1
|
Lu Q, Mo M, Liang Y, Xu N, Chen L, Xu X, Jin Z. Design and synthesis of strigolactone analogues and mimics containing indolin-2-one scaffold for the Phelipanche control. PEST MANAGEMENT SCIENCE 2025. [PMID: 40370281 DOI: 10.1002/ps.8904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 04/28/2025] [Accepted: 04/30/2025] [Indexed: 05/16/2025]
Abstract
BACKGROUND The broomrapes are root-parasitic weeds widely distributed in the temperate zone area. The effective management on the Phelipanche and Orobanche parasitic weeds still remains challenging to date. RESULTS Novel strigolactone (SL) analogues (X series) and mimics (O series) derived from indolin-2-one were designed and synthesized. Of them, compound O-3 showed nearly ten-fold higher seed germination activity (median effective concentration (EC50) = 0.0066 μm) towards Phelipanche aegyptiaca seeds compared to the control GR24. Moreover, it also showed prominent seed germination activity towards Phelipanche ramosa. At a dosage of 0.2 μm, the glasshouse experiment revealed that compound O-3 not only displayed the profitable P. aegyptiaca control, but also influenced fruit and plant stalk development in tomato cultivation. Theoretical computational studies indicated that compound O-3 could perfectly interact with catalytic triad of OmKAI2d4, and the oxime linker facilitate to release the active D ring species, thereby significantly improving bioactivity. CONCLUSIONS A class of SL mimics incorporating a unique oxime linker has been developed from indolin-2-one. Compound O-3 exhibited the highest seed germination activities toward the parasitic P. aegyptiaca and P. ramosa, and could serve as a promising lead compound for the Phelipanche control. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Qianghui Lu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, China
| | - Meilin Mo
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, China
| | - Yinhao Liang
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, China
| | - Niuniu Xu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, China
| | - Lianfang Chen
- The Agricultural Science Institute of the Second Division of Xinjiang Production and Construction Corps, Tiemenguan, China
| | - Xiaohua Xu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, China
| | - Zhong Jin
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, China
- College of Chemistry, Xinjiang University, Urumqi, China
| |
Collapse
|
2
|
Howe CJ, Nisbet RER. Phasing out photosynthesis - and weaponising chlorophyll? Trends Parasitol 2025; 41:339-340. [PMID: 40263028 DOI: 10.1016/j.pt.2025.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2025] [Accepted: 03/31/2025] [Indexed: 04/24/2025]
Abstract
Photosynthesis has been lost independently many times in eukaryote evolutionary history. Surprisingly, the ability to synthesise chlorophyll has sometimes been retained after loss of photosynthesis. Jacko-Reynolds et al. show this phenomenon in a group of Apicomplexa parasitising corals. Possible explanations include a role in organelle-to-nucleus signalling, molecular trickery, and defence against predators.
Collapse
Affiliation(s)
- Christopher J Howe
- Department of Biochemistry, University of Cambridge, Downing Site, Tennis Court Road, Cambridge, CB2 1QW, UK.
| | - R Ellen R Nisbet
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Sutton Bonington, Loughborough LE12 5RD, UK
| |
Collapse
|
3
|
Kirschner GK, Xiao TT, Jamil M, Al-Babili S, Lube V, Blilou I. A roadmap of haustorium morphogenesis in parasitic plants. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:7034-7044. [PMID: 37486862 PMCID: PMC10752351 DOI: 10.1093/jxb/erad284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/23/2023] [Indexed: 07/26/2023]
Abstract
Parasitic plants invade their host through their invasive organ, the haustorium. This organ connects to the vasculature of the host roots and hijacks water and nutrients. Although parasitism has evolved independently in plants, haustoria formation follows a similar mechanism throughout different plant species, highlighting the developmental plasticity of plant tissues. Here, we compare three types of haustoria formed by the root and shoot in the plant parasites Striga and Cuscuta. We discuss mechanisms underlying the interactions with their hosts and how different approaches have contributed to major understanding of haustoria formation and host invasion. We also illustrate the role of auxin and cytokinin in controlling this process.
Collapse
Affiliation(s)
- Gwendolyn K Kirschner
- BESE Division, Plant Cell and Developmental Biology, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Ting Ting Xiao
- BESE Division, Plant Cell and Developmental Biology, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Muhammad Jamil
- BESE Division, The BioActives Lab, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Salim Al-Babili
- BESE Division, The BioActives Lab, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Vinicius Lube
- BESE Division, Plant Cell and Developmental Biology, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Ikram Blilou
- BESE Division, Plant Cell and Developmental Biology, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| |
Collapse
|
4
|
Timilsena PR, Barrett CF, Piñeyro-Nelson A, Wafula EK, Ayyampalayam S, McNeal JR, Yukawa T, Givnish TJ, Graham SW, Pires JC, Davis JI, Ané C, Stevenson DW, Leebens-Mack J, Martínez-Salas E, Álvarez-Buylla ER, dePamphilis CW. Phylotranscriptomic Analyses of Mycoheterotrophic Monocots Show a Continuum of Convergent Evolutionary Changes in Expressed Nuclear Genes From Three Independent Nonphotosynthetic Lineages. Genome Biol Evol 2023; 15:evac183. [PMID: 36582124 PMCID: PMC9887272 DOI: 10.1093/gbe/evac183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/13/2022] [Accepted: 12/18/2022] [Indexed: 12/31/2022] Open
Abstract
Mycoheterotrophy is an alternative nutritional strategy whereby plants obtain sugars and other nutrients from soil fungi. Mycoheterotrophy and associated loss of photosynthesis have evolved repeatedly in plants, particularly in monocots. Although reductive evolution of plastomes in mycoheterotrophs is well documented, the dynamics of nuclear genome evolution remains largely unknown. Transcriptome datasets were generated from four mycoheterotrophs in three families (Orchidaceae, Burmanniaceae, Triuridaceae) and related green plants and used for phylogenomic analyses to resolve relationships among the mycoheterotrophs, their relatives, and representatives across the monocots. Phylogenetic trees based on 602 genes were mostly congruent with plastome phylogenies, except for an Asparagales + Liliales clade inferred in the nuclear trees. Reduction and loss of chlorophyll synthesis and photosynthetic gene expression and relaxation of purifying selection on retained genes were progressive, with greater loss in older nonphotosynthetic lineages. One hundred seventy-four of 1375 plant benchmark universally conserved orthologous genes were undetected in any mycoheterotroph transcriptome or the genome of the mycoheterotrophic orchid Gastrodia but were expressed in green relatives, providing evidence for massively convergent gene loss in nonphotosynthetic lineages. We designate this set of deleted or undetected genes Missing in Mycoheterotrophs (MIM). MIM genes encode not only mainly photosynthetic or plastid membrane proteins but also a diverse set of plastid processes, genes of unknown function, mitochondrial, and cellular processes. Transcription of a photosystem II gene (psb29) in all lineages implies a nonphotosynthetic function for this and other genes retained in mycoheterotrophs. Nonphotosynthetic plants enable novel insights into gene function as well as gene expression shifts, gene loss, and convergence in nuclear genomes.
Collapse
Affiliation(s)
- Prakash Raj Timilsena
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania
| | - Craig F Barrett
- Department of Biology, West Virginia University, Morgantown, West Virginia
| | - Alma Piñeyro-Nelson
- Departamento de Producción Agrícola y Animal, Universidad Autónoma Metropolitana-Xochimilco, Mexico City, Mexico
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Eric K Wafula
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania
| | | | - Joel R McNeal
- Department of Ecology, Evolution, and Organismal Biology, Kennesaw State University, Georgia
| | - Tomohisa Yukawa
- Tsukuba Botanical Garden, National Museum of Nature and Science, 1-1, Amakubo 4, Tsukuba, 305-0005, Japan
| | - Thomas J Givnish
- Department of Botany, University of Wisconsin-Madison, Madison, Wisconsin
| | - Sean W Graham
- Department of Botany, University of British Columbia, Vancouver, British Columbia, V6T 1Z4Canada
| | - J Chris Pires
- Division of Biological Sciences, University of Missouri–Columbia, Columbia, Missouri
| | - Jerrold I Davis
- School of Integrative Plant Sciences and L.H. Bailey Hortorium, Cornell University, Ithaca, New York, 1485
| | - Cécile Ané
- Department of Botany, University of Wisconsin-Madison, Madison, Wisconsin
- Department of Statistics, University of Wisconsin–Madison, Madison, Wisconsin
| | | | - Jim Leebens-Mack
- Department of Plant Biology, University of Georgia, Athens, Georgia, 3060
| | - Esteban Martínez-Salas
- Departmento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, México
| | - Elena R Álvarez-Buylla
- Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Claude W dePamphilis
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania
| |
Collapse
|
5
|
Miao Y, Chen H, Xu W, Yang Q, Liu C, Huang L. Structural mutations of small single copy (SSC) region in the plastid genomes of five Cistanche species and inter-species identification. BMC PLANT BIOLOGY 2022; 22:412. [PMID: 36008757 PMCID: PMC9404617 DOI: 10.1186/s12870-022-03682-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Cistanche is an important genus of Orobanchaceae, with critical medicinal, economic, and desertification control values. However, the phylogenetic relationships of Cistanche genus remained obscure. To date, no effective molecular markers have been reported to discriminate effectively the Cistanche closely related species reported here. In this study, we obtained and characterized the plastomes of four Cistanche species from China, to clarify the phylogenetic relationship within the genus, and to develop molecular markers for species discrimination. RESULTS: Four Cistanche species (Cistanche deserticola, Cistanche salsa, Cistanche tubulosa and Cistanche sinensis), were deep-sequenced with Illumina. Their plastomes were assembled using SPAdes and annotated using CPGAVAS2. The plastic genomes were analyzed in detail, finding that all showed the conserved quadripartite structure (LSC-IR-SSC-IR) and with full sizes ranging from 75 to 111 Kbp. We observed a significant contraction of small single copy region (SSC, ranging from 0.4-29 Kbp) and expansion of inverted repeat region (IR, ranging from 6-30 Kbp), with C. deserticola and C. salsa showing the smallest SSCs with only one gene (rpl32). Compared with other Orobanchaceae species, Cistanche species showed extremely high rates of gene loss and pseudogenization, as reported for other parasitic Orobanchaceae species. Furthermore, analysis of sequence divergence on protein-coding genes showed the three genes (rpl22, clpP and ycf2) had undergone positive selection in the Cistanche species under study. In addition, by comparison of all available Cistanche plastomes we found 25 highly divergent intergenic spacer (IGS) regions that were used to predict two DNA barcode markers (Cis-mk01 and Cis-mk02 based on IGS region trnR-ACG-trnN-GUU) and eleven specific DNA barcode markers using Ecoprimer software. Experimental validation showed 100% species discrimination success rate with both type of markers. CONCLUSION Our findings have shown that Cistanche species are an ideal model to investigate the structure variation, gene loss and pseudogenization during the process of plastome evolution in parasitic species, providing new insights into the evolutionary relationships among the Cistanche species. In addition, the developed DNA barcodes markers allow the proper species identification, ensuring the effective and safe use of Cistanche species as medicinal products.
Collapse
Affiliation(s)
- Yujing Miao
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
| | - Haimei Chen
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
| | - Wanqi Xu
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
| | - Qiaoqiao Yang
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
| | - Chang Liu
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China.
| | - Linfang Huang
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China.
| |
Collapse
|
6
|
Xu Y, Zhang J, Ma C, Lei Y, Shen G, Jin J, Eaton DAR, Wu J. Comparative genomics of orobanchaceous species with different parasitic lifestyles reveals the origin and stepwise evolution of plant parasitism. MOLECULAR PLANT 2022; 15:1384-1399. [PMID: 35854658 DOI: 10.1016/j.molp.2022.07.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/27/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Orobanchaceae is the largest family of parasitic plants, containing autotrophic and parasitic plants with all degrees of parasitism. This makes it by far the best family for studying the origin and evolution of plant parasitism. Here we provide three high-quality genomes of orobanchaceous plants, the autotrophic Lindenbergia luchunensis and the holoparasitic plants Phelipanche aegyptiaca and Orobanche cumana. Phylogenomic analysis of these three genomes together with those previously published and the transcriptomes of other orobanchaceous species created a robust phylogenetic framework for Orobanchaceae. We found that an ancient whole-genome duplication (WGD; about 73.48 million years ago), which occurred earlier than the origin of Orobanchaceae, might have contributed to the emergence of parasitism. However, no WGD events occurred in any lineage of orobanchaceous parasites except for Striga after divergence from their autotrophic common ancestor, suggesting that, in contrast with previous speculations, WGD is not associated with the emergence of holoparasitism. We detected evident convergent gene loss in all parasites within Orobanchaceae and between Orobanchaceae and dodder Cuscuta australis. The gene families in the orobanchaceous parasites showed a clear pattern of recent gains and expansions. The expanded gene families are enriched in functions related to the development of the haustorium, suggesting that recent gene family expansions may have facilitated the adaptation of orobanchaceous parasites to different hosts. This study illustrates a stepwise pattern in the evolution of parasitism in the orobanchaceous parasites and will facilitate future studies on parasitism and the control of parasitic plants in agriculture.
