1
|
Guarnizo ÁL, Marqués-Gálvez JE, Arenas F, Navarro-Ródenas A, Morte A. Morphological and molecular development of Terfezia claveryi ectendomycorrhizae exhibits three well-defined stages. MYCORRHIZA 2025; 35:31. [PMID: 40232537 PMCID: PMC12000269 DOI: 10.1007/s00572-025-01205-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 03/31/2025] [Indexed: 04/16/2025]
Abstract
The normal development of mycorrhizal symbiosis is a dynamic process, requiring elaborately regulated interactions between plant roots and compatible fungi, mandatory for both partners´ survival. In the present study, we further elucidated the mycorrhizal development of the desert truffles Terfezia claveryi with the host plant Helianthemum almeriense as an ectendomycorrhizal symbiosis model under greenhouse conditions. To investigate this, we evaluated the morphology of mycorrhizal colonization, concomitantly with the dynamic expression of selected marker genes (6 fungal and 11 plant genes) measured every week until mycorrhiza maturation (three months). We were able to determine 3 main stages in the mycorrhization process, 1) pre-symbiosis stage where mycelium is growing in the soil with no direct interaction with roots, 2) early symbiosis stage when the fungus spreads along the roots intercellularly and plant-fungal signaling is proceeding, and 3) late symbiosis stage where the fungus consolidates and matures with intracellular hyphal colonization; this is characterized by the regulation of cell-wall remodeling processes.
Collapse
Affiliation(s)
- Ángel Luigi Guarnizo
- Departamento Biología Vegetal, Facultad de Biología, CEIR Campus Mare Nostrum (CMN), Universidad de Murcia, Campus de Espinardo, 30100, Murcia, Spain
| | - José Eduardo Marqués-Gálvez
- Departamento Biología Vegetal, Facultad de Biología, CEIR Campus Mare Nostrum (CMN), Universidad de Murcia, Campus de Espinardo, 30100, Murcia, Spain
| | - Francisco Arenas
- Departamento Biología Vegetal, Facultad de Biología, CEIR Campus Mare Nostrum (CMN), Universidad de Murcia, Campus de Espinardo, 30100, Murcia, Spain
| | - Alfonso Navarro-Ródenas
- Departamento Biología Vegetal, Facultad de Biología, CEIR Campus Mare Nostrum (CMN), Universidad de Murcia, Campus de Espinardo, 30100, Murcia, Spain.
| | - Asunción Morte
- Departamento Biología Vegetal, Facultad de Biología, CEIR Campus Mare Nostrum (CMN), Universidad de Murcia, Campus de Espinardo, 30100, Murcia, Spain
| |
Collapse
|
2
|
De Rose S, Sillo F, Ghirardo A, Schnitzler JP, Balestrini R, Perotto S. Omics approaches to investigate pre-symbiotic responses of the mycorrhizal fungus Tulasnella sp. SV6 to the orchid host Serapias vomeracea. MYCORRHIZA 2025; 35:26. [PMID: 40172721 PMCID: PMC11965168 DOI: 10.1007/s00572-025-01188-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 02/11/2025] [Indexed: 04/04/2025]
Abstract
Like other plant-microbe symbioses, the establishment of orchid mycorrhiza (ORM) is likely to require specific communication and metabolic adjustments between the two partners. However, while modulation of plant and fungal metabolism has been investigated in fully established mycorrhizal tissues, the molecular changes occurring during the pre-symbiotic stages of the interaction remain largely unexplored in ORM. In this study, we investigated the pre-symbiotic responses of the ORM fungus Tulasnella sp. SV6 to plantlets of the orchid host Serapias vomeracea in a dual in vitro cultivation system. The fungal mycelium was harvested prior to physical contact with the orchid roots and the fungal transcriptome and metabolome were analyzed using RNA-seq and untargeted metabolomics approaches. The results revealed distinct transcriptomic and metabolomic remodelling of the ORM fungus in the presence of orchid plantlets, as compared to the free-living condition. The ORM fungus responds to the presence of the host plant with a significant up-regulation of genes associated with protein synthesis, amino acid and lipid biosynthesis, indicating increased metabolic activity. Metabolomic analysis supported the RNA-seq data, showing increased levels of amino acids and phospholipids, suggesting a remodelling of cell structure and signalling during the pre-symbiotic interaction. In addition, we identified an increase of transcripts of a small secreted protein that may play a role in early symbiotic signalling. Taken together, our results suggest that Tulasnella sp. SV6 may perceive information from orchid roots, leading to a readjustment of its transcriptomic and metabolomic profiles.
Collapse
Affiliation(s)
- Silvia De Rose
- National Research Council, Institute for Sustainable Plant Protection, Strada delle Cacce 73, Torino, I-10135, Italy
- Department of Life Sciences and Systems Biology, University of Turin, Viale Mattioli 25, Torino, I-10125, Italy
| | - Fabiano Sillo
- National Research Council, Institute for Sustainable Plant Protection, Strada delle Cacce 73, Torino, I-10135, Italy
| | - Andrea Ghirardo
- Research Unit Environmental Simulation (EUS), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany
| | - Jörg-Peter Schnitzler
- Research Unit Environmental Simulation (EUS), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany
| | - Raffaella Balestrini
- National Research Council, Institute of Biosciences and Bioresources, Via Amendola 165/A, Bari, I-70126, Italy.
| | - Silvia Perotto
- Department of Life Sciences and Systems Biology, University of Turin, Viale Mattioli 25, Torino, I-10125, Italy.
| |
Collapse
|
3
|
Berrios L, Ansell TB, Dahlberg PD, Peay KG. Standardizing experimental approaches to investigate interactions between bacteria and ectomycorrhizal fungi. FEMS Microbiol Rev 2025; 49:fuae035. [PMID: 39732620 PMCID: PMC11753295 DOI: 10.1093/femsre/fuae035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 12/11/2024] [Accepted: 12/27/2024] [Indexed: 12/30/2024] Open
Abstract
Bacteria and ectomycorrhizal fungi (EcMF) represent two of the most dominant plant root-associated microbial groups on Earth, and their interactions continue to gain recognition as significant factors that shape forest health and resilience. Yet, we currently lack a focused review that explains the state of bacteria-EcMF interaction research in the context of experimental approaches and technological advancements. To these ends, we illustrate the utility of studying bacteria-EcMF interactions, detail outstanding questions, outline research priorities in the field, and provide a suite of approaches that can be used to promote experimental reproducibility, field advancement, and collaboration. Though this review centers on the ecology of bacteria, EcMF, and trees, it by default offers experimental and conceptual insights that can be adapted to various subfields of microbiology and microbial ecology.
Collapse
Affiliation(s)
- Louis Berrios
- Department of Biology, Stanford University, Stanford, CA 94305, United States
| | - T Bertie Ansell
- Department of Biology, Stanford University, Stanford, CA 94305, United States
- Division of CryoEM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, United States
| | - Peter D Dahlberg
- Division of CryoEM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, United States
| | - Kabir G Peay
- Department of Biology, Stanford University, Stanford, CA 94305, United States
- Department of Earth System Science, Stanford University, Stanford, CA 94305, United States
| |
Collapse
|
4
|
Ferreira C, Burgsdorf I, Perez T, Ramírez G, Lalzar M, Huchon D, Steindler L. Comparative genomics analyses of Actinobacteriota identify Golgi phosphoprotein 3 (GPP34) as a widespread ancient protein family associated with sponge symbiosis. MICROBIOME 2025; 13:4. [PMID: 39762949 PMCID: PMC11706023 DOI: 10.1186/s40168-024-01963-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 11/01/2024] [Indexed: 01/11/2025]
Abstract
BACKGROUND Sponges harbor microbial communities that play crucial roles in host health and ecology. However, the genetic adaptations that enable these symbiotic microorganisms to thrive within the sponge environment are still being elucidated. To understand these genetic adaptations, we conducted a comparative genomics analysis on 350 genomes of Actinobacteriota, a phylum commonly associated with sponges. RESULTS Our analysis uncovered several differences between symbiotic and free-living bacteria, including an increased abundance of genes encoding prokaryotic defense systems (PDSs) and eukaryotic-like proteins (ELPs) in symbionts. Furthermore, we identified GPP34 as a novel symbiosis-related gene family, found in two symbiotic Actinobacteriota clades, but not in their closely related free-living relatives. Analyses of a broader set of microbes showed that members of the GPP34 family are also found in sponge symbionts across 16 additional bacterial phyla. While GPP34 proteins were thought to be restricted to eukaryotes, our phylogenetic analysis shows that the GPP34 domain is found in all three domains of life, suggesting its ancient origin. We also show that the GPP34 family includes genes with two main structures: a short form that includes only the GPP34 domain and a long form that encompasses a GPP34 domain coupled with a cytochrome P450 domain, which is exclusive to sponge symbiotic bacteria. CONCLUSIONS Given previous studies showing that GPP34 is a phosphatidylinositol-4-phosphate (PI4P)-binding protein in eukaryotes and that other PI4P-binding proteins from bacterial pathogens can interfere with phagolysosome maturation, we propose that symbionts employ GPP34 to modulate phagocytosis to colonize and persist within sponge hosts. Video Abstract.
Collapse
Affiliation(s)
- Cláudia Ferreira
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Ilia Burgsdorf
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Tzipora Perez
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Gustavo Ramírez
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
- Department of Biological Sciences, California State University, Los Angeles, CA, USA
| | - Maya Lalzar
- Bioinformatic Services Unit, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Dorothée Huchon
- George S. Wise Faculty of Life Sciences, School of Zoology, Tel Aviv University, Tel Aviv, Israel
- The Steinhardt Museum of Natural History and National Research Center, Tel Aviv University, Tel Aviv, Israel
| | - Laura Steindler
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel.
| |
Collapse
|
5
|
Wen Z, Manninen MJ, Asiegbu FO. Beneficial mutualistic fungus Suillus luteus provided excellent buffering insurance in Scots pine defense responses under pathogen challenge at transcriptome level. BMC PLANT BIOLOGY 2025; 25:12. [PMID: 39754034 PMCID: PMC11697944 DOI: 10.1186/s12870-024-06026-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 12/27/2024] [Indexed: 01/07/2025]
Abstract
BACKGROUND Mutualistic mycorrhiza fungi that live in symbiosis with plants facilitates nutrient and water acquisition, improving tree growth and performance. In this study, we evaluated the potential of mutualistic fungal inoculation to improve the growth and disease resistance of Scots pine (Pinus sylvestris L.) against the forest pathogen Heterobasidion annosum. RESULTS In co-inoculation experiment, Scots pine seedlings were pre-inoculated with mutualistic beneficial fungus (Suillus luteus) prior to H. annosum infection. The result revealed that inoculation with beneficial fungus promoted plant root growth. Transcriptome analyses revealed that co-inoculated plants and plants inoculated with beneficial fungus shared some similarities in defense gene responses. However, pathogen infection alone had unique sets of genes encoding pathogenesis-related (PR) proteins, phenylpropanoid pathway/lignin biosynthesis, flavonoid biosynthesis, chalcone/stilbene biosynthesis, ethylene signaling pathway, JA signaling pathway, cell remodeling and growth, transporters, and fungal recognition. On the other hand, beneficial fungus inoculation repressed the expression of PR proteins, and other defense-related genes such as laccases, chalcone/stilbene synthases, terpene synthases, cytochrome P450s. The co-inoculated plants did not equally enhance the induction of PR genes, chalcone/stilbene biosynthesis, however genes related to cell wall growth, water and nutrient transporters, phenylpropanoid/lignin biosynthesis/flavonoid biosynthesis, and hormone signaling were induced. CONCLUSION S. luteus promoted mutualistic interaction by suppressing plant defense responses. Pre-inoculation of Scots pine seedlings with beneficial fungus S. luteus prior to pathogen challenge promoted primary root growth, as well as had a balancing buffering role in plant defense responses and cell growth at transcriptome level.
Collapse
Affiliation(s)
- Zilan Wen
- Forest Pathology Research Lab, Faculty of Agriculture and Forestry, Department of Forest Sciences, University of Helsinki, Helsinki, 00790, Finland
| | - Minna J Manninen
- Forest Pathology Research Lab, Faculty of Agriculture and Forestry, Department of Forest Sciences, University of Helsinki, Helsinki, 00790, Finland
| | - Fred O Asiegbu
- Forest Pathology Research Lab, Faculty of Agriculture and Forestry, Department of Forest Sciences, University of Helsinki, Helsinki, 00790, Finland.
| |
Collapse
|
6
|
Vishwakarma K, Buckley S, Plett JM, Lundberg-Felten J, Jämtgård S, Plett KL. Pisolithus microcarpus isolates with contrasting abilities to colonise Eucalyptus grandis exhibit significant differences in metabolic signalling. Fungal Biol 2024; 128:2157-2166. [PMID: 39384285 DOI: 10.1016/j.funbio.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/01/2024] [Accepted: 09/05/2024] [Indexed: 10/11/2024]
Abstract
Biotic factors in fungal exudates impact plant-fungal symbioses establishment. Mutualistic ectomycorrhizal fungi play various ecological roles in forest soils by interacting with trees. Despite progress in understanding secreted fungal signals, dynamics of signal production in situ before or during direct host root contact remain unclear. We need to better understand how variability in intra-species fungal signaling at these stages impacts symbiosis with host tissues. Using the ECM model Pisolithus microcarpus, we selected two isolates (Si9 and Si14) with different abilities to colonize Eucalyptus grandis roots. Hypothesizing that distinct early signalling and metabolite profiles between these isolates would influence colonization and symbiosis, we used microdialysis to non-destructively collect secreted metabolites from either the fungus, host, or both, capturing the dynamic interplay of pre-symbiotic signalling over 48 hours. Our findings revealed significant differences in metabolite profiles between Si9 and Si14, grown alone or with a host root. Si9, with lower colonization efficiency than Si14, secreted a more diverse range of compounds, including lipids, oligopeptides, and carboxylic acids. In contrast, Si14's secretions, similar to the host's, included more aminoglycosides. This study emphasizes the importance of intra-specific metabolomic diversity in ectomycorrhizal fungi, suggesting that early metabolite secretion is crucial for establishing successful mutualistic relationships.
