1
|
Duan YB, Liu L, Zhu DH, Zeng Y, Liu Z. Description of a new species of Andricus Hartig, 1840 (Hymenoptera: Cynipidae: Cynipini) from China. Zootaxa 2024; 5474:160-172. [PMID: 39646497 DOI: 10.11646/zootaxa.5474.2.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Indexed: 12/10/2024]
Abstract
A new species of gall wasp, Andricus wugangensis Zeng, Liu, & Zhu sp. nov. is described and illustrated herein from Hunan Province, China. The new species is most similar to A. wuhanensis Ide, Abe, Su & Zhu and A. xishuangbanaensis Melika & Tang in morphology but can be easily distinguished by having 1) a large V-shaped carina on the lower face and 2) a broad transverse depression spanning the region between the inner margin of the eyes on the upper face. The results of a phylogenetic analysis and pairwise genetic distance comparison, based on COI sequences, were consistent with the conclusion of the comparative morphological assessment of the similar species: A. wuganensis, A. wuhanensis and A. xishuangbanaensis, although the morphological differences are more obvious than the small genetic distance of the COI sequences, which is 4.3% and 3% between the new species and A. wuhanensis and A. xishuangbanaensis, respectively. Additionally, a taxonomic key to the known species of Andricus from China is provided.
Collapse
Affiliation(s)
- Yu-Bo Duan
- Laboratory of Insect Behavior and Evolutionary Ecology; College of Life Science and Technology; Central South University of Forestry and Technology; Changsha 410004; Hunan; China.
| | - Luan Liu
- Laboratory of Insect Behavior and Evolutionary Ecology; College of Life Science and Technology; Central South University of Forestry and Technology; Changsha 410004; Hunan; China.
| | - Dao-Hong Zhu
- Laboratory of Insect Behavior and Evolutionary Ecology; College of Life Science and Technology; Central South University of Forestry and Technology; Changsha 410004; Hunan; China.
| | - Yang Zeng
- Laboratory of Insect Behavior and Evolutionary Ecology; College of Life Science and Technology; Central South University of Forestry and Technology; Changsha 410004; Hunan; China.
| | - Zhiwei Liu
- Biological Sciences Department; Eastern Illinois University; Charleston; Illinois 61920; USA.
| |
Collapse
|
2
|
Overcast I, Noguerales V, Meramveliotakis E, Andújar C, Arribas P, Creedy TJ, Emerson BC, Vogler AP, Papadopoulou A, Morlon H. Inferring the ecological and evolutionary determinants of community genetic diversity. Mol Ecol 2023; 32:6093-6109. [PMID: 37221561 DOI: 10.1111/mec.16958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 04/06/2023] [Accepted: 04/12/2023] [Indexed: 05/25/2023]
Abstract
Understanding the relative contributions of ecological and evolutionary processes to the structuring of ecological communities is needed to improve our ability to predict how communities may respond to future changes in an increasingly human-modified world. Metabarcoding methods make it possible to gather population genetic data for all species within a community, unlocking a new axis of data to potentially unveil the origins and maintenance of biodiversity at local scales. Here, we present a new eco-evolutionary simulation model for investigating community assembly dynamics using metabarcoding data. The model makes joint predictions of species abundance, genetic variation, trait distributions and phylogenetic relationships under a wide range of parameter settings (e.g. high speciation/low dispersal or vice versa) and across a range of community states, from pristine and unmodified to heavily disturbed. We first demonstrate that parameters governing metacommunity and local community processes leave detectable signatures in simulated biodiversity data axes. Next, using a simulation-based machine learning approach we show that neutral and non-neutral models are distinguishable and that reasonable estimates of several model parameters within the local community can be obtained using only community-scale genetic data, while phylogenetic information is required to estimate those describing metacommunity dynamics. Finally, we apply the model to soil microarthropod metabarcoding data from the Troodos mountains of Cyprus, where we find that communities in widespread forest habitats are structured by neutral processes, while high-elevation and isolated habitats act as an abiotic filter generating non-neutral community structure. We implement our model within the ibiogen R package, a package dedicated to the investigation of island, and more generally community-scale, biodiversity using community-scale genetic data.
Collapse
Affiliation(s)
- Isaac Overcast
- Institut de Biologie de l'ENS (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
- Department of Vertebrate Zoology, American Museum of Natural History, New York, New York, USA
| | - Víctor Noguerales
- Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), San Cristóbal de La Laguna, Spain
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | | | - Carmelo Andújar
- Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), San Cristóbal de La Laguna, Spain
| | - Paula Arribas
- Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), San Cristóbal de La Laguna, Spain
| | - Thomas J Creedy
- Department of Life Sciences, Natural History Museum, London, UK
| | - Brent C Emerson
- Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), San Cristóbal de La Laguna, Spain
| | - Alfried P Vogler
- Department of Life Sciences, Natural History Museum, London, UK
- Department of Life Sciences, Imperial College London, Ascot, UK
| | - Anna Papadopoulou
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - Hélène Morlon
- Institut de Biologie de l'ENS (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| |
Collapse
|
3
|
Zhang YM, Sheikh SI, Ward AKG, Forbes AA, Prior KM, Stone GN, Gates MW, Egan SP, Zhang L, Davis C, Weinersmith KL, Melika G, Lucky A. Delimiting the cryptic diversity and host preferences of Sycophila parasitoid wasps associated with oak galls using phylogenomic data. Mol Ecol 2022; 31:4417-4433. [PMID: 35762844 DOI: 10.1111/mec.16582] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 06/06/2022] [Accepted: 06/23/2022] [Indexed: 11/28/2022]
Abstract
Cryptic species diversity is a major challenge for the species-rich community of parasitoids attacking oak gall wasps due to a high degree of sexual dimorphism, morphological plasticity, small size, and poorly known biology. As such, we know very little about the number of species present, nor the evolutionary forces responsible for generating this diversity. One hypothesis is that trait diversity in the gall wasps, including the morphology of the galls they induce, has evolved in response to selection imposed by the parasitoid community, with reciprocal selection driving diversification of the parasitoids. Using a rare, continental-scale data set of Sycophila parasitoid wasps reared from 44 species of cynipid galls from 18 species of oak across the US, we combined mitochondrial DNA barcodes, Ultraconserved Elements (UCEs), morphological, and natural history data to delimit putative species. Using these results, we generate the first large-scale assessment of ecological specialization and host association in this species-rich group, with implications for evolutionary ecology and biocontrol. We find most Sycophila target specific subsets of available cynipid host galls with similar morphologies, and generally attack larger galls. Our results suggest that parasitoid wasps such as Sycophila have adaptations allowing them to exploit particular host trait combinations, while hosts with contrasting traits are resistant to attack. These findings support the tritrophic niche concept for the structuring of plant-herbivore-parasitoid communities.
Collapse
Affiliation(s)
- Y Miles Zhang
- Systematic Entomology Laboratory, USDA-ARS, c/o National Museum of Natural History, Washington, DC, USA.,Entomology and Nematology Department, University of Florida, Gainesville, FL, USA
| | - Sofia I Sheikh
- Department of Biology, University of Iowa, Iowa City, IA, 52242, USA
| | - Anna K G Ward
- Department of Biology, University of Iowa, Iowa City, IA, 52242, USA
| | - Andrew A Forbes
- Department of Biology, University of Iowa, Iowa City, IA, 52242, USA
| | - Kirsten M Prior
- Department of Biological Sciences, Binghamton University, Binghamton, NY, USA
| | - Graham N Stone
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| | - Michael W Gates
- Systematic Entomology Laboratory, USDA-ARS, c/o National Museum of Natural History, Washington, DC, USA
| | - Scott P Egan
- Department of BioSciences, Rice University, Houston, TX, USA
| | - Linyi Zhang
- Department of BioSciences, Rice University, Houston, TX, USA.,Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - Charles Davis
- Department of BioSciences, Rice University, Houston, TX, USA.,Department of Entomology, Pennsylvania State University, University Park, PA, USA
| | | | - George Melika
- Plant Health and Molecular Biology Laboratory, Directorate of Plant Protection, Budapest, Hungary
| | - Andrea Lucky
- Entomology and Nematology Department, University of Florida, Gainesville, FL, USA
| |
Collapse
|
4
|
Gil‐Tapetado D, Durán‐Montes P, García‐París M, López‐Estrada EK, Sánchez‐Vialas A, Jiménez‐Ruiz Y, Gómez JF, Nieves‐Aldrey JL. Host specialization is ancestral in
Torymus
(Hymenoptera, Chalcidoidea) cynipid gall parasitoids. ZOOL SCR 2021. [DOI: 10.1111/zsc.12515] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Diego Gil‐Tapetado
- Museo Nacional de Ciencias Naturales (CSIC) Madrid Spain
- Facultad de Ciencias Biológicas Departamento de Biodiversidad, Ecología y Evolución Universidad Complutense de Madrid Madrid Spain
| | - Patricia Durán‐Montes
- Facultad de Ciencias Biológicas Departamento de Biodiversidad, Ecología y Evolución Universidad Complutense de Madrid Madrid Spain
| | | | | | | | | | - Jose F. Gómez
- Facultad de Ciencias Biológicas Departamento de Biodiversidad, Ecología y Evolución Universidad Complutense de Madrid Madrid Spain
| | | |
Collapse
|
5
|
Parvizi E, Dutoit L, Fraser CI, Craw D, Waters JM. Concordant phylogeographic responses to large-scale coastal disturbance in intertidal macroalgae and their epibiota. Mol Ecol 2021; 31:646-657. [PMID: 34695264 DOI: 10.1111/mec.16245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 10/13/2021] [Accepted: 10/20/2021] [Indexed: 01/05/2023]
Abstract
Major ecological disturbance events can provide opportunities to assess multispecies responses to upheaval. In particular, catastrophic disturbances that regionally extirpate habitat-forming species can potentially influence the genetic diversity of large numbers of codistributed taxa. However, due to the rarity of such disturbance events over ecological timeframes, the genetic dynamics of multispecies recolonization processes have remained little understood. Here, we use single nucleotide polymorphism (SNP) data from multiple coastal species to track the dynamics of cocolonization events in response to ancient earthquake disturbance in southern New Zealand. Specifically, we use a comparative phylogeographic approach to understand the extent to which epifauna (with varying ecological associations with their macroalgal hosts) share comparable spatial and temporal recolonization patterns. Our study reveals concordant disturbance-related phylogeographic breaks in two intertidal macroalgal species along with two associated epibiotic species (a chiton and an isopod). By contrast, two codistributed species, one of which is an epibiotic amphipod and the other a subtidal macroalga, show few, if any, genetic effects of palaeoseismic coastal uplift. Phylogeographic model selection reveals similar post-uplift recolonization routes for the epibiotic chiton and isopod and their macroalgal hosts. Additionally, codemographic analyses support synchronous population expansions of these four phylogeographically similar taxa. Our findings indicate that coastal paleoseismic activity has driven concordant impacts on multiple codistributed species, with concerted recolonization events probably facilitated by macroalgal rafting. These results highlight that high-resolution comparative genomic data can help reconstruct concerted multispecies responses to recent ecological disturbance.
