1
|
Zhang C, He Y, Wang J, Chen T, Baltar F, Hu M, Liao J, Xiao X, Li ZR, Dong X. LucaPCycle: Illuminating microbial phosphorus cycling in deep-sea cold seep sediments using protein language models. Nat Commun 2025; 16:4862. [PMID: 40419512 DOI: 10.1038/s41467-025-60142-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 05/16/2025] [Indexed: 05/28/2025] Open
Abstract
Phosphorus is essential for life and critically influences marine productivity. Despite geochemical evidence of active phosphorus cycling in deep-sea cold seeps, the microbial processes involved remain poorly understood. Traditional sequence-based searches often fail to detect proteins with remote homology. To address this, we developed a deep learning model, LucaPCycle, integrating raw sequences and contextual embeddings based on the protein language model ESM2-3B. LucaPCycle identified 5241 phosphorus-cycling protein families from global cold seep gene and genome catalogs, substantially enhancing our understanding of their diversity, ecology, and function. Among previously unannotated sequences, we discovered three alkaline phosphatase families that feature unique domain organizations and preserved enzymatic capabilities. These results highlight previously overlooked ecological importance of phosphorus cycling within cold seeps, corroborated by data from porewater geochemistry, metatranscriptomics, and metabolomics. We revealed a previously unrecognized diversity of archaea, including Asgardarchaeota, anaerobic methanotrophic archaea and Thermoproteota, which contribute to organic phosphorus mineralization and inorganic phosphorus solubilization through various mechanisms. Additionally, auxiliary metabolic genes of cold seep viruses primarily encode the PhoR-PhoB regulatory system and PhnCDE transporter, potentially enhancing their hosts' phosphorus utilization. Overall, LucaPCycle are capable of accessing previously 'hidden' sequence spaces for microbial phosphorus cycling and can be applied to various ecosystems.
Collapse
Affiliation(s)
- Chuwen Zhang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Yong He
- Apsara Lab, Alibaba Cloud Intelligence, Alibaba Group, Hangzhou, China
| | - Jieni Wang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Tengkai Chen
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Federico Baltar
- Fungal and Biogeochemical Oceanography Group, College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, China
- Fungal and Biogeochemical Oceanography Group, Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Minjie Hu
- Key Laboratory of Humid Sub-tropical Eco-geographical Process of Ministry of Education, Fujian Normal University, Fuzhou, China
- School of Geographical Sciences, Fujian Normal University, Fuzhou, China
| | - Jing Liao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Xi Xiao
- Key Laboratory of Marine Mineral Resources, Ministry of Natural Resources, Guangzhou Marine Geological Survey, China Geological Survey, Guangzhou, China
| | - Zhao-Rong Li
- Apsara Lab, Alibaba Cloud Intelligence, Alibaba Group, Hangzhou, China.
| | - Xiyang Dong
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China.
| |
Collapse
|
2
|
Chu Y, Dong X, Fang S, Gan L, Lee X, Zhou L. Viruses in human-impacted estuarine ecotones: Distribution, metabolic potential, and environmental risks. WATER RESEARCH 2025; 282:123750. [PMID: 40328153 DOI: 10.1016/j.watres.2025.123750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 04/03/2025] [Accepted: 04/29/2025] [Indexed: 05/08/2025]
Abstract
Estuaries, as dynamic ecological interfaces between marine and terrestrial systems, are characterized by high productivity and intricate microbial communities. Viruses exert critical regulatory effects on microbial processes, influencing ecological functions and contributing to environmental dynamics in estuarine ecosystems. Despite their significance, the diversity and ecological roles of estuarine viruses remain insufficiently understood. This study explored the viral biogeographic patterns, metabolic potential, and influencing factors in 30 subtropical estuaries in China. Few estuarine viruses (< 22 %) exhibited homology with known viruses, and the low overlap of virus clusters with other environments highlights their novelty and habitat specificity. Mantel tests and random forest analysis identified salinity, temperature, nutrients, and pollutants as key factors influencing viral composition and functional profiles. In addition, correlation analysis between virus and host confirmed significant virus-host interactions, while functional analyses highlighted the role of environmental conditions and horizontal gene transfer in shaping auxiliary metabolic genes linked to elemental biogeochemical cycles, particularly phosphorus, sulfur, and nitrogen. The detection of antibiotic resistance genes (ARGs) and virulence factors (VFs) within viral genomes underscores the role of viruses as reservoirs of ARGs and VFs in these ecosystems. These results demonstrate the profound influence of abiotic and host factors on viral community structures in subtropical estuarine ecotones and underscore the ecological significance of metabolic genes in biogeochemical cycling. By clarifying these interactions, this study advances the understanding of viral contributions to ecosystem functioning and biogeochemical dynamics in estuarine environments.
Collapse
Affiliation(s)
- Yunmeng Chu
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xiaoxiao Dong
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Shiyun Fang
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Lihong Gan
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Xuezhu Lee
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China.
| | - Lei Zhou
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
3
|
Li G, Feng J, Zhu X, Chai Y, Sun T, Jiang J. Expression and characterization of the complete cyanophage genome PP in the heterologous host Synechococcus elongatus PCC 7942. Int J Biol Macromol 2025; 301:140242. [PMID: 39863235 DOI: 10.1016/j.ijbiomac.2025.140242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/10/2025] [Accepted: 01/21/2025] [Indexed: 01/27/2025]
Abstract
In this study, we successfully integrated the full-length genome of the cyanophage PP into the non-host cyanobacterium Synechococcus elongatus PCC 7942, facilitated by conjugation via Escherichia coli. To address the challenge posed by the toxic open reading frames (ORFs) of PP in E. coli, we first identified and characterized three toxic ORFs. The PP genome was subsequently rearranged, and the expression of these toxic ORFs was controlled using a tandem-induction switch system. The full-length PP genome was then successfully integrated into the genome of S. elongatus PCC 7942. Interestingly, the integration of the PP genome led to a reduction in photosynthesis and carbon fixation in S. elongatus PCC 7942, resembling the effects typically associated with cyanophage infection. Transcriptomic analysis showed that 32 of the 41 ORFs in the PP genome were actively transcribed in S. elongatus PCC 7942, significantly affecting energy metabolism and carbon fixation pathways. These effects were further confirmed by metabolomic analysis.
Collapse
Affiliation(s)
- Guorui Li
- School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China; Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, PR China
| | - Jia Feng
- School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China; Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, PR China; State Key Laboratory of Synthetic Biology, Tianjin University, Tianjin, 300072, PR China
| | - Xiaofei Zhu
- School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China; State Key Laboratory of Synthetic Biology, Tianjin University, Tianjin, 300072, PR China
| | - Yujie Chai
- School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China
| | - Tao Sun
- School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China; Center for Biosafety Research and Strategy, Tianjin University, Tianjin 300072, PR China; State Key Laboratory of Synthetic Biology, Tianjin University, Tianjin, 300072, PR China.
| | - Jianlan Jiang
- School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China; Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, PR China; Frontier Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, PR China; State Key Laboratory of Synthetic Biology, Tianjin University, Tianjin, 300072, PR China.
| |
Collapse
|
4
|
Fitzpatrick AD, Taylor VL, Patel PH, Faith DR, Secor PR, Maxwell KL. Phage reprogramming of Pseudomonas aeruginosa amino acid metabolism drives efficient phage replication. mBio 2025; 16:e0246624. [PMID: 39918338 PMCID: PMC11898732 DOI: 10.1128/mbio.02466-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 12/18/2024] [Indexed: 03/14/2025] Open
Abstract
Phages have been shown to use diverse strategies to commandeer bacterial host cell metabolism during infection. However, for many of the physiological changes in bacteria during infection, it is often unclear if they are part of a bacterial response to infection or if they are actively driven by the phage itself. Here, we identify two phage proteins that promote efficient phage replication by reprogramming host amino acid metabolism. These proteins, Eht1 and Eht2, are expressed early in the infection cycle and increase the levels of key amino acids and the arginine-derived polyamine putrescine. This provides a fitness advantage as these metabolites are important for phage replication and are often depleted during infection. We provide evidence that Eht1 and Eht2 alter the expression of bacterial host metabolic genes, and their activities may impinge on metabolism-related signaling processes. This work provides new insight into how phages ensure access to essential host resources during infection and the competitive advantage this provides.IMPORTANCEBacterial viruses, known as phages, are abundant in all environments that are inhabited by bacteria. During the infection process, phages exploit bacterial resources, resulting in notable changes to bacterial metabolism. However, precise mechanisms underlying these changes, and if they are driven by the phage or are a generalized bacterial response to infection, remain poorly understood. We characterized two proteins in Pseudomonas aeruginosa phage JBD44 whose activities alter bacterial host metabolism to optimize phage replication. Our work provides insight into how phages control bacterial processes to ensure access to essential host resources during infection.
Collapse
Affiliation(s)
| | | | | | - Dominick R. Faith
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA
| | - Patrick R. Secor
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA
| | - Karen L. Maxwell
- Department of Biochemistry, University of Toronto, Toronto, Canada
| |
Collapse
|
5
|
Bhattarai B, Bhattacharjee AS, Coutinho FH, Li H, Chadalavada S, Goel R. Bacteriophages carry auxiliary metabolic genes related to energy, sulfur and phosphorus metabolism during a harmful algal bloom in a freshwater lake. CHEMOSPHERE 2025; 370:143819. [PMID: 39622454 DOI: 10.1016/j.chemosphere.2024.143819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 11/23/2024] [Accepted: 11/25/2024] [Indexed: 12/13/2024]
Abstract
Cyanophages play an important role in nutrient cycling in lakes since they can modulate the metabolism of cyanobacteria. A proper understanding of the impact of cyanophage infection on the metabolism and ecology of cyanobacteria is critical during a complete cycle of harmful algal bloom (HAB). The ecology of cyanophages in marine environments has been well-delineated, but cyanophages in freshwater lakes remain less studied. Here, we studied the diversity of cyanophages and their impact on host ecology and metabolism through the succession of HAB in Utah Lake, which is a shallow eutrophic freshwater lake, in 2019. We collected water samples at three different periods from two locations in freshwater Utah Lake. The three sampling periods represented the pre-bloom, peak-bloom, and post-bloom events. We observed that the Utah Lake virome was dominated by families Myoviridae, Siphoviridae, and Podoviridae under the order Caudovirales. We detected photosystem-related genes, sulfur assimilation genes, and pho regulon (phosphorus metabolism) genes in genomes of predicted cyanophages. We were able to capture the changes in relative abundance and expression of functional genes in genomes of cyanophage at different stages of the bloom. We observed higher relative abundance and expression of cyanophage-encoded pho-regulon genes in the "pre-bloom" period. The higher expression of pho-regulon genes in P-limited ecosystem of Utah Lake indicated the possible contribution of cyanophage to enhance the fitness of the host cyanobacteria. Our study provides some insightful findings on the role of cyanophages in controlling the ecology and relative abundance of host cyanobacteria in freshwater lakes.
Collapse
Affiliation(s)
- Bishav Bhattarai
- The University of Utah, Department of Civil and Environmental Engineering, 110 S Central Campus Drive, Salt Lake City, UT, 84112, United States
| | - Ananda Shankar Bhattacharjee
- Department of Environmental Sciences, The University of California, Riverside, Riverside, CA, United States; USDA-ARS, United States Salinity Laboratory, Riverside, CA, United States
| | - Felipe H Coutinho
- Department of Marine Biology and Oceanography, Institute of Marine Sciences, Consejo Superior de Investigaciones Científicas (ICM-CISC), Barcelona, Spain
| | - Hanyan Li
- Institute of Environmental Genomics, University of Oklahoma, Norman, OK, 73019, United States
| | - Sreeni Chadalavada
- School of Engineering, University of Southern Queensland, Sprinfield, Queensland, 4350, Australia
| | - Ramesh Goel
- The University of Utah, Department of Civil and Environmental Engineering, 110 S Central Campus Drive, Salt Lake City, UT, 84112, United States.
| |
Collapse
|
6
|
Tokodi N, Łobodzińska A, Klimczak B, Antosiak A, Młynarska S, Šulčius S, Avrani S, Yoshida T, Dziga D. Proliferative and viability effects of two cyanophages on freshwater bloom-forming species Microcystis aeruginosa and Raphidiopsis raciborskii vary between strains. Sci Rep 2025; 15:3152. [PMID: 39856188 PMCID: PMC11761051 DOI: 10.1038/s41598-025-87626-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 01/21/2025] [Indexed: 01/27/2025] Open
Abstract
Viruses that infect cyanobacteria are an integral part of aquatic food webs, influencing nutrient cycling and ecosystem health. However, the significance of virus host range, replication efficiency, and host compatibility on cyanobacterial dynamics, growth, and toxicity remains poorly understood. In this study, we examined the effects of cyanophage additions on the dynamics and activity of optimal, sub-optimal, and non-permissive cyanobacterial hosts in cultures of Microcystis aeruginosa and Raphidiopsis raciborskii. Our findings reveal that cross-infectivity can substantially reduce the proliferative success of the cyanophage under conditions of high-density of sub-optimal hosts which suggests phage dispersal limitation as a result of shared infections, in turn impairing their top-down control over the host community. Furthermore, we found that cyanophage addition triggers host strain-specific responses in photosynthetic performance, population size and toxin production, even among non-permissive hosts. These non-lytic effects suggest indirect impacts on co-existing cyanobacteria, increasing the overall complexity and variance in many ecologically relevant cyanobacterial traits. The high variability in responses observed with a limited subset of cyanophage-cyanobacteria combinations not only highlights the intricate role of viral infections in microbial ecosystems but also underscores the significant challenges in predicting the composition, toxicity, and dynamics of cyanobacterial blooms.