Collapse
Affiliation(s)
- Yuxing Xu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Jingxiong Zhang
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Canrong Ma
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunting Lei
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Guojing Shen
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Jianjun Jin
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY 10027, USA
| | - Deren A R Eaton
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY 10027, USA
| | - Jianqiang Wu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
7
|
Kuang J, Wang Y, Mao K, Milne R, Wang M, Miao N. Transcriptome Profiling of a Common Mistletoe Species Parasitizing Four Typical Host Species in Urban Southwest China. Genes (Basel) 2022; 13:genes13071173. [PMID: 35885955 PMCID: PMC9323523 DOI: 10.3390/genes13071173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 01/07/2023] Open
Abstract
Comparing gene expressions among parasitic plants infecting different host species can have significant implications for understanding host–parasite interactions. Taxillus nigrans is a common hemiparasitic species in Southwest China that parasitizes a variety of host species. However, a lack of nucleotide sequence data to date has hindered transcriptome-level research on T. nigrans. In this study, the transcriptomes of T. nigrans individuals parasitizing four typical host species (Broussonetia papyrifera (Bpap), a broad-leaved tree species; Cryptomeria fortunei (Cfor), a coniferous tree species; Cinnamomum septentrionale (Csep), an evergreen tree species; and Ginkgo biloba (Gbil), a deciduous-coniferous tree species) were sequenced, and the expression profiles and metabolic pathways were compared among hosts. A total of greater than 400 million reads were generated in nine cDNA libraries. These were de novo assembled into 293823 transcripts with an N50 value of 1790 bp. A large number of differentially expressed genes (DEGs) were identified when comparing T. nigrans individuals on different host species: Bpap vs. Cfor (1253 DEGs), Bpap vs. Csep (864), Bpap vs. Gbil (517), Cfor vs. Csep (259), Cfor vs. Gbil (95), and Csep vs. Gbil (40). Four hundred and fifteen unigenes were common to all six pairwise comparisons; these were primarily associated with Cytochrome P450 and environmental adaptation, as determined in a KEGG enrichment analysis. Unique unigenes were also identified, specific to Bpap vs. Cfor (808 unigenes), Bpap vs. Csep (329 unigenes), Bpap vs. Gbil (87 unigenes), Cfor vs. Csep (108 unigenes), Cfor vs. Gbil (32 unigenes), and Csep vs. Gbil comparisons (23 unigenes); partial unigenes were associated with the metabolism of terpenoids and polyketides regarding plant hormone signal transduction. Weighted gene co-expression network analysis (WGCNA) revealed four modules that were associated with the hosts. These results provide a foundation for further exploration of the detailed molecular mechanisms involved in plant parasitism.
Collapse
Affiliation(s)
- Jingge Kuang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China; (J.K.); (Y.W.); (K.M.)
| | - Yufei Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China; (J.K.); (Y.W.); (K.M.)
| | - Kangshan Mao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China; (J.K.); (Y.W.); (K.M.)
| | - Richard Milne
- Institute of Molecular Plant Sciences, The University of Edinburgh, Edinburgh EH9 3JH, UK;
| | - Mingcheng Wang
- Institute for Advanced Study, Chengdu University, Chengdu 610064, China;
| | - Ning Miao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China; (J.K.); (Y.W.); (K.M.)
- Correspondence:
| |
Collapse
|
8
|
Zhang L, Cao X, Yao Z, Dong X, Chen M, Xiao L, Zhao S. Identification of risk areas for
Orobanche cumana
and
Phelipanche aegyptiaca
in China, based on the major host plant and CMIP6 climate scenarios. Ecol Evol 2022; 12:e8824. [PMID: 35462975 PMCID: PMC9018459 DOI: 10.1002/ece3.8824] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 03/26/2022] [Accepted: 03/29/2022] [Indexed: 11/24/2022] Open
Abstract
Parasitic broomrape of the genus Orobanche poses a formidable threat to producing many crops in Europe, Africa, and Asia. Orobanche cumana and Phelipanche aegyptiaca are two of China's most destructive root parasitic plants, causing extreme sunflower, tomato, melon, and tobacco damage. However, the potentially suitable areas of O. cumana and P. aegyptiaca in China have not been predicted, and little is known about the important environmental factors that affect their extension. Due to their invasiveness and economic importance, studying how climate change and host plants may affect broomrapes’ distribution is necessary. In the study, we first predicted the potentially suitable areas of the invasive weeds (O. cumana and P. aegyptiaca) and their susceptible host plants (Helianthus annuus and Solanum lycopersicon) using MaxEnt. Then, the risk zones and distribution shifts of two broomrapes under different climate conditions were identified by incorporating the distribution of their susceptible host plants. The results highlighted that the potential middle‐ and high‐risk zones for O. cumana and P. aegyptiaca amounted to 197.88 × 104 km2 and 12.90 × 104 km2, respectively. Notably, Xinjiang and Inner Mongolia were the highest‐risk areas within the distribution and establishment of O. cumana and P. aegyptiaca. Elevation and topsoil pH were the decisive factors for shaping O. cumana distribution; precipitation seasonality and annual precipitation were the dominant bioclimatic variables limiting the spread of P. aegyptiaca. The potentially suitable areas and risk zones of O. cumana would decrease significantly, and those of P. aegyptiaca would fluctuate slightly under future climate change scenarios. Overall, our study suggested that the two broomrapes’ risk zones will significantly northward to higher latitudes. The results will provide suggestions for preventing O. cumana and P. aegyptiaca.
Collapse
Affiliation(s)
- Lu Zhang
- Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization Shihezi University Shihezi China
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization Xinjiang Uygur Autonomous Region Shihezi University Shihezi China
| | - Xiaolei Cao
- Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization Shihezi University Shihezi China
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization Xinjiang Uygur Autonomous Region Shihezi University Shihezi China
| | - Zhaoqun Yao
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization Xinjiang Uygur Autonomous Region Shihezi University Shihezi China
| | - Xue Dong
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization Xinjiang Uygur Autonomous Region Shihezi University Shihezi China
| | - Meixiu Chen
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization Xinjiang Uygur Autonomous Region Shihezi University Shihezi China
| | - Lifeng Xiao
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization Xinjiang Uygur Autonomous Region Shihezi University Shihezi China
| | - Sifeng Zhao
- Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization Shihezi University Shihezi China
| |
Collapse
|
9
|
Schelkunov MI, Nuraliev MS, Logacheva MD. Genomic comparison of non-photosynthetic plants from the family Balanophoraceae with their photosynthetic relatives. PeerJ 2021; 9:e12106. [PMID: 34540375 PMCID: PMC8415285 DOI: 10.7717/peerj.12106] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 08/11/2021] [Indexed: 12/02/2022] Open
Abstract
The plant family Balanophoraceae consists entirely of species that have lost the ability to photosynthesize. Instead, they obtain nutrients by parasitizing other plants. Recent studies have revealed that plastid genomes of Balanophoraceae exhibit a number of interesting features, one of the most prominent of those being a highly elevated AT content of nearly 90%. Additionally, the nucleotide substitution rate in the plastid genomes of Balanophoraceae is an order of magnitude greater than that of their photosynthetic relatives without signs of relaxed selection. Currently, there are no definitive explanations for these features. Given these unusual features, we hypothesised that the nuclear genomes of Balanophoraceae may also provide valuable information in regard to understanding the evolution of non-photosynthetic plants. To gain insight into these genomes, in the present study we analysed the transcriptomes of two Balanophoraceae species (Rhopalocnemis phalloides and Balanophora fungosa) and compared them to the transcriptomes of their close photosynthetic relatives (Daenikera sp., Dendropemon caribaeus, and Malania oleifera). Our analysis revealed that the AT content of the nuclear genes of Balanophoraceae did not markedly differ from that of the photosynthetic relatives. The nucleotide substitution rate in the genes of Balanophoraceae is, for an unknown reason, several-fold larger than in the genes of photosynthetic Santalales; however, the negative selection in Balanophoraceae is likely stronger. We observed an extensive loss of photosynthesis-related genes in the Balanophoraceae family members. Additionally, we did not observe transcripts of several genes whose products function in plastid genome repair. This implies their loss or very low expression, which may explain the increased nucleotide substitution rate and AT content of the plastid genomes.
Collapse
Affiliation(s)
- Mikhail I Schelkunov
- Skolkovo Institute of Science and Technology, Moscow, Russia.,Institute for Information Transmission Problems, Moscow, Russia
| | - Maxim S Nuraliev
- Faculty of Biology, Moscow State University, Moscow, Russia.,Joint Russian-Vietnamese Tropical Scientific and Technological Center, Hanoi, Vietnam
| | | |
Collapse
|
10
|
Yoshida S, Kee YJ. Large-scale sequencing paves the way for genomic and genetic analyses in parasitic plants. Curr Opin Biotechnol 2021; 70:248-254. [PMID: 34242992 DOI: 10.1016/j.copbio.2021.06.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/10/2021] [Accepted: 06/15/2021] [Indexed: 02/06/2023]
Abstract
Parasitic plants pose a serious agricultural threat, but are also precious resources for valuable metabolites. The heterotrophic nature of these plants has resulted in the development of several morphological and physiological features that are of evolutionary significance. Recent advances in large-scale sequencing technology have provided insights into the evolutionary and molecular mechanisms of plant parasitism. Genome sequencing has revealed gene losses and horizontal gene transfers in parasitic plants. Mobile signals traveling between the parasite and host may have contributed to the increased fitness of parasitic life styles. Transcriptome analyses implicate shared processes among various parasitic species and the establishment of functional analysis is beginning to reveal molecular mechanisms during host and parasite interactions.
Collapse
Affiliation(s)
- Satoko Yoshida
- Nara Institute of Science and Technology, Grad. School Sci. Tech., Ikoma, Nara, Japan; JST, PRESTO, Japan.
| | - Yee Jia Kee
- Nara Institute of Science and Technology, Grad. School Sci. Tech., Ikoma, Nara, Japan
| |
Collapse
|
11
|
Lyko P, Wicke S. Genomic reconfiguration in parasitic plants involves considerable gene losses alongside global genome size inflation and gene births. PLANT PHYSIOLOGY 2021; 186:1412-1423. [PMID: 33909907 PMCID: PMC8260112 DOI: 10.1093/plphys/kiab192] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 04/13/2021] [Indexed: 05/02/2023]
Abstract
Parasitic plant genomes and transcriptomes reveal numerous genetic innovations, the functional-evolutionary relevance and roles of which open unprecedented research avenues.
Collapse
Affiliation(s)
- Peter Lyko
- Institute for Biology, Humboldt-University of Berlin, Germany
| | - Susann Wicke
- Institute for Biology, Humboldt-University of Berlin, Germany
- Author for communication:
| |
Collapse
|
12
|
Kösters LM, Wiechers S, Lyko P, Müller KF, Wicke S. WARPP-web application for the research of parasitic plants. PLANT PHYSIOLOGY 2021; 185:1374-1380. [PMID: 33793906 PMCID: PMC8133606 DOI: 10.1093/plphys/kiaa105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 11/23/2020] [Indexed: 05/18/2023]
Abstract
The lifestyle of parasitic plants is associated with peculiar morphological, genetic, and physiological adaptations that existing online plant-specific resources fail to adequately represent. Here, we introduce the Web Application for the Research of Parasitic Plants (WARPP) as an online resource dedicated to advancing research and development of parasitic plant biology. WARPP is a framework to facilitate international efforts by providing a central hub of curated evolutionary, ecological, and genetic data. The first version of WARPP provides a community hub for researchers to test this web application, for which curated data revolving around the economically important Broomrape family (Orobanchaceae) is readily accessible. The initial set of WARPP online tools includes a genome browser that centralizes genomic information for sequenced parasitic plant genomes, an orthogroup summary detailing the presence and absence of orthologous genes in parasites compared with nonparasitic plants, and an ancestral trait explorer showing the evolution of life-history preferences along phylogenies. WARPP represents a project under active development and relies on the scientific community to populate the web app's database and further the development of new analysis tools. The first version of WARPP can be securely accessed at https://parasiticplants.app. The source code is licensed under GNU GPLv2 and is available at https://github.com/wickeLab/WARPP.
Collapse
Affiliation(s)
- Lara M Kösters
- Plant Evolutionary Biology, Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
- Plant Systematics and Biodiversity, Institute for Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sarah Wiechers
- Evolution and Biodiversity of Plants, Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Peter Lyko
- Plant Evolutionary Biology, Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
- Plant Systematics and Biodiversity, Institute for Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Kai F Müller
- Evolution and Biodiversity of Plants, Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Susann Wicke
- Plant Evolutionary Biology, Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
- Plant Systematics and Biodiversity, Institute for Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
13
|
Mutuku JM, Cui S, Yoshida S, Shirasu K. Orobanchaceae parasite-host interactions. THE NEW PHYTOLOGIST 2021; 230:46-59. [PMID: 33202061 DOI: 10.1111/nph.17083] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/12/2020] [Indexed: 06/11/2023]
Abstract
Parasitic plants in the family Orobanchaceae, such as Striga, Orobanche and Phelipanche, often cause significant damage to agricultural crops. The Orobanchaceae family comprises more than 2000 species in about 100 genera, providing an excellent system for studying the molecular basis of parasitism and its evolution. Notably, the establishment of model Orobanchaceae parasites, such as Triphysaria versicolor and Phtheirospermum japonicum, that can infect the model host Arabidopsis, has greatly facilitated transgenic analyses of genes important for parasitism. In addition, recent genomic and transcriptomic analyses of several Orobanchaceae parasites have revealed fascinating molecular insights into the evolution of parasitism and strategies for adaptation in this family. This review highlights recent progress in understanding how Orobanchaceae parasites attack their hosts and how the hosts mount a defense against the threats.
Collapse
Affiliation(s)
- J Musembi Mutuku
- The Central and West African Virus Epidemiology (WAVE). Pôle Scientifique et d'Innovation de Bingerville, Université Félix Houphouët-Boigny, BP V34, Abidjan, 01, Côte d'Ivoire
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Songkui Cui
- Institute for Research Initiatives, Division for Research Strategy, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Satoko Yoshida
- Institute for Research Initiatives, Division for Research Strategy, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Ken Shirasu
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| |
Collapse
|
14
|
The Changes of Leaf Reflectance Spectrum and Leaf Functional Traits of Osmanthus fragrans Are Related to the Parasitism of Cuscuta japonica. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11041937] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Studies on the influence of parasitism on plants based on hyperspectral analysis have not been reported so far. To fully understand the variation characteristics and laws of leaf reflectance spectrum and functional traits after the urban plant parasitized by Cuscuta japonica Choisy. Osmanthus fragrans (Thunb.) Lour. was taken as the research object to analyze the spectral reflectance and functional traits characteristics at different parasitical stages. Results showed that the spectral reflectance was higher than those being parasitized in the visible and near-infrared range. The spectral reflectance in 750~1400 nm was the sensitive range of spectral response of host plant to parasitic infection, which is universal at different parasitic stages. We established a chlorophyll inversion model (y = −65913.323x + 9.783, R2 = 0.6888) based on the reflectance of red valley, which can be used for chlorophyll content of the parasitic Osmanthus fragrans. There was a significant correlation between spectral parameters and chlorophyll content index. Through the change of spectral parameters, we can predict the chlorophyll content of Osmanthus fragrans under different parasitic degrees. After being parasitized, the leaf functional traits of host plant were generally characterized by large leaf thickness, small leaf area, small specific leaf area, low relative chlorophyll content, high leaf dry matter content and high leaf tissue density. These findings indicate that the host plant have adopted a certain trade-off strategy to maintain their growth in the invasion environment of parasitic plants. Therefore, we suspect that the leaf economics spectrum may also exist in the parasitic environment, and there was a general trend toward the “slow investment-return” type in the global leaf economics spectrum.