Collapse
Affiliation(s)
- Elahe Parvizi
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | - Ludovic Dutoit
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | - Ceridwen I Fraser
- Department of Marine Science, University of Otago, Dunedin, New Zealand
| | - Dave Craw
- Department of Geology, University of Otago, Dunedin, New Zealand
| | | |
Collapse
|
6
|
Walton W, Stone GN, Lohse K. Discordant Pleistocene population size histories in a guild of hymenopteran parasitoids. Mol Ecol 2021; 30:4538-4550. [PMID: 34252238 DOI: 10.1111/mec.16074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 06/23/2021] [Accepted: 07/06/2021] [Indexed: 01/03/2023]
Abstract
Signatures of past changes in population size have been detected in genome-wide variation in many species. However, the causes of such demographic changes and the extent to which they are shared across co-distributed species remain poorly understood. During Pleistocene glacial maxima, many temperate European species were confined to southern refugia. While vicariance and range expansion processes associated with glacial cycles have been widely documented, it is unclear whether refugial populations of co-distributed species have experienced shared histories of population size change. We analyse whole-genome sequence data to reconstruct and compare demographic histories during the Quaternary for Iberian refuge populations in a single ecological guild (seven species of chalcid parasitoid wasps associated with oak cynipid galls). For four of these species, we find support for large changes in effective population size (Ne ) through the Pleistocene that coincide with major climate events. However, there is little evidence that the timing, direction and magnitude of demographic change are shared across species, suggesting that demographic histories in this guild are largely idiosyncratic, even at the scale of a single glacial refugium.
Collapse
Affiliation(s)
- William Walton
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| | - Graham N Stone
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| | - Konrad Lohse
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
7
|
Gil-Tapetado D, Cabrero-Sañudo FJ, Gómez JF, Askew RR, Nieves-Aldrey JL. Differences in native and introduced chalcid parasitoid communities recruited by the invasive chestnut pest Dryocosmus kuriphilus in two Iberian territories. BULLETIN OF ENTOMOLOGICAL RESEARCH 2021; 111:307-322. [PMID: 33345767 DOI: 10.1017/s000748532000067x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Dryocosmus kuriphilus (Hymenoptera: Cynipidae) is a global invasive gall wasp and a pest of chestnuts (Castanea spp.). A study of the Chalcidoidea parasitoid community of D. kuriphilus was undertaken over two years, from March 2017 to March 2019, at 15 sites in south and northwest Spain (Málaga and Galicia regions). More than 18,000 galls were collected, and 1153 parasitoids belonging to 22 species of seven chalcidoid families, plus two individuals of an inquiline Cynipidae, Synergus facialis, emerged. Richness was higher in the Málaga region, with 20 species, while 17 parasitoids and one inquiline were identified in Galicia. The parasitism rate of native chalcid parasitoid species in both regions was low. Eupelmus urozonus and Mesopolobus lichtensteini were the most abundant native species. Mesopolobus tibialis was a dominant species in south Spain, while Ormyrus pomaceus was a dominant species in northwest Spain. Our results revealed the existence of a sub-community of univoltine, probably host specialized, parasitoids in south Spain, which overwinter in galls, exhibiting a similar life cycle to Torymus sinensis. These species were Torymus notatus, Aulogymnus bicolor, Aulogymnus obscuripes and Aulogymnus balani. Data on the recovery of T. sinensis after release in the south Spain region show it to be well established, but its numbers are still low in northwest Spain.
Collapse
Affiliation(s)
- D Gil-Tapetado
- Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales (CSIC), José Gutiérrez Abascal 2, 28006Madrid, Spain
| | - F J Cabrero-Sañudo
- Departamento de Biodiversidad, Ecología y Evolución, Universidad Complutense de Madrid, José Antonio Novais 2, 28040Madrid, Spain
| | - J F Gómez
- Departamento de Biodiversidad, Ecología y Evolución, Universidad Complutense de Madrid, José Antonio Novais 2, 28040Madrid, Spain
| | - R R Askew
- Le Bourg est, 24510St Marcel du Périgord, France
| | - J L Nieves-Aldrey
- Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales (CSIC), José Gutiérrez Abascal 2, 28006Madrid, Spain
| |
Collapse
|
8
|
Deng X, Chen L, Tian E, Zhang D, Wattana T, Yu H, Kjellberg F, Segar ST. Low host specificity and broad geographical ranges in a community of parasitic non-pollinating fig wasps (Sycoryctinae; Chalcidoidea). J Anim Ecol 2021; 90:1678-1690. [PMID: 33738802 DOI: 10.1111/1365-2656.13483] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 02/26/2021] [Indexed: 12/23/2022]
Abstract
Plants, phytophagous insects and their parasitoids form the most diverse assemblages of macroscopic organisms on earth. Enclosed assemblages in particular represent a tractable system for studying community assembly and diversification. Communities associated with widespread plant species are especially suitable as they facilitate a comparative approach. Pantropical fig-wasp communities represent a remarkably well-replicated system, ideal for studying these historical processes. We expect high dispersal ability in non-pollinating fig wasps to result in lower geographical turnover in comparison to pollinating fig wasps. The ability of non-pollinating wasps to utilise a number of hosts (low host specificity) is a key determinant of overall geographical range, with intraspecific competition becoming a constraining factor should diet breadth overlap among species. Finally, we expect conserved community structure throughout the host range. We aim to test these expectations, derived from population genetic and community studies, using the multi-trophic insect community associated with Ficus hirta throughout its 3,500 km range across continental and insular Asia. We collect molecular evidence from one coding mitochondrial gene, one non-coding nuclear gene and multiple microsatellites across 25 geographical sites. Using these data, we establish species boundaries, determine levels of host specificity among non-pollinating fig wasps and quantify geographical variation in community composition. We find low host specificity in two genera of non-pollinating fig wasps. Functional community structure is largely conserved across the range of the host fig, despite limited correspondence between the ranges of non-pollinator and pollinator species. While nine pollinators are associated with Ficus hirta, the two non-pollinator tribes developing in its figs each contained only four species. Contrary to predictions, we find stronger isolation by distance in non-pollinators than pollinators. Long-lived non-pollinators may disperse more gradually and be less reliant on infrequent long-distance dispersal by wind currents. Segregation among non-pollinating species across their range is suggestive of competitive exclusion and we propose that this may be a result of increased levels of local adaptation and moderate, but regular, rates of dispersal. Our findings provide one more example of lack of strict codiversification in the geographical diversification of plant-associated insect communities.
Collapse
Affiliation(s)
- Xiaoxia Deng
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, South China Botanical Garden, CAS, Guangzhou, China.,Centre for Plant Ecology, CAS Core Botanical Gardens, Guangzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Lianfu Chen
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, South China Botanical Garden, CAS, Guangzhou, China.,Centre for Plant Ecology, CAS Core Botanical Gardens, Guangzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Enwei Tian
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, South China Botanical Garden, CAS, Guangzhou, China
| | - Dayong Zhang
- State Key Laboratory of Earth Surface Processes and Resource Ecology and MOE Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China
| | | | - Hui Yu
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, South China Botanical Garden, CAS, Guangzhou, China.,Centre for Plant Ecology, CAS Core Botanical Gardens, Guangzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Finn Kjellberg
- CEFE, University of Montpellier, CNRS, University of Paul Valéry Montpellier, EPHE, IRD, Montpellier Cedex 5, France
| | - Simon T Segar
- Agriculture and Environment Department, Harper Adams University, Newport, UK
| |
Collapse
|
9
|
Monticelli LS, Bishop J, Desneux N, Gurr GM, Jaworski CC, McLean AH, Thomine E, Vanbergen AJ. Multiple global change impacts on parasitism and biocontrol services in future agricultural landscapes. ADV ECOL RES 2021. [DOI: 10.1016/bs.aecr.2021.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
10
|
Bodawatta KH, Synek P, Bos N, Garcia-Del-Rey E, Koane B, Marki PZ, Albrecht T, Lifjeld J, Poulsen M, Munclinger P, Sam K, Jønsson KA. Spatiotemporal patterns of avian host-parasite interactions in the face of biogeographical range expansions. Mol Ecol 2020; 29:2431-2448. [PMID: 32470165 DOI: 10.1111/mec.15486] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 05/06/2020] [Accepted: 05/19/2020] [Indexed: 11/27/2022]
Abstract
Exploration of interactions between hosts and parasitic symbionts is important for our understanding of the temporal and spatial distribution of organisms. For example, host colonization of new geographical regions may alter levels of infections and parasite specificity, and even allow hosts to escape from co-evolved parasites, consequently shaping spatial distributions and community structure of both host and parasite. Here we investigate the effect of host colonization of new regions and the elevational distribution of host-parasite associations between birds and their vector-transmitted haemosporidian blood parasites in two geological and geographical settings: mountains of New Guinea and the Canary Islands. Our results demonstrate that bird communities in younger regions have significantly lower levels of parasitism compared to those of older regions. Furthermore, host-parasite network analyses demonstrate that blood parasites may respond differently after arriving to a new region, through adaptations that allow for either expanding (Canary Islands) or retaining (New Guinea) their host niches. The spatial prevalence patterns along elevational gradients differed in the two regions, suggesting that region-specific biotic (e.g., host community) and abiotic factors (e.g., temperature) govern prevalence patterns. Our findings suggest that the spatiotemporal range dynamics in host-parasite systems are driven by multiple factors, but that host and parasite community compositions and colonization histories are of particular importance.