Collapse
Affiliation(s)
- Nada Tokodi
- Laboratory of Metabolomics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Krakow, 30387, Poland
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, Novi Sad, 21000, Serbia
| | - Antonia Łobodzińska
- Laboratory of Metabolomics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Krakow, 30387, Poland
| | - Barbara Klimczak
- Laboratory of Metabolomics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Krakow, 30387, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, 30-348, Poland
| | - Adam Antosiak
- Laboratory of Metabolomics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Krakow, 30387, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, 30-348, Poland
| | - Sara Młynarska
- Laboratory of Metabolomics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Krakow, 30387, Poland
| | - Sigitas Šulčius
- Laboratory of Algology and Microbial Ecology, Nature Research Centre, Akademijos str. 2, Vilnius, 08412, Lithuania
| | - Sarit Avrani
- Department of Evolutionary and Environmental Biology, Institute of Evolution, University of Haifa, Haifa, Israel
| | - Takashi Yoshida
- Laboratory of Marine Microbiology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
- School of Environmental Science, University of Shiga Prefecture, Hikone, Japan
| | - Dariusz Dziga
- Laboratory of Metabolomics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Krakow, 30387, Poland.
| |
Collapse
|
7
|
Caille C, Duhamel S, Latifi A, Rabouille S. Adaptive Responses of Cyanobacteria to Phosphate Limitation: A Focus on Marine Diazotrophs. Environ Microbiol 2024; 26:e70023. [PMID: 39714117 DOI: 10.1111/1462-2920.70023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 11/08/2024] [Accepted: 12/03/2024] [Indexed: 12/24/2024]
Abstract
Phosphorus is an essential component of numerous macromolecules and is vital for life. Its availability significantly influences primary production, particularly in oligotrophic environments. Marine diazotrophic cyanobacteria, which play key roles in biogeochemical cycles through nitrogen fixation (N2 fixation), have adapted to thrive in phosphate (Pi)-poor areas. However, the molecular mechanisms that facilitate their adaptation to such conditions remain incompletely understood. Bacteria have evolved various strategies to cope with Pi limitation, including detecting Pi availability, utilising high-affinity Pi transporters, and hydrolyzing dissolved organic phosphorus (DOP) with various enzymes. This review synthesises current knowledge regarding how cyanobacteria adapt to Pi scarcity, with particular emphasis on subtropical marine free-living diazotrophs and their ability to utilise diverse DOP molecules. Omics approaches, such as (meta)genomics and (meta)transcriptomics, reveal the resilience of marine diazotrophs in the face of Pi scarcity and highlight the need for further research into their molecular adaptive strategies. Adaptation to Pi limitation is often intertwined with the broader response of cyanobacteria to multiple limitations and stresses. This underscores the importance of understanding Pi adaptation to assess the ecological resilience of these crucial microorganisms in dynamic environments, particularly in the context of global climate change.
Collapse
Affiliation(s)
- Chloé Caille
- CNRS, Sorbonne Université, UMR 7621, Laboratoire d'Océanographie Microbienne (LOMIC), Banyuls sur mer, France
- Aix Marseille Univ, CNRS, Laboratoire de Chimie Bactérienne LCB, IMM, Marseille, France
| | - Solange Duhamel
- Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, USA
| | - Amel Latifi
- Aix Marseille Univ, CNRS, Laboratoire de Chimie Bactérienne LCB, IMM, Marseille, France
| | - Sophie Rabouille
- CNRS, Sorbonne Université, UMR 7621, Laboratoire d'Océanographie Microbienne (LOMIC), Banyuls sur mer, France
| |
Collapse
|
8
|
Wang C, Zheng R, Zhang T, Sun C. Polysaccharides induce deep-sea Lentisphaerae strains to release chronic bacteriophages. eLife 2024; 13:RP92345. [PMID: 39207920 PMCID: PMC11361711 DOI: 10.7554/elife.92345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Viruses are ubiquitous in nature and play key roles in various ecosystems. Notably, some viruses (e.g. bacteriophage) exhibit alternative life cycles, such as chronic infections without cell lysis. However, the impact of chronic infections and their interactions with the host organisms remains largely unknown. Here, we found for the first time that polysaccharides induced the production of multiple temperate phages infecting two deep-sea Lentisphaerae strains (WC36 and zth2). Through physiological assays, genomic analysis, and transcriptomics assays, we found these bacteriophages were released via a chronic style without host cell lysis, which might reprogram host polysaccharide metabolism through the potential auxiliary metabolic genes. The findings presented here, together with recent discoveries made on the reprogramming of host energy-generating metabolisms by chronic bacteriophages, shed light on the poorly explored marine virus-host interaction and bring us closer to understanding the potential role of chronic viruses in marine ecosystems.
Collapse
Affiliation(s)
- Chong Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology and Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of SciencesQingdaoChina
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology CenterQingdaoChina
- Center of Ocean Mega-Science, Chinese Academy of SciencesQingdaoChina
| | - Rikuan Zheng
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology and Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of SciencesQingdaoChina
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology CenterQingdaoChina
- Center of Ocean Mega-Science, Chinese Academy of SciencesQingdaoChina
| | - Tianhang Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology and Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of SciencesQingdaoChina
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology CenterQingdaoChina
- Center of Ocean Mega-Science, Chinese Academy of SciencesQingdaoChina
- College of Earth Science, University of Chinese Academy of SciencesBeijingChina
| | - Chaomin Sun
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology and Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of SciencesQingdaoChina
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology CenterQingdaoChina
- Center of Ocean Mega-Science, Chinese Academy of SciencesQingdaoChina
- College of Earth Science, University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
9
|
Barno AR, Green K, Rohwer F, Silveira CB. Snow viruses and their implications on red snow algal blooms. mSystems 2024; 9:e0008324. [PMID: 38647296 PMCID: PMC11097641 DOI: 10.1128/msystems.00083-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/23/2024] [Indexed: 04/25/2024] Open
Abstract
Algal blooms can give snowmelt a red color, reducing snow albedo and creating a runaway effect that accelerates snow melting. The occurrence of red snow is predicted to grow in polar and subpolar regions with increasing global temperatures. We hypothesize that these algal blooms affect virus-bacteria interactions in snow, with potential effects on snowmelt dynamics. A genomic analysis of double-stranded DNA virus communities in red and white snow from the Whistler region of British Columbia, Canada, identified 792 putative viruses infecting bacteria. The most abundant putative snow viruses displayed low genomic similarity with known viruses. We recovered the complete circular genomes of nine putative viruses, two of which were classified as temperate. Putative snow viruses encoded genes involved in energy metabolisms, such as NAD+ synthesis and salvage pathways. In model phages, these genes facilitate increased viral particle production and lysis rates. The frequency of temperate phages was positively correlated with microbial abundance in the snow samples. These results suggest the increased frequency of temperate virus-bacteria interactions as microbial densities increase during snowmelt. We propose that this virus-bacteria dynamic may facilitate the red snow algae growth stimulated by bacteria.IMPORTANCEMicrobial communities in red snow algal blooms contribute to intensifying snowmelt rates. The role of viruses in snow during this environmental shift, however, has yet to be elucidated. Here, we characterize novel viruses extracted from snow viral metagenomes and define the functional capacities of snow viruses in both white and red snow. These results are contextualized using the composition and functions observed in the bacterial communities from the same snow samples. Together, these data demonstrate the energy metabolism performed by viruses and bacteria in a snow algal bloom, as well as expand the overall knowledge of viral genomes in extreme environments.
Collapse
Affiliation(s)
- Adam R. Barno
- Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Kevin Green
- Department of Biology, San Diego State University, San Diego, California, USA
| | - Forest Rohwer
- Department of Biology, San Diego State University, San Diego, California, USA
- Viral Information Institute, San Diego State University, San Diego, California, USA
| | | |
Collapse
|
10
|
Wang Y, Gao Y, Wang X, Lin Y, Xu G, Yang F, Ni K. Insights into the phage community structure and potential function in silage fermentation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 358:120837. [PMID: 38593737 DOI: 10.1016/j.jenvman.2024.120837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/01/2024] [Accepted: 04/01/2024] [Indexed: 04/11/2024]
Abstract
The virus that infects bacteria known as phage, plays a crucial role in the biogeochemical cycling of nutrients. However, the community structure and potential functions of phages in silage fermentation remain largely unexplored. In this study, we utilized viral metagenomics (viromics) to investigate the types, lifestyles, functions, and nutrient utilization patterns of phages in silage. Our findings indicated a high prevalence of annotated phages belonging to Caudovirales and Geplafuvirales, as well as unclassified phages in silage. The predominant host types for these phages were Campylobacterales and Enterobacterales. Virulent phages dominated the silage environment due to their broader range of hosts and enhanced survival capabilities. All identified phages present in silage were found to be non-pathogenic. Although temperate and virulent phages carried distinct genes associated with nutrient cycling processes, the shared genes (prsA) involved in carbon metabolism underscore the potential significance of phages in regulating carbon metabolism in silage. Overall, our findings provide a valuable foundation for further exploring the complex interactions between phages and microorganisms in regulating silage fermentation quality.
Collapse
Affiliation(s)
- Yuan Wang
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, PR China
| | - Yu Gao
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, PR China
| | - Xin Wang
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, PR China
| | - Yanli Lin
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, PR China
| | - Gang Xu
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, PR China
| | - Fuyu Yang
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, PR China; College of Animal Science, Guizhou University, Guiyang, 550025, PR China.
| | - Kuikui Ni
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, PR China.
| |
Collapse
|
11
|
Liang JL, Feng SW, Lu JL, Wang XN, Li FL, Guo YQ, Liu SY, Zhuang YY, Zhong SJ, Zheng J, Wen P, Yi X, Jia P, Liao B, Shu WS, Li JT. Hidden diversity and potential ecological function of phosphorus acquisition genes in widespread terrestrial bacteriophages. Nat Commun 2024; 15:2827. [PMID: 38565528 PMCID: PMC10987575 DOI: 10.1038/s41467-024-47214-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 03/22/2024] [Indexed: 04/04/2024] Open
Abstract
Phosphorus (P) limitation of ecosystem processes is widespread in terrestrial habitats. While a few auxiliary metabolic genes (AMGs) in bacteriophages from aquatic habitats are reported to have the potential to enhance P-acquisition ability of their hosts, little is known about the diversity and potential ecological function of P-acquisition genes encoded by terrestrial bacteriophages. Here, we analyze 333 soil metagenomes from five terrestrial habitat types across China and identify 75 viral operational taxonomic units (vOTUs) that encode 105 P-acquisition AMGs. These AMGs span 17 distinct functional genes involved in four primary processes of microbial P-acquisition. Among them, over 60% (11/17) have not been reported previously. We experimentally verify in-vitro enzymatic activities of two pyrophosphatases and one alkaline phosphatase encoded by P-acquisition vOTUs. Thirty-six percent of the 75 P-acquisition vOTUs are detectable in a published global topsoil metagenome dataset. Further analyses reveal that, under certain circumstances, the identified P-acquisition AMGs have a greater influence on soil P availability and are more dominant in soil metatranscriptomes than their corresponding bacterial genes. Overall, our results reinforce the necessity of incorporating viral contributions into biogeochemical P cycling.
Collapse
Affiliation(s)
- Jie-Liang Liang
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Shi-Wei Feng
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Jing-Li Lu
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Xiao-Nan Wang
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Feng-Lin Li
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Yu-Qian Guo
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Shen-Yan Liu
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Yuan-Yue Zhuang
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Sheng-Ji Zhong
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Jin Zheng
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Ping Wen
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Xinzhu Yi
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Pu Jia
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Bin Liao
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Wen-Sheng Shu
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Jin-Tian Li
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China.
| |
Collapse
|
12
|
Kuhlisch C, Shemi A, Barak-Gavish N, Schatz D, Vardi A. Algal blooms in the ocean: hot spots for chemically mediated microbial interactions. Nat Rev Microbiol 2024; 22:138-154. [PMID: 37833328 DOI: 10.1038/s41579-023-00975-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2023] [Indexed: 10/15/2023]
Abstract
The cycling of major nutrients in the ocean is affected by large-scale phytoplankton blooms, which are hot spots of microbial life. Diverse microbial interactions regulate bloom dynamics. At the single-cell level, interactions between microorganisms are mediated by small molecules in the chemical crosstalk that determines the type of interaction, ranging from mutualism to pathogenicity. Algae interact with viruses, bacteria, parasites, grazers and other algae to modulate algal cell fate, and these interactions are dependent on the environmental context. Recent advances in mass spectrometry and single-cell technologies have led to the discovery of a growing number of infochemicals - metabolites that convey information - revealing the ability of algal cells to govern biotic interactions in the ocean. The diversity of infochemicals seems to account for the specificity in cellular response during microbial communication. Given the immense impact of algal blooms on biogeochemical cycles and climate regulation, a major challenge is to elucidate how microscale interactions control the fate of carbon and the recycling of major elements in the ocean. In this Review, we discuss microbial interactions and the role of infochemicals in algal blooms. We further explore factors that can impact microbial interactions and the available tools to decipher them in the natural environment.
Collapse
Affiliation(s)
- Constanze Kuhlisch
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Adva Shemi
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Noa Barak-Gavish
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Daniella Schatz
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Assaf Vardi
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
13
|
Ghaly TM, Focardi A, Elbourne LDH, Sutcliffe B, Humphreys WF, Jaschke PR, Tetu SG, Paulsen IT. Exploring virus-host-environment interactions in a chemotrophic-based underground estuary. ENVIRONMENTAL MICROBIOME 2024; 19:9. [PMID: 38291480 PMCID: PMC10829341 DOI: 10.1186/s40793-024-00549-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 01/08/2024] [Indexed: 02/01/2024]
Abstract
BACKGROUND Viruses play important roles in modulating microbial communities and influencing global biogeochemistry. There is now growing interest in characterising their ecological roles across diverse biomes. However, little is known about viral ecology in low-nutrient, chemotrophic-based environments. In such ecosystems, virus-driven manipulation of nutrient cycles might have profound impacts across trophic levels. In particular, anchialine environments, which are low-energy underground estuaries sustained by chemotrophic processes, represent ideal model systems to study novel virus-host-environment interactions. RESULTS Here, we employ metagenomic sequencing to investigate the viral community in Bundera Sinkhole, an anchialine ecosystem rich in endemic species supported by microbial chemosynthesis. We find that the viruses are highly novel, with less than 2% representing described viruses, and are hugely abundant, making up as much as 12% of microbial intracellular DNA. These highly abundant viruses largely infect important prokaryotic taxa that drive key metabolic processes in the sinkhole. Further, the abundance of viral auxiliary metabolic genes (AMGs) involved in nucleotide and protein synthesis was strongly correlated with declines in environmental phosphate and sulphate concentrations. These AMGs encoded key enzymes needed to produce sulphur-containing amino acids, and phosphorus metabolic enzymes involved in purine and pyrimidine nucleotide synthesis. We hypothesise that this correlation is either due to selection of these AMGs under low phosphate and sulphate concentrations, highlighting the dynamic interactions between viruses, their hosts, and the environment; or, that these AMGs are driving increased viral nucleotide and protein synthesis via manipulation of host phosphorus and sulphur metabolism, consequently driving nutrient depletion in the surrounding water. CONCLUSION This study represents the first metagenomic investigation of viruses in anchialine ecosystems, and provides new hypotheses and insights into virus-host-environment interactions in such 'dark', low-energy environments. This is particularly important since anchialine ecosystems are characterised by diverse endemic species, both in their microbial and faunal assemblages, which are primarily supported by microbial chemosynthesis. Thus, virus-host-environment interactions could have profound effects cascading through all trophic levels.
