faster growing cells. Concordantly, an endogenous reporter of this pathway’s activity correlates with growth in individual cells. The paralogs Msn2 and Msn4 differ in their roles in nongenetic heterogeneity in a way that demonstrates slow growth and stress tolerance are not inevitably linked. Heterogeneity in growth rate requires each, whereas only Msn2 is required for heterogeneity in expression of Tsl1, a subunit of trehalose synthase that contributes to acute-stress tolerance. Perturbing nongenetic heterogeneity by mutating genes in this pathway, or by culturing wild-type cells with the cell-permeable cAMP analog 8-bromo-cAMP or the PKA inhibitor H89, significantly impacts survival of acute heat stress. Perturbations that increase intracellular cAMP levels reduce the slower-growing subpopulation and increase susceptibility to acute heat stress, whereas PKA inhibition slows growth and decreases susceptibility to acute heat stress. Loss of Msn2 reduces, but does not completely eliminate, the correlation in individual cells between growth rate and acute-stress survival, suggesting a major role for the Msn2 pathway in nongenetic heterogeneity but also a residual benefit of slow growth. Our results shed light on the genetic control of nongenetic heterogeneity and suggest a possible means of defeating bet-hedging pathogens or tumor cells by making them more uniformly susceptible to treatment. Nongenetic heterogeneity exists when a trait differs among individuals that have identical genotypes and environments. A clonal population can maximize its long-term success in an uncertain environment by diversifying its phenotypes via nongenetic heterogeneity: the currently unfavored ones may become the favored ones when conditions change. Nongenetic heterogeneity has clinical relevance. For example, populations of tumor cells or infectious microbes show cell-to-cell differences in growth and in drug or stress tolerance. This heterogeneity hampers efficient treatment and can potentiate harmful evolution of a tumor or pathogen. We show that in budding yeast, heterogeneity in intracellular cyclic AMP levels acting through the conserved Ras/cAMP/protein kinase A (PKA) pathway and its target transcription factors, Msn2 and Msn4, underlies the nongenetic heterogeneity of both single-cell growth rate and acute heat-stress tolerance. Perturbations of this pathway significantly affect population survival upon acute heat stress. These results illuminate a mechanism of nongenetic heterogeneity and suggest the potential value of antitumor or antifungal treatment strategies that target nongenetic heterogeneity to render the tumor or pathogen population more uniformly susceptible to a second drug that aims to kill.
Collapse
Affiliation(s)
- Shuang Li
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York, United States of America
| | - Daniella M. Giardina
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York, United States of America
| | - Mark L. Siegal
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
21
|
Draghi J. Links between evolutionary processes and phenotypic robustness in microbes. Semin Cell Dev Biol 2018; 88:46-53. [PMID: 29803630 DOI: 10.1016/j.semcdb.2018.05.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 02/16/2018] [Accepted: 05/15/2018] [Indexed: 12/27/2022]
Abstract
The costs and benefits of random phenotypic heterogeneity in microbes have been vigorously debated and experimental tested for decades; yet, this conversation is largely independent from discussion of phenotypic robustness in other disciplines. In this review I connect microbial examples of stochasticity with studies on the ecological and population-genetic consequences of phenotypic variability. These topics illustrate the complexity of selection pressures on phenotypic robustness and provide inspiration that this complexity can be parsed with theoretical advances and the experimental power of microbial systems.
Collapse
Affiliation(s)
- Jeremy Draghi
- Department of Biology, Brooklyn College, The Graduate Center, City University of New York, United States.
| |
Collapse
|
22
|
Carey JN, Goulian M. A bacterial signaling system regulates noise to enable bet hedging. Curr Genet 2018; 65:65-70. [PMID: 29947971 DOI: 10.1007/s00294-018-0856-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 06/05/2018] [Accepted: 06/06/2018] [Indexed: 11/26/2022]
Abstract
Phenotypic diversity helps populations persist in changing and often unpredictable environments. One diversity-generating strategy is for individuals to switch randomly between phenotypic states such that one subpopulation has high fitness in the present environment, and another subpopulation has high fitness in an environment that might be encountered in the future. This sort of biological bet hedging can be found in all domains of life. Here, we discuss a recently described example from the bacterium Escherichia coli. When exposed to both oxygen and trimethylamine oxide (TMAO), E. coli hedges its bets on the possibility of oxygen loss by generating high cell-to-cell variability in the expression of the TMAO respiratory system. If oxygen is rapidly depleted from the environment, only those cells that had been expressing the TMAO respiratory system at high levels can continue to grow. This particular bet-hedging scheme possesses some unusual characteristics, most notably the decoupling of gene expression noise from the mean expression level. This decoupling allows bacteria to sense oxygen and regulate the amount of variability in TMAO reductase expression (that is, to turn bet hedging on or off) without having to adjust the mean TMAO reductase expression level. In this review, we discuss the features of the TMAO signaling pathway that permit the decoupling of gene expression noise from the mean and the regulation of bet hedging. We also highlight some open questions regarding the TMAO respiratory system and its regulatory architecture that may be relevant to many signaling systems.
Collapse
Affiliation(s)
- Jeffrey N Carey
- Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Mark Goulian
- Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Biology and Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
23
|
Zimmermann M, Escrig S, Lavik G, Kuypers MMM, Meibom A, Ackermann M, Schreiber F. Substrate and electron donor limitation induce phenotypic heterogeneity in different metabolic activities in a green sulphur bacterium. ENVIRONMENTAL MICROBIOLOGY REPORTS 2018; 10:179-183. [PMID: 29393582 DOI: 10.1111/1758-2229.12616] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 10/13/2017] [Accepted: 01/14/2018] [Indexed: 06/07/2023]
Abstract
Populations of genetically identical cells can display marked variation in phenotypic traits; such variation is termed phenotypic heterogeneity. Here, we investigate the effect of substrate and electron donor limitation on phenotypic heterogeneity in N2 and CO2 fixation in the green sulphur bacterium Chlorobium phaeobacteroides. We grew populations in chemostats and batch cultures and used stable isotope labelling combined with nanometer-scale secondary ion mass spectrometry (NanoSIMS) to quantify phenotypic heterogeneity. Experiments in H2 S (i.e. electron donor) limited chemostats show that varying levels of NH4+ limitation induce heterogeneity in N2 fixation. Comparison of phenotypic heterogeneity between chemostats and batch (unlimited for H2 S) populations indicates that electron donor limitation drives heterogeneity in N2 and CO2 fixation. Our results demonstrate that phenotypic heterogeneity in a certain metabolic activity can be driven by different modes of limitation and that heterogeneity can emerge in different metabolic processes upon the same mode of limitation. In conclusion, our data suggest that limitation is a general driver of phenotypic heterogeneity in microbial populations.
