1
|
Bailon-Zambrano R, Keating MK, Sales EC, Nichols AR, Gustafson GE, Hopkins CA, Kocha KM, Huang P, Barske L, Nichols JT. The sclerotome is the source of the dorsal and anal fin skeleton and its expansion is required for median fin development. Development 2024; 151:dev203025. [PMID: 39575996 DOI: 10.1242/dev.203025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 11/13/2024] [Indexed: 12/14/2024]
Abstract
Paired locomotion appendages are hypothesized to have redeployed the developmental program of median appendages, such as the dorsal and anal fins. Compared with paired fins, and limbs, median appendages remain surprisingly understudied. Here, we report that a dominant zebrafish mutant, smoothback (smb), fails to develop a dorsal fin. Moreover, the anal fin is reduced along the antero-posterior axis, and spine defects develop. Mechanistically, the smb mutation is caused by an insertion of a sox10:Gal4VP16 transgenic construct into a non-coding region. The first step in fin, and limb, induction is aggregation of undifferentiated mesenchyme at the appendage development site. In smb, this dorsal fin mesenchyme is absent. Lineage tracing demonstrates the previously unknown developmental origin of the mesenchyme, the sclerotome, which also gives rise to the spine. Strikingly, we find that there is significantly less sclerotome in smb than in wild type. Our results give insight into the origin and modularity of understudied median fins, which have changed position, number, size, and even disappeared, across evolutionary time.
Collapse
Affiliation(s)
- Raisa Bailon-Zambrano
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Margaret K Keating
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Emily C Sales
- Department of Biology, University of Oregon, Eugene, OR 97403, USA
| | - Abigail R Nichols
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Grace E Gustafson
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Colette A Hopkins
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Katrinka M Kocha
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Peng Huang
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Lindsey Barske
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - James T Nichols
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
2
|
Aman AJ, Parichy DM. Anatomy, development and regeneration of zebrafish elasmoid scales. Dev Biol 2024; 510:1-7. [PMID: 38458375 PMCID: PMC11015963 DOI: 10.1016/j.ydbio.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 02/22/2024] [Accepted: 03/05/2024] [Indexed: 03/10/2024]
Abstract
Vertebrate skin appendages - particularly avian feathers and mammalian hairs, glands and teeth - are perennially useful systems for investigating fundamental mechanisms of development. The most common type of skin appendage in teleost fishes is the elasmoid scale, yet this structure has received much less attention than the skin appendages of tetrapods. Elasmoid scales are thin, overlapping plates of partially mineralized extracellular matrices, deposited in the skin in a hexagonal pattern by a specialized population of dermal cells in cooperation with the overlying epidermis. Recent years have seen rapid progress in our understanding of elasmoid scale development and regeneration, driven by the deployment of developmental genetics, live imaging and transcriptomics in larval and adult zebrafish. These findings are reviewed together with histological and ultrastructural approaches to understanding scale development and regeneration.
Collapse
Affiliation(s)
- Andrew J Aman
- Department of Biology, University of Virginia, Charlottesville, VA, 22903, USA.
| | - David M Parichy
- Department of Biology, University of Virginia, Charlottesville, VA, 22903, USA; Department of Cell Biology, University of Virginia, Charlottesville, VA, 22903, USA.
| |
Collapse
|
3
|
Komiya H, Sato Y, Kimura H, Kawakami A. Independent mesenchymal progenitor pools respectively produce and maintain osteogenic and chondrogenic cells in zebrafish. Dev Growth Differ 2024; 66:161-171. [PMID: 38193362 PMCID: PMC11457501 DOI: 10.1111/dgd.12908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 01/10/2024]
Abstract
Skeletal tissues including cartilage and bones are characteristic features of vertebrates that are crucial for supporting body morphology and locomotion. Studies mainly in mice have shown that osteoblasts and chondroblasts are supplied from several progenitors like the sclerotome cells in the embryonic stage, osteo-chondroprogenitors in growing long bones, and skeletal stem cells of bone marrow in the postnatal period. However, the exact origins of progenitor cells, their lineage relationships, and their potential to differentiate into osteoblasts and chondroblasts from embryos to adult tissues are not well understood. In this study, we conducted clonal cell tracking in zebrafish and showed that sox9a+ cells are already committed to either chondrogenic or osteogenic fates during embryonic stages and that respective progenies are independently maintained as mesenchymal progenitor pools. Once committed, they never change their lineage identities throughout animal life, even through regeneration. In addition, we further revealed that only osteogenic mesenchymal cells replenish the osteoblast progenitor cells (OPCs), a population of reserved tissue stem cells found to be involved in the de novo production of osteoblasts during regeneration and homeostasis in zebrafish. Thus, our clonal cell tracking study in zebrafish firstly revealed that the mesenchymal progenitor cells that are fated to develop into either chondroblasts or osteoblasts serve as respective tissue stem cells to maintain skeletal tissue homeostasis. Such mesenchymal progenitors dedicated to producing either chondroblasts or osteoblasts would be important targets for skeletal tissue regeneration.
Collapse
Grants
- 19K22417 Japan Society for the Promotion of Science
- 22K19306 Japan Society for the Promotion of Science
- 21H04764 Ministry of Education, Culture, Sports, Science, and Technology
- JP23ama121020 Japan Agency for Medical Research and Development
- 19H03232 Ministry of Education, Culture, Sports, Science and Technology
- Japan Society for the Promotion of Science
- Japan Agency for Medical Research and Development
- Ministry of Education, Culture, Sports, Science and Technology
Collapse
Affiliation(s)
- Hiroaki Komiya
- School of Life Science and Technology, Tokyo Institute of TechnologyYokohamaJapan
| | - Yuko Sato
- Institute of Innovative Research, Tokyo Institute of TechnologyYokohamaJapan
| | - Hiroshi Kimura
- Institute of Innovative Research, Tokyo Institute of TechnologyYokohamaJapan
| | - Atsushi Kawakami
- School of Life Science and Technology, Tokyo Institute of TechnologyYokohamaJapan
| |
Collapse
|
4
|
Zhang Y, Bi J, Ning Y, Feng J. Methodology Advances in Vertebrate Age Estimation. Animals (Basel) 2024; 14:343. [PMID: 38275802 PMCID: PMC10812784 DOI: 10.3390/ani14020343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/09/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
Age is a core metric in vertebrate management, and the correct estimation of the age of an individual plays a principal role in comprehending animal behavior, identifying genealogical information, and assessing the potential reproductive capacity of populations. Vertebrates have a vertebral column and a distinct head containing a developed brain; they have played an important role in the study of biological evolution. However, biological age estimations constantly exhibit large deviations due to the diversity of vertebrate taxon species, sample types, and determination methods. To systematically and comprehensively understand age estimation methods in different situations, we classify the degree of damage to vertebrates during sample collection, present the sample types and their applications, list commonly applied methods, present methodological recommendations based on the combination of accuracy and implementability, and, finally, predict future methods for vertebrate age assessments, taking into account the current level of research and requirements. Through comprehensive data gathering and compilation, this work serves as an introduction and summary for those who are eager to catch up on related fields and facilitates the rapid and accurate selection of an evaluation method for researchers engaged in related research. This is essential to promote animal conservation and guide the smooth implementation of conservation management plans.
Collapse
Affiliation(s)
- Yifei Zhang
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (Y.Z.); (J.B.)