Collapse
Affiliation(s)
- Kanchan Vishwakarma
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, SE-901 83, Umeå, Sweden; Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, SE-901 83, Sweden
| | - Scott Buckley
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, SE-901 83, Umeå, Sweden
| | - Jonathan M Plett
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753, Australia
| | - Judith Lundberg-Felten
- Department of Forest Mycology and Plant Pathology, Uppsala BioCenter, Swedish University of Agricultural Sciences, 750 07, Uppsala, Sweden
| | - Sandra Jämtgård
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, SE-901 83, Umeå, Sweden; Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, SE-901 83, Sweden.
| | - Krista L Plett
- NSW Department of Primary Industries and Regional Development, Elizabeth Macarthur Agricultural Institute, Menangle, NSW, 2568, Australia
| |
Collapse
|
7
|
De Rose S, Sillo F, Ghirardo A, Perotto S, Schnitzler JP, Balestrini R. Integration of fungal transcriptomics and metabolomics provides insights into the early interaction between the ORM fungus Tulasnella sp. and the orchid Serapias vomeracea seeds. IMA Fungus 2024; 15:31. [PMID: 39456087 PMCID: PMC11503967 DOI: 10.1186/s43008-024-00165-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
In nature, germination of orchid seeds and early plant development rely on a symbiotic association with orchid mycorrhizal (ORM) fungi. These fungi provide the host with the necessary nutrients and facilitate the transition from embryos to protocorms. Despite recent advances in omics technologies, our understanding of this symbiosis remains limited, particularly during the initial stages of the interaction. To address this gap, we employed transcriptomics and metabolomics to investigate the early responses occurring in the mycorrhizal fungus Tulasnella sp. isolate SV6 when co-cultivated with orchid seeds of Serapias vomeracea. The integration of data from gene expression and metabolite profiling revealed the activation of some fungal signalling pathways before the establishment of the symbiosis. Prior to seed contact, an indole-related metabolite was produced by the fungus, and significant changes in the fungal lipid profile occurred throughout the symbiotic process. Additionally, the expression of plant cell wall-degrading enzymes (PCWDEs) was observed during the pre-symbiotic stage, as the fungus approached the seeds, along with changes in amino acid metabolism. Thus, the dual-omics approach employed in this study yielded novel insights into the symbiotic relationship between orchids and ORM fungi and suggest that the ORM fungus responds to the presence of the orchid seeds prior to contact.
Collapse
Affiliation(s)
- Silvia De Rose
- Institute for Sustainable Plant Protection, National Research Council, Strada Delle Cacce 73, 10135, Turin, Italy
- Department of Life Sciences and Systems Biology, University of Turin, Viale Mattioli 25, 10125, Turin, Italy
| | - Fabiano Sillo
- Institute for Sustainable Plant Protection, National Research Council, Strada Delle Cacce 73, 10135, Turin, Italy
| | - Andrea Ghirardo
- Department of Life Sciences and Systems Biology, University of Turin, Viale Mattioli 25, 10125, Turin, Italy
| | - Silvia Perotto
- Department of Life Sciences and Systems Biology, University of Turin, Viale Mattioli 25, 10125, Turin, Italy
| | - Jörg-Peter Schnitzler
- Research Unit Environmental Simulation (EUS), Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Raffaella Balestrini
- Institute of Biosciences and Bioresources, National Research Council, Via Amendola 165/A, 70126, Bari, Italy.
| |
Collapse
|
8
|
Liu Y, Zhang F, Devireddy AR, Ployet RA, Rush TA, Lu H, Hassan MM, Yuan G, Rajput R, Islam MT, Agrawal R, Abraham PE, Chen JG, Muchero W, Martin F, Veneault-Fourrey C, Yang X. A small secreted protein serves as a plant-derived effector mediating symbiosis between Populus and Laccaria bicolor. HORTICULTURE RESEARCH 2024; 11:uhae232. [PMID: 39431113 PMCID: PMC11489596 DOI: 10.1093/hr/uhae232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/02/2024] [Indexed: 10/22/2024]
Affiliation(s)
- Yang Liu
- Biosciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA
| | - Feng Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, 222 Tianshui S Rd, Chengguan District, Lanzhou, Gansu 730000, China
- UMR 1136 Interactions Arbres-Microorganismes, Centre INRAE Grand Est-Nancy, INRAE, Université de Lorraine, Champenoux 54280, France
| | - Amith R Devireddy
- Biosciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA
| | - Raphael A Ployet
- Biosciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA
| | - Tomás A Rush
- Biosciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA
| | - Haiwei Lu
- Biosciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA
- Department of Academic Education, Central Community College – Hastings; Hastings, NE 68901, USA
| | - Md Mahmudul Hassan
- Biosciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA
- Department of Genetics and Plant Breeding, Patuakhali Science and Technology University, Dumki, Patuakhali, 8602, Bangladesh
| | - Guoliang Yuan
- Biosciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA
- Chemical and Biological Process Development Group, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA 99352, USA
| | - Ruchika Rajput
- Biosciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA
| | - Md Torikul Islam
- Biosciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA
| | - Rekha Agrawal
- Biosciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA
| | - Paul E Abraham
- Biosciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA
| | - Jin-Gui Chen
- Biosciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA
| | - Wellington Muchero
- Biosciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA
| | - Francis Martin
- UMR 1136 Interactions Arbres-Microorganismes, Centre INRAE Grand Est-Nancy, INRAE, Université de Lorraine, Champenoux 54280, France
| | - Claire Veneault-Fourrey
- UMR 1136 Interactions Arbres-Microorganismes, Centre INRAE Grand Est-Nancy, INRAE, Université de Lorraine, Champenoux 54280, France
| | - Xiaohan Yang
- Biosciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA
| |
Collapse
|
9
|
Stange P, Kersting J, Sivaprakasam Padmanaban PB, Schnitzler JP, Rosenkranz M, Karl T, Benz JP. The decision for or against mycoparasitic attack by Trichoderma spp. is taken already at a distance in a prey-specific manner and benefits plant-beneficial interactions. Fungal Biol Biotechnol 2024; 11:14. [PMID: 39252125 PMCID: PMC11384713 DOI: 10.1186/s40694-024-00183-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/23/2024] [Indexed: 09/11/2024] Open
Abstract
BACKGROUND The application of plant-beneficial microorganisms as bio-fertilizer and biocontrol agents has gained traction in recent years, as both agriculture and forestry are facing the challenges of poor soils and climate change. Trichoderma spp. are gaining popularity in agriculture and forestry due to their multifaceted roles in promoting plant growth through e.g. nutrient translocation, hormone production, induction of plant systemic resistance, but also direct antagonism of other fungi. However, the mycotrophic nature of the genus bears the risk of possible interference with other native plant-beneficial fungi, such as ectomycorrhiza, in the rhizosphere. Such interference could yield unpredictable consequences for the host plants of these ecosystems. So far, it remains unclear, whether Trichoderma is able to differentiate between plant-beneficial and plant-pathogenic fungi during the process of plant colonization. RESULTS We investigated whether Trichoderma spp. can differentiate between beneficial ectomycorrhizal fungi (represented by Laccaria bicolor and Hebeloma cylindrosporum) and pathogenic fungi (represented by Fusarium graminearum and Alternaria alternata) in different confrontation scenarios, including a newly developed olfactometer "race tube"-like system. Using two independent species, T. harzianum and T. atrobrunneum, with plant-growth-promoting and immune-stimulating properties towards Populus x canescens, our study revealed robustly accelerated growth towards phytopathogens, while showing a contrary response to ectomycorrhizal fungi. Transcriptomic analyses identified distinct genetic programs during interaction corresponding to the lifestyles, emphasizing the expression of mycoparasitism-related genes only in the presence of phytopathogens. CONCLUSION The findings reveal a critical mode of fungal community interactions belowground and suggest that Trichoderma spp. can distinguish between fungal partners of different lifestyles already at a distance. This sheds light on the entangled interactions of fungi in the rhizosphere and emphasizes the potential benefits of using Trichoderma spp. as a biocontrol agent and bio-fertilizer in tree plantations.
Collapse
Affiliation(s)
- Pia Stange
- Professorship for Fungal Biotechnology in Wood Science, Wood Research Munich, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Johannes Kersting
- Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | | | | | - Maaria Rosenkranz
- Research Unit Environmental Simulation, Helmholtz Munich, Neuherberg, Germany
- Institute of Plant Sciences, Ecology and Conservation Biology, University of Regensburg, Regensburg, Germany
| | - Tanja Karl
- Professorship for Fungal Biotechnology in Wood Science, Wood Research Munich, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - J Philipp Benz
- Professorship for Fungal Biotechnology in Wood Science, Wood Research Munich, TUM School of Life Sciences, Technical University of Munich, Freising, Germany.
| |
Collapse
|
10
|
Shi L, Wang Z, Chen JH, Qiu H, Liu WD, Zhang XY, Martin FM, Zhao MW. LbSakA-mediated phosphorylation of the scaffolding protein LbNoxR in the ectomycorrhizal basidiomycete Laccaria bicolor regulates NADPH oxidase activity, ROS accumulation and symbiosis development. THE NEW PHYTOLOGIST 2024; 243:381-397. [PMID: 38741469 DOI: 10.1111/nph.19813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 04/23/2024] [Indexed: 05/16/2024]
Abstract
Ectomycorrhizal symbiosis, which involves mutually beneficial interactions between soil fungi and tree roots, is essential for promoting tree growth. To establish this symbiotic relationship, fungal symbionts must initiate and sustain mutualistic interactions with host plants while avoiding host defense responses. This study investigated the role of reactive oxygen species (ROS) generated by fungal NADPH oxidase (Nox) in the development of Laccaria bicolor/Populus tremula × alba symbiosis. Our findings revealed that L. bicolor LbNox expression was significantly higher in ectomycorrhizal roots than in free-living mycelia. RNAi was used to silence LbNox, which resulted in decreased ROS signaling, limited formation of the Hartig net, and a lower mycorrhizal formation rate. Using Y2H library screening, BiFC and Co-IP, we demonstrated an interaction between the mitogen-activated protein kinase LbSakA and LbNoxR. LbSakA-mediated phosphorylation of LbNoxR at T409, T477 and T480 positively modulates LbNox activity, ROS accumulation and upregulation of symbiosis-related genes involved in dampening host defense reactions. These results demonstrate that regulation of fungal ROS metabolism is critical for maintaining the mutualistic interaction between L. bicolor and P. tremula × alba. Our findings also highlight a novel and complex regulatory mechanism governing the development of symbiosis, involving both transcriptional and posttranslational regulation of gene networks.
Collapse
Affiliation(s)
- Liang Shi
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Zi Wang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Ju Hong Chen
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Hao Qiu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Wei Dong Liu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Xiao Yan Zhang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Francis M Martin
- Université de Lorraine, INRAE, UMR Interactions Arbres/Microorganismes, INRAE Grand Est-Nancy, Champenoux, 54280, France
| | - Ming Wen Zhao
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| |
Collapse
|
11
|
Jibril SM, Wang C, Yang C, Qu H, Yang X, Yang K, Li C, Wang Y. Multiple Chitin- or Avirulent Strain-Triggered Immunity Induces Microbiome Reassembly in Rice. Microorganisms 2024; 12:1323. [PMID: 39065092 PMCID: PMC11279204 DOI: 10.3390/microorganisms12071323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
Magnaporthe oryzae is one of the most important fungal pathogens of rice. Chitin and avirulent strains can induce two layers of immunity response, pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) and effector-triggered immunity (ETI), in rice with cognate R genes. However, little is known about the assembly of the rice microbiome induced by PTI and ETI in rice. In this study, we investigate the impact of continuous treatment of the avirulent M. oryzae strain with AvrPi9 and chitin on the bacterial endophytic community of rice varieties harboring resistant gene Pi9 and their antagonistic activity against rice blast fungus. Analysis of the 16S rRNA showed a significant increase in the diversity and microbial co-occurrence network complexity and the number of beneficial taxa-Bacillus, Pseudomonas, Microbacterium, and Stenotrophomonas spp.-following the chitin and avirulent strain treatments. The antifungal assay with bacterial endophytes recovered from the leaves showed few bacteria with antagonistic potential in rice treated with avirulent strains, suggesting that the sequential treatment of the avirulent strain decreased the antagonistic bacteria against M. oryzae. Moreover, we identified Bacillus safensis Ch_66 and Bacillus altitudinis Nc_68 with overall antagonistic activities in vivo and in vitro. Our findings provide a novel insight into rice microbiome assembly in response to different innate immunity reactions.
Collapse
Affiliation(s)
- Sauban Musa Jibril
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China (C.Y.); (H.Q.)
- Yunnan-CABI Joint Laboratory for Integrated Prevention and Control of Transboundary Pests, Yunnan Agricultural University, Kunming 650201, China
| | - Chun Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China (C.Y.); (H.Q.)
- Yunnan-CABI Joint Laboratory for Integrated Prevention and Control of Transboundary Pests, Yunnan Agricultural University, Kunming 650201, China
| | - Chao Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China (C.Y.); (H.Q.)
- Yunnan-CABI Joint Laboratory for Integrated Prevention and Control of Transboundary Pests, Yunnan Agricultural University, Kunming 650201, China
| | - Hao Qu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China (C.Y.); (H.Q.)
- Yunnan-CABI Joint Laboratory for Integrated Prevention and Control of Transboundary Pests, Yunnan Agricultural University, Kunming 650201, China
| | - Xinyun Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China (C.Y.); (H.Q.)
- Yunnan-CABI Joint Laboratory for Integrated Prevention and Control of Transboundary Pests, Yunnan Agricultural University, Kunming 650201, China
| | - Kexin Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China (C.Y.); (H.Q.)
- Yunnan-CABI Joint Laboratory for Integrated Prevention and Control of Transboundary Pests, Yunnan Agricultural University, Kunming 650201, China
| | - Chengyun Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China (C.Y.); (H.Q.)
- Yunnan-CABI Joint Laboratory for Integrated Prevention and Control of Transboundary Pests, Yunnan Agricultural University, Kunming 650201, China
| | - Yi Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China (C.Y.); (H.Q.)
- Yunnan-CABI Joint Laboratory for Integrated Prevention and Control of Transboundary Pests, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
12
|
Berrios L, Bogar GD, Bogar LM, Venturini AM, Willing CE, Del Rio A, Ansell TB, Zemaitis K, Velickovic M, Velickovic D, Pellitier PT, Yeam J, Hutchinson C, Bloodsworth K, Lipton MS, Peay KG. Ectomycorrhizal fungi alter soil food webs and the functional potential of bacterial communities. mSystems 2024; 9:e0036924. [PMID: 38717159 PMCID: PMC11237468 DOI: 10.1128/msystems.00369-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 04/11/2024] [Indexed: 06/19/2024] Open
Abstract
Most of Earth's trees rely on critical soil nutrients that ectomycorrhizal fungi (EcMF) liberate and provide, and all of Earth's land plants associate with bacteria that help them survive in nature. Yet, our understanding of how the presence of EcMF modifies soil bacterial communities, soil food webs, and root chemistry requires direct experimental evidence to comprehend the effects that EcMF may generate in the belowground plant microbiome. To this end, we grew Pinus muricata plants in soils that were either inoculated with EcMF and native forest bacterial communities or only native bacterial communities. We then profiled the soil bacterial communities, applied metabolomics and lipidomics, and linked omics data sets to understand how the presence of EcMF modifies belowground biogeochemistry, bacterial community structure, and their functional potential. We found that the presence of EcMF (i) enriches soil bacteria linked to enhanced plant growth in nature, (ii) alters the quantity and composition of lipid and non-lipid soil metabolites, and (iii) modifies plant root chemistry toward pathogen suppression, enzymatic conservation, and reactive oxygen species scavenging. Using this multi-omic approach, we therefore show that this widespread fungal symbiosis may be a common factor for structuring soil food webs.IMPORTANCEUnderstanding how soil microbes interact with one another and their host plant will help us combat the negative effects that climate change has on terrestrial ecosystems. Unfortunately, we lack a clear understanding of how the presence of ectomycorrhizal fungi (EcMF)-one of the most dominant soil microbial groups on Earth-shapes belowground organic resources and the composition of bacterial communities. To address this knowledge gap, we profiled lipid and non-lipid metabolites in soils and plant roots, characterized soil bacterial communities, and compared soils amended either with or without EcMF. Our results show that the presence of EcMF changes soil organic resource availability, impacts the proliferation of different bacterial communities (in terms of both type and potential function), and primes plant root chemistry for pathogen suppression and energy conservation. Our findings therefore provide much-needed insight into how two of the most dominant soil microbial groups interact with one another and with their host plant.