Collapse
Affiliation(s)
- M Zimmermann
- Department of Environmental Systems Science, ETH Zurich - Swiss Federal Institute of Technology, Zurich, Switzerland
- Department of Environmental Microbiology, Eawag - Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - S Escrig
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering (ENAC), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - G Lavik
- Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - M M M Kuypers
- Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - A Meibom
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering (ENAC), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Center for Advanced Surface Analysis, Institute of Earth Sciences, University of Lausanne, Lausanne, Switzerland
| | - M Ackermann
- Department of Environmental Systems Science, ETH Zurich - Swiss Federal Institute of Technology, Zurich, Switzerland
- Department of Environmental Microbiology, Eawag - Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - F Schreiber
- Department of Environmental Systems Science, ETH Zurich - Swiss Federal Institute of Technology, Zurich, Switzerland
- Department of Environmental Microbiology, Eawag - Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Division Biodeterioration and Reference Organisms, Department of Materials and Environment, Federal Institute for Materials Research and Testing (BAM), Berlin, Germany
| |
Collapse
|
24
|
Carey JN, Mettert EL, Roggiani M, Myers KS, Kiley PJ, Goulian M. Regulated Stochasticity in a Bacterial Signaling Network Permits Tolerance to a Rapid Environmental Change. Cell 2018; 173:196-207.e14. [PMID: 29502970 DOI: 10.1016/j.cell.2018.02.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 12/01/2017] [Accepted: 02/01/2018] [Indexed: 12/25/2022]
Abstract
Microbial populations can maximize fitness in dynamic environments through bet hedging, a process wherein a subpopulation assumes a phenotype not optimally adapted to the present environment but well adapted to an environment likely to be encountered. Here, we show that oxygen induces fluctuating expression of the trimethylamine oxide (TMAO) respiratory system of Escherichia coli, diversifying the cell population and enabling a bet-hedging strategy that permits growth following oxygen loss. This regulation by oxygen affects the variance in gene expression but leaves the mean unchanged. We show that the oxygen-sensitive transcription factor IscR is the key regulator of variability. Oxygen causes IscR to repress expression of a TMAO-responsive signaling system, allowing stochastic effects to have a strong effect on the output of the system and resulting in heterogeneous expression of the TMAO reduction machinery. This work reveals a mechanism through which cells regulate molecular noise to enhance fitness.
Collapse
Affiliation(s)
- Jeffrey N Carey
- Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Erin L Mettert
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Manuela Roggiani
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kevin S Myers
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Patricia J Kiley
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Mark Goulian
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Physics & Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
25
|
Libby E, Driscoll WW, Ratcliff WC. Programmed cell death can increase the efficacy of microbial bet -hedging. Sci Rep 2018; 8:1120. [PMID: 29348455 PMCID: PMC5773525 DOI: 10.1038/s41598-017-18687-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 12/13/2017] [Indexed: 11/09/2022] Open
Abstract
Programmed cell death (PCD) occurs in both unicellular and multicellular organisms. While PCD plays a key role in the development and maintenance of multicellular organisms, explaining why single-celled organisms would evolve to actively commit suicide has been far more challenging. Here, we explore the potential for PCD to act as an accessory to microbial bet-hedging strategies that utilize stochastic phenotype switching. We consider organisms that face unpredictable and recurring disasters, in which fitness depends on effective phenotypic diversification. We show that when reproductive opportunities are limited by carrying capacity, PCD drives population turnover, providing increased opportunities for phenotypic diversification through stochastic phenotype switching. The main cost of PCD, providing resources for growth to a PCD(−) competitor, is ameliorated by genetic assortment in spatially structured populations. Using agent -based simulations, we explore how basic demographic factors, namely bottlenecks and local dispersal, can generate sufficient spatial structure to favor the evolution of high PCD rates.
Collapse
Affiliation(s)
- Eric Libby
- Santa Fe Institute, Santa Fe, NM, 87501, USA
| | - William W Driscoll
- Ecology, Evolution and Behavior, University of Minnesota, Minneapolis, MN, 55108, USA
| | - William C Ratcliff
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| |
Collapse
|
26
|
Martínez-García R, Tarnita CE. Seasonality can induce coexistence of multiple bet-hedging strategies in Dictyostelium discoideum via storage effect. J Theor Biol 2017; 426:104-116. [PMID: 28536035 DOI: 10.1016/j.jtbi.2017.05.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 05/05/2017] [Accepted: 05/17/2017] [Indexed: 02/06/2023]
Abstract
The social amoeba Dictyostelium discoideum has been recently suggested as an example of bet-hedging in microbes. In the presence of resources, amoebae reproduce as unicellular organisms. Resource depletion, however, leads to a starvation phase in which the population splits between aggregators, which form a fruiting body made of a stalk and resistant spores, and non-aggregators, which remain as vegetative cells. Spores are favored when starvation periods are long, but vegetative cells can exploit resources in environments where food replenishes quickly. The investment in aggregators versus non-aggregators can therefore be understood as a bet-hedging strategy that evolves in response to stochastic starvation times. A genotype (or strategy) is defined by the balance between each type of cells. In this framework, if the ecological conditions on a patch are defined in terms of the mean starvation time (i.e. time between the onset of starvation and the arrival of a new food pulse), a single genotype dominates each environment, which is inconsistent with the huge genetic diversity observed in nature. Here we investigate whether seasonality, represented by a periodic, wet-dry alternation in the mean starvation times, allows the coexistence of several strategies in a single patch. We study this question in a non-spatial (well-mixed) setting in which different strains compete for a common pool of resources over a sequence of growth-starvation cycles. We find that seasonality induces a temporal storage effect that can promote the stable coexistence of multiple genotypes. Two conditions need to be met in our model. First, there has to be a temporal niche partitioning (two well-differentiated habitats within the year), which requires not only different mean starvation times between seasons but also low variance within each season. Second, each season's well-adapted strain has to grow and create a large enough population that permits its survival during the subsequent unfavorable season, which requires the number of growth-starvation cycles within each season to be sufficiently large. These conditions allow the coexistence of two bet-hedging strategies. Additional tradeoffs among life-history traits can expand the range of coexistence and increase the number of coexisting strategies, contributing toward explaining the genetic diversity observed in D. discoideum. Although focused on this cellular slime mold, our results are general and may be easily extended to other microbes.