- Jilin Provincial International Cooperation Key Laboratory for Biological Control of Agricultural Pests, Changchun 130118, China
| | - Jinping Bi
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (Y.Z.); (J.B.)
- Jilin Provincial International Cooperation Key Laboratory for Biological Control of Agricultural Pests, Changchun 130118, China
| | - Yao Ning
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (Y.Z.); (J.B.)
- Jilin Provincial International Cooperation Key Laboratory for Biological Control of Agricultural Pests, Changchun 130118, China
| | - Jiang Feng
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (Y.Z.); (J.B.)
- Jilin Provincial International Cooperation Key Laboratory for Biological Control of Agricultural Pests, Changchun 130118, China
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun 130117, China
- Key Laboratory of Vegetation Ecology of Education Ministry, Institute of Grassland Science, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
5
|
Cumplido N, Arratia G, Desvignes T, Muñoz-Sánchez S, Postlethwait JH, Allende ML. Hox genes control homocercal caudal fin development and evolution. SCIENCE ADVANCES 2024; 10:eadj5991. [PMID: 38241378 PMCID: PMC10798566 DOI: 10.1126/sciadv.adj5991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 12/19/2023] [Indexed: 01/21/2024]
Abstract
Ancient bony fishes had heterocercal tails, like modern sharks and sturgeons, with asymmetric caudal fins and a vertebral column extending into an elongated upper lobe. Teleost fishes, in contrast, developed a homocercal tail characterized by two separate equal-sized fin lobes and the body axis not extending into the caudal fin. A similar heterocercal-to-homocercal transition occurs during teleost ontogeny, although the underlying genetic and developmental mechanisms for either transition remain unresolved. Here, we investigated the role of hox13 genes in caudal fin formation as these genes control posterior identity in animals. Analysis of expression profiles of zebrafish hox13 paralogs and phenotypes of CRISPR/Cas9-induced mutants showed that double hoxb13a and hoxc13a mutants fail to form a caudal fin. Furthermore, single mutants display heterocercal-like morphologies not seen since Mesozoic fossil teleosteomorphs. Relaxation of functional constraints after the teleost genome duplication may have allowed hox13 duplicates to neo- or subfunctionalize, ultimately contributing to the evolution of a homocercal tail in teleost fishes.
Collapse
Affiliation(s)
- Nicolás Cumplido
- Millennium Institute Center for Genome Regulation, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Gloria Arratia
- University of Kansas, Department of Ecology and Evolutionary Biology and Biodiversity Institute, Lawrence, KS, USA
| | - Thomas Desvignes
- Institute of Neuroscience, University of Oregon, Eugene, OR, USA
| | - Salomé Muñoz-Sánchez
- Millennium Institute Center for Genome Regulation, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | | | - Miguel L. Allende
- Millennium Institute Center for Genome Regulation, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| |
Collapse
|
6
|
Alibardi L. Immunolocalization of Some Epidermal Proteins and Glycoproteins in the Growing Skin of the Australian Lungfish ( Neoceratodus forsteri). J Dev Biol 2023; 11:35. [PMID: 37606491 PMCID: PMC10443291 DOI: 10.3390/jdb11030035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/31/2023] [Accepted: 08/10/2023] [Indexed: 08/23/2023] Open
Abstract
Here we report the immunolocalization of mucin, nestin, elastin and three glycoproteins involved in tissue mineralization in small and large juveniles of Neoceratodus forsteri. Both small and larger juvenile epidermis are mucogenic and contain a diffuse immunolabeling for nestin. Sparse PCNA-labeled cells, indicating proliferation, are found in basal and suprabasal epidermal layers. No scales are formed in small juveniles but are present in a 5 cm long juvenile and in larger juveniles. Elastin and a mineralizing matrix are localized underneath the basement membrane of the tail epidermis where lepidotriches are forming. The latter appears as "circular bodies" in cross sections and are made of elongated cells surrounding a central amorphous area containing collagen and elastin-like proteins that undergo calcification as evidenced using the von Kossa staining. However, the first calcification sites are the coniform teeth of the small juveniles of 2-3 cm in length. In the superficial dermis of juveniles (16-26 cm in length) where scales are formed, the spinulated outer bony layer (squamulin) of the elasmoid scales contains osteonectin, alkaline phosphatase, osteopontin, and calcium deposits that are instead absent in the underlying layer of elasmodin. In particular, these glycoproteins are localized along the scale margin in juveniles where scales grow, as indicated by the presence of PCNA-labeled cells (proliferating). These observations suggest a continuous deposition of new bone during the growth of the scales, possibly under the action of these mineralizing glycoproteins, like in the endoskeleton of terrestrial vertebrates.
Collapse
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab Padova, 35100 Padova, Italy;
- Department of Biology, University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
7
|
Stundl J, Martik ML, Chen D, Raja DA, Franěk R, Pospisilova A, Pšenička M, Metscher BD, Braasch I, Haitina T, Cerny R, Ahlberg PE, Bronner ME. Ancient vertebrate dermal armor evolved from trunk neural crest. Proc Natl Acad Sci U S A 2023; 120:e2221120120. [PMID: 37459514 PMCID: PMC10372632 DOI: 10.1073/pnas.2221120120] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/26/2023] [Indexed: 07/20/2023] Open
Abstract
Bone is an evolutionary novelty of vertebrates, likely to have first emerged as part of ancestral dermal armor that consisted of osteogenic and odontogenic components. Whether these early vertebrate structures arose from mesoderm or neural crest cells has been a matter of considerable debate. To examine the developmental origin of the bony part of the dermal armor, we have performed in vivo lineage tracing in the sterlet sturgeon, a representative of nonteleost ray-finned fish that has retained an extensive postcranial dermal skeleton. The results definitively show that sterlet trunk neural crest cells give rise to osteoblasts of the scutes. Transcriptional profiling further reveals neural crest gene signature in sterlet scutes as well as bichir scales. Finally, histological and microCT analyses of ray-finned fish dermal armor show that their scales and scutes are formed by bone, dentin, and hypermineralized covering tissues, in various combinations, that resemble those of the first armored vertebrates. Taken together, our results support a primitive skeletogenic role for the neural crest along the entire body axis, that was later progressively restricted to the cranial region during vertebrate evolution. Thus, the neural crest was a crucial evolutionary innovation driving the origin and diversification of dermal armor along the entire body axis.