Collapse
|
15
|
Chen L, Guo Q, Zhu Z, Wan H, Qin Y, Zhang H. Integrated analyses of the transcriptome and small RNA of the hemiparasitic plant Monochasma savatieri before and after establishment of parasite-host association. BMC PLANT BIOLOGY 2021; 21:90. [PMID: 33568062 PMCID: PMC7877053 DOI: 10.1186/s12870-021-02861-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 01/28/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Monochasma savatieri is a medicinal root hemiparasitic herb that extracts water and nutrients from the host plant via a haustorium. M. savatieri exhibits an enhanced growth after the establishment of parasite-host associations, but little is known about the molecular mechanism responsible. In this study, endogenous hormones, RNA sequencing and small RNA sequencing analysis were performed on M. savatieri before and after establishment of parasite-host associations. RESULTS When grown with the host, decreased contents of jasmonic acid (JA) and indole-3-acetic acid (IAA) and increased abscisic acid (ABA) content were observed in M. savatieri with the established parasitic relationship. When grown with the host, 46,424 differentially expressed genes (DEGs) and 162 differentially expressed miRNAs (DEmiRs) were identified in the comparison between M. savatieri with the established parasitic relationship and without the established parasitic relationship. Analysis of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) showed that these DEGs and targets of DEmiRs mostly participated in plant hormone signal transduction, starch and sucrose metabolism, carbohydrate metabolism, cell growth and death, and transport and catabolism. Furthermore, correlation analysis of mRNA and miRNA revealed that 10 miRNA-target pairs from novel_mir65, novel_mir40, novel_mir80, miR397-5p_1, novel_mir36, novel_mir25 and novel_mir17 may have important roles in regulating the parasitic development of M. savatieri. CONCLUSIONS Our study not only expands the understanding of enhanced growth in M. savatieri after the establishment of parasite-host associations, but also first provides abundant resources for future molecular and genetic studies in M. savatieri.
Collapse
Affiliation(s)
- Lanlan Chen
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qiaosheng Guo
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zaibiao Zhu
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Hefang Wan
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuhao Qin
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hui Zhang
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
16
|
Meng R, Luo LY, Zhang JY, Zhang DG, Nie ZL, Meng Y. The Deep Evolutionary Relationships of the Morphologically Heterogeneous Nolinoideae (Asparagaceae) Revealed by Transcriptome Data. FRONTIERS IN PLANT SCIENCE 2021; 11:584981. [PMID: 33519845 PMCID: PMC7840527 DOI: 10.3389/fpls.2020.584981] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 12/14/2020] [Indexed: 06/12/2023]
Abstract
The subfamily Nolinoideae of Asparagaceae is an extremely morphologically heterogeneous group, which is comprised of seven lineages, formerly known as Eriospermaceae, Polygonateae, Ophiopogoneae, Convallarieae, Ruscaceae s.s., Dracaenaceae, and Nolinaceae from different families or even orders. Their drastically divergent morphologies and low level of molecular resolution have hindered our understanding on their evolutionary history. To resolve reliable and clear phylogenetic relationships of the Nolinoideae, a phylogenetic study was conducted based on transcriptomic sequencing of 15 species representing all the seven lineages. A dataset containing up to 2,850,331 sites across 2,126 genes was analyzed using both concatenated and coalescent methods. Except for Eriospermum as outgroup, the transcriptomic data strongly resolved the remaining six lineages into two groups, one is a paraphyletic grade including the woody lineages of dracaenoids, ruscoids, and nolinoids and a monophyletic herbaceous clade. Within the herbaceous group, the Ophiopogoneae + Theropogon is sister to a clade that is composed of Convallarieae and the monophyletic Polygonateae. Our work provides a first robust deep relationship of the highly heterogeneous Nolinoideae and paves the way for further investigations of its complex evolution.
Collapse
|
17
|
Jąkalski M, Minasiewicz J, Caius J, May M, Selosse MA, Delannoy E. The Genomic Impact of Mycoheterotrophy in Orchids. FRONTIERS IN PLANT SCIENCE 2021; 12:632033. [PMID: 34177974 PMCID: PMC8220222 DOI: 10.3389/fpls.2021.632033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 05/14/2021] [Indexed: 05/06/2023]
Abstract
Mycoheterotrophic plants have lost the ability to photosynthesize and obtain essential mineral and organic nutrients from associated soil fungi. Despite involving radical changes in life history traits and ecological requirements, the transition from autotrophy to mycoheterotrophy has occurred independently in many major lineages of land plants, most frequently in Orchidaceae. Yet the molecular mechanisms underlying this shift are still poorly understood. A comparison of the transcriptomes of Epipogium aphyllum and Neottia nidus-avis, two completely mycoheterotrophic orchids, to other autotrophic and mycoheterotrophic orchids showed the unexpected retention of several genes associated with photosynthetic activities. In addition to these selected retentions, the analysis of their expression profiles showed that many orthologs had inverted underground/aboveground expression ratios compared to autotrophic species. Fatty acid and amino acid biosynthesis as well as primary cell wall metabolism were among the pathways most impacted by this expression reprogramming. Our study suggests that the shift in nutritional mode from autotrophy to mycoheterotrophy remodeled the architecture of the plant metabolism but was associated primarily with function losses rather than metabolic innovations.
Collapse
Affiliation(s)
- Marcin Jąkalski
- Department of Plant Taxonomy and Nature Conservation, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Julita Minasiewicz
- Department of Plant Taxonomy and Nature Conservation, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - José Caius
- Institute of Plant Sciences Paris-Saclay, Université Paris-Saclay, CNRS, INRAE, Univ Evry, Orsay, France
- Université de Paris, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay, Orsay, France
| | - Michał May
- Department of Plant Taxonomy and Nature Conservation, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Marc-André Selosse
- Department of Plant Taxonomy and Nature Conservation, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
- Sorbonne Université, CNRS, EPHE, Muséum National d’Histoire Naturelle, Institut de Systématique, Evolution, Biodiversité, Paris, France
| | - Etienne Delannoy
- Institute of Plant Sciences Paris-Saclay, Université Paris-Saclay, CNRS, INRAE, Univ Evry, Orsay, France
- Université de Paris, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay, Orsay, France
- *Correspondence: Etienne Delannoy,
| |
Collapse
|
18
|
Fernández-Aparicio M, Delavault P, Timko MP. Management of Infection by Parasitic Weeds: A Review. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1184. [PMID: 32932904 PMCID: PMC7570238 DOI: 10.3390/plants9091184] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/03/2020] [Accepted: 09/09/2020] [Indexed: 12/30/2022]
Abstract
Parasitic plants rely on neighboring host plants to complete their life cycle, forming vascular connections through which they withdraw needed nutritive resources. In natural ecosystems, parasitic plants form one component of the plant community and parasitism contributes to overall community balance. In contrast, when parasitic plants become established in low biodiversified agroecosystems, their persistence causes tremendous yield losses rendering agricultural lands uncultivable. The control of parasitic weeds is challenging because there are few sources of crop resistance and it is difficult to apply controlling methods selective enough to kill the weeds without damaging the crop to which they are physically and biochemically attached. The management of parasitic weeds is also hindered by their high fecundity, dispersal efficiency, persistent seedbank, and rapid responses to changes in agricultural practices, which allow them to adapt to new hosts and manifest increased aggressiveness against new resistant cultivars. New understanding of the physiological and molecular mechanisms behind the processes of germination and haustorium development, and behind the crop resistant response, in addition to the discovery of new targets for herbicides and bioherbicides will guide researchers on the design of modern agricultural strategies for more effective, durable, and health compatible parasitic weed control.
Collapse
Affiliation(s)
- Mónica Fernández-Aparicio
- Institute for Sustainable Agriculture, Consejo Superior de Investigaciones Científicas (CSIC), 14004 Córdoba, Spain
| | - Philippe Delavault
- Laboratory of Plant Biology and Pathology, University of Nantes, 44035 Nantes, France;
| | - Michael P. Timko
- Department of Biology University of Virginia, Charlottesville, VA 22904-4328, USA;
| |
Collapse
|
19
|
Ataei N, Schneeweiss GM, García MA, Krug M, Lehnert M, Valizadeh J, Quandt D. A multilocus phylogeny of the non-photosynthetic parasitic plant Cistanche (Orobanchaceae) refutes current taxonomy and identifies four major morphologically distinct clades. Mol Phylogenet Evol 2020; 151:106898. [PMID: 32585287 DOI: 10.1016/j.ympev.2020.106898] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 05/24/2020] [Accepted: 06/17/2020] [Indexed: 02/09/2023]
Abstract
Phylogenetic relationships of and within non-photosynthetic parasitic lineages are notoriously poorly known, which negatively affects our understanding of parasitic plants. This is also the case for Cistanche (Orobanchaceae), an Old World genus with about two dozen species, whose relationships have not yet been addressed using molecular phylogenetic approaches. Here we infer phylogenetic relationships within the genus, employing a taxonomically and geographically broad sampling covering all previously distinguished infrageneric groups and most of the currently recognized species. A combined matrix of three plastid markers (trnL-trnF, including the trnL intron and the intergenic spacer (IGS), trnS-trnfM IGS and psbA-trnH IGS) and one nuclear marker (ITS) was analyzed using maximum parsimony, maximum likelihood and Bayesian inference. Cistanche falls into four well-supported and geographically differentiated clades: East Asian Clade, Northwest African Clade, Southwest Asian Clade and Widespread Clade. Of those, only the East Asian Clade corresponds to a previously recognized taxonomic section, whereas the others either contain members of two or three sections (Widespread Clade and Southwest Asian Clade, respectively) or have not been taxonomically recognized so far (Northwest African Clade). Whereas the Southwest Asian Clade exhibits strong phylogenetic structure among and partly within species (the East Asian Clade and the Northwest African Clade are monospecific), phylogenetic resolution within the Widespread Clade is often low and hampered by discrepancies between nuclear and plastid markers. Both molecular and morphological data indicate that species diversity in Cistanche is currently underestimated.
Collapse
Affiliation(s)
- Najibeh Ataei
- Nees Institute for Biodiversity of Plants, Rheinische Friedrich-Wilhelms-Universität Bonn, Meckenheimer Allee 170, 53115 Bonn, Germany; General Directorate for Agricultural Research Institute of Afghanistan (ARIA), Ministry of Agriculture, Irrigation and Livestock, Badam Bagh, Kabul, Afghanistan
| | - Gerald M Schneeweiss
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, A-1030 Vienna, Austria.
| | - Miguel Angel García
- Department of Biology, University of Toronto at Mississauga, 3359 Mississauga, Canada; Real Jardín Botánico, CSIC, Plaza de Murillo 2, 28014 Madrid, Spain
| | - Michael Krug
- Nees Institute for Biodiversity of Plants, Rheinische Friedrich-Wilhelms-Universität Bonn, Meckenheimer Allee 170, 53115 Bonn, Germany
| | - Marcus Lehnert
- Nees Institute for Biodiversity of Plants, Rheinische Friedrich-Wilhelms-Universität Bonn, Meckenheimer Allee 170, 53115 Bonn, Germany
| | - Jafar Valizadeh
- Department of Biology, University of Sistan and Baluchistan, Zahedan, Iran
| | - Dietmar Quandt
- Nees Institute for Biodiversity of Plants, Rheinische Friedrich-Wilhelms-Universität Bonn, Meckenheimer Allee 170, 53115 Bonn, Germany.
| |
Collapse
|
20
|
Qu XJ, Fan SJ, Wicke S, Yi TS. Plastome Reduction in the Only Parasitic Gymnosperm Parasitaxus Is Due to Losses of Photosynthesis but Not Housekeeping Genes and Apparently Involves the Secondary Gain of a Large Inverted Repeat. Genome Biol Evol 2019; 11:2789-2796. [PMID: 31504501 PMCID: PMC6786476 DOI: 10.1093/gbe/evz187] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2019] [Indexed: 02/06/2023] Open
Abstract
Plastid genomes (plastomes) of parasitic plants undergo dramatic reductions as the need for photosynthesis relaxes. Here, we report the plastome of the only known heterotrophic gymnosperm Parasitaxus usta (Podocarpaceae). With 68 unique genes, of which 33 encode proteins, 31 tRNAs, and four rRNAs in a plastome of 85.3-kb length, Parasitaxus has both the smallest and the functionally least capable plastid genome of gymnosperms. Although the heterotroph retains chlorophyll, all genes for photosynthesis are physically or functionally lost, making photosynthetic energy gain impossible. The pseudogenization of the three plastome-encoded light-independent chlorophyll biosynthesis genes chlB, chlL, and chlN implies that Parasitaxus relies on either only the light-dependent chlorophyll biosynthesis pathway or another regulation system. Nesting within a group of gymnosperms known for the absence of the large inverted repeat regions (IRs), another unusual feature of the Parasitaxus plastome is the existence of a 9,256-bp long IR. Its short length and a gene composition that completely differs from those of IR-containing gymnosperms together suggest a regain of this critical, plastome structure-stabilizing feature. In sum, our findings highlight the particular path of lifestyle-associated reductive plastome evolution, where structural features might provide additional cues of a continued selection for plastome maintenance.