Collapse
Affiliation(s)
- Ricardo Martínez-García
- Department of Ecology and Evolutionary Biology, Princeton University. Princeton NJ 08544, USA
| | - Corina E Tarnita
- Department of Ecology and Evolutionary Biology, Princeton University. Princeton NJ 08544, USA.
| |
Collapse
|
27
|
Regulation of Polyhydroxybutyrate Accumulation in Sinorhizobium meliloti by the Trans-Encoded Small RNA MmgR. J Bacteriol 2017; 199:JB.00776-16. [PMID: 28167519 DOI: 10.1128/jb.00776-16] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 01/31/2017] [Indexed: 01/06/2023] Open
Abstract
Riboregulation has a major role in the fine-tuning of multiple bacterial processes. Among the RNA players, trans-encoded untranslated small RNAs (sRNAs) regulate complex metabolic networks by tuning expression from multiple target genes in response to numerous signals. In Sinorhizobium meliloti, over 400 sRNAs are expressed under different stimuli. The sRNA MmgR (standing for Makes more granules Regulator) has been of particular interest to us since its sequence and structure are highly conserved among the alphaproteobacteria and its expression is regulated by the amount and quality of the bacterium's available nitrogen source. In this work, we explored the biological role of MmgR in S. meliloti 2011 by characterizing the effect of a deletion of the internal conserved core of mmgR (mmgRΔ33-51). This mutation resulted in larger amounts of polyhydroxybutyrate (PHB) distributed into more intracellular granules than are found in the wild-type strain. This phenotype was expressed upon cessation of balanced growth owing to nitrogen depletion in the presence of surplus carbon (i.e., at a carbon/nitrogen molar ratio greater than 10). The normal PHB accumulation was complemented with a wild-type mmgR copy but not with unrelated sRNA genes. Furthermore, the expression of mmgR limited PHB accumulation in the wild type, regardless of the magnitude of the C surplus. Quantitative proteomic profiling and quantitative reverse transcription-PCR (qRT-PCR) revealed that the absence of MmgR results in a posttranscriptional overexpression of both PHB phasin proteins (PhaP1 and PhaP2). Together, our results indicate that the widely conserved alphaproteobacterial MmgR sRNA fine-tunes the regulation of PHB storage in S. melilotiIMPORTANCE High-throughput RNA sequencing has recently uncovered an overwhelming number of trans-encoded small RNAs (sRNAs) in diverse prokaryotes. In the nitrogen-fixing alphaproteobacterial symbiont of alfalfa root nodules Sinorhizobium meliloti, only four out of hundreds of identified sRNA genes have been functionally characterized. Thus, uncovering the biological role of sRNAs currently represents a major issue and one that is particularly challenging because of the usually subtle quantitative regulation contributed by most characterized sRNAs. Here, we have characterized the function of the broadly conserved alphaproteobacterial sRNA gene mmgR in S. meliloti Our results strongly suggest that mmgR encodes a negative regulator of the accumulation of polyhydroxybutyrate, the major carbon and reducing power storage polymer in S. meliloti cells growing under conditions of C/N overbalance.
Collapse
|
28
|
Gulbudak H, Weitz JS. A touch of sleep: biophysical model of contact-mediated dormancy of archaea by viruses. Proc Biol Sci 2016; 283:rspb.2016.1037. [PMID: 27683365 DOI: 10.1098/rspb.2016.1037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 09/02/2016] [Indexed: 11/12/2022] Open
Abstract
The canonical view of the interactions between viruses and their microbial hosts presumes that changes in host and virus fate requires the initiation of infection of a host by a virus. Infection may lead to the death of the host cell and release of viruses, to the elimination of the viral genome through cellular defence mechanisms or the integration of the viral genome with the host as a chromosomal or extrachromosomal element. Here, we revisit this canonical view, inspired by recent experimental findings in which the majority of target host cells can be induced into a dormant state when exposed to either active or deactivated viruses, even when viruses are present at low relative titre. We propose that both the qualitative phenomena and the quantitative timescales of dormancy induction are consistent with the hypothesis that cellular physiology can be altered by contact on the surface of host cells rather than strictly by infection In order to test this hypothesis, we develop and study a biophysical model of contact-mediated dynamics involving virus particles and target cells. We show how virus particles can catalyse cellular transformations among many cells, even if they ultimately infect only one (or none). We also find that population-scale dormancy is robust to variation in the representation of model dynamics, including cell growth, death and recovery.
Collapse
Affiliation(s)
- Hayriye Gulbudak
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA School of Mathematics, Georgia Institute of Technology, Atlanta, GA, USA
| | - Joshua S Weitz
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA School of Physics, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
29
|
Karve SM, Bhave D, Nevgi D, Dey S. Escherichia coli populations adapt to complex, unpredictable fluctuations by minimizing trade-offs across environments. J Evol Biol 2016; 29:2545-2555. [PMID: 27575521 DOI: 10.1111/jeb.12972] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Revised: 08/17/2016] [Accepted: 08/28/2016] [Indexed: 12/11/2022]
Abstract
In nature, organisms are simultaneously exposed to multiple stresses (i.e. complex environments) that often fluctuate unpredictably. Although both these factors have been studied in isolation, the interaction of the two remains poorly explored. To address this issue, we selected laboratory populations of Escherichia coli under complex (i.e. stressful combinations of pH, H2 O2 and NaCl) unpredictably fluctuating environments for ~900 generations. We compared the growth rates and the corresponding trade-off patterns of these populations to those that were selected under constant values of the component stresses (i.e. pH, H2 O2 and NaCl) for the same duration. The fluctuation-selected populations had greater mean growth rate and lower variation for growth rate over all the selection environments experienced. However, whereas the populations selected under constant stresses experienced trade-offs in the environments other than those in which they were selected, the fluctuation-selected populations could bypass the across-environment trade-offs almost entirely. Interestingly, trade-offs were found between growth rates and carrying capacities. The results suggest that complexity and fluctuations can strongly affect the underlying trade-off structure in evolving populations.