Collapse
Affiliation(s)
- Jan Stundl
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
- Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, 38925Vodnany, Czech Republic
| | - Megan L. Martik
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
| | - Donglei Chen
- Department of Organismal Biology, Uppsala University, SE-75236Uppsala, Sweden
| | - Desingu Ayyappa Raja
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
| | - Roman Franěk
- Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, 38925Vodnany, Czech Republic
| | - Anna Pospisilova
- Department of Zoology, Faculty of Science, Charles University in Prague, 128 00Prague, Czech Republic
| | - Martin Pšenička
- Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, 38925Vodnany, Czech Republic
| | - Brian D. Metscher
- Department of Evolutionary Biology, Theoretical Biology Unit, University of Vienna, 1010Vienna, Austria
| | - Ingo Braasch
- Department of Integrative Biology, Michigan State University, East Lansing, MI48824
- Ecology, Evolution and Behavior Program, Michigan State University, East Lansing, MI48824
| | - Tatjana Haitina
- Department of Organismal Biology, Uppsala University, SE-75236Uppsala, Sweden
| | - Robert Cerny
- Department of Zoology, Faculty of Science, Charles University in Prague, 128 00Prague, Czech Republic
| | - Per E. Ahlberg
- Department of Organismal Biology, Uppsala University, SE-75236Uppsala, Sweden
| | - Marianne E. Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
| |
Collapse
|
8
|
Maden M, Polvadore T, Polanco A, Barbazuk WB, Stanley E. Osteoderms in a mammal the spiny mouse Acomys and the independent evolution of dermal armor. iScience 2023; 26:106779. [PMID: 37378333 PMCID: PMC10291248 DOI: 10.1016/j.isci.2023.106779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/06/2023] [Accepted: 04/25/2023] [Indexed: 06/29/2023] Open
Abstract
Osteoderms are bony plates found in the skin of vertebrates, mostly commonly in reptiles where they have evolved independently multiple times, suggesting the presence of a gene regulatory network that is readily activated and inactivated. They are absent in birds and mammals except for the armadillo. However, we have discovered that in one subfamily of rodents, the Deomyinae, there are osteoderms in the skin of their tails. Osteoderm development begins in the proximal tail skin and is complete 6 weeks after birth. RNA sequencing has identified the gene networks involved in their differentiation. There is a widespread down-regulation of keratin genes and an up-regulation of osteoblast genes and a finely balanced expression of signaling pathways as the osteoderms differentiate. Future comparisons with reptilian osteoderms may allow us to understand how these structures have evolved and why they are so rare in mammals.
Collapse
Affiliation(s)
- Malcolm Maden
- Department of Biology & UF Genetics Institute, University of Florida, Gainesville, FL 32611, USA
| | - Trey Polvadore
- Department of Biology & UF Genetics Institute, University of Florida, Gainesville, FL 32611, USA
| | - Arod Polanco
- Department of Biology & UF Genetics Institute, University of Florida, Gainesville, FL 32611, USA
| | - W. Brad Barbazuk
- Department of Biology & UF Genetics Institute, University of Florida, Gainesville, FL 32611, USA
| | - Edward Stanley
- Florida Museum of Natural History, University of Florida, Museum Road, Gainesville, FL 32611, USA
| |
Collapse
|
9
|
Tzung KW, Lalonde RL, Prummel KD, Mahabaleshwar H, Moran HR, Stundl J, Cass AN, Le Y, Lea R, Dorey K, Tomecka MJ, Zhang C, Brombacher EC, White WT, Roehl HH, Tulenko FJ, Winkler C, Currie PD, Amaya E, Davis MC, Bronner ME, Mosimann C, Carney TJ. A median fin derived from the lateral plate mesoderm and the origin of paired fins. Nature 2023; 618:543-549. [PMID: 37225983 PMCID: PMC10266977 DOI: 10.1038/s41586-023-06100-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 04/19/2023] [Indexed: 05/26/2023]
Abstract
The development of paired appendages was a key innovation during evolution and facilitated the aquatic to terrestrial transition of vertebrates. Largely derived from the lateral plate mesoderm (LPM), one hypothesis for the evolution of paired fins invokes derivation from unpaired median fins via a pair of lateral fin folds located between pectoral and pelvic fin territories1. Whilst unpaired and paired fins exhibit similar structural and molecular characteristics, no definitive evidence exists for paired lateral fin folds in larvae or adults of any extant or extinct species. As unpaired fin core components are regarded as exclusively derived from paraxial mesoderm, any transition presumes both co-option of a fin developmental programme to the LPM and bilateral duplication2. Here, we identify that the larval zebrafish unpaired pre-anal fin fold (PAFF) is derived from the LPM and thus may represent a developmental intermediate between median and paired fins. We trace the contribution of LPM to the PAFF in both cyclostomes and gnathostomes, supporting the notion that this is an ancient trait of vertebrates. Finally, we observe that the PAFF can be bifurcated by increasing bone morphogenetic protein signalling, generating LPM-derived paired fin folds. Our work provides evidence that lateral fin folds may have existed as embryonic anlage for elaboration to paired fins.
Collapse
Affiliation(s)
- Keh-Weei Tzung
- Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Robert L Lalonde
- Department of Pediatrics, Section of Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Karin D Prummel
- Department of Pediatrics, Section of Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Harsha Mahabaleshwar
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Hannah R Moran
- Department of Pediatrics, Section of Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jan Stundl
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, Vodnany, Czech Republic
| | - Amanda N Cass
- Biology Department, Wesleyan University, Middletown, CT, USA
| | - Yao Le
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Robert Lea
- Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Karel Dorey
- Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Monika J Tomecka
- Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore
| | - Changqing Zhang
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Eline C Brombacher
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - William T White
- CSIRO National Research Collections Australia, Australia National Fish Collection, Hobart, Tasmania, Australia
| | - Henry H Roehl
- School of Biosciences, University of Sheffield, Sheffield, UK
| | - Frank J Tulenko
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | - Christoph Winkler
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Peter D Currie
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
- EMBL Australia, Victorian Node, Monash University, Clayton, Victoria, Australia
| | - Enrique Amaya
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Marcus C Davis
- Department of Physical and Biological Sciences, Western New England University, Springfield, MA, USA
| | - Marianne E Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Christian Mosimann
- Department of Pediatrics, Section of Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland.
| | - Tom J Carney
- Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore.
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
10
|
Silic MR, Zhang G. Bioelectricity in Developmental Patterning and Size Control: Evidence and Genetically Encoded Tools in the Zebrafish Model. Cells 2023; 12:cells12081148. [PMID: 37190057 DOI: 10.3390/cells12081148] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/03/2023] [Accepted: 04/10/2023] [Indexed: 05/17/2023] Open
Abstract
Developmental patterning is essential for regulating cellular events such as axial patterning, segmentation, tissue formation, and organ size determination during embryogenesis. Understanding the patterning mechanisms remains a central challenge and fundamental interest in developmental biology. Ion-channel-regulated bioelectric signals have emerged as a player of the patterning mechanism, which may interact with morphogens. Evidence from multiple model organisms reveals the roles of bioelectricity in embryonic development, regeneration, and cancers. The Zebrafish model is the second most used vertebrate model, next to the mouse model. The zebrafish model has great potential for elucidating the functions of bioelectricity due to many advantages such as external development, transparent early embryogenesis, and tractable genetics. Here, we review genetic evidence from zebrafish mutants with fin-size and pigment changes related to ion channels and bioelectricity. In addition, we review the cell membrane voltage reporting and chemogenetic tools that have already been used or have great potential to be implemented in zebrafish models. Finally, new perspectives and opportunities for bioelectricity research with zebrafish are discussed.