Collapse
Affiliation(s)
- Xiao-Jian Qu
- Key Lab of Plant Stress Research, College of Life Sciences, Shandong Normal University, Ji’nan, Shandong, China
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Shou-Jin Fan
- Key Lab of Plant Stress Research, College of Life Sciences, Shandong Normal University, Ji’nan, Shandong, China
| | - Susann Wicke
- Institute for Evolution and Biodiversity, University of Muenster, Germany
| | - Ting-Shuang Yi
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| |
Collapse
|
21
|
Yoshida S, Kim S, Wafula EK, Tanskanen J, Kim YM, Honaas L, Yang Z, Spallek T, Conn CE, Ichihashi Y, Cheong K, Cui S, Der JP, Gundlach H, Jiao Y, Hori C, Ishida JK, Kasahara H, Kiba T, Kim MS, Koo N, Laohavisit A, Lee YH, Lumba S, McCourt P, Mortimer JC, Mutuku JM, Nomura T, Sasaki-Sekimoto Y, Seto Y, Wang Y, Wakatake T, Sakakibara H, Demura T, Yamaguchi S, Yoneyama K, Manabe RI, Nelson DC, Schulman AH, Timko MP, dePamphilis CW, Choi D, Shirasu K. Genome Sequence of Striga asiatica Provides Insight into the Evolution of Plant Parasitism. Curr Biol 2019; 29:3041-3052.e4. [PMID: 31522940 DOI: 10.1016/j.cub.2019.07.086] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/23/2019] [Accepted: 07/30/2019] [Indexed: 11/25/2022]
Abstract
Parasitic plants in the genus Striga, commonly known as witchweeds, cause major crop losses in sub-Saharan Africa and pose a threat to agriculture worldwide. An understanding of Striga parasite biology, which could lead to agricultural solutions, has been hampered by the lack of genome information. Here, we report the draft genome sequence of Striga asiatica with 34,577 predicted protein-coding genes, which reflects gene family contractions and expansions that are consistent with a three-phase model of parasitic plant genome evolution. Striga seeds germinate in response to host-derived strigolactones (SLs) and then develop a specialized penetration structure, the haustorium, to invade the host root. A family of SL receptors has undergone a striking expansion, suggesting a molecular basis for the evolution of broad host range among Striga spp. We found that genes involved in lateral root development in non-parasitic model species are coordinately induced during haustorium development in Striga, suggesting a pathway that was partly co-opted during the evolution of the haustorium. In addition, we found evidence for horizontal transfer of host genes as well as retrotransposons, indicating gene flow to S. asiatica from hosts. Our results provide valuable insights into the evolution of parasitism and a key resource for the future development of Striga control strategies.
Collapse
Affiliation(s)
- Satoko Yoshida
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan; Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan; Institute for Research Initiatives, Division for Research Strategy, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Seungill Kim
- Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul 151-742, Korea; Plant Genomics and Breeding Institute, Seoul National University, Seoul 151-742, Korea
| | - Eric K Wafula
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Jaakko Tanskanen
- Production Systems, Luke Natural Resources Institute Finland, 00790 Helsinki, Finland; Luke/BI Plant Genomics Laboratory, Institute of Biotechnology and Viikki Plant Science Centre, University of Helsinki, 00014 Helsinki, Finland
| | - Yong-Min Kim
- Korean Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology, Daejon 305-806, Korea
| | - Loren Honaas
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA; U.S.D.A. ARS, Wenatchee, WA, USA
| | - Zhenzhen Yang
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Thomas Spallek
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan; Institute of Plant Physiology and Biochemistry, University of Hohenheim, 70599 Stuttgart, Germany
| | - Caitlin E Conn
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Yasunori Ichihashi
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan; RIKEN BioResource Research Center, Tsukuba, Ibaraki 305-0074, Japan
| | - Kyeongchae Cheong
- Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul 151-742, Korea; Plant Genomics and Breeding Institute, Seoul National University, Seoul 151-742, Korea
| | - Songkui Cui
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan; Institute for Research Initiatives, Division for Research Strategy, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Joshua P Der
- Department of Biological Science, California State University, Fullerton, Fullerton, CA 92831, USA
| | - Heidrun Gundlach
- Plant Genome and Systems Biology (PGSB), Helmholtz Center Munich, Neuherberg 85764, Germany
| | - Yuannian Jiao
- Institute of Botany, The Chinese Academy of Sciences, Nanxincun, Xiangshan, Beijing, China
| | - Chiaki Hori
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan; Research Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Juliane K Ishida
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
| | - Hiroyuki Kasahara
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan; Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Fuchu 183-8509, Japan
| | - Takatoshi Kiba
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan; Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Myung-Shin Kim
- Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul 151-742, Korea; Plant Genomics and Breeding Institute, Seoul National University, Seoul 151-742, Korea
| | - Namjin Koo
- Korean Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology, Daejon 305-806, Korea
| | - Anuphon Laohavisit
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
| | - Yong-Hwan Lee
- Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul 151-742, Korea; Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea
| | - Shelley Lumba
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S-3B2, Canada
| | - Peter McCourt
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S-3B2, Canada
| | - Jenny C Mortimer
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan; Joint BioEnergy Institute, Emeryville, CA 94608, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - J Musembi Mutuku
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan; Biosciences eastern and central Africa-International Livestock Research Institute (BecA-ILRI) Hub, 00100 Nairobi, Kenya
| | - Takahito Nomura
- Center for Bioscience Research and Education, Utsunomiya University, Utsunomiya 321-8505, Japan
| | - Yuko Sasaki-Sekimoto
- School of Life Science and Technology, Tokyo Institute of Technology, 226-8501, Yokohama, Kanagawa, Japan
| | - Yoshiya Seto
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8577, Japan; Department of Agricultural Chemistry, School of Agriculture, Meiji University, Kawasaki, Kanagawa 214-8571, Japan
| | - Yu Wang
- Department of Biology, University of Virginia, Charlottesville, VA 22903, USA
| | - Takanori Wakatake
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan; Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
| | - Hitoshi Sakakibara
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan; Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Taku Demura
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan; Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Shinjiro Yamaguchi
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8577, Japan; Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Koichi Yoneyama
- Center for Bioscience Research and Education, Utsunomiya University, Utsunomiya 321-8505, Japan
| | - Ri-Ichiroh Manabe
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
| | - David C Nelson
- Department of Genetics, University of Georgia, Athens, GA 30602, USA; Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521, USA
| | - Alan H Schulman
- Production Systems, Luke Natural Resources Institute Finland, 00790 Helsinki, Finland; Luke/BI Plant Genomics Laboratory, Institute of Biotechnology and Viikki Plant Science Centre, University of Helsinki, 00014 Helsinki, Finland
| | - Michael P Timko
- Department of Biology, University of Virginia, Charlottesville, VA 22903, USA
| | - Claude W dePamphilis
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Doil Choi
- Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul 151-742, Korea; Plant Genomics and Breeding Institute, Seoul National University, Seoul 151-742, Korea
| | - Ken Shirasu
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan; Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan.
| |
Collapse
|
22
|
Clermont K, Wang Y, Liu S, Yang Z, dePamphilis CW, Yoder JI, Collakova E, Westwood JH. Comparative Metabolomics of Early Development of the Parasitic Plants Phelipanche aegyptiaca and Triphysaria versicolor. Metabolites 2019; 9:E114. [PMID: 31200467 PMCID: PMC6630630 DOI: 10.3390/metabo9060114] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/04/2019] [Accepted: 06/10/2019] [Indexed: 11/24/2022] Open
Abstract
Parasitic weeds of the family Orobanchaceae attach to the roots of host plants via haustoria capable of drawing nutrients from host vascular tissue. The connection of the haustorium to the host marks a shift in parasite metabolism from autotrophy to at least partial heterotrophy, depending on the level of parasite dependence. Species within the family Orobanchaceae span the spectrum of host nutrient dependency, yet the diversity of parasitic plant metabolism remains poorly understood, particularly during the key metabolic shift surrounding haustorial attachment. Comparative profiling of major metabolites in the obligate holoparasite Phelipanche aegyptiaca and the facultative hemiparasite Triphysaria versicolor before and after attachment to the hosts revealed several metabolic shifts implicating remodeling of energy and amino acid metabolism. After attachment, both parasites showed metabolite profiles that were different from their respective hosts. In P. aegyptiaca, prominent changes in metabolite profiles were also associated with transitioning between different tissue types before and after attachment, with aspartate levels increasing significantly after the attachment. Based on the results from 15N labeling experiments, asparagine and/or aspartate-rich proteins were enriched in host-derived nitrogen in T. versicolor. These results point to the importance of aspartate and/or asparagine in the early stages of attachment in these plant parasites and provide a rationale for targeting aspartate-family amino acid biosynthesis for disrupting the growth of parasitic weeds.
Collapse
Affiliation(s)
- Kristen Clermont
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA 24061, USA.
| | - Yaxin Wang
- Department of Plant Sciences, University of California, Davis, CA 95616, USA.
| | - Siming Liu
- Department of Plant Sciences, University of California, Davis, CA 95616, USA.
| | - Zhenzhen Yang
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA.
| | - Claude W dePamphilis
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA.
| | - John I Yoder
- Department of Plant Sciences, University of California, Davis, CA 95616, USA.
| | - Eva Collakova
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA 24061, USA.
| | - James H Westwood
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA 24061, USA.
| |
Collapse
|
23
|
Misra VA, Wafula EK, Wang Y, dePamphilis CW, Timko MP. Genome-wide identification of MST, SUT and SWEET family sugar transporters in root parasitic angiosperms and analysis of their expression during host parasitism. BMC PLANT BIOLOGY 2019; 19:196. [PMID: 31088371 PMCID: PMC6515653 DOI: 10.1186/s12870-019-1786-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 04/17/2019] [Indexed: 05/11/2023]
Abstract
BACKGROUND Root parasitic weeds are a major constraint to crop production worldwide causing significant yearly losses in yield and economic value. These parasites cause their destruction by attaching to their hosts with a unique organ, the haustorium, that allows them to obtain the nutrients (sugars, amino acids, etc.) needed to complete their lifecycle. Parasitic weeds differ in their nutritional requirements and degree of host dependency and the differential expression of sugar transporters is likely to be a critical component in the parasite's post-attachment survival. RESULTS We identified gene families encoding monosaccharide transporters (MSTs), sucrose transporters (SUTs), and SWEETs (Sugars Will Eventually be Exported Transporters) in three root-parasitic weeds differing in host dependency: Triphysaria versicolor (facultative hemiparasite), Phelipanche aegyptiaca (holoparasite), and Striga hermonthica (obligate hemiparasite). The phylogenetic relationship and differential expression profiles of these genes throughout parasite development were examined to uncover differences existing among parasites with different levels of host dependence. Differences in estimated gene numbers are found among the three parasites, and orthologs within the different sugar transporter gene families are found to be either conserved among the parasites in their expression profiles throughout development, or to display parasite-specific differences in developmentally-timed expression. For example, MST genes in the pGLT clade express most highly before host connection in Striga and Triphysaria but not Phelipanche, whereas genes in the MST ERD6-like clade are highly expressed in the post-connection growth stages of Phelipanche but highest in the germination and reproduction stages in Striga. Whether such differences reflect changes resulting from differential host dependence levels is not known. CONCLUSIONS While it is tempting to speculate that differences in estimated gene numbers and expression profiles among members of MST, SUT and SWEET gene families in Phelipanche, Striga and Triphysaria reflect the parasites' levels of host dependence, additional evidence that altered transporter gene expression is causative versus consequential is needed. Our findings identify potential targets for directed manipulation that will allow for a better understanding of the nutrient transport process and perhaps a means for controlling the devastating effects of these parasites on crop productivity.
Collapse
Affiliation(s)
- Vikram A. Misra
- Department of Biology, University of Virginia, Gilmer Hall 044, Charlottesville, VA 22904 USA
| | - Eric K. Wafula
- Department of Biology, Penn State University, University Park, PA 16802 USA
| | - Yu Wang
- Department of Biology, University of Virginia, Gilmer Hall 044, Charlottesville, VA 22904 USA
- Present Address: Center for Quantitative Sciences, Vanderbilt University, 2220 Pierce Avenue, 571 Preston Research Building, Nashville, TN 37232-6848 USA
| | | | - Michael P. Timko
- Department of Biology, University of Virginia, Gilmer Hall 044, Charlottesville, VA 22904 USA
| |
Collapse
|
24
|
Principles of plastid reductive evolution illuminated by nonphotosynthetic chrysophytes. Proc Natl Acad Sci U S A 2019; 116:6914-6923. [PMID: 30872488 DOI: 10.1073/pnas.1819976116] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The division of life into producers and consumers is blurred by evolution. For example, eukaryotic phototrophs can lose the capacity to photosynthesize, although they may retain vestigial plastids that perform other essential cellular functions. Chrysophyte algae have undergone a particularly large number of photosynthesis losses. Here, we present a plastid genome sequence from a nonphotosynthetic chrysophyte, "Spumella" sp. NIES-1846, and show that it has retained a nearly identical set of plastid-encoded functions as apicomplexan parasites. Our transcriptomic analysis of 12 different photosynthetic and nonphotosynthetic chrysophyte lineages reveals remarkable convergence in the functions of these nonphotosynthetic plastids, along with informative lineage-specific retentions and losses. At one extreme, Cornospumella fuschlensis retains many photosynthesis-associated proteins, although it appears to have lost the reductive pentose phosphate pathway and most plastid amino acid metabolism pathways. At the other extreme, Paraphysomonas lacks plastid-targeted proteins associated with gene expression and all metabolic pathways that require plastid-encoded partners, indicating a complete loss of plastid DNA in this genus. Intriguingly, some of the nucleus-encoded proteins that once functioned in the expression of the Paraphysomonas plastid genome have been retained. These proteins were likely to have been dual targeted to the plastid and mitochondria of the chrysophyte ancestor, and are uniquely targeted to the mitochondria in Paraphysomonas Our comparative analyses provide insights into the process of functional reduction in nonphotosynthetic plastids.