Collapse
Affiliation(s)
- Kasun H Bodawatta
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Petr Synek
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Nick Bos
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Eduardo Garcia-Del-Rey
- Macaronesian Institute of Field Ornithology, Santa Cruz de Tenerife, Canary Islands, Spain
| | - Bonny Koane
- The New Guinea Binatang Research Centre, Madang, Papua New Guinea
| | - Petter Z Marki
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Tomáš Albrecht
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic.,Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| | - Jan Lifjeld
- Natural History Museum, University of Oslo, Oslo, Norway
| | - Michael Poulsen
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Pavel Munclinger
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Katerina Sam
- Biology Centre of Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czech Republic.,Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Knud A Jønsson
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
11
|
Zhang XW, Chen C, Wang RW, Kjellberg F. The cost of parasitism: High larval developmental mortality following attacks by a parasitoid fig wasp on a fig pollinating wasp. ACTA OECOLOGICA-INTERNATIONAL JOURNAL OF ECOLOGY 2020. [DOI: 10.1016/j.actao.2020.103570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
12
|
Xue AT, Hickerson MJ. Comparative phylogeographic inference with genome‐wide data from aggregated population pairs. Evolution 2020; 74:808-830. [DOI: 10.1111/evo.13945] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 01/24/2020] [Accepted: 01/29/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Alexander T. Xue
- Subprogram in Ecology, Evolutionary Biology, and Behavior, Department of BiologyGraduate Center of City University of New York New York NY 10016
- Subprogram in Ecology, Evolutionary Biology, and Behavior, Department of BiologyCity College of City University of New York New York NY 10031
- Human Genetics Institute of New Jersey and Department of GeneticsRutgers University Piscataway NJ 08854
- Simons Center for Quantitative BiologyCold Spring Harbor Laboratory Cold Spring Harbor NY 11724
| | - Michael J. Hickerson
- Subprogram in Ecology, Evolutionary Biology, and Behavior, Department of BiologyGraduate Center of City University of New York New York NY 10016
- Subprogram in Ecology, Evolutionary Biology, and Behavior, Department of BiologyCity College of City University of New York New York NY 10031
- Division of Invertebrate ZoologyAmerican Museum of Natural History New York NY 10024
| |
Collapse
|
13
|
Rocha-Méndez A, Sánchez-González LA, González C, Navarro-Sigüenza AG. The geography of evolutionary divergence in the highly endemic avifauna from the Sierra Madre del Sur, Mexico. BMC Evol Biol 2019; 19:237. [PMID: 31888449 PMCID: PMC6937948 DOI: 10.1186/s12862-019-1564-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 12/15/2019] [Indexed: 11/30/2022] Open
Abstract
Background Mesoamerica is a remarkable region with a high geological and ecological complexity. Within northern Mesoamerica, the biotic province of the Sierra Madre del Sur (SMS) in southwestern Mexico harbors exceptionally high avian endemism and diversity. Herein, we searched for spatially and temporally concordant phylogeographic patterns, in four bird genera from three distinct avian orders co-distributed across Mesoamerica and investigated their causes through hypothesis testing regarding historical processes. Selected species include endemic and differentiated populations across the montane forests of Mesoamerica, and particularly within the SMS. Results We gathered mitochondrial DNA sequences for at least one locus from 177 individuals across all species. We assessed genetic structure, demographic history, and defined a framework for the coalescent simulations used in biogeographic hypothesis testing temporal and spatial co-variance. Our analyses suggested shared phylogeographic breaks in areas corresponding to the SMS populations, and between the main montane systems in Mesoamerica, with the Central Valley of Oaxaca and the Nicaragua Depression being the most frequently shared breaks among analyzed taxa. Nevertheless, dating analyses and divergence patterns observed were consistent with the hypothesis of broad vicariance across Mesoamerica derived from mechanisms operating at distinct times across taxa in the SMS. Conclusions Our study provides a framework for understanding the evolutionary origins and historical factors enhancing speciation in well-defined regions within Mesoamerica, indicating that the evolutionary history of extant biota inhabiting montane forests is complex and often idiosyncratic.
Collapse
Affiliation(s)
- Alberto Rocha-Méndez
- Museo de Zoología, Facultad de Ciencias, Universidad Nacional Autónoma de México, Apartado Postal 70-399, 04510, Mexico City, Mexico. .,Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico.
| | - Luis A Sánchez-González
- Museo de Zoología, Facultad de Ciencias, Universidad Nacional Autónoma de México, Apartado Postal 70-399, 04510, Mexico City, Mexico
| | - Clementina González
- Instituto de Investigaciones sobre los Recursos Naturales, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| | - Adolfo G Navarro-Sigüenza
- Museo de Zoología, Facultad de Ciencias, Universidad Nacional Autónoma de México, Apartado Postal 70-399, 04510, Mexico City, Mexico.,Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico
| |
Collapse
|
14
|
Tavakoli M, Khaghaninia S, Melika G, Stone GN, Hosseini-Chegeni A. Molecular identification of Andricus species (Hymenoptera: Cynipidae) inducing various oak galls in Central Zagros of Iran. Mitochondrial DNA A DNA Mapp Seq Anal 2019; 30:713-720. [PMID: 31218923 DOI: 10.1080/24701394.2019.1622693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
This study uses an integrated approach to address the taxonomic status of six different and problematic oak galls and their inducing wasps sampled from two sites in the Central Zagros Mountains (Lorestan province) in western Iran. Our aim was to establish whether morphologically similar but different galls are induced by the same or distinct gall-inducers. The gall wasp specimens were identified morphologically to species level, and their genomic DNA was extracted. We used PCR and Sanger sequencing to amplify three fragments comprising cytochrome oxidase subunit I (COI), cytochrome b (cytB), and a multi-gene fragment of ribosomal DNA (rDNA) including partial 5.8S, complete internal transcribed spacer 2 (ITS2), and partial 28S rRNA. We found that a pair of structurally similar but differently coloured galls are induced by the sexual generation of Andricus grossulariae, while another similar pair are induced by the asexual generation of A. sternlichti. In contrast, we found that two similar galls that differ in some structural details and in developmental phenology are induced by two closely related but different gall wasps; one is the sexual generation of A. cecconii, while the second is a new but closely related sexual generation Andricus sp.
Collapse
Affiliation(s)
- Majid Tavakoli
- Faculty of Agriculture, Department of Plant Protection, University of Tabriz , Tabriz , Iran
| | - Samad Khaghaninia
- Faculty of Agriculture, Department of Plant Protection, University of Tabriz , Tabriz , Iran
| | - George Melika
- National Food Chain Safety Office, Directorate of Plant Protection, Soil Conservation and Agri-environment, Plant Health and Molecular Biology Laboratory , Budapest , Hungary
| | - Graham N Stone
- Institute of Evolutionary Biology, University of Edinburgh , Edinburgh , UK
| | - Asadollah Hosseini-Chegeni
- Department of Plant Protection, Faculty of Agriculture, University of Lorestan , Khorramabad , Iran.,Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences , Khorramabad , Iran
| |
Collapse
|
15
|
Oaks JR, Siler CD, Brown RM. The comparative biogeography of Philippine geckos challenges predictions from a paradigm of climate-driven vicariant diversification across an island archipelago. Evolution 2019; 73:1151-1167. [PMID: 31017301 PMCID: PMC6767427 DOI: 10.1111/evo.13754] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 04/10/2019] [Indexed: 01/05/2023]
Abstract
A primary goal of biogeography is to understand how large-scale environmental processes, like climate change, affect diversification. One often-invoked but seldom tested process is the "species-pump" model, in which repeated bouts of cospeciation are driven by oscillating climate-induced habitat connectivity cycles. For example, over the past three million years, the landscape of the Philippine Islands has repeatedly coalesced and fragmented due to sea-level changes associated with glacial cycles. This repeated climate-driven vicariance has been proposed as a model of speciation across evolutionary lineages codistributed throughout the islands. This model predicts speciation times that are temporally clustered around the times when interglacial rises in sea level fragmented the islands. To test this prediction, we collected comparative genomic data from 16 pairs of insular gecko populations. We analyze these data in a full-likelihood, Bayesian model-choice framework to test for shared divergence times among the pairs. Our results provide support against the species-pump model prediction in favor of an alternative interpretation, namely that each pair of gecko populations diverged independently. These results suggest the repeated bouts of climate-driven landscape fragmentation have not been an important mechanism of speciation for gekkonid lizards across the Philippine Archipelago.
Collapse
Affiliation(s)
- Jamie R. Oaks
- Department of Biological Sciences & Museum of Natural HistoryAuburn UniversityAuburnAlabama36849
| | - Cameron D. Siler
- Sam Noble Oklahoma Museum of Natural History and Department of BiologyUniversity of OklahomaNormanOklahoma73072
| | - Rafe M. Brown
- Biodiversity Institute and Department of Ecology and Evolutionary BiologyUniversity of KansasLawrenceKansas66045
| |
Collapse
|
16
|
Yu H, Liang D, Tian E, Zheng L, Kjellberg F. Plant geographic phenotypic variation drives diversification in its associated community of a phytophagous insect and its parasitoids. BMC Evol Biol 2018; 18:134. [PMID: 30180795 PMCID: PMC6123920 DOI: 10.1186/s12862-018-1239-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 08/14/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND While the communities constituted by phytophageous insects and their parasites may represent half of all terrestrial animal species, understanding their diversification remains a major challenge. A neglected idea is that geographic phenotypic variation in a host plant may lead to heterogeneous evolutionary responses of the different members of the associated communities. This could result in diversification on a host plant by ecological speciation in some species, leading to geographic variation in community composition. In this study we investigated geographic variation of inflorescence receptacle size in a plant, Ficus hirta, and how the hymenopteran community feeding in the inflorescences has responded. Our predictions were: 1) Inflorescence size variation affects wasp species differently depending on how they access oviposition sites. 2) In some affected lineages of wasps, we may observe vicariant, parapatric species adapted to different inflorescence sizes. RESULTS We show that fig (the enclosed inflorescence of Ficus) wall thickness varies geographically. The fig-entering pollinating wasp was not affected, while the parasites ovipositing through the fig wall were. Two parapatric species of Philotrypesis, exhibiting strikingly different ovipositor lengths, were recorded. One species of Sycoscapter was also present, and it was restricted, like the shorter-ovipositor Philotrypesis, to the geographic zone where fig walls were thinner. CONCLUSIONS Previous work on fig wasps suggested that parapatric geographic ranges among congenerics were due to adaptation to variation in abiotic factors, complemented by interspecific competition. Our results show that parapatric ranges may also result from adaptation to variation in biotic factors. Within an insect community, differences among species in their response to geographic phenotypic variation of their host plant may result in geographically heterogeneous community structure. Such heterogeneity leads to heterogeneous interaction networks among sites. Our results support the hypothesis that plant geographic phenotypic variation can be a driver of diversification in associated insect communities, and can complement other diversification processes.
Collapse
Affiliation(s)
- Hui Yu
- Guangdong Provincial Key Laboratory of Applied Botany, and Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, the Chinese Academy of Sciences, Guangzhou, 510650, China.
| | - Dan Liang
- Guangdong Provincial Key Laboratory of Applied Botany, and Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, the Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Enwei Tian
- Guangdong Provincial Key Laboratory of Applied Botany, and Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, the Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Linna Zheng
- Guangdong Provincial Key Laboratory of Applied Botany, and Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, the Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Finn Kjellberg
- CEFE, UMR 5175, CNRS, Univ Montpellier, Univ Paul-Valéry Montpellier, EPHE, IRD, 1919 route de Mende, F-34293, Montpellier Cédex 5, France
| |
Collapse
|
17
|
Bunnefeld L, Hearn J, Stone GN, Lohse K. Whole-genome data reveal the complex history of a diverse ecological community. Proc Natl Acad Sci U S A 2018; 115:E6507-E6515. [PMID: 29946026 PMCID: PMC6048486 DOI: 10.1073/pnas.1800334115] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
How widespread ecological communities assemble remains a key question in ecology. Trophic interactions between widespread species may reflect a shared population history or ecological fitting of local pools of species with very different population histories. Which scenario applies is central to the stability of trophic associations and the potential for coevolution between species. Here we show how alternative community assembly hypotheses can be discriminated using whole-genome data for component species and provide a likelihood framework that overcomes current limitations in formal comparison of multispecies histories. We illustrate our approach by inferring the assembly history of a Western Palearctic community of insect herbivores and parasitoid natural enemies, trophic groups that together comprise 50% of terrestrial species. We reject models of codispersal from a shared origin and of delayed enemy pursuit of their herbivore hosts, arguing against herbivore attainment of "enemy-free space." The community-wide distribution of species expansion times is also incompatible with a random, neutral model of assembly. Instead, we reveal a complex assembly history of single- and multispecies range expansions through the Pleistocene from different directions and over a range of timescales. Our results suggest substantial turnover in species associations and argue against tight coevolution in this system. The approach we illustrate is widely applicable to natural communities of nonmodel species and makes it possible to reveal the historical backdrop against which natural selection acts.