Collapse
Affiliation(s)
- Martin R Silic
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA
| | - GuangJun Zhang
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA
- Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
- Purdue Institute for Inflammation, Immunology and Infectious Diseases (PI4D), Purdue University, West Lafayette, IN 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, 625 Harrison Street, West Lafayette, IN 47907, USA
| |
Collapse
|
11
|
Johanson Z. Vertebrate cranial evolution: Contributions and conflict from the fossil record. Evol Dev 2023; 25:119-133. [PMID: 36308394 DOI: 10.1111/ede.12422] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 08/12/2022] [Accepted: 10/05/2022] [Indexed: 01/14/2023]
Abstract
In modern vertebrates, the craniofacial skeleton is complex, comprising cartilage and bone of the neurocranium, dermatocranium and splanchnocranium (and their derivatives), housing a range of sensory structures such as eyes, nasal and vestibulo-acoustic capsules, with the splanchnocranium including branchial arches, used in respiration and feeding. It is well understood that the skeleton derives from neural crest and mesoderm, while the sensory elements derive from ectodermal thickenings known as placodes. Recent research demonstrates that neural crest and placodes have an evolutionary history outside of vertebrates, while the vertebrate fossil record allows the sequence of the evolution of these various features to be understood. Stem-group vertebrates such as Metaspriggina walcotti (Burgess Shale, Middle Cambrian) possess eyes, paired nasal capsules and well-developed branchial arches, the latter derived from cranial neural crest in extant vertebrates, indicating that placodes and neural crest evolved over 500 million years ago. Since that time the vertebrate craniofacial skeleton has evolved, including different types of bone, of potential neural crest or mesodermal origin. One problematic part of the craniofacial skeleton concerns the evolution of the nasal organs, with evidence for both paired and unpaired nasal sacs being the primitive state for vertebrates.
Collapse
|
12
|
Miyamoto K, Kawakami K, Tamura K, Abe G. Developmental independence of median fins from the larval fin fold revises their evolutionary origin. Sci Rep 2022; 12:7521. [PMID: 35525860 PMCID: PMC9079066 DOI: 10.1038/s41598-022-11180-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 04/19/2022] [Indexed: 11/08/2022] Open
Abstract
The median fins of modern fish that show discrete forms (dorsal, anal, and caudal fins) are derived from a continuous fold-like structure, both in ontogeny and phylogeny. The median fin fold (MFF) hypothesis assumes that the median fins evolved by reducing some positions in the continuous fin fold of basal chordates, based on the classical morphological observation of developmental reduction in the larval fin folds of living fish. However, the developmental processes of median fins are still unclear at the cellular and molecular levels. Here, we describe the transition from the larval fin fold into the median fins in zebrafish at the cellular and molecular developmental level. We demonstrate that reduction does not play a role in the emergence of the dorsal fin primordium. Instead, the reduction occurs along with body growth after primordium formation, rather than through actively scrapping the non-fin forming region by inducing cell death. We also report that the emergence of specific mesenchymal cells and their proliferation promote dorsal fin primordium formation. Based on these results, we propose a revised hypothesis for median fin evolution in which the acquisition of de novo developmental mechanisms is a crucial evolutionary component of the discrete forms of median fins.
Collapse
Affiliation(s)
- Kazuhide Miyamoto
- Laboratory of Organ Morphogenesis, Department of Ecological Developmental Adaptability Life Sciences, Graduate School of Life Sciences, Tohoku University, Aobayama Aoba-ku, Sendai, 980-8578, Japan
| | - Koichi Kawakami
- Laboratory of Molecular and Developmental Biology, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan
- Department of Genetics, The Graduate University for Advanced Studies, SOKENDAI, Mishima, Shizuoka, 411-8540, Japan
| | - Koji Tamura
- Laboratory of Organ Morphogenesis, Department of Ecological Developmental Adaptability Life Sciences, Graduate School of Life Sciences, Tohoku University, Aobayama Aoba-ku, Sendai, 980-8578, Japan
| | - Gembu Abe
- Laboratory of Organ Morphogenesis, Department of Ecological Developmental Adaptability Life Sciences, Graduate School of Life Sciences, Tohoku University, Aobayama Aoba-ku, Sendai, 980-8578, Japan.
- Division of Developmental Biology, Department of Functional Morphology, School of Life Science, Faculty of Medicine, Tottori University, Nishi-cho 86, Yonago, 683-8503, Japan.
| |
Collapse
|
13
|
Bump RG, Goo CEA, Horton EC, Rasmussen JP. Osteoblasts pattern endothelium and somatosensory axons during zebrafish caudal fin organogenesis. Development 2022; 149:dev200172. [PMID: 35129199 PMCID: PMC8918783 DOI: 10.1242/dev.200172] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/23/2021] [Indexed: 12/18/2022]
Abstract
Skeletal elements frequently associate with vasculature and somatosensory nerves, which regulate bone development and homeostasis. However, the deep, internal location of bones in many vertebrates has limited in vivo exploration of the neurovascular-bone relationship. Here, we use the zebrafish caudal fin, an optically accessible organ formed of repeating bony ray skeletal units, to determine the cellular relationship between nerves, bones and endothelium. In adult zebrafish, we establish the presence of somatosensory axons running through the inside of the bony fin rays, juxtaposed with osteoblasts on the inner hemiray surface. During development we show that the caudal fin progresses through sequential stages of endothelial plexus formation, bony ray addition, ray innervation and endothelial remodeling. Surprisingly, the initial stages of fin morphogenesis proceed normally in animals lacking either fin endothelium or somatosensory nerves. Instead, we find that sp7+ osteoblasts are required for endothelial remodeling and somatosensory axon innervation in the developing fin. Overall, this study demonstrates that the proximal neurovascular-bone relationship in the adult caudal fin is established during fin organogenesis and suggests that ray-associated osteoblasts pattern axons and endothelium.
Collapse
Affiliation(s)
- Rosalind G Bump
- Department of Biology, University of Washington, Seattle, WA 98195, USA
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
| | - Camille E A Goo
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - Emma C Horton
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - Jeffrey P Rasmussen
- Department of Biology, University of Washington, Seattle, WA 98195, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
| |
Collapse
|
14
|
Huysseune A, Cerny R, Witten PE. The conundrum of pharyngeal teeth origin: the role of germ layers, pouches, and gill slits. Biol Rev Camb Philos Soc 2021; 97:414-447. [PMID: 34647411 PMCID: PMC9293187 DOI: 10.1111/brv.12805] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 12/15/2022]
Abstract
There are several competing hypotheses on tooth origins, with discussions eventually settling in favour of an 'outside-in' scenario, in which internal odontodes (teeth) derived from external odontodes (skin denticles) in jawless vertebrates. The evolution of oral teeth from skin denticles can be intuitively understood from their location at the mouth entrance. However, the basal condition for jawed vertebrates is arguably to possess teeth distributed throughout the oropharynx (i.e. oral and pharyngeal teeth). As skin denticle development requires the presence of ectoderm-derived epithelium and of mesenchyme, it remains to be answered how odontode-forming skin epithelium, or its competence, were 'transferred' deep into the endoderm-covered oropharynx. The 'modified outside-in' hypothesis for tooth origins proposed that this transfer was accomplished through displacement of odontogenic epithelium, that is ectoderm, not only through the mouth, but also via any opening (e.g. gill slits) that connects the ectoderm to the epithelial lining of the pharynx (endoderm). This review explores from an evolutionary and from a developmental perspective whether ectoderm plays a role in (pharyngeal) tooth and denticle formation. Historic and recent studies on tooth development show that the odontogenic epithelium (enamel organ) of oral or pharyngeal teeth can be of ectodermal, endodermal, or of mixed ecto-endodermal origin. Comprehensive data are, however, only available for a few taxa. Interestingly, in these taxa, the enamel organ always develops from the basal layer of a stratified epithelium that is at least bilayered. In zebrafish, a miniaturised teleost that only retains pharyngeal teeth, an epithelial surface layer with ectoderm-like characters is required to initiate the formation of an enamel organ from the basal, endodermal epithelium. In urodele amphibians, the bilayered epithelium is endodermal, but the surface layer acquires ectodermal characters, here termed 'epidermalised endoderm'. Furthermore, ectoderm-endoderm contacts at pouch-cleft boundaries (i.e. the prospective gill slits) are important for pharyngeal tooth initiation, even if the influx of ectoderm via these routes is limited. A balance between sonic hedgehog and retinoic acid signalling could operate to assign tooth-initiating competence to the endoderm at the level of any particular pouch. In summary, three characters are identified as being required for pharyngeal tooth formation: (i) pouch-cleft contact, (ii) a stratified epithelium, of which (iii) the apical layer adopts ectodermal features. These characters delimit the area in which teeth can form, yet cannot alone explain the distribution of teeth over the different pharyngeal arches. The review concludes with a hypothetical evolutionary scenario regarding the persisting influence of ectoderm on pharyngeal tooth formation. Studies on basal osteichthyans with less-specialised types of early embryonic development will provide a crucial test for the potential role of ectoderm in pharyngeal tooth formation and for the 'modified outside-in' hypothesis of tooth origins.
