1
|
Mehra P, Banda J, Ogorek LLP, Fusi R, Castrillo G, Colombi T, Pandey BK, Sturrock CJ, Wells DM, Bennett MJ. Root Growth and Development in "Real Life": Advances and Challenges in Studying Root-Environment Interactions. ANNUAL REVIEW OF PLANT BIOLOGY 2025; 76:467-492. [PMID: 40085847 DOI: 10.1146/annurev-arplant-083123-074506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
Plant roots play myriad roles that include foraging for resources in complex soil environments. Within this highly dynamic soil environment roots must sense, interact with, and acclimate to factors such as water availability, microbiota, and heterogeneous distribution of nutrients. To aid their acclimation, roots alter their growth and development to optimize their architecture and actively regulate the physical, chemical, and biological properties of their rhizosphere. Understanding the complex interactions between roots and rhizosphere is critical for designing future crops with improved root traits better adapted to diverse and challenging soil conditions. However, studying roots and their interactions with soil under real-world conditions presents significant challenges. Addressing these challenges demands developing realistic laboratory-based model systems and innovative field-based root imaging techniques. Our review surveys the current knowledge and recent advances in understanding root-environment interactions while proposing future solutions to study roots under more "real-life" soil conditions.
Collapse
Affiliation(s)
- Poonam Mehra
- School of Biosciences, University of Nottingham, Nottingham, United Kingdom; ,
| | - Jason Banda
- School of Biosciences, University of Nottingham, Nottingham, United Kingdom; ,
| | | | - Riccardo Fusi
- School of Biosciences, University of Nottingham, Nottingham, United Kingdom; ,
| | - Gabriel Castrillo
- School of Biosciences, University of Nottingham, Nottingham, United Kingdom; ,
| | - Tino Colombi
- School of Biosciences, University of Nottingham, Nottingham, United Kingdom; ,
| | - Bipin K Pandey
- School of Biosciences, University of Nottingham, Nottingham, United Kingdom; ,
| | - Craig J Sturrock
- School of Biosciences, University of Nottingham, Nottingham, United Kingdom; ,
| | - Darren M Wells
- School of Biosciences, University of Nottingham, Nottingham, United Kingdom; ,
| | - Malcolm J Bennett
- School of Biosciences, University of Nottingham, Nottingham, United Kingdom; ,
| |
Collapse
|
2
|
Melero-Jiménez IJ, Sorokin Y, Merlin A, Li J, Couce A, Friedman J. Mutualism breakdown underpins evolutionary rescue in an obligate cross-feeding bacterial consortium. Nat Commun 2025; 16:3482. [PMID: 40216843 PMCID: PMC11992082 DOI: 10.1038/s41467-025-58742-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 04/01/2025] [Indexed: 04/14/2025] Open
Abstract
Populations facing lethal environmental change can escape extinction through rapid genetic adaptation, a process known as evolutionary rescue. Despite extensive study, evolutionary rescue is largely unexplored in mutualistic communities, where it is likely constrained by the less adaptable partner. Here, we explored empirically the likelihood, population dynamics, and genetic mechanisms underpinning evolutionary rescue in an obligate mutualism involving cross-feeding of amino acids between auxotrophic Escherichia coli strains. We found that over 80% of populations overcame a severe decline when exposed to two distinct types of abrupt, lethal stress. Of note, in all cases only one of the strains survived by metabolically bypassing the auxotrophy. Crucially, the mutualistic consortium exhibited greater sensitivity to both stressors than a prototrophic control strain, such that reversion to autonomy was sufficient to alleviate stress below lethal levels. This sensitivity was common across other stresses, suggesting it may be a general feature of amino acid-dependent obligate mutualisms. Our results reveal that evolutionary rescue may depend critically on the specific genetic and physiological details of the interacting partners, adding rich layers of complexity to the endeavor of predicting the fate of microbial communities facing intense environmental deterioration.
Collapse
Affiliation(s)
- Ignacio J Melero-Jiménez
- Institute of Environmental Sciences, The Hebrew University of Jerusalem, Rehovot, Israel.
- Departamento de Botánica y Fisiología Vegetal, Universidad de Málaga, Campus de Teatinos s/n, 29071, Málaga, Spain.
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA/CSIC), Universidad Politécnica de Madrid (UPM), 28223, Madrid, Spain.
| | - Yael Sorokin
- Institute of Environmental Sciences, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Ami Merlin
- Institute of Environmental Sciences, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Jiawei Li
- Institute of Environmental Sciences, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Alejandro Couce
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA/CSIC), Universidad Politécnica de Madrid (UPM), 28223, Madrid, Spain.
| | - Jonathan Friedman
- Institute of Environmental Sciences, The Hebrew University of Jerusalem, Rehovot, Israel.
| |
Collapse
|
3
|
Saltonstall K, van Breugel M, Navia W, Castillo H, Hall JS. Soil microbial communities in dry and moist tropical forests exhibit distinct shifts in community composition but not diversity with succession. Microbiol Spectr 2025; 13:e0193124. [PMID: 39902968 PMCID: PMC11878062 DOI: 10.1128/spectrum.01931-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 12/18/2024] [Indexed: 02/06/2025] Open
Abstract
Soil microbial communities are integral to ecosystem function but our understanding of how they respond to secondary succession in fragmented landscapes is limited, particularly in tropical dry forests. We used DNA metabarcoding to evaluate successional changes in soil bacteria and fungi, comparing land managed for cattle, young, and older secondary forests at moist and dry sites in the Republic of Panama. We highlight key functional groups of microbes that interact with plants, including arbuscular mycorrhizal fungi (AMF), nitrogen-fixing bacteria, and plant pathogenic fungi. Plant diversity was higher at the moist site and increased with succession as the plant communities changed at both sites. By contrast, bacterial diversity was similar across sites and successional stages, and while overall fungal diversity was higher at the moist site, it also showed no changes with succession at either site. However, microbial community composition did change, with pastures and older forests having distinct bacterial and fungal communities and young secondary forests often displaying transitional ones. Functional groups of microbes showed contrasting patterns between sites, with the dry forest having a higher diversity of Nitrogen-fixing bacteria despite lower densities of legumes, higher diversity and different communities of AMF, and a much lower incidence of putative fungal plant pathogens than the moist site. Our findings highlight the importance of looking at aboveground and belowground effects together and demonstrate that predictions generated for soil microbes in moist tropical forests may not apply to dry forests. These results may also inform the restoration of climate-resilient forests. IMPORTANCE Secondary forests are important components of neotropical landscapes and soil microbes help to shape these forests and the ecosystem services that they provide. This study demonstrates that soil microbial communities in moist and dry tropical forests can recover and reassemble after only 20 years of natural succession following the removal of cattle. However, successional patterns that are seen in the plant community are not always seen belowground. These patterns were more predictable at the moist than the dry site where the patchiness of the landscape likely restricts dispersal of both plants and soil microbes. We highlight the importance of preserving remaining tropical dry forests as they host unique microbial biodiversity that may help forests respond to drought conditions. As community shifts in soil microbes influence plant establishment, forest productivity, and other aspects of ecosystem functioning during the succession of tropical forest communities, our results can inform the restoration of climate-resilient forests.
Collapse
Affiliation(s)
| | - Michiel van Breugel
- Smithsonian Tropical Research Institute, Panama City, Republic of Panamá
- Department of Geography, National University of Singapore, Singapore, Singapore
- Yale-NUS College, Singapore, Singapore
| | - Wayra Navia
- Smithsonian Tropical Research Institute, Panama City, Republic of Panamá
| | - Hilda Castillo
- Smithsonian Tropical Research Institute, Panama City, Republic of Panamá
| | - Jefferson S. Hall
- ForestGEO, Smithsonian Tropical Research Institute, Panama City, Republic of Panamá, USA
| |
Collapse
|
4
|
McGaley J, Schneider B, Paszkowski U. The AMSlide for noninvasive time-lapse imaging of arbuscular mycorrhizal symbiosis. J Microsc 2025; 297:289-303. [PMID: 38747391 PMCID: PMC11808451 DOI: 10.1111/jmi.13313] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/04/2024] [Accepted: 04/23/2024] [Indexed: 02/11/2025]
Abstract
Arbuscular mycorrhizal (AM) symbiosis, the nutritional partnership between AM fungi and most plant species, is globally ubiquitous and of great ecological and agricultural importance. Studying the processes of AM symbiosis is confounded by its highly spatiotemporally dynamic nature. While microscopy methods exist to probe the spatial side of this plant-fungal interaction, the temporal side remains more challenging, as reliable deep-tissue time-lapse imaging requires both symbiotic partners to remain undisturbed over prolonged time periods. Here, we introduce the AMSlide: a noninvasive, high-resolution, live-imaging system optimised for AM symbiosis research. We demonstrate the AMSlide's applications in confocal microscopy of mycorrhizal roots, from whole colonisation zones to subcellular structures, over timeframes from minutes to weeks. The AMSlide's versatility for different microscope set-ups, imaging techniques, and plant and fungal species is also outlined. It is hoped that the AMSlide will be applied in future research to fill in the temporal blanks in our understanding of AM symbiosis, as well as broader root and rhizosphere processes.
Collapse
Affiliation(s)
- Jennifer McGaley
- Department of Plant SciencesCrop Science Centre, University of CambridgeCambridgeUK
| | - Ben Schneider
- Department of Biochemistry and BiophysicsStockholm UniversityStockholmSweden
| | - Uta Paszkowski
- Department of Plant SciencesCrop Science Centre, University of CambridgeCambridgeUK
| |
Collapse
|
5
|
Wang J, Pi Y, Li Y, Wang H, Huang K, Wang X, Xia H, Zhang X, Liang D, Lv X, Lin L. Transcriptome and metabolome analyses reveal the promoting effects of arbuscular mycorrhizal fungi on selenium uptake in grapevines. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 219:109456. [PMID: 39742784 DOI: 10.1016/j.plaphy.2024.109456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/22/2024] [Accepted: 12/24/2024] [Indexed: 01/04/2025]
Abstract
To improve the selenium (Se) uptake in grapes, the effects of arbuscular mycorrhizal fungi (AMF) on the Se accumulation in grapevines were studied under a soil Se concentration of 5 mg/kg, and the transcriptome and metabolome sequencing were used to elucidate the regulatory mechanism of AMF on Se accumulation. AMF initially decreased the biomass of grapevines, but later increased the biomass. Moreover, AMF enhanced the activities of Se metabolism enzymes (adenosine triphosphate sulfurylase, adenosine 5'-phosphosulfate reductase, serine acetyltransferase, and cysteine methyltransferase) and the Se concentration in grapevines. Compared to Se treatment alone, AMF resulted in a 20% increase in root Se concentration and a 21% increase in shoot Se concentration 60 days after treatment. Transcriptome and metabolome analyses revealed that AMF up-regulated the expression levels of inorganic phosphate transporter proteins 1-11 and down-regulated the expression levels of ABC transporter family members, water channel proteins, and sulfur transporter proteins in grapevines. In addition, AMF elevated the levels of hesperidin, naringenin, apigenin, neohesperidin, pine sapogenin, and rutin in grapevines. Therefore, AMF can enhance Se accumulation in grapes by modulating the phosphate transport pathway and the biosynthesis of secondary metabolites involved in the phenylpropane biosynthesis pathway, flavonoid biosynthesis pathway, and flavonoid and flavonol biosynthesis pathway.
Collapse
Affiliation(s)
- Jin Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yong Pi
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yuxin Li
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Hao Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Kewen Huang
- Institute of Horticulture, Chengdu Academy of Agriculture and Forestry Sciences, Chengdu, 611130, China
| | - Xun Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Hui Xia
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiaoli Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Dong Liang
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Xiulan Lv
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Lijin Lin
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
6
|
Taylor BN. Symbiotic nitrogen fixation in trees: patterns, controls and ecosystem consequences. TREE PHYSIOLOGY 2025; 45:tpae159. [PMID: 39658308 DOI: 10.1093/treephys/tpae159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/19/2024] [Accepted: 12/03/2024] [Indexed: 12/12/2024]
Abstract
Symbiotic nitrogen fixation (SNF) represents the largest natural input of bioavailable nitrogen into the biosphere, impacting key processes spanning from local community dynamics to global patterns of nutrient limitation and primary productivity. While research on SNF historically focused largely on herbaceous and agricultural species, the past two decades have seen major advances in our understanding of SNF by tree species in forest and savanna communities. This has included important developments in the mathematical theory of SNF in forest ecosystems, experimental work on the regulators of tree SNF, broad observational analyses of tree N-fixer abundance patterns and increasingly process-based incorporation of tree SNF into ecosystem models. This review synthesizes recent work on the local and global patterns, environmental drivers and community and ecosystem effects of nitrogen-fixing trees in natural ecosystems. By better understanding the drivers and consequences of SNF in forests, this review aims to shed light on the future of this critical process and its role in forest functioning under changing climate, nutrient cycling and land use.