Collapse
Affiliation(s)
- Lynsey Bunnefeld
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, Scotland;
- Biological & Environmental Sciences, University of Stirling, Stirling FK9 4LA, Scotland
| | - Jack Hearn
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, Scotland
| | - Graham N Stone
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, Scotland
| | - Konrad Lohse
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, Scotland
| |
Collapse
|
18
|
Conserved community structure and simultaneous divergence events in the fig wasps associated with Ficus benjamina in Australia and China. BMC Ecol 2018; 18:13. [PMID: 29615023 PMCID: PMC5883542 DOI: 10.1186/s12898-018-0167-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 03/07/2018] [Indexed: 12/02/2022] Open
Abstract
Background Localised patterns of species diversity can be influenced by many factors, including regional species pools, biogeographic features and interspecific interactions. Despite recognition of these issues, we still know surprisingly little about how invertebrate biodiversity is structured across geographic scales. In particular, there have been few studies of how insect communities vary geographically while using the same plant host. We compared the composition (species, genera) and functional structure (guilds) of the chalcid wasp communities associated with the widespread fig tree, Ficus benjamina, towards the northern (Hainan province, China) and southern (Queensland, Australia) edges of its natural range. Sequence data were generated for nuclear and mtDNA markers and used to delimit species, and Bayesian divergence analyses were used to test patterns of community cohesion through evolutionary time. Results Both communities host at least 14 fig wasp species, but no species are shared across continents. Community composition is similar at the genus level, with six genera shared although some differ in species diversity between China and Australia; a further three genera occur in only China or Australia. Community functional structure remains very similar in terms of numbers of species in each ecological guild despite community composition differing a little (genera) or a lot (species), depending on taxonomic level. Bayesian clustering analyses favour a single community divergence event across continents over multiple events for different ecological guilds. Molecular dating estimates of lineage splits between nearest inter-continental species pairs are broadly consistent with a scenario of synchronous community divergence from a shared “ancestral community”. Conclusions Fig wasp community structure and genus-level composition are largely conserved in a wide geographic comparison between China and Australia. Moreover, dating analyses suggest that the functional community structure has remained stable for long periods during historic range expansions. This suggests that ecological interactions between species may play a persistent role in shaping these communities, in contrast to findings in some comparable temperate systems. Electronic supplementary material The online version of this article (10.1186/s12898-018-0167-y) contains supplementary material, which is available to authorized users.
Collapse
|
19
|
Kitson JJN, Hahn C, Sands RJ, Straw NA, Evans DM, Lunt DH. Detecting host–parasitoid interactions in an invasive Lepidopteran using nested tagging DNA metabarcoding. Mol Ecol 2018; 28:471-483. [DOI: 10.1111/mec.14518] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/26/2018] [Accepted: 01/30/2018] [Indexed: 12/26/2022]
Affiliation(s)
- James J. N. Kitson
- School of Natural and Environmental Sciences Newcastle University Newcastle upon Tyne UK
- Evolutionary and Environmental Genomics Group School of Environmental Sciences University of Hull Hull UK
| | - Christoph Hahn
- School of Natural and Environmental Sciences Newcastle University Newcastle upon Tyne UK
- Institute of Zoology Karl‐Franzens‐Universität Graz Austria
| | - Richard J. Sands
- Forest Research Centre for Ecosystems, Society and Biosecurity Farnham UK
- Centre for Biological Sciences Highfield Campus The University of Southampton Southampton UK
| | - Nigel A. Straw
- Forest Research Centre for Ecosystems, Society and Biosecurity Farnham UK
| | - Darren M. Evans
- School of Natural and Environmental Sciences Newcastle University Newcastle upon Tyne UK
| | - David H. Lunt
- Evolutionary and Environmental Genomics Group School of Environmental Sciences University of Hull Hull UK
| |
Collapse
|
20
|
Nicholls JA, Schönrogge K, Preuss S, Stone GN. Partitioning of herbivore hosts across time and food plants promotes diversification in the Megastigmus dorsalis oak gall parasitoid complex. Ecol Evol 2017; 8:1300-1315. [PMID: 29375799 PMCID: PMC5773290 DOI: 10.1002/ece3.3712] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 11/17/2017] [Accepted: 11/20/2017] [Indexed: 01/30/2023] Open
Abstract
Communities of insect herbivores and their natural enemies are rich and ecologically crucial components of terrestrial biodiversity. Understanding the processes that promote their origin and maintenance is thus of considerable interest. One major proposed mechanism is ecological speciation through host-associated differentiation (HAD), the divergence of a polyphagous species first into ecological host races and eventually into more specialized daughter species. The rich chalcid parasitoid communities attacking cynipid oak gall wasp hosts are structured by multiple host traits, including food plant taxon, host gall phenology, and gall structure. Here, we ask whether the same traits structure genetic diversity within supposedly generalist parasitoid morphospecies. We use mitochondrial DNA sequences and microsatellite genotypes to quantify HAD for Megastigmus (Bootanomyia) dorsalis, a complex of two apparently generalist cryptic parasitoid species attacking oak galls. Ancient Balkan refugial populations showed phenological separation between the cryptic species, one primarily attacking spring galls, and the other mainly attacking autumn galls. The spring species also contained host races specializing on galls developing on different host-plant lineages (sections Cerris vs. Quercus) within the oak genus Quercus. These results indicate more significant host-associated structuring within oak gall parasitoid communities than previously thought and support ecological theory predicting the evolution of specialist lineages within generalist parasitoids. In contrast, UK populations of the autumn cryptic species associated with both native and recently invading oak gall wasps showed no evidence of population differentiation, implying rapid recruitment of native parasitoid populations onto invading hosts, and hence potential for natural biological control. This is of significance given recent rapid range expansion of the economically damaging chestnut gall wasp, Dryocosmus kuriphilus, in Europe.
Collapse
Affiliation(s)
- James A Nicholls
- Ashworth Labs Institute of Evolutionary Biology University of Edinburgh Edinburgh UK
| | | | - Sonja Preuss
- Ashworth Labs Institute of Evolutionary Biology University of Edinburgh Edinburgh UK.,Present address: Uppsala County Administrative Board Uppsala Sweden
| | - Graham N Stone
- Ashworth Labs Institute of Evolutionary Biology University of Edinburgh Edinburgh UK
| |
Collapse
|
21
|
Stone GN, White SC, Csóka G, Melika G, Mutun S, Pénzes Z, Sadeghi SE, Schönrogge K, Tavakoli M, Nicholls JA. Tournament ABC analysis of the western Palaearctic population history of an oak gall wasp,Synergus umbraculus. Mol Ecol 2017; 26:6685-6703. [DOI: 10.1111/mec.14372] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 09/16/2017] [Accepted: 09/18/2017] [Indexed: 01/17/2023]
Affiliation(s)
- Graham N. Stone
- Institute of Evolutionary Biology; University of Edinburgh; Edinburgh UK
| | - Sarah C. White
- Institute of Evolutionary Biology; University of Edinburgh; Edinburgh UK
| | - György Csóka
- National Agricultural Research and Innovation Centre; Forest Research Institute; Mátrafüred Hungary
| | - George Melika
- Plant Health and Molecular Biology Laboratory; Directorate of Plant Protection, Soil Conservation and Agri-environment; Budapest Hungary
| | - Serap Mutun
- Department of Biology; Faculty of Science and Arts; Abant İzzet Baysal University; Bolu Turkey
| | - Zsolt Pénzes
- Department of Ecology; Faculty of Science and Informatics; University of Szeged; Szeged Hungary
| | - S. Ebrahim Sadeghi
- Agricultural Research, Education and Extension Organization (AREEO); Research Institute of Forests and Rangelands of Iran; Tehran Iran
| | | | - Majid Tavakoli
- Lorestan Agriculture and Natural Resources Research Center; Khorramabad Lorestan Iran
| | - James A. Nicholls
- Institute of Evolutionary Biology; University of Edinburgh; Edinburgh UK
| |
Collapse
|
22
|
Xue AT, Hickerson MJ. multi-dice: r package for comparative population genomic inference under hierarchical co-demographic models of independent single-population size changes. Mol Ecol Resour 2017; 17:e212-e224. [PMID: 28449263 PMCID: PMC5724483 DOI: 10.1111/1755-0998.12686] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 03/14/2017] [Accepted: 04/14/2017] [Indexed: 01/25/2023]
Abstract
Population genetic data from multiple taxa can address comparative phylogeographic questions about community-scale response to environmental shifts, and a useful strategy to this end is to employ hierarchical co-demographic models that directly test multi-taxa hypotheses within a single, unified analysis. This approach has been applied to classical phylogeographic data sets such as mitochondrial barcodes as well as reduced-genome polymorphism data sets that can yield 10,000s of SNPs, produced by emergent technologies such as RAD-seq and GBS. A strategy for the latter had been accomplished by adapting the site frequency spectrum to a novel summarization of population genomic data across multiple taxa called the aggregate site frequency spectrum (aSFS), which potentially can be deployed under various inferential frameworks including approximate Bayesian computation, random forest and composite likelihood optimization. Here, we introduce the r package multi-dice, a wrapper program that exploits existing simulation software for flexible execution of hierarchical model-based inference using the aSFS, which is derived from reduced genome data, as well as mitochondrial data. We validate several novel software features such as applying alternative inferential frameworks, enforcing a minimal threshold of time surrounding co-demographic pulses and specifying flexible hyperprior distributions. In sum, multi-dice provides comparative analysis within the familiar R environment while allowing a high degree of user customization, and will thus serve as a tool for comparative phylogeography and population genomics.