Collapse
Affiliation(s)
- Louis Berrios
- Department of Biology, Stanford University, Stanford, California, USA
| | - Glade D. Bogar
- Kellogg Biological Station, Michigan State University, Hickory Corners, Michigan, USA
| | - Laura M. Bogar
- Department of Plant Biology, University of California, Davis, Davis, California, USA
| | | | - Claire E. Willing
- Department of Biology, Stanford University, Stanford, California, USA
- School of Environmental and Forest Sciences, University of Washington, Seattle, Washington, USA
| | - Anastacia Del Rio
- Department of Biology, Stanford University, Stanford, California, USA
| | - T. Bertie Ansell
- Department of Biology, Stanford University, Stanford, California, USA
- Division of CryoEM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Menlo Park, California, USA
| | - Kevin Zemaitis
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Marija Velickovic
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Dusan Velickovic
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington, USA
| | | | - Jay Yeam
- Department of Biology, Stanford University, Stanford, California, USA
| | - Chelsea Hutchinson
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Kent Bloodsworth
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Mary S. Lipton
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Kabir G. Peay
- Department of Biology, Stanford University, Stanford, California, USA
- Department of Earth System Science, Stanford University, Stanford, California, USA
| |
Collapse
|
13
|
Martin FM, van der Heijden MGA. The mycorrhizal symbiosis: research frontiers in genomics, ecology, and agricultural application. THE NEW PHYTOLOGIST 2024; 242:1486-1506. [PMID: 38297461 DOI: 10.1111/nph.19541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 12/07/2023] [Indexed: 02/02/2024]
Abstract
Mycorrhizal symbioses between plants and fungi are vital for the soil structure, nutrient cycling, plant diversity, and ecosystem sustainability. More than 250 000 plant species are associated with mycorrhizal fungi. Recent advances in genomics and related approaches have revolutionized our understanding of the biology and ecology of mycorrhizal associations. The genomes of 250+ mycorrhizal fungi have been released and hundreds of genes that play pivotal roles in regulating symbiosis development and metabolism have been characterized. rDNA metabarcoding and metatranscriptomics provide novel insights into the ecological cues driving mycorrhizal communities and functions expressed by these associations, linking genes to ecological traits such as nutrient acquisition and soil organic matter decomposition. Here, we review genomic studies that have revealed genes involved in nutrient uptake and symbiosis development, and discuss adaptations that are fundamental to the evolution of mycorrhizal lifestyles. We also evaluated the ecosystem services provided by mycorrhizal networks and discuss how mycorrhizal symbioses hold promise for sustainable agriculture and forestry by enhancing nutrient acquisition and stress tolerance. Overall, unraveling the intricate dynamics of mycorrhizal symbioses is paramount for promoting ecological sustainability and addressing current pressing environmental concerns. This review ends with major frontiers for further research.
Collapse
Affiliation(s)
- Francis M Martin
- Université de Lorraine, INRAE, UMR IAM, Champenoux, 54280, France
- Institute of Applied Mycology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Marcel G A van der Heijden
- Department of Agroecology & Environment, Plant-Soil Interactions, Agroscope, Zürich, 8046, Switzerland
- Department of Plant and Microbial Biology, University of Zürich, Zürich, 8057, Switzerland
| |
Collapse
|
14
|
Furtado ANM, de Farias ST, Maia MDS. Structural analyzes suggest that MiSSP13 and MiSSP16.5 may act as proteases inhibitors during ectomycorrhiza establishment in Laccaria bicolor. Biosystems 2024; 238:105194. [PMID: 38513884 DOI: 10.1016/j.biosystems.2024.105194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/29/2024] [Accepted: 03/18/2024] [Indexed: 03/23/2024]
Abstract
•The signaling process during mycorrhiza establishment involves intense molecular communication between symbionts. It has been suggested that a group of protein effectors, the so-called MiSSPs, plays a broader function in the symbiosis metabolism, however, many of these remain uncharacterized structurally and functionally. •Herein we used three-dimensional protein structure modeling methods, ligand analysis, and molecular docking to structurally characterize and describe two protein effectors, MiSSP13 and MiSSP16.5, with enhanced expression during the mycorrhizal process in Laccaria bicolor. •MiSSP13 and MiSSP16.5 show structural homology with the cysteine and aspartate protease inhibitor, cocaprin (CCP1). Through structural analysis, it was observed that MiSSP13 and MiSSP16.5 have an active site similar to that observed in CCP1. The protein-protein docking data showed that MiSSP13 and MiSSP16.5 interact with the papain and pepsin proteases at sites that are near to where CCP1 interacts with these same targets, suggesting a function as inhibitor of cysteine and aspartate proteases. The interaction of MiSSP13 with papain and MiSSP16.5 with pepsin was stronger than the interaction of CCP1 with these proteases, suggesting that the MiSSPs had a greater activity in inhibiting these classes of proteases. Based on the data supplied, a model is proposed for the function of MiSSPs 13 and 16.5 during the symbiosis establishment. Our findings, while derived from in silico analyses, enable us formulate intriguing hypothesis on the function of MiSSPs in ectomycorrhization, which will require experimental validation.
Collapse
Affiliation(s)
- Ariadne N M Furtado
- Departamento de Biologia Molecular, Universidade Federal da Paraíba, João Pessoa, Paraíba, 58051-900, Brazil.
| | - Sávio Torres de Farias
- Departamento de Biologia Molecular, Universidade Federal da Paraíba, João Pessoa, Paraíba, 58051-900, Brazil; Network of Researchers on Chemical Emergence of Life (NoRCEL), Leeds, LS7 3RB, UK
| | - Mayara Dos Santos Maia
- Departamento de Biologia Molecular, Universidade Federal da Paraíba, João Pessoa, Paraíba, 58051-900, Brazil
| |
Collapse
|
15
|
Rehneke L, Schäfer P. Symbiont effector-guided mapping of proteins in plant networks to improve crop climate stress resilience: Symbiont effectors inform highly interconnected plant protein networks and provide an untapped resource for crop climate resilience strategies. Bioessays 2024; 46:e2300172. [PMID: 38388783 DOI: 10.1002/bies.202300172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/21/2023] [Accepted: 01/23/2024] [Indexed: 02/24/2024]
Abstract
There is an urgent need for novel protection strategies to sustainably secure crop production under changing climates. Studying microbial effectors, defined as microbe-derived proteins that alter signalling inside plant cells, has advanced our understanding of plant immunity and microbial plant colonisation strategies. Our understanding of effectors in the establishment and beneficial outcome of plant symbioses is less well known. Combining functional and comparative interaction assays uncovered specific symbiont effector targets in highly interconnected plant signalling networks and revealed the potential of effectors in beneficially modulating plant traits. The diverse functionality of symbiont effectors differs from the paradigmatic immuno-suppressive function of pathogen effectors. These effectors provide solutions for improving crop resilience against climate stress by their evolution-driven specification in host protein targeting and modulation. Symbiont effectors represent stringent tools not only to identify genetic targets for crop breeding, but to serve as applicable agents in crop management strategies under changing environments.
Collapse
Affiliation(s)
- Laura Rehneke
- Institute of Phytopathology, Research Centre for BioSystems, Land Use and Nutrition, Justus Liebig University, Giessen, Germany
| | - Patrick Schäfer
- Institute of Phytopathology, Research Centre for BioSystems, Land Use and Nutrition, Justus Liebig University, Giessen, Germany
| |
Collapse
|
16
|
Marqués-Gálvez JE, Pandharikar G, Basso V, Kohler A, Lackus ND, Barry K, Keymanesh K, Johnson J, Singan V, Grigoriev IV, Vilgalys R, Martin F, Veneault-Fourrey C. Populus MYC2 orchestrates root transcriptional reprogramming of defence pathway to impair Laccaria bicolor ectomycorrhizal development. THE NEW PHYTOLOGIST 2024; 242:658-674. [PMID: 38375883 DOI: 10.1111/nph.19609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/30/2024] [Indexed: 02/21/2024]
Abstract
The jasmonic acid (JA) signalling pathway plays an important role in the establishment of the ectomycorrhizal symbiosis. The Laccaria bicolor effector MiSSP7 stabilizes JA corepressor JAZ6, thereby inhibiting the activity of Populus MYC2 transcription factors. Although the role of MYC2 in orchestrating plant defences against pathogens is well established, its exact contribution to ECM symbiosis remains unclear. This information is crucial for understanding the balance between plant immunity and symbiotic relationships. Transgenic poplars overexpressing or silencing for the two paralogues of MYC2 transcription factor (MYC2s) were produced, and their ability to establish ectomycorrhiza was assessed. Transcriptomics and DNA affinity purification sequencing were performed. MYC2s overexpression led to a decrease in fungal colonization, whereas its silencing increased it. The enrichment of terpene synthase genes in the MYC2-regulated gene set suggests a complex interplay between the host monoterpenes and fungal growth. Several root monoterpenes have been identified as inhibitors of fungal growth and ECM symbiosis. Our results highlight the significance of poplar MYC2s and terpenes in mutualistic symbiosis by controlling root fungal colonization. We identified poplar genes which direct or indirect control by MYC2 is required for ECM establishment. These findings deepen our understanding of the molecular mechanisms underlying ECM symbiosis.
Collapse
Affiliation(s)
- José Eduardo Marqués-Gálvez
- Université de Lorraine, INRAE, UMR 1136 Interactions Arbres-Microorganismes, Centre INRAE Grand Est-Nancy, Champenoux, 54280, France
| | - Gaurav Pandharikar
- Université de Lorraine, INRAE, UMR 1136 Interactions Arbres-Microorganismes, Centre INRAE Grand Est-Nancy, Champenoux, 54280, France
| | - Veronica Basso
- Université de Lorraine, INRAE, UMR 1136 Interactions Arbres-Microorganismes, Centre INRAE Grand Est-Nancy, Champenoux, 54280, France
| | - Annegret Kohler
- Université de Lorraine, INRAE, UMR 1136 Interactions Arbres-Microorganismes, Centre INRAE Grand Est-Nancy, Champenoux, 54280, France
| | - Nathalie D Lackus
- Lehrstuhl für Pharmazeutische Biologie, Julius-von-Sachs-Institut für Biowissenschaften, Julius-Maximilians-Universität Würzburg, Julius-von-Sachs-Platz 2, Würzburg, 97082, Deutschland
| | - Kerrie Barry
- US Department of Energy, Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Keykhosrow Keymanesh
- US Department of Energy, Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Jenifer Johnson
- US Department of Energy, Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Vasanth Singan
- US Department of Energy, Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Igor V Grigoriev
- US Department of Energy, Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Rytas Vilgalys
- Department of Biology, Duke University, Durham, NC, 27708, USA
| | - Francis Martin
- Université de Lorraine, INRAE, UMR 1136 Interactions Arbres-Microorganismes, Centre INRAE Grand Est-Nancy, Champenoux, 54280, France
| | - Claire Veneault-Fourrey
- Université de Lorraine, INRAE, UMR 1136 Interactions Arbres-Microorganismes, Centre INRAE Grand Est-Nancy, Champenoux, 54280, France
| |
Collapse
|
17
|
Boyno G, Rezaee Danesh Y, Demir S, Teniz N, Mulet JM, Porcel R. The Complex Interplay between Arbuscular Mycorrhizal Fungi and Strigolactone: Mechanisms, Sinergies, Applications and Future Directions. Int J Mol Sci 2023; 24:16774. [PMID: 38069097 PMCID: PMC10706366 DOI: 10.3390/ijms242316774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
Plants, the cornerstone of life on Earth, are constantly struggling with a number of challenges arising from both biotic and abiotic stressors. To overcome these adverse factors, plants have evolved complex defense mechanisms involving both a number of cell signaling pathways and a complex network of interactions with microorganisms. Among these interactions, the relationship between symbiotic arbuscular mycorrhizal fungi (AMF) and strigolactones (SLs) stands as an important interplay that has a significant impact on increased resistance to environmental stresses and improved nutrient uptake and the subsequent enhanced plant growth. AMF establishes mutualistic partnerships with plants by colonizing root systems, and offers a range of benefits, such as increased nutrient absorption, improved water uptake and increased resistance to both biotic and abiotic stresses. SLs play a fundamental role in shaping root architecture, promoting the growth of lateral roots and regulating plant defense responses. AMF can promote the production and release of SLs by plants, which in turn promote symbiotic interactions due to their role as signaling molecules with the ability to attract beneficial microbes. The complete knowledge of this synergy has the potential to develop applications to optimize agricultural practices, improve nutrient use efficiency and ultimately increase crop yields. This review explores the roles played by AMF and SLs in plant development and stress tolerance, highlighting their individual contributions and the synergistic nature of their interaction.
Collapse
Affiliation(s)
- Gökhan Boyno
- Department of Plant Protection, Faculty of Agriculture, Van Yuzuncu Yil University, Van 65090, Türkiye
| | - Younes Rezaee Danesh
- Department of Plant Protection, Faculty of Agriculture, Van Yuzuncu Yil University, Van 65090, Türkiye
- Department of Plant Protection, Faculty of Agriculture, Urmia University, Urmia 5756151818, Iran
| | - Semra Demir
- Department of Plant Protection, Faculty of Agriculture, Van Yuzuncu Yil University, Van 65090, Türkiye
| | - Necmettin Teniz
- Department of Agricultural Biotechnology, Faculty of Agriculture, Van Yuzuncu Yil University, Van 65090, Türkiye
| | - José M. Mulet
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, 46022 Valencia, Spain
| | - Rosa Porcel
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, 46022 Valencia, Spain
| |
Collapse
|
18
|
Zhang S, Yang W, Chen J, Zhang C, Zhang S, Gao L. Whole genome sequencing and annotation of Scleroderma yunnanense, the only edible Scleroderma species. Genomics 2023; 115:110727. [PMID: 37839651 DOI: 10.1016/j.ygeno.2023.110727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/18/2023] [Accepted: 10/12/2023] [Indexed: 10/17/2023]
Abstract
Scleroderma yunnanense, an ectomycorrhizal fungus, is a popular edible mushroom within the Yunnan Province of Southwest China that holds great ecological and economic implications. However, despite its significance, there remains limited information about this species. Therefore, we sequenced S. yunnanense genome to identify the functional genes of S. yunnanense involved in secondary metabolite and carbohydrate production pathways. First, we present the 40.43 Mb high-quality reference genome for S. yunnanense, distributed across 35 contigs; moreover, the N50 contig size was found to reach 3.31 Mb and contained 8877 functional genes. Finally, genome annotation was conducted to compare the functional genes of S. yunnanense with protein sequences from different publicly available databases. Taken together, we identified 12 biosynthetic gene clusters across 10 contigs; among these were 13 key mevalonate (MVA) pathway enzymes, a key tyrosinase enzyme in the 3,4-dihydroxyphenylalanine (DOPA) pathway that is responsible for producing DOPA melanins, and 16 enzymes involved in uridine diphosphate glucose biosynthesis. Overall, this study presents the first genome assembly and annotation of S. yunnanense; ultimately, this information will be important in the elucidation of the biological activities and artificial domestication of this fungus.