Collapse
Affiliation(s)
- Benton N Taylor
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford St, Cambridge, MA 02138, USA
- The Arnold Arboretum of Harvard University, 1300 Centre St, Boston, MA 02131, USA
| |
Collapse
|
7
|
Ogawa M, Moreno-García J, Barzee TJ. Filamentous fungal pellets as versatile platforms for cell immobilization: developments to date and future perspectives. Microb Cell Fact 2024; 23:280. [PMID: 39415192 PMCID: PMC11484145 DOI: 10.1186/s12934-024-02554-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 10/01/2024] [Indexed: 10/18/2024] Open
Abstract
Filamentous fungi are well-known for their efficiency in producing valuable molecules of industrial significance, but applications of fungal biomass remain relatively less explored despite its abundant and diverse opportunities in biotechnology. One promising application of mycelial biomass is as a platform to immobilize different cell types such as animal, plant, and microbial cells. Filamentous fungal biomass with little to no treatment is a sustainable biomaterial which can also be food safe compared to other immobilization supports which may otherwise be synthetic or heavily processed. Because of these features, the fungal-cell combination can be tailored towards the targeted application and be applied in a variety of fields from bioremediation to biomedicine. Optimization efforts to improve cell loading on the mycelium has led to advancements both in the applied and basic sciences to understand the inter- and intra-kingdom interactions. This comprehensive review compiles for the first time the current state of the art of the immobilization of animal, yeast, microalgae, bacteria, and plant cells in filamentous fungal supports and presents outlook of applications in intensified fermentations, food and biofuel production, and wastewater treatment. Opportunities for further research and development were identified to include elucidation of the physical, chemical, and biological bases of the immobilization mechanisms and co-culture dynamics; expansion of the cell-fungus combinations investigated; exploration of previously unconsidered applications; and demonstration of scaled-up operations. It is concluded that the potential exists to leverage the unique qualities of filamentous fungus as a cellular support in the creation of novel materials and products in support of the circular bioeconomy.
Collapse
Affiliation(s)
- Minami Ogawa
- Department of Food Science and Technology, University of California, Davis, CA, 95616, USA
| | - Jaime Moreno-García
- Department of Food Science and Technology, University of California, Davis, CA, 95616, USA.
- Department of Agricultural Chemistry, Edaphology and Microbiology, University of Córdoba, 14014, Córdoba, Spain.
| | - Tyler J Barzee
- Department of Biosystems and Agricultural Engineering, University of Kentucky, 128 C.E. Barnhart Building, Lexington, KY, 40546-0276, USA.
| |
Collapse
|
8
|
Yu H, Xiao A, Zou Z, Wu Q, Chen L, Zhang D, Sun Y, Wang C, Cao J, Zhu H, Zhang Z, Cao Y. Conserved cis-elements enable NODULES WITH ACTIVATED DEFENSE1 regulation by NODULE INCEPTION during nodulation. THE PLANT CELL 2024; 36:4622-4636. [PMID: 39136552 PMCID: PMC11448908 DOI: 10.1093/plcell/koae229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 07/31/2024] [Indexed: 10/05/2024]
Abstract
Symbiotic nitrogen fixation within nitrogen-fixing clade (NFC) plants is thought to have arisen from a single gain followed by massive losses in the genomes of ancestral non-nodulating plants. However, molecular evidence supporting this model is limited. Here, we confirm through bioinformatic analysis that NODULES WITH ACTIVATED DEFENSE1 (NAD1) is present only in NFC plants and is thus an NFC-specific gene. Moreover, NAD1 was specifically expressed in nodules. We identified three conserved nodulation-associated cis-regulatory elements (NACE1-3) in the promoter of LjNAD1 from Lotus japonicus that are required for its nodule specific expression. A survey of NFC plants revealed that NACE1 and NACE2 are specific to the Fabales and Papilionoideae, respectively, while NACE3 is present in all NFC plants. Moreover, we found that nodule inception (NIN) directly binds to all three NACEs to activate NAD1 expression. Mutation of L. japonicus LjNAD1 resulted in the formation of abnormal symbiosomes with enlarged symbiosome space and frequent breakdown of bacteroids in nodules, resembling phenotypes reported for Medicago truncatula Mtnad1 and Mtnin mutants. These data point to NIN-NAD1 as an important module regulating rhizobial accommodation in nodules. The regulation of NAD1 by NIN in the NFC ancestor represent an important evolutionary adaptation for nodulation.
Collapse
Affiliation(s)
- Haixiang Yu
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Yazhouwan National Laboratory, Sanya, Hainan 572024, China
| | - Aifang Xiao
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, Hainan 572024, China
| | - Zhongmin Zou
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Qiujin Wu
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Lin Chen
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Dandan Zhang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yuzhang Sun
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Chao Wang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Jianbo Cao
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Hui Zhu
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Zhongming Zhang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yangrong Cao
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| |
Collapse
|
9
|
Maurice K, Laurent-Webb L, Bourceret A, Boivin S, Boukcim H, Selosse MA, Ducousso M. Networking the desert plant microbiome, bacterial and fungal symbionts structure and assortativity in co-occurrence networks. ENVIRONMENTAL MICROBIOME 2024; 19:65. [PMID: 39223675 PMCID: PMC11370318 DOI: 10.1186/s40793-024-00610-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
In nature, microbes do not thrive in seclusion but are involved in complex interactions within- and between-microbial kingdoms. Among these, symbiotic associations with mycorrhizal fungi and nitrogen-fixing bacteria are namely known to improve plant health, while providing resources to benefit other microbial members. Yet, it is not clear how these microbial symbionts interact with each other or how they impact the microbiota network architecture. We used an extensive co-occurrence network analysis, including rhizosphere and roots samples from six plant species in a natural desert in AlUla region (Kingdom of Saudi Arabia) and described how these symbionts were structured within the plant microbiota network. We found that the plant species was a significant driver of its microbiota composition and also of the specificity of its interactions in networks at the microbial taxa level. Despite this specificity, a motif was conserved across all networks, i.e., mycorrhizal fungi highly covaried with other mycorrhizal fungi, especially in plant roots-this pattern is known as assortativity. This structural property might reflect their ecological niche preference or their ability to opportunistically colonize roots of plant species considered non symbiotic e.g., H. salicornicum, an Amaranthaceae. Furthermore, these results are consistent with previous findings regarding the architecture of the gut microbiome network, where a high level of assortativity at the level of bacterial and fungal orders was also identified, suggesting the existence of general rules of microbiome assembly. Otherwise, the bacterial symbionts Rhizobiales and Frankiales covaried with other bacterial and fungal members, and were highly structural to the intra- and inter-kingdom networks. Our extensive co-occurrence network analysis of plant microbiota and study of symbiont assortativity, provided further evidence on the importance of bacterial and fungal symbionts in structuring the global plant microbiota network.
Collapse
Affiliation(s)
- Kenji Maurice
- Cirad-UMR AGAP, Univ Montpellier, INRAE, 34398, Montpellier Cedex 5, France.
| | - Liam Laurent-Webb
- Institut de Systématique, Évolution, Biodiversité (UMR 7205 - CNRS, MNHN, UPMC, EPHE), Muséum National d'Histoire Naturelle, Sorbonne Universités, 57 Rue Cuvier, 75005, Paris, France
| | - Amélia Bourceret
- Institut de Systématique, Évolution, Biodiversité (UMR 7205 - CNRS, MNHN, UPMC, EPHE), Muséum National d'Histoire Naturelle, Sorbonne Universités, 57 Rue Cuvier, 75005, Paris, France
| | - Stéphane Boivin
- Department of Research and Development, VALORHIZ, Montpellier, France
| | - Hassan Boukcim
- Department of Research and Development, VALORHIZ, Montpellier, France
- ASARI, Mohammed VI Polytechnic University, Laayoune, Morocco
| | - Marc-André Selosse
- Institut de Systématique, Évolution, Biodiversité (UMR 7205 - CNRS, MNHN, UPMC, EPHE), Muséum National d'Histoire Naturelle, Sorbonne Universités, 57 Rue Cuvier, 75005, Paris, France
- Laboratory of Plant Protection and Biotechnology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Abrahama 58, 80-307, Gdansk, Poland
- Institut Universitaire de France, Paris, France
| | - Marc Ducousso
- Cirad-UMR AGAP, Univ Montpellier, INRAE, 34398, Montpellier Cedex 5, France
| |
Collapse
|
10
|
Chien CC, Tien SY, Yang SY, Lee CR. The costs and benefits of symbiotic interactions: variable effects of rhizobia and arbuscular mycorrhizae on Vigna radiata accessions. BMC PLANT BIOLOGY 2024; 24:780. [PMID: 39148012 PMCID: PMC11325573 DOI: 10.1186/s12870-024-05488-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 08/05/2024] [Indexed: 08/17/2024]
Abstract
BACKGROUND The symbiosis among plants, rhizobia, and arbuscular mycorrhizal fungi (AMF) is one of the most well-known symbiotic relationships in nature. However, it is still unclear how bilateral/tripartite symbiosis works under resource-limited conditions and the diverse genetic backgrounds of the host. RESULTS Using a full factorial design, we manipulated mungbean accessions/subspecies, rhizobia, and AMF to test their effects on each other. Rhizobia functions as a typical facilitator by increasing plant nitrogen content, plant weight, chlorophyll content, and AMF colonization. In contrast, AMF resulted in a tradeoff in plants (reducing biomass for phosphorus acquisition) and behaved as a competitor in reducing rhizobia fitness (nodule weight). Plant genotype did not have a significant effect on AMF fitness, but different mungbean accessions had distinct rhizobia affinities. In contrast to previous studies, the positive relationship between plant and rhizobia fitness was attenuated in the presence of AMF, with wild mungbean being more responsive to the beneficial effect of rhizobia and attenuation by AMF. CONCLUSIONS We showed that this complex tripartite relationship does not unconditionally benefit all parties. Moreover, rhizobia species and host genetic background affect the symbiotic relationship significantly. This study provides a new opportunity to re-evaluate the relationships between legume plants and their symbiotic partners.
Collapse
Affiliation(s)
- Chih-Cheng Chien
- Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei, Taiwan.
| | - Shang-Ying Tien
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| | - Shu-Yi Yang
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| | - Cheng-Ruei Lee
- Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei, Taiwan.
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
11
|
Anderson MD, Taylor DL, Olson K, Ruess RW. Composition of soil Frankia assemblages across ecological drivers parallels that of nodule assemblages in Alnus incana ssp. tenuifolia in interior Alaska. Ecol Evol 2024; 14:e11458. [PMID: 38979008 PMCID: PMC11229434 DOI: 10.1002/ece3.11458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 04/26/2024] [Accepted: 05/07/2024] [Indexed: 07/10/2024] Open
Abstract
In root nodule symbioses (RNS) between nitrogen (N)-fixing bacteria and plants, bacterial symbionts cycle between nodule-inhabiting and soil-inhabiting niches that exert differential selection pressures on bacterial traits. Little is known about how the resulting evolutionary tension between host plants and symbiotic bacteria structures naturally occurring bacterial assemblages in soils. We used DNA cloning to examine soil-dwelling assemblages of the actinorhizal symbiont Frankia in sites with long-term stable assemblages in Alnus incana ssp. tenuifolia nodules. We compared: (1) phylogenetic diversity of Frankia in soil versus nodules, (2) change in Frankia assemblages in soil versus nodules in response to environmental variation: both across succession, and in response to long-term fertilization with N and phosphorus, and (3) soil assemblages in the presence and absence of host plants. Phylogenetic diversity was much greater in soil-dwelling than nodule-dwelling assemblages and fell into two large clades not previously observed. The presence of host plants was associated with enhanced representation of genotypes specific to A. tenuifolia, and decreased representation of genotypes specific to a second Alnus species. The relative proportion of symbiotic sequence groups across a primary chronosequence was similar in both soil and nodule assemblages. Contrary to expectations, both N and P enhanced symbiotic genotypes relative to non-symbiotic ones. Our results provide a rare set of field observations against which predictions from theoretical and experimental work in the evolutionary ecology of RNS can be compared.