Collapse
Affiliation(s)
- Timothy M Ghaly
- School of Natural Sciences, Macquarie University, Sydney, Australia.
| | - Amaranta Focardi
- Climate Change Cluster (C3), University of Technology Sydney, Sydney, Australia
| | - Liam D H Elbourne
- School of Natural Sciences, Macquarie University, Sydney, Australia
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia
| | | | - William F Humphreys
- School of Biological Sciences, University of Western Australia, Perth, Australia
| | - Paul R Jaschke
- School of Natural Sciences, Macquarie University, Sydney, Australia
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia
| | - Sasha G Tetu
- School of Natural Sciences, Macquarie University, Sydney, Australia.
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia.
| | - Ian T Paulsen
- School of Natural Sciences, Macquarie University, Sydney, Australia.
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia.
| |
Collapse
|
14
|
Howard-Varona C, Lindback MM, Fudyma JD, Krongauz A, Solonenko NE, Zayed AA, Andreopoulos WB, Olson HM, Kim YM, Kyle JE, Glavina del Rio T, Adkins JN, Tfaily MM, Paul S, Sullivan MB, Duhaime MB. Environment-specific virocell metabolic reprogramming. THE ISME JOURNAL 2024; 18:wrae055. [PMID: 38552150 PMCID: PMC11170926 DOI: 10.1093/ismejo/wrae055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/23/2023] [Accepted: 03/28/2024] [Indexed: 06/14/2024]
Abstract
Viruses impact microbial systems through killing hosts, horizontal gene transfer, and altering cellular metabolism, consequently impacting nutrient cycles. A virus-infected cell, a "virocell," is distinct from its uninfected sister cell as the virus commandeers cellular machinery to produce viruses rather than replicate cells. Problematically, virocell responses to the nutrient-limited conditions that abound in nature are poorly understood. Here we used a systems biology approach to investigate virocell metabolic reprogramming under nutrient limitation. Using transcriptomics, proteomics, lipidomics, and endo- and exo-metabolomics, we assessed how low phosphate (low-P) conditions impacted virocells of a marine Pseudoalteromonas host when independently infected by two unrelated phages (HP1 and HS2). With the combined stresses of infection and nutrient limitation, a set of nested responses were observed. First, low-P imposed common cellular responses on all cells (virocells and uninfected cells), including activating the canonical P-stress response, and decreasing transcription, translation, and extracellular organic matter consumption. Second, low-P imposed infection-specific responses (for both virocells), including enhancing nitrogen assimilation and fatty acid degradation, and decreasing extracellular lipid relative abundance. Third, low-P suggested virocell-specific strategies. Specifically, HS2-virocells regulated gene expression by increasing transcription and ribosomal protein production, whereas HP1-virocells accumulated host proteins, decreased extracellular peptide relative abundance, and invested in broader energy and resource acquisition. These results suggest that although environmental conditions shape metabolism in common ways regardless of infection, virocell-specific strategies exist to support viral replication during nutrient limitation, and a framework now exists for identifying metabolic strategies of nutrient-limited virocells in nature.
Collapse
Affiliation(s)
- Cristina Howard-Varona
- Department of Microbiology, The Ohio State University, 484 W 12th Ave, Columbus, OH 43210, United States
| | - Morgan M Lindback
- Department of Ecology and Evolutionary Biology, University of Michigan, 1105 North University Ave, Ann Arbor, MI 48109, United States
| | - Jane D Fudyma
- Department of Environmental Science, University of Arizona, 1177 E 4th St, Tucson, AZ 85719, United States
- Present address: Department of Plant Pathology, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States
| | - Azriel Krongauz
- Department of Statistics, The Ohio State University, 1958 Neil Ave, Columbus, OH 43210, United States
| | - Natalie E Solonenko
- Department of Microbiology, The Ohio State University, 484 W 12th Ave, Columbus, OH 43210, United States
| | - Ahmed A Zayed
- Department of Microbiology, The Ohio State University, 484 W 12th Ave, Columbus, OH 43210, United States
| | - William B Andreopoulos
- US Department of Energy Joint Genome Institute, 1 Cyclotron Road, Berkeley, CA 94720, United States
- Present address: Department of Computer Science, San Jose State University, One Washington Square, San Jose CA 95192, United States
| | - Heather M Olson
- Biological Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99354, United States
| | - Young-Mo Kim
- Biological Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99354, United States
| | - Jennifer E Kyle
- Biological Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99354, United States
| | - Tijana Glavina del Rio
- US Department of Energy Joint Genome Institute, 1 Cyclotron Road, Berkeley, CA 94720, United States
| | - Joshua N Adkins
- Biological Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99354, United States
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR 97239, United States
| | - Malak M Tfaily
- Department of Environmental Science, University of Arizona, 1177 E 4th St, Tucson, AZ 85719, United States
| | - Subhadeep Paul
- Department of Statistics, The Ohio State University, 1958 Neil Ave, Columbus, OH 43210, United States
| | - Matthew B Sullivan
- Department of Microbiology, The Ohio State University, 484 W 12th Ave, Columbus, OH 43210, United States
- Department of Civil, Environmental and Geodetic Engineering, The Ohio State University, 2070 Neil Ave, Columbus, OH 43210, United States
- Center for RNA Biology and Center of Microbiome Science, The Ohio State University, 484 W. 12th Ave, Columbus, OH 43210, United States
| | - Melissa B Duhaime
- Department of Ecology and Evolutionary Biology, University of Michigan, 1105 North University Ave, Ann Arbor, MI 48109, United States
| |
Collapse
|
15
|
Rihtman B, Torcello-Requena A, Mikhaylina A, Puxty RJ, Clokie MRJ, Millard AD, Scanlan DJ. Coordinated transcriptional response to environmental stress by a Synechococcus virus. THE ISME JOURNAL 2024; 18:wrae032. [PMID: 38431846 PMCID: PMC10976474 DOI: 10.1093/ismejo/wrae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 12/20/2023] [Accepted: 02/26/2024] [Indexed: 03/05/2024]
Abstract
Viruses are a major control on populations of microbes. Often, their virulence is examined in controlled laboratory conditions. Yet, in nature, environmental conditions lead to changes in host physiology and fitness that may impart both costs and benefits on viral success. Phosphorus (P) is a major abiotic control on the marine cyanobacterium Synechococcus. Some viruses infecting Synechococcus have acquired, from their host, a gene encoding a P substrate binding protein (PstS), thought to improve virus replication under phosphate starvation. Yet, pstS is uncommon among cyanobacterial viruses. Thus, we asked how infections with viruses lacking PstS are affected by P scarcity. We show that the production of infectious virus particles of such viruses is reduced in low P conditions. However, this reduction in progeny is not caused by impaired phage genome replication, thought to be a major sink for cellular phosphate. Instead, transcriptomic analysis showed that under low P conditions, a PstS-lacking cyanophage increased the expression of a specific gene set that included mazG, hli2, and gp43 encoding a pyrophosphatase, a high-light inducible protein and DNA polymerase, respectively. Moreover, several of the upregulated genes were controlled by the host's phoBR two-component system. We hypothesize that recycling and polymerization of nucleotides liberates free phosphate and thus allows viral morphogenesis, albeit at lower rates than when phosphate is replete or when phages encode pstS. Altogether, our data show how phage genomes, lacking obvious P-stress-related genes, have evolved to exploit their host's environmental sensing mechanisms to coordinate their own gene expression in response to resource limitation.
Collapse
Affiliation(s)
- Branko Rihtman
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Alberto Torcello-Requena
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Alevtina Mikhaylina
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Richard J Puxty
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Martha R J Clokie
- Leicester Centre for Phage Research, Department of Genetics and Genome Biology, University of Leicester, University Road, Leicester LE1 7RH, United Kingdom
| | - Andrew D Millard
- Leicester Centre for Phage Research, Department of Genetics and Genome Biology, University of Leicester, University Road, Leicester LE1 7RH, United Kingdom
| | - David J Scanlan
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
16
|
Muscatt G, Cook R, Millard A, Bending GD, Jameson E. Viral metagenomics reveals diverse virus-host interactions throughout the soil depth profile. mBio 2023; 14:e0224623. [PMID: 38032184 PMCID: PMC10746233 DOI: 10.1128/mbio.02246-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
IMPORTANCE Soil viruses can moderate the roles that their host microbes play in global carbon cycling. However, given that most studies investigate the surface layer (i.e., top 20 cm) of soil, the extent to which this occurs in subsurface soil (i.e., below 20 cm) is unknown. Here, we leveraged public sequencing data to investigate the interactions between viruses and their hosts at soil depth intervals, down to 115 cm. While most viruses were detected throughout the soil depth profile, their adaptation to host microbes varied. Nonetheless, we uncovered evidence for the potential of soil viruses to encourage their hosts to recycle plant-derived carbon in both surface and subsurface soils. This work reasons that our understanding of soil viral functions requires us to continue to dig deeper and compare viruses existing throughout soil ecosystems.
Collapse
Affiliation(s)
- George Muscatt
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Ryan Cook
- School of Veterinary Medicine and Science, University of Nottingham, Loughborough, United Kingdom
| | - Andrew Millard
- Department of Genetics and Genome Biology, Leicester Centre for Phage Research, University of Leicester, Leicester, United Kingdom
| | - Gary D. Bending
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Eleanor Jameson
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
- School of Natural Sciences, Bangor University, Bangor, Gwynedd, United Kingdom
| |
Collapse
|
17
|
Zhou K, Wong TY, Long L, Anantharaman K, Zhang W, Wong WC, Zhang R, Qian PY. Genomic and transcriptomic insights into complex virus-prokaryote interactions in marine biofilms. THE ISME JOURNAL 2023; 17:2303-2312. [PMID: 37875603 PMCID: PMC10689801 DOI: 10.1038/s41396-023-01546-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/12/2023] [Accepted: 10/16/2023] [Indexed: 10/26/2023]
Abstract
Marine biofilms are complex communities of microorganisms that play a crucial ecological role in oceans. Although prokaryotes are the dominant members of these biofilms, little is known about their interactions with viruses. By analysing publicly available and newly sequenced metagenomic data, we identified 2446 virus-prokaryote connections in 84 marine biofilms. Most of these connections were between the bacteriophages in the Uroviricota phylum and the bacteria of Proteobacteria, Cyanobacteria and Bacteroidota. The network of virus-host pairs is complex; a single virus can infect multiple prokaryotic populations or a single prokaryote is susceptible to several viral populations. Analysis of genomes of paired prokaryotes and viruses revealed the presence of 425 putative auxiliary metabolic genes (AMGs), 239 viral genes related to restriction-modification (RM) systems and 38,538 prokaryotic anti-viral defence-related genes involved in 15 defence systems. Transcriptomic evidence from newly established biofilms revealed the expression of viral genes, including AMGs and RM, and prokaryotic defence systems, indicating the active interplay between viruses and prokaryotes. A comparison between biofilms and seawater showed that biofilm prokaryotes have more abundant defence genes than seawater prokaryotes, and the defence gene composition differs between biofilms and the surrounding seawater. Overall, our study unveiled active viruses in natural biofilms and their complex interplay with prokaryotes, which may result in the blooming of defence strategists in biofilms. The detachment of bloomed defence strategists may reduce the infectivity of viruses in seawater and result in the emergence of a novel role of marine biofilms.
Collapse
Affiliation(s)
- Kun Zhou
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Tin Yan Wong
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Lexin Long
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | | | - Weipeng Zhang
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Wai Chuen Wong
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Rui Zhang
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China.
| | - Pei-Yuan Qian
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.
| |
Collapse
|
18
|
Tsiola A, Michoud G, Daffonchio D, Fodelianakis S, Giannakourou A, Malliarakis D, Pavlidou A, Pitta E, Psarra S, Santi I, Zeri C, Pitta P. Depth-driven patterns in lytic viral diversity, auxiliary metabolic gene content, and productivity in offshore oligotrophic waters. Front Microbiol 2023; 14:1271535. [PMID: 38029212 PMCID: PMC10653327 DOI: 10.3389/fmicb.2023.1271535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/13/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Marine viruses regulate microbial population dynamics and biogeochemical cycling in the oceans. The ability of viruses to manipulate hosts' metabolism through the expression of viral auxiliary metabolic genes (AMGs) was recently highlighted, having important implications in energy production and flow in various aquatic environments. Up to now, the presence and diversity of viral AMGs is studied using -omics data, and rarely using quantitative measures of viral activity alongside. Methods In the present study, four depth layers (5, 50, 75, and 1,000 m) with discrete hydrographic features were sampled in the Eastern Mediterranean Sea; we studied lytic viral community composition and AMG content through metagenomics, and lytic production rates through the viral reduction approach in the ultra-oligotrophic Levantine basin where knowledge regarding viral actions is rather limited. Results and Discussion Our results demonstrate depth-dependent patterns in viral diversity and AMG content, related to differences in temperature, nutrients availability, and host bacterial productivity and abundance. Although lytic viral production rates were similar along the water column, the virus-to-bacteria ratio was higher and the particular set of AMGs was more diverse in the bathypelagic (1,000 m) than the shallow epipelagic (5, 50, and 75 m) layers, revealing that the quantitative effect of viruses on their hosts may be the same along the water column through the intervention of different AMGs. In the resource- and energy-limited bathypelagic waters of the Eastern Mediterranean, the detected AMGs could divert hosts' metabolism toward energy production, through a boost in gluconeogenesis, fatty-acid and glycan biosynthesis and metabolism, and sulfur relay. Near the deep-chlorophyll maximum depth, an exceptionally high percentage of AMGs related to photosynthesis was noticed. Taken together our findings suggest that the roles of viruses in the deep sea might be even more important than previously thought as they seem to orchestrate energy acquisition and microbial community dynamics, and thus, biogeochemical turnover in the oceans.