Collapse
Affiliation(s)
- Shanshan Zhang
- Key Laboratory of Rare and Endangered Forest Plants of State Forestry and Grassland Administration, Yunnan Academy of Forestry and Grassland, Kunming 650201, China.
| | - Wenzhong Yang
- Key Laboratory of Rare and Endangered Forest Plants of State Forestry and Grassland Administration, Yunnan Academy of Forestry and Grassland, Kunming 650201, China
| | - Jian Chen
- Key Laboratory of Rare and Endangered Forest Plants of State Forestry and Grassland Administration, Yunnan Academy of Forestry and Grassland, Kunming 650201, China.
| | - Chuanguang Zhang
- Key Laboratory of Rare and Endangered Forest Plants of State Forestry and Grassland Administration, Yunnan Academy of Forestry and Grassland, Kunming 650201, China.
| | - Siqi Zhang
- Wenshan Prefecture Central Blood Station, Yunnan 663099, China
| | - Lanjing Gao
- College of Forestry, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
19
|
Zhao H, Dai YC, Wu F, Liu XY, Maurice S, Krutovsky KV, Pavlov IN, Lindner DL, Martin FM, Yuan Y. Insights into the Ecological Diversification of the Hymenochaetales based on Comparative Genomics and Phylogenomics With an Emphasis on Coltricia. Genome Biol Evol 2023; 15:evad136. [PMID: 37498334 PMCID: PMC10410303 DOI: 10.1093/gbe/evad136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/01/2023] [Accepted: 07/16/2023] [Indexed: 07/28/2023] Open
Abstract
To elucidate the genomic traits of ecological diversification in the Hymenochaetales, we sequenced 15 new genomes, with attention to ectomycorrhizal (EcM) Coltricia species. Together with published data, 32 genomes, including 31 Hymenochaetales and one outgroup, were comparatively analyzed in total. Compared with those of parasitic and saprophytic members, EcM species have significantly reduced number of plant cell wall degrading enzyme genes, and expanded transposable elements, genome sizes, small secreted proteins, and secreted proteases. EcM species still retain some of secreted carbohydrate-active enzymes (CAZymes) and have lost the key secreted CAZymes to degrade lignin and cellulose, while possess a strong capacity to degrade a microbial cell wall containing chitin and peptidoglycan. There were no significant differences in secreted CAZymes between fungi growing on gymnosperms and angiosperms, suggesting that the secreted CAZymes in the Hymenochaetales evolved before differentiation of host trees into gymnosperms and angiosperms. Nevertheless, parasitic and saprophytic species of the Hymenochaetales are very similar in many genome features, which reflect their close phylogenetic relationships both being white rot fungi. Phylogenomic and molecular clock analyses showed that the EcM genus Coltricia formed a clade located at the base of the Hymenochaetaceae and divergence time later than saprophytic species. And Coltricia remains one to two genes of AA2 family. These indicate that the ancestors of Coltricia appear to have originated from saprophytic ancestor with the ability to cause a white rot. This study provides new genomic data for EcM species and insights into the ecological diversification within the Hymenochaetales based on comparative genomics and phylogenomics analyses.
Collapse
Affiliation(s)
- Heng Zhao
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Yu-Cheng Dai
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Fang Wu
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Xiao-Yong Liu
- College of Life Sciences, Shandong Normal University, Jinan, China
| | - Sundy Maurice
- Section for Genetics and Evolutionary Biology (EVOGENE), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Konstantin V Krutovsky
- Department of Forest Genetics and Forest Tree Breeding, Georg-August University of Göttingen, Göttingen, Germany
- Center for Integrated Breeding Research, George-August University of Göttingen, Göttingen, Germany
- Laboratory of Population Genetics, N. I. Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
- Laboratory of Forest Genomics, Department of Genomics and Bioinformatics, Genome Research and Education Center, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, Krasnoyarsk, Russia
- Scientific and Methodological Center, G. F. Morozov Voronezh State University of Forestry and Technologies, Voronezh, Russia
| | - Igor N Pavlov
- Mycology and Plant Pathology, V.N. Sukachev Institute of Forest SB RAS, Krasnoyarsk, Russia
- Department of Chemical Technology of Wood and Biotechnology, Reshetnev Siberian State University of Science and Technology, Krasnoyarsk, Russia
| | | | - Francis M Martin
- Université de Lorraine, INRAE, UMR Interactions Arbres/Microorganismes, Centre INRAE-GrandEst-Nancy, Champenoux, France
| | - Yuan Yuan
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| |
Collapse
|
20
|
Newman TE, Kim H, Khentry Y, Sohn KH, Derbyshire MC, Kamphuis LG. The broad host range pathogen Sclerotinia sclerotiorum produces multiple effector proteins that induce host cell death intracellularly. MOLECULAR PLANT PATHOLOGY 2023; 24:866-881. [PMID: 37038612 PMCID: PMC10346375 DOI: 10.1111/mpp.13333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 03/19/2023] [Accepted: 03/20/2023] [Indexed: 06/19/2023]
Abstract
Sclerotinia sclerotiorum is a broad host range necrotrophic fungal pathogen, which causes disease on many economically important crop species. S. sclerotiorum has been shown to secrete small effector proteins to kill host cells and acquire nutrients. We set out to discover novel necrosis-inducing effectors and characterize their activity using transient expression in Nicotiana benthamiana leaves. Five intracellular necrosis-inducing effectors were identified with differing host subcellular localization patterns, which were named intracellular necrosis-inducing effector 1-5 (SsINE1-5). We show for the first time a broad host range pathogen effector, SsINE1, that uses an RxLR-like motif to enter host cells. Furthermore, we provide preliminary evidence that SsINE5 induces necrosis via an NLR protein. All five of the identified effectors are highly conserved in globally sourced S. sclerotiorum isolates. Taken together, these results advance our understanding of the virulence mechanisms employed by S. sclerotiorum and reveal potential avenues for enhancing genetic resistance to this damaging fungal pathogen.
Collapse
Affiliation(s)
- Toby E. Newman
- Centre for Crop and Disease Management, School of Molecular and Life SciencesCurtin UniversityBentleyWestern AustraliaAustralia
| | - Haseong Kim
- Plant Immunity Research CenterSeoul National UniversitySeoul08826Republic of Korea
| | - Yuphin Khentry
- Centre for Crop and Disease Management, School of Molecular and Life SciencesCurtin UniversityBentleyWestern AustraliaAustralia
| | - Kee Hoon Sohn
- Plant Immunity Research CenterSeoul National UniversitySeoul08826Republic of Korea
- Department of Agricultural BiotechnologySeoul National UniversitySeoul08826Republic of Korea
- Research Institute of Agriculture and Life SciencesSeoul National UniversitySeoul08826Republic of Korea
| | - Mark C. Derbyshire
- Centre for Crop and Disease Management, School of Molecular and Life SciencesCurtin UniversityBentleyWestern AustraliaAustralia
| | - Lars G. Kamphuis
- Centre for Crop and Disease Management, School of Molecular and Life SciencesCurtin UniversityBentleyWestern AustraliaAustralia
| |
Collapse
|
21
|
Pascoal-Ferreira P, Chahed A, Costa R, Branco I, Choupina A. Use of iRNA in the post-transcriptional gene silencing of necrosis-inducing Phytophthora protein 1(NPP1) in Phytophthora cinnamomi. Mol Biol Rep 2023; 50:6493-6504. [PMID: 37326749 PMCID: PMC10374718 DOI: 10.1007/s11033-023-08562-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 05/31/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Phytophthora cinnamomi is an Oomycetes associated with soil, this Oomycete is one of the most destructive species of Phytophthora, being responsible for the decline of more than 5000 ornamental, forest, or fruit plants. It can secrete a class of protein NPP1 (Phytophthora necrosis inducing protein 1), responsible for inducing necrosis in leaves and roots of plants, leading to their death. OBJECTIVE This work will report the characterization of the Phytophthora cinnamomi NPP1 gene responsible for the infection of Castanea sativa roots and will characterize the mechanisms of interaction between Phytophthora cinnamomi and Castanea sativa, by gene silencing NPP1 from Phytophthora cinnamomi mediated by RNAi. METHODS AND RESULTS For silencing a part of the coding region of the NPP1 gene, was placed in the sense and antisense directions between an intron and ligated to the integrative vector pTH210. Cassette integration was confirmed by PCR and sequencing on the hygromycin-resistant Phytophthora cinnamomi transformants. Transformants obtained with the silenced gene was used to infect Castanea sativa. CONCLUSIONS Plants infected with these transformants showed a great reduction in disease symptoms, confirming iRNA as a potential alternative biological tool in the study of molecular factors, and in the control and management of Phytophthora cinnamomi.
Collapse
Affiliation(s)
- Patrick Pascoal-Ferreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal
| | - Abdessalem Chahed
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal
- Laboratory for Research on Genetics Biodiversity and Bioresources Valuation of (LR11ES41), ISBM, University of Monastir, 5000, Monastir, Tunisia
| | - Rodrigo Costa
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal
| | - Iuliia Branco
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal
| | - Altino Choupina
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal.
| |
Collapse
|
22
|
Osborne R, Rehneke L, Lehmann S, Roberts J, Altmann M, Altmann S, Zhang Y, Köpff E, Dominguez-Ferreras A, Okechukwu E, Sergaki C, Rich-Griffin C, Ntoukakis V, Eichmann R, Shan W, Falter-Braun P, Schäfer P. Symbiont-host interactome mapping reveals effector-targeted modulation of hormone networks and activation of growth promotion. Nat Commun 2023; 14:4065. [PMID: 37429856 DOI: 10.1038/s41467-023-39885-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 06/27/2023] [Indexed: 07/12/2023] Open
Abstract
Plants have benefited from interactions with symbionts for coping with challenging environments since the colonisation of land. The mechanisms of symbiont-mediated beneficial effects and similarities and differences to pathogen strategies are mostly unknown. Here, we use 106 (effector-) proteins, secreted by the symbiont Serendipita indica (Si) to modulate host physiology, to map interactions with Arabidopsis thaliana host proteins. Using integrative network analysis, we show significant convergence on target-proteins shared with pathogens and exclusive targeting of Arabidopsis proteins in the phytohormone signalling network. Functional in planta screening and phenotyping of Si effectors and interacting proteins reveals previously unknown hormone functions of Arabidopsis proteins and direct beneficial activities mediated by effectors in Arabidopsis. Thus, symbionts and pathogens target a shared molecular microbe-host interface. At the same time Si effectors specifically target the plant hormone network and constitute a powerful resource for elucidating the signalling network function and boosting plant productivity.
Collapse
Affiliation(s)
- Rory Osborne
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
- School of Biosciences, University of Birmingham, Edgbaston, B15 2TT, UK
| | - Laura Rehneke
- Institute of Phytopathology, Research Centre for BioSystems, Land Use and Nutrition, Justus Liebig University, 35392, Giessen, Germany
| | - Silke Lehmann
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
- Laboratory of Biotechnology and Marine Chemistry LBCM, EA3884, IUEM, Southern Brittany University, 56000, Vannes, France
| | - Jemma Roberts
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Melina Altmann
- Institute of Network Biology, Molecular Targets and Therapeutics Center, Helmholtz Munich, 85764, Munich-Neuherberg, Germany
| | - Stefan Altmann
- Institute of Network Biology, Molecular Targets and Therapeutics Center, Helmholtz Munich, 85764, Munich-Neuherberg, Germany
| | - Yingqi Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, 712100, China
| | - Eva Köpff
- Institute of Molecular Botany, Ulm University, 89069, Ulm, Germany
| | | | - Emeka Okechukwu
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Chrysi Sergaki
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | | | - Vardis Ntoukakis
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Ruth Eichmann
- Institute of Phytopathology, Research Centre for BioSystems, Land Use and Nutrition, Justus Liebig University, 35392, Giessen, Germany
| | - Weixing Shan
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, 712100, China
| | - Pascal Falter-Braun
- Institute of Network Biology, Molecular Targets and Therapeutics Center, Helmholtz Munich, 85764, Munich-Neuherberg, Germany.
- Microbe-Host Interactions, Faculty of Biology, Ludwig-Maximilians-University München, 82152, Planegg-Martinsried, Germany.
| | - Patrick Schäfer
- Institute of Phytopathology, Research Centre for BioSystems, Land Use and Nutrition, Justus Liebig University, 35392, Giessen, Germany.
| |
Collapse
|
23
|
Enebe MC, Erasmus M. Susceptibility and plant immune control-a case of mycorrhizal strategy for plant colonization, symbiosis, and plant immune suppression. Front Microbiol 2023; 14:1178258. [PMID: 37476663 PMCID: PMC10355322 DOI: 10.3389/fmicb.2023.1178258] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/15/2023] [Indexed: 07/22/2023] Open
Abstract
Plants and microbes (mycorrhizal fungi to be precise) have evolved together over the past millions of years into an association that is mutualist. The plants supply the fungi with photosynthates and shelter, while the fungi reciprocate by enhancing nutrient and water uptake by the plants as well as, in some cases, control of soil-borne pathogens, but this fungi-plant association is not always beneficial. We argue that mycorrhizal fungi, despite contributing to plant nutrition, equally increase plant susceptibility to pathogens and herbivorous pests' infestation. Understanding of mycorrhizal fungi strategies for suppressing plant immunity, the phytohormones involved and the signaling pathways that aid them will enable the harnessing of tripartite (consisting of three biological systems)-plant-mycorrhizal fungi-microbe interactions for promoting sustainable production of crops.
Collapse
Affiliation(s)
- Matthew Chekwube Enebe
- Centre for Mineral Biogeochemistry, University of the Free State, Bloemfontein, South Africa
| | | |
Collapse
|
24
|
Zhang J, Wang L, Ren A, Sheng Y, Chang X, Li X, Guan M, Shang N, Zhao P, Sun S. Prediction of Effector Proteins from Trichoderma longibrachiatum Through Transcriptome Sequencing. Curr Microbiol 2023; 80:259. [PMID: 37358649 DOI: 10.1007/s00284-023-03296-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 04/02/2023] [Indexed: 06/27/2023]
Abstract
Trichoderma longibrachiatum SMF2 is an important biocontrol strain isolated by our group that can promote plant growth and induce plant disease resistance. To further study its biocontrol mechanism, the effector proteins secreted by T. longibrachiatum SMF2 were analyzed through bioinformatics and transcriptome sequencing. Overall, 478 secretory proteins produced by T. longibrachiatum were identified, of which 272 were upregulated after treatment with plants. Functional annotation showed that 36 secretory proteins were homologous with different groups of effectors from pathogenic microorganisms. Moreover, the quantitative PCR results of six putative effector proteins were consistent with those of transcriptome sequencing. Taken together, these findings indicate that the secretory proteins secreted by T. longibrachiatum SMF2 may act as effectors to facilitate its own growth and colonization or to induce plant immunity response.