Collapse
Affiliation(s)
- M. D. Anderson
- Biology DepartmentMacalester CollegeSaint PaulMinnesotaUSA
- Institute of Arctic BiologyUniversity of AlaskaFairbanksAlaskaUSA
| | - D. L. Taylor
- Department of BiologyUniversity of New MexicoAlbuquerqueNew MexicoUSA
| | - K. Olson
- Institute of Arctic BiologyUniversity of AlaskaFairbanksAlaskaUSA
| | - R. W. Ruess
- Institute of Arctic BiologyUniversity of AlaskaFairbanksAlaskaUSA
| |
Collapse
|
12
|
Sanhueza T, Hernández I, Sagredo-Sáez C, Villanueva-Guerrero A, Alvarado R, Mujica MI, Fuentes-Quiroz A, Menendez E, Jorquera-Fontena E, Valadares RBDS, Herrera H. Juvenile Plant-Microbe Interactions Modulate the Adaptation and Response of Forest Seedlings to Rapid Climate Change. PLANTS (BASEL, SWITZERLAND) 2024; 13:175. [PMID: 38256729 PMCID: PMC10819047 DOI: 10.3390/plants13020175] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/02/2023] [Accepted: 10/13/2023] [Indexed: 01/24/2024]
Abstract
The negative impacts of climate change on native forest ecosystems have created challenging conditions for the sustainability of natural forest regeneration. These challenges arise primarily from abiotic stresses that affect the early stages of forest tree development. While there is extensive evidence on the diversity of juvenile microbial symbioses in agricultural and fruit crops, there is a notable lack of reports on native forest plants. This review aims to summarize the critical studies conducted on the diversity of juvenile plant-microbe interactions in forest plants and to highlight the main benefits of beneficial microorganisms in overcoming environmental stresses such as drought, high and low temperatures, metal(loid) toxicity, nutrient deficiency, and salinity. The reviewed studies have consistently demonstrated the positive effects of juvenile plant-microbiota interactions and have highlighted the potential beneficial attributes to improve plantlet development. In addition, this review discusses the beneficial attributes of managing juvenile plant-microbiota symbiosis in the context of native forest restoration, including its impact on plant responses to phytopathogens, promotion of nutrient uptake, facilitation of seedling adaptation, resource exchange through shared hyphal networks, stimulation of native soil microbial communities, and modulation of gene and protein expression to enhance adaptation to adverse environmental conditions.
Collapse
Affiliation(s)
- Tedy Sanhueza
- Laboratorio de Silvicultura, Departamento de Ciencias Forestales, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de La Frontera, Temuco 4811230, Chile; (T.S.); (C.S.-S.); (A.V.-G.); (R.A.); (A.F.-Q.)
| | - Ionel Hernández
- Plant Physiology and Biochemistry Department, National Institute of Agricultural Science, Carretera a Tapaste Km 3 y ½, San José de las Lajas 32700, Mayabeque, Cuba;
| | - Cristiane Sagredo-Sáez
- Laboratorio de Silvicultura, Departamento de Ciencias Forestales, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de La Frontera, Temuco 4811230, Chile; (T.S.); (C.S.-S.); (A.V.-G.); (R.A.); (A.F.-Q.)
| | - Angela Villanueva-Guerrero
- Laboratorio de Silvicultura, Departamento de Ciencias Forestales, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de La Frontera, Temuco 4811230, Chile; (T.S.); (C.S.-S.); (A.V.-G.); (R.A.); (A.F.-Q.)
| | - Roxana Alvarado
- Laboratorio de Silvicultura, Departamento de Ciencias Forestales, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de La Frontera, Temuco 4811230, Chile; (T.S.); (C.S.-S.); (A.V.-G.); (R.A.); (A.F.-Q.)
| | - Maria Isabel Mujica
- Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, Valdivia 5110566, Chile;
| | - Alejandra Fuentes-Quiroz
- Laboratorio de Silvicultura, Departamento de Ciencias Forestales, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de La Frontera, Temuco 4811230, Chile; (T.S.); (C.S.-S.); (A.V.-G.); (R.A.); (A.F.-Q.)
| | - Esther Menendez
- Departamento de Microbiología y Genética, Instituto de Investigación en Agrobiotecnología (CIALE), Universidad de Salamanca, 37008 Salamanca, Spain;
| | - Emilio Jorquera-Fontena
- Departamento de Ciencias Agropecuarias y Acuícolas, Facultad de Recursos Naturales, Universidad Catolica de Temuco, Temuco P.O. Box 15-D, Chile;
| | | | - Héctor Herrera
- Laboratorio de Silvicultura, Departamento de Ciencias Forestales, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de La Frontera, Temuco 4811230, Chile; (T.S.); (C.S.-S.); (A.V.-G.); (R.A.); (A.F.-Q.)
- Laboratorio de Ecosistemas y Bosques, Departamento de Ciencias Forestales, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de La Frontera, Temuco 4811230, Chile
| |
Collapse
|
13
|
Van Cauwenberghe J, Simms EL. How might bacteriophages shape biological invasions? mBio 2023; 14:e0188623. [PMID: 37812005 PMCID: PMC10653932 DOI: 10.1128/mbio.01886-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023] Open
Abstract
Invasions by eukaryotes dependent on environmentally acquired bacterial mutualists are often limited by the ability of bacterial partners to survive and establish free-living populations. Focusing on the model legume-rhizobium mutualism, we apply invasion biology hypotheses to explain how bacteriophages can impact the competitiveness of introduced bacterial mutualists. Predicting how phage-bacteria interactions affect invading eukaryotic hosts requires knowing the eco-evolutionary constraints of introduced and native microbial communities, as well as their differences in abundance and diversity. By synthesizing research from invasion biology, as well as bacterial, viral, and community ecology, we create a conceptual framework for understanding and predicting how phages can affect biological invasions through their effects on bacterial mutualists.
Collapse
Affiliation(s)
- Jannick Van Cauwenberghe
- Institute of Biodiversity, Faculty of Biological Sciences, Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany
- Department of Integrative Biology, University of California, Berkeley, California, USA
| | - Ellen L. Simms
- Department of Integrative Biology, University of California, Berkeley, California, USA
| |
Collapse
|
14
|
Granada Agudelo M, Ruiz B, Capela D, Remigi P. The role of microbial interactions on rhizobial fitness. FRONTIERS IN PLANT SCIENCE 2023; 14:1277262. [PMID: 37877089 PMCID: PMC10591227 DOI: 10.3389/fpls.2023.1277262] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 09/22/2023] [Indexed: 10/26/2023]
Abstract
Rhizobia are soil bacteria that can establish a nitrogen-fixing symbiosis with legume plants. As horizontally transmitted symbionts, the life cycle of rhizobia includes a free-living phase in the soil and a plant-associated symbiotic phase. Throughout this life cycle, rhizobia are exposed to a myriad of other microorganisms that interact with them, modulating their fitness and symbiotic performance. In this review, we describe the diversity of interactions between rhizobia and other microorganisms that can occur in the rhizosphere, during the initiation of nodulation, and within nodules. Some of these rhizobia-microbe interactions are indirect, and occur when the presence of some microbes modifies plant physiology in a way that feeds back on rhizobial fitness. We further describe how these interactions can impose significant selective pressures on rhizobia and modify their evolutionary trajectories. More extensive investigations on the eco-evolutionary dynamics of rhizobia in complex biotic environments will likely reveal fascinating new aspects of this well-studied symbiotic interaction and provide critical knowledge for future agronomical applications.
Collapse
Affiliation(s)
- Margarita Granada Agudelo
- Laboratoire des Interactions Plantes Microbes Environnement (LIPME), Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | - Bryan Ruiz
- Laboratoire des Interactions Plantes Microbes Environnement (LIPME), Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | - Delphine Capela
- Laboratoire des Interactions Plantes Microbes Environnement (LIPME), Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | - Philippe Remigi
- Laboratoire des Interactions Plantes Microbes Environnement (LIPME), Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| |
Collapse
|
15
|
Rose C, Lund MB, Søgård AM, Busck MM, Bechsgaard JS, Schramm A, Bilde T. Social transmission of bacterial symbionts homogenizes the microbiome within and across generations of group-living spiders. ISME COMMUNICATIONS 2023; 3:60. [PMID: 37330540 PMCID: PMC10276852 DOI: 10.1038/s43705-023-00256-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/12/2023] [Accepted: 05/12/2023] [Indexed: 06/19/2023]
Abstract
Disentangling modes and fidelity of symbiont transmission are key for understanding host-symbiont associations in wild populations. In group-living animals, social transmission may evolve to ensure high-fidelity transmission of symbionts, since non-reproducing helpers constitute a dead-end for vertical transmission. We investigated symbiont transmission in the social spider Stegodyphus dumicola, which lives in family groups where the majority of females are non-reproducing helpers, females feed offspring by regurgitation, and individuals feed communally on insect prey. Group members share temporally stable microbiomes across generations, while distinct variation in microbiome composition exists between groups. We hypothesized that horizontal transmission of symbionts is enhanced by social interactions, and investigated transmission routes within (horizontal) and across (vertical) generations using bacterial 16S rRNA gene amplicon sequencing in three experiments: (i) individuals were sampled at all life stages to assess at which life stage the microbiome is acquired. (ii) a cross-fostering design was employed to test whether offspring carry the microbiome from their natal nest, or acquire the microbiome of the foster nest via social transmission. (iii) adult spiders with different microbiome compositions were mixed to assess whether social transmission homogenizes microbiome composition among group members. We demonstrate that offspring hatch symbiont-free, and bacterial symbionts are transmitted vertically across generations by social interactions with the onset of regurgitation feeding by (foster)mothers in an early life stage. Social transmission governs horizontal inter-individual mixing and homogenization of microbiome composition among nest mates. We conclude that temporally stable host-symbiont associations in social species can be facilitated and maintained by high-fidelity social transmission.
Collapse
Affiliation(s)
- Clémence Rose
- Section for Genetics, Ecology and Evolution, Department of Biology, Aarhus University, Aarhus, Denmark.
| | - Marie B Lund
- Section for Microbiology, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Andrea M Søgård
- Section for Genetics, Ecology and Evolution, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Mette M Busck
- Section for Microbiology, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Jesper S Bechsgaard
- Section for Genetics, Ecology and Evolution, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Andreas Schramm
- Section for Microbiology, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Trine Bilde
- Section for Genetics, Ecology and Evolution, Department of Biology, Aarhus University, Aarhus, Denmark
| |
Collapse
|
16
|
Dual-Uptake Mode of the Antibiotic Phazolicin Prevents Resistance Acquisition by Gram-Negative Bacteria. mBio 2023; 14:e0021723. [PMID: 36802165 PMCID: PMC10128002 DOI: 10.1128/mbio.00217-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Abstract
Phazolicin (PHZ) is a peptide antibiotic exhibiting narrow-spectrum activity against rhizobia closely related to its producer, Rhizobium sp. strain Pop5. Here, we show that the frequency of spontaneous PHZ-resistant mutants in Sinorhizobium meliloti is below the detection limit. We find that PHZ can enter S. meliloti cells through two distinct promiscuous peptide transporters, BacA and YejABEF, which belong to the SLiPT (SbmA-like peptide transporter) and ABC (ATP-binding cassette) transporter families, respectively. The dual-uptake mode explains the lack of observed resistance acquisition because the simultaneous inactivation of both transporters is necessary for resistance to PHZ. Since both BacA and YejABEF are essential for the development of functional symbiosis of S. meliloti with leguminous plants, the unlikely acquisition of PHZ resistance via the inactivation of these transporters is further disfavored. A whole-genome transposon sequencing screen did not reveal additional genes that can provide strong PHZ resistance when inactivated. However, it was found that the capsular polysaccharide KPS, the novel putative envelope polysaccharide PPP (PHZ-protecting polysaccharide), as well as the peptidoglycan layer jointly contribute to the sensitivity of S. meliloti to PHZ, most likely serving as barriers that reduce the amount of PHZ transported inside the cell. IMPORTANCE Many bacteria produce antimicrobial peptides to eliminate competitors and create an exclusive niche. These peptides act either by membrane disruption or by inhibiting essential intracellular processes. The Achilles' heel of the latter type of antimicrobials is their dependence on transporters to enter susceptible cells. Transporter inactivation results in resistance. Here, we show that a rhizobial ribosome-targeting peptide, phazolicin (PHZ), uses two different transporters, BacA and YejABEF, to enter the cells of a symbiotic bacterium, Sinorhizobium meliloti. This dual-entry mode dramatically reduces the probability of the appearance of PHZ-resistant mutants. Since these transporters are also crucial for S. meliloti symbiotic associations with host plants, their inactivation in natural settings is strongly disfavored, making PHZ an attractive lead for the development of biocontrol agents for agriculture.