Collapse
Affiliation(s)
- Anastasia Tsiola
- Institute of Oceanography, Hellenic Centre for Marine Research (HCMR), Heraklion Crete, Greece
| | - Grégoire Michoud
- Biological and Environmental Sciences and Engineering Division (BESE), Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Daniele Daffonchio
- Biological and Environmental Sciences and Engineering Division (BESE), Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Stilianos Fodelianakis
- Biological and Environmental Sciences and Engineering Division (BESE), Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Antonia Giannakourou
- Institute of Oceanography, Hellenic Centre for Marine Research (HCMR), Anavyssos, Attiki, Greece
| | | | - Alexandra Pavlidou
- Institute of Oceanography, Hellenic Centre for Marine Research (HCMR), Anavyssos, Attiki, Greece
| | - Elli Pitta
- Institute of Oceanography, Hellenic Centre for Marine Research (HCMR), Anavyssos, Attiki, Greece
| | - Stella Psarra
- Institute of Oceanography, Hellenic Centre for Marine Research (HCMR), Heraklion Crete, Greece
| | - Ioulia Santi
- Institute of Oceanography, Hellenic Centre for Marine Research (HCMR), Heraklion Crete, Greece
| | - Christina Zeri
- Institute of Oceanography, Hellenic Centre for Marine Research (HCMR), Anavyssos, Attiki, Greece
| | - Paraskevi Pitta
- Institute of Oceanography, Hellenic Centre for Marine Research (HCMR), Heraklion Crete, Greece
| |
Collapse
|
19
|
Sabbagh EI, Calleja ML, Daffonchio D, Morán XAG. Seasonality of top-down control of bacterioplankton at two central Red Sea sites with different trophic status. Environ Microbiol 2023; 25:2002-2019. [PMID: 37286523 DOI: 10.1111/1462-2920.16439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 05/22/2023] [Indexed: 06/09/2023]
Abstract
The role of bottom-up (nutrient availability) and top-down (grazers and viruses mortality) controls on tropical bacterioplankton have been rarely investigated simultaneously from a seasonal perspective. We have assessed them through monthly samplings over 2 years in inshore and offshore waters of the central Red Sea differing in trophic status. Flow cytometric analysis allowed us to distinguish five groups of heterotrophic bacteria based on physiological properties (nucleic acid content, membrane integrity and active respiration), three groups of cyanobacteria (two populations of Synechococcus and Prochlorococcus), heterotrophic nanoflagellates (HNFs) and three groups of viruses based on nucleic acid content. The dynamics of bacterioplankton and their top-down controls varied with season and location, being more pronounced in inshore waters. HNFs abundances showed a strong preference for larger prey inshore (r = -0.62 to -0.59, p = 0.001-0.002). Positive relationships between viruses and heterotrophic bacterioplankton abundances were more marked inshore (r = 0.67, p < 0.001) than offshore (r = 0.44, p = 0.03). The negative correlation between HNFs and viruses abundances (r = -0.47, p = 0.02) in shallow waters indicates a persistent seasonal switch between protistan grazing and viral lysis that maintains the low bacterioplankton stocks in the central Red Sea area.
Collapse
Affiliation(s)
- Eman I Sabbagh
- Red Sea Research Center (RSRC), Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Maria Ll Calleja
- Red Sea Research Center (RSRC), Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Department of Climate Geochemistry, Max Plank Institute for Chemistry (MPIC), Mainz, Germany
| | - Daniele Daffonchio
- Red Sea Research Center (RSRC), Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Xosé Anxelu G Morán
- Red Sea Research Center (RSRC), Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|
20
|
Zhu X, Li Z, Tong Y, Chen L, Sun T, Zhang W. From natural to artificial cyanophages: Current progress and application prospects. ENVIRONMENTAL RESEARCH 2023; 223:115428. [PMID: 36746205 DOI: 10.1016/j.envres.2023.115428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
The over proliferation of harmful cyanobacteria and their cyanotoxins resulted in damaged aquatic ecosystem, polluted drinking water and threatened human health. Cyanophages are a kind of viruses that exclusively infect cyanobacteria, which is considered as a potential strategy to deal with cyanobacterial blooms. Nevertheless, the infecting host range and/or lysis efficiency of natural cyanophages is limited, rising the necessity of constructing non-natural cyanophages via artificial modification, design and synthesis to expand their host range and/or efficiency. The paper firstly reviewed representative cyanophages such as P60 with a short latent period of 1.5 h and S-CBS1 having a burst size up to 200 PFU/cell. To explore the in-silico design principles, we critically summarized the interactions between cyanophages and the hosts, indicating modifying the recognized receptors, enhancing the adsorption ability, changing the lysogeny and excluding the defense of hosts are important for artificial cyanophages. The research progress of synthesizing artificial cyanophages were summarized subsequently, raising the importance of developing genetic manipulation technologies and their rescue strategies in the future. Meanwhile, Large-scale preparation of cyanophages for bloom control is a big challenge. The application prospects of artificial cyanophages besides cyanobacteria bloom control like adaptive evolution and phage therapy were discussed at last. The review will promote the design, synthesis and application of cyanophages for cyanobacteria blooms, which may provide new insights for the related water pollution control and ensuring hydrosphere security.
Collapse
Affiliation(s)
- Xiaofei Zhu
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, PR China; Frontier Science Center for Synthetic Biology & Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, 300072, PR China
| | - Zipeng Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Yindong Tong
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Lei Chen
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, PR China; Frontier Science Center for Synthetic Biology & Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, 300072, PR China.
| | - Tao Sun
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, PR China; Frontier Science Center for Synthetic Biology & Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, 300072, PR China; Center for Biosafety Research and Strategy, Tianjin University, Tianjin, 300072, PR China.
| | - Weiwen Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, PR China; Frontier Science Center for Synthetic Biology & Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, 300072, PR China; Center for Biosafety Research and Strategy, Tianjin University, Tianjin, 300072, PR China
| |
Collapse
|
21
|
Yuan L, Ju F. Potential Auxiliary Metabolic Capabilities and Activities Reveal Biochemical Impacts of Viruses in Municipal Wastewater Treatment Plants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:5485-5498. [PMID: 36947091 DOI: 10.1021/acs.est.2c07800] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Viruses influence biogeochemical cycles in oceans, freshwater, soil, and human gut through infection and by modulating virocell metabolism through virus-encoded auxiliary metabolic genes (vAMGs). However, the geographical distribution, potential metabolic function, and engineering significance of vAMGs in wastewater treatment plants (WWTPs) remain to be explored. Here, 752 single-contig viral genomes with high confidence, 510 of which belonged to Caudovirales, were recovered from the activated sludge metagenomes of 32 geographically distributed WWTPs. A total of 101 vAMGs involved in various metabolic pathways were identified, the most common of which were the queuosine biosynthesis genes folE, queD, and queE and the sulfur metabolism gene cysH. Phylogenetic analysis and virus-host relationship prediction revealed the probable evolutionary histories of vAMGs involved in carbon (acpP and prsA), nitrogen (amoC), sulfur (cysH), and phosphate (phoH) metabolism, which potentially mediate microbial carbon and nutrient cycling. Notably, 11 of the 38 (28.3%) vAMGs identified in the metagenomes with corresponding metatranscriptomes were transcriptionally expressed, implying an active functional state. This meta-analysis provides the first broad catalog of vAMGs in municipal WWTPs and how they may assist in the basic physiological reactions of their microbial hosts or nutrient cycling in the WWTPs, and therefore, may have important effects on the engineering of wastewater treatment processes.
Collapse
Affiliation(s)
- Ling Yuan
- Environmental Science and Engineering Department, Zhejiang University, Hangzhou 310012, Zhejiang, China
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310030, Zhejiang, China
- Environmental Microbiome and Biotechnology Laboratory (EMBLab), Center of Synthetic Biology and Integrated Bioengineering, Westlake University, Hangzhou 310030, Zhejiang, China
| | - Feng Ju
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310030, Zhejiang, China
- Environmental Microbiome and Biotechnology Laboratory (EMBLab), Center of Synthetic Biology and Integrated Bioengineering, Westlake University, Hangzhou 310030, Zhejiang, China
- Research Center for Industries of the Future, Westlake University, Hangzhou 310030, Zhejiang, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China
| |
Collapse
|
22
|
Braga LPP, Schumacher RI. Awaking the dormant virome in the rhizosphere. Mol Ecol 2023; 32:2985-2999. [PMID: 36807953 DOI: 10.1111/mec.16893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/16/2023] [Accepted: 02/06/2023] [Indexed: 02/22/2023]
Abstract
The rhizosphere is a vital soil compartment providing key plant-beneficial functions. However, little is known about the mechanisms driving viral diversity in the rhizosphere. Viruses can establish lytic or lysogenic interactions with their bacterial hosts. In the latter, they assume a dormant state integrated in the host genome and can be awakened by different perturbations that impact host cell physiology, triggering a viral bloom, which is potentially a fundamental mechanism driving soil viral diversity, as 22%-68% of soil bacteria are predicted to harbour dormant viruses. Here we assessed the viral bloom response in rhizospheric viromes by exposing them to three contrasting soil perturbation agents: earthworms, herbicide and antibiotic pollutant. The viromes were next screened for rhizosphere-relevant genes and also used as inoculant on microcosms incubations to test their impacts on pristine microbiomes. Our results show that while post-perturbation viromes diverged from control conditions, viral communities exposed to both herbicide and antibiotic pollutant were more similar to each other than those influenced by earthworms. The latter also favoured an increase in viral populations harbouring genes involved in plant-beneficial functions. Post-perturbation viromes inoculated on soil microcosms changed the diversity of pristine microbiomes, suggesting that viromes are important components of the soil ecological memory driving eco-evolutionary processes that determine future microbiome trajectories according to past events. Our findings demonstrate that viromes are active players in the rhizosphere and need to be considered in efforts to understand and control the microbial processes towards sustainable crop production.
Collapse
Affiliation(s)
- Lucas P P Braga
- Department of Biochemistry, Institute of Chemistry, University of Sao Paulo, Sao Paulo, Brazil.,Ecosystems and Global Change Group, Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Robert I Schumacher
- Department of Biochemistry, Institute of Chemistry, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
23
|
Abundant and cosmopolitan lineage of cyanopodoviruses lacking a DNA polymerase gene. THE ISME JOURNAL 2023; 17:252-262. [PMID: 36357781 PMCID: PMC9860041 DOI: 10.1038/s41396-022-01340-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 10/23/2022] [Accepted: 10/27/2022] [Indexed: 11/11/2022]
Abstract
Cyanopodoviruses affect the mortality and population dynamics of the unicellular picocyanobacteria Prochlorococcus and Synechococcus, the dominant primary producers in the oceans. Known cyanopodoviruses all contain the DNA polymerase gene (DNA pol) that is important for phage DNA replication and widely used in field quantification and diversity studies. However, we isolated 18 cyanopodoviruses without identifiable DNA pol. They form a new MPP-C clade that was separated from the existing MPP-A, MPP-B, and P-RSP2 clades. The MPP-C phages have the smallest genomes (37.3-37.9 kb) among sequenced cyanophages, and show longer latent periods than the MPP-B phages. Metagenomic reads of both clades are highly abundant in surface waters, but the MPP-C phages show higher relative abundance in surface waters than in deeper waters, while MPP-B phages have higher relative abundance in deeper waters. Our study reveals that cyanophages with distinct genomic contents and infection kinetics can exhibit different depth profiles in the oceans.
Collapse
|
24
|
Luo XQ, Wang P, Li JL, Ahmad M, Duan L, Yin LZ, Deng QQ, Fang BZ, Li SH, Li WJ. Viral community-wide auxiliary metabolic genes differ by lifestyles, habitats, and hosts. MICROBIOME 2022; 10:190. [PMID: 36333738 PMCID: PMC9636769 DOI: 10.1186/s40168-022-01384-y] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 10/04/2022] [Indexed: 06/02/2023]
Abstract
BACKGROUND Viral-encoded auxiliary metabolic genes (AMGs) are important toolkits for modulating their hosts' metabolisms and the microbial-driven biogeochemical cycles. Although the functions of AMGs have been extensively reported in numerous environments, we still know little about the drivers that shape the viral community-wide AMG compositions in natural ecosystems. Exploring the drivers of viral community-wide AMG compositions is critical for a deeper understanding of the complex interplays among viruses, hosts, and the environments. RESULTS Here, we investigated the impact of viral lifestyles (i.e., lytic and lysogenic), habitats (i.e., water, particle, and sediment), and prokaryotic hosts on viral AMG profiles by utilizing metagenomic and metatranscriptomic techniques. We found that viral lifestyles were the most important drivers, followed by habitats and host identities. Specifically, irrespective of what habitats viruses came from, lytic viruses exhibited greater AMG diversity and tended to encode AMGs for chaperone biosynthesis, signaling proteins, and lipid metabolism, which could boost progeny reproduction, whereas temperate viruses were apt to encode AMGs for host survivability. Moreover, the lytic and temperate viral communities tended to mediate the microbial-driven biogeochemical cycles, especially nitrogen metabolism, in different manners via AMGs. When focusing on each lifestyle, we further found clear dissimilarity in AMG compositions between water and sediment, as well the divergent AMGs encoded by viruses infecting different host orders. CONCLUSIONS Overall, our study provides a first systematic characterization of the drivers of viral community-wide AMG compositions and further expands our knowledge of the distinct interactions of lytic and temperate viruses with their prokaryotic hosts from an AMG perspective, which is critical for understanding virus-host-environment interactions in natural conditions. Video Abstract.
Collapse
Affiliation(s)
- Xiao-Qing Luo
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Pandeng Wang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China.
- School of Ecology, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, People's Republic of China.
| | - Jia-Ling Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Manzoor Ahmad
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Li Duan
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Ling-Zi Yin
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Qi-Qi Deng
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Bao-Zhu Fang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China
| | - Shan-Hui Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China.