Collapse
Affiliation(s)
| | - Lijun Wang
- Liaocheng University, Liaocheng, 252000, China
| | - Aizhi Ren
- Liaocheng University, Liaocheng, 252000, China
| | | | - Xue Chang
- Liaocheng University, Liaocheng, 252000, China
- Liaocheng Land and Resources Bureau, Liaocheng, 252000, China
| | - Xiaolong Li
- Liaocheng University, Liaocheng, 252000, China
| | | | - Na Shang
- Liaocheng University, Liaocheng, 252000, China
- Liaocheng Academy of Agricultural Sciences, Liaocheng, 252000, China
| | - Peibao Zhao
- Liaocheng University, Liaocheng, 252000, China.
| | - Shulei Sun
- Liaocheng University, Liaocheng, 252000, China.
- University of California San Diego, San Diego, CA, 92121, USA.
| |
Collapse
|
25
|
Harris W, Kim S, Vӧlz R, Lee YH. Nuclear effectors of plant pathogens: Distinct strategies to be one step ahead. MOLECULAR PLANT PATHOLOGY 2023; 24:637-650. [PMID: 36942744 DOI: 10.1111/mpp.13315] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/17/2023] [Accepted: 02/08/2023] [Indexed: 05/18/2023]
Abstract
Nuclear effector proteins released by bacteria, oomycete, nematode, and fungi burden the global environment and crop yield. Microbial effectors are key weapons in the evolutionary arms race between plants and pathogens, vital in determining the success of pathogenic colonization. Secreted effectors undermine a multitude of host cellular processes depending on their target destination. Effectors are classified by their localization as either extracellular (apoplastic) or intracellular. Intracellular effectors can be further subclassified by their compartment such as the nucleus, cytoplasm or chloroplast. Nuclear effectors bring into question the role of the plant nucleus' intrinsic defence strategies and their vulnerability to effector-based manipulation. Nuclear effectors interfere with multiple nuclear processes including the epigenetic regulation of the host chromatin, the impairment of the trans-kingdom antifungal RNAi machinery, and diverse classes of immunity-associated host proteins. These effector-targeted pathways are widely conserved among different hosts and regulate a broad array of plant cellular processes. Thus, these nuclear sites constitute meaningful targets for effectors to subvert the plant defence system and acquire resources for pathogenic propagation. This review provides an extensive and comparative compilation of diverse plant microbe nuclear effector libraries, thereby highlighting the distinct and conserved mechanisms these effectors employ to modulate plant cellular processes for the pathogen's profit.
Collapse
Affiliation(s)
- William Harris
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Seongbeom Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Ronny Vӧlz
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Yong-Hwan Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
- Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul, South Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
- Center for Fungal Genetic Resources, Seoul National University, Seoul, South Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, South Korea
- Plant Immunity Research Center, Seoul National University, Seoul, South Korea
- Center for Plant Microbiome Research, Seoul National University, Seoul, South Korea
| |
Collapse
|
26
|
Chandra Kaladhar V, Singh Y, Mohandas Nair A, Kumar K, Kumar Singh A, Kumar Verma P. A small cysteine-rich fungal effector, BsCE66 is essential for the virulence of Bipolaris sorokiniana on wheat plants. Fungal Genet Biol 2023; 166:103798. [PMID: 37059379 DOI: 10.1016/j.fgb.2023.103798] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 03/30/2023] [Accepted: 04/10/2023] [Indexed: 04/16/2023]
Abstract
The Spot Blotch (SB) caused by hemibiotrophic fungal pathogen Bipolaris sorokiniana is one of the most devastating wheat diseases leading to 15-100% crop loss. However, the biology of Triticum-Bipolaris interactions and host immunity modulation by secreted effector proteins remain underexplored. Here, we identified a total of 692 secretory proteins including 186 predicted effectors encoded by B. sorokiniana genome. Gene Ontology categorization showed that these proteins belong to cellular, metabolic and signaling processes, and exhibit catalytic and binding activities. Further, we functionally characterized a cysteine-rich, B. sorokiniana Candidate Effector 66 (BsCE66) that was induced at 24-96 hpi during host colonization. The Δbsce66 mutant did not show vegetative growth defects or stress sensitivity compared to wild-type, but developed drastically reduced necrotic lesions upon infection in wheat plants. The loss-of-virulence phenotype was rescued upon complementing the Δbsce66 mutant with BsCE66 gene. Moreover, BsCE66 does not form homodimer and conserved cysteine residues form intra-molecular disulphide bonds. BsCE66 localizes to the host nucleus and cytosol, and triggers a strong oxidative burst and cell death in Nicotiana benthamiana. Overall, our findings demonstrate that BsCE66 is a key virulence factor that is necessary for host immunity modulation and SB disease progression. These findings would significantly improve our understanding of Triticum-Bipolaris interactions and assist in the development of SB resistant wheat varieties.
Collapse
Affiliation(s)
- Vemula Chandra Kaladhar
- School of Life Sciences, Central University of Gujarat, Gandhinagar, Gujarat, India - 382030
| | - Yeshveer Singh
- Transcription Regulation Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India - 110067
| | - Athira Mohandas Nair
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India - 110067
| | - Kamal Kumar
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Marg, New Delhi, India - 110021
| | - Achuit Kumar Singh
- ICAR-Indian Institute of Vegetable Research, Varanasi, Uttar Pradesh, India - 221305
| | - Praveen Kumar Verma
- Plant Immunity Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India - 110067.
| |
Collapse
|
27
|
Bastías DA, Ueno AC, Gundel PE. Global Change Factors Influence Plant- Epichloë Associations. J Fungi (Basel) 2023; 9:446. [PMID: 37108902 PMCID: PMC10145611 DOI: 10.3390/jof9040446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/10/2023] [Accepted: 03/17/2023] [Indexed: 04/08/2023] Open
Abstract
There is an increasing interest in determining the influence of global change on plant-microorganism interactions. We review the results of experiments that evaluated the effects of the global change factors carbon dioxide, ozone, temperature, drought, flooding, and salinity on plant symbioses with beneficial Epichloë endophytes. The factors affected the performance of both plants and endophytes as well as the frequency of plants symbiotic with the fungus. Elevated carbon dioxide levels and low temperatures differentially influenced the growth of plants and endophytes, which could compromise the symbioses. Furthermore, we summarise the plant stage in which the effects of the factors were quantified (vegetative, reproductive, or progeny). The factors ozone and drought were studied at all plant stages, but flooding and carbon dioxide were studied in just a few of them. While only studied in response to ozone and drought, evidence showed that the effects of these factors on symbiotic plants persisted trans-generationally. We also identified the putative mechanisms that would explain the effects of the factors on plant-endophyte associations. These mechanisms included the increased contents of reactive oxygen species and defence-related phytohormones, reduced photosynthesis, and altered levels of plant primary metabolites. Finally, we describe the counteracting mechanisms by which endophytes would mitigate the detrimental effects of the factors on plants. In presence of the factors, endophytes increased the contents of antioxidants, reduced the levels of defence-related phytohormones, and enhanced the plant uptake of nutrients and photosynthesis levels. Knowledge gaps regarding the effects of global change on plant-endophyte associations were identified and discussed.
Collapse
Affiliation(s)
- Daniel A. Bastías
- AgResearch Limited, Grasslands Research Centre, Palmerston North 4442, New Zealand
| | - Andrea C. Ueno
- Centro de Ecología Integrativa, Instituto de Ciencias Biológicas, Universidad de Talca, Talca 3480094, Chile
- Instituto de Investigación Interdisciplinaria (I3), Universidad de Talca, Campus Talca, Talca 3480094, Chile
| | - Pedro E. Gundel
- Centro de Ecología Integrativa, Instituto de Ciencias Biológicas, Universidad de Talca, Talca 3480094, Chile
- Facultad de Agronomía, IFEVA, CONICET, Universidad de Buenos Aires, Buenos Aires C1417DSE, Argentina
| |
Collapse
|
28
|
Holland S, Roth R. Extracellular Vesicles in the Arbuscular Mycorrhizal Symbiosis: Current Understanding and Future Perspectives. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2023; 36:235-244. [PMID: 36867731 DOI: 10.1094/mpmi-09-22-0189-fi] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The arbuscular mycorrhizal (AM) symbiosis is an ancient and highly conserved mutualism between plant and fungal symbionts, in which a highly specialized membrane-delimited fungal arbuscule acts as the symbiotic interface for nutrient exchange and signaling. As a ubiquitous means of biomolecule transport and intercellular communication, extracellular vesicles (EVs) are likely to play a role in this intimate cross-kingdom symbiosis, yet, there is a lack of research investigating the importance of EVs in AM symbiosis despite known roles in microbial interactions in both animal and plant pathosystems. Clarifying the current understanding of EVs in this symbiosis in light of recent ultrastructural observations is paramount to guiding future investigations in the field, and, to this end, this review summarizes recent research investigating these areas. Namely, this review discusses the available knowledge regarding biogenesis pathways and marker proteins associated with the various plant EV subclasses, EV trafficking pathways during symbiosis, and the endocytic mechanisms implicated in the uptake of these EVs. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Samuel Holland
- Department of Biology, University of Oxford, Oxford OX1 3RB, U.K
| | - Ronelle Roth
- Department of Biology, University of Oxford, Oxford OX1 3RB, U.K
| |
Collapse
|
29
|
Lin L, Tijjani I, Guo H, An Q, Cao J, Chen X, Liu W, Wang Z, Norvienyeku J. Cytoplasmic dynein1 intermediate-chain2 regulates cellular trafficking and physiopathological development in Magnaporthe oryzae. iScience 2023; 26:106050. [PMID: 36866040 PMCID: PMC9971887 DOI: 10.1016/j.isci.2023.106050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/09/2022] [Accepted: 01/20/2023] [Indexed: 02/12/2023] Open
Abstract
The cytoplasmic dynein 1, a minus end-directed motor protein, is an essential microtubule-based molecular motor that mediates the movement of molecules to intracellular destinations in eukaryotes. However, the role of dynein in the pathogenesis of Magnaporthe oryzae is unknown. Here, we identified cytoplasmic dynein 1 intermediate-chain 2 genes in M. oryzae and functionally characterized it using genetic manipulations, and biochemical approaches. We observed that targeted the deletion of MoDYNC1I2 caused significant vegetative growth defects, abolished conidiation, and rendered the ΔModync1I2 strains non-pathogenic. Microscopic examinations revealed significant defects in microtubule network organization, nuclear positioning, and endocytosis ΔModync1I2 strains. MoDync1I2 is localized exclusively to microtubules during fungal developmental stages but co-localizes with the histone OsHis1 in plant nuclei upon infection. The exogenous expression of a histone gene, MoHis1, restored the homeostatic phenotypes of ΔModync1I2 strains but not pathogenicity. These findings could facilitate the development of dynein-directed remedies for managing the rice blast disease.
Collapse
Affiliation(s)
- Lily Lin
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China,State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ibrahim Tijjani
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hengyuan Guo
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou, China
| | - Qiuli An
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiaying Cao
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaomin Chen
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wende Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zonghua Wang
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China,Institute of Oceanography, Minjiang University, Fuzhou 350108, China,Corresponding author
| | - Justice Norvienyeku
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou, China,Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, China,Corresponding author
| |
Collapse
|
30
|
Kobayashi Y, Shibata TF, Hirakawa H, Nishiyama T, Yamada A, Hasebe M, Shigenobu S, Kawaguchi M. The genome of Lyophyllum shimeji provides insight into the initial evolution of ectomycorrhizal fungal genomes. DNA Res 2023; 30:6969780. [PMID: 36610744 PMCID: PMC9896470 DOI: 10.1093/dnares/dsac053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/29/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023] Open
Abstract
Mycorrhizae are one of the most fundamental symbioses between plants and fungi, with ectomycorrhizae being the most widespread in boreal forest ecosystems. Ectomycorrhizal fungi are hypothesized to have evolved convergently from saprotrophic ancestors in several fungal clades, especially members of the subdivision Agaricomycotina. Studies on fungal genomes have identified several typical characteristics of mycorrhizal fungi, such as genome size expansion and decreases in plant cell-wall degrading enzymes (PCWDEs). However, genomic changes concerning the evolutionary transition to the ectomycorrhizal lifestyle are largely unknown. In this study, we sequenced the genome of Lyophyllum shimeji, an ectomycorrhizal fungus that is phylogenetically related to saprotrophic species and retains some saprotroph-like traits. We found that the genome of Ly. shimeji strain AT787 lacks both incremental increases in genome size and reduced numbers of PCWDEs. Our findings suggest that the previously reported common genomic traits of mycorrhizal fungi are not essential for the ectomycorrhizal lifestyle, but are a result of abolishing saprotrophic activity. Since Ly. shimeji is commercially consumed as an edible mushroom, the newly available genomic information may also impact research designed to enhance the cultivation of this mushroom.
Collapse
Affiliation(s)
- Yuuki Kobayashi
- To whom correspondence should be addressed. Tel.: +81-0564-55-7672, (Y.K.)
| | - Tomoko F Shibata
- Division of Evolutionary Biology, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Hideki Hirakawa
- Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba 292-0818, Japan
| | - Tomoaki Nishiyama
- Research Center for Experimental Modeling of Human Disease, Kanazawa University, Kanazawa, Ishikawa 920-0934, Japan
| | - Akiyoshi Yamada
- Faculty of Agriculture, Shinshu University, Kamiina, Nagano 399-4598, Japan
| | - Mitsuyasu Hasebe
- Division of Evolutionary Biology, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi 444-8585, Japan,Department of Basic Biology, SOKENDAI, Okazaki, Aichi 444-8585, Japan
| | - Shuji Shigenobu
- Laboratory of Evolutionary Genomics, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi 444-8585, Japan,Department of Basic Biology, SOKENDAI, Okazaki, Aichi 444-8585, Japan,Trans-omics Facility, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan
| | | |
Collapse
|
31
|
Feng W, Sun X, Ding G. Morphological and Transcriptional Characteristics of the Symbiotic Interaction between Pinus massoniana and Suillus bovinus. J Fungi (Basel) 2022; 8:1162. [PMID: 36354929 PMCID: PMC9699607 DOI: 10.3390/jof8111162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 10/29/2022] [Accepted: 11/01/2022] [Indexed: 09/08/2023] Open
Abstract
Ectomycorrhiza (ECM) function has been well studied; however, there is little detailed information regarding the establishment of ECM symbioses. We investigated the morphological and transcriptional changes that occur during the establishment of the Pinus massoniana-Suillus bovinus ECM. S. bovinus promoted the growth of P. massoniana via the release of volatile organic compounds and exudates during the pre-symbiotic stage. Exudate-induced effects showed host plant specificity. At seven days post-inoculation (dpi), the mycelium started to penetrate P. massoniana roots. At 28 dpi, the Hartig net and mantle formed. At the pre-symbiotic stage, most differentially expressed genes in P. massoniana roots were mapped to the biosynthesis of secondary metabolites, signal transduction, and carbohydrate metabolism. At the symbiotic stage, S. bovinus colonization induced the reprogramming of pathways involved in genetic information processing in P. massoniana, particularly at the Hartig net and mantle formation stage. Phenylpropanoid biosynthesis was present at all stages and was regulated via S. bovinus colonization. Enzyme inhibitor tests suggested that hydroxycinnamoyl-CoA shikimate/quinate transferase is involved in the development of the Hartig net. Our findings outline the mechanism involved in the P. massoniana-S. bovinus ECM. Further studies are needed to clarify the role of phenylpropanoid biosynthesis in ECM formation.