Collapse
|
25
|
Li X, Feng T, Randle C, Schneeweiss GM. Phylogenetic Relationships in Orobanchaceae Inferred From Low-Copy Nuclear Genes: Consolidation of Major Clades and Identification of a Novel Position of the Non-photosynthetic Orobanche Clade Sister to All Other Parasitic Orobanchaceae. FRONTIERS IN PLANT SCIENCE 2019; 10:902. [PMID: 31379896 PMCID: PMC6646720 DOI: 10.3389/fpls.2019.00902] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 06/26/2019] [Indexed: 05/18/2023]
Abstract
Molecular phylogenetic analyses have greatly advanced our understanding of phylogenetic relationships in Orobanchaceae, a model system to study parasitism in angiosperms. As members of this group may lack some genes widely used for phylogenetic analysis and exhibit varying degrees of accelerated base substitution in other genes, relationships among major clades identified previously remain contentious. To improve inferences of phylogenetic relationships in Orobanchaceae, we used two pentatricopeptide repeat (PPR) and three low-copy nuclear (LCN) genes, two of which have been developed for this study. Resolving power and level of support strongly differed among markers. Despite considerable incongruence among newly and previously sequenced markers, monophyly of major clades identified in previous studies was confirmed and, especially in analyses of concatenated data, strongly supported after the exclusion of a small group of East Asian genera (Pterygiella and Phtheirospermum) from the Euphrasia-Rhinanthus clade. The position of the Orobanche clade sister to all other parasitic Orobanchaceae may indicate that the shift to holoparasitism occurred early in the evolution of the family. Although well supported in analyses of concatenated data comprising ten loci (five newly and five previously sequenced), relationships among major clades, most prominently the Striga-Alectra clade, the Euphrasia-Rhinanthus clade, and the Castilleja-Pedicularis clade, were uncertain because of strongly supported incongruence also among well-resolving loci. Despite the limitations of using a few selected loci, congruence among markers with respect to circumscription of major clades of Orobanchaceae renders those frameworks for detailed, species-level, phylogenetic studies.
Collapse
Affiliation(s)
- Xi Li
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Tao Feng
- Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Chris Randle
- Department of Biological Sciences, Sam Houston State University, Huntsville, TX, United States
| | - Gerald M. Schneeweiss
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
- *Correspondence: Gerald M. Schneeweiss,
| |
Collapse
|
26
|
Ng SM, Lee XW, Mat-Isa MN, Aizat-Juhari MA, Adam JH, Mohamed R, Wan KL, Firdaus-Raih M. Comparative analysis of nucleus-encoded plastid-targeting proteins in Rafflesia cantleyi against photosynthetic and non-photosynthetic representatives reveals orthologous systems with potentially divergent functions. Sci Rep 2018; 8:17258. [PMID: 30467394 PMCID: PMC6250676 DOI: 10.1038/s41598-018-35173-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 10/31/2018] [Indexed: 12/11/2022] Open
Abstract
Parasitic plants are known to discard photosynthesis thus leading to the deletion or loss of the plastid genes. Despite plastid genome reduction in non-photosynthetic plants, some nucleus-encoded proteins are transported back to the plastid to carry out specific functions. In this work, we study such proteins in Rafflesia cantleyi, a member of the holoparasitic genus well-known for producing the largest single flower in the world. Our analyses of three transcriptome datasets, two holoparasites (R. cantleyi and Phelipanche aegyptiaca) and one photosynthetic plant (Arabidopsis thaliana), suggest that holoparasites, such as R. cantleyi, retain some common plastid associated processes such as biosynthesis of amino acids and lipids, but are missing photosynthesis components that can be extensions of these pathways. The reconstruction of two selected biosynthetic pathways involving plastids correlates the trend of plastid retention to pathway complexity - transcriptome evidence for R. cantleyi suggests alternate mechanisms in regulating the plastidial heme and terpenoid backbone biosynthesis pathways. The evolution to holoparasitism from autotrophy trends towards devolving the plastid genes to the nuclear genome despite the functional sites remaining in the plastid, or maintaining non-photosynthetic processes in the plastid, before the eventual loss of the plastid and any site dependent functions.
Collapse
Affiliation(s)
- Siuk-Mun Ng
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
- Codon Genomics SB, No 26, Jalan Dutamas 7, Taman Dutamas Balakong, 43200, Seri Kembangan, Selangor, Malaysia
| | - Xin-Wei Lee
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
| | - Mohd-Noor Mat-Isa
- Malaysia Genome Institute, Jalan Bangi, 43000, Kajang, Selangor, Malaysia
| | - Mohd Afiq Aizat-Juhari
- School of Environmental and Natural Resource Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
| | - Jumaat Haji Adam
- School of Environmental and Natural Resource Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
| | - Rahmah Mohamed
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
| | - Kiew-Lian Wan
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia.
| | - Mohd Firdaus-Raih
- Centre for Frontier Sciences, Faculty of Science and Technology and Institute of Systems Biology, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia.
| |
Collapse
|
27
|
Schelkunov MI, Penin AA, Logacheva MD. RNA-seq highlights parallel and contrasting patterns in the evolution of the nuclear genome of fully mycoheterotrophic plants. BMC Genomics 2018; 19:602. [PMID: 30092758 PMCID: PMC6085651 DOI: 10.1186/s12864-018-4968-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 07/30/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND While photosynthesis is the most notable trait of plants, several lineages of plants (so-called full heterotrophs) have adapted to obtain organic compounds from other sources. The switch to heterotrophy leads to profound changes at the morphological, physiological and genomic levels. RESULTS Here, we characterize the transcriptomes of three species representing two lineages of mycoheterotrophic plants: orchids (Epipogium aphyllum and Epipogium roseum) and Ericaceae (Hypopitys monotropa). Comparative analysis is used to highlight the parallelism between distantly related fully heterotrophic plants. In both lineages, we observed genome-wide elimination of nuclear genes that encode proteins related to photosynthesis, while systems associated with protein import to plastids as well as plastid transcription and translation remain active. Genes encoding components of plastid ribosomes that have been lost from the plastid genomes have not been transferred to the nuclear genomes; instead, some of the encoded proteins have been substituted by homologs. The nuclear genes of both Epipogium species accumulated nucleotide substitutions twice as rapidly as their photosynthetic relatives; in contrast, no increase in the substitution rate was observed in H. monotropa. CONCLUSIONS Full heterotrophy leads to profound changes in nuclear gene content. The observed increase in the rate of nucleotide substitutions is lineage specific, rather than a universal phenomenon among non-photosynthetic plants.
Collapse
Affiliation(s)
- Mikhail I Schelkunov
- Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia.
| | - Aleksey A Penin
- Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia.,A.N Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.,Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Maria D Logacheva
- Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia. .,Skolkovo Institute of Science and Technology, Moscow, Russia. .,Extreme Biology Laboratory, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia.
| |
Collapse
|
28
|
Genome-Guided Phylo-Transcriptomic Methods and the Nuclear Phylogentic Tree of the Paniceae Grasses. Sci Rep 2017; 7:13528. [PMID: 29051622 PMCID: PMC5648822 DOI: 10.1038/s41598-017-13236-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 09/20/2017] [Indexed: 11/23/2022] Open
Abstract
The past few years have witnessed a paradigm shift in molecular systematics from phylogenetic methods (using one or a few genes) to those that can be described as phylogenomics (phylogenetic inference with entire genomes). One approach that has recently emerged is phylo-transcriptomics (transcriptome-based phylogenetic inference). As in any phylogenetics experiment, accurate orthology inference is critical to phylo-transcriptomics. To date, most analyses have inferred orthology based either on pure sequence similarity or using gene-tree approaches. The use of conserved genome synteny in orthology detection has been relatively under-employed in phylogenetics, mainly due to the cost of sequencing genomes. While current trends focus on the quantity of genes included in an analysis, the use of synteny is likely to improve the quality of ortholog inference. In this study, we combine de novo transcriptome data and sequenced genomes from an economically important group of grass species, the tribe Paniceae, to make phylogenomic inferences. This method, which we call “genome-guided phylo-transcriptomics”, is compared to other recently published orthology inference pipelines, and benchmarked using a set of sequenced genomes from across the grasses. These comparisons provide a framework for future researchers to evaluate the costs and benefits of adding sequenced genomes to transcriptome data sets.
Collapse
|
29
|
Beletsky AV, Filyushin MA, Gruzdev EV, Mazur AM, Prokhortchouk EB, Kochieva EZ, Mardanov AV, Ravin NV, Skryabin KG. De novo transcriptome assembly of the mycoheterotrophic plant Monotropa hypopitys. GENOMICS DATA 2017; 11:60-61. [PMID: 27995074 PMCID: PMC5154972 DOI: 10.1016/j.gdata.2016.11.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 11/28/2016] [Indexed: 11/30/2022]
Abstract
Monotropa hypopitys (pinesap) is a non-photosynthetic obligately mycoheterotrophic plant of the family Ericaceae. It obtains the carbon and other nutrients from the roots of surrounding autotrophic trees through the associated mycorrhizal fungi. In order to understand the evolutionary changes in the plant genome associated with transition to a heterotrophic lifestyle, we performed de novo transcriptomic analysis of M. hypopitys using next-generation sequencing. We obtained the RNA-Seq data from flowers, flower bracts and roots with haustoria using Illumina HiSeq2500 platform. The raw data obtained in this study can be available in NCBI SRA database with accession number of SRP069226. A total of 10.3 GB raw sequence data were obtained, corresponding to 103,357,809 raw reads. A total of 103,025,683 reads were filtered after removing low-quality reads and trimming the adapter sequences. The Trinity program was used to de novo assemble 98,349 unigens with an N50 of 1342 bp. Using the TransDecoder program, we predicted 43,505 putative proteins. 38,416 unigenes were annotated in the Swiss-Prot protein sequence database using BLASTX. The obtained transcriptomic data will be useful for further studies of the evolution of plant genomes upon transition to a non-photosynthetic lifestyle and the loss of photosynthesis-related functions.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Nikolai V. Ravin
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia
| | | |
Collapse
|
30
|
Ravin NV, Gruzdev EV, Beletsky AV, Mazur AM, Prokhortchouk EB, Filyushin MA, Kochieva EZ, Kadnikov VV, Mardanov AV, Skryabin KG. The loss of photosynthetic pathways in the plastid and nuclear genomes of the non-photosynthetic mycoheterotrophic eudicot Monotropa hypopitys. BMC PLANT BIOLOGY 2016; 16:238. [PMID: 28105941 PMCID: PMC5123295 DOI: 10.1186/s12870-016-0929-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
BACKGROUND Chloroplasts of most plants are responsible for photosynthesis and contain a conserved set of about 110 genes that encode components of housekeeping gene expression machinery and photosynthesis-related functions. Heterotrophic plants obtaining nutrients from other organisms and their plastid genomes represent model systems in which to study the effects of relaxed selective pressure on photosynthetic function. The most evident is a reduction in the size and gene content of the plastome, which correlates with the loss of genes encoding photosynthetic machinery which become unnecessary. Transition to a non-photosynthetic lifestyle is expected also to relax the selective pressure on photosynthetic machinery in the nuclear genome, however, the corresponding changes are less known. RESULTS Here we report the complete sequence of the plastid genome of Monotropa hypopitys, an achlorophyllous obligately mycoheterotrophic plant belonging to the family Ericaceae. The plastome of M. hypopitys is greatly reduced in size (35,336 bp) and lacks the typical quadripartite structure with two single-copy regions and an inverted repeat. Only 45 genes remained presumably intact- those encoding ribosomal proteins, ribosomal and transfer RNA and housekeeping genes infA, matK, accD and clpP. The clpP and accD genes probably remain functional, although their sequences are highly diverged. The sets of genes for ribosomal protein and transfer RNA are incomplete relative to chloroplasts of a photosynthetic plant. Comparison of the plastid genomes of two subspecies-level isolates of M. hypopitys revealed major structural rearrangements associated with repeat-driven recombination and the presence of isolate-specific tRNA genes. Analysis of the M. hypopitys transcriptome by RNA-Seq showed the absence of expression of nuclear-encoded components of photosystem I and II reaction center proteins, components of cytochrome b6f complex, ATP synthase, ribulose bisphosphate carboxylase components, as well as chlorophyll from protoporphyrin IX biosynthesis pathway. CONCLUSIONS With the complete loss of genes related to photosynthesis, NADH dehydrogenase, plastid-encoded RNA polymerase and ATP synthase, the M. hypopitys plastid genome is among the most functionally reduced ones characteristic of obligate non-photosynthetic parasitic species. Analysis of the M. hypopitys transcriptome revealed coordinated evolution of the nuclear and plastome genomes and the loss of photosynthesis-related functions in both genomes.