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China.
| |
Collapse
|
25
|
Wang Q, Cai L, Zhang R, Wei S, Li F, Liu Y, Xu Y. A Unique Set of Auxiliary Metabolic Genes Found in an Isolated Cyanophage Sheds New Light on Marine Phage-Host Interactions. Microbiol Spectr 2022; 10:e0236722. [PMID: 36190421 PMCID: PMC9602691 DOI: 10.1128/spectrum.02367-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/10/2022] [Indexed: 01/04/2023] Open
Abstract
Cyanophages, viruses that infect cyanobacteria, are abundant and widely distributed in aquatic ecosystems, playing important roles in regulating the abundance, activity, diversity, and evolution of cyanobacteria. A T4-like cyanophage, S-SCSM1, infecting Synechococcus and Prochlorococcus strains of different ecotypes, was isolated from the South China Sea in this study. For the first time, a mannose-6-phosphate isomerase (MPI) gene was identified in the cultured cyanophage. At least 11 phylogenetic clusters of cyanophage MPIs were retrieved and identified from the marine metagenomic data sets, indicating that cyanophage MPIs in the marine environment are extremely diverse. The existence of 24 genes encoding 2-oxoglutarate (2OG)-Fe(II) oxygenase superfamily proteins in the S-SCSM1 genome emphasizes their potential importance and diverse functions in reprogramming host metabolism during phage infection. Novel cell wall synthesis and modification genes found in the S-SCSM1 genome indicate that diverse phenotypic modifications imposed by phages on cyanobacterial hosts remain to be discovered. Two noncoding RNAs of cis-regulatory elements in the S-SCSM1 genome were predicted to be associated with host exopolysaccharide metabolism and photosynthesis. The isolation and genomic characterization of cyanophage S-SCSM1 provide more information on the genetic diversity of cyanophages and phage-host interactions in the marine environment. IMPORTANCE Cyanophages play important ecological roles in aquatic ecosystems. Genomic and proteomic characterizations of the T4-like cyanophage S-SCSM1 indicate that novel and diverse viral genes and phage-host interactions in the marine environment remain unexplored. The first identified mannose-6-phosphate isomerase (MPI) gene from a cultured cyanophage was found in the S-SCSM1 genome, although MPIs were previously found in viral metagenomes at high frequencies similar to those of the cyanophage photosynthetic gene psbA. The presence of 24 genes encoding 2-oxoglutarate (2OG)-Fe(II) oxygenase superfamily proteins, novel cell wall synthesis and modification genes, a nonbleaching protein A gene, and 2 noncoding RNAs of cis-regulatory elements in the S-SCSM1 genome as well as the presence of a virion-associated regulatory protein indicate the diverse functions that cyanophages have in reprogramming the metabolism and modifying the phenotypes of hosts during infection.
Collapse
Affiliation(s)
- Qiong Wang
- Institute of Marine Science and Technology, Shandong University, Qingdao, People’s Republic of China
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, People’s Republic of China
| | - Lanlan Cai
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, People’s Republic of China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, People’s Republic of China
| | - Rui Zhang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, People’s Republic of China
| | - Shuzhen Wei
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, People’s Republic of China
| | - Fang Li
- State Key Laboratory Breeding Base of Marine Genetic Resource, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, People’s Republic of China
| | - Yuanfang Liu
- Institute of Marine Science and Technology, Shandong University, Qingdao, People’s Republic of China
| | - Yongle Xu
- Institute of Marine Science and Technology, Shandong University, Qingdao, People’s Republic of China
| |
Collapse
|
26
|
Muscatt G, Hilton S, Raguideau S, Teakle G, Lidbury IDEA, Wellington EMH, Quince C, Millard A, Bending GD, Jameson E. Crop management shapes the diversity and activity of DNA and RNA viruses in the rhizosphere. MICROBIOME 2022; 10:181. [PMID: 36280853 PMCID: PMC9590211 DOI: 10.1186/s40168-022-01371-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 08/18/2022] [Indexed: 05/25/2023]
Abstract
BACKGROUND The rhizosphere is a hotspot for microbial activity and contributes to ecosystem services including plant health and biogeochemical cycling. The activity of microbial viruses, and their influence on plant-microbe interactions in the rhizosphere, remains undetermined. Given the impact of viruses on the ecology and evolution of their host communities, determining how soil viruses influence microbiome dynamics is crucial to build a holistic understanding of rhizosphere functions. RESULTS Here, we aimed to investigate the influence of crop management on the composition and activity of bulk soil, rhizosphere soil, and root viral communities. We combined viromics, metagenomics, and metatranscriptomics on soil samples collected from a 3-year crop rotation field trial of oilseed rape (Brassica napus L.). By recovering 1059 dsDNA viral populations and 16,541 ssRNA bacteriophage populations, we expanded the number of underexplored Leviviricetes genomes by > 5 times. Through detection of viral activity in metatranscriptomes, we uncovered evidence of "Kill-the-Winner" dynamics, implicating soil bacteriophages in driving bacterial community succession. Moreover, we found the activity of viruses increased with proximity to crop roots, and identified that soil viruses may influence plant-microbe interactions through the reprogramming of bacterial host metabolism. We have provided the first evidence of crop rotation-driven impacts on soil microbial communities extending to viruses. To this aim, we present the novel principal of "viral priming," which describes how the consecutive growth of the same crop species primes viral activity in the rhizosphere through local adaptation. CONCLUSIONS Overall, we reveal unprecedented spatial and temporal diversity in viral community composition and activity across root, rhizosphere soil, and bulk soil compartments. Our work demonstrates that the roles of soil viruses need greater consideration to exploit the rhizosphere microbiome for food security, food safety, and environmental sustainability. Video Abstract.
Collapse
Affiliation(s)
- George Muscatt
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Sally Hilton
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Sebastien Raguideau
- School of Life Sciences, University of Warwick, Coventry, UK
- Earlham Institute, Norwich Research Park, Norwich, UK
| | - Graham Teakle
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Ian D E A Lidbury
- School of Life Sciences, University of Warwick, Coventry, UK
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield, UK
| | | | - Christopher Quince
- School of Life Sciences, University of Warwick, Coventry, UK
- Earlham Institute, Norwich Research Park, Norwich, UK
| | - Andrew Millard
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK.
| | - Gary D Bending
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Eleanor Jameson
- School of Life Sciences, University of Warwick, Coventry, UK.
- School of Natural Sciences, Bangor University, Bangor, UK.
| |
Collapse
|
27
|
Howard-Varona C, Roux S, Bowen BP, Silva LP, Lau R, Schwenck SM, Schwartz S, Woyke T, Northen T, Sullivan MB, Floge SA. Protist impacts on marine cyanovirocell metabolism. ISME COMMUNICATIONS 2022; 2:94. [PMID: 37938263 PMCID: PMC9723779 DOI: 10.1038/s43705-022-00169-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/25/2022] [Accepted: 09/06/2022] [Indexed: 07/26/2023]
Abstract
The fate of oceanic carbon and nutrients depends on interactions between viruses, prokaryotes, and unicellular eukaryotes (protists) in a highly interconnected planktonic food web. To date, few controlled mechanistic studies of these interactions exist, and where they do, they are largely pairwise, focusing either on viral infection (i.e., virocells) or protist predation. Here we studied population-level responses of Synechococcus cyanobacterial virocells (i.e., cyanovirocells) to the protist Oxyrrhis marina using transcriptomics, endo- and exo-metabolomics, photosynthetic efficiency measurements, and microscopy. Protist presence had no measurable impact on Synechococcus transcripts or endometabolites. The cyanovirocells alone had a smaller intracellular transcriptional and metabolic response than cyanovirocells co-cultured with protists, displaying known patterns of virus-mediated metabolic reprogramming while releasing diverse exometabolites during infection. When protists were added, several exometabolites disappeared, suggesting microbial consumption. In addition, the intracellular cyanovirocell impact was largest, with 4.5- and 10-fold more host transcripts and endometabolites, respectively, responding to protists, especially those involved in resource and energy production. Physiologically, photosynthetic efficiency also increased, and together with the transcriptomics and metabolomics findings suggest that cyanovirocell metabolic demand is highest when protists are present. These data illustrate cyanovirocell responses to protist presence that are not yet considered when linking microbial physiology to global-scale biogeochemical processes.
Collapse
Affiliation(s)
| | - Simon Roux
- Department of Microbiology, The Ohio State University, Columbus, OH, USA
- U.S. DOE Joint Genome Institute, Berkeley, CA, USA
| | | | - Leslie P Silva
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Syft Technologies, Ltd, Christchurch, 8024, New Zealand
| | - Rebecca Lau
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Cellular and Molecular Medicine and Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, CA, USA
| | - Sarah M Schwenck
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, USA
- Microbial and Environmental Genomics, J. Craig Venter Institute, La Jolla, CA, USA
| | - Samuel Schwartz
- Department of Biology, Wake Forest University, Winston Salem, NC, USA
| | - Tanja Woyke
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- U.S. DOE Joint Genome Institute, Berkeley, CA, USA
| | - Trent Northen
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- U.S. DOE Joint Genome Institute, Berkeley, CA, USA
| | - Matthew B Sullivan
- Department of Microbiology, The Ohio State University, Columbus, OH, USA.
- Department of Civil, Environmental and Geodetic Engineering, and Center of Microbiome Science, The Ohio State University, Columbus, OH, USA.
| | - Sheri A Floge
- Department of Biology, Wake Forest University, Winston Salem, NC, USA.
| |
Collapse
|
28
|
Martinez-Hernandez F, Fornas O, Martinez-Garcia M. Into the Dark: Exploring the Deep Ocean with Single-Virus Genomics. Viruses 2022; 14:1589. [PMID: 35891567 PMCID: PMC9322844 DOI: 10.3390/v14071589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 12/03/2022] Open
Abstract
Single-virus genomics (SVGs) has been successfully applied to ocean surface samples allowing the discovery of widespread dominant viruses overlooked for years by metagenomics, such as the uncultured virus vSAG 37-F6 infecting the ubiquitous Pelagibacter spp. In SVGs, one uncultured virus at a time is sorted from the environmental sample, whole-genome amplified, and sequenced. Here, we have applied SVGs to deep-ocean samples (200-4000 m depth) from global Malaspina and MEDIMAX expeditions, demonstrating the feasibility of this method in deep-ocean samples. A total of 1328 virus-like particles were sorted from the North Atlantic Ocean, the deep Mediterranean Sea, and the Pacific Ocean oxygen minimum zone (OMZ). For this proof of concept, sixty single viruses were selected at random for sequencing. Genome annotation identified 27 of these genomes as bona fide viruses, and detected three auxiliary metabolic genes involved in nucleotide biosynthesis and sugar metabolism. Massive protein profile analysis confirmed that these viruses represented novel viral groups not present in databases. Although they were not previously assembled by viromics, global fragment recruitment analysis showed a conserved profile of relative abundance of these viruses in all analyzed samples spanning different oceans. Altogether, these results reveal the feasibility in using SVGs in this vast environment to unveil the genomes of relevant viruses.
Collapse
Affiliation(s)
| | - Oscar Fornas
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology (BIST), PRBB Building, 08003 Barcelona, Spain;
| | - Manuel Martinez-Garcia
- Department of Physiology, Genetics and Microbiology, University of Alicante, 03690 Alicante, Spain;
| |
Collapse
|
29
|
Chu Y, Zhao Z, Cai L, Zhang G. Viral diversity and biogeochemical potential revealed in different prawn-culture sediments by virus-enriched metagenome analysis. ENVIRONMENTAL RESEARCH 2022; 210:112901. [PMID: 35227678 DOI: 10.1016/j.envres.2022.112901] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 06/14/2023]
Abstract
As the most numerous biological entities on Earth, viruses affect the microbial dynamics, metabolism and biogeochemical cycles in the aquatic ecosystems. Viral diversity and functions in ocean have been relatively well studied, but our understanding of viruses in mariculture systems is limited. To fill this knowledge gap, we studied viral diversity and potential biogeochemical impacts of sediments from four different prawn-mariculture ecosystems (mono-culture of prawn and poly-culture of prawn with jellyfish, sea cucumber, and clam) using a metagenomic approach with prior virus-like particles (VLPs) separation. We found that the order Caudovirales was the predominant viral category and accounted for the most volume (78.39% of classified viruses). Sediment viruses were verified to have a high diversity by using the construct phylogenetic tree of terL gene, with three potential novel clades being identified. Meanwhile, compared with viruses inhabiting other ecosystems based on gene-sharing network, our results revealed that mariculture sediments harbored considerable unexplored viral diversity and that maricultural species were potentially important drivers of the viral community structure. Notably, viral auxiliary metabolic genes were identified and suggested that viruses influence carbon and sulfur cycling, as well as cofactors/vitamins and amino acid metabolism, which indirectly participate in biogeochemical cycling. Overall, our findings revealed the genomic diversity and ecological function of viral communities in prawn mariculture sediments, and suggested the role of viruses in microbial ecology and biogeochemistry.
Collapse
Affiliation(s)
- Yunmeng Chu
- Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen, 361021, Fujian, China
| | - Zelong Zhao
- Shanghai BIOZERON Biotechnology Co., Ltd., Shanghai, 201800, China
| | - Lixi Cai
- Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen, 361021, Fujian, China; Faculty of Basic Medicine, Putian University, Putian, 351100, Fujian, China
| | - Guangya Zhang
- Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen, 361021, Fujian, China.
| |
Collapse
|
30
|
A Review of Cyanophage–Host Relationships: Highlighting Cyanophages as a Potential Cyanobacteria Control Strategy. Toxins (Basel) 2022; 14:toxins14060385. [PMID: 35737046 PMCID: PMC9229316 DOI: 10.3390/toxins14060385] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 11/16/2022] Open
Abstract
Harmful algal blooms (HABs) are naturally occurring phenomena, and cyanobacteria are the most commonly occurring HABs in freshwater systems. Cyanobacteria HABs (cyanoHABs) negatively affect ecosystems and drinking water resources through the production of potent toxins. Furthermore, the frequency, duration, and distribution of cyanoHABs are increasing, and conditions that favor cyanobacteria growth are predicted to increase in the coming years. Current methods for mitigating cyanoHABs are generally short-lived and resource-intensive, and have negative impacts on non-target species. Cyanophages (viruses that specifically target cyanobacteria) have the potential to provide a highly specific control strategy with minimal impacts on non-target species and propagation in the environment. A detailed review (primarily up to 2020) of cyanophage lifecycle, diversity, and factors influencing infectivity is provided in this paper, along with a discussion of cyanophage and host cyanobacteria relationships for seven prominent cyanoHAB-forming genera in North America, including: Synechococcus, Microcystis, Dolichospermum, Aphanizomenon, Cylindrospermopsis, Planktothrix, and Lyngbya. Lastly, factors affecting the potential application of cyanophages as a cyanoHAB control strategy are discussed, including efficacy considerations, optimization, and scalability for large-scale applications.