Collapse
|
17
|
Montoya AP, Wendlandt CE, Benedict AB, Roberts M, Piovia-Scott J, Griffitts JS, Porter SS. Hosts winnow symbionts with multiple layers of absolute and conditional discrimination mechanisms. Proc Biol Sci 2023; 290:20222153. [PMID: 36598018 PMCID: PMC9811631 DOI: 10.1098/rspb.2022.2153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
In mutualism, hosts select symbionts via partner choice and preferentially direct more resources to symbionts that provide greater benefits via sanctions. At the initiation of symbiosis, prior to resource exchange, it is not known how the presence of multiple symbiont options (i.e. the symbiont social environment) impacts partner choice outcomes. Furthermore, little research addresses whether hosts primarily discriminate among symbionts via sanctions, partner choice or a combination. We inoculated the legume, Acmispon wrangelianus, with 28 pairs of fluorescently labelled Mesorhizobium strains that vary continuously in quality as nitrogen-fixing symbionts. We find that hosts exert robust partner choice, which enhances their fitness. This partner choice is conditional such that a strain's success in initiating nodules is impacted by other strains in the social environment. This social genetic effect is as important as a strain's own genotype in determining nodulation and has both transitive (consistent) and intransitive (idiosyncratic) effects on the probability that a symbiont will form a nodule. Furthermore, both absolute and conditional partner choice act in concert with sanctions, among and within nodules. Thus, multiple forms of host discrimination act as a series of sieves that optimize host benefits and select for costly symbiont cooperation in mixed symbiont populations.
Collapse
Affiliation(s)
- Angeliqua P. Montoya
- School of Biological Sciences, Washington State University, Vancouver, WA 98686, USA
| | - Camille E. Wendlandt
- School of Biological Sciences, Washington State University, Vancouver, WA 98686, USA
| | - Alex B. Benedict
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA
| | - Miles Roberts
- School of Biological Sciences, Washington State University, Vancouver, WA 98686, USA
| | - Jonah Piovia-Scott
- School of Biological Sciences, Washington State University, Vancouver, WA 98686, USA
| | - Joel S. Griffitts
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA
| | - Stephanie S. Porter
- School of Biological Sciences, Washington State University, Vancouver, WA 98686, USA
| |
Collapse
|
18
|
Signaling and Detoxification Strategies in Plant-Microbes Symbiosis under Heavy Metal Stress: A Mechanistic Understanding. Microorganisms 2022; 11:microorganisms11010069. [PMID: 36677361 PMCID: PMC9865731 DOI: 10.3390/microorganisms11010069] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022] Open
Abstract
Plants typically interact with a variety of microorganisms, including bacteria, mycorrhizal fungi, and other organisms, in their above- and below-ground parts. In the biosphere, the interactions of plants with diverse microbes enable them to acquire a wide range of symbiotic advantages, resulting in enhanced plant growth and development and stress tolerance to toxic metals (TMs). Recent studies have shown that certain microorganisms can reduce the accumulation of TMs in plants through various mechanisms and can reduce the bioavailability of TMs in soil. However, relevant progress is lacking in summarization. This review mechanistically summarizes the common mediating pathways, detoxification strategies, and homeostatic mechanisms based on the research progress of the joint prevention and control of TMs by arbuscular mycorrhizal fungi (AMF)-plant and Rhizobium-plant interactions. Given the importance of tripartite mutualism in the plant-microbe system, it is necessary to further explore key signaling molecules to understand the role of plant-microbe mutualism in improving plant tolerance under heavy metal stress in the contaminated soil environments. It is hoped that our findings will be useful in studying plant stress tolerance under a broad range of environmental conditions and will help in developing new technologies for ensuring crop health and performance in future.
Collapse
|
19
|
Klein M, Stewart JD, Porter SS, Weedon JT, Kiers ET. Evolution of manipulative microbial behaviors in the rhizosphere. Evol Appl 2022; 15:1521-1536. [PMID: 36330300 PMCID: PMC9624083 DOI: 10.1111/eva.13333] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/30/2021] [Accepted: 12/02/2021] [Indexed: 01/01/2023] Open
Abstract
The rhizosphere has been called "one of the most complex ecosystems on earth" because it is a hotspot for interactions among millions of microbial cells. Many of these are microbes are also participating in a dynamic interplay with host plant tissues, signaling pathways, and metabolites. Historically, breeders have employed a plant-centric perspective when trying to harness the potential of microbiome-derived benefits to improve productivity and resilience of economically important plants. This is potentially problematic because: (i) the evolution of the microbes themselves is often ignored, and (ii) it assumes that the fitness of interacting plants and microbes is strictly aligned. In contrast, a microbe-centric perspective recognizes that putatively beneficial microbes are still under selection to increase their own fitness, even if there are costs to the host. This can lead to the evolution of sophisticated, potentially subtle, ways for microbes to manipulate the phenotype of their hosts, as well as other microbes in the rhizosphere. We illustrate this idea with a review of cases where rhizosphere microbes have been demonstrated to directly manipulate host root growth, architecture and exudation, host nutrient uptake systems, and host immunity and defense. We also discuss indirect effects, whereby fitness outcomes for the plant are a consequence of ecological interactions between rhizosphere microbes. If these consequences are positive for the plant, they can potentially be misconstrued as traits that have evolved to promote host growth, even if they are a result of selection for unrelated functions. The ubiquity of both direct microbial manipulation of hosts and context-dependent, variable indirect effects leads us to argue that an evolutionary perspective on rhizosphere microbial ecology will become increasingly important as we continue to engineer microbial communities for crop production.
Collapse
Affiliation(s)
- Malin Klein
- Department of Ecological ScienceVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Justin D. Stewart
- Department of Ecological ScienceVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Stephanie S. Porter
- School of Biological SciencesWashington State UniversityVancouverWashingtonUSA
| | - James T. Weedon
- Department of Ecological ScienceVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - E. Toby Kiers
- Department of Ecological ScienceVrije Universiteit AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
20
|
Gopal M, Gupta A, Arunachalam V, Maheswarappa HP, Thomas GV, Jacob PM. Autochthonous nutrient recycling driven by soil microbiota could be sustaining high coconut productivity in Lakshadweep Islands sans external fertilizer application. World J Microbiol Biotechnol 2022; 38:213. [PMID: 36053362 DOI: 10.1007/s11274-022-03373-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 07/29/2022] [Indexed: 10/14/2022]
Abstract
The soils of Lakshadweep Islands are formed as a result of the fragmentation of coral limestone, that is carbonate-rich, with neutral pH, but poor in plant nutrients. Coconut palm (Cocos nucifera L.) is the main crop cultivated, supporting the life and livelihood of the islanders. No external fertilizer application or major plant protection measures are adopted for their cultivation as the Islands were declared to go organic decades back. Yet, Lakshadweep has one of the highest productivity of coconut compared with other coconut growing areas in India. Therefore, a question arises: how is such a high coconut productivity sustained? We try to answer by estimating in three main islands (i) the nutrients added to the soil via the litter generated by coconut palms and (ii) the role of soil microbiota, including arbuscular mycorrhizae, for the high productivity. Our results indicated that, besides adding a substantial quantum of organic carbon, twice the needed amount of nitrogen, extra 20% phosphorus to the already P-rich soils, 43-45% of potassium required by palms could be easily met by the total coconut biomass residues returned to the soil. Principal Component Analysis showed that soil organic carbon %, potassium, and organic carbon added via the palm litter and AM spore load scored >± 0.95 in PC1, whereas, available K in the soil, bacteria, actinomycetes, phosphate solubilizers and fluorescent pseudomonads scored above >± 0.95 in PC2. Based on our analysis, we suggest that the autochthonous nutrients added via the coconut biomass residues, recycled by the soil microbial communities, could be one of the main reasons for sustaining a high productivity of the coconut palms in Lakshadweep Islands, in the absence of any external fertilizer application, mimicking a semi-closed-loop forest ecosystem.
Collapse
Affiliation(s)
- Murali Gopal
- ICAR-Central Plantation Crops Research Institute, Kasaragod, Kerala, India.
- ICAR-Central Plantation Crops Research Institute, Regional Station (Presently ICAR-CIARI), Minicoy, Lakshadweep, India.
| | - Alka Gupta
- ICAR-Central Plantation Crops Research Institute, Kasaragod, Kerala, India.
| | - V Arunachalam
- ICAR-Central Plantation Crops Research Institute, Kasaragod, Kerala, India
- ICAR-Central Coastal Agricultural Research Institute, Ela, Goa, India
- ICAR-Central Plantation Crops Research Institute, Regional Station (Presently ICAR-CIARI), Minicoy, Lakshadweep, India
| | - H P Maheswarappa
- ICAR-Central Plantation Crops Research Institute, Kasaragod, Kerala, India
- University of Horticultural Sciences, Bagalkot, Karnataka, India
| | - George V Thomas
- ICAR-Central Plantation Crops Research Institute, Kasaragod, Kerala, India
- , Pathanamthitta, Kerala, India
| | - P M Jacob
- ICAR-Central Plantation Crops Research Institute, Regional Station (Presently ICAR-CIARI), Minicoy, Lakshadweep, India
- , Kottayam, Kerala, India
| |
Collapse
|
21
|
Burghardt LT, Epstein B, Hoge M, Trujillo DI, Tiffin P. Host-Associated Rhizobial Fitness: Dependence on Nitrogen, Density, Community Complexity, and Legume Genotype. Appl Environ Microbiol 2022; 88:e0052622. [PMID: 35852362 PMCID: PMC9361818 DOI: 10.1128/aem.00526-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/24/2022] [Indexed: 11/20/2022] Open
Abstract
The environmental context of the nitrogen-fixing mutualism between leguminous plants and rhizobial bacteria varies over space and time. Variation in resource availability, population density, and composition likely affect the ecology and evolution of rhizobia and their symbiotic interactions with hosts. We examined how host genotype, nitrogen addition, rhizobial density, and community complexity affected selection on 68 rhizobial strains in the Sinorhizobium meliloti-Medicago truncatula mutualism. As expected, host genotype had a substantial effect on the size, number, and strain composition of root nodules (the symbiotic organ). The understudied environmental variable of rhizobial density had a stronger effect on nodule strain frequency than the addition of low nitrogen levels. Higher inoculum density resulted in a nodule community that was less diverse and more beneficial but only in the context of the more selective host genotype. Higher density resulted in more diverse and less beneficial nodule communities with the less selective host. Density effects on strain composition deserve additional scrutiny as they can create feedback between ecological and evolutionary processes. Finally, we found that relative strain rankings were stable across increasing community complexity (2, 3, 8, or 68 strains). This unexpected result suggests that higher-order interactions between strains are rare in the context of nodule formation and development. Our work highlights the importance of examining mechanisms of density-dependent strain fitness and developing theoretical predictions that incorporate density dependence. Furthermore, our results have translational relevance for overcoming establishment barriers in bioinoculants and motivating breeding programs that maintain beneficial plant-microbe interactions across diverse agroecological contexts. IMPORTANCE Legume crops establish beneficial associations with rhizobial bacteria that perform biological nitrogen fixation, providing nitrogen to plants without the economic and greenhouse gas emission costs of chemical nitrogen inputs. Here, we examine the influence of three environmental factors that vary in agricultural fields on strain relative fitness in nodules. In addition to manipulating nitrogen, we also use two biotic variables that have rarely been examined: the rhizobial community's density and complexity. Taken together, our results suggest that (i) breeding legume varieties that select beneficial strains despite environmental variation is possible, (ii) changes in rhizobial population densities that occur routinely in agricultural fields could drive evolutionary changes in rhizobial populations, and (iii) the lack of higher-order interactions between strains will allow the high-throughput assessments of rhizobia winners and losers during plant interactions.