Collapse
Affiliation(s)
- Alexander T. Xue
- Department of Biology: Subprogram in Ecology, Evolutionary Biology, and BehaviorCity College and Graduate Center of City University of New YorkNew YorkNYUSA
| | - Michael J. Hickerson
- Department of Biology: Subprogram in Ecology, Evolutionary Biology, and BehaviorCity College and Graduate Center of City University of New YorkNew YorkNYUSA
- Division of Invertebrate ZoologyAmerican Museum of Natural HistoryNew YorkNYUSA
| |
Collapse
|
23
|
Overcast I, Bagley JC, Hickerson MJ. Strategies for improving approximate Bayesian computation tests for synchronous diversification. BMC Evol Biol 2017; 17:203. [PMID: 28836959 PMCID: PMC5571621 DOI: 10.1186/s12862-017-1052-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 08/14/2017] [Indexed: 11/22/2022] Open
Abstract
Background Estimating the variability in isolation times across co-distributed taxon pairs that may have experienced the same allopatric isolating mechanism is a core goal of comparative phylogeography. The use of hierarchical Approximate Bayesian Computation (ABC) and coalescent models to infer temporal dynamics of lineage co-diversification has been a contentious topic in recent years. Key issues that remain unresolved include the choice of an appropriate prior on the number of co-divergence events (Ψ), as well as the optimal strategies for data summarization. Methods Through simulation-based cross validation we explore the impact of the strategy for sorting summary statistics and the choice of prior on Ψ on the estimation of co-divergence variability. We also introduce a new setting (β) that can potentially improve estimation of Ψ by enforcing a minimal temporal difference between pulses of co-divergence. We apply this new method to three empirical datasets: one dataset each of co-distributed taxon pairs of Panamanian frogs and freshwater fishes, and a large set of Neotropical butterfly sister-taxon pairs. Results We demonstrate that the choice of prior on Ψ has little impact on inference, but that sorting summary statistics yields substantially more reliable estimates of co-divergence variability despite violations of assumptions about exchangeability. We find the implementation of β improves estimation of Ψ, with improvement being most dramatic given larger numbers of taxon pairs. We find equivocal support for synchronous co-divergence for both of the Panamanian groups, but we find considerable support for asynchronous divergence among the Neotropical butterflies. Conclusions Our simulation experiments demonstrate that using sorted summary statistics results in improved estimates of the variability in divergence times, whereas the choice of hyperprior on Ψ has negligible effect. Additionally, we demonstrate that estimating the number of pulses of co-divergence across co-distributed taxon-pairs is improved by applying a flexible buffering regime over divergence times. This improves the correlation between Ψ and the true variability in isolation times and allows for more meaningful interpretation of this hyperparameter. This will allow for more accurate identification of the number of temporally distinct pulses of co-divergence that generated the diversification pattern of a given regional assemblage of sister-taxon-pairs. Electronic supplementary material The online version of this article (doi:10.1186/s12862-017-1052-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Isaac Overcast
- Biology Department, City College of New York, New York, NY, 10031, USA. .,The Graduate Center, City University of New York, New York, NY, 10016, USA.
| | - Justin C Bagley
- Departamento de Zoologia, Universidade de Brasília, Brasília, DF, 70910-900, Brazil.,Departamento de Zoologia e Botânica, IBiLCE, Universidade Estadual Paulista, São José do Rio Preto, SP, 15054-000, Brazil
| | - Michael J Hickerson
- Biology Department, City College of New York, New York, NY, 10031, USA.,The Graduate Center, City University of New York, New York, NY, 10016, USA
| |
Collapse
|
24
|
Wei SJ, Zhou Y, Fan XL, Hoffmann AA, Cao LJ, Chen XX, Xu ZF. Different genetic structures revealed resident populations of a specialist parasitoid wasp in contrast to its migratory host. Ecol Evol 2017; 7:5400-5409. [PMID: 28770077 PMCID: PMC5528221 DOI: 10.1002/ece3.3097] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 04/21/2017] [Accepted: 05/02/2017] [Indexed: 11/08/2022] Open
Abstract
Genetic comparisons of parasitoids and their hosts are expected to reflect ecological and evolutionary processes that influence the interactions between species. The parasitoid wasp, Cotesia vestalis, and its host diamondback moth (DBM), Plutella xylostella, provide opportunities to test whether the specialist natural enemy migrates seasonally with its host or occurs as resident population. We genotyped 17 microsatellite loci and two mitochondrial genes for 158 female adults of C. vestalis collected from 12 geographical populations, as well as nine microsatellite loci for 127 DBM larvae from six separate sites. The samplings covered both the likely source (southern) and immigrant (northern) areas of DBM from China. Populations of C. vestalis fell into three groups, pointing to isolation in northwestern and southwestern China and strong genetic differentiation of these populations from others in central and eastern China. In contrast, DBM showed much weaker genetic differentiation and high rates of gene flow. TESS analysis identified the immigrant populations of DBM as showing admixture in northern China. Genetic disconnect between C. vestalis and its host suggests that the parasitoid did not migrate yearly with its host but likely consisted of resident populations in places where its host could not survive in winter.
Collapse
Affiliation(s)
- Shu-Jun Wei
- Institute of Plant and Environmental Protection Beijing Academy of Agriculture and Forestry Sciences Beijing China
| | - Yuan Zhou
- Institute of Plant and Environmental Protection Beijing Academy of Agriculture and Forestry Sciences Beijing China.,College of Agriculture South China Agricultural University Guangzhou China
| | - Xu-Lei Fan
- Institute of Plant and Environmental Protection Beijing Academy of Agriculture and Forestry Sciences Beijing China
| | - Ary A Hoffmann
- School of BioSciences Bio21 Institute The University of Melbourne Parkville VIC Australia
| | - Li-Jun Cao
- Institute of Plant and Environmental Protection Beijing Academy of Agriculture and Forestry Sciences Beijing China
| | - Xue-Xin Chen
- Institute of Insect Sciences Zhejiang University Hangzhou China
| | - Zai-Fu Xu
- College of Agriculture South China Agricultural University Guangzhou China
| |
Collapse
|
25
|
METE Ö, MERGEN YO. The community components associated with two common rose gall wasps (Hymenoptera: Cynipidae: Diplolepidini) in Turkey. TURK J ZOOL 2017. [DOI: 10.3906/zoo-1602-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
26
|
Kjellberg F, Proffit M. Tracking the elusive history of diversification in plant-herbivorous insect-parasitoid food webs: insights from figs and fig wasps. Mol Ecol 2016; 25:843-5. [PMID: 26876231 DOI: 10.1111/mec.13533] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 12/14/2015] [Accepted: 12/22/2015] [Indexed: 12/19/2022]
Abstract
The food webs consisting of plants, herbivorous insects and their insect parasitoids are a major component of terrestrial biodiversity. They play a central role in the functioning of all terrestrial ecosystems, and the number of species involved is mind-blowing (Nyman et al. 2015). Nevertheless, our understanding of the evolutionary and ecological determinants of their diversity is still in its infancy. In this issue of Molecular Ecology, Sutton et al. (2016) open a window into the comparative analysis of spatial genetic structuring in a set of comparable multitrophic models, involving highly species-specific interactions: figs and fig wasps. This is the first study to compare genetic structure using population genetics tools in a fig-pollinating wasp (Pleistodontes imperialis sp1) and its main parasitoid (Sycoscapter sp.A). The fig-pollinating wasp has a discontinuous spatial distribution that correlates with genetic differentiation, while the parasitoid bridges the discontinuity by parasitizing other pollinator species on the same host fig tree and presents basically no spatial genetic structure. The full implications of these results for our general understanding of plant-herbivorous insect-insect parasitoids diversification become apparent when envisioned within the framework of recent advances in fig and fig wasp biology.
Collapse
Affiliation(s)
- Finn Kjellberg
- CEFE, UMR 5175, CNRS - Université de Montpellier - Université Paul-Valéry Montpellier - EPHE, Montpellier, France
| | - Magali Proffit
- CEFE, UMR 5175, CNRS - Université de Montpellier - Université Paul-Valéry Montpellier - EPHE, Montpellier, France
| |
Collapse
|
27
|
Papadopoulou A, Knowles LL. Toward a paradigm shift in comparative phylogeography driven by trait-based hypotheses. Proc Natl Acad Sci U S A 2016; 113:8018-24. [PMID: 27432974 PMCID: PMC4961141 DOI: 10.1073/pnas.1601069113] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
For three decades, comparative phylogeography has conceptually and methodologically relied on the concordance criterion for providing insights into the historical/biogeographic processes driving population genetic structure and divergence. Here we discuss how this emphasis, and the corresponding lack of methods for extracting information about biotic/intrinsic contributions to patterns of genetic variation, may bias our general understanding of the factors driving genetic structure. Specifically, this emphasis has promoted a tendency to attribute discordant phylogeographic patterns to the idiosyncracies of history, as well as an adherence to generic null expectations of concordance with reduced predictive power. We advocate that it is time for a paradigm shift in comparative phylogeography, especially given the limited utility of the concordance criterion as genomic data provide ever-increasing levels of resolution. Instead of adhering to the concordance-discordance dichotomy, comparative phylogeography needs to emphasize the contribution of taxon-specific traits that will determine whether concordance is a meaningful criterion for evaluating hypotheses or may predict discordant phylogeographic structure. Through reference to some case studies we illustrate how refined hypotheses based on taxon-specific traits can provide improved predictive frameworks to forecast species responses to climatic change or biogeographic barriers while gaining unique insights about the taxa themselves and their interactions with their environment. We outline a potential avenue toward a synthetic comparative phylogeographic paradigm that includes addressing some important conceptual and methodological challenges related to study design and application of model-based approaches for evaluating support of trait-based hypotheses under the proposed paradigm.
Collapse
Affiliation(s)
- Anna Papadopoulou
- Department of Ecology and Evolutionary Biology, Museum of Zoology, University of Michigan, Ann Arbor, MI 48109; Department of Integrative Ecology, Estación Biológica de Doñana, Consejo Superior de Investigaciones Cientificas, 41092 Seville, Spain
| | - L Lacey Knowles
- Department of Ecology and Evolutionary Biology, Museum of Zoology, University of Michigan, Ann Arbor, MI 48109;
| |
Collapse
|
28
|
Ouvrard P, Hicks DM, Mouland M, Nicholls JA, Baldock KCR, Goddard MA, Kunin WE, Potts SG, Thieme T, Veromann E, Stone GN. Molecular taxonomic analysis of the plant associations of adult pollen beetles (Nitidulidae: Meligethinae), and the population structure of Brassicogethes aeneus. Genome 2016; 59:1101-1116. [PMID: 27824505 DOI: 10.1139/gen-2016-0020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pollen beetles (Nitidulidae: Meligethinae) are among the most abundant flower-visiting insects in Europe. While some species damage millions of hectares of crops annually, the biology of many species is little known. We assessed the utility of a 797 base pair fragment of the cytochrome oxidase 1 gene to resolve molecular operational taxonomic units (MOTUs) in 750 adult pollen beetles sampled from flowers of 63 plant species sampled across the UK and continental Europe. We used the same locus to analyse region-scale patterns in population structure and demography in an economically important pest, Brassicogethes aeneus. We identified 44 Meligethinae at ∼2% divergence, 35 of which contained published sequences. A few specimens could not be identified because the MOTUs containing them included published sequences for multiple Linnaean species, suggesting either retention of ancestral haplotype polymorphism or identification errors in published sequences. Over 90% of UK specimens were identifiable as B. aeneus. Plant associations of adult B. aeneus were found to be far wider taxonomically than for their larvae. UK B. aeneus populations showed contrasting affiliations between the north (most similar to Scandinavia and the Baltic) and south (most similar to western continental Europe), with strong signatures of population growth in the south.