Collapse
|
31
|
Heinrichs ME, Heyerhoff B, Arslan-Gatz BS, Seidel M, Niggemann J, Engelen B. Deciphering the Virus Signal Within the Marine Dissolved Organic Matter Pool. Front Microbiol 2022; 13:863686. [PMID: 35694303 PMCID: PMC9184803 DOI: 10.3389/fmicb.2022.863686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 05/10/2022] [Indexed: 11/13/2022] Open
Abstract
Viruses are ubiquitously distributed in the marine environment, influencing microbial population dynamics and biogeochemical cycles on a large scale. Due to their small size, they fall into the oceanographic size-class definition of dissolved organic matter (DOM; <0.7 μm). The purpose of our study was to investigate if there is a detectable imprint of virus particles in natural DOM following standard sample preparation and molecular analysis routines using ultrahigh-resolution mass spectrometry (FT-ICR-MS). Therefore, we tested if a molecular signature deriving from virus particles can be detected in the DOM fingerprint of a bacterial culture upon prophage induction and of seawater containing the natural microbial community. Interestingly, the virus-mediated lysate of the infected bacterial culture differed from the cell material of a physically disrupted control culture in its molecular composition. Overall, a small subset of DOM compounds correlated significantly with virus abundances in the bacterial culture setup, accounting for <1% of the detected molecular formulae and <2% of the total signal intensity of the DOM dataset. These were phosphorus- and nitrogen-containing compounds and they were partially also detected in DOM samples from other studies that included high virus abundances. While some of these formulae matched with typical biomolecules that are constituents of viruses, others matched with bacterial cell wall components. Thus, the identified DOM molecular formulae were probably not solely derived from virus particles but were partially also derived from processes such as the virus-mediated bacterial cell lysis. Our results indicate that a virus-derived DOM signature is part of the natural DOM and barely detectable within the analytical window of ultrahigh-resolution mass spectrometry when a high natural background is present.
Collapse
Affiliation(s)
- Mara E. Heinrichs
- Benthic Microbiology Group, Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University, Oldenburg, Germany
| | - Benedikt Heyerhoff
- Benthic Microbiology Group, Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University, Oldenburg, Germany
| | - Berin S. Arslan-Gatz
- Benthic Microbiology Group, Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University, Oldenburg, Germany
| | - Michael Seidel
- Research Group for Marine Geochemistry (ICBM-MPI Bridging Group), Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University, Oldenburg, Germany
| | - Jutta Niggemann
- Research Group for Marine Geochemistry (ICBM-MPI Bridging Group), Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University, Oldenburg, Germany
| | - Bert Engelen
- Benthic Microbiology Group, Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University, Oldenburg, Germany
| |
Collapse
|
32
|
Zhao F, Lin X, Cai K, Jiang Y, Ni T, Chen Y, Feng J, Dang S, Zhou CZ, Zeng Q. Biochemical and structural characterization of the cyanophage-encoded phosphate binding protein: implications for enhanced phosphate uptake of infected cyanobacteria. Environ Microbiol 2022; 24:3037-3050. [PMID: 35590460 DOI: 10.1111/1462-2920.16043] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 05/07/2022] [Accepted: 05/08/2022] [Indexed: 12/01/2022]
Abstract
To acquire phosphorus, cyanobacteria use the typical bacterial ABC-type phosphate transporter, which is composed of a periplasmic high-affinity phosphate-binding protein PstS and a channel formed by two transmembrane proteins PstC and PstA. A putative pstS gene was identified in the genomes of cyanophages that infect the unicellular marine cyanobacteria Prochlorococcus and Synechococcus. However, it has not been determined whether the cyanophage PstS protein is functional during infection to enhance the phosphate uptake rate of host cells. Here we showed that the cyanophage P-SSM2 PstS protein was abundant in the infected Prochlorococcus NATL2A cells and the host phosphate uptake rate was enhanced after infection. This is consistent with our biochemical and structural analyses showing that the phage PstS protein is indeed a high-affinity phosphate-binding protein. We further modeled the complex structure of phage PstS with host PstCA and revealed three putative interfaces that may facilitate the formation of a chimeric ABC transporter. Our results provide insights into the molecular mechanism by which cyanophages enhance the phosphate uptake rate of cyanobacteria. Phosphate acquisition by infected bacteria can increase the phosphorus contents of released cellular debris and virus particles, which together constitute a significant proportion of the marine dissolved organic phosphorus pool. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Fangxin Zhao
- Department of Ocean Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Xingqin Lin
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.,Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Kun Cai
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230027, China.,School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - YongLiang Jiang
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230027, China.,School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Tianchi Ni
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Yue Chen
- Department of Ocean Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Jianrong Feng
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Shangyu Dang
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China.,Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.,Center of Systems Biology and Human Health, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Cong-Zhao Zhou
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230027, China.,School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Qinglu Zeng
- Department of Ocean Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China.,Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.,Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China.,HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute, Futian, Shenzhen, China
| |
Collapse
|
33
|
Wang S, Yang Y, Jing J. A Synthesis of Viral Contribution to Marine Nitrogen Cycling. Front Microbiol 2022; 13:834581. [PMID: 35547115 PMCID: PMC9083009 DOI: 10.3389/fmicb.2022.834581] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 04/04/2022] [Indexed: 11/22/2022] Open
Abstract
Nitrogen is an essential component of major cellular macromolecules, such as DNA and proteins. Its bioavailability has a fundamental influence on the primary production of both terrestrial and oceanic ecosystems. Diverse marine microbes consume nitrogen, while only a limited taxon could replenish it, leaving nitrogen one of the most deficient nutrients in the ocean. A variety of microbes are involved in complex biogeochemical transformations of nitrogen compounds, and their ecological functions might be regulated by viruses in different manners. First and foremost, viruses drive marine nitrogen flow via host cell lysis, releasing abundant organic nitrogen into the surrounding environment. Secondly, viruses can also participate in the marine nitrogen cycle by expressing auxiliary metabolic genes (AMGs) to modulate host nitrogen metabolic pathways, such as nitrification, denitrification, anammox, and nitrogen transmembrane transport. Additionally, viruses also serve as a considerable reservoir of nitrogen element. The efficient turnover of viruses fundamentally promotes nitrogen flow in the oceans. In this review, we summarize viral contributions in the marine nitrogen cycling in different aspects and discuss challenges and issues based on recent discoveries of novel viruses involved in different processes of nitrogen biotransformation.
Collapse
Affiliation(s)
- Shuai Wang
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, China
| | - Yu Yang
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, China
| | - Jiaojiao Jing
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,Department of Pediatric Dentistry, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,Stomatological Center, Peking University Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
34
|
Patterns and ecological drivers of viral communities in acid mine drainage sediments across Southern China. Nat Commun 2022; 13:2389. [PMID: 35501347 PMCID: PMC9061769 DOI: 10.1038/s41467-022-30049-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 04/14/2022] [Indexed: 11/09/2022] Open
Abstract
Recent advances in environmental genomics have provided unprecedented opportunities for the investigation of viruses in natural settings. Yet, our knowledge of viral biogeographic patterns and the corresponding drivers is still limited. Here, we perform metagenomic deep sequencing on 90 acid mine drainage (AMD) sediments sampled across Southern China and examine the biogeography of viruses in this extreme environment. The results demonstrate that prokaryotic communities dictate viral taxonomic and functional diversity, abundance and structure, whereas other factors especially latitude and mean annual temperature also impact viral populations and functions. In silico predictions highlight lineage-specific virus-host abundance ratios and richness-dependent virus-host interaction structure. Further functional analyses reveal important roles of environmental conditions and horizontal gene transfers in shaping viral auxiliary metabolic genes potentially involved in phosphorus assimilation. Our findings underscore the importance of both abiotic and biotic factors in predicting the taxonomic and functional biogeographic dynamics of viruses in the AMD sediments. The biogeography of viral communities in extreme environments remains understudied. Here, the authors use metagenomic sequencing on 90 acid mine drainage sediments sampled across Southern China, showing the predominant effects of prokaryotic communities and the influence of environmental variables on viral taxonomy and function.
Collapse
|
35
|
Cao MM, Liu SY, Bi L, Chen SJ, Wu HY, Ge Y, Han B, Zhang LM, He JZ, Han LL. Distribution Characteristics of Soil Viruses Under Different Precipitation Gradients on the Qinghai-Tibet Plateau. Front Microbiol 2022; 13:848305. [PMID: 35464951 PMCID: PMC9022101 DOI: 10.3389/fmicb.2022.848305] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/07/2022] [Indexed: 11/13/2022] Open
Abstract
Viruses are extremely abundant in the soil environment and have potential roles in impacting on microbial population, evolution, and nutrient biogeochemical cycles. However, how environment and climate changes affect soil viruses is still poorly understood. Here, a metagenomic approach was used to investigate the distribution, diversity, and potential biogeochemical impacts of DNA viruses in 12 grassland soils under three precipitation gradients on the Qinghai-Tibet Plateau, which is one of the most sensitive areas to climate change. A total of 557 viral operational taxonomic units were obtained, spanning 152 viral families from the 30 metagenomes. Both virus-like particles (VLPs) and microbial abundance increased with average annual precipitation. A significant positive correlation of VLP counts was observed with soil water content, total carbon, total nitrogen, soil organic matter, and total phosphorus. Among these biological and abiotic factors, SWC mainly contributed to the variability in VLP abundance. The order Caudovirales (70.1% of the identified viral order) was the predominant viral type in soils from the Qinghai-Tibet Plateau, with the Siphoviridae family being the most abundant. Remarkably, abundant auxiliary carbohydrate-active enzyme (CAZyme) genes represented by glycoside hydrolases were identified, indicating that soil viruses may play a potential role in the carbon cycle on the Qinghai-Tibet Plateau. There were more diverse hosts and abundant CAZyme genes in soil with moderate precipitation. Our study provides a strong evidence that changes in precipitation impact not only viral abundance and virus–host interactions in soil but also the viral functional potential, especially carbon cycling.
Collapse
Affiliation(s)
- Miao-Miao Cao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Si-Yi Liu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,The Zhongke-Ji'an Institute for Eco-Environmental Sciences, Ji'an, China
| | - Li Bi
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Shu-Jun Chen
- Information Technology Center, Tsinghua University, Beijing, China
| | - Hua-Yong Wu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Yuan Ge
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Bing Han
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Li-Mei Zhang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Ji-Zheng He
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia.,Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou, China
| | - Li-Li Han
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
36
|
Isolation and Characterization of a Novel Cyanophage Encoding Multiple Auxiliary Metabolic Genes. Viruses 2022; 14:v14050887. [PMID: 35632629 PMCID: PMC9146016 DOI: 10.3390/v14050887] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/15/2022] [Accepted: 04/20/2022] [Indexed: 02/04/2023] Open
Abstract
As significant drivers of cyanobacteria mortality, cyanophages have been known to regulate the population dynamics, metabolic activities, and community structure of this most important marine autotrophic picoplankton and, therefore, influence the global primary production and biogeochemical cycle in aquatic ecosystems. In the present study, a lytic Synechococcus phage, namely S-SZBM1, was isolated and identified. Cyanophage S-SZBM1 has a double-stranded DNA genome of 177,834 bp with a G+C content of 43.31% and contains a total of 218 predicted ORFs and six tRNA genes. Phylogenetic analysis and nucleotide-based intergenomic similarity suggested that cyanophage S-SZBM1 belongs to a new genus under the family Kyanoviridae. A variety of auxiliary metabolic genes (AMGs) that have been proved or speculated to relate to photosynthesis, carbon metabolism, nucleotide synthesis and metabolism, cell protection, and other cell metabolism were identified in cyanophage S-SZBM1 genome and may affect host processes during infection. In addition, 24 of 32 predicted structural proteins were identified by a high-throughput proteome analysis which were potentially involved in the assembly processes of virion. The genomic and proteomic analysis features of cyanophage S-SZBM1 offer a valuable insight into the interactions between cyanophages and their hosts during infection.
Collapse
|
37
|
Viruses affect picocyanobacterial abundance and biogeography in the North Pacific Ocean. Nat Microbiol 2022; 7:570-580. [PMID: 35365792 PMCID: PMC8975747 DOI: 10.1038/s41564-022-01088-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 02/22/2022] [Indexed: 11/09/2022]
Abstract
The photosynthetic picocyanobacteria Prochlorococcus and Synechococcus are models for dissecting how ecological niches are defined by environmental conditions, but how interactions with bacteriophages affect picocyanobacterial biogeography in open ocean biomes has rarely been assessed. We applied single-virus and single-cell infection approaches to quantify cyanophage abundance and infected picocyanobacteria in 87 surface water samples from five transects that traversed approximately 2,200 km in the North Pacific Ocean on three cruises, with a duration of 2-4 weeks, between 2015 and 2017. We detected a 550-km-wide hotspot of cyanophages and virus-infected picocyanobacteria in the transition zone between the North Pacific Subtropical and Subpolar gyres that was present in each transect. Notably, the hotspot occurred at a consistent temperature and displayed distinct cyanophage-lineage composition on all transects. On two of these transects, the levels of infection in the hotspot were estimated to be sufficient to substantially limit the geographical range of Prochlorococcus. Coincident with the detection of high levels of virally infected picocyanobacteria, we measured an increase of 10-100-fold in the Synechococcus populations in samples that are usually dominated by Prochlorococcus. We developed a multiple regression model of cyanophages, temperature and chlorophyll concentrations that inferred that the hotspot extended across the North Pacific Ocean, creating a biological boundary between gyres, with the potential to release organic matter comparable to that of the sevenfold-larger North Pacific Subtropical Gyre. Our results highlight the probable impact of viruses on large-scale phytoplankton biogeography and biogeochemistry in distinct regions of the oceans.