Collapse
Affiliation(s)
- Nikolai V. Ravin
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Eugeny V. Gruzdev
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Alexey V. Beletsky
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Alexander M. Mazur
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Egor B. Prokhortchouk
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Mikhail A. Filyushin
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Elena Z. Kochieva
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Vitaly V. Kadnikov
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Andrey V. Mardanov
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Konstantin G. Skryabin
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
31
|
Wang Y, Li X, Zhou W, Li T, Tian C. De novo assembly and transcriptome characterization of spruce dwarf mistletoe Arceuthobium sichuanense uncovers gene expression profiling associated with plant development. BMC Genomics 2016; 17:771. [PMID: 27716052 PMCID: PMC5045590 DOI: 10.1186/s12864-016-3127-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 09/26/2016] [Indexed: 12/02/2022] Open
Abstract
Background The parasitic flowering plant dwarf mistletoe (Arceuthobium spp., Viscaceae) is one of the most destructive forest pests, posing a major threat to numerous conifer species worldwide. Arceuthobium sichuanense (spruce dwarf mistletoe, SDM) infects Qinghai spruce (Picea crassifolia) and causes severe damage to spruce forests in Northwest China. SDM is a Chinese native parasitic plant and acquires carbohydrates and mineral nutrition from its hosts. However, underlying molecular basis of the physiological development is largely unknown. Investigations of these physiological traits have been hampered by the lack of genomic resources for this species. Results In this study, to investigate the transcriptomic processes underlying physiological traits and development in SDM, we used RNA from four major tissues (i.e., shoots, flowers, fruits, and seeds) for de novo assembly and to annotate the transcriptome of this species. We uncovered the annotated transcriptome and performed whole genome expression profiling to uncover transcriptional dynamics during physiological development, and we identified key gene categories involved in the process of sexual development. The assembled SDM transcriptome reported in this work contains 331,347 assembled transcripts; 226,687 unigenes were functionally annotated by Gene Ontology analysis. RNA-Seq analysis using this reference transcriptome identified 22,641 differentially expressed genes from shoots, flowers, fruits, and seeds. These genes are enriched in processes including organic substance metabolism, cellular metabolism, biosynthesis, and cellular component. In addition, genes related to transport, transcription, hormone biosynthesis and signaling, carbohydrate metabolism, and photosynthesis were differentially expressed between tissues. Conclusion This work reveals tissue-specific gene expression patterns and pathways of SDM and implied to a difference between photosynthetic and non-photosynthetic tissues in plants. The data can potentially be used for future investigations on endophytic parasitism and SDM-spruce interaction, and it dramatically increases the available genomic resources for Arceuthobium and dwarf mistletoe communities. This preliminary study of the Arceuthobium transcriptome provides excellent opportunities for characterizing plant parasitic genes with unknown functions. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3127-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yonglin Wang
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, China.
| | - Xuewu Li
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, China.,Academy of Forest Inventory and Planning, State Forestry Administration, Beijing, China
| | - Weifen Zhou
- Forest Pest Control and Quarantine Station of Qinghai Province, Xining, China
| | - Tao Li
- Xianmi Forest Park of Qinghai Province, Menyuan, Qinghai, China
| | - Chengming Tian
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, China.
| |
Collapse
|
32
|
Feng YL, Wicke S, Li JW, Han Y, Lin CS, Li DZ, Zhou TT, Huang WC, Huang LQ, Jin XH. Lineage-Specific Reductions of Plastid Genomes in an Orchid Tribe with Partially and Fully Mycoheterotrophic Species. Genome Biol Evol 2016; 8:2164-75. [PMID: 27412609 PMCID: PMC4987110 DOI: 10.1093/gbe/evw144] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2016] [Indexed: 11/13/2022] Open
Abstract
The plastid genome (plastome) of heterotrophic plants like mycoheterotrophs and parasites shows massive gene losses in consequence to the relaxation of functional constraints on photosynthesis. To understand the patterns of this convergent plastome reduction syndrome in heterotrophic plants, we studied 12 closely related orchids of three different lifeforms from the tribe Neottieae (Orchidaceae). We employ a comparative genomics approach to examine structural and selectional changes in plastomes within Neottieae. Both leafy and leafless heterotrophic species have functionally reduced plastid genome. Our analyses show that genes for the NAD(P)H dehydrogenase complex, the photosystems, and the RNA polymerase have been lost functionally multiple times independently. The physical reduction proceeds in a highly lineage-specific manner, accompanied by structural reconfigurations such as inversions or modifications of the large inverted repeats. Despite significant but minor selectional changes, all retained genes continue to evolve under purifying selection. All leafless Neottia species, including both visibly green and nongreen members, are fully mycoheterotrophic, likely evolved from leafy and partially mycoheterotrophic species. The plastomes of Neottieae span many stages of plastome degradation, including the longest plastome of a mycoheterotroph, providing invaluable insights into the mechanisms of plastome evolution along the transition from autotrophy to full mycoheterotrophy.
Collapse
Affiliation(s)
- Yan-Lei Feng
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China University of Chinese Academy of Sciences, Beijing, China
| | - Susann Wicke
- Institute for Evolution and Biodiversity, University of Muenster, Germany
| | - Jian-Wu Li
- Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun Township, Mengla County, Yunnan, China
| | - Yu Han
- Nanchang University, Jiangxi, China
| | - Choun-Sea Lin
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - De-Zhu Li
- Key Laboratory of Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Ting-Ting Zhou
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China University of Chinese Academy of Sciences, Beijing, China
| | - Wei-Chang Huang
- Chenshan Shanghai Botanical Garden, Shanghai, Songjiang, China
| | - Lu-Qi Huang
- National Resource Centre for Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, China
| | - Xiao-Hua Jin
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
33
|
Mechanistic model of evolutionary rate variation en route to a nonphotosynthetic lifestyle in plants. Proc Natl Acad Sci U S A 2016; 113:9045-50. [PMID: 27450087 DOI: 10.1073/pnas.1607576113] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Because novel environmental conditions alter the selection pressure on genes or entire subgenomes, adaptive and nonadaptive changes will leave a measurable signature in the genomes, shaping their molecular evolution. We present herein a model of the trajectory of plastid genome evolution under progressively relaxed functional constraints during the transition from autotrophy to a nonphotosynthetic parasitic lifestyle. We show that relaxed purifying selection in all plastid genes is linked to obligate parasitism, characterized by the parasite's dependence on a host to fulfill its life cycle, rather than the loss of photosynthesis. Evolutionary rates and selection pressure coevolve with macrostructural and microstructural changes, the extent of functional reduction, and the establishment of the obligate parasitic lifestyle. Inferred bursts of gene losses coincide with periods of relaxed selection, which are followed by phases of intensified selection and rate deceleration in the retained functional complexes. Our findings suggest that the transition to obligate parasitism relaxes functional constraints on plastid genes in a stepwise manner. During the functional reduction process, the elevation of evolutionary rates reaches several new rate equilibria, possibly relating to the modified protein turnover rates in heterotrophic plastids.
Collapse
|
34
|
Global Transcriptomic Analysis Reveals the Mechanism of Phelipanche aegyptiaca Seed Germination. Int J Mol Sci 2016; 17:ijms17071139. [PMID: 27428962 PMCID: PMC4964512 DOI: 10.3390/ijms17071139] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 07/10/2016] [Accepted: 07/11/2016] [Indexed: 11/24/2022] Open
Abstract
Phelipanche aegyptiaca is one of the most destructive root parasitic plants of Orobanchaceae. This plant has significant impacts on crop yields worldwide. Conditioned and host root stimulants, in particular, strigolactones, are needed for unique seed germination. However, no extensive study on this phenomenon has been conducted because of insufficient genomic information. Deep RNA sequencing, including de novo assembly and functional annotation was performed on P. aegyptiaca germinating seeds. The assembled transcriptome was used to analyze transcriptional dynamics during seed germination. Key gene categories involved were identified. A total of 274,964 transcripts were determined, and 53,921 unigenes were annotated according to the NR, GO, COG, KOG, and KEGG databases. Overall, 5324 differentially expressed genes among dormant, conditioned, and GR24-treated seeds were identified. GO and KEGG enrichment analyses demonstrated numerous DEGs related to DNA, RNA, and protein repair and biosynthesis, as well as carbohydrate and energy metabolism. Moreover, ABA and ethylene were found to play important roles in this process. GR24 application resulted in dramatic changes in ABA and ethylene-associated genes. Fluridone, a carotenoid biosynthesis inhibitor, alone could induce P. aegyptiaca seed germination. In addition, conditioning was probably not the indispensable stage for P. aegyptiaca, because the transcript level variation of MAX2 and KAI2 genes (relate to strigolactone signaling) was not up-regulated by conditioning treatment.
Collapse
|
35
|
Blazier JC, Ruhlman TA, Weng ML, Rehman SK, Sabir JSM, Jansen RK. Divergence of RNA polymerase α subunits in angiosperm plastid genomes is mediated by genomic rearrangement. Sci Rep 2016; 6:24595. [PMID: 27087667 PMCID: PMC4834550 DOI: 10.1038/srep24595] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 04/01/2016] [Indexed: 12/20/2022] Open
Abstract
Genes for the plastid-encoded RNA polymerase (PEP) persist in the plastid genomes of all photosynthetic angiosperms. However, three unrelated lineages (Annonaceae, Passifloraceae and Geraniaceae) have been identified with unusually divergent open reading frames (ORFs) in the conserved region of rpoA, the gene encoding the PEP α subunit. We used sequence-based approaches to evaluate whether these genes retain function. Both gene sequences and complete plastid genome sequences were assembled and analyzed from each of the three angiosperm families. Multiple lines of evidence indicated that the rpoA sequences are likely functional despite retaining as low as 30% nucleotide sequence identity with rpoA genes from outgroups in the same angiosperm order. The ratio of non-synonymous to synonymous substitutions indicated that these genes are under purifying selection, and bioinformatic prediction of conserved domains indicated that functional domains are preserved. One of the lineages (Pelargonium, Geraniaceae) contains species with multiple rpoA-like ORFs that show evidence of ongoing inter-paralog gene conversion. The plastid genomes containing these divergent rpoA genes have experienced extensive structural rearrangement, including large expansions of the inverted repeat. We propose that illegitimate recombination, not positive selection, has driven the divergence of rpoA.
Collapse
Affiliation(s)
- J Chris Blazier
- Department of Integrative Biology, University of Texas, Austin, TX 78712, USA
| | - Tracey A Ruhlman
- Department of Integrative Biology, University of Texas, Austin, TX 78712, USA
| | - Mao-Lun Weng
- Department of Integrative Biology, University of Texas, Austin, TX 78712, USA
| | - Sumaiyah K Rehman
- Department of Integrative Biology, University of Texas, Austin, TX 78712, USA
| | - Jamal S M Sabir
- Biotechnology Research Group, Department of Biological Science, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Robert K Jansen
- Department of Integrative Biology, University of Texas, Austin, TX 78712, USA.,Biotechnology Research Group, Department of Biological Science, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
36
|
Cusimano N, Wicke S. Massive intracellular gene transfer during plastid genome reduction in nongreen Orobanchaceae. THE NEW PHYTOLOGIST 2016; 210:680-93. [PMID: 26671255 DOI: 10.1111/nph.13784] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Accepted: 10/28/2015] [Indexed: 05/10/2023]
Abstract
Plastid genomes (plastomes) of nonphotosynthetic plants experience extensive gene losses and an acceleration of molecular evolutionary rates. Here, we inferred the mechanisms and timing of reductive genome evolution under relaxed selection in the broomrape family (Orobanchaceae). We analyzed the plastomes of several parasites with a major focus on the genus Orobanche using genome-descriptive and Bayesian phylogenetic-comparative methods. Besides this, we scanned the parasites' other cellular genomes to trace the fate of all genes that were purged from their plastomes. Our analyses indicate that the first functional gene losses occurred within 10 Myr of the transition to obligate parasitism in Orobanchaceae, and that the physical plastome reduction proceeds by small deletions that accumulate over time. Evolutionary rate shifts coincide with the genomic reduction process in broomrapes, suggesting that the shift of selectional constraints away from photosynthesis to other molecular processes alters the plastid rate equilibrium. Most of the photosynthesis-related genes or fragments of genes lost from the plastomes of broomrapes have survived in their nuclear or mitochondrial genomes as the results of multiple intracellular transfers and subsequent fragmentation. Our findings indicate that nonessential DNA is eliminated much faster in the plastomes of nonphotosynthetic parasites than in their other cellular genomes.
Collapse
Affiliation(s)
- Natalie Cusimano
- Department of Biology, Ludwig Maximilian University of Munich, Menzinger Street 67, Munich, 80638, Germany
| | - Susann Wicke
- Institute for Evolution and Biodiversity, University of Muenster, Huefferstr. 1, Muenster, 48149, Germany
| |
Collapse
|
37
|
Honaas LA, Wafula EK, Wickett NJ, Der JP, Zhang Y, Edger PP, Altman NS, Pires JC, Leebens-Mack JH, dePamphilis CW. Selecting Superior De Novo Transcriptome Assemblies: Lessons Learned by Leveraging the Best Plant Genome. PLoS One 2016; 11:e0146062. [PMID: 26731733 PMCID: PMC4701411 DOI: 10.1371/journal.pone.0146062] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 12/11/2015] [Indexed: 12/29/2022] Open
Abstract
Whereas de novo assemblies of RNA-Seq data are being published for a growing number of species across the tree of life, there are currently no broadly accepted methods for evaluating such assemblies. Here we present a detailed comparison of 99 transcriptome assemblies, generated with 6 de novo assemblers including CLC, Trinity, SOAP, Oases, ABySS and NextGENe. Controlled analyses of de novo assemblies for Arabidopsis thaliana and Oryza sativa transcriptomes provide new insights into the strengths and limitations of transcriptome assembly strategies. We find that the leading assemblers generate reassuringly accurate assemblies for the majority of transcripts. At the same time, we find a propensity for assemblers to fail to fully assemble highly expressed genes. Surprisingly, the instance of true chimeric assemblies is very low for all assemblers. Normalized libraries are reduced in highly abundant transcripts, but they also lack 1000s of low abundance transcripts. We conclude that the quality of de novo transcriptome assemblies is best assessed through consideration of a combination of metrics: 1) proportion of reads mapping to an assembly 2) recovery of conserved, widely expressed genes, 3) N50 length statistics, and 4) the total number of unigenes. We provide benchmark Illumina transcriptome data and introduce SCERNA, a broadly applicable modular protocol for de novo assembly improvement. Finally, our de novo assembly of the Arabidopsis leaf transcriptome revealed ~20 putative Arabidopsis genes lacking in the current annotation.
Collapse
Affiliation(s)
- Loren A Honaas
- Biology Department, Penn State, University Park, Pennsylvania, 16802, United States of America
| | - Eric K Wafula
- Biology Department, Penn State, University Park, Pennsylvania, 16802, United States of America
| | - Norman J Wickett
- Biology Department, Penn State, University Park, Pennsylvania, 16802, United States of America
| | - Joshua P Der
- Biology Department, Penn State, University Park, Pennsylvania, 16802, United States of America
| | - Yeting Zhang
- Biology Department, Penn State, University Park, Pennsylvania, 16802, United States of America
| | - Patrick P Edger
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, 65211, United States of America
| | - Naomi S Altman
- Department of Statistics, Penn State, University Park, Pennsylvania, 16802, United States of America
| | - J Chris Pires
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, 65211, United States of America
| | - James H Leebens-Mack
- Department of Plant Biology, University of Georgia, Athens, Georgia, 30602, United States of America
| | - Claude W dePamphilis
- Biology Department, Penn State, University Park, Pennsylvania, 16802, United States of America
| |
Collapse
|
38
|
Zhang X, Berkowitz O, Teixeira da Silva JA, Zhang M, Ma G, Whelan J, Duan J. RNA-Seq analysis identifies key genes associated with haustorial development in the root hemiparasite Santalum album. FRONTIERS IN PLANT SCIENCE 2015; 6:661. [PMID: 26388878 PMCID: PMC4555033 DOI: 10.3389/fpls.2015.00661] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 08/11/2015] [Indexed: 05/20/2023]
Abstract
Santalum album (sandalwood) is one of the economically important plant species in the Santalaceae for its production of highly valued perfume oils. Sandalwood is also a hemiparasitic tree that obtains some of its water and simple nutrients by tapping into other plants through haustoria which are highly specialized organs in parasitic angiosperms. However, an understanding of the molecular mechanisms involved in haustorium development is limited. In this study, RNA sequencing (RNA-seq) analyses were performed to identify changes in gene expression and metabolic pathways associated with the development of the S. album haustorium. A total of 56,011 non-redundant contigs with a mean contig size of 618 bp were obtained by de novo assembly of the transcriptome of haustoria and non-haustorial seedling roots. A substantial number of the identified differentially expressed genes were involved in cell wall metabolism and protein metabolism, as well as mitochondrial electron transport functions. Phytohormone-mediated regulation might play an important role during haustorial development. Especially, auxin signaling is likely to be essential for haustorial initiation, and genes related to cytokinin and gibberellin biosynthesis and metabolism are involved in haustorial development. Our results suggest that genes encoding nodulin-like proteins may be important for haustorial morphogenesis in S. album. The obtained sequence data will become a rich resource for future research in this interesting species. This information improves our understanding of haustorium development in root hemiparasitic species and will allow further exploration of the detailed molecular mechanisms underlying plant parasitism.