Collapse
Affiliation(s)
- Pierre Ouvrard
- a Institute of Evolutionary Biology, University of Edinburgh, Kings Buildings, Charlotte Auerbach Road, Edinburgh EH9 3JT, UK.,b Earth and Life Institute - Agronomy, Université catholique de Louvain, Place Croix du Sud 2, 1348 Louvain-la-Neuve, Belgium
| | - Damien M Hicks
- a Institute of Evolutionary Biology, University of Edinburgh, Kings Buildings, Charlotte Auerbach Road, Edinburgh EH9 3JT, UK
| | - Molly Mouland
- a Institute of Evolutionary Biology, University of Edinburgh, Kings Buildings, Charlotte Auerbach Road, Edinburgh EH9 3JT, UK
| | - James A Nicholls
- a Institute of Evolutionary Biology, University of Edinburgh, Kings Buildings, Charlotte Auerbach Road, Edinburgh EH9 3JT, UK
| | - Katherine C R Baldock
- c School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQUG, UK.,d Cabot Institute, University of Bristol, Woodland Road, Bristol, BS8 1UJ, UK
| | - Mark A Goddard
- e School of Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - William E Kunin
- e School of Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Simon G Potts
- f Centre for Agri-Environmental Research, School of Agriculture, Policy and Development, University of Reading, Reading, RG6 6AR, UK
| | - Thomas Thieme
- g BTL Bio-Test Labor GmbH Sagerheide, Kirchstrasse 3, D-18184 Thulendorf, Germany
| | - Eve Veromann
- h Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51014, Estonia
| | - Graham N Stone
- a Institute of Evolutionary Biology, University of Edinburgh, Kings Buildings, Charlotte Auerbach Road, Edinburgh EH9 3JT, UK
| |
Collapse
|
29
|
Roslin T, Majaneva S. The use of DNA barcodes in food web construction-terrestrial and aquatic ecologists unite! Genome 2016; 59:603-28. [PMID: 27484156 DOI: 10.1139/gen-2015-0229] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
By depicting who eats whom, food webs offer descriptions of how groupings in nature (typically species or populations) are linked to each other. For asking questions on how food webs are built and work, we need descriptions of food webs at different levels of resolution. DNA techniques provide opportunities for highly resolved webs. In this paper, we offer an exposé of how DNA-based techniques, and DNA barcodes in particular, have recently been used to construct food web structure in both terrestrial and aquatic systems. We highlight how such techniques can be applied to simultaneously improve the taxonomic resolution of the nodes of the web (i.e., the species), and the links between them (i.e., who eats whom). We end by proposing how DNA barcodes and DNA information may allow new approaches to the construction of larger interaction webs, and overcome some hurdles to achieving adequate sample size. Most importantly, we propose that the joint adoption and development of these techniques may serve to unite approaches to food web studies in aquatic and terrestrial systems-revealing the extent to which food webs in these environments are structured similarly to or differently from each other, and how they are linked by dispersal.
Collapse
Affiliation(s)
- Tomas Roslin
- a Department of Ecology, Swedish University of Agricultural Sciences, Box 7044, 750 07 Uppsala, Sweden.,b Spatial Foodweb Ecology Group, Department of Agricultural Sciences, PO Box 27, (Latokartanonkaari 5), FI-00014 University of Helsinki, Finland
| | - Sanna Majaneva
- c Centre for Ecology and Evolution in Microbial model Systems (EEMiS), Department of Biology and Environmental Science, Linnaeus University, 39182 Kalmar, Sweden
| |
Collapse
|
30
|
Sutton TL, Riegler M, Cook JM. One step ahead: a parasitoid disperses farther and forms a wider geographic population than its fig wasp host. Mol Ecol 2016; 25:882-94. [DOI: 10.1111/mec.13445] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 10/26/2015] [Accepted: 10/28/2015] [Indexed: 11/30/2022]
Affiliation(s)
- Timothy L. Sutton
- Hawkesbury Institute for the Environment; Western Sydney University; Locked Bag 1797 Penrith NSW 2751 Australia
| | - Markus Riegler
- Hawkesbury Institute for the Environment; Western Sydney University; Locked Bag 1797 Penrith NSW 2751 Australia
| | - James M. Cook
- Hawkesbury Institute for the Environment; Western Sydney University; Locked Bag 1797 Penrith NSW 2751 Australia
| |
Collapse
|
31
|
Xue AT, Hickerson MJ. The aggregate site frequency spectrum for comparative population genomic inference. Mol Ecol 2015; 24:6223-40. [PMID: 26769405 PMCID: PMC4717917 DOI: 10.1111/mec.13447] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 10/26/2015] [Accepted: 10/28/2015] [Indexed: 12/11/2022]
Abstract
Understanding how assemblages of species responded to past climate change is a central goal of comparative phylogeography and comparative population genomics, an endeavour that has increasing potential to integrate with community ecology. New sequencing technology now provides the potential to perform complex demographic inference at unprecedented resolution across assemblages of nonmodel species. To this end, we introduce the aggregate site frequency spectrum (aSFS), an expansion of the site frequency spectrum to use single nucleotide polymorphism (SNP) data sets collected from multiple, co-distributed species for assemblage-level demographic inference. We describe how the aSFS is constructed over an arbitrary number of independent population samples and then demonstrate how the aSFS can differentiate various multispecies demographic histories under a wide range of sampling configurations while allowing effective population sizes and expansion magnitudes to vary independently. We subsequently couple the aSFS with a hierarchical approximate Bayesian computation (hABC) framework to estimate degree of temporal synchronicity in expansion times across taxa, including an empirical demonstration with a data set consisting of five populations of the threespine stickleback (Gasterosteus aculeatus). Corroborating what is generally understood about the recent postglacial origins of these populations, the joint aSFS/hABC analysis strongly suggests that the stickleback data are most consistent with synchronous expansion after the Last Glacial Maximum (posterior probability = 0.99). The aSFS will have general application for multilevel statistical frameworks to test models involving assemblages and/or communities, and as large-scale SNP data from nonmodel species become routine, the aSFS expands the potential for powerful next-generation comparative population genomic inference.
Collapse
Affiliation(s)
- Alexander T. Xue
- Department of Biology: Subprogram in Ecology, Evolutionary Biology, and Behavior, City College and Graduate Center of City University of New York, 160 Convent Avenue, Marshak Science Building, Room 526, New York, NY 10031
| | - Michael J. Hickerson
- Department of Biology: Subprogram in Ecology, Evolutionary Biology, and Behavior, City College and Graduate Center of City University of New York, 160 Convent Avenue, Marshak Science Building, Room 526, New York, NY 10031
| |
Collapse
|
32
|
Tian E, Nason JD, Machado CA, Zheng L, Yu H, Kjellberg F. Lack of genetic isolation by distance, similar genetic structuring but different demographic histories in a fig-pollinating wasp mutualism. Mol Ecol 2015; 24:5976-91. [DOI: 10.1111/mec.13438] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 10/23/2015] [Accepted: 10/26/2015] [Indexed: 12/11/2022]
Affiliation(s)
- Enwei Tian
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization; South China Botanical Garden; The Chinese Academy of Sciences; Guangzhou 510650 China
| | - John D. Nason
- Department of Ecology, Evolution, and Organismal Biology; Iowa State University; Ames IA 50011 USA
| | - Carlos A. Machado
- Department of Biology; University of Maryland; College Park MD 20742 USA
| | - Linna Zheng
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization; South China Botanical Garden; The Chinese Academy of Sciences; Guangzhou 510650 China
| | - Hui Yu
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization; South China Botanical Garden; The Chinese Academy of Sciences; Guangzhou 510650 China
| | - Finn Kjellberg
- CEFE UMR 5175; CNRS; Université de Montpellier; Université Paul-Valéry Montpellier; EPHE; Montpellier France
| |
Collapse
|
33
|
Nyman T, Leppänen SA, Várkonyi G, Shaw MR, Koivisto R, Barstad TE, Vikberg V, Roininen H. Determinants of parasitoid communities of willow-galling sawflies: habitat overrides physiology, host plant and space. Mol Ecol 2015; 24:5059-74. [DOI: 10.1111/mec.13369] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 08/30/2015] [Accepted: 09/01/2015] [Indexed: 11/28/2022]
Affiliation(s)
- Tommi Nyman
- Department of Biology; University of Eastern Finland; P.O. Box 111 Joensuu FI-80101 Finland
- Institute for Systematic Botany; University of Zurich; Zollikerstrasse 107 Zurich CH-8008 Switzerland
| | - Sanna A. Leppänen
- Department of Biology; University of Eastern Finland; P.O. Box 111 Joensuu FI-80101 Finland
| | - Gergely Várkonyi
- Finnish Environment Institute; Friendship Park Research Centre; Lentiirantie 342 B Kuhmo FI-88900 Finland
| | - Mark R. Shaw
- National Museums of Scotland; Chambers Street Edinburgh EH1 1JF UK
| | - Reijo Koivisto
- Department of Biology; University of Eastern Finland; P.O. Box 111 Joensuu FI-80101 Finland
| | | | - Veli Vikberg
- Liinalammintie 11 as. 6; Turenki FI-14200 Finland
| | - Heikki Roininen
- Department of Biology; University of Eastern Finland; P.O. Box 111 Joensuu FI-80101 Finland
| |
Collapse
|
34
|
Papadopoulou A, Knowles LL. Species‐specific responses to island connectivity cycles: refined models for testing phylogeographic concordance across a
M
editerranean
P
leistocene
A
ggregate
I
sland
C
omplex. Mol Ecol 2015; 24:4252-68. [DOI: 10.1111/mec.13305] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 06/21/2015] [Accepted: 06/24/2015] [Indexed: 01/17/2023]
Affiliation(s)
- Anna Papadopoulou
- Department of Ecology and Evolutionary Biology Museum of Zoology University of Michigan 1109 Geddes Ave. Ann Arbor MI 48109‐1079 USA
| | - L. Lacey Knowles
- Department of Ecology and Evolutionary Biology Museum of Zoology University of Michigan 1109 Geddes Ave. Ann Arbor MI 48109‐1079 USA
| |
Collapse
|
35
|
Hrček J, Godfray HCJ. What do molecular methods bring to host–parasitoid food webs? Trends Parasitol 2015; 31:30-5. [DOI: 10.1016/j.pt.2014.10.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 10/22/2014] [Accepted: 10/29/2014] [Indexed: 01/20/2023]
|
36
|
Espíndola A, Carstens BC, Alvarez N. Comparative phylogeography of mutualists and the effect of the host on the genetic structure of its partners. Biol J Linn Soc Lond 2014. [DOI: 10.1111/bij.12393] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Anahí Espíndola
- Department of Ecology and Evolution; University of Lausanne; Biophore Building 1015 Lausanne Switzerland
- Department of Biological Sciences; University of Idaho; Life Sciences South 252, 875 Perimeter Drive Moscow ID 83844-3051 USA
| | - Bryan C. Carstens
- Department of Evolution; Ecology and Organismal Biology; 300 Aronoff Laboratory; The Ohio State University; 318 West 12th Avenue Columbus OH 43210 USA
| | - Nadir Alvarez
- Department of Ecology and Evolution; University of Lausanne; Biophore Building 1015 Lausanne Switzerland
| |
Collapse
|
37
|
Oaks JR, Linkem CW, Sukumaran J. Implications of uniformly distributed, empirically informed priors for phylogeographical model selection: a reply to Hickerson et al. Evolution 2014; 68:3607-17. [PMID: 25213163 DOI: 10.1111/evo.12523] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Accepted: 08/21/2014] [Indexed: 12/20/2022]
Abstract
Establishing that a set of population-splitting events occurred at the same time can be a potentially persuasive argument that a common process affected the populations. Recently, Oaks et al. () assessed the ability of an approximate-Bayesian model-choice method (msBayes) to estimate such a pattern of simultaneous divergence across taxa, to which Hickerson et al. () responded. Both papers agree that the primary inference enabled by the method is very sensitive to prior assumptions and often erroneously supports shared divergences across taxa when prior uncertainty about divergence times is represented by a uniform distribution. However, the papers differ about the best explanation and solution for this problem. Oaks et al. () suggested the method's behavior was caused by the strong weight of uniformly distributed priors on divergence times leading to smaller marginal likelihoods (and thus smaller posterior probabilities) of models with more divergence-time parameters (Hypothesis 1); they proposed alternative prior probability distributions to avoid such strongly weighted posteriors. Hickerson et al. () suggested numerical-approximation error causes msBayes analyses to be biased toward models of clustered divergences because the method's rejection algorithm is unable to adequately sample the parameter space of richer models within reasonable computational limits when using broad uniform priors on divergence times (Hypothesis 2). As a potential solution, they proposed a model-averaging approach that uses narrow, empirically informed uniform priors. Here, we use analyses of simulated and empirical data to demonstrate that the approach of Hickerson et al. () does not mitigate the method's tendency to erroneously support models of highly clustered divergences, and is dangerous in the sense that the empirically derived uniform priors often exclude from consideration the true values of the divergence-time parameters. Our results also show that the tendency of msBayes analyses to support models of shared divergences is primarily due to Hypothesis 1, whereas Hypothesis 2 is an untenable explanation for the bias. Overall, this series of papers demonstrates that if our prior assumptions place too much weight in unlikely regions of parameter space such that the exact posterior supports the wrong model of evolutionary history, no amount of computation can rescue our inference. Fortunately, as predicted by fundamental principles of Bayesian model choice, more flexible distributions that accommodate prior uncertainty about parameters without placing excessive weight in vast regions of parameter space with low likelihood increase the method's robustness and power to detect temporal variation in divergences.