Collapse
|
38
|
Han LL, Yu DT, Bi L, Du S, Silveira C, Cobián Güemes AG, Zhang LM, He JZ, Rohwer F. Distribution of soil viruses across China and their potential role in phosphorous metabolism. ENVIRONMENTAL MICROBIOME 2022; 17:6. [PMID: 35130971 PMCID: PMC8822697 DOI: 10.1186/s40793-022-00401-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Viruses are the most abundant biological entities on the planet and drive biogeochemical cycling on a global scale. Our understanding of biogeography of soil viruses and their ecological functions lags significantly behind that of Bacteria and Fungi. Here, a viromic approach was used to investigate the distribution and ecological functions of viruses from 19 soils across China. RESULTS Soil viral community were clustered more significantly by geographical location than type of soil (agricultural and natural). Three clusters of viral communities were identified from North, Southeast and Southwest regions; these clusters differentiated using taxonomic composition and were mainly driven by geographic location and climate factors. A total of 972 viral populations (vOTUs) were detected spanning 23 viral families from the 19 viromes. Phylogenetic analyses of the phoH gene showed a remarkable diversity and the distribution of viral phoH genes was more dependent on the environment. Notably, five proteins involved in phosphorus (P) metabolism-related nucleotide synthesis functions, including dUTPase, MazG, PhoH, Thymidylate synthase complementing protein (Thy1), and Ribonucleoside reductase (RNR), were mainly identified in agricultural soils. CONCLUSIONS The present work revealed that soil viral communities were distributed across China according to geographical location and climate factors. In addition, P metabolism genes encoded by these viruses probably drive the synthesis of nucleotides for their own genomes inside bacterial hosts, thereby affecting P cycling in the soil ecosystems.
Collapse
Affiliation(s)
- Li-Li Han
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
- University of the Chinese Academy of Sciences, Beijing, 100049, China.
- Department of Biology, San Diego State University, San Diego, CA, 92182, USA.
| | - Dan-Ting Yu
- Key Laboratory for Subtropical Mountain Ecology of the Ministry of Science and Technology and Fujian Province, School of Geographical Sciences, Fujian Normal University, Fuzhou, 350007, Fujian, China.
| | - Li Bi
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuai Du
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Cynthia Silveira
- Department of Biology, San Diego State University, San Diego, CA, 92182, USA
- Viral Information Institute at San Diego State University, San Diego, CA, 92182, USA
- Department of Biology, University of Miami, Coral Gables, FL, 33146, USA
| | - Ana Georgina Cobián Güemes
- Department of Biology, San Diego State University, San Diego, CA, 92182, USA
- Viral Information Institute at San Diego State University, San Diego, CA, 92182, USA
| | - Li-Mei Zhang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Ji-Zheng He
- Key Laboratory for Subtropical Mountain Ecology of the Ministry of Science and Technology and Fujian Province, School of Geographical Sciences, Fujian Normal University, Fuzhou, 350007, Fujian, China
| | - Forest Rohwer
- Department of Biology, San Diego State University, San Diego, CA, 92182, USA
- Viral Information Institute at San Diego State University, San Diego, CA, 92182, USA
| |
Collapse
|
39
|
Viruses infecting a warm water picoeukaryote shed light on spatial co-occurrence dynamics of marine viruses and their hosts. THE ISME JOURNAL 2021; 15:3129-3147. [PMID: 33972727 PMCID: PMC8528832 DOI: 10.1038/s41396-021-00989-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 03/08/2021] [Accepted: 04/14/2021] [Indexed: 02/03/2023]
Abstract
The marine picoeukaryote Bathycoccus prasinos has been considered a cosmopolitan alga, although recent studies indicate two ecotypes exist, Clade BI (B. prasinos) and Clade BII. Viruses that infect Bathycoccus Clade BI are known (BpVs), but not that infect BII. We isolated three dsDNA prasinoviruses from the Sargasso Sea against Clade BII isolate RCC716. The BII-Vs do not infect BI, and two (BII-V2 and BII-V3) have larger genomes (~210 kb) than BI-Viruses and BII-V1. BII-Vs share ~90% of their proteins, and between 65% to 83% of their proteins with sequenced BpVs. Phylogenomic reconstructions and PolB analyses establish close-relatedness of BII-V2 and BII-V3, yet BII-V2 has 10-fold higher infectivity and induces greater mortality on host isolate RCC716. BII-V1 is more distant, has a shorter latent period, and infects both available BII isolates, RCC716 and RCC715, while BII-V2 and BII-V3 do not exhibit productive infection of the latter in our experiments. Global metagenome analyses show Clade BI and BII algal relative abundances correlate positively with their respective viruses. The distributions delineate BI/BpVs as occupying lower temperature mesotrophic and coastal systems, whereas BII/BII-Vs occupy warmer temperature, higher salinity ecosystems. Accordingly, with molecular diagnostic support, we name Clade BII Bathycoccus calidus sp. nov. and propose that molecular diversity within this new species likely connects to the differentiated host-virus dynamics observed in our time course experiments. Overall, the tightly linked biogeography of Bathycoccus host and virus clades observed herein supports species-level host specificity, with strain-level variations in infection parameters.
Collapse
|
40
|
Novel PhoH-encoding vibriophages with lytic activity against environmental Vibrio strains. Arch Microbiol 2021; 203:5321-5331. [PMID: 34379161 DOI: 10.1007/s00203-021-02511-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 07/23/2021] [Accepted: 08/04/2021] [Indexed: 12/29/2022]
Abstract
Cholera is a devastating diarrheal disease that accounts for more than 10% of children's lives worldwide, but its treatment is hampered by a rise in antibiotic resistance. One promising alternative to antibiotic therapy is the use of bacteriophages to treat antibiotic-resistant cholera infections, and control Vibrio cholera in clinical cases and in the environment, respectively. Here, we report four novel, closely related environmental myoviruses, VP4, VP6, VP18, and VP24, which we isolated from two environmental toxigenic Vibrio cholerae strains from river Kuja and Usenge beach in Kenya. High-throughput sequencing followed by bioinformatics analysis indicated that the genomes of the four bacteriophages have closely related sequences, with sizes of 148,180 bp, 148,181 bp, 148,179 bp, and 148,179 bp, and a G + C content of 36.4%. The four genomes carry the phoH gene, which is overrepresented in marine cyanophages. The isolated phages displayed a lytic activity against 15 environmental, as well as one clinical, Vibrio cholerae strains. Thus, these novel lytic vibriophages represent potential biocontrol candidates for water decontamination against pathogenic Vibrio cholerae and ought to be considered for future studies of phage therapy.
Collapse
|
41
|
Jacobson TB, Callaghan MM, Amador-Noguez D. Hostile Takeover: How Viruses Reprogram Prokaryotic Metabolism. Annu Rev Microbiol 2021; 75:515-539. [PMID: 34348026 DOI: 10.1146/annurev-micro-060621-043448] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
To reproduce, prokaryotic viruses must hijack the cellular machinery of their hosts and redirect it toward the production of viral particles. While takeover of the host replication and protein synthesis apparatus has long been considered an essential feature of infection, recent studies indicate that extensive reprogramming of host primary metabolism is a widespread phenomenon among prokaryotic viruses that is required to fulfill the biosynthetic needs of virion production. In this review we provide an overview of the most significant recent findings regarding virus-induced reprogramming of prokaryotic metabolism and suggest how quantitative systems biology approaches may be used to provide a holistic understanding of metabolic remodeling during lytic viral infection. Expected final online publication date for the Annual Review of Microbiology, Volume 75 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Tyler B Jacobson
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; , , .,Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin 53726, USA.,Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Melanie M Callaghan
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; , , .,Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Daniel Amador-Noguez
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; , , .,Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin 53726, USA.,Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| |
Collapse
|
42
|
Barth ZK, Nguyen MH, Seed KD. A chimeric nuclease substitutes a phage CRISPR-Cas system to provide sequence-specific immunity against subviral parasites. eLife 2021; 10:68339. [PMID: 34232860 PMCID: PMC8263062 DOI: 10.7554/elife.68339] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 06/27/2021] [Indexed: 02/06/2023] Open
Abstract
Mobile genetic elements, elements that can move horizontally between genomes, have profound effects on their host's fitness. The phage-inducible chromosomal island-like element (PLE) is a mobile element that integrates into the chromosome of Vibrio cholerae and parasitizes the bacteriophage ICP1 to move between cells. This parasitism by PLE is such that it abolishes the production of ICP1 progeny and provides a defensive boon to the host cell population. In response to the severe parasitism imposed by PLE, ICP1 has acquired an adaptive CRISPR-Cas system that targets the PLE genome during infection. However, ICP1 isolates that naturally lack CRISPR-Cas are still able to overcome certain PLE variants, and the mechanism of this immunity against PLE has thus far remained unknown. Here, we show that ICP1 isolates that lack CRISPR-Cas encode an endonuclease in the same locus, and that the endonuclease provides ICP1 with immunity to a subset of PLEs. Further analysis shows that this endonuclease is of chimeric origin, incorporating a DNA-binding domain that is highly similar to some PLE replication origin-binding proteins. This similarity allows the endonuclease to bind and cleave PLE origins of replication. The endonuclease appears to exert considerable selective pressure on PLEs and may drive PLE replication module swapping and origin restructuring as mechanisms of escape. This work demonstrates that new genome defense systems can arise through domain shuffling and provides a greater understanding of the evolutionary forces driving genome modularity and temporal succession in mobile elements.
Collapse
Affiliation(s)
- Zachary K Barth
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, United States
| | - Maria Ht Nguyen
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, United States
| | - Kimberley D Seed
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, United States.,Chan Zuckerberg Biohub, San Francisco, United States
| |
Collapse
|
43
|
Feng X, Yan W, Wang A, Ma R, Chen X, Lin TH, Chen YL, Wei S, Jin T, Jiao N, Zhang R. A Novel Broad Host Range Phage Infecting Alteromonas. Viruses 2021; 13:v13060987. [PMID: 34073246 PMCID: PMC8228385 DOI: 10.3390/v13060987] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 12/24/2022] Open
Abstract
Bacteriophages substantially contribute to bacterial mortality in the ocean and play critical roles in global biogeochemical processes. Alteromonas is a ubiquitous bacterial genus in global tropical and temperate waters, which can cross-protect marine cyanobacteria and thus has important ecological benefits. However, little is known about the biological and ecological features of Alteromonas phages (alterophages). Here, we describe a novel alterophage vB_AmeP-R8W (R8W), which belongs to the Autographiviridae family and infects the deep-clade Alteromonas mediterranea. R8W has an equidistant and icosahedral head (65 ± 1 nm in diameter) and a short tail (12 ± 2 nm in length). The genome size of R8W is 48,825 bp, with a G + C content of 40.55%. R8W possesses three putative auxiliary metabolic genes encoding proteins involved in nucleotide metabolism and DNA binding: thymidylate synthase, nucleoside triphosphate pyrophosphohydrolase, and PhoB. R8W has a rapid lytic cycle with a burst size of 88 plaque-forming units/cell. Notably, R8W has a wide host range, such that it can infect 35 Alteromonas strains; it exhibits a strong specificity for strains isolated from deep waters. R8W has two specific receptor binding proteins and a compatible holin-endolysin system, which contribute to its wide host range. The isolation of R8W will contribute to the understanding of alterophage evolution, as well as the phage-host interactions and ecological importance of alterophages.
Collapse
Affiliation(s)
- Xuejin Feng
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (X.F.); (W.Y.); (A.W.); (R.M.); (X.C.); (T.-H.L.); (Y.-L.C.); (S.W.)
| | - Wei Yan
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (X.F.); (W.Y.); (A.W.); (R.M.); (X.C.); (T.-H.L.); (Y.-L.C.); (S.W.)
- College of Marine Science and Technology, China University of Geosciences, Wuhan 430074, China
| | - Anan Wang
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (X.F.); (W.Y.); (A.W.); (R.M.); (X.C.); (T.-H.L.); (Y.-L.C.); (S.W.)
| | - Ruijie Ma
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (X.F.); (W.Y.); (A.W.); (R.M.); (X.C.); (T.-H.L.); (Y.-L.C.); (S.W.)
| | - Xiaowei Chen
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (X.F.); (W.Y.); (A.W.); (R.M.); (X.C.); (T.-H.L.); (Y.-L.C.); (S.W.)
| | - Ta-Hui Lin
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (X.F.); (W.Y.); (A.W.); (R.M.); (X.C.); (T.-H.L.); (Y.-L.C.); (S.W.)
| | - Yi-Lung Chen
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (X.F.); (W.Y.); (A.W.); (R.M.); (X.C.); (T.-H.L.); (Y.-L.C.); (S.W.)
| | - Shuzhen Wei
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (X.F.); (W.Y.); (A.W.); (R.M.); (X.C.); (T.-H.L.); (Y.-L.C.); (S.W.)
| | - Tao Jin
- Guangzhou Magigene Biotechnology Co., Ltd., Guangzhou 510000, China;
| | - Nianzhi Jiao
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (X.F.); (W.Y.); (A.W.); (R.M.); (X.C.); (T.-H.L.); (Y.-L.C.); (S.W.)
- Correspondence: (N.J.); (R.Z.)
| | - Rui Zhang
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (X.F.); (W.Y.); (A.W.); (R.M.); (X.C.); (T.-H.L.); (Y.-L.C.); (S.W.)
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China
- Correspondence: (N.J.); (R.Z.)
| |
Collapse
|
44
|
Mine AH, Coleman ML, Colman AS. Phosphorus Release and Regeneration Following Laboratory Lysis of Bacterial Cells. Front Microbiol 2021; 12:641700. [PMID: 33897649 PMCID: PMC8060472 DOI: 10.3389/fmicb.2021.641700] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/10/2021] [Indexed: 11/30/2022] Open
Abstract
The availability of phosphorus limits primary production in large regions of the oceans, and marine microbes use a variety of strategies to overcome this limitation. One strategy is the production of alkaline phosphatase (APase), which allows hydrolysis of larger dissolved organic phosphorus (DOP) compounds in the periplasm or at the cell surface for transport of orthophosphate into the cell. Cell lysis, driven by grazing and viral infection, releases phosphorus-containing cell components, along with active enzymes that could persist after lysis. The importance of this continued enzymatic activity for orthophosphate regeneration is unknown. We used three model bacteria – Escherichia coli K-12 MG1655, Synechococcus sp. WH7803, and Prochlorococcus sp. MED4 – to assess the impact of continued APase activity after cell lysis, via lysozyme treatment, on orthophosphate regeneration. Direct release of orthophosphate scaled with cell size and was reduced under phosphate-starved conditions where APase activity continued for days after lysis. All lysate incubations showed post-lysis orthophosphate generation suggesting phosphatases other than APase maintain activity. Rates of DOP hydrolysis and orthophosphate remineralization varied post-lysis among strains. Escherichia coli K-12 MG1655 rates of remineralization were 0.6 and 1.2 amol cell–1hr–1 under deplete and replete conditions; Synechococcus WH7803 lysates ranged from 0.04 up to 0.3 amol cell–1hr–1 during phosphorus deplete and replete conditions, respectively, while in Prochlorococcus MED4 lysates, rates were stable at 0.001 amol cell–1hr–1 in both conditions. The range of rates of hydrolysis and regeneration underscores the taxonomic and biochemical variability in the process of nutrient regeneration and further highlights the complexity of quantitatively resolving the major fluxes within the microbial loop.