Collapse
Affiliation(s)
- Liana T. Burghardt
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA
- Plant Science Department, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Brendan Epstein
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA
| | - Michelle Hoge
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA
| | - Diana I. Trujillo
- Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota, USA
| | - Peter Tiffin
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA
| |
Collapse
|
22
|
Batstone RT, Burghardt LT, Heath KD. Phenotypic and genomic signatures of interspecies cooperation and conflict in naturally occurring isolates of a model plant symbiont. Proc Biol Sci 2022; 289:20220477. [PMID: 35858063 PMCID: PMC9277234 DOI: 10.1098/rspb.2022.0477] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Given the need to predict the outcomes of (co)evolution in host-associated microbiomes, whether microbial and host fitnesses tend to trade-off, generating conflict, remains a pressing question. Examining the relationships between host and microbe fitness proxies at both the phenotypic and genomic levels can illuminate the mechanisms underlying interspecies cooperation and conflict. We examined naturally occurring genetic variation in 191 strains of the model microbial symbiont Sinorhizobium meliloti, paired with each of two host Medicago truncatula genotypes in single- or multi-strain experiments to determine how multiple proxies of microbial and host fitness were related to one another and test key predictions about mutualism evolution at the genomic scale, while also addressing the challenge of measuring microbial fitness. We found little evidence for interspecies fitness conflict; loci tended to have concordant effects on both microbe and host fitnesses, even in environments with multiple co-occurring strains. Our results emphasize the importance of quantifying microbial relative fitness for understanding microbiome evolution and thus harnessing microbiomes to improve host fitness. Additionally, we find that mutualistic coevolution between hosts and microbes acts to maintain, rather than erode, genetic diversity, potentially explaining why variation in mutualism traits persists in nature.
Collapse
Affiliation(s)
- Rebecca T. Batstone
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, IL 61801, USA
| | - Liana T. Burghardt
- Department of Plant Science, The Pennsylvania State University, 103 Tyson Building, University Park, PA, 16802 USA
| | - Katy D. Heath
- Department of Plant Biology, University of Illinois at Urbana-Champaign, 286 Morrill Hall, 505 South Goodwin Avenue, Urbana, IL 61801, USA
| |
Collapse
|
23
|
Lino IAN, Silva DKADA, Martins LMV, Maia LC, Yano-Melo AM. Microbial inoculation and fertilizer application on growth of cowpea and spore-based assemblages of arbuscular mycorrhizal fungi in its rhizophere. AN ACAD BRAS CIENC 2022; 94:e20201243. [PMID: 35830070 DOI: 10.1590/0001-3765202220201243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 12/11/2020] [Indexed: 11/22/2022] Open
Abstract
In this study, the effect of microbial inoculants and fertilizer application on cowpea (BRS Pujante) growth and on the structure and composition of arbuscular mycorrhizal fungi (AMF) assemblages were evaluated. A completely randomized experiment was set up involving 17 treatments: four with AMF, three with nodulating bacteria, six with AMF + nodulating bacteria, two with phosphorus, one with nitrogen and one control (reference) in five replicates. Plant growth and nutritional content, mycorrhizal colonization, glomerospores number, spore-based AMF assemblages and ecological indices were evaluated. Mycorrhizal inoculants associated with Bradyrhizobium BR3267 strain were more effective than the Microvirga BR3296 strain. Multidimensional scaling analysis showed that Acaulospora longula treatments were more similar among themselves, and distinct from the other treatments. A difference was observed in the structure of AMF community assemblage between treatments with G. albida + Bradyrhizobium BR 3267 and A. longula, with greater Shannon diversity and Pielou equitability indices in the first treatment and greater dominance in the treatment with A. longula only. Long-term studies are required to determine if the successful establishment of A. longula among indigenous species persists over time and if its dominant behavior is not deleterious to the AMF native community.
Collapse
Affiliation(s)
- Ingrid A N Lino
- Programa de Pós-Graduação em Biologia de Fungos, Universidade Federal de Pernambuco, Departamento de Micologia, Av. Prof. Moraes Rego, s/n, Cidade Universitária, 50740-600 Recife, PE, Brazil
| | - Danielle K A DA Silva
- Programa de Pós-Graduação em Ecologia e Monitoramento Ambiental, Universidade Federal da Paraíba, Centro de Ciências Aplicadas e Educação, Departamento de Engenharia e Meio Ambiente, Campus IV, Conj. Pres. Castelo Branco III, 58297-000 Rio Tinto, PB, Brazil
| | - Lindete M V Martins
- Universidade do Estado da Bahia/UNEB, Departamento de Tecnologia e Ciências Sociais-DTCS, Campus III, Rua Edgar Chastinet, s/n, São Geraldo, 48900-000 Juazeiro, BA, Brazil
| | - Leonor C Maia
- Programa de Pós-Graduação em Biologia de Fungos, Universidade Federal de Pernambuco, Departamento de Micologia, Av. Prof. Moraes Rego, s/n, Cidade Universitária, 50740-600 Recife, PE, Brazil
| | - Adriana M Yano-Melo
- Programa de Pós-Graduação em Biologia de Fungos, Universidade Federal de Pernambuco, Departamento de Micologia, Av. Prof. Moraes Rego, s/n, Cidade Universitária, 50740-600 Recife, PE, Brazil
- Universidade Federal do Vale do São Francisco, Colegiado de Zootecnia, Campus de Ciências Agrárias, Rodovia BR-407, Km 12, Lote 543, s/n, 56300-990 Petrolina, PE, Brazil
| |
Collapse
|
24
|
Epstein B, Burghardt LT, Heath KD, Grillo MA, Kostanecki A, Hämälä T, Young ND, Tiffin P. Combining GWAS and population genomic analyses to characterize coevolution in a legume-rhizobia symbiosis. Mol Ecol 2022. [PMID: 35793264 DOI: 10.1111/mec.16602] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/03/2022] [Accepted: 07/04/2022] [Indexed: 11/28/2022]
Abstract
The mutualism between legumes and rhizobia is clearly the product of past coevolution. However, the nature of ongoing evolution between these partners is less clear. To characterize the nature of recent coevolution between legumes and rhizobia, we used population genomic analysis to characterize selection on functionally annotated symbiosis genes as well as on symbiosis gene candidates identified through a two-species association analysis. For the association analysis, we inoculated each of 202 accessions of the legume host Medicago truncatula with a community of 88 Sinorhizobia (Ensifer) meliloti strains. Multistrain inoculation, which better reflects the ecological reality of rhizobial selection in nature than single-strain inoculation, allows strains to compete for nodulation opportunities and host resources and for hosts to preferentially form nodules and provide resources to some strains. We found extensive host by symbiont, that is, genotype-by-genotype, effects on rhizobial fitness and some annotated rhizobial genes bear signatures of recent positive selection. However, neither genes responsible for this variation nor annotated host symbiosis genes are enriched for signatures of either positive or balancing selection. This result suggests that stabilizing selection dominates selection acting on symbiotic traits and that variation in these traits is under mutation-selection balance. Consistent with the lack of positive selection acting on host genes, we found that among-host variation in growth was similar whether plants were grown with rhizobia or N-fertilizer, suggesting that the symbiosis may not be a major driver of variation in plant growth in multistrain contexts.
Collapse
Affiliation(s)
- Brendan Epstein
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA
| | - Liana T Burghardt
- Department of Plant Sciences, The University of Pennsylvania, University Park, Pennsylvania, USA
| | - Katy D Heath
- Department of Plant Biology, University of Illinois, Urbana, Illinois, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, Illinois, USA
| | - Michael A Grillo
- Department of Biology, Loyola University Chicago, Chicago, Illinois, USA
| | - Adam Kostanecki
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA
| | - Tuomas Hämälä
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA.,School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Nevin D Young
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA.,Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota, USA
| | - Peter Tiffin
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA
| |
Collapse
|
25
|
Burr AA, Woods KD, Cassidy ST, Wood CW. Priority effects alter the colonization success of a host-associated parasite and mutualist. Ecology 2022; 103:e3720. [PMID: 35396706 DOI: 10.1002/ecy.3720] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 09/03/2021] [Accepted: 10/25/2021] [Indexed: 11/07/2022]
Abstract
Priority effects shape the assembly of free-living communities and host-associated communities. However, the current literature does not fully incorporate two features of host-symbiont interactions-correlated host responses to multiple symbionts and ontogenetic changes in host responses to symbionts-leading to an incomplete picture of the role of priority effects in host-associated communities. We factorially manipulated the inoculation timing of two plant symbionts (mutualistic rhizobia bacteria and parasitic root-knot nematodes) and tested how host age at arrival, arrival order, and arrival synchrony affected symbiont colonization success in the model legume Medicago truncatula. We found that host age, arrival order, and arrival synchrony significantly affected colonization of one or both symbionts. Host age at arrival only affected nematodes but not rhizobia: younger plants were more heavily infected than older plants. By contrast, arrival order only affected rhizobia but not nematodes: plants formed more rhizobia nodules when rhizobia arrived before nematodes. Finally, synchronous arrival decreased colonization both symbionts, an effect that depended on host age. Our results demonstrate that priority effects compromise the host's ability to control colonization by two major symbionts, and suggest that the role of correlated host responses and host ontogeny in the assembly of host-associated communities deserve further attention.
Collapse
Affiliation(s)
- Audrey A Burr
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Kamron D Woods
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Steven T Cassidy
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Corlett W Wood
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
26
|
Cangioli L, Vaccaro F, Fini M, Mengoni A, Fagorzi C. Scent of a Symbiont: The Personalized Genetic Relationships of Rhizobium-Plant Interaction. Int J Mol Sci 2022; 23:3358. [PMID: 35328782 PMCID: PMC8954435 DOI: 10.3390/ijms23063358] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 01/24/2023] Open
Abstract
Many molecular signals are exchanged between rhizobia and host legume plants, some of which are crucial for symbiosis to take place, while others are modifiers of the interaction, which have great importance in the competition with the soil microbiota and in the genotype-specific perception of host plants. Here, we review recent findings on strain-specific and host genotype-specific interactions between rhizobia and legumes, discussing the molecular actors (genes, gene products and metabolites) which play a role in the establishment of symbiosis, and highlighting the need for research including the other components of the soil (micro)biota, which could be crucial in developing rational-based strategies for bioinoculants and synthetic communities' assemblage.
Collapse
Affiliation(s)
- Lisa Cangioli
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy
| | - Francesca Vaccaro
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy
| | - Margherita Fini
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy
| | - Alessio Mengoni
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy
| | - Camilla Fagorzi
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
27
|
McPeek MA, McPeek SJ, Bronstein JL. Nectar dynamics and the coexistence of two plants that share a pollinator. OIKOS 2022. [DOI: 10.1111/oik.08869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mark A. McPeek
- Dept of Biological Sciences, Dartmouth College Hanover NH USA
| | | | | |
Collapse
|
28
|
Ramoneda J, Le Roux J, Stadelmann S, Frossard E, Frey B, Gamper HA. Soil microbial community coalescence and fertilization interact to drive the functioning of the legume–rhizobium symbiosis. J Appl Ecol 2021. [DOI: 10.1111/1365-2664.13995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Josep Ramoneda
- Group of Plant Nutrition Department of Environmental Systems Science ETH Zurich Zurich Switzerland
| | - Johannes Le Roux
- Department of Biological Sciences Macquarie University Sydney NSW Australia
| | - Stefanie Stadelmann
- Group of Plant Nutrition Department of Environmental Systems Science ETH Zurich Zurich Switzerland
| | - Emmanuel Frossard
- Group of Plant Nutrition Department of Environmental Systems Science ETH Zurich Zurich Switzerland
| | - Beat Frey
- Rhizosphere Processes Group Swiss Federal Research Institute WSL Birmensdorf Switzerland
| | - Hannes Andres Gamper
- Group of Plant Nutrition Department of Environmental Systems Science ETH Zurich Zurich Switzerland
- Faculty of Science and Technology Free University of Bozen‐Bolzano Bolzano Italy
| |
Collapse
|
29
|
Walrasian equilibrium behavior in nature. Proc Natl Acad Sci U S A 2021; 118:2020961118. [PMID: 34183408 DOI: 10.1073/pnas.2020961118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The interaction between land plants and mycorrhizal fungi (MF) forms perhaps the world's most prevalent biological market. Most plants participate in such markets, in which MF collect nutrients from the soil and trade them with host plants in exchange for carbon. In a recent study, M. D. Whiteside et al. [Curr. Biol. 29, 2043-2050.e8 (2019)] conducted experiments that allowed them to quantify the behavior of arbuscular MF when trading phosphorus with their host roots. Their experimental techniques enabled the researchers to infer the quantities traded under multiple scenarios involving different amounts of phosphorus resources initially held by different MF patches. We use these observations to confirm a revealed preference hypothesis, which characterizes behavior in Walrasian equilibrium, a centerpiece of general economic equilibrium theory.