Collapse
Affiliation(s)
- Jamie R Oaks
- Department of Ecology and Evolutionary Biology, , University of Kansas, Lawrence, Kansas, 66045; Department of Biology, , University of Washington, Seattle, Washington, 98195.
| | | | | |
Collapse
|
38
|
Chan YL, Schanzenbach D, Hickerson MJ. Detecting concerted demographic response across community assemblages using hierarchical approximate Bayesian computation. Mol Biol Evol 2014; 31:2501-15. [PMID: 24925925 PMCID: PMC4137712 DOI: 10.1093/molbev/msu187] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Methods that integrate population-level sampling from multiple taxa into a single community-level analysis are an essential addition to the comparative phylogeographic toolkit. Detecting how species within communities have demographically tracked each other in space and time is important for understanding the effects of future climate and landscape changes and the resulting acceleration of extinctions, biological invasions, and potential surges in adaptive evolution. Here, we present a statistical framework for such an analysis based on hierarchical approximate Bayesian computation (hABC) with the goal of detecting concerted demographic histories across an ecological assemblage. Our method combines population genetic data sets from multiple taxa into a single analysis to estimate: 1) the proportion of a community sample that demographically expanded in a temporally clustered pulse and 2) when the pulse occurred. To validate the accuracy and utility of this new approach, we use simulation cross-validation experiments and subsequently analyze an empirical data set of 32 avian populations from Australia that are hypothesized to have expanded from smaller refugia populations in the late Pleistocene. The method can accommodate data set heterogeneity such as variability in effective population size, mutation rates, and sample sizes across species and exploits the statistical strength from the simultaneous analysis of multiple species. This hABC framework used in a multitaxa demographic context can increase our understanding of the impact of historical climate change by determining what proportion of the community responded in concert or independently and can be used with a wide variety of comparative phylogeographic data sets as biota-wide DNA barcoding data sets accumulate.
Collapse
Affiliation(s)
- Yvonne L Chan
- Hawai'i Institute of Marine Biology, School of Ocean and Earth Science and Technology, University of Hawai'i at Manoa
| | | | - Michael J Hickerson
- Biology Department, City College of New YorkThe Graduate Center, City University of New York
| |
Collapse
|
39
|
Conchou L, Cabioch L, Rodriguez LJV, Kjellberg F. Daily rhythm of mutualistic pollinator activity and scent emission in Ficus septica: ecological differentiation between co-occurring pollinators and potential consequences for chemical communication and facilitation of host speciation. PLoS One 2014; 9:e103581. [PMID: 25105796 PMCID: PMC4126690 DOI: 10.1371/journal.pone.0103581] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 07/04/2014] [Indexed: 11/18/2022] Open
Abstract
The mutualistic interaction between Ficus and their pollinating agaonid wasps constitutes an extreme example of plant-insect co-diversification. Most Ficus species are locally associated with a single specific agaonid wasp species. Specificity is ensured by each fig species emitting a distinctive attractive scent. However, cases of widespread coexistence of two agaonid wasp species on the same Ficus species are documented. Here we document the coexistence of two agaonid wasp species in Ficus septica: one yellow-colored and one black-colored. Our results suggest that their coexistence is facilitated by divergent ecological traits. The black species is longer-lived (a few more hours) and is hence active until later in the afternoon. Some traits of the yellow species must compensate for this advantage for their coexistence to be stable. In addition, we show that the composition of the scent emitted by receptive figs changes between sunrise and noon. The two species may therefore be exposed to somewhat different ranges of receptive fig scent composition and may consequently diverge in the way they perceive and/or respond to scents. Whether such situations may lead to host plant speciation is an open question.
Collapse
Affiliation(s)
- Lucie Conchou
- CEFE UMR 5175, CNRS - Université de Montpellier - Université Paul-Valéry Montpellier – EPHE, Montpellier, France
- * E-mail:
| | - Léa Cabioch
- CEFE UMR 5175, CNRS - Université de Montpellier - Université Paul-Valéry Montpellier – EPHE, Montpellier, France
| | - Lillian J. V. Rodriguez
- CEFE UMR 5175, CNRS - Université de Montpellier - Université Paul-Valéry Montpellier – EPHE, Montpellier, France
- Institute of Biology, University of the Philippines Diliman, Quezon City, Philippines
| | - Finn Kjellberg
- CEFE UMR 5175, CNRS - Université de Montpellier - Université Paul-Valéry Montpellier – EPHE, Montpellier, France
| |
Collapse
|
40
|
Oaks JR. An improved approximate-Bayesian model-choice method for estimating shared evolutionary history. BMC Evol Biol 2014; 14:150. [PMID: 24992937 PMCID: PMC4227068 DOI: 10.1186/1471-2148-14-150] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 06/10/2014] [Indexed: 11/29/2022] Open
Abstract
Background To understand biological diversification, it is important to account for large-scale processes that affect the evolutionary history of groups of co-distributed populations of organisms. Such events predict temporally clustered divergences times, a pattern that can be estimated using genetic data from co-distributed species. I introduce a new approximate-Bayesian method for comparative phylogeographical model-choice that estimates the temporal distribution of divergences across taxa from multi-locus DNA sequence data. The model is an extension of that implemented in msBayes. Results By reparameterizing the model, introducing more flexible priors on demographic and divergence-time parameters, and implementing a non-parametric Dirichlet-process prior over divergence models, I improved the robustness, accuracy, and power of the method for estimating shared evolutionary history across taxa. Conclusions The results demonstrate the improved performance of the new method is due to (1) more appropriate priors on divergence-time and demographic parameters that avoid prohibitively small marginal likelihoods for models with more divergence events, and (2) the Dirichlet-process providing a flexible prior on divergence histories that does not strongly disfavor models with intermediate numbers of divergence events. The new method yields more robust estimates of posterior uncertainty, and thus greatly reduces the tendency to incorrectly estimate models of shared evolutionary history with strong support.
Collapse
Affiliation(s)
- Jamie R Oaks
- Department of Ecology and Evolutionary Biology, University of Kansas, 1200 Sunnyside Avenue, Lawrence Kansas 66045, USA.