Collapse
Affiliation(s)
- Aric H Mine
- Department of Earth and Environmental Sciences, California State University, Fresno, CA, United States.,Department of the Geophysical Sciences, University of Chicago, Chicago, IL, United States
| | - Maureen L Coleman
- Department of the Geophysical Sciences, University of Chicago, Chicago, IL, United States
| | - Albert S Colman
- Department of the Geophysical Sciences, University of Chicago, Chicago, IL, United States.,Department of Earth, Environmental and Planetary Sciences, Rice University, Houston, TX, United States
| |
Collapse
|
45
|
Gazitúa MC, Vik DR, Roux S, Gregory AC, Bolduc B, Widner B, Mulholland MR, Hallam SJ, Ulloa O, Sullivan MB. Potential virus-mediated nitrogen cycling in oxygen-depleted oceanic waters. THE ISME JOURNAL 2021; 15:981-998. [PMID: 33199808 PMCID: PMC8115048 DOI: 10.1038/s41396-020-00825-6] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 09/30/2020] [Accepted: 10/27/2020] [Indexed: 01/29/2023]
Abstract
Viruses play an important role in the ecology and biogeochemistry of marine ecosystems. Beyond mortality and gene transfer, viruses can reprogram microbial metabolism during infection by expressing auxiliary metabolic genes (AMGs) involved in photosynthesis, central carbon metabolism, and nutrient cycling. While previous studies have focused on AMG diversity in the sunlit and dark ocean, less is known about the role of viruses in shaping metabolic networks along redox gradients associated with marine oxygen minimum zones (OMZs). Here, we analyzed relatively quantitative viral metagenomic datasets that profiled the oxygen gradient across Eastern Tropical South Pacific (ETSP) OMZ waters, assessing whether OMZ viruses might impact nitrogen (N) cycling via AMGs. Identified viral genomes encoded six N-cycle AMGs associated with denitrification, nitrification, assimilatory nitrate reduction, and nitrite transport. The majority of these AMGs (80%) were identified in T4-like Myoviridae phages, predicted to infect Cyanobacteria and Proteobacteria, or in unclassified archaeal viruses predicted to infect Thaumarchaeota. Four AMGs were exclusive to anoxic waters and had distributions that paralleled homologous microbial genes. Together, these findings suggest viruses modulate N-cycling processes within the ETSP OMZ and may contribute to nitrogen loss throughout the global oceans thus providing a baseline for their inclusion in the ecosystem and geochemical models.
Collapse
Affiliation(s)
- M. Consuelo Gazitúa
- grid.261331.40000 0001 2285 7943Department of Microbiology, The Ohio State University, Columbus, OH 43210 USA ,Viromica Consulting, Santiago, Chile
| | - Dean R. Vik
- grid.261331.40000 0001 2285 7943Department of Microbiology, The Ohio State University, Columbus, OH 43210 USA
| | - Simon Roux
- grid.451309.a0000 0004 0449 479XDOE Joint Genome Institute, Berkeley, CA USA
| | - Ann C. Gregory
- grid.261331.40000 0001 2285 7943Department of Microbiology, The Ohio State University, Columbus, OH 43210 USA
| | - Benjamin Bolduc
- grid.261331.40000 0001 2285 7943Department of Microbiology, The Ohio State University, Columbus, OH 43210 USA
| | - Brittany Widner
- grid.261368.80000 0001 2164 3177Department of Ocean, Earth and Atmospheric Sciences, Old Dominion University, Norfolk, VA USA ,grid.56466.370000 0004 0504 7510Woods Hole Oceanographic Institution, Woods Hole, MA USA
| | - Margaret R. Mulholland
- grid.261368.80000 0001 2164 3177Department of Ocean, Earth and Atmospheric Sciences, Old Dominion University, Norfolk, VA USA
| | - Steven J. Hallam
- grid.17091.3e0000 0001 2288 9830Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC Canada
| | - Osvaldo Ulloa
- grid.5380.e0000 0001 2298 9663Departamento de Oceanografía & Instituto Milenio de Oceanografía, Universidad de Concepción, Concepción, Chile
| | - Matthew B. Sullivan
- grid.261331.40000 0001 2285 7943Department of Microbiology, The Ohio State University, Columbus, OH 43210 USA ,grid.261331.40000 0001 2285 7943Department of Civil, Environmental and Geodetic Engineering, The Ohio State University, Columbus, OH USA
| |
Collapse
|
46
|
Huang S, Sun Y, Zhang S, Long L. Temporal transcriptomes of a marine cyanopodovirus and its Synechococcus host during infection. Microbiologyopen 2020; 10:e1150. [PMID: 33377630 PMCID: PMC7885011 DOI: 10.1002/mbo3.1150] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/01/2020] [Accepted: 12/07/2020] [Indexed: 12/24/2022] Open
Abstract
Marine picocyanobacteria belonging to genera Synechococcus and Prochlorococcus are genetically diverged and distributed into distinct biogeographical patterns, and both are infected by genetically closely related cyanopodoviruses. Previous studies have not fully explored whether the two virus–host systems share similar gene expression patterns during infection. Whole‐genome expression dynamics of T7‐like cyanopodovirus P‐SSP7 and its host Prochlorococcus strain MED4 have already been reported. Here, we conducted genomic and transcriptomic analyses on T7‐like cyanopodovirus S‐SBP1 during its infection on Synechococcus strain WH7803. S‐SBP1 has a latent period of 8 h and phage DNA production of 30 copies per cell. In terms of whole‐genome phylogenetic relationships and average nucleotide identity, S‐SBP1 was most similar to cyanopodovirus S‐RIP2, which also infects Synechococcus WH7803. Three hypervariable genomic islands were identified when comparing the genomes of S‐SBP1 and S‐RIP2. Single nucleotide variants were also observed in three S‐SBP1 genes, which were located within the island regions. Based on RNA‐seq analysis, S‐SBP1 genes clustered into three temporal expression classes, whose gene content was similar to that of P‐SSP7. Thirty‐two host genes were upregulated during phage infection, including those involved in carbon metabolism, ribosome components, and stress response. These upregulated genes were similar to those upregulated by Prochlorococcus MED4 in response to infection by P‐SSP7. Our study demonstrates a programmed temporal expression pattern of cyanopodoviruses and hosts during infection.
Collapse
Affiliation(s)
- Sijun Huang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Yingting Sun
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Si Zhang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Lijuan Long
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
47
|
Discovering the Molecular Determinants of Phaeobacter inhibens Susceptibility to Phaeobacter Phage MD18. mSphere 2020; 5:5/6/e00898-20. [PMID: 33148823 PMCID: PMC7643831 DOI: 10.1128/msphere.00898-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Bacteriophages have immense potential as antibiotic therapies and in genetic engineering. Understanding the mechanisms that bacteriophages implement to infect their hosts will allow researchers to manipulate these systems and adapt them to specific bacterial targets. In this study, we isolated a bacteriophage capable of infecting the marine alphaproteobacterium Phaeobacter inhibens and determined its mechanism of infection. Phaeobacter virus MD18, a novel species of bacteriophage isolated in Woods Hole, MA, exhibits potent lytic ability against P. inhibens and appears to be of the Siphoviridae morphotype. The genomic sequence of MD18 displayed significant similarity to another siphophage, the recently discovered Roseobacter phage DSS3P8, but genomic and phylogenetic analyses, assessing host range and a search of available metagenomes are all consistent with the conclusion that Phaeobacter phage MD18 is a novel lytic phage. We incubated MD18 with a library of barcoded P. inhibens transposon insertion mutants and identified 22 genes that appear to be required for phage predation of this host. Network analysis of these genes using genomic position, Gene Ontology (GO) term enrichment, and protein associations revealed that these genes are enriched for roles in assembly of a type IV pilus (T4P) and regulators of cellular morphology. Our results suggest that T4P serve as receptors for a novel marine virus that targets P. inhibens. IMPORTANCE Bacteriophages are useful nonantibiotic therapeutics for bacterial infections as well as threats to industries utilizing bacterial agents. This study identified Phaeobacter virus MD18, a phage antagonist of Phaeobacter inhibens, a bacterium with promising use as a probiotic for aquatic farming industries. Genomic analysis suggested that Phaeobacter phage MD18 has evolved to enhance its replication in P. inhibens by adopting favorable tRNA genes as well as through genomic sequence adaptation to resemble host codon usage. Lastly, a high-throughput analysis of P. inhibens transposon insertion mutants identified genes that modulate host susceptibility to phage MD18 and implicated the type IV pilus as the likely receptor recognized for adsorption. This study marks the first characterization of the relationship between P. inhibens and an environmentally sampled phage, which informs our understanding of natural threats to the bacterium and may promote the development of novel phage technologies for genetic manipulation of this host.
Collapse
|
48
|
Fuchsman CA, Carlson MCG, Garcia Prieto D, Hays MD, Rocap G. Cyanophage host-derived genes reflect contrasting selective pressures with depth in the oxic and anoxic water column of the Eastern Tropical North Pacific. Environ Microbiol 2020; 23:2782-2800. [PMID: 32869473 DOI: 10.1111/1462-2920.15219] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 08/14/2020] [Accepted: 08/27/2020] [Indexed: 01/19/2023]
Abstract
Cyanophages encode host-derived genes that may increase their fitness. We examined the relative abundance of 18 host-derived cyanophages genes in metagenomes and viromes along depth profiles from the Eastern Tropical North Pacific Oxygen Deficient Zone (ETNP ODZ) where Prochlorococcus dominates a secondary chlorophyll maximum within the ODZ. Cyanophages at the oxic primary chlorophyll maximum encoded genes related to light and phosphate stress (psbA, psbD and pstS in T4-like and psbA in T7-like), but the proportion of cyanophage with these genes decreased with depth. The proportion of cyanophage with purine biosynthesis genes increased with depth in T4-like, but not T7-like cyanophages. No additional host-derived genes were found in deep T7-like cyanophages, suggesting that T4-like and T7-like cyanophages have different host-derived gene acquisition strategies, possibly linked to their different genome packaging mechanisms. In contrast to the ETNP, in the oxic North Atlantic T4-like cyanophages encoded psbA and pstS throughout the euphotic zone. Differences in pstS between the ETNP and the North Atlantic stations were consistent with differences in phosphate concentrations in those regimes. We suggest that the low proportion of cyanophage with psbA within the ODZ reflects the stably stratified low-light conditions occupied by their hosts, a Prochlorococcus ecotype endemic to ODZs.
Collapse
Affiliation(s)
- Clara A Fuchsman
- School of Oceanography, University of Washington, Seattle, WA, USA.,Horn Point Laboratory, University of Maryland Center of Environmental Science, Cambridge, MD, 21613, USA
| | - Michael C G Carlson
- School of Oceanography, University of Washington, Seattle, WA, USA.,Technion-Israel Institute of Technology, Haifa, Israel
| | - David Garcia Prieto
- School of Oceanography, University of Washington, Seattle, WA, USA.,Horn Point Laboratory, University of Maryland Center of Environmental Science, Cambridge, MD, 21613, USA
| | - Matthew D Hays
- Horn Point Laboratory, University of Maryland Center of Environmental Science, Cambridge, MD, 21613, USA
| | - Gabrielle Rocap
- School of Oceanography, University of Washington, Seattle, WA, USA
| |
Collapse
|
49
|
Impact of Viral Lysis on the Composition of Bacterial Communities and Dissolved Organic Matter in Deep-Sea Sediments. Viruses 2020; 12:v12090922. [PMID: 32842650 PMCID: PMC7552059 DOI: 10.3390/v12090922] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/19/2020] [Accepted: 08/20/2020] [Indexed: 12/17/2022] Open
Abstract
Viral lysis is a main mortality factor for bacteria in deep-sea sediments, leading to changing microbial community structures and the release of cellular components to the environment. Nature and fate of these compounds and the role of viruses for microbial diversity is largely unknown. We investigated the effect of viruses on the composition of bacterial communities and the pool of dissolved organic matter (DOM) by setting up virus-induction experiments using mitomycin C with sediments from the seafloor of the Bering Sea. At the sediment surface, no substantial prophage induction was detected, while incubations from 20 cm below seafloor showed a doubling of the virus-to-cell ratio. Ultra-high resolution mass spectrometry revealed an imprint of cell lysis on the molecular composition of DOM, showing an increase of molecular formulas typical for common biomolecules. More than 50% of these compounds were removed or transformed during incubation. The remaining material potentially contributed to the pool of refractory DOM. Next generation sequencing of the bacterial communities from the induction experiment showed a stable composition over time. In contrast, in the non-treated controls the abundance of dominant taxa (e.g., Gammaproteobacteria) increased at the expense of less abundant phyla. Thus, we conclude that viral lysis was an important driver in sustaining bacterial diversity, consistent with the "killing the winner" model.
Collapse
|
50
|
Viral elements and their potential influence on microbial processes along the permanently stratified Cariaco Basin redoxcline. ISME JOURNAL 2020; 14:3079-3092. [PMID: 32801311 PMCID: PMC7785012 DOI: 10.1038/s41396-020-00739-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 07/18/2020] [Accepted: 08/05/2020] [Indexed: 02/02/2023]
Abstract
Little is known about viruses in oxygen-deficient water columns (ODWCs). In surface ocean waters, viruses are known to act as gene vectors among susceptible hosts. Some of these genes may have metabolic functions and are thus termed auxiliary metabolic genes (AMGs). AMGs introduced to new hosts by viruses can enhance viral replication and/or potentially affect biogeochemical cycles by modulating key microbial pathways. Here we identify 748 viral populations that cluster into 94 genera along a vertical geochemical gradient in the Cariaco Basin, a permanently stratified and euxinic ocean basin. The viral communities in this ODWC appear to be relatively novel as 80 of these viral genera contained no reference viral sequences, likely due to the isolation and unique features of this system. We identify viral elements that encode AMGs implicated in distinctive processes, such as sulfur cycling, acetate fermentation, signal transduction, [Fe–S] formation, and N-glycosylation. These AMG-encoding viruses include two putative Mu-like viruses, and viral-like regions that may constitute degraded prophages that have been modified by transposable elements. Our results provide an insight into the ecological and biogeochemical impact of viruses oxygen-depleted and euxinic habitats.
Collapse
|