Collapse
Affiliation(s)
- Ann Huysseune
- Research Group Evolutionary Developmental Biology, Biology Department, Ghent University, K.L. Ledeganckstraat 35, Ghent, B-9000, Belgium
| | - Robert Cerny
- Department of Zoology, Faculty of Science, Charles University, Vinicna 7, Prague, 128 44, Czech Republic
| | - P Eckhard Witten
- Research Group Evolutionary Developmental Biology, Biology Department, Ghent University, K.L. Ledeganckstraat 35, Ghent, B-9000, Belgium
| |
Collapse
|
15
|
The Dorsal Integument of the Southern Long-Nosed Armadillo Dasypus hybridus (Cingulata, Xenarthra), and a Possible Neural Crest Origin of the Osteoderms. Discussing Evolutive Consequences for Amniota. J MAMM EVOL 2021. [DOI: 10.1007/s10914-021-09538-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
16
|
Jacob T, Chakravarty A, Panchal A, Patil M, Ghodadra G, Sudhakaran J, Nuesslein-Volhard C. Zebrafish twist2/dermo1 regulates scale shape and scale organization during skin development and regeneration. Cells Dev 2021; 166:203684. [PMID: 33994357 DOI: 10.1016/j.cdev.2021.203684] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 12/22/2020] [Accepted: 04/26/2021] [Indexed: 01/01/2023]
Abstract
Scales are skin appendages in fishes that evolutionarily predate feathers in birds and hair in mammals. Zebrafish scales are dermal in origin and develop during metamorphosis. Understanding regulation of scale development in zebrafish offers an exciting possibility of unraveling how the mechanisms of skin appendage formation evolved in lower vertebrates and whether these mechanisms remained conserved in birds and mammals. Here we have investigated the expression and function of twist 2/dermo1 gene - known for its function in feather and hair formation - in scale development and regeneration. We show that of the four zebrafish twist paralogues, twist2/dermo1 and twist3 are expressed in the scale forming cells during scale development. Their expression is also upregulated during scale regeneration. Our knockout analysis reveals that twist2/dermo1 gene functions in the maintenance of the scale shape and organization during development as well as regeneration. We further show that the expression of twist2/dermo1 and twist3 is regulated by Wnt signaling. Our results demonstrate that the function of twist2/dermo1 in skin appendage formation, presumably under regulation of Wnt signaling, originated during evolution of basal vertebrates.
Collapse
Affiliation(s)
- Tressa Jacob
- Department of Biology, Indian Institute of Science Education and Research-Pune (IISER-Pune), Dr Homi Bhabha Road, Pashan, Pune 411008, India.
| | - Antara Chakravarty
- Department of Biology, Indian Institute of Science Education and Research-Pune (IISER-Pune), Dr Homi Bhabha Road, Pashan, Pune 411008, India
| | - Ankita Panchal
- Dr. Vikram Sarabhai Institute of Cell and Molecular Biology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Gujarat, India
| | - Manjiri Patil
- Department of Biology, Indian Institute of Science Education and Research-Pune (IISER-Pune), Dr Homi Bhabha Road, Pashan, Pune 411008, India
| | - Gautami Ghodadra
- Dr. Vikram Sarabhai Institute of Cell and Molecular Biology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Gujarat, India
| | - Jyotish Sudhakaran
- Department of Biology, Indian Institute of Science Education and Research-Pune (IISER-Pune), Dr Homi Bhabha Road, Pashan, Pune 411008, India
| | | |
Collapse
|
17
|
Miyake M, Sekine M, Suzuki T, Yokoi H. Visualization of Sox10-positive chromatoblasts by GFP fluorescence in flounder larvae and juveniles using electroporation. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2021; 336:393-403. [PMID: 33900043 DOI: 10.1002/jez.b.23045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 03/22/2021] [Accepted: 04/05/2021] [Indexed: 11/08/2022]
Abstract
Japanese flounder are left-right asymmetrical, with features, such as dark, ocular-side specific pigmentation. This pigmentation arises during metamorphic stages, along with the asymmetric differentiation of adult-type chromatophores. Additionally, among juveniles, tank-reared specimens commonly show ectopic pigmentation on their blind sides. In both cases, neural crest-derived Sox10-positive progenitor cells at the dorsal fin base are hypothesized to contribute to chromatophore development. Here, we developed a method to visualize Sox10-positive cells via green fluorescent protein (GFP) fluorescence to directly monitor their migration and differentiation into chromatophores in vivo. Electroporation was applied to introduce GFP reporter vectors into the dorsal fin base of larvae and juveniles. Cre-loxP system vectors were also tested to enable cell labeling even after a decrease in sox10 expression levels. In larvae, undifferentiated Sox10-positive progenitor cells were labeled in the dorsal fin base, whereas newly differentiated adult-type chromatophores were seen dispersed on the ocular side. In juveniles, Sox10-positive cells were identified in the connective tissue of the dorsal fin base and observed prominently in areas of ectopic pigmentation, including several labeled melanophores. Thus, it was suggested that during metamorphic stages, Sox10-positive cells at the dorsal fin base contribute to adult-type chromatophore development, whereas in juveniles, they persist as precursors in the connective tissue, which in response to stimuli migrate to generate ectopic pigmentation. These findings contribute to elucidating pigmentation mechanisms, as well as abnormalities seen in hatchery-reared flounders. The electroporation method may be adapted to diverse animals as an accessible gene transfer method in various research fields, including developmental and biomedical studies.
Collapse
Affiliation(s)
- Minato Miyake
- Laboratory of Marine Life Science and Genetics, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Michiharu Sekine
- Laboratory of Marine Life Science and Genetics, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Tohru Suzuki
- Laboratory of Marine Life Science and Genetics, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Hayato Yokoi
- Laboratory of Marine Life Science and Genetics, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| |
Collapse
|
18
|
Taste buds are not derived from neural crest in mouse, chicken, and zebrafish. Dev Biol 2020; 471:76-88. [PMID: 33326797 DOI: 10.1016/j.ydbio.2020.12.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 02/06/2023]
Abstract
Our lineage tracing studies using multiple Cre mouse lines showed a concurrent labeling of abundant taste bud cells and the underlying connective tissue with a neural crest (NC) origin, warranting a further examination on the issue of whether there is an NC derivation of taste bud cells. In this study, we mapped NC cell lineages in three different models, Sox10-iCreERT2/tdT mouse, GFP+ neural fold transplantation to GFP- chickens, and Sox10-Cre/GFP-RFP zebrafish model. We found that in mice, Sox10-iCreERT2 specifically labels NC cell lineages with a single dose of tamoxifen at E7.5 and that the labeled cells were widely distributed in the connective tissue of the tongue. No labeled cells were found in taste buds or the surrounding epithelium in the postnatal mice. In the GFP+/GFP- chicken chimera model, GFP+ cells migrated extensively to the cranial region of chicken embryos ipsilateral to the surgery side but were absent in taste buds in the base of oral cavity and palate. In zebrafish, Sox10-Cre/GFP-RFP faithfully labeled known NC-derived tissues but did not label taste buds in lower jaw or the barbel. Our data, together with previous findings in axolotl, indicate that taste buds are not derived from NC cells in rodents, birds, amphibians or teleost fish.