Collapse
Affiliation(s)
- S M Karve
- Population Biology Laboratory, Biology Division, Indian Institute of Science Education and Research Pune, Pune, Maharashtra, India
| | - D Bhave
- Population Biology Laboratory, Biology Division, Indian Institute of Science Education and Research Pune, Pune, Maharashtra, India
| | - D Nevgi
- Population Biology Laboratory, Biology Division, Indian Institute of Science Education and Research Pune, Pune, Maharashtra, India
| | - S Dey
- Population Biology Laboratory, Biology Division, Indian Institute of Science Education and Research Pune, Pune, Maharashtra, India
| |
Collapse
|
30
|
Ramírez-Trujillo JA, Dunn MF, Suárez-Rodríguez R, Hernández-Lucas I. The Sinorhizobium meliloti glyoxylate cycle enzyme isocitrate lyase (AceA) is required for the utilization of poly-β-hydroxybutyrate during carbon starvation. ANN MICROBIOL 2016. [DOI: 10.1007/s13213-015-1131-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
31
|
Phenotypic heterogeneity driven by nutrient limitation promotes growth in fluctuating environments. Nat Microbiol 2016; 1:16055. [PMID: 27572840 DOI: 10.1038/nmicrobiol.2016.55] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 03/24/2016] [Indexed: 11/09/2022]
Abstract
Most microorganisms live in environments where nutrients are limited and fluctuate over time. Cells respond to nutrient fluctuations by sensing and adapting their physiological state. Recent studies suggest phenotypic heterogeneity(1) in isogenic populations as an alternative strategy in fluctuating environments, where a subpopulation of cells express a function that allows growth under conditions that might arise in the future(2-9). It is unknown how environmental factors such as nutrient limitation shape phenotypic heterogeneity in metabolism and whether this allows cells to respond to nutrient fluctuations. Here, we show that substrate limitation increases phenotypic heterogeneity in metabolism, and this heterogeneity allows cells to cope with substrate fluctuations. We subjected the N2-fixing bacterium Klebsiella oxytoca to different levels of substrate limitation and substrate shifts, and obtained time-resolved single-cell measurements of metabolic activities using nanometre-scale secondary ion mass spectrometry (NanoSIMS). We found that the level of NH4(+) limitation shapes phenotypic heterogeneity in N2 fixation. In turn, the N2 fixation rate of single cells during NH4(+) limitation correlates positively with their growth rate after a shift to NH4(+) depletion, experimentally demonstrating the benefit of heterogeneity. The results indicate that phenotypic heterogeneity is a general solution to two important ecological challenges-nutrient limitation and fluctuations-that many microorganisms face.
Collapse
|
32
|
Steward KF, Robinson C, Waller AS. Transcriptional changes are involved in phenotype switching in Streptococcus equi subspecies equi. MOLECULAR BIOSYSTEMS 2016; 12:1194-200. [PMID: 26854112 DOI: 10.1039/c5mb00780a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Phenotypic heterogeneity within a population of bacteria, through genetic or transcriptional variation, enables survival and persistence in challenging and changing environments. We report here that a recent clinical isolate of S. equi, strain 1691 (Se1691), yielded a mixture of reduced capsule and mucoid colonies on primary isolation when grown on colistin-oxolinic acid blood agar (COBA) streptococcal selective plates. Passaging colonies of Se1691, with a reduced capsule phenotype maintained this mixed phenotype. In contrast, passaging mucoid colonies fixed the mucoid phenotype, suggesting adaptive genetic or transcriptional changes in response to growth on artificial media. However, despite obvious phenotypic and transcriptional differences, there were no apparent differences in the genome sequences of Se1691 recovered from colonies with a mucoid or reduced capsule phenotype. We identified 105 differentially transcribed genes in the transcriptomes of reduced capsule and mucoid colonies. The reduced capsule phenotype was associated with a significant reduction in transcription of the has locus (SEQ_0269 Q = 0.0015, SEQ_0270 Q = 0.0015, SEQ_0271 Q = 0.0285) and the amount of hyaluronic acid on the surface of S. equi recovered from non-mucoid colonies (P = 0.017). Significant differences in the transcription of 21 surface and secreted proteins were also observed. Our data show that changes in the bacterial transcriptome are linked to the mixed colony phenotype of Se1691.
Collapse
Affiliation(s)
- Karen F Steward
- Animal Health Trust, Kentford, NewmarketSuffolk, CB8 7UU, UK.
| | | | | |
Collapse
|
33
|
Remigi P, Zhu J, Young JPW, Masson-Boivin C. Symbiosis within Symbiosis: Evolving Nitrogen-Fixing Legume Symbionts. Trends Microbiol 2015; 24:63-75. [PMID: 26612499 DOI: 10.1016/j.tim.2015.10.007] [Citation(s) in RCA: 153] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 10/08/2015] [Accepted: 10/22/2015] [Indexed: 10/22/2022]
Abstract
Bacterial accessory genes are genomic symbionts with an evolutionary history and future that is different from that of their hosts. Packages of accessory genes move from strain to strain and confer important adaptations, such as interaction with eukaryotes. The ability to fix nitrogen with legumes is a remarkable example of a complex trait spread by horizontal transfer of a few key symbiotic genes, converting soil bacteria into legume symbionts. Rhizobia belong to hundreds of species restricted to a dozen genera of the Alphaproteobacteria and Betaproteobacteria, suggesting infrequent successful transfer between genera but frequent successful transfer within genera. Here we review the genetic and environmental conditions and selective forces that have shaped evolution of this complex symbiotic trait.