Collapse
|
30
|
Thoms D, Liang Y, Haney CH. Maintaining Symbiotic Homeostasis: How Do Plants Engage With Beneficial Microorganisms While at the Same Time Restricting Pathogens? MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:462-469. [PMID: 33534602 DOI: 10.1094/mpmi-11-20-0318-fi] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
This article is part of the Top 10 Unanswered Questions in MPMI invited review series.That plants recruit beneficial microbes while simultaneously restricting pathogens is critical to their survival. Plants must exclude pathogens; however, most land plants are able to form mutualistic symbioses with arbuscular mycorrhizal fungi. Plants also associate with the complex microbial communities that form the microbiome. The outcome of each symbiotic interaction-whether a specific microbe is pathogenic, commensal, or mutualistic-relies on the specific interplay of host and microbial genetics and the environment. Here, we discuss how plants use metabolites as a gate to select which microbes can be symbiotic. Once present, we discuss how plants integrate multiple inputs to initiate programs of immunity or mutualistic symbiosis and how this paradigm may be expanded to the microbiome. Finally, we discuss how environmental signals are integrated with immunity to fine-tune a thermostat that determines whether a plant engages in mutualism, resistance to pathogens, and shapes associations with the microbiome. Collectively, we propose that the plant immune thermostat is set to select for and tolerate a largely nonharmful microbiome while receptor-mediated decision making allows plants to detect and dynamically respond to the presence of potential pathogens or mutualists.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- David Thoms
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, V6T 1Z3 Canada
- Michael Smith Laboratories, The University of British Columbia, Vancouver, V6T 1Z4 Canada
| | - Yan Liang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Cara H Haney
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, V6T 1Z3 Canada
- Michael Smith Laboratories, The University of British Columbia, Vancouver, V6T 1Z4 Canada
| |
Collapse
|
31
|
Ramoneda J, Roux JJL, Frossard E, Frey B, Gamper HA. Geographical patterns of root nodule bacterial diversity in cultivated and wild populations of a woody legume crop. FEMS Microbiol Ecol 2021; 96:5874250. [PMID: 32691840 DOI: 10.1093/femsec/fiaa145] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 07/20/2020] [Indexed: 12/23/2022] Open
Abstract
There is interest in understanding how cultivation, plant genotype, climate and soil conditions influence the biogeography of root nodule bacterial communities of legumes. For crops from regions with relict wild populations, this is of even greater interest because the effects of cultivation on symbiont communities can be revealed, which is of particular interest for bacteria such as rhizobia. Here, we determined the structure of root nodule bacterial communities of rooibos (Aspalathus linearis), a leguminous shrub endemic to South Africa. We related the community dissimilarities of the root nodule bacteria of 18 paired cultivated and wild rooibos populations to pairwise geographical distances, plant ecophysiological characteristics and soil physicochemical parameters. Using next-generation sequencing data, we identified region-, cultivation- and farm-specific operational taxonomic units for four distinct classes of root nodule bacterial communities, dominated by members of the genus Mesorhizobium. We found that while bacterial richness was locally increased by organic cultivation, strong biogeographical differentiation in the bacterial communities of wild rooibos disappeared with cultivation of one single cultivar across its entire cultivation range. This implies that expanding rooibos farming has the potential to endanger wild rooibos populations through the homogenisation of root nodule bacterial diversity.
Collapse
Affiliation(s)
- Josep Ramoneda
- Department of Environmental Systems Science, ETH Zurich, Eschikon 33, 8315 Lindau, Zurich, Switzerland
| | - Johannes J Le Roux
- Department of Biological Sciences, Macquarie University, Balaclava Rd, Macquarie Park NSW 2109, Sydney, Australia
| | - Emmanuel Frossard
- Department of Environmental Systems Science, ETH Zurich, Eschikon 33, 8315 Lindau, Zurich, Switzerland
| | - Beat Frey
- Rhizosphere Processes Group, Swiss Federal Research Institute WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
| | - Hannes Andres Gamper
- Department of Environmental Systems Science, ETH Zurich, Eschikon 33, 8315 Lindau, Zurich, Switzerland.,Faculty of Science and Technology, Free University of Bolzen-Bolzano, Piazza Università, 1, 39100 Bolzano BZ, Italy
| |
Collapse
|
32
|
Hammarlund SP, Gedeon T, Carlson RP, Harcombe WR. Limitation by a shared mutualist promotes coexistence of multiple competing partners. Nat Commun 2021; 12:619. [PMID: 33504808 PMCID: PMC7840915 DOI: 10.1038/s41467-021-20922-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 01/04/2021] [Indexed: 12/14/2022] Open
Abstract
Although mutualisms are often studied as simple pairwise interactions, they typically involve complex networks of interacting species. How multiple mutualistic partners that provide the same service and compete for resources are maintained in mutualistic networks is an open question. We use a model bacterial community in which multiple 'partner strains' of Escherichia coli compete for a carbon source and exchange resources with a 'shared mutualist' strain of Salmonella enterica. In laboratory experiments, competing E. coli strains readily coexist in the presence of S. enterica, despite differences in their competitive abilities. We use ecological modeling to demonstrate that a shared mutualist can create temporary resource niche partitioning by limiting growth rates, even if yield is set by a resource external to a mutualism. This mechanism can extend to maintain multiple competing partner species. Our results improve our understanding of complex mutualistic communities and aid efforts to design stable microbial communities.
Collapse
Affiliation(s)
- Sarah P Hammarlund
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN, USA
- BioTechnology Institute, University of Minnesota, St. Paul, MN, USA
| | - Tomáš Gedeon
- Department of Mathematical Sciences, Montana State University, Bozeman, MT, USA
| | - Ross P Carlson
- Department of Chemical and Biological Engineering, Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA
| | - William R Harcombe
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN, USA.
- BioTechnology Institute, University of Minnesota, St. Paul, MN, USA.
| |
Collapse
|
33
|
Tyrosine Nitration of Flagellins: a Response of Sinorhizobium meliloti to Nitrosative Stress. Appl Environ Microbiol 2020; 87:AEM.02210-20. [PMID: 33067191 DOI: 10.1128/aem.02210-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 10/13/2020] [Indexed: 12/13/2022] Open
Abstract
Rhizobia are bacteria which can either live as free organisms in the soil or interact with plants of the legume family with, as a result, the formation of root organs called nodules in which differentiated endosymbiotic bacteria fix atmospheric nitrogen to the plant's benefit. In both lifestyles, rhizobia are exposed to nitric oxide (NO) which can be perceived as a signaling or toxic molecule. NO can act at the transcriptional level but can also modify proteins by S-nitrosylation of cysteine or nitration of tyrosine residues. However, only a few molecular targets of NO have been described in bacteria and none of them have been characterized in rhizobia. Here, we examined tyrosine nitration of Sinorhizobium meliloti proteins induced by NO. We found three tyrosine-nitrated proteins in S. meliloti grown under free-living conditions, in response to an NO donor. Two nitroproteins were identified by mass spectrometry and correspond to flagellins A and B. We showed that one of the nitratable tyrosines is essential to flagellin function in motility.IMPORTANCE Rhizobia are found as free-living bacteria in the soil or in interaction with plants and are exposed to nitric oxide (NO) in both environments. NO is known to have many effects on animals, plants, and bacteria where only a few molecular targets of NO have been described so far. We identified flagellin A and B by mass spectrometry as tyrosine-nitrated proteins in Sinorhizobium meliloti in vivo We also showed that one of the nitratable tyrosines is essential to flagellin function in motility. The results enhanced our understanding of NO effects on rhizobia. Identification of bacterial flagellin nitration opens a new possible role of NO in plant-microbe interactions.
Collapse
|
34
|
Xu FJ, Song SL, Ma CY, Zhang W, Sun K, Tang MJ, Xie XG, Fan KK, Dai CC. Endophytic fungus improves peanut drought resistance by reassembling the root-dwelling community of arbuscular mycorrhizal fungi. FUNGAL ECOL 2020. [DOI: 10.1016/j.funeco.2020.100993] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
35
|
Ramoneda J, Le Roux JJ, Frossard E, Frey B, Gamper HA. Experimental assembly reveals ecological drift as a major driver of root nodule bacterial diversity in a woody legume crop. FEMS Microbiol Ecol 2020; 96:5828728. [PMID: 32364226 DOI: 10.1093/femsec/fiaa083] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 05/01/2020] [Indexed: 12/31/2022] Open
Abstract
Understanding how plant-associated microbial communities assemble and the role they play in plant performance are major goals in microbial ecology. For nitrogen-fixing rhizobia, community assembly is generally driven by host plant selection and soil conditions. Here, we aimed to determine the relative importance of neutral and deterministic processes in the assembly of bacterial communities of root nodules of a legume shrub adapted to extreme nutrient limitation, rooibos (Aspalathus linearis Burm. Dahlgren). We grew rooibos seedlings in soil from cultivated land and wild habitats, and mixtures of these soils, sampled from a wide geographic area, and with a fertilization treatment. Bacterial communities were characterized using next generation sequencing of part of the nodA gene (i.e. common to the core rhizobial symbionts of rooibos), and part of the gyrB gene (i.e. common to all bacterial taxa). Ecological drift alone was a major driver of taxonomic turnover in the bacterial communities of root nodules (62.6% of gyrB communities). In contrast, the assembly of core rhizobial communities (genus Mesorhizobium) was driven by dispersal limitation in concert with drift (81.1% of nodA communities). This agrees with a scenario of rooibos-Mesorhizobium specificity in spatially separated subpopulations, and low host filtering of other bacteria colonizing root nodules in a stochastic manner.
Collapse
Affiliation(s)
- Josep Ramoneda
- Department of Environmental Systems Science, ETH Zurich, Eschikon 33, 8315 Lindau, Zurich, Switzerland
| | - Johannes J Le Roux
- Department of Biological Sciences, Macquarie University, Balaclava Rd, Macquarie Park NSW 2109, Sydney, Australia
| | - Emmanuel Frossard
- Department of Environmental Systems Science, ETH Zurich, Eschikon 33, 8315 Lindau, Zurich, Switzerland
| | - Beat Frey
- Rhizosphere Processes Group, Swiss Federal Research Institute WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
| | - Hannes Andres Gamper
- Faculty of Science and Technology, Free University of Bolzen-Bolzano,Piazza Università, 1, 39100 Bolzano BZ, Italy
| |
Collapse
|
36
|
Microbial mutualist distribution limits spread of the invasive legume Medicago polymorpha. Biol Invasions 2020. [DOI: 10.1007/s10530-020-02404-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
37
|
Compton KK, Hildreth SB, Helm RF, Scharf BE. An Updated Perspective on Sinorhizobium meliloti Chemotaxis to Alfalfa Flavonoids. Front Microbiol 2020; 11:581482. [PMID: 33193213 PMCID: PMC7644916 DOI: 10.3389/fmicb.2020.581482] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 09/30/2020] [Indexed: 12/25/2022] Open
Abstract
The symbiotic interaction between leguminous plants and their cognate rhizobia allows for the fixation of gaseous dinitrogen into bioavailable ammonia. The perception of host-derived flavonoids is a key initial step for the signaling events that must occur preceding the formation of the nitrogen-fixing organ. Past work investigating chemotaxis – the directed movement of bacteria through chemical gradients – of Bradyrhizobium japonicum, Rhizobium leguminosarum, and Rhizobium meliloti discovered chemotaxis to various organic compounds, but focused on chemotaxis to flavonoids because of their relevance to the symbiosis biochemistry. The current work sought to replicate and further examine Sinorhizobium (Ensifer) meliloti chemotaxis to the flavonoids previously thought to act as the principal attractant molecules prior to the initial signaling stage. Exudate from germinating alfalfa seedlings was analyzed for composition and quantities of different flavonoid compounds using mass spectrometry. The abundance of four prevalent flavonoids in germinating alfalfa seed exudates (SEs) was at a ratio of 200:5:5:1 for hyperoside, luteolin, luteolin-7-glucoside, and chrysoeriol. Using quantitative chemotaxis capillary assays, we did not detect chemotaxis of motile S. meliloti cells to these, and two other flavonoids identified in seed exudates. In support of these findings, the flavonoid fraction of seed exudates was found to be an insignificant attractant relative to the more hydrophilic fraction. Additionally, we observed that cosolvents commonly used to dissolve flavonoids confound the results. We propose that the role flavonoids play in S. meliloti chemotaxis is insignificant relative to other components released by alfalfa seeds.