| |
Collapse
|
41
|
Medina CD, Avila LJ, Sites JW, Morando M. Multilocus phylogeography of the Patagonian lizard complexLiolaemus kriegi(Iguania: Liolaemini). Biol J Linn Soc Lond 2014. [DOI: 10.1111/bij.12285] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Cintia D. Medina
- Grupo de Herpetología Patagónica; CENPAT-CONICET; Boul. Almt. G. Brown U2915ACD Puerto Madryn Chubut Argentina
| | - Luciano J. Avila
- Grupo de Herpetología Patagónica; CENPAT-CONICET; Boul. Almt. G. Brown U2915ACD Puerto Madryn Chubut Argentina
| | - Jack W. Sites
- Biology Department; and Bean Life Science Museum; Brigham Young University; 695 WIDB Provo UT 84602 USA
| | - Mariana Morando
- Grupo de Herpetología Patagónica; CENPAT-CONICET; Boul. Almt. G. Brown U2915ACD Puerto Madryn Chubut Argentina
| |
Collapse
|
42
|
Conchou L, Ciminera M, Hossaert-McKey M, Kjellberg F. The non-pollinating fig wasps associated with Ficus guianensis: Community structure and impact of the large species on the fig/pollinator mutualism. ACTA OECOLOGICA-INTERNATIONAL JOURNAL OF ECOLOGY 2014. [DOI: 10.1016/j.actao.2013.07.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
43
|
Demos TC, Kerbis Peterhans JC, Agwanda B, Hickerson MJ. Uncovering cryptic diversity and refugial persistence among small mammal lineages across the Eastern Afromontane biodiversity hotspot. Mol Phylogenet Evol 2014; 71:41-54. [DOI: 10.1016/j.ympev.2013.10.014] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 10/11/2013] [Accepted: 10/17/2013] [Indexed: 01/04/2023]
|
44
|
Hearn J, Stone GN, Bunnefeld L, Nicholls JA, Barton NH, Lohse K. Likelihood-based inference of population history from low-coveragede novogenome assemblies. Mol Ecol 2013; 23:198-211. [DOI: 10.1111/mec.12578] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 09/16/2013] [Accepted: 09/20/2013] [Indexed: 01/15/2023]
Affiliation(s)
- Jack Hearn
- Institute of Evolutionary Biology; University of Edinburgh; Edinburgh EH9 3JT UK
| | - Graham N. Stone
- Institute of Evolutionary Biology; University of Edinburgh; Edinburgh EH9 3JT UK
| | - Lynsey Bunnefeld
- Institute of Evolutionary Biology; University of Edinburgh; Edinburgh EH9 3JT UK
| | - James A. Nicholls
- Institute of Evolutionary Biology; University of Edinburgh; Edinburgh EH9 3JT UK
| | - Nicholas H. Barton
- Institute of Science and Technology; Am Campus 1 A-3400 Klosterneuburg Austria
| | - Konrad Lohse
- Institute of Evolutionary Biology; University of Edinburgh; Edinburgh EH9 3JT UK
| |
Collapse
|
45
|
Hickerson MJ, Stone GN, Lohse K, Demos TC, Xie X, Landerer C, Takebayashi N. Recommendations for using msBayes to incorporate uncertainty in selecting an abc model prior: a response to oaks et Al. Evolution 2013; 68:284-94. [PMID: 24102483 DOI: 10.1111/evo.12241] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 07/04/2013] [Indexed: 01/06/2023]
Abstract
Prior specification is an essential component of parameter estimation and model comparison in Approximate Bayesian computation (ABC). Oaks et al. present a simulation-based power analysis of msBayes and conclude that msBayes has low power to detect genuinely random divergence times across taxa, and suggest the cause is Lindley's paradox. Although the predictions are similar, we show that their findings are more fundamentally explained by insufficient prior sampling that arises with poorly chosen wide priors that critically undersample nonsimultaneous divergence histories of high likelihood. In a reanalysis of their data on Philippine Island vertebrates, we show how this problem can be circumvented by expanding upon a previously developed procedure that accommodates uncertainty in prior selection using Bayesian model averaging. When these procedures are used, msBayes supports recent divergences without support for synchronous divergence in the Oaks et al. data and we further present a simulation analysis that demonstrates that msBayes can have high power to detect asynchronous divergence under narrower priors for divergence time. Our findings highlight the need for exploration of plausible parameter space and prior sampling efficiency for ABC samplers in high dimensions. We discus potential improvements to msBayes and conclude that when used appropriately with model averaging, msBayes remains an effective and powerful tool.
Collapse
Affiliation(s)
- Michael J Hickerson
- Biology Department, City College of New York, New York, New York, 10031; The Graduate Center, City University of New York, New York, New York, 10016.
| | | | | | | | | | | | | |
Collapse
|
46
|
Population Stability of the Northern Desert Nightsnake (Hypsiglena chlorophaea deserticola) during the Pleistocene. J HERPETOL 2013. [DOI: 10.1670/12-104] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
47
|
Gebiola M, Lopez-Vaamonde C, Nappo AG, Bernardo U. Did the parasitoid Pnigalio mediterraneus (Hymenoptera: Eulophidae) track the invasion of the horse chestnut leafminer? Biol Invasions 2013. [DOI: 10.1007/s10530-013-0542-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
48
|
László Z, Tóthmérész B. The enemy hypothesis: correlates of gall morphology with parasitoid attack rates in two closely related rose cynipid galls. BULLETIN OF ENTOMOLOGICAL RESEARCH 2013; 103:326-335. [PMID: 23217451 DOI: 10.1017/s0007485312000764] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
We tested the enemy hypothesis for gall morphology on a model system comprising two Diplolepis rose gall wasp species and their associated parasitoids. The enemy hypothesis predicts both that gall traits will influence parasitoid attack rates within species, and that galls with contrasting morphologies will support different parasitoid communities. This hypothesis is supported by studies at both intraspecific and broader taxonomic levels (i.e. between genera), but patterns remain to be explored in closely related species. Our aims were to explore the relationships between aspects of gall morphology (number of larval chambers, overall gall size and thickness of the gall wall) in each of Diplolepis mayri and D. rosae, and to explore correlations between these traits and both the presence/absence (=incidence) and attack rates imposed by parasitoids. We found in both galls that chamber number is positively correlated with gall size. In galls of D. mayri, parasitoid incidence was negatively correlated with thickness of the wall of the larval chamber, but there was no significant correlation between parasitoid attack rates and overall gall size. In D. rosae galls, parasitoid incidence was positively correlated with chamber wall thickness, but parasitoid attack rates were negatively correlated with gall size, suggesting that selection may favour the induction of galls containing more larval chambers. These results confirm that gall extended phenotypes can significantly influence enemy attack rates, consistent with the 'enemy hypothesis'. Further, differences in gall morphology between the two Diplolepis species may underlie differences in their associated parasitoid communities--further research is required to test this hypothesis.
Collapse
Affiliation(s)
- Z László
- Hungarian Department of Biology and Ecology, Babeş-Bolyai University, Str. Clinicilor Nr. 5-7, 400006 Cluj-Napoca, Romania.
| | | |
Collapse
|
49
|
Andrew RL, Bernatchez L, Bonin A, Buerkle CA, Carstens BC, Emerson BC, Garant D, Giraud T, Kane NC, Rogers SM, Slate J, Smith H, Sork VL, Stone GN, Vines TH, Waits L, Widmer A, Rieseberg LH. A road map for molecular ecology. Mol Ecol 2013; 22:2605-26. [DOI: 10.1111/mec.12319] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 03/16/2013] [Indexed: 12/18/2022]
Affiliation(s)
- Rose L. Andrew
- Department of Botany; University of British Columbia; 3529-6270 University Blvd Vancouver BC V6T 1Z4 Canada
| | - Louis Bernatchez
- DInstitut de Biologie Intégrative et des Systémes; Département de Biologie; 1030, Avenue de la Médecine Université Laval; Québec QC G1V 0A6 Canada
| | - Aurélie Bonin
- Laboratoire d'Ecologie Alpine; CNRS UMR 5553 Université Joseph Fourier; BP 53, 38041 Grenoble Cedex 9 France
| | - C. Alex. Buerkle
- Department of Botany; University of Wyoming; 1000 E. University Ave. Laramie WY 82071 USA
| | - Bryan C. Carstens
- Department of Evolution, Ecology and Organismal Biology; 318 W. 12th Ave. The Ohio State University; Columbus OH 43210 USA
| | - Brent C. Emerson
- Island Ecology and Evolution Research Group; Instituto de Productos Naturales y Agrobiología (IPNA-CSIC) C/Astrofísico Francisco Sánchez 3 La Laguna Tenerife; Canary Islands 38206 Spain
| | - Dany Garant
- Département de Biologie; Université de Sherbrooke; Sherbrooke QC J1K 2R1 Canada
| | - Tatiana Giraud
- Laboratoire Ecologie, Systématique et Evolution; UMR 8079 CNRS-UPS-AgroParisTech, Bâtiment 360 Univ. Paris Sud; 91405 Orsay cedex France
| | - Nolan C. Kane
- Department of Botany; University of British Columbia; 3529-6270 University Blvd Vancouver BC V6T 1Z4 Canada
| | - Sean M. Rogers
- Department of Biological Sciences; University of Calgary; 2500 University Drive N.W., Calgary AB T2N 1N4 Canada
| | - Jon Slate
- Department of Animal and Plant Sciences; University of Sheffield; Sheffield S10 2TN UK
| | - Harry Smith
- 79 Melton Road Burton-on-the-Wolds Loughborough LE12 5TQ UK
| | - Victoria L. Sork
- Department of Ecology and Evolutionary Biology; University of California Los Angeles; 4139 Terasaki Life Sciences Building, 610 Charles E. Young Drive East Los Angeles CA 90095 USA
| | - Graham N. Stone
- Institute of Evolutionary Biology; University of Edinburgh; The King's Buildings, West Mains Road, Edinburgh EH9 3JT UK
| | - Timothy H. Vines
- Molecular Ecology Editorial Office; 6270 University Blvd Vancouver BC V6T 1Z4 Canada
| | - Lisette Waits
- Department of Fish and Wildlife Sciences; University of Idaho; 875 Perimeter Drive MS 1136 Moscow ID 83844 USA
| | - Alex Widmer
- ETH Zurich; Institute of Integrative Biology; Universitätstrasse 16 Zurich 8092 Switzerland
| | - Loren H. Rieseberg
- Department of Botany; University of British Columbia; 3529-6270 University Blvd Vancouver BC V6T 1Z4 Canada
- Department of Biology; Indiana University; 1001 E. 3 St., Bloomington IN 47405 USA
| |
Collapse
|
50
|
Ornelas JF, Sosa V, Soltis DE, Daza JM, González C, Soltis PS, Gutiérrez-Rodríguez C, de los Monteros AE, Castoe TA, Bell C, Ruiz-Sanchez E. Comparative phylogeographic analyses illustrate the complex evolutionary history of threatened cloud forests of northern Mesoamerica. PLoS One 2013; 8:e56283. [PMID: 23409165 PMCID: PMC3567015 DOI: 10.1371/journal.pone.0056283] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 01/12/2013] [Indexed: 12/01/2022] Open
Abstract
Comparative phylogeography can elucidate the influence of historical events on current patterns of biodiversity and can identify patterns of co-vicariance among unrelated taxa that span the same geographic areas. Here we analyze temporal and spatial divergence patterns of cloud forest plant and animal species and relate them to the evolutionary history of naturally fragmented cloud forests–among the most threatened vegetation types in northern Mesoamerica. We used comparative phylogeographic analyses to identify patterns of co-vicariance in taxa that share geographic ranges across cloud forest habitats and to elucidate the influence of historical events on current patterns of biodiversity. We document temporal and spatial genetic divergence of 15 species (including seed plants, birds and rodents), and relate them to the evolutionary history of the naturally fragmented cloud forests. We used fossil-calibrated genealogies, coalescent-based divergence time inference, and estimates of gene flow to assess the permeability of putative barriers to gene flow. We also used the hierarchical Approximate Bayesian Computation (HABC) method implemented in the program msBayes to test simultaneous versus non-simultaneous divergence of the cloud forest lineages. Our results show shared phylogeographic breaks that correspond to the Isthmus of Tehuantepec, Los Tuxtlas, and the Chiapas Central Depression, with the Isthmus representing the most frequently shared break among taxa. However, dating analyses suggest that the phylogeographic breaks corresponding to the Isthmus occurred at different times in different taxa. Current divergence patterns are therefore consistent with the hypothesis of broad vicariance across the Isthmus of Tehuantepec derived from different mechanisms operating at different times. This study, coupled with existing data on divergence cloud forest species, indicates that the evolutionary history of contemporary cloud forest lineages is complex and often lineage-specific, and thus difficult to capture in a simple conservation strategy.
Collapse
Affiliation(s)
- Juan Francisco Ornelas
- Departamento de Biología Evolutiva, Instituto de Ecología, AC, Xalapa, Veracruz, Mexico.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|