Collapse
Affiliation(s)
- Xinhua Zhang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of SciencesGuangzhou, China
| | - Oliver Berkowitz
- Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western AustraliaCrawley, WA, Australia
- Department of Botany, Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Science, La Trobe UniversityBundoora, VIC, Australia
| | | | - Muhan Zhang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of SciencesGuangzhou, China
| | - Guohua Ma
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of SciencesGuangzhou, China
| | - James Whelan
- Department of Botany, Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Science, La Trobe UniversityBundoora, VIC, Australia
| | - Jun Duan
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of SciencesGuangzhou, China
| |
Collapse
|
39
|
Kamikawa R, Tanifuji G, Ishikawa SA, Ishii KI, Matsuno Y, Onodera NT, Ishida KI, Hashimoto T, Miyashita H, Mayama S, Inagaki Y. Proposal of a Twin Aarginine Translocator System-Mediated Constraint against Loss of ATP Synthase Genes from Nonphotosynthetic Plastid Genomes. Mol Biol Evol 2015; 32:2598-604. [DOI: 10.1093/molbev/msv134] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
40
|
Yang Y, Moore MJ, Brockington SF, Soltis DE, Wong GKS, Carpenter EJ, Zhang Y, Chen L, Yan Z, Xie Y, Sage RF, Covshoff S, Hibberd JM, Nelson MN, Smith SA. Dissecting Molecular Evolution in the Highly Diverse Plant Clade Caryophyllales Using Transcriptome Sequencing. Mol Biol Evol 2015; 32:2001-14. [PMID: 25837578 PMCID: PMC4833068 DOI: 10.1093/molbev/msv081] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Many phylogenomic studies based on transcriptomes have been limited to “single-copy” genes due to methodological challenges in homology and orthology inferences. Only a relatively small number of studies have explored analyses beyond reconstructing species relationships. We sampled 69 transcriptomes in the hyperdiverse plant clade Caryophyllales and 27 outgroups from annotated genomes across eudicots. Using a combined similarity- and phylogenetic tree-based approach, we recovered 10,960 homolog groups, where each was represented by at least eight ingroup taxa. By decomposing these homolog trees, and taking gene duplications into account, we obtained 17,273 ortholog groups, where each was represented by at least ten ingroup taxa. We reconstructed the species phylogeny using a 1,122-gene data set with a gene occupancy of 92.1%. From the homolog trees, we found that both synonymous and nonsynonymous substitution rates in herbaceous lineages are up to three times as fast as in their woody relatives. This is the first time such a pattern has been shown across thousands of nuclear genes with dense taxon sampling. We also pinpointed regions of the Caryophyllales tree that were characterized by relatively high frequencies of gene duplication, including three previously unrecognized whole-genome duplications. By further combining information from homolog tree topology and synonymous distance between paralog pairs, phylogenetic locations for 13 putative genome duplication events were identified. Genes that experienced the greatest gene family expansion were concentrated among those involved in signal transduction and oxidoreduction, including a cytochrome P450 gene that encodes a key enzyme in the betalain synthesis pathway. Our approach demonstrates a new approach for functional phylogenomic analysis in nonmodel species that is based on homolog groups in addition to inferred ortholog groups.
Collapse
Affiliation(s)
- Ya Yang
- Department of Ecology & Evolutionary Biology, University of Michigan
| | - Michael J Moore
- Department of Biology, Oberlin College, Science Center K111, Oberlin, OH
| | - Samuel F Brockington
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Douglas E Soltis
- Department of Biology, University of Florida Florida Museum of Natural History, University of Florida Genetics Institute, University of Florida
| | - Gane Ka-Shu Wong
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada Department of Medicine, University of Alberta, Edmonton, AB, Canada BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen, China
| | - Eric J Carpenter
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Yong Zhang
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen, China
| | - Li Chen
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen, China
| | - Zhixiang Yan
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen, China
| | - Yinlong Xie
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen, China
| | - Rowan F Sage
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - Sarah Covshoff
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Julian M Hibberd
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Matthew N Nelson
- School of Plant Biology, The University of Western Australia, Crawley, WA, Australia
| | - Stephen A Smith
- Department of Ecology & Evolutionary Biology, University of Michigan
| |
Collapse
|
41
|
Ichihashi Y, Mutuku JM, Yoshida S, Shirasu K. Transcriptomics exposes the uniqueness of parasitic plants. Brief Funct Genomics 2015; 14:275-82. [PMID: 25700082 DOI: 10.1093/bfgp/elv001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Parasitic plants have the ability to obtain nutrients directly from other plants, and several species are serious biological threats to agriculture by parasitizing crops of high economic importance. The uniqueness of parasitic plants is characterized by the presence of a multicellular organ called a haustorium, which facilitates plant-plant interactions, and shutting down or reducing their own photosynthesis. Current technical advances in next-generation sequencing and bioinformatics have allowed us to dissect the molecular mechanisms behind the uniqueness of parasitic plants at the genome-wide level. In this review, we summarize recent key findings mainly in transcriptomics that will give us insights into the future direction of parasitic plant research.
Collapse
|
42
|
Das M, Fernández-Aparicio M, Yang Z, Huang K, Wickett NJ, Alford S, Wafula EK, dePamphilis C, Bouwmeester H, Timko MP, Yoder JI, Westwood JH. Parasitic Plants <i>Striga</i> and <i>Phelipanche</i> Dependent upon Exogenous Strigolactones for Germination Have Retained Genes for Strigolactone Biosynthesis. ACTA ACUST UNITED AC 2015. [DOI: 10.4236/ajps.2015.68120] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
43
|
Yang Z, Wafula EK, Honaas LA, Zhang H, Das M, Fernandez-Aparicio M, Huang K, Bandaranayake PCG, Wu B, Der JP, Clarke CR, Ralph PE, Landherr L, Altman NS, Timko MP, Yoder JI, Westwood JH, dePamphilis CW. Comparative transcriptome analyses reveal core parasitism genes and suggest gene duplication and repurposing as sources of structural novelty. Mol Biol Evol 2014; 32:767-90. [PMID: 25534030 PMCID: PMC4327159 DOI: 10.1093/molbev/msu343] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The origin of novel traits is recognized as an important process underlying many major evolutionary radiations. We studied the genetic basis for the evolution of haustoria, the novel feeding organs of parasitic flowering plants, using comparative transcriptome sequencing in three species of Orobanchaceae. Around 180 genes are upregulated during haustorial development following host attachment in at least two species, and these are enriched in proteases, cell wall modifying enzymes, and extracellular secretion proteins. Additionally, about 100 shared genes are upregulated in response to haustorium inducing factors prior to host attachment. Collectively, we refer to these newly identified genes as putative “parasitism genes.” Most of these parasitism genes are derived from gene duplications in a common ancestor of Orobanchaceae and Mimulus guttatus, a related nonparasitic plant. Additionally, the signature of relaxed purifying selection and/or adaptive evolution at specific sites was detected in many haustorial genes, and may play an important role in parasite evolution. Comparative analysis of gene expression patterns in parasitic and nonparasitic angiosperms suggests that parasitism genes are derived primarily from root and floral tissues, but with some genes co-opted from other tissues. Gene duplication, often taking place in a nonparasitic ancestor of Orobanchaceae, followed by regulatory neofunctionalization, was an important process in the origin of parasitic haustoria.
Collapse
Affiliation(s)
- Zhenzhen Yang
- Intercollege Graduate Program in Plant Biology, Huck Institutes of the Life Sciences, The Pennsylvania State University Department of Biology, The Pennsylvania State University Institute of Molecular Evolutionary Genetics, Huck Institutes of the Life Sciences, The Pennsylvania State University
| | - Eric K Wafula
- Department of Biology, The Pennsylvania State University Institute of Molecular Evolutionary Genetics, Huck Institutes of the Life Sciences, The Pennsylvania State University
| | - Loren A Honaas
- Intercollege Graduate Program in Plant Biology, Huck Institutes of the Life Sciences, The Pennsylvania State University Department of Biology, The Pennsylvania State University Institute of Molecular Evolutionary Genetics, Huck Institutes of the Life Sciences, The Pennsylvania State University
| | - Huiting Zhang
- Intercollege Graduate Program in Plant Biology, Huck Institutes of the Life Sciences, The Pennsylvania State University Department of Biology, The Pennsylvania State University
| | - Malay Das
- Department of Plant Pathology, Physiology and Weed Science, Virginia Polytechnic Institute and State University
| | - Monica Fernandez-Aparicio
- Department of Plant Pathology, Physiology and Weed Science, Virginia Polytechnic Institute and State University Department of Biology, University of Virginia
| | - Kan Huang
- Department of Biology, University of Virginia
| | | | - Biao Wu
- Department of Plant Sciences, University of California, Davis
| | - Joshua P Der
- Department of Biology, The Pennsylvania State University Institute of Molecular Evolutionary Genetics, Huck Institutes of the Life Sciences, The Pennsylvania State University
| | - Christopher R Clarke
- Department of Plant Pathology, Physiology and Weed Science, Virginia Polytechnic Institute and State University
| | - Paula E Ralph
- Department of Biology, The Pennsylvania State University
| | - Lena Landherr
- Department of Biology, The Pennsylvania State University
| | - Naomi S Altman
- Department of Statistics and Huck Institutes of the Life Sciences, The Pennsylvania State University
| | | | - John I Yoder
- Department of Plant Sciences, University of California, Davis
| | - James H Westwood
- Department of Plant Pathology, Physiology and Weed Science, Virginia Polytechnic Institute and State University
| | - Claude W dePamphilis
- Intercollege Graduate Program in Plant Biology, Huck Institutes of the Life Sciences, The Pennsylvania State University Department of Biology, The Pennsylvania State University Institute of Molecular Evolutionary Genetics, Huck Institutes of the Life Sciences, The Pennsylvania State University
| |
Collapse
|
44
|
Ranjan A, Ichihashi Y, Farhi M, Zumstein K, Townsley B, David-Schwartz R, Sinha NR. De novo assembly and characterization of the transcriptome of the parasitic weed dodder identifies genes associated with plant parasitism. PLANT PHYSIOLOGY 2014; 166:1186-99. [PMID: 24399359 PMCID: PMC4226353 DOI: 10.1104/pp.113.234864] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Accepted: 01/06/2014] [Indexed: 05/18/2023]
Abstract
Parasitic flowering plants are one of the most destructive agricultural pests and have major impact on crop yields throughout the world. Being dependent on finding a host plant for growth, parasitic plants penetrate their host using specialized organs called haustoria. Haustoria establish vascular connections with the host, which enable the parasite to steal nutrients and water. The underlying molecular and developmental basis of parasitism by plants is largely unknown. In order to investigate the process of parasitism, RNAs from different stages (i.e. seed, seedling, vegetative strand, prehaustoria, haustoria, and flower) were used to de novo assemble and annotate the transcriptome of the obligate plant stem parasite dodder (Cuscuta pentagona). The assembled transcriptome was used to dissect transcriptional dynamics during dodder development and parasitism and identified key gene categories involved in the process of plant parasitism. Host plant infection is accompanied by increased expression of parasite genes underlying transport and transporter categories, response to stress and stimuli, as well as genes encoding enzymes involved in cell wall modifications. By contrast, expression of photosynthetic genes is decreased in the dodder infective stages compared with normal stem. In addition, genes relating to biosynthesis, transport, and response of phytohormones, such as auxin, gibberellins, and strigolactone, were differentially expressed in the dodder infective stages compared with stems and seedlings. This analysis sheds light on the transcriptional changes that accompany plant parasitism and will aid in identifying potential gene targets for use in controlling the infestation of crops by parasitic weeds.