Collapse
Affiliation(s)
- Wanyan Feng
- Institute for Forest Resources & Environment of Guizhou, Guizhou University, Guiyang 550025, China
- Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, Guizhou University, Guiyang 550025, China
- College of Forestry, Guizhou University, Guiyang 550025, China
| | - Xueguang Sun
- Institute for Forest Resources & Environment of Guizhou, Guizhou University, Guiyang 550025, China
- Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, Guizhou University, Guiyang 550025, China
- College of Forestry, Guizhou University, Guiyang 550025, China
| | - Guijie Ding
- Institute for Forest Resources & Environment of Guizhou, Guizhou University, Guiyang 550025, China
- Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, Guizhou University, Guiyang 550025, China
- College of Forestry, Guizhou University, Guiyang 550025, China
| |
Collapse
|
32
|
Todd JNA, Carreón-Anguiano KG, Islas-Flores I, Canto-Canché B. Fungal Effectoromics: A World in Constant Evolution. Int J Mol Sci 2022; 23:13433. [PMID: 36362218 PMCID: PMC9656242 DOI: 10.3390/ijms232113433] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/25/2022] [Accepted: 10/31/2022] [Indexed: 10/28/2023] Open
Abstract
Effectors are small, secreted molecules that mediate the establishment of interactions in nature. While some concepts of effector biology have stood the test of time, this area of study is ever-evolving as new effectors and associated characteristics are being revealed. In the present review, the different characteristics that underly effector classifications are discussed, contrasting past and present knowledge regarding these molecules to foster a more comprehensive understanding of effectors for the reader. Research gaps in effector identification and perspectives for effector application in plant disease management are also presented, with a focus on fungal effectors in the plant-microbe interaction and interactions beyond the plant host. In summary, the review provides an amenable yet thorough introduction to fungal effector biology, presenting noteworthy examples of effectors and effector studies that have shaped our present understanding of the field.
Collapse
Affiliation(s)
- Jewel Nicole Anna Todd
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico
| | - Karla Gisel Carreón-Anguiano
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico
| | - Ignacio Islas-Flores
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico
| | - Blondy Canto-Canché
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico
| |
Collapse
|
33
|
Todd JNA, Carreón-Anguiano KG, Islas-Flores I, Canto-Canché B. Microbial Effectors: Key Determinants in Plant Health and Disease. Microorganisms 2022; 10:1980. [PMID: 36296254 PMCID: PMC9610748 DOI: 10.3390/microorganisms10101980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 11/17/2022] Open
Abstract
Effectors are small, secreted molecules that alter host cell structure and function, thereby facilitating infection or triggering a defense response. Effectoromics studies have focused on effectors in plant-pathogen interactions, where their contributions to virulence are determined in the plant host, i.e., whether the effector induces resistance or susceptibility to plant disease. Effector molecules from plant pathogenic microorganisms such as fungi, oomycetes and bacteria are major disease determinants. Interestingly, the effectors of non-pathogenic plant organisms such as endophytes display similar functions but have different outcomes for plant health. Endophyte effectors commonly aid in the establishment of mutualistic interactions with the plant and contribute to plant health through the induction of systemic resistance against pathogens, while pathogenic effectors mainly debilitate the plant's immune response, resulting in the establishment of disease. Effectors of plant pathogens as well as plant endophytes are tools to be considered in effectoromics for the development of novel strategies for disease management. This review aims to present effectors in their roles as promotors of health or disease for the plant host.
Collapse
Affiliation(s)
- Jewel Nicole Anna Todd
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico
| | - Karla Gisel Carreón-Anguiano
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico
| | - Ignacio Islas-Flores
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico
| | - Blondy Canto-Canché
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico
| |
Collapse
|
34
|
Chowdhury J, Kemppainen M, Delhomme N, Shutava I, Zhou J, Takahashi J, Pardo AG, Lundberg‐Felten J. Laccaria bicolor pectin methylesterases are involved in ectomycorrhiza development with Populus tremula × Populus tremuloides. THE NEW PHYTOLOGIST 2022; 236:639-655. [PMID: 35794841 PMCID: PMC9796311 DOI: 10.1111/nph.18358] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
The development of ectomycorrhizal (ECM) symbioses between soil fungi and tree roots requires modification of root cell walls. The pectin-mediated adhesion between adjacent root cells loosens to accommodate fungal hyphae in the Hartig net, facilitating nutrient exchange between partners. We investigated the role of fungal pectin modifying enzymes in Laccaria bicolor for ECM formation with Populus tremula × Populus tremuloides. We combine transcriptomics of cell-wall-related enzymes in both partners during ECM formation, immunolocalisation of pectin (Homogalacturonan, HG) epitopes in different methylesterification states, pectin methylesterase (PME) activity assays and functional analyses of transgenic L. bicolor to uncover pectin modification mechanisms and the requirement of fungal pectin methylesterases (LbPMEs) for ECM formation. Immunolocalisation identified remodelling of pectin towards de-esterified HG during ECM formation, which was accompanied by increased LbPME1 expression and PME activity. Overexpression or RNAi of the ECM-induced LbPME1 in transgenic L. bicolor lines led to reduced ECM formation. Hartig Nets formed with LbPME1 RNAi lines were shallower, whereas those formed with LbPME1 overexpressors were deeper. This suggests that LbPME1 plays a role in ECM formation potentially through HG de-esterification, which initiates loosening of adjacent root cells to facilitate Hartig net formation.
Collapse
Affiliation(s)
- Jamil Chowdhury
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science CenterSwedish University of Agricultural Sciences90183UmeåSweden
- Department of Plant Physiology, Umeå Plant Science CenterUmeå University90187UmeåSweden
| | - Minna Kemppainen
- Laboratory of Molecular Mycology, Department of Science and Technology, Institute of Basic and Applied MicrobiologyNational University of Quilmes (UNQ), and National Scientific and Technical Research Council (CONICET)B1876BXDBernalArgentina
| | - Nicolas Delhomme
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science CenterSwedish University of Agricultural Sciences90183UmeåSweden
| | - Iryna Shutava
- Department of Plant Physiology, Umeå Plant Science CenterUmeå University90187UmeåSweden
| | - Jingjing Zhou
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science CenterSwedish University of Agricultural Sciences90183UmeåSweden
- Department of Plant Physiology, Umeå Plant Science CenterUmeå University90187UmeåSweden
| | - Junko Takahashi
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science CenterSwedish University of Agricultural Sciences90183UmeåSweden
| | - Alejandro G. Pardo
- Laboratory of Molecular Mycology, Department of Science and Technology, Institute of Basic and Applied MicrobiologyNational University of Quilmes (UNQ), and National Scientific and Technical Research Council (CONICET)B1876BXDBernalArgentina
| | - Judith Lundberg‐Felten
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science CenterSwedish University of Agricultural Sciences90183UmeåSweden
| |
Collapse
|
35
|
Whole-Genome Sequencing and Comparative Genomics Analysis of the Wild Edible Mushroom ( Gomphus purpuraceus) Provide Insights into Its Potential Food Application and Artificial Domestication. Genes (Basel) 2022; 13:genes13091628. [PMID: 36140797 PMCID: PMC9498453 DOI: 10.3390/genes13091628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/04/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022] Open
Abstract
Gomphus purpuraceus (Iwade) Yokoyama is a species of wild fungi that grows in southwest China, considered an edible and medicinal fungus with potential commercial prospects. However, the detailed mechanisms related to the development of mycelium and the formation of the fruiting body are unclear. To obtain a comprehensive overview of genetic features, whole-genome and comparative genomics analyses of G. purpuraceus were performed. High-quality DNA was extracted from the mycelium, which was isolated from a fresh fruiting body of G. purpuraceus. The DNA sample was subjected to sequencing using Illumina and Oxford Nanopore sequencing platforms. A genome assembly totaling 40.15 Mb in 50 contigs with an N50 length of 2.06 Mb was generated, and 8705 putative predicted genes were found. Subsequently, phylogenetic analysis revealed a close evolutionary relationship between G. purpuraceus and Gomphus bonarii. Moreover, a total of 403 carbohydrate-active enzymes (CAZymes) were identified in G. purpuraceus, which included 147 glycoside hydrolases (GHs), 85 glycosyl transferases (GTs), 8 polysaccharide lyases (PLs), 76 carbohydrate esterases (CEs), 57 auxiliary activities (AAs) and 30 carbohydrate-binding modules (CBMs). Compared with the other 13 fungi (Laccaria bicolor, Russula virescens, Boletus edulis, etc.), the number and distribution of CAZymes in G. purpuraceus were similar to other mycorrhizal fungi. Furthermore, the optimization of culture medium for G. purpuraceus showed the efficient utilization of disaccharides such as sucrose and maltose. The genome of G. purpuraceus provides new insights into its niche, food applications and potential artificial domestication.
Collapse
|
36
|
Sakamoto Y, Sato S, Takizawa M, Narimatsu M. Identification of up-regulated genes in Tricholoma matsutake mycorrhiza. FEMS Microbiol Lett 2022; 369:6678003. [PMID: 36029515 DOI: 10.1093/femsle/fnac085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 06/23/2022] [Accepted: 08/25/2022] [Indexed: 11/12/2022] Open
Abstract
Many plant roots associate with fungi to form mycorrhizae; tree roots especially associate with ectomycorrhizal fungi, such as Tricholoma species. Tricholoma matsutake is an economically important fungus in Asian countries and usually inhabits forests primarily composed of Pinus densiflora (Japanese red pine). In this study, to understand the mycorrhizal association between T. matsutake and P. densiflora, genes specifically expressed in mycorrhiza compared with those expressed in mycelia and fruiting bodies were identified by RNA-seq. This revealed that genes for chromatin, proteasomes, signal transduction, pheromones, cell surface receptors, cytoskeleton, RNA processing, and transporters from T. matsutake were highly expressed in mycorrhiza. It also identified 35 mycorrhiza-induced small secreted protein (MiSSPs) that were highly expressed in mycorrhiza. Meanwhile, genes for proteases, defence-related proteins, cell-wall degradation, signal transduction, pinene synthesis, plant hormones, and transporters from P. densiflora were highly expressed in mycorrhiza. These genes may be involved in mycorrhizal formation and maintenance. A MiSSP, 1 460 819, was highly expressed in mycorrhiza, and this expression was maintained for 24 months. These results provide insight into the mycorrhizal association between T. matsutake and P. densiflora.
Collapse
Affiliation(s)
- Yuichi Sakamoto
- Iwate Biotechnology Research Center, 22-174-4 Narita, Kitakami-shi, Iwate 024-0003, Japan
| | - Shiho Sato
- Iwate Biotechnology Research Center, 22-174-4 Narita, Kitakami-shi, Iwate 024-0003, Japan
| | - Miyuki Takizawa
- Iwate Biotechnology Research Center, 22-174-4 Narita, Kitakami-shi, Iwate 024-0003, Japan
| | - Maki Narimatsu
- Iwate Prefectural Forest Technology Center, 560-11 Kemuyama, Yahaba, Iwate 028-3623, Japan
| |
Collapse
|
37
|
Aspergillus Hydrophobins: Physicochemical Properties, Biochemical Properties, and Functions in Solid Polymer Degradation. Microorganisms 2022; 10:microorganisms10081498. [PMID: 35893556 PMCID: PMC9394342 DOI: 10.3390/microorganisms10081498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/12/2022] [Accepted: 07/22/2022] [Indexed: 01/27/2023] Open
Abstract
Hydrophobins are small amphipathic proteins conserved in filamentous fungi. In this review, the properties and functions of Aspergillus hydrophobins are comprehensively discussed on the basis of recent findings. Multiple Aspergillus hydrophobins have been identified and categorized in conventional class I and two non-conventional classes. Some Aspergillus hydrophobins can be purified in a water phase without organic solvents. Class I hydrophobins of Aspergilli self-assemble to form amphipathic membranes. At the air–liquid interface, RolA of Aspergillus oryzae self-assembles via four stages, and its self-assembled films consist of two layers, a rodlet membrane facing air and rod-like structures facing liquid. The self-assembly depends mainly on hydrophobin conformation and solution pH. Cys4–Cys5 and Cys7–Cys8 loops, disulfide bonds, and conserved Cys residues of RodA-like hydrophobins are necessary for self-assembly at the interface and for adsorption to solid surfaces. AfRodA helps Aspergillus fumigatus to evade recognition by the host immune system. RodA-like hydrophobins recruit cutinases to promote the hydrolysis of aliphatic polyesters. This mechanism appears to be conserved in Aspergillus and other filamentous fungi, and may be beneficial for their growth. Aspergilli produce various small secreted proteins (SSPs) including hydrophobins, hydrophobic surface–binding proteins, and effector proteins. Aspergilli may use a wide variety of SSPs to decompose solid polymers.
Collapse
|
38
|
Plett JM, Sabotič J, Vogt E, Snijders F, Kohler A, Nielsen UN, Künzler M, Martin F, Veneault-Fourrey C. Mycorrhiza-induced mycocypins of Laccaria bicolor are potent protease inhibitors with nematotoxic and collembola antifeedant activity. Environ Microbiol 2022; 24:4607-4622. [PMID: 35818672 DOI: 10.1111/1462-2920.16115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 06/21/2022] [Indexed: 11/28/2022]
Abstract
Fungivory of mycorrhizal hyphae has a significant impact on fungal fitness and, by extension, on nutrient transfer between fungi and host plants in natural ecosystems. Mycorrhizal fungi have therefore evolved an arsenal of chemical compounds that are hypothesized to protect the hyphal tissues from being eaten, such as the protease inhibitors mycocypins. The genome of the ectomycorrhizal fungus Laccaria bicolor has an unusually high number of mycocypin-encoding genes. We have characterized the evolution of this class of proteins, identified those induced by symbiosis with a host plant and characterized the biochemical properties of two upregulated L. bicolor mycocypins. More than half of L. bicolor mycocypin-encoding genes are differentially expressed during symbiosis or fruiting body formation. We show that two L. bicolor mycocypins that are strongly induced during symbiosis are cysteine protease inhibitors and exhibit similar but distinct localization in fungal tissues at different developmental stages and during interaction with a host plant. Moreover, we show that these L. bicolor mycocypins have toxic and feeding deterrent effect on nematodes and collembolans, respectively. Therefore, L. bicolor mycocypins may be part of a mechanism by which this species deters grazing by different members of the soil food web.