Collapse
Affiliation(s)
- K Karl Compton
- Department of Biological Sciences, Life Sciences I, Virginia Tech, Blacksburg, VA, United States
| | - Sherry B Hildreth
- Department of Biological Sciences, Life Sciences I, Virginia Tech, Blacksburg, VA, United States
| | - Richard F Helm
- Department of Biochemistry, Fralin Life Science Institute, Virginia Tech, Blacksburg, VA, United States
| | - Birgit E Scharf
- Department of Biological Sciences, Life Sciences I, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
38
|
Franklin JB, Hockey K, Maherali H. Population-level variation in host plant response to multiple microbial mutualists. AMERICAN JOURNAL OF BOTANY 2020; 107:1389-1400. [PMID: 33029783 DOI: 10.1002/ajb2.1543] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 06/25/2020] [Indexed: 06/11/2023]
Abstract
PREMISE Multipartite mutualisms are widespread in nature, but population-level variation in these interactions is rarely quantified. In the model multipartite mutualism between legumes, arbuscular mycorrhizal (AM) fungi and rhizobia bacteria, host responses to microbial partners are expected to be synergistic because the nutrients provided by each microbe colimit plant growth, but tests of this prediction have not been done in multiple host populations. METHODS To test whether plant response to associations with AM fungi and rhizobia varies among host populations and whether synergistic responses to microbial mutualists are common, we grew 34 Medicago truncatula populations in a factorial experiment that manipulated the presence or absence of each mutualist. RESULTS Plant growth increased in response to each mutualist, but there were no synergistic effects. Instead, plant response to inoculation with AM fungi was an order of magnitude higher than with rhizobia. Plant response to AM fungi varied among populations, whereas responses to rhizobia were relatively uniform. There was a positive correlation between plant host response to each mutualist but no correlation between AM fungal colonization and rhizobia nodulation of plant roots. CONCLUSIONS The greater population divergence in host response to AM fungi relative to rhizobia, weak correlation in host response to each microbial mutualist, and the absence of a correlation between measures of AM fungal and rhizobia performance suggests that each plant-microbe mutualism evolved independently among M. truncatula populations.
Collapse
Affiliation(s)
- James B Franklin
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Kendra Hockey
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Hafiz Maherali
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| |
Collapse
|
39
|
Burghardt LT. Evolving together, evolving apart: measuring the fitness of rhizobial bacteria in and out of symbiosis with leguminous plants. THE NEW PHYTOLOGIST 2020; 228:28-34. [PMID: 31276218 DOI: 10.1111/nph.16045] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 06/20/2019] [Indexed: 05/11/2023]
Abstract
Most plant-microbe interactions are facultative, with microbes experiencing temporally and spatially variable selection. How this variation affects microbial evolution is poorly understood. Given its tractability and ecological and agricultural importance, the legume-rhizobia nitrogen-fixing symbiosis is a powerful model for identifying traits and genes underlying bacterial fitness. New technologies allow high-throughput measurement of the relative fitness of bacterial mutants, strains and species in mixed inocula in the host, rhizosphere and soil environments. I consider how host genetic variation (G × G), other environmental factors (G × E), and host life-cycle variation may contribute to the maintenance of genetic variation and adaptive trajectories of rhizobia - and, potentially, other facultative symbionts. Lastly, I place these findings in the context of developing beneficial inoculants in a changing climate.
Collapse
Affiliation(s)
- Liana T Burghardt
- Department of Plant and Microbial Biology, University of Minnesota, 140 Gortner Laboratory, 1479 Gortner Avenue, St Paul, MN, 55108, USA
| |
Collapse
|
40
|
Figueiredo ART, Kümmerli R. Microbial Mutualism: Will You Still Need Me, Will You Still Feed Me? Curr Biol 2020; 30:R1041-R1043. [PMID: 32961158 DOI: 10.1016/j.cub.2020.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
How might costly cooperation evolve from scratch? A new study using cross-feeding in a bacterial system suggests that spatial proximity between partners and reciprocal fitness feedbacks between them are essential drivers of stable cooperative partnerships.
Collapse
Affiliation(s)
- Alexandre R T Figueiredo
- Department of Quantitative Biomedicine, University of Zurich, 8057 Zurich, Switzerland; Department of Evolutionary Biology and Environmental Studies, University of Zurich, 8057 Zurich, Switzerland; University Research Priority Program on Evolution in Action, University of Zurich, 8008 Zurich, Switzerland
| | - Rolf Kümmerli
- Department of Quantitative Biomedicine, University of Zurich, 8057 Zurich, Switzerland; University Research Priority Program on Evolution in Action, University of Zurich, 8008 Zurich, Switzerland.
| |
Collapse
|
41
|
Chomicki G, Werner GDA, West SA, Kiers ET. Compartmentalization drives the evolution of symbiotic cooperation. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190602. [PMID: 32772665 DOI: 10.1098/rstb.2019.0602] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Across the tree of life, hosts have evolved mechanisms to control and mediate interactions with symbiotic partners. We suggest that the evolution of physical structures that allow hosts to spatially separate symbionts, termed compartmentalization, is a common mechanism used by hosts. Such compartmentalization allows hosts to: (i) isolate symbionts and control their reproduction; (ii) reward cooperative symbionts and punish or stop interactions with non-cooperative symbionts; and (iii) reduce direct conflict among different symbionts strains in a single host. Compartmentalization has allowed hosts to increase the benefits that they obtain from symbiotic partners across a diversity of interactions, including legumes and rhizobia, plants and fungi, squid and Vibrio, insects and nutrient provisioning bacteria, plants and insects, and the human microbiome. In cases where compartmentalization has not evolved, we ask why not. We argue that when partners interact in a competitive hierarchy, or when hosts engage in partnerships which are less costly, compartmentalization is less likely to evolve. We conclude that compartmentalization is key to understanding the evolution of symbiotic cooperation. This article is part of the theme issue 'The role of the microbiome in host evolution'.
Collapse
Affiliation(s)
- Guillaume Chomicki
- Department of Biosciences, Durham University, Stockton Road, Durham DH1 3LE, UK
| | - Gijsbert D A Werner
- Department of Zoology, University of Oxford, Zoology Research and Administration Building, 11a Mansfield Road, Oxford OX1 3SZ, UK.,Netherlands Scientific Council for Government Policy, Buitenhof 34, 2513 AH Den Haag, The Netherlands
| | - Stuart A West
- Department of Zoology, University of Oxford, Zoology Research and Administration Building, 11a Mansfield Road, Oxford OX1 3SZ, UK
| | - E Toby Kiers
- Department of Ecological Science, VU University, Amsterdam, The Netherlands
| |
Collapse
|
42
|
Nguyen PL, van Baalen M. On the difficult evolutionary transition from the free-living lifestyle to obligate symbiosis. PLoS One 2020; 15:e0235811. [PMID: 32730262 PMCID: PMC7392539 DOI: 10.1371/journal.pone.0235811] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 06/23/2020] [Indexed: 12/17/2022] Open
Abstract
Obligate symbiosis evolved from free-living individuals most likely via the intermediate stage of facultative symbiosis. However, why should facultative symbionts, who can live independently but also benefit from their partners if these are available, give up this best of both worlds? Using the adaptive dynamics approach, we analyse a simple model, focusing on one partner of the symbiosis, to gain more insight into the selective forces that make individuals forgo the ability to reproduce in the free-living state. Our results suggest that, similar to the parasitism-mutualism continuum, the free-living way of life and obligate symbiosis are two extremes of a continuum of the ability to reproduce independently of a partner. More importantly, facultative symbiosis should be the rule as for many parameter combinations completely giving up independent reproduction or adopting a pure free-living strategy is not so easy. We also show that if host encounter comes at a cost, individuals that put more effort into increasing the chances to meet with their partners are more likely to give up the ability to reproduce independently. Finally, our model does not specify the ecological interactions between hosts and symbionts but we discuss briefly how the ecological nature of an interaction can influence the transition from facultative to obligate symbiosis.
Collapse
Affiliation(s)
| | - Minus van Baalen
- Institut de Biologie de l’École Normale Supérieur, Paris, France
| |
Collapse
|
43
|
diCenzo GC, Tesi M, Pfau T, Mengoni A, Fondi M. Genome-scale metabolic reconstruction of the symbiosis between a leguminous plant and a nitrogen-fixing bacterium. Nat Commun 2020; 11:2574. [PMID: 32444627 PMCID: PMC7244743 DOI: 10.1038/s41467-020-16484-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 04/28/2020] [Indexed: 11/09/2022] Open
Abstract
The mutualistic association between leguminous plants and endosymbiotic rhizobial bacteria is a paradigmatic example of a symbiosis driven by metabolic exchanges. Here, we report the reconstruction and modelling of a genome-scale metabolic network of Medicago truncatula (plant) nodulated by Sinorhizobium meliloti (bacterium). The reconstructed nodule tissue contains five spatially distinct developmental zones and encompasses the metabolism of both the plant and the bacterium. Flux balance analysis (FBA) suggests that the metabolic costs associated with symbiotic nitrogen fixation are primarily related to supporting nitrogenase activity, and increasing N2-fixation efficiency is associated with diminishing returns in terms of plant growth. Our analyses support that differentiating bacteroids have access to sugars as major carbon sources, ammonium is the main nitrogen export product of N2-fixing bacteria, and N2 fixation depends on proton transfer from the plant cytoplasm to the bacteria through acidification of the peribacteroid space. We expect that our model, called 'Virtual Nodule Environment' (ViNE), will contribute to a better understanding of the functioning of legume nodules, and may guide experimental studies and engineering of symbiotic nitrogen fixation.
Collapse
Affiliation(s)
- George C diCenzo
- Department of Biology, University of Florence, Sesto Fiorentino, Italy
- Department of Biology, Queen's University, Kingston, ON, Canada
| | - Michelangelo Tesi
- Department of Biology, University of Florence, Sesto Fiorentino, Italy
| | - Thomas Pfau
- Life Sciences Research Unit, University of Luxembourg, Belvaux, Luxembourg
| | - Alessio Mengoni
- Department of Biology, University of Florence, Sesto Fiorentino, Italy.
| | - Marco Fondi
- Department of Biology, University of Florence, Sesto Fiorentino, Italy.
| |
Collapse
|
44
|
Sá C, Matos D, Pires A, Cardoso P, Figueira E. Airborne exposure of Rhizobium leguminosarum strain E20-8 to volatile monoterpenes: Effects on cells challenged by cadmium. JOURNAL OF HAZARDOUS MATERIALS 2020; 388:121783. [PMID: 31836364 DOI: 10.1016/j.jhazmat.2019.121783] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 11/22/2019] [Accepted: 11/27/2019] [Indexed: 06/10/2023]
Abstract
Volatile organic compounds (VOCs) are produced by plants, fungi, bacteria and animals. These compounds are metabolites originated mainly in catabolic reactions and can be involved in biological processes. In this study, the airborne effects of five monoterpenes (α-pinene, limonene, eucalyptol, linalool, and menthol) on the growth and oxidative status of the rhizobial strain Rhizobium leguminosarum E20-8 were studied, testing the hypothesis that these VOCs could influence Rhizobium growth and tolerance to cadmium. The tested monoterpenes were reported to have diverse effects, such as antibacterial activity (linalool, limonene, α-pinene, eucalyptol), modulation of antioxidant response or antioxidant properties (α-pinene and menthol). Our results showed that non-stressed cells of Rhizobium E20-8 have different responses (growth, cell damage and biochemistry) to monoterpenes, with α-pinene and eucalyptol increasing colonies growth. In stressed cells the majority of monoterpenes failed to minimize the detrimental effects of Cd and increased damage, decreased growth and altered cell biochemistry were observed. However, limonene (1 and 100 mM) and eucalyptol (100 nM) were able to increase the growth of Cd-stressed cells. Our study evidences the influence at-a-distance that organisms able to produce monoterpenes may have on the growth and tolerance of bacterial cells challenged by different environmental conditions.