Collapse
Affiliation(s)
- Philippe Remigi
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, Castanet-Tolosan, France; CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, Castanet-Tolosan, France; New Zealand Institute for Advanced Study, Massey University, Auckland, New Zealand
| | - Jun Zhu
- Department of Microbiology, Nanjing Agricultural University, Nanjing, China; Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - J Peter W Young
- Department of Biology, University of York, York YO10 5DD, UK
| | - Catherine Masson-Boivin
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, Castanet-Tolosan, France; CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, Castanet-Tolosan, France.
| |
Collapse
|
34
|
Seco-Hidalgo V, Osuna A, Pablos LMD. To bet or not to bet: deciphering cell to cell variation in protozoan infections. Trends Parasitol 2015; 31:350-6. [PMID: 26070403 DOI: 10.1016/j.pt.2015.05.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 04/11/2015] [Accepted: 05/13/2015] [Indexed: 11/16/2022]
Abstract
Some of the most crucial phenotypic aspects of parasites, such as an antigen-coated surface, parasite sexual differentiation, virulence, and drug resistance, rely on adaptive plasticity and/or stochastic events. At a population level, cell to cell variability represents an avenue for rapid response to drastic changes in the environment. Single cell approaches can be used to unravel the different strategies used by parasites to survive in the context of regulated transcriptional control (apicomplexa) or in its absence (kinetoplastids).
Collapse
Affiliation(s)
- Víctor Seco-Hidalgo
- Biochemistry and Molecular Parasitology Research Group, Department of Parasitology, University of Granada, Campus de Fuentenueva, Granada, Spain
| | - Antonio Osuna
- Biochemistry and Molecular Parasitology Research Group, Department of Parasitology, University of Granada, Campus de Fuentenueva, Granada, Spain
| | - Luis Miguel De Pablos
- Biochemistry and Molecular Parasitology Research Group, Department of Parasitology, University of Granada, Campus de Fuentenueva, Granada, Spain; Centre for Immunology and Infection (CII), Biology Department, University of York, York, UK.
| |
Collapse
|
35
|
Jahn M, Günther S, Müller S. Non-random distribution of macromolecules as driving forces for phenotypic variation. Curr Opin Microbiol 2015; 25:49-55. [DOI: 10.1016/j.mib.2015.04.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 04/04/2015] [Accepted: 04/21/2015] [Indexed: 12/19/2022]
|
36
|
Grimbergen AJ, Siebring J, Solopova A, Kuipers OP. Microbial bet-hedging: the power of being different. Curr Opin Microbiol 2015; 25:67-72. [DOI: 10.1016/j.mib.2015.04.008] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 04/29/2015] [Accepted: 04/30/2015] [Indexed: 10/24/2022]
|
37
|
Abstract
Populations of isogenic embryonic stem cells or clonal bacteria often exhibit extensive phenotypic heterogeneity that arises from intrinsic stochastic dynamics of cells. The phenotypic state of a cell can be transmitted epigenetically in cell division, leading to correlations in the states of cells related by descent. The extent of these correlations is determined by the rates of transitions between the phenotypic states. Therefore, a snapshot of the phenotypes of a collection of cells with known genealogical structure contains information on phenotypic dynamics. Here, we use a model of phenotypic dynamics on a genealogical tree to define an inference method that allows extraction of an approximate probabilistic description of the dynamics from observed phenotype correlations as a function of the degree of kinship. The approach is tested and validated on the example of Pyoverdine dynamics in Pseudomonas aeruginosa colonies. Interestingly, we find that correlations among pairs and triples of distant relatives have a simple but nontrivial structure indicating that observed phenotypic dynamics on the genealogical tree is approximately conformal--a symmetry characteristic of critical behavior in physical systems. The proposed inference method is sufficiently general to be applied in any system where lineage information is available.
Collapse
|
38
|
Zimmermann M, Escrig S, Hübschmann T, Kirf MK, Brand A, Inglis RF, Musat N, Müller S, Meibom A, Ackermann M, Schreiber F. Phenotypic heterogeneity in metabolic traits among single cells of a rare bacterial species in its natural environment quantified with a combination of flow cell sorting and NanoSIMS. Front Microbiol 2015; 6:243. [PMID: 25932020 PMCID: PMC4399338 DOI: 10.3389/fmicb.2015.00243] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 03/12/2015] [Indexed: 11/24/2022] Open
Abstract
Populations of genetically identical microorganisms residing in the same environment can display marked variability in their phenotypic traits; this phenomenon is termed phenotypic heterogeneity. The relevance of such heterogeneity in natural habitats is unknown, because phenotypic characterization of a sufficient number of single cells of the same species in complex microbial communities is technically difficult. We report a procedure that allows to measure phenotypic heterogeneity in bacterial populations from natural environments, and use it to analyze N2 and CO2 fixation of single cells of the green sulfur bacterium Chlorobium phaeobacteroides from the meromictic lake Lago di Cadagno. We incubated lake water with 15N2 and 13CO2 under in situ conditions with and without NH4+. Subsequently, we used flow cell sorting with auto-fluorescence gating based on a pure culture isolate to concentrate C. phaeobacteroides from its natural abundance of 0.2% to now 26.5% of total bacteria. C. phaeobacteroides cells were identified using catalyzed-reporter deposition fluorescence in situ hybridization (CARD-FISH) targeting the 16S rRNA in the sorted population with a species-specific probe. In a last step, we used nanometer-scale secondary ion mass spectrometry to measure the incorporation 15N and 13C stable isotopes in more than 252 cells. We found that C. phaeobacteroides fixes N2 in the absence of NH4+, but not in the presence of NH4+ as has previously been suggested. N2 and CO2 fixation were heterogeneous among cells and positively correlated indicating that N2 and CO2 fixation activity interact and positively facilitate each other in individual cells. However, because CARD-FISH identification cannot detect genetic variability among cells of the same species, we cannot exclude genetic variability as a source for phenotypic heterogeneity in this natural population. Our study demonstrates the technical feasibility of measuring phenotypic heterogeneity in a rare bacterial species in its natural habitat, thus opening the door to study the occurrence and relevance of phenotypic heterogeneity in nature.