Collapse
Affiliation(s)
- Jonathan M Plett
- Université de Lorraine, INRAE, UMR 1136 Interactions Arbres-Microorganismes, Centre INRAE Grand Est-Nancy, Champenoux, France.,Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, Australia
| | - Jerica Sabotič
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Eva Vogt
- Department of Biology, Institute of Microbiology, ETH Zürich, Zürich, Switzerland
| | - Fridtjof Snijders
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, Australia
| | - Annegret Kohler
- Université de Lorraine, INRAE, UMR 1136 Interactions Arbres-Microorganismes, Centre INRAE Grand Est-Nancy, Champenoux, France
| | - Uffe N Nielsen
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, Australia
| | - Markus Künzler
- Department of Biology, Institute of Microbiology, ETH Zürich, Zürich, Switzerland
| | - Francis Martin
- Université de Lorraine, INRAE, UMR 1136 Interactions Arbres-Microorganismes, Centre INRAE Grand Est-Nancy, Champenoux, France
| | - Claire Veneault-Fourrey
- Université de Lorraine, INRAE, UMR 1136 Interactions Arbres-Microorganismes, Centre INRAE Grand Est-Nancy, Champenoux, France
| |
Collapse
|
39
|
Plett JM, Plett KL. Leveraging genomics to understand the broader role of fungal small secreted proteins in niche colonization and nutrition. ISME COMMUNICATIONS 2022; 2:49. [PMID: 37938664 PMCID: PMC9723739 DOI: 10.1038/s43705-022-00139-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/24/2022] [Accepted: 06/08/2022] [Indexed: 08/09/2023]
Abstract
The last few years have seen significant advances in the breadth of fungi for which we have genomic resources and our understanding of the biological mechanisms evolved to enable fungi to interact with their environment and other organisms. One field of research that has seen a paradigm shift in our understanding concerns the role of fungal small secreted proteins (SSPs) classified as effectors. Classically thought to be a class of proteins utilized by pathogenic microbes to manipulate host physiology in support of colonization, comparative genomic studies have demonstrated that mutualistic fungi and fungi not associated with a living host (i.e., saprotrophic fungi) also encode inducible effector and candidate effector gene sequences. In this review, we discuss the latest advances in understanding how fungi utilize these secreted proteins to colonize a particular niche and affect nutrition and nutrient cycles. Recent studies show that candidate effector SSPs in fungi may have just as significant a role in modulating hyphosphere microbiomes and in orchestrating fungal growth as they do in supporting colonization of a living host. We conclude with suggestions on how comparative genomics may direct future studies seeking to characterize and differentiate effector from other more generalized functions of these enigmatic secreted proteins across all fungal lifestyles.
Collapse
Affiliation(s)
- Jonathan M Plett
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia.
| | - Krista L Plett
- Elizabeth Macarthur Agricultural Institute, NSW Department of Primary Industries, Menangle, NSW, 2568, Australia
| |
Collapse
|
40
|
A comparative genomic analysis of lichen-forming fungi reveals new insights into fungal lifestyles. Sci Rep 2022; 12:10724. [PMID: 35750715 PMCID: PMC9232553 DOI: 10.1038/s41598-022-14340-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/06/2022] [Indexed: 11/18/2022] Open
Abstract
Lichen-forming fungi are mutualistic symbionts of green algae or cyanobacteria. We report the comparative analysis of six genomes of lichen-forming fungi in classes Eurotiomycetes and Lecanoromycetes to identify genomic information related to their symbiotic lifestyle. The lichen-forming fungi exhibited genome reduction via the loss of dispensable genes encoding plant-cell-wall-degrading enzymes, sugar transporters, and transcription factors. The loss of these genes reflects the symbiotic biology of lichens, such as the absence of pectin in the algal cell wall and obtaining specific sugars from photosynthetic partners. The lichens also gained many lineage- and species-specific genes, including those encoding small secreted proteins. These genes are primarily induced during the early stage of lichen symbiosis, indicating their significant roles in the establishment of lichen symbiosis.Our findings provide comprehensive genomic information for six lichen-forming fungi and novel insights into lichen biology and the evolution of symbiosis.
Collapse
|
41
|
Helliwell EE, Lafayette P, Kronmiller BN, Arredondo F, Duquette M, Co A, Vega-Arreguin J, Porter SS, Borrego EJ, Kolomiets MV, Parrott WA, Tyler BM. Transgenic Soybeans Expressing Phosphatidylinositol-3-Phosphate-Binding Proteins Show Enhanced Resistance Against the Oomycete Pathogen Phytophthora sojae. Front Microbiol 2022; 13:923281. [PMID: 35783378 PMCID: PMC9243418 DOI: 10.3389/fmicb.2022.923281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 05/06/2022] [Indexed: 11/13/2022] Open
Abstract
Oomycete and fungal pathogens cause billions of dollars of damage to crops worldwide annually. Therefore, there remains a need for broad-spectrum resistance genes, especially ones that target pathogens but do not interfere with colonization by beneficial microbes. Motivated by evidence suggesting that phosphatidylinositol-3-phosphate (PI3P) may be involved in the delivery of some oomycete and fungal virulence effector proteins, we created stable transgenic soybean plants that express and secrete two different PI3P-binding proteins, GmPH1 and VAM7, in an effort to interfere with effector delivery and confer resistance. Soybean plants expressing the two PI3P-binding proteins exhibited reduced infection by the oomycete pathogen Phytophthora sojae compared to control lines. Measurements of nodulation by nitrogen-fixing mutualistic bacterium Bradyrhizobium japonicum, which does not produce PI3P, revealed that the two lines with the highest levels of GmPH1 transcripts exhibited reductions in nodulation and in benefits from nodulation. Transcriptome and plant hormone measurements were made of soybean lines with the highest transcript levels of GmPH1 and VAM7, as well as controls, following P. sojae- or mock-inoculation. The results revealed increased levels of infection-associated transcripts in the transgenic lines, compared to controls, even prior to P. sojae infection, suggesting that the plants were primed for increased defense. The lines with reduced nodulation exhibited elevated levels of jasmonate-isoleucine and of transcripts of a JAR1 ortholog encoding jasmonate-isoleucine synthetase. However, lines expressing VAM7 transgenes exhibited normal nodulation and no increases in jasmonate-isoleucine. Overall, together with previously published data from cacao and from P. sojae transformants, the data suggest that secretion of PI3P-binding proteins may confer disease resistance through a variety of mechanisms.
Collapse
Affiliation(s)
- Emily E. Helliwell
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
- School of Biological Sciences, Washington State University, Vancouver, WA, United States
- *Correspondence: Emily E. Helliwell,
| | - Peter Lafayette
- Department of Crop and Soil Sciences, University of Georgia, Athens, GA, United States
| | - Brent N. Kronmiller
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| | - Felipe Arredondo
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| | - Madeleine Duquette
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| | - Anna Co
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| | - Julio Vega-Arreguin
- Escuela Nacional de Estudios Superiores – León, Universidad Nacional Autónoma de México, León, Mexico
| | - Stephanie S. Porter
- School of Biological Sciences, Washington State University, Vancouver, WA, United States
| | - Eli J. Borrego
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, United States
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, United States
| | - Michael V. Kolomiets
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, United States
| | - Wayne A. Parrott
- Department of Crop and Soil Sciences, University of Georgia, Athens, GA, United States
| | - Brett M. Tyler
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
42
|
|
43
|
Sperschneider J, Dodds PN. EffectorP 3.0: Prediction of Apoplastic and Cytoplasmic Effectors in Fungi and Oomycetes. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:146-156. [PMID: 34698534 DOI: 10.1094/mpmi-08-21-0201-r] [Citation(s) in RCA: 210] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Many fungi and oomycete species are devasting plant pathogens. These eukaryotic filamentous pathogens secrete effector proteins to facilitate plant infection. Fungi and oomycete pathogens have diverse infection strategies and their effectors generally do not share sequence homology. However, they occupy similar host environments, either the plant apoplast or plant cytoplasm, and, therefore, may share some unifying properties based on the requirements of these host compartments. Here, we exploit these biological signals and present the first classifier (EffectorP 3.0) that uses two machine-learning models: one trained on apoplastic effectors and one trained on cytoplasmic effectors. EffectorP 3.0 accurately predicts known apoplastic and cytoplasmic effectors in fungal and oomycete secretomes with low estimated false-positive rates of 3 and 8%, respectively. Cytoplasmic effectors have a higher proportion of positively charged amino acids, whereas apoplastic effectors are enriched for cysteine residues. The combination of fungal and oomycete effectors in training leads to a higher number of predicted cytoplasmic effectors in biotrophic fungi. EffectorP 3.0 expands predicted effector repertoires beyond small, cysteine-rich secreted proteins in fungi and RxLR-motif containing secreted proteins in oomycetes. We show that signal peptide prediction is essential for accurate effector prediction, because EffectorP 3.0 recognizes a cytoplasmic signal also in intracellular, nonsecreted proteins.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Jana Sperschneider
- Biological Data Science Institute, The Australian National University, Canberra, Australia
| | - Peter N Dodds
- Black Mountain Science and Innovation Park, CSIRO Agriculture and Food, Canberra, Australia
| |
Collapse
|
44
|
Zhang W, Li H, Wang L, Xie S, Zhang Y, Kang R, Zhang M, Zhang P, Li Y, Hu Y, Wang M, Chen L, Yuan H, Ding S, Li H. A novel effector, CsSp1, from Bipolaris sorokiniana, is essential for colonization in wheat and is also involved in triggering host immunity. MOLECULAR PLANT PATHOLOGY 2022; 23:218-236. [PMID: 34741560 PMCID: PMC8743017 DOI: 10.1111/mpp.13155] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 09/17/2021] [Accepted: 10/15/2021] [Indexed: 05/10/2023]
Abstract
The hemibiotrophic pathogen Bipolaris sorokiniana causes root rot, leaf blotching, and black embryos in wheat and barley worldwide, resulting in significant yield and quality reductions. However, the mechanism underlying the host-pathogen interactions between B. sorokiniana and wheat or barley remains unknown. The B. sorokiniana genome encodes a large number of uncharacterized putative effector proteins. In this study, we identified a putative secreted protein, CsSp1, with a classic N-terminal signal peptide, that is induced during early infection. A split-marker approach was used to knock out CsSP1 in the Lankao 9-3 strain. Compared with the wild type, the deletion mutant ∆Cssp1 displayed less radial growth on potato dextrose agar plates and produced fewer spores, and complementary transformation completely restored the phenotype of the deletion mutant to that of the wild type. The pathogenicity of the deletion mutant in wheat was attenuated even though appressoria still penetrated the host. Additionally, the infectious hyphae in the deletion mutant became swollen and exhibited reduced growth in plant cells. The signal peptide of CsSp1 was functionally verified through a yeast YTK12 secretion system. Transient expression of CsSp1 in Nicotiana benthamiana inhibited lesion formation caused by Phytophthora capsici. Moreover, CsSp1 localized in the nucleus and cytoplasm of plant cells. In B. sorokiniana-infected wheat leaves, the salicylic acid-regulated genes TaPAL, TaPR1, and TaPR2 were down-regulated in the ∆Cssp1 strain compared with the wild-type strain under the same conditions. Therefore, CsSp1 is a virulence effector and is involved in triggering host immunity.
Collapse
Affiliation(s)
- Wanying Zhang
- Department of Plant Pathology, College of Plant ProtectionHenan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop ScienceZhengzhouChina
| | - Haiyang Li
- Department of Plant Pathology, College of Plant ProtectionHenan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop ScienceZhengzhouChina
| | - Limin Wang
- Department of Plant Pathology, College of Plant ProtectionHenan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop ScienceZhengzhouChina
| | - Shunpei Xie
- Department of Plant Pathology, College of Plant ProtectionHenan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop ScienceZhengzhouChina
| | - Yuan Zhang
- Department of Plant Pathology, College of Plant ProtectionHenan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop ScienceZhengzhouChina
| | - Ruijiao Kang
- Department of Landscape Architecture and Food EngineeringXuchang Vocational Technical CollegeXuchangChina
| | - Mengjuan Zhang
- Department of Plant Pathology, College of Plant ProtectionHenan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop ScienceZhengzhouChina
| | - Panpan Zhang
- Agriculture and Rural Affairs BureauXuchangChina
| | - Yonghui Li
- Department of Plant Pathology, College of Plant ProtectionHenan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop ScienceZhengzhouChina
| | - Yanfeng Hu
- Department of Plant Pathology, College of Plant ProtectionHenan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop ScienceZhengzhouChina
| | - Min Wang
- Department of Plant Pathology, College of Plant ProtectionHenan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop ScienceZhengzhouChina
| | - Linlin Chen
- Department of Plant Pathology, College of Plant ProtectionHenan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop ScienceZhengzhouChina
| | - Hongxia Yuan
- Department of Plant Pathology, College of Plant ProtectionHenan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop ScienceZhengzhouChina
| | - Shengli Ding
- Department of Plant Pathology, College of Plant ProtectionHenan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop ScienceZhengzhouChina
| | - Honglian Li
- Department of Plant Pathology, College of Plant ProtectionHenan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop ScienceZhengzhouChina
| |
Collapse
|
45
|
The ectomycorrhizal fungus Pisolithus microcarpus encodes a microRNA involved in cross-kingdom gene silencing during symbiosis. Proc Natl Acad Sci U S A 2022; 119:2103527119. [PMID: 35012977 PMCID: PMC8784151 DOI: 10.1073/pnas.2103527119] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2021] [Indexed: 11/23/2022] Open
Abstract
Plant genomes encode hundreds of genes controlling the detection, signaling pathways, and immune responses necessary to defend against pathogens. Pathogens, in turn, continually evolve to evade these defenses. Small RNAs, such as microRNAs (miRNAs), are one mechanism used by pathogens to overcome plant defenses and facilitate plant colonization. Mounting evidence would suggest that beneficial microbes, likewise, use miRNAs to facilitate symbiosis. Here, we demonstrate that the beneficial fungus Pisolithus microcarpus encodes a miRNA that enters plant cells and stabilizes the symbiotic interaction. These results demonstrate that beneficial fungi may regulate host gene expression through the use of miRNAs and sheds light on how beneficial microbes have evolved mechanisms to colonize plant tissues. Small RNAs (sRNAs) are known to regulate pathogenic plant–microbe interactions. Emerging evidence from the study of these model systems suggests that microRNAs (miRNAs) can be translocated between microbes and plants to facilitate symbiosis. The roles of sRNAs in mutualistic mycorrhizal fungal interactions, however, are largely unknown. In this study, we characterized miRNAs encoded by the ectomycorrhizal fungus Pisolithus microcarpus and investigated their expression during mutualistic interaction with Eucalyptus grandis. Using sRNA sequencing data and in situ miRNA detection, a novel fungal miRNA, Pmic_miR-8, was found to be transported into E. grandis roots after interaction with P. microcarpus. Further characterization experiments demonstrate that inhibition of Pmic_miR-8 negatively impacts the maintenance of mycorrhizal roots in E. grandis, while supplementation of Pmic_miR-8 led to deeper integration of the fungus into plant tissues. Target prediction and experimental testing suggest that Pmic_miR-8 may target the host NB-ARC domain containing transcripts, suggesting a potential role for this miRNA in subverting host signaling to stabilize the symbiotic interaction. Altogether, we provide evidence of previously undescribed cross-kingdom sRNA transfer from ectomycorrhizal fungi to plant roots, shedding light onto the involvement of miRNAs during the developmental process of mutualistic symbioses.