Collapse
|
19
|
Rocha M, Beiriger A, Kushkowski EE, Miyashita T, Singh N, Venkataraman V, Prince VE. From head to tail: regionalization of the neural crest. Development 2020; 147:dev193888. [PMID: 33106325 PMCID: PMC7648597 DOI: 10.1242/dev.193888] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The neural crest is regionalized along the anteroposterior axis, as demonstrated by foundational lineage-tracing experiments that showed the restricted developmental potential of neural crest cells originating in the head. Here, we explore how recent studies of experimental embryology, genetic circuits and stem cell differentiation have shaped our understanding of the mechanisms that establish axial-specific populations of neural crest cells. Additionally, we evaluate how comparative, anatomical and genomic approaches have informed our current understanding of the evolution of the neural crest and its contribution to the vertebrate body.
Collapse
Affiliation(s)
- Manuel Rocha
- Committee on Development, Regeneration and Stem Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Anastasia Beiriger
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, IL 60637, USA
| | - Elaine E Kushkowski
- Committee on Development, Regeneration and Stem Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Tetsuto Miyashita
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, IL 60637, USA
- Canadian Museum of Nature, Ottawa, ON K1P 6P4, Canada
| | - Noor Singh
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, IL 60637, USA
| | - Vishruth Venkataraman
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, IL 60637, USA
| | - Victoria E Prince
- Committee on Development, Regeneration and Stem Cell Biology, The University of Chicago, Chicago, IL 60637, USA
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
20
|
Potassium Channel-Associated Bioelectricity of the Dermomyotome Determines Fin Patterning in Zebrafish. Genetics 2020; 215:1067-1084. [PMID: 32546498 PMCID: PMC7404225 DOI: 10.1534/genetics.120.303390] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 06/15/2020] [Indexed: 12/21/2022] Open
Abstract
The roles of bioelectric signaling in developmental patterning remain largely unknown, although recent work has implicated bioelectric signals in cellular processes such as proliferation and migration. Here, we report a mutation in the inwardly rectifying potassium channel (kir) gene, kcnj13/kir7.1, that causes elongation of the fins in the zebrafish insertional mutant Dhi2059. A viral DNA insertion into the noncoding region of kcnj13 results in transient activation and ectopic expression of kcnj13 in the somite and dermomyotome, from which the fin ray progenitors originate. We made an allele-specific loss-of-function kcnj13 mutant by CRISPR (clustered regularly interspaced short palindromic repeats) and showed that it could reverse the long-finned phenotype, but only when located on the same chromosome as the Dhi2059 viral insertion. Also, we showed that ectopic expression of kcnj13 in the dermomyotome of transgenic zebrafish produces phenocopies of the Dhi2059 mutant in a gene dosage-sensitive manner. Finally, to determine whether this developmental function is specific to kcnj13, we ectopically expressed three additional potassium channel genes: kcnj1b, kcnj10a, and kcnk9 We found that all induce the long-finned phenotype, indicating that this function is conserved among potassium channel genes. Taken together, our results suggest that dermomyotome bioelectricity is a new fin-patterning mechanism, and we propose a two-stage bioelectricity model for zebrafish fin patterning. This ion channel-regulated bioelectric developmental patterning mechanism may provide with us new insight into vertebrate morphological evolution and human congenital malformations.
Collapse
|
21
|
Rocha M, Singh N, Ahsan K, Beiriger A, Prince VE. Neural crest development: insights from the zebrafish. Dev Dyn 2019; 249:88-111. [PMID: 31591788 DOI: 10.1002/dvdy.122] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 09/21/2019] [Accepted: 09/22/2019] [Indexed: 12/12/2022] Open
Abstract
Our understanding of the neural crest, a key vertebrate innovation, is built upon studies of multiple model organisms. Early research on neural crest cells (NCCs) was dominated by analyses of accessible amphibian and avian embryos, with mouse genetics providing complementary insights in more recent years. The zebrafish model is a relative newcomer to the field, yet it offers unparalleled advantages for the study of NCCs. Specifically, zebrafish provide powerful genetic and transgenic tools, coupled with rapidly developing transparent embryos that are ideal for high-resolution real-time imaging of the dynamic process of neural crest development. While the broad principles of neural crest development are largely conserved across vertebrate species, there are critical differences in anatomy, morphogenesis, and genetics that must be considered before information from one model is extrapolated to another. Here, our goal is to provide the reader with a helpful primer specific to neural crest development in the zebrafish model. We focus largely on the earliest events-specification, delamination, and migration-discussing what is known about zebrafish NCC development and how it differs from NCC development in non-teleost species, as well as highlighting current gaps in knowledge.
Collapse
Affiliation(s)
- Manuel Rocha
- Committee on Development, Regeneration and Stem Cell Biology, The University of Chicago, Chicago, Illinois
| | - Noor Singh
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, Illinois
| | - Kamil Ahsan
- Committee on Development, Regeneration and Stem Cell Biology, The University of Chicago, Chicago, Illinois
| | - Anastasia Beiriger
- Committee on Development, Regeneration and Stem Cell Biology, The University of Chicago, Chicago, Illinois
| | - Victoria E Prince
- Committee on Development, Regeneration and Stem Cell Biology, The University of Chicago, Chicago, Illinois.,Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, Illinois
| |
Collapse
|
22
|
O'Shea J, Keating JN, Donoghue PCJ. The dermal skeleton of the jawless vertebrate
Tremataspis mammillata
(Osteostraci, stem‐Gnathostomata). J Morphol 2019; 280:999-1025. [DOI: 10.1002/jmor.20997] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/02/2019] [Accepted: 04/23/2019] [Indexed: 01/18/2023]
Affiliation(s)
- James O'Shea
- School of Earth SciencesUniversity of Bristol, Life Sciences Building Bristol UK
| | - Joseph N. Keating
- School of Earth SciencesUniversity of Bristol, Life Sciences Building Bristol UK
- School of Earth and Environmental SciencesUniversity of Manchester Manchester UK
| | | |
Collapse
|
23
|
Stewart TA, Bonilla MM, Ho RK, Hale ME. Adipose fin development and its relation to the evolutionary origins of median fins. Sci Rep 2019; 9:512. [PMID: 30679662 PMCID: PMC6346007 DOI: 10.1038/s41598-018-37040-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 11/29/2018] [Indexed: 12/15/2022] Open
Abstract
The dorsal, anal and caudal fins of vertebrates are proposed to have originated by the partitioning and transformation of the continuous median fin fold that is plesiomorphic to chordates. Evaluating this hypothesis has been challenging, because it is unclear how the median fin fold relates to the adult median fins of vertebrates. To understand how new median fins originate, here we study the development and diversity of adipose fins. Phylogenetic mapping shows that in all lineages except Characoidei (Characiformes) adipose fins develop from a domain of the larval median fin fold. To inform how the larva's median fin fold contributes to the adipose fin, we study Corydoras aeneus (Siluriformes). As the fin fold reduces around the prospective site of the adipose fin, a fin spine develops in the fold, growing both proximally and distally, and sensory innervation, which appears to originate from the recurrent ramus of the facial nerve and from dorsal rami of the spinal cord, develops in the adipose fin membrane. Collectively, these data show how a plesiomorphic median fin fold can serve as scaffolding for the evolution and development of novel, individuated median fins, consistent with the median fin fold hypothesis.