Collapse
Affiliation(s)
- Aashish Ranjan
- Department of Plant Biology, University of California, Davis, California 95616
| | - Yasunori Ichihashi
- Department of Plant Biology, University of California, Davis, California 95616
| | - Moran Farhi
- Department of Plant Biology, University of California, Davis, California 95616
| | - Kristina Zumstein
- Department of Plant Biology, University of California, Davis, California 95616
| | - Brad Townsley
- Department of Plant Biology, University of California, Davis, California 95616
| | | | - Neelima R Sinha
- Department of Plant Biology, University of California, Davis, California 95616
| |
Collapse
|
45
|
Barrett CF, Freudenstein JV, Li J, Mayfield-Jones DR, Perez L, Pires JC, Santos C. Investigating the path of plastid genome degradation in an early-transitional clade of heterotrophic orchids, and implications for heterotrophic angiosperms. Mol Biol Evol 2014; 31:3095-112. [PMID: 25172958 DOI: 10.1093/molbev/msu252] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Parasitic organisms exemplify morphological and genomic reduction. Some heterotrophic, parasitic plants harbor drastically reduced and degraded plastid genomes resulting from relaxed selective pressure on photosynthetic function. However, few studies have addressed the initial stages of plastome degradation in groups containing both photosynthetic and nonphotosynthetic species. Corallorhiza is a genus of leafless, heterotrophic orchids that contains both green, photosynthetic species and nongreen, putatively nonphotosynthetic species, and represents an ideal system in which to assess the beginning of the transition to a "minimal plastome." Complete plastomes were generated for nine taxa of Corallorhiza using Illumina paired-end sequencing of genomic DNA to assess the degree of degradation among taxa, and for comparison with a general model of degradation among angiosperms. Quantification of total chlorophyll suggests that nongreen Corallorhiza still produce chlorophyll, but at 10-fold lower concentrations than green congeners. Complete plastomes and partial nuclear rDNA cistrons yielded a fully resolved tree for Corallorhiza, with at least two independent losses of photosynthesis, evidenced by gene deletions and pseudogenes in Co. striata and nongreen Co. maculata. All Corallorhiza show some evidence of degradation in genes of the NAD(P)H dehydrogenase complex. Among genes with open reading frames, photosynthesis-related genes displayed evidence of neutral evolution in nongreen Corallorhiza, whereas genes of the ATP synthase complex displayed some evidence of positive selection in these same groups, though for reasons unknown. Corallorhiza spans the early stages of a general model of plastome degradation and has added critical insight for understanding the process of plastome evolution in heterotrophic angiosperms.
Collapse
Affiliation(s)
- Craig F Barrett
- Department of Biological Sciences, California State University, Los Angeles
| | - John V Freudenstein
- Department of Evolution, Ecology, and Organismal Biology and the Museum of Biological Diversity, Ohio State University
| | - Jeff Li
- Department of Biological Sciences, California State University, Los Angeles
| | | | - Leticia Perez
- Department of Biological Sciences, California State University, Los Angeles
| | - J Chris Pires
- Division of Biological Sciences, University of Missouri
| | - Cristian Santos
- Department of Biological Sciences, California State University, Los Angeles
| |
Collapse
|
46
|
Comparative phylogenomics uncovers the impact of symbiotic associations on host genome evolution. PLoS Genet 2014; 10:e1004487. [PMID: 25032823 PMCID: PMC4102449 DOI: 10.1371/journal.pgen.1004487] [Citation(s) in RCA: 161] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 05/20/2014] [Indexed: 02/06/2023] Open
Abstract
Mutualistic symbioses between eukaryotes and beneficial microorganisms of their microbiome play an essential role in nutrition, protection against disease, and development of the host. However, the impact of beneficial symbionts on the evolution of host genomes remains poorly characterized. Here we used the independent loss of the most widespread plant–microbe symbiosis, arbuscular mycorrhization (AM), as a model to address this question. Using a large phenotypic approach and phylogenetic analyses, we present evidence that loss of AM symbiosis correlates with the loss of many symbiotic genes in the Arabidopsis lineage (Brassicales). Then, by analyzing the genome and/or transcriptomes of nine other phylogenetically divergent non-host plants, we show that this correlation occurred in a convergent manner in four additional plant lineages, demonstrating the existence of an evolutionary pattern specific to symbiotic genes. Finally, we use a global comparative phylogenomic approach to track this evolutionary pattern among land plants. Based on this approach, we identify a set of 174 highly conserved genes and demonstrate enrichment in symbiosis-related genes. Our findings are consistent with the hypothesis that beneficial symbionts maintain purifying selection on host gene networks during the evolution of entire lineages. Symbiotic associations between eukaryotes and microbes play essential roles in the nutrition, health and behavior of both partners. It is well accepted that hosts control and shape their associated microbiome. In this study, we provide evidence that symbiotic microbes also participate in the evolution of host genomes. In particular, we show that the independent loss of a symbiosis in several plant lineages results in a convergent modification of non-host genomes. Interestingly, a significant fraction of genes lost in non-hosts play an important role in this symbiosis, supporting the use of comparative genomics as a powerful approach to identify undiscovered gene networks.
Collapse
|
47
|
Dorrell RG, Drew J, Nisbet RER, Howe CJ. Evolution of chloroplast transcript processing in Plasmodium and its chromerid algal relatives. PLoS Genet 2014; 10:e1004008. [PMID: 24453981 PMCID: PMC3894158 DOI: 10.1371/journal.pgen.1004008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 10/22/2013] [Indexed: 12/14/2022] Open
Abstract
It is well understood that apicomplexan parasites, such as the malaria pathogen Plasmodium, are descended from free-living algae, and maintain a vestigial chloroplast that has secondarily lost all genes of photosynthetic function. Recently, two fully photosynthetic relatives of parasitic apicomplexans have been identified, the ‘chromerid’ algae Chromera velia and Vitrella brassicaformis, which retain photosynthesis genes within their chloroplasts. Elucidating the processes governing gene expression in chromerid chloroplasts might provide valuable insights into the origins of parasitism in the apicomplexans. We have characterised chloroplast transcript processing pathways in C. velia, V. brassicaformis and P. falciparum with a focus on the addition of an unusual, 3′ poly(U) tail. We demonstrate that poly(U) tails in chromerids are preferentially added to transcripts that encode proteins that are directly involved in photosynthetic electron transfer, over transcripts for proteins that are not involved in photosynthesis. To our knowledge, this represents the first chloroplast transcript processing pathway to be associated with a particular functional category of genes. In contrast, Plasmodium chloroplast transcripts are not polyuridylylated. We additionally present evidence that poly(U) tail addition in chromerids is involved in the alternative processing of polycistronic precursors covering multiple photosynthesis genes, and appears to be associated with high levels of transcript abundance. We propose that changes to the chloroplast transcript processing machinery were an important step in the loss of photosynthesis in ancestors of parasitic apicomplexans. Chloroplasts contain their own genomes, containing two broad functional types of gene: genes encoding proteins directly involved in photosynthesis, and genes with a non-photosynthesis function, such as cofactor biosynthesis, assembly of protein complexes, or expression of the chloroplast genome. Thus far, to our knowledge, no chloroplast gene expression pathways in any lineage have been found to target one functional category of gene specifically. Here, we show that a chloroplast RNA processing pathway – the addition of a 3′ poly(U) tail – is specifically associated with photosynthesis genes in two species of algae, the ‘chromerids’ Chromera and Vitrella. The addition of the poly(U) tail enables the precise processing of mature photosynthesis gene transcripts from precursor RNA, and is likely to be essential for expression of the chromerid photosynthesis machinery. The chromerid algae are the closest photosynthetic relatives of a parasitic group of eukaryotes, the apicomplexans, which include the malaria pathogen Plasmodium. Apicomplexans are descended from algae, and retain a reduced chloroplast, which contains genes only of non-photosynthesis function. We have confirmed that 3′ poly(U) tails are not added to Plasmodium chloroplast transcripts. The expression pathways associated with photosynthesis genes have therefore been lost in the evolution of the apicomplexan chloroplast, and this loss could potentially have driven the transition from photosynthesis to parasitism.
Collapse
Affiliation(s)
- Richard G. Dorrell
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - James Drew
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - R. Ellen R. Nisbet
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| | - Christopher J. Howe
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
48
|
Zhang J, Ruhlman TA, Mower JP, Jansen RK. Comparative analyses of two Geraniaceae transcriptomes using next-generation sequencing. BMC PLANT BIOLOGY 2013; 13:228. [PMID: 24373163 PMCID: PMC3880972 DOI: 10.1186/1471-2229-13-228] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 12/20/2013] [Indexed: 05/24/2023]
Abstract
BACKGROUND Organelle genomes of Geraniaceae exhibit several unusual evolutionary phenomena compared to other angiosperm families including accelerated nucleotide substitution rates, widespread gene loss, reduced RNA editing, and extensive genomic rearrangements. Since most organelle-encoded proteins function in multi-subunit complexes that also contain nuclear-encoded proteins, it is likely that the atypical organellar phenomena affect the evolution of nuclear genes encoding organellar proteins. To begin to unravel the complex co-evolutionary interplay between organellar and nuclear genomes in this family, we sequenced nuclear transcriptomes of two species, Geranium maderense and Pelargonium x hortorum. RESULTS Normalized cDNA libraries of G. maderense and P. x hortorum were used for transcriptome sequencing. Five assemblers (MIRA, Newbler, SOAPdenovo, SOAPdenovo-trans [SOAPtrans], Trinity) and two next-generation technologies (454 and Illumina) were compared to determine the optimal transcriptome sequencing approach. Trinity provided the highest quality assembly of Illumina data with the deepest transcriptome coverage. An analysis to determine the amount of sequencing needed for de novo assembly revealed diminishing returns of coverage and quality with data sets larger than sixty million Illumina paired end reads for both species. The G. maderense and P. x hortorum transcriptomes contained fewer transcripts encoding the PLS subclass of PPR proteins relative to other angiosperms, consistent with reduced mitochondrial RNA editing activity in Geraniaceae. In addition, transcripts for all six plastid targeted sigma factors were identified in both transcriptomes, suggesting that one of the highly divergent rpoA-like ORFs in the P. x hortorum plastid genome is functional. CONCLUSIONS The findings support the use of the Illumina platform and assemblers optimized for transcriptome assembly, such as Trinity or SOAPtrans, to generate high-quality de novo transcriptomes with broad coverage. In addition, results indicated no major improvements in breadth of coverage with data sets larger than six billion nucleotides or when sampling RNA from four tissue types rather than from a single tissue. Finally, this work demonstrates the power of cross-compartmental genomic analyses to deepen our understanding of the correlated evolution of the nuclear, plastid, and mitochondrial genomes in plants.
Collapse
Affiliation(s)
- Jin Zhang
- Department of Integrative Biology and Institute of Cellular and Molecular Biology, The University of Texas at Austin, 205 W. 24th St. Stop C0930, Austin, TX 78712, USA
| | - Tracey A Ruhlman
- Department of Integrative Biology and Institute of Cellular and Molecular Biology, The University of Texas at Austin, 205 W. 24th St. Stop C0930, Austin, TX 78712, USA
| | - Jeffrey P Mower
- Center for Plant Science Innovation and Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Robert K Jansen
- Department of Integrative Biology and Institute of Cellular and Molecular Biology, The University of Texas at Austin, 205 W. 24th St. Stop C0930, Austin, TX 78712, USA
- Genomics and Biotechnology Section, Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
49
|
Spallek T, Mutuku M, Shirasu K. The genus Striga: a witch profile. MOLECULAR PLANT PATHOLOGY 2013; 14:861-9. [PMID: 23841683 PMCID: PMC6638688 DOI: 10.1111/mpp.12058] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The genus Striga comprises about 30 obligate root-parasitic plants, commonly known as witchweeds. In particular, S. hermonthica, S. asiatica and S. gesnerioides cause immense losses to major stable crops in sub-Saharan Africa. Most Striga species parasitize grass species (Poaceae), but Striga gesnerioides has evolved to parasitize dicotyledonous plants. Aspects of phylogeny, economic impact, parasitic life style and molecular discoveries are briefly reviewed to profile one of the main biotic constraints to African agriculture. TAXONOMY Striga Lour.; Kingdom Plant; Division Angiospermae; Clade Eudicots; Order Laminales; Family Orobanchaceae. IMPORTANT HOSTS Sorghum Moench., maize (Zea mays L.), rice (Oryza L.), sugarcane (Saccharum L.), pearl millet [Pennisetum glaucum (L.) R. Br.], cowpea [Vigna unguiculata (L.) Walp.]. DISEASE SYMPTOMS Stunted growth, drought-stressed-like appearance, in severe cases chlorosis and necrosis. ECONOMIC IMPORTANCE 1 billion $US per annum. DISEASE CONTROL Hand weeding, breeding, chemical control, intercropping with catch or trap crops. USEFUL WEBPAGES http://ppgp.huck.psu.edu; http://striga.psc.riken.jp.
Collapse
Affiliation(s)
- Thomas Spallek
- RIKEN Centre for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | | | | |
Collapse
|
50
|
Jiang L, Wijeratne AJ, Wijeratne S, Fraga M, Meulia T, Doohan D, Li Z, Qu F. Profiling mRNAs of two Cuscuta species reveals possible candidate transcripts shared by parasitic plants. PLoS One 2013; 8:e81389. [PMID: 24312295 PMCID: PMC3842250 DOI: 10.1371/journal.pone.0081389] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 10/14/2013] [Indexed: 12/19/2022] Open
Abstract
Dodders are among the most important parasitic plants that cause serious yield losses in crop plants. In this report, we sought to unveil the genetic basis of dodder parasitism by profiling the trancriptomes of Cuscuta pentagona and C. suaveolens, two of the most common dodder species using a next-generation RNA sequencing platform. De novo assembly of the sequence reads resulted in more than 46,000 isotigs and contigs (collectively referred to as expressed sequence tags or ESTs) for each species, with more than half of them predicted to encode proteins that share significant sequence similarities with known proteins of non-parasitic plants. Comparing our datasets with transcriptomes of 12 other fully sequenced plant species confirmed a close evolutionary relationship between dodder and tomato. Using a rigorous set of filtering parameters, we were able to identify seven pairs of ESTs that appear to be shared exclusively by parasitic plants, thus providing targets for tailored management approaches. In addition, we also discovered ESTs with sequences similarities to known plant viruses, including cryptic viruses, in the dodder sequence assemblies. Together this study represents the first comprehensive transcriptome profiling of parasitic plants in the Cuscuta genus, and is expected to contribute to our understanding of the molecular mechanisms of parasitic plant-host plant interactions.
Collapse
Affiliation(s)
- Linjian Jiang
- Department of Horticulture and Crop Science, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio, United States of America
- Department of Plant Pathology, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio, United States of America
| | - Asela J. Wijeratne
- Molecular and Cellular Imaging Center, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio, United States of America
| | - Saranga Wijeratne
- Molecular and Cellular Imaging Center, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio, United States of America
| | - Martina Fraga
- Wooster High School, Wooster, Ohio, United States of America
| | - Tea Meulia
- Molecular and Cellular Imaging Center, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio, United States of America
| | - Doug Doohan
- Department of Horticulture and Crop Science, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio, United States of America
| | - Zhaohu Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Feng Qu
- Department of Plant Pathology, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio, United States of America
| |
Collapse
|