Collapse
|
46
|
Liu Y, Hu H, Cai M, Liang X, Wu X, Wang A, Chen X, Li X, Xiao C, Huang L, Xie Y, Wu Q. Whole genome sequencing of an edible and medicinal mushroom, Russula griseocarnosa, and its association with mycorrhizal characteristics. Gene 2022; 808:145996. [PMID: 34634440 DOI: 10.1016/j.gene.2021.145996] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 09/13/2021] [Accepted: 10/04/2021] [Indexed: 01/27/2023]
Abstract
Russula griseocarnosa is a well-known ectomycorrhizal mushroom, which is mainly distributed in the Southern China. Although several scholars have attempted to isolate and cultivate fungal strains, no accurate method for culture of artificial fruiting bodies has been presented owing to difficulties associated with mycelium growth on artificial media. Herein, we sequenced R. griseocarnosa genome using the second- and third-generation sequencing technologies, followed by de novo assembly of high-throughput sequencing reads, and GeneMark-ES, BLAST, CAZy, and other databases were utilized for functional gene annotation. We also constructed a phylogenetic tree using different species of fungi, and also conducted comparative genomics analysis of R. griseocarnosa against its four representative species. In addition, we evaluated the accuracy of one already sequenced genome of R. griseocarnosa based on the internal transcribed spacer (ITS) sequencing of that type of species. The assembly process resulted in identification of 230 scaffolds with a total genome size of 50.67 Mbp. The gene prediction showed that R. griseocarnosa genome included 14,229 coding sequences (CDs). In addition, 470 RNAs were predicted with 155 transfer RNAs (tRNAs), 49 ribosomal RNAs (rRNAs), 41 small noncoding RNAs (sRNAs), 42 small nuclear RNAs (snRNAs), and 183 microRNAs (miRNAs). The predicted protein sequences of R. griseocarnosa were analyzed to indicate the existence of carbohydrate-active enzymes (CAZymes), and the results revealed that 153 genes encoded CAZymes, which were distributed in 58 CAZyme families. These enzymes included 78 glycoside hydrolases (GHs), 34 glycosyl transferases (GTs), 30 auxiliary activities (AAs), 2 carbohydrate esterases (CEs), 8 carbohydrate-binding modules (CBMs), and only one polysaccharide lyase (PL). Compared with other fungi, R. griseocarnosa had fewer CAZymes, and the number and distribution of CAZymes were similar to other mycorrhizal fungi, such as Tricholoma matsutake and Suillus luteus. Well-defined effector proteins that were associated with mycorrhiza-induced small-secreted proteins (MiSSPs) were not found in R. griseocarnosa, which indicated that there may be some special effector proteins to interact with host plants in R. griseocarnosa. The genome of R. griseocarnosa may provide new insights into the energy metabolism of ectomycorrhizal (ECM) fungi, a reference to study ecosystem and evolutionary diversification of R. griseocarnosa, as well as promoting the study of artificial domestication.
Collapse
Affiliation(s)
- Yuanchao Liu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China; Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China; Guangdong Yuewei Edible Mushroom Technology Co., Ltd., Guangzhou, China
| | - Huiping Hu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China; Guangdong Yuewei Edible Mushroom Technology Co., Ltd., Guangzhou, China
| | - Manjun Cai
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xiaowei Liang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xiaoxian Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Ao Wang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xiaoguang Chen
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xiangmin Li
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China; Guangdong Yuewei Edible Mushroom Technology Co., Ltd., Guangzhou, China
| | - Chun Xiao
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Longhua Huang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Yizhen Xie
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China; Guangdong Yuewei Edible Mushroom Technology Co., Ltd., Guangzhou, China
| | - Qingping Wu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China; Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China.
| |
Collapse
|
47
|
Qiao Z, Yates TB, Shrestha HK, Engle NL, Flanagan A, Morrell‐Falvey JL, Sun Y, Tschaplinski TJ, Abraham PE, Labbé J, Wang Z, Hettich RL, Tuskan GA, Muchero W, Chen J. Towards engineering ectomycorrhization into switchgrass bioenergy crops via a lectin receptor-like kinase. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:2454-2468. [PMID: 34272801 PMCID: PMC8633507 DOI: 10.1111/pbi.13671] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 06/24/2021] [Accepted: 07/09/2021] [Indexed: 05/22/2023]
Abstract
Soil-borne microbes can establish compatible relationships with host plants, providing a large variety of nutritive and protective compounds in exchange for photosynthesized sugars. However, the molecular mechanisms mediating the establishment of these beneficial relationships remain unclear. Our previous genetic mapping and whole-genome resequencing studies identified a gene deletion event of a Populus trichocarpa lectin receptor-like kinase gene PtLecRLK1 in Populus deltoides that was associated with poor-root colonization by the ectomycorrhizal fungus Laccaria bicolor. By introducing PtLecRLK1 into a perennial grass known to be a non-host of L. bicolor, switchgrass (Panicum virgatum L.), we found that L. bicolor colonizes ZmUbipro-PtLecRLK1 transgenic switchgrass roots, which illustrates that the introduction of PtLecRLK1 has the potential to convert a non-host to a host of L. bicolor. Furthermore, transcriptomic and proteomic analyses on inoculated-transgenic switchgrass roots revealed genes/proteins overrepresented in the compatible interaction and underrepresented in the pathogenic defence pathway, consistent with the view that pathogenic defence response is down-regulated during compatible interaction. Metabolomic profiling revealed that root colonization in the transgenic switchgrass was associated with an increase in N-containing metabolites and a decrease in organic acids, sugars, and aromatic hydroxycinnamate conjugates, which are often seen in the early steps of establishing compatible interactions. These studies illustrate that PtLecRLK1 is able to render a plant susceptible to colonization by the ectomycorrhizal fungus L. bicolor and shed light on engineering mycorrhizal symbiosis into a non-host to enhance plant productivity and fitness on marginal lands.
Collapse
Affiliation(s)
- Zhenzhen Qiao
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTNUSA
| | - Timothy B. Yates
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTNUSA
- Bredesen Center for Interdisciplinary Research and Graduate EducationUniversity of TennesseeKnoxvilleTNUSA
| | - Him K. Shrestha
- Genome Science and TechnologyUniversity of TennesseeKnoxvilleTNUSA
- Chemical Science DivisionOak Ridge National LaboratoryOak RidgeTNUSA
| | - Nancy L. Engle
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTNUSA
| | | | | | - Yali Sun
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTNUSA
| | | | - Paul E. Abraham
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTNUSA
- Chemical Science DivisionOak Ridge National LaboratoryOak RidgeTNUSA
| | - Jessy Labbé
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTNUSA
| | | | - Robert L. Hettich
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTNUSA
- Chemical Science DivisionOak Ridge National LaboratoryOak RidgeTNUSA
| | | | | | - Jin‐Gui Chen
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTNUSA
| |
Collapse
|
48
|
Gupta GD, Bansal R, Mistry H, Pandey B, Mukherjee PK. Structure-function analysis reveals Trichoderma virens Tsp1 to be a novel fungal effector protein modulating plant defence. Int J Biol Macromol 2021; 191:267-276. [PMID: 34547313 DOI: 10.1016/j.ijbiomac.2021.09.085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/03/2021] [Accepted: 09/13/2021] [Indexed: 11/17/2022]
Abstract
Trichoderma virens colonizes roots and develops a symbiotic relationship with plants where the fungal partner derives nutrients from plants and offers defence, in return. Tsp1, a small secreted cysteine-rich protein, was earlier found to be upregulated in co-cultivation of T. virens with maize roots. Tsp1 is well conserved in Ascomycota division of fungi, but none of its homologs have been studied yet. We have expressed and purified recombinant Tsp1, and resolved its structure to 1.25 Å resolutions, from two crystal forms, using Se-SAD methods. The Tsp1 adopts a β barrel fold and forms dimer in structure as well as in solution form. DALI based structure analysis revealed the structure similarity with two known fungal effector proteins: Alt a1 and PevD1. Structure and evolutionary analysis suggested that Tsp1 belongs to a novel effector protein family. Tsp1 acted as an inducer of salicylic acid mediated susceptibility in plants, rendering maize plants more susceptible to a necrotrophic pathogen Cochliobolus heterostrophus, as observed using plant defence assay and RT-qPCR analysis.
Collapse
Affiliation(s)
- Gagan D Gupta
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, India; Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, India.
| | - Ravindra Bansal
- Nuclear Agriculture & Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Hiral Mistry
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, India; Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, India
| | - Bharati Pandey
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Prasun K Mukherjee
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, India; Nuclear Agriculture & Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, India.
| |
Collapse
|
49
|
Liao HL, Bonito G, Hameed K, Wu SH, Chen KH, Labbé J, Schadt CW, Tuskan GA, Martin F, Kuo A, Barry K, Grigoriev IV, Vilgalys R. Heterospecific Neighbor Plants Impact Root Microbiome Diversity and Molecular Function of Root Fungi. Front Microbiol 2021; 12:680267. [PMID: 34803937 PMCID: PMC8601753 DOI: 10.3389/fmicb.2021.680267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 10/12/2021] [Indexed: 11/13/2022] Open
Abstract
Within the forest community, competition and facilitation between adjacent-growing conspecific and heterospecific plants are mediated by interactions involving common mycorrhizal networks. The ability of plants to alter their neighbor's microbiome is well documented, but the molecular biology of plant-fungal interactions during competition and facilitation has not been previously examined. We used a common soil-plant bioassay experiment to study molecular plant-microbial interactions among rhizosphere communities associated with Pinus taeda (native host) and Populus trichocarpa (non-native host). Gene expression of interacting fungal and bacterial rhizosphere communities was compared among three plant-pairs: Populus growing with Populus, Populus with Pinus, and Pinus with Pinus. Our results demonstrate that heterospecific plant partners affect the assembly of root microbiomes, including the changes in the structure of host specific community. Comparative metatranscriptomics reveals that several species of ectomycorrhizal fungi (EMF) and saprotrophic fungi exhibit different patterns of functional and regulatory gene expression with these two plant hosts. Heterospecific plants affect the transcriptional expression pattern of EMF host-specialists (e.g., Pinus-associated Suillus spp.) on both plant species, mainly including the genes involved in the transportation of amino acids, carbohydrates, and inorganic ions. Alteration of root microbiome by neighboring plants may help regulate basic plant physiological processes via modulation of molecular functions in the root microbiome.
Collapse
Affiliation(s)
- Hui-Ling Liao
- North Florida Research and Education Center, University of Florida, Quincy, FL, United States
- Department of Biology, Duke University, Durham, NC, United States
| | - Gregory Bonito
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, United States
| | - Khalid Hameed
- Department of Biology, Duke University, Durham, NC, United States
| | - Steven H. Wu
- Department of Agronomy, National Taiwan University, Taipei, Taiwan
| | - Ko-Hsuan Chen
- North Florida Research and Education Center, University of Florida, Quincy, FL, United States
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Jesse Labbé
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Invaio Sciences, Cambridge, MA, United States
| | | | - Gerald A. Tuskan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Francis Martin
- University of Lorraine, INRAE, UMR Interactions Arbres/Microorganismes, Champenoux, France
| | - Alan Kuo
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Kerrie Barry
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Igor V. Grigoriev
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Rytas Vilgalys
- Department of Biology, Duke University, Durham, NC, United States
| |
Collapse
|
50
|
Lebreton A, Zeng Q, Miyauchi S, Kohler A, Dai YC, Martin FM. Evolution of the Mode of Nutrition in Symbiotic and Saprotrophic Fungi in Forest Ecosystems. ANNUAL REVIEW OF ECOLOGY, EVOLUTION, AND SYSTEMATICS 2021. [DOI: 10.1146/annurev-ecolsys-012021-114902] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In this review, we highlight the main insights that have been gathered from recent developments using large-scale genomics of fungal saprotrophs and symbiotrophs (including ectomycorrhizal and orchid and ericoid mycorrhizal fungi) inhabiting forest ecosystems. After assessing the goals and motivations underlying our approach, we explore our current understanding of the limits and future potential of using genomics to understand the ecological roles of these forest fungi. Comparative genomics unraveled the molecular machineries involved in lignocellulose decomposition in wood decayers, soil and litter saprotrophs, and mycorrhizal symbionts. They also showed that transitions from saprotrophy to mutualism entailed widespread losses of lignocellulose-degrading enzymes; diversification of novel, lineage-specific symbiosis-induced genes; and convergent evolution of genetic innovations that facilitate the accommodationof mutualistic symbionts within their plant hosts. We also identify the major questions that remain unanswered and propose new avenues of genome-based research to understand the role of soil fungi in sustainable forest ecosystems.
Collapse
Affiliation(s)
- Annie Lebreton
- Beijing Advanced Innovation Centre for Tree Breeding by Molecular Design (BAIC-TBMD), Institute of Microbiology, Beijing Forestry University, Beijing, China 100083
- Université de Lorraine, Unité Mixte de Recherche (UMR) Interactions Arbres/Microorganismes, Centre INRAE (Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement) Grand Est-Nancy, INRAE, 54280 Champenoux, France
| | - Qingchao Zeng
- Beijing Advanced Innovation Centre for Tree Breeding by Molecular Design (BAIC-TBMD), Institute of Microbiology, Beijing Forestry University, Beijing, China 100083
| | - Shingo Miyauchi
- Max Planck Institute for Plant Breeding Research, Department of Plant–Microbe Interactions, Köln, Germany, D-50829
| | - Annegret Kohler
- Université de Lorraine, Unité Mixte de Recherche (UMR) Interactions Arbres/Microorganismes, Centre INRAE (Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement) Grand Est-Nancy, INRAE, 54280 Champenoux, France
| | - Yu-Cheng Dai
- Beijing Advanced Innovation Centre for Tree Breeding by Molecular Design (BAIC-TBMD), Institute of Microbiology, Beijing Forestry University, Beijing, China 100083
| | - Francis M. Martin
- Beijing Advanced Innovation Centre for Tree Breeding by Molecular Design (BAIC-TBMD), Institute of Microbiology, Beijing Forestry University, Beijing, China 100083
- Université de Lorraine, Unité Mixte de Recherche (UMR) Interactions Arbres/Microorganismes, Centre INRAE (Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement) Grand Est-Nancy, INRAE, 54280 Champenoux, France
| |
Collapse
|