Collapse
Affiliation(s)
- Matthias Zimmermann
- Department of Environmental Systems Sciences, ETH Zurich - Swiss Federal Institute of Technology Zurich, Switzerland ; Molecular Microbial Ecology Group, Department of Environmental Microbiology, Eawag - Swiss Federal Institute of Aquatic Science and Technology Zurich, Switzerland
| | - Stéphane Escrig
- Department of Environmental Microbiology, Helmholtz-Centre for Environmental Research, Leipzig Germany
| | - Thomas Hübschmann
- Department of Environmental Microbiology, Helmholtz-Centre for Environmental Research, Leipzig Germany
| | - Mathias K Kirf
- Department of Environmental Systems Sciences, ETH Zurich - Swiss Federal Institute of Technology Zurich, Switzerland ; Department of Surface Waters, Eawag - Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum Switzerland
| | - Andreas Brand
- Department of Environmental Systems Sciences, ETH Zurich - Swiss Federal Institute of Technology Zurich, Switzerland ; Department of Surface Waters, Eawag - Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum Switzerland
| | - R Fredrik Inglis
- Department of Environmental Systems Sciences, ETH Zurich - Swiss Federal Institute of Technology Zurich, Switzerland ; Molecular Microbial Ecology Group, Department of Environmental Microbiology, Eawag - Swiss Federal Institute of Aquatic Science and Technology Zurich, Switzerland
| | - Niculina Musat
- Department of Isotope Biogeochemistry, Helmholtz-Centre for Environmental Research, Leipzig Germany
| | - Susann Müller
- Department of Environmental Systems Sciences, ETH Zurich - Swiss Federal Institute of Technology Zurich, Switzerland
| | - Anders Meibom
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne Lausanne, Switzerland ; Center for Advanced Surface Analysis, Institute of Earth Sciences, University of Lausanne, Lausanne Switzerland
| | - Martin Ackermann
- Department of Environmental Systems Sciences, ETH Zurich - Swiss Federal Institute of Technology Zurich, Switzerland ; Molecular Microbial Ecology Group, Department of Environmental Microbiology, Eawag - Swiss Federal Institute of Aquatic Science and Technology Zurich, Switzerland
| | - Frank Schreiber
- Department of Environmental Systems Sciences, ETH Zurich - Swiss Federal Institute of Technology Zurich, Switzerland ; Molecular Microbial Ecology Group, Department of Environmental Microbiology, Eawag - Swiss Federal Institute of Aquatic Science and Technology Zurich, Switzerland
| |
Collapse
|
39
|
Schlüter JP, Czuppon P, Schauer O, Pfaffelhuber P, McIntosh M, Becker A. Classification of phenotypic subpopulations in isogenic bacterial cultures by triple promoter probing at single cell level. J Biotechnol 2015; 198:3-14. [PMID: 25661839 DOI: 10.1016/j.jbiotec.2015.01.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 01/17/2015] [Accepted: 01/26/2015] [Indexed: 10/24/2022]
Abstract
Phenotypic heterogeneity, defined as the unequal behavior of individuals in an isogenic population, is prevalent in microorganisms. It has a significant impact both on industrial bioprocesses and microbial ecology. We introduce a new versatile reporter system designed for simultaneous monitoring of the activities of three different promoters, where each promoter is fused to a dedicated fluorescent reporter gene (cerulean, mCherry, and mVenus). The compact 3.1 kb triple reporter cassette can either be carried on a replicating plasmid or integrated into the genome avoiding artifacts associated with variation in copy number of plasmid-borne reporter constructs. This construct was applied to monitor promoter activities related to quorum sensing (sinI promoter) and biosynthesis of the exopolysaccharide galactoglucan (wgeA promoter) at single cell level in colonies of the symbiotic nitrogen-fixing alpha-proteobacterium Sinorhizobium meliloti growing in a microfluidics system. The T5-promoter served as a constitutive and homogeneously active control promoter indicating cell viability. wgeA promoter activity was heterogeneous over the whole period of colony development, whereas sinI promoter activity passed through a phase of heterogeneity before becoming homogeneous at late stages. Although quorum sensing-dependent regulation is a major factor activating galactoglucan production, activities of both promoters did not correlate at single cell level. We developed a novel mathematical strategy for classification of the gene expression status in cell populations based on the increase in fluorescence over time in each individual. With respect to galactoglucan biosynthesis, cells in the population were classified into non-contributors, weak contributors, and strong contributors.
Collapse
Affiliation(s)
- Jan-Philip Schlüter
- LOEWE Center for Synthetic Microbiology and Faculty of Biology, Philipps-University Marburg, Marburg, Germany
| | - Peter Czuppon
- Department of Mathematical Stochastics, Faculty of Mathematics and Physics, Albert-Ludwigs University Freiburg, Freiburg im Breisgau, Germany
| | - Oliver Schauer
- LOEWE Center for Synthetic Microbiology and Faculty of Biology, Philipps-University Marburg, Marburg, Germany
| | - Peter Pfaffelhuber
- Department of Mathematical Stochastics, Faculty of Mathematics and Physics, Albert-Ludwigs University Freiburg, Freiburg im Breisgau, Germany
| | - Matthew McIntosh
- LOEWE Center for Synthetic Microbiology and Faculty of Biology, Philipps-University Marburg, Marburg, Germany.
| | - Anke Becker
- LOEWE Center for Synthetic Microbiology and Faculty of Biology, Philipps-University Marburg, Marburg, Germany.
| |
Collapse
|
40
|
Graham JK, Smith ML, Simons AM. Experimental evolution of bet hedging under manipulated environmental uncertainty in Neurospora crassa. Proc Biol Sci 2015; 281:rspb.2014.0706. [PMID: 24870047 DOI: 10.1098/rspb.2014.0706] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
All organisms are faced with environmental uncertainty. Bet-hedging theory expects unpredictable selection to result in the evolution of traits that maximize the geometric-mean fitness even though such traits appear to be detrimental over the shorter term. Despite the centrality of fitness measures to evolutionary analysis, no direct test of the geometric-mean fitness principle exists. Here, we directly distinguish between predictions of competing fitness maximization principles by testing Cohen's 1966 classic bet-hedging model using the fungus Neurospora crassa. The simple prediction is that propagule dormancy will evolve in proportion to the frequency of 'bad' years, whereas the prediction of the alternative arithmetic-mean principle is the evolution of zero dormancy as long as the expectation of a bad year is less than 0.5. Ascospore dormancy fraction in N. crassa was allowed to evolve under five experimental selection regimes that differed in the frequency of unpredictable 'bad years'. Results were consistent with bet-hedging theory: final dormancy fraction in 12 genetic lineages across 88 independently evolving samples was proportional to the frequency of bad years, and evolved both upwards and downwards as predicted from a range of starting dormancy fractions. These findings suggest that selection results in adaptation to variable rather than to expected environments.