Collapse
Affiliation(s)
- Thomas A Stewart
- Department of Organismal Biology and Anatomy, The University of Chicago, 1027 E. 57th St, Chicago, IL, 60637, USA.
| | - Melvin M Bonilla
- Department of Organismal Biology and Anatomy, The University of Chicago, 1027 E. 57th St, Chicago, IL, 60637, USA
| | - Robert K Ho
- Department of Organismal Biology and Anatomy, The University of Chicago, 1027 E. 57th St, Chicago, IL, 60637, USA
| | - Melina E Hale
- Department of Organismal Biology and Anatomy, The University of Chicago, 1027 E. 57th St, Chicago, IL, 60637, USA
| |
Collapse
|
24
|
Dupin E, Calloni GW, Coelho-Aguiar JM, Le Douarin NM. The issue of the multipotency of the neural crest cells. Dev Biol 2018; 444 Suppl 1:S47-S59. [DOI: 10.1016/j.ydbio.2018.03.024] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 03/29/2018] [Accepted: 03/30/2018] [Indexed: 12/25/2022]
|
25
|
Rothstein M, Bhattacharya D, Simoes-Costa M. The molecular basis of neural crest axial identity. Dev Biol 2018; 444 Suppl 1:S170-S180. [PMID: 30071217 DOI: 10.1016/j.ydbio.2018.07.026] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 07/27/2018] [Accepted: 07/27/2018] [Indexed: 10/28/2022]
Abstract
The neural crest is a migratory cell population that contributes to multiple tissues and organs during vertebrate embryonic development. It is remarkable in its ability to differentiate into an array of different cell types, including melanocytes, cartilage, bone, smooth muscle, and peripheral nerves. Although neural crest cells are formed along the entire anterior-posterior axis of the developing embryo, they can be divided into distinct subpopulations based on their axial level of origin. These groups of cells, which include the cranial, vagal, trunk, and sacral neural crest, display varied migratory patterns and contribute to multiple derivatives. While these subpopulations have been shown to be mostly plastic and to differentiate according to environmental cues, differences in their intrinsic potentials have also been identified. For instance, the cranial neural crest is unique in its ability to give rise to cartilage and bone. Here, we examine the molecular features that underlie such developmental restrictions and discuss the hypothesis that distinct gene regulatory networks operate in these subpopulations. We also consider how reconstructing the phylogeny of the trunk and cranial neural crest cells impacts our understanding of vertebrate evolution.
Collapse
Affiliation(s)
- Megan Rothstein
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | | | - Marcos Simoes-Costa
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
26
|
Aman AJ, Fulbright AN, Parichy DM. Wnt/β-catenin regulates an ancient signaling network during zebrafish scale development. eLife 2018; 7:37001. [PMID: 30014845 PMCID: PMC6072442 DOI: 10.7554/elife.37001] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 06/21/2018] [Indexed: 12/24/2022] Open
Abstract
Understanding how patterning influences cell behaviors to generate three dimensional morphologies is a central goal of developmental biology. Additionally, comparing these regulatory mechanisms among morphologically diverse tissues allows for rigorous testing of evolutionary hypotheses. Zebrafish skin is endowed with a coat of precisely patterned bony scales. We use in-toto live imaging during scale development and manipulations of cell signaling activity to elucidate core features of scale patterning and morphogenesis. These analyses show that scale development requires the concerted activity of Wnt/β-catenin, Ectodysplasin (Eda) and Fibroblast growth factor (Fgf) signaling. This regulatory module coordinates Hedgehog (HH) dependent collective cell migration during epidermal invagination, a cell behavior not previously implicated in skin appendage morphogenesis. Our analyses demonstrate the utility of zebrafish scale development as a tractable system in which to elucidate mechanisms of developmental patterning and morphogenesis, and suggest a single, ancient origin of skin appendage patterning mechanisms in vertebrates.
Collapse
Affiliation(s)
- Andrew J Aman
- Department of Biology and Department of Cell Biology, University of Virginia, Charlottesville, United States
| | - Alexis N Fulbright
- Department of Biology and Department of Cell Biology, University of Virginia, Charlottesville, United States
| | - David M Parichy
- Department of Biology and Department of Cell Biology, University of Virginia, Charlottesville, United States
| |
Collapse
|
27
|
Wood TWP, Nakamura T. Problems in Fish-to-Tetrapod Transition: Genetic Expeditions Into Old Specimens. Front Cell Dev Biol 2018; 6:70. [PMID: 30062096 PMCID: PMC6054942 DOI: 10.3389/fcell.2018.00070] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 06/15/2018] [Indexed: 12/30/2022] Open
Abstract
The fish-to-tetrapod transition is one of the fundamental problems in evolutionary biology. A significant amount of paleontological data has revealed the morphological trajectories of skeletons, such as those of the skull, vertebrae, and appendages in vertebrate history. Shifts in bone differentiation, from dermal to endochondral bones, are key to explaining skeletal transformations during the transition from water to land. However, the genetic underpinnings underlying the evolution of dermal and endochondral bones are largely missing. Recent genetic approaches utilizing model organisms—zebrafish, frogs, chickens, and mice—reveal the molecular mechanisms underlying vertebrate skeletal development and provide new insights for how the skeletal system has evolved. Currently, our experimental horizons to test evolutionary hypotheses are being expanded to non-model organisms with state-of-the-art techniques in molecular biology and imaging. An integration of functional genomics, developmental genetics, and high-resolution CT scanning into evolutionary inquiries allows us to reevaluate our understanding of old specimens. Here, we summarize the current perspectives in genetic programs underlying the development and evolution of the dermal skull roof, shoulder girdle, and appendages. The ratio shifts of dermal and endochondral bones, and its underlying mechanisms, during the fish-to-tetrapod transition are particularly emphasized. Recent studies have suggested the novel cell origins of dermal bones, and the interchangeability between dermal and endochondral bones, obscuring the ontogenetic distinction of these two types of bones. Assimilation of ontogenetic knowledge of dermal and endochondral bones from different structures demands revisions of the prevalent consensus in the evolutionary mechanisms of vertebrate skeletal shifts.