Collapse
Affiliation(s)
- Carina Sá
- Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Diana Matos
- Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Adília Pires
- Department of Biology & CESAM, University of Aveiro, Aveiro, Portugal
| | - Paulo Cardoso
- Department of Biology & CESAM, University of Aveiro, Aveiro, Portugal
| | - Etelvina Figueira
- Department of Biology & CESAM, University of Aveiro, Aveiro, Portugal.
| |
Collapse
|
45
|
Obermeier MM, Gnädinger F, Durai Raj AC, Obermeier WA, Schmid CAO, Balàzs H, Schröder P. Under temperate climate, the conversion of grassland to arable land affects soil nutrient stocks and bacteria in a short term. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 703:135494. [PMID: 31761356 DOI: 10.1016/j.scitotenv.2019.135494] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/10/2019] [Accepted: 11/11/2019] [Indexed: 06/10/2023]
Abstract
Projected population growth and climate change will make it inevitable to convert neglected and marginal land into productive arable land. We investigate the influence of agricultural management practices on nutrient stocks and soil functions during the conversion of former extensively used grassland to arable land. Effects of grassland removal, tillage, intercropping with faba bean (Vicia faba) and its later incorporation were studied with respect to soil properties and bacterial community structure. Therefore, composite samples were collected with a core sampler from the topsoil (0-20 cm) in (a) the initial grassland, (b) the transitional phase during the vegetation period of V. faba, (c) after ploughing the legume in, and (d) untreated controls. In all samples, nitrate-N, ammonium-N, dissolved organic carbon (DOC) and total nitrogen bound (TNb) were analyzed and comparisons of the bacterial community structure after 16S-amplicon sequencing were performed to assess soil functions. Mineralization after grassland conversion followed by the biological nitrogen fixation of broad beans enhanced the nitrate-N content in bulk soil from 4 to almost 50 μg N g-1dw. Bacterial community structure on phylum level in bulk soil was dominated by Proteobacteria, Actinobacteria, Acidobacteria, Chloroflexi, and Bacteroidetes and remained almost stable. However, alpha and beta-diversity analysis revealed a change of the bacterial composition at the final state of the conversion. This change was primarily driven by increasing abundances of the genera Massilia and Lysobacter, both members of the Proteobacteria, after the decay of the leguminous plant residues. Furthermore, increasing abundances of the family Gaiellaceae and its genus Gaiella fostered this change and were related to the decreasing carbon to nitrogen ratio. In short, gentle management strategies could replace the input of mineral fertilizer with the aim to contribute to future sustainable and intensified production even on converted grassland.
Collapse
Affiliation(s)
- Michael M Obermeier
- Helmholtz Zentrum München GmbH, Research Unit for Comparative Microbiome Analysis, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Friederike Gnädinger
- Helmholtz Zentrum München GmbH, Research Unit for Comparative Microbiome Analysis, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Abilash C Durai Raj
- Helmholtz Zentrum München GmbH, Research Unit for Comparative Microbiome Analysis, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Wolfgang A Obermeier
- Ludwig-Maximilians-Universität München, Research and Teaching Unit for Physical Geography and Land Use Systems, Luisenstraße 37, 80333 München, Germany
| | - Christoph A O Schmid
- Helmholtz Zentrum München GmbH, Research Unit for Comparative Microbiome Analysis, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Helga Balàzs
- Helmholtz Zentrum München GmbH, Research Unit for Comparative Microbiome Analysis, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Peter Schröder
- Helmholtz Zentrum München GmbH, Research Unit for Comparative Microbiome Analysis, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany.
| |
Collapse
|
46
|
Dupin SE, Geurts R, Kiers ET. The Non-Legume Parasponia andersonii Mediates the Fitness of Nitrogen-Fixing Rhizobial Symbionts Under High Nitrogen Conditions. FRONTIERS IN PLANT SCIENCE 2020; 10:1779. [PMID: 32117343 PMCID: PMC7019102 DOI: 10.3389/fpls.2019.01779] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 12/20/2019] [Indexed: 05/13/2023]
Abstract
Organisms rely on symbiotic associations for metabolism, protection, and energy. However, these intimate partnerships can be vulnerable to exploitation. What prevents microbial mutualists from parasitizing their hosts? In legumes, there is evidence that hosts have evolved sophisticated mechanisms to manage their symbiotic rhizobia, but the generality and evolutionary origins of these control mechanisms are under debate. Here, we focused on the symbiosis between Parasponia hosts and N2-fixing rhizobium bacteria. Parasponia is the only non-legume lineage to have evolved a rhizobial symbiosis and thus provides an evolutionary replicate to test how rhizobial exploitation is controlled. A key question is whether Parasponia hosts can prevent colonization of rhizobia under high nitrogen conditions, when the contribution of the symbiont becomes nonessential. We grew Parasponia andersonii inoculated with Bradyrhizobium elkanii under four ammonium nitrate concentrations in a controlled growth chamber. We measured shoot and root dry weight, nodule number, nodule fresh weight, nodule volume. To quantify viable rhizobial populations in planta, we crushed nodules and determined colony forming units (CFU), as a rhizobia fitness proxy. We show that, like legumes and actinorhizal plants, P. andersonii is able to control nodule symbiosis in response to exogenous nitrogen. While the relative host growth benefits of inoculation decreased with nitrogen fertilization, our highest ammonium nitrate concentration (3.75 mM) was sufficient to prevent nodule formation on inoculated roots. Rhizobial populations were highest in nitrogen free medium. While we do not yet know the mechanism, our results suggest that control mechanisms over rhizobia are not exclusive to the legume clade.
Collapse
Affiliation(s)
- Simon E. Dupin
- Department of Ecological Science, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Department of Plant Sciences, Wageningen University, Wageningen, Netherlands
| | - René Geurts
- Department of Plant Sciences, Wageningen University, Wageningen, Netherlands
| | - E. Toby Kiers
- Department of Ecological Science, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
47
|
More Than a Functional Group: Diversity within the Legume–Rhizobia Mutualism and Its Relationship with Ecosystem Function. DIVERSITY-BASEL 2020. [DOI: 10.3390/d12020050] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Studies of biodiversity and ecosystem function (BEF) have long focused on the role of nitrogen (N)-fixing legumes as a functional group that occupies a distinct and important niche relative to other plants. Because of their relationship with N-fixing rhizobial bacteria, these legumes access a different pool of N than other plants and therefore directly contribute to increases in productivity and N-cycling. Despite their recognized importance in the BEF literature, the field has not moved far beyond investigating the presence/absence of the legume functional group in species mixtures. Here, we synthesize existing information on how the diversity (species richness and functional diversity) of both legumes and the rhizobia that they host impact ecosystem functions, such as nitrogen fixation and primary productivity. We also discuss the often-overlooked reciprocal direction of the BEF relationship, whereby ecosystem function can influence legume and rhizobial diversity. We focus on BEF mechanisms of selection, complementarity, facilitation, competitive interference, and dilution effects to explain how diversity in the legume–rhizobia mutualism can have either positive or negative effects on ecosystem function—mechanisms that can operate at scales from rhizobial communities affecting individual legume functions to legume communities affecting landscape-scale ecosystem functions. To fully understand the relationship between biodiversity and ecosystem function, we must incorporate the full diversity of this mutualism and its reciprocal relationship with ecosystem function into our evolving BEF framework.
Collapse
|
48
|
de los Reyes AMM, Ocampo ETM, Manuel MCC, Mendoza BC. Analysis of the Bacterial and Fungal Community Profiles in Bulk Soil and Rhizospheres of Three Mungbean [<i>Vigna radiata</i> (L.) R. Wilczek] Genotypes through PCR-DGGE. INTERNATIONAL LETTERS OF NATURAL SCIENCES 2020. [DOI: 10.56431/p-9q7fup] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Each plant species is regarded to substantially influence and thus, select for specific rhizosphere microbial populations. This is considered in the exploitation of soil microbial diversity associated with important crops, which has been of interest in modern agricultural practices for sustainable productivity. This study used PCR-DGGE (polymerase chain reaction - denaturing gradient gel electrophoresis) in order to obtain an initial assessment of the bacterial and fungal communities associated in bulk soil and rhizospheres of different mungbean genotypes under natural field conditions. Integrated use of multivariate analysis and diversity index showed plant growth stage as the primary driver of community shifts in both microbial groups while rhizosphere effect was found to be less discrete in fungal communities. On the other hand, genotype effect was not discerned but not inferred to be absent due to possible lack of manifestations of differences among genotypes based on tolerance to drought under non-stressed environment, and due to detection limits of DGGE. Sequence analysis of prominent members further revealed that Bacillus and Arthrobacter species were dominant in bacterial communities whereas members of Ascomycota and Basidiomycota were common in fungal communities of mungbean. Overall, fungal communities had higher estimated diversity and composition heterogeneity, and were more dynamic under plant growth influence, rhizosphere effect and natural environmental conditions during mungbean growth in upland field. These primary evaluations are prerequisite to understanding the interactions between plant and rhizosphere microorganisms with the intention of employing their potential use for sustainable crop production.
Collapse
|
49
|
de los Reyes AMM, Ocampo ETM, Manuel MCC, Mendoza BC. Analysis of the Bacterial and Fungal Community Profiles in Bulk Soil and Rhizospheres of Three Mungbean [ Vigna radiata (L.) R. Wilczek] Genotypes through PCR-DGGE. INTERNATIONAL LETTERS OF NATURAL SCIENCES 2020. [DOI: 10.18052/www.scipress.com/ilns.77.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Each plant species is regarded to substantially influence and thus, select for specific rhizosphere microbial populations. This is considered in the exploitation of soil microbial diversity associated with important crops, which has been of interest in modern agricultural practices for sustainable productivity. This study used PCR-DGGE (polymerase chain reaction - denaturing gradient gel electrophoresis) in order to obtain an initial assessment of the bacterial and fungal communities associated in bulk soil and rhizospheres of different mungbean genotypes under natural field conditions. Integrated use of multivariate analysis and diversity index showed plant growth stage as the primary driver of community shifts in both microbial groups while rhizosphere effect was found to be less discrete in fungal communities. On the other hand, genotype effect was not discerned but not inferred to be absent due to possible lack of manifestations of differences among genotypes based on tolerance to drought under non-stressed environment, and due to detection limits of DGGE. Sequence analysis of prominent members further revealed that Bacillus and Arthrobacter species were dominant in bacterial communities whereas members of Ascomycota and Basidiomycota were common in fungal communities of mungbean. Overall, fungal communities had higher estimated diversity and composition heterogeneity, and were more dynamic under plant growth influence, rhizosphere effect and natural environmental conditions during mungbean growth in upland field. These primary evaluations are prerequisite to understanding the interactions between plant and rhizosphere microorganisms with the intention of employing their potential use for sustainable crop production.
Collapse
|
50
|
Ramoneda J, Le Roux J, Frossard E, Bester C, Oettlé N, Frey B, Gamper HA. Insights from invasion ecology: Can consideration of eco-evolutionary experience promote benefits from root mutualisms in plant production? AOB PLANTS 2019; 11:plz060. [PMID: 31777649 PMCID: PMC6863469 DOI: 10.1093/aobpla/plz060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 09/13/2019] [Indexed: 06/10/2023]
Abstract
Mutualistic plant-microbial functioning relies on co-adapted symbiotic partners as well as conducive environmental conditions. Choosing particular plant genotypes for domestication and subsequent cultivar selection can narrow the gene pools of crop plants to a degree that they are no longer able to benefit from microbial mutualists. Elevated mineral nutrient levels in cultivated soils also reduce the dependence of crops on nutritional support by mutualists such as mycorrhizal fungi and rhizobia. Thus, current ways of crop production are predestined to compromise the propagation and function of microbial symbionts, limiting their long-term benefits for plant yield stability. The influence of mutualists on non-native plant establishment and spread, i.e. biological invasions, provides an unexplored analogue to contemporary crop production that accounts for mutualistic services from symbionts like rhizobia and mycorrhizae. The historical exposure of organisms to biotic interactions over evolutionary timescales, or so-called eco-evolutionary experience (EEE), has been used to explain the success of such invasions. In this paper, we stress that consideration of the EEE concept can shed light on how to overcome the loss of microbial mutualist functions following crop domestication and breeding. We propose specific experimental approaches to utilize the wild ancestors of crops to determine whether crop domestication compromised the benefits derived from root microbial symbioses or not. This can predict the potential for success of mutualistic symbiosis manipulation in modern crops and the maintenance of effective microbial mutualisms over the long term.
Collapse
Affiliation(s)
- Josep Ramoneda
- Group of Plant Nutrition, Department of Environmental Systems Science, ETH Zurich, Lindau, Switzerland
| | - Johannes Le Roux
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Emmanuel Frossard
- Group of Plant Nutrition, Department of Environmental Systems Science, ETH Zurich, Lindau, Switzerland
| | - Cecilia Bester
- South African Agricultural Research Council (ARC-Infruitec), Nieuwoudtville Northern Cape, Stellenbosch Central, Stellenbosch, South Africa
| | - Noel Oettlé
- Environmental Monitoring Group (EMG), Nieuwoudtville Northern Cape, South Africa
| | - Beat Frey
- Rhizosphere Processes Group, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| | | |
Collapse
|