Collapse
Affiliation(s)
- Jeffrey K Graham
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, Canada K1S 5B6
| | - Myron L Smith
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, Canada K1S 5B6 Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, Canada K1S 5B6
| | - Andrew M Simons
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, Canada K1S 5B6
| |
Collapse
|
41
|
Ratcliff WC, Hawthorne P, Libby E. Courting disaster: How diversification rate affects fitness under risk. Evolution 2014; 69:126-35. [PMID: 25410817 PMCID: PMC4312886 DOI: 10.1111/evo.12568] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 10/26/2014] [Indexed: 01/21/2023]
Abstract
Life is full of risk. To deal with this uncertainty, many organisms have evolved bet-hedging strategies that spread risk through phenotypic diversification. These rates of diversification can vary by orders of magnitude in different species. Here we examine how key characteristics of risk and organismal ecology affect the fitness consequences of variation in diversification rate. We find that rapid diversification is strongly favored when the risk faced has a wide spatial extent, with a single disaster affecting a large fraction of the population. This advantage is especially great in small populations subject to frequent disaster. In contrast, when risk is correlated through time, slow diversification is favored because it allows adaptive tracking of disasters that tend to occur in series. Naturally evolved diversification mechanisms in diverse organisms facing a broad array of environmental risks largely support these results. The theory presented in this article provides a testable ecological hypothesis to explain the prevalence of slow stochastic switching among microbes and rapid, within-clutch diversification strategies among plants and animals.
Collapse
Affiliation(s)
- William C Ratcliff
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia 30332.
| | | | | |
Collapse
|
42
|
Ratcliff WC, Denison RF. Bacterial persistence and bet hedging inSinorhizobium meliloti. Commun Integr Biol 2014. [DOI: 10.4161/cib.14161] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
43
|
Abstract
Trade-offs between individual fitness and the collective performance of crop and below-ground symbiont communities are common in agriculture. Plant competitiveness for light and soil resources is key to individual fitness, but higher investments in stems and roots by a plant community to compete for those resources ultimately reduce crop yields. Similarly, rhizobia and mycorrhizal fungi may increase their individual fitness by diverting resources to their own reproduction, even if they could have benefited collectively by providing their shared crop host with more nitrogen and phosphorus, respectively. Past selection for inclusive fitness (benefits to others, weighted by their relatedness) is unlikely to have favoured community performance over individual fitness. The limited evidence for kin recognition in plants and microbes changes this conclusion only slightly. We therefore argue that there is still ample opportunity for human-imposed selection to improve cooperation among crop plants and their symbionts so that they use limited resources more efficiently. This evolutionarily informed approach will require a better understanding of how interactions among crops, and interactions with their symbionts, affected their inclusive fitness in the past and what that implies for current interactions.
Collapse
Affiliation(s)
- E. Toby Kiers
- Institute of Ecological Sciences, Faculty of Earth and Life Sciences, Vrije Universiteit, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - R. Ford Denison
- Ecology Evolution and Behavior, University of Minnesota, St Paul, MN 55108, USA
| |
Collapse
|
44
|
Simons AM. Playing smart vs. playing safe: the joint expression of phenotypic plasticity and potential bet hedging across and within thermal environments. J Evol Biol 2014; 27:1047-56. [DOI: 10.1111/jeb.12378] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 03/17/2014] [Accepted: 03/18/2014] [Indexed: 11/28/2022]
Affiliation(s)
- A. M. Simons
- Department of Biology; Carleton University; Ottawa ON Canada
| |
Collapse
|
45
|
Ross-Gillespie A, Kümmerli R. Collective decision-making in microbes. Front Microbiol 2014; 5:54. [PMID: 24624121 PMCID: PMC3939447 DOI: 10.3389/fmicb.2014.00054] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 01/27/2014] [Indexed: 12/17/2022] Open
Abstract
Microbes are intensely social organisms that routinely cooperate and coordinate their activities to express elaborate population level phenotypes. Such coordination requires a process of collective decision-making, in which individuals detect and collate information not only from their physical environment, but also from their social environment, in order to arrive at an appropriately calibrated response. Here, we present a conceptual overview of collective decision-making as it applies to all group-living organisms; we introduce key concepts and principles developed in the context of animal and human group decisions; and we discuss, with appropriate examples, the applicability of each of these concepts in microbial contexts. In particular, we discuss the roles of information pooling, control skew, speed vs. accuracy trade-offs, local feedbacks, quorum thresholds, conflicts of interest, and the reliability of social information. We conclude that collective decision-making in microbes shares many features with collective decision-making in higher taxa, and we call for greater integration between this fledgling field and other allied areas of research, including in the humanities and the physical sciences.
Collapse
Affiliation(s)
- Adin Ross-Gillespie
- Microbial Evolutionary Ecology, Institute of Plant Biology, University of Zürich Zürich, Switzerland
| | - Rolf Kümmerli
- Microbial Evolutionary Ecology, Institute of Plant Biology, University of Zürich Zürich, Switzerland
| |
Collapse
|
46
|
Werner GDA, Strassmann JE, Ivens ABF, Engelmoer DJP, Verbruggen E, Queller DC, Noë R, Johnson NC, Hammerstein P, Kiers ET. Evolution of microbial markets. Proc Natl Acad Sci U S A 2014; 111:1237-44. [PMID: 24474743 PMCID: PMC3910570 DOI: 10.1073/pnas.1315980111] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Biological market theory has been used successfully to explain cooperative behavior in many animal species. Microbes also engage in cooperative behaviors, both with hosts and other microbes, that can be described in economic terms. However, a market approach is not traditionally used to analyze these interactions. Here, we extend the biological market framework to ask whether this theory is of use to evolutionary biologists studying microbes. We consider six economic strategies used by microbes to optimize their success in markets. We argue that an economic market framework is a useful tool to generate specific and interesting predictions about microbial interactions, including the evolution of partner discrimination, hoarding strategies, specialized versus diversified mutualistic services, and the role of spatial structures, such as flocks and consortia. There is untapped potential for studying the evolutionary dynamics of microbial systems. Market theory can help structure this potential by characterizing strategic investment of microbes across a diversity of conditions.
Collapse
Affiliation(s)
- Gijsbert D. A. Werner
- Department of Ecological Science, Vrije Universiteit Amsterdam, 1081 HV, Amsterdam, The Netherlands
| | - Joan E. Strassmann
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130
| | - Aniek B. F. Ivens
- Theoretical Biology Group, Centre for Ecological and Evolutionary Studies, University of Groningen, 9700 CC, Groningen, The Netherlands
- Laboratory of Insect Social Evolution, The Rockefeller University, New York, NY 10065
| | - Daniel J. P. Engelmoer
- Department of Ecological Science, Vrije Universiteit Amsterdam, 1081 HV, Amsterdam, The Netherlands
| | - Erik Verbruggen
- Institut für Biologie, Plant Ecology, Freie Universität Berlin, 14195 Berlin, Germany
| | - David C. Queller
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130
| | - Ronald Noë
- Faculté de Psychologie, Université de Strasbourg et Ethologie Evolutive, Département Ecologie, Physiologie et Ethologie, Centre National de la Recherche Scientifique, 67087 Strasbourg Cedex, France
- Netherlands Institute of Advanced Studies, 2242 PR, Wassenaar, The Netherlands
| | - Nancy Collins Johnson
- School of Earth Sciences and Environmental Sustainability and Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011-5694; and
| | - Peter Hammerstein
- Institute for Theoretical Biology, Humboldt University, 10115 Berlin, Germany
| | - E. Toby Kiers
- Department of Ecological Science, Vrije Universiteit Amsterdam, 1081 HV, Amsterdam, The Netherlands
| |
Collapse
|
47
|
Müller J, Hense B, Fuchs T, Utz M, Pötzsche C. Bet-hedging in stochastically switching environments. J Theor Biol 2013; 336:144-57. [DOI: 10.1016/j.jtbi.2013.07.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 06/29/2013] [Accepted: 07/18/2013] [Indexed: 11/29/2022]
|
48
|
Fehrmann S, Bottin-Duplus H, Leonidou A, Mollereau E, Barthelaix A, Wei W, Steinmetz LM, Yvert G. Natural sequence variants of yeast environmental sensors confer cell-to-cell expression variability. Mol Syst Biol 2013; 9:695. [PMID: 24104478 PMCID: PMC3817403 DOI: 10.1038/msb.2013.53] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 09/06/2013] [Indexed: 01/29/2023] Open
Abstract
DNA polymorphisms that change cell-to-cell variability in gene expression are identified in a screen for ‘Probabilistic Trait Loci' in yeast. By modifying transmembrane transporter genes, these natural variants modulate intraclonal phenotypic diversification. ![]()
We mapped genetic loci affecting cell–cell variability in gene expression. One variant enhanced both expression of a transporter and variability in a metabolic pathway. A sequence change in another transporter also increased pathway variability. The study invites to apprehend complex traits from a nondeterministic angle.
Living systems may have evolved probabilistic bet hedging strategies that generate cell-to-cell phenotypic diversity in anticipation of environmental catastrophes, as opposed to adaptation via a deterministic response to environmental changes. Evolution of bet hedging assumes that genotypes segregating in natural populations modulate the level of intraclonal diversity, which so far has largely remained hypothetical. Using a fluorescent Pmet17-GFP reporter, we mapped four genetic loci conferring to a wild yeast strain an elevated cell-to-cell variability in the expression of MET17, a gene regulated by the methionine pathway. A frameshift mutation in the Erc1p transmembrane transporter, probably resulting from a release of laboratory strains from negative selection, reduced Pmet17-GFP expression variability. At a second locus, cis-regulatory polymorphisms increased mean expression of the Mup1p methionine permease, causing increased expression variability in trans. These results demonstrate that an expression quantitative trait locus (eQTL) can simultaneously have a deterministic effect in cis and a probabilistic effect in trans. Our observations indicate that the evolution of transmembrane transporter genes can tune intraclonal variation and may therefore be implicated in both reactive and anticipatory strategies of adaptation.
Collapse
Affiliation(s)
- Steffen Fehrmann
- Laboratoire de Biologie Moléculaire de la Cellule, Ecole Normale Supérieure de Lyon, CNRS, Université Lyon 1, Lyon, France
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Geiler-Samerotte KA, Bauer CR, Li S, Ziv N, Gresham D, Siegal ML. The details in the distributions: why and how to study phenotypic variability. Curr Opin Biotechnol 2013; 24:752-9. [PMID: 23566377 PMCID: PMC3732567 DOI: 10.1016/j.copbio.2013.03.010] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 03/06/2013] [Accepted: 03/13/2013] [Indexed: 10/27/2022]
Abstract
Phenotypic variability is present even when genetic and environmental differences between cells are reduced to the greatest possible extent. For example, genetically identical bacteria display differing levels of resistance to antibiotics, clonal yeast populations demonstrate morphological and growth-rate heterogeneity, and mouse blastomeres from the same embryo have stochastic differences in gene expression. However, the distributions of phenotypes present among isogenic organisms are often overlooked; instead, many studies focus on population aggregates such as the mean. The details of these distributions are relevant to major questions in diverse fields, including the evolution of antimicrobial-drug and chemotherapy resistance. We review emerging experimental and statistical techniques that allow rigorous analysis of phenotypic variability and thereby may lead to advances across the biological sciences.
Collapse
Affiliation(s)
- K A Geiler-Samerotte
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, USA
| | | | | | | | | | | |
Collapse
|
50
|
Ratcliff WC, Hoverman M, Travisano M, Denison RF. Disentangling Direct and Indirect Fitness Effects of Microbial Dormancy. Am Nat 2013; 182:147-56. [DOI: 10.1086/670943] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|