Collapse
Affiliation(s)
- Thomas W P Wood
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
| | - Tetsuya Nakamura
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
| |
Collapse
|
28
|
Rivera-Rivera CJ, Montoya-Burgos JI. Trunk dental tissue evolved independently from underlying dermal bony plates but is associated with surface bones in living odontode-bearing catfish. Proc Biol Sci 2018; 284:rspb.2017.1831. [PMID: 29046381 PMCID: PMC5666107 DOI: 10.1098/rspb.2017.1831] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 09/15/2017] [Indexed: 11/30/2022] Open
Abstract
Although oral dental tissue is a vertebrate attribute, trunk dental tissue evolved in several extinct vertebrate lineages but is rare among living species. The question of which processes trigger dental-tissue formation in the trunk remains open, and would shed light on odontogenesis evolution. Extra-oral dental structures (odontodes) in the trunk are associated with underlying dermal bony plates, leading us to ask whether the formation of trunk bony plates is necessary for trunk odontodes to emerge. To address this question, we focus on Loricarioidei: an extant, highly diverse group of catfish whose species all have odontodes. We examined the location and cover of odontodes and trunk dermal bony plates for all six loricarioid families and 17 non-loricarioid catfish families for comparison. We inferred the phylogeny of Loricarioidei using a new 10-gene dataset, eight time-calibration points, and noise-reduction techniques. Based on this phylogeny, we reconstructed the ancestral states of odontode and bony plate cover, and find that trunk odontodes emerged before dermal bony plates in Loricarioidei. Yet we discovered that when bony plates are absent, other surface bones are always associated with odontodes, suggesting a link between osteogenic and odontogenic developmental pathways, and indicating a remarkable trunk odontogenic potential in Loricarioidei.
Collapse
Affiliation(s)
- Carlos J Rivera-Rivera
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland.,Institute of Genetics and Genomics in Geneva (iGE3), University of Geneva, Geneva, Switzerland
| | - Juan I Montoya-Burgos
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland .,Institute of Genetics and Genomics in Geneva (iGE3), University of Geneva, Geneva, Switzerland
| |
Collapse
|
29
|
Epidermal regulation of bone morphogenesis through the development and regeneration of osteoblasts in the zebrafish scale. Dev Biol 2018. [DOI: 10.1016/j.ydbio.2018.03.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
30
|
Hall BK. Germ layers, the neural crest and emergent organization in development and evolution. Genesis 2018; 56:e23103. [PMID: 29637683 DOI: 10.1002/dvg.23103] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 03/16/2018] [Accepted: 03/19/2018] [Indexed: 12/13/2022]
Abstract
Discovered in chick embryos by Wilhelm His in 1868 and named the neural crest by Arthur Milnes Marshall in 1879, the neural crest cells that arise from the neural folds have since been shown to differentiate into almost two dozen vertebrate cell types and to have played major roles in the evolution of such vertebrate features as bone, jaws, teeth, visceral (pharyngeal) arches, and sense organs. I discuss the discovery that ectodermal neural crest gave rise to mesenchyme and the controversy generated by that finding; the germ layer theory maintained that only mesoderm could give rise to mesenchyme. A second topic of discussion is germ layers (including the neural crest) as emergent levels of organization in animal development and evolution that facilitated major developmental and evolutionary change. The third topic is gene networks, gene co-option, and the evolution of gene-signaling pathways as key to developmental and evolutionary transitions associated with the origin and evolution of the neural crest and neural crest cells.
Collapse
Affiliation(s)
- Brian K Hall
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, B3H 2H8, Canada
| |
Collapse
|
31
|
Woltering JM, Holzem M, Schneider RF, Nanos V, Meyer A. The skeletal ontogeny of Astatotilapia burtoni - a direct-developing model system for the evolution and development of the teleost body plan. BMC DEVELOPMENTAL BIOLOGY 2018; 18:8. [PMID: 29614958 PMCID: PMC5883283 DOI: 10.1186/s12861-018-0166-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 03/01/2018] [Indexed: 12/20/2022]
Abstract
Background The experimental approach to the evolution and development of the vertebrate skeleton has to a large extent relied on “direct-developing” amniote model organisms, such as the mouse and the chicken. These organisms can however only be partially informative where it concerns secondarily lost features or anatomical novelties not present in their lineages. The widely used anamniotes Xenopus and zebrafish are “indirect-developing” organisms that proceed through an extended time as free-living larvae, before adopting many aspects of their adult morphology, complicating experiments at these stages, and increasing the risk for lethal pleiotropic effects using genetic strategies. Results Here, we provide a detailed description of the development of the osteology of the African mouthbrooding cichlid Astatotilapia burtoni, primarily focusing on the trunk (spinal column, ribs and epicentrals) and the appendicular skeleton (pectoral, pelvic, dorsal, anal, caudal fins and scales), and to a lesser extent on the cranium. We show that this species has an extremely “direct” mode of development, attains an adult body plan within 2 weeks after fertilization while living off its yolk supply only, and does not pass through a prolonged larval period. Conclusions As husbandry of this species is easy, generation time is short, and the species is amenable to genetic targeting strategies through microinjection, we suggest that the use of this direct-developing cichlid will provide a valuable model system for the study of the vertebrate body plan, particularly where it concerns the evolution and development of fish or teleost specific traits. Based on our results we comment on the development of the homocercal caudal fin, on shared ontogenetic patterns between pectoral and pelvic girdles, and on the evolution of fin spines as novelty in acanthomorph fishes. We discuss the differences between “direct” and “indirect” developing actinopterygians using a comparison between zebrafish and A. burtoni development.
Collapse
Affiliation(s)
- Joost M Woltering
- Chair in Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Universitätsstraße 10, 78457, Constance, Germany.
| | - Michaela Holzem
- Chair in Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Universitätsstraße 10, 78457, Constance, Germany.,Current address: Department of Biological an Medical Sciences, Oxford Brookes University, Headington Campus, Oxford, OX3 0 BP, UK
| | - Ralf F Schneider
- Chair in Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Universitätsstraße 10, 78457, Constance, Germany
| | - Vasilios Nanos
- Chair in Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Universitätsstraße 10, 78457, Constance, Germany
| | - Axel Meyer
- Chair in Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Universitätsstraße 10, 78457, Constance, Germany.
| |
Collapse
|
32
|
Carney TJ, Mosimann C. Switch and Trace: Recombinase Genetics in Zebrafish. Trends Genet 2018; 34:362-378. [PMID: 29429760 DOI: 10.1016/j.tig.2018.01.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 01/04/2018] [Accepted: 01/08/2018] [Indexed: 01/04/2023]
Abstract
Transgenic approaches are instrumental for labeling and manipulating cells and cellular machineries in vivo. Transgenes have traditionally been static entities that remained unaltered following genome integration, limiting their versatility. The development of DNA recombinase-based methods to modify, excise, or rearrange transgene cassettes has introduced versatile control of transgene activity and function. In particular, recombinase-controlled transgenes enable regulation of exogenous gene expression, conditional mutagenesis, and genetic lineage tracing. In zebrafish, transgenesis-based recombinase genetics using Cre/lox, Flp/FRT, and ΦC31 are increasingly applied to study development and homeostasis, and to generate disease models. Intersected with the versatile imaging capacity of the zebrafish model and recent breakthroughs in genome editing, we review and discuss past, current, and potential future approaches and resources for recombinase-based techniques in zebrafish.
Collapse
Affiliation(s)
- Tom J Carney
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore; Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology, and Research (A*STAR), Singapore.
| | - Christian Mosimann
- Institute of Molecular Life Sciences, University of Zürich, Zürich, Switzerland.
| |
Collapse
|
33
|
The neural crest and evolution of the head/trunk interface in vertebrates. Dev Biol 2018; 444 Suppl 1:S60-S66. [PMID: 29408469 DOI: 10.1016/j.ydbio.2018.01.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 01/24/2018] [Accepted: 01/24/2018] [Indexed: 12/31/2022]
Abstract
The migration and distribution patterns of neural crest (NC) cells reflect the distinct embryonic environments of the head and trunk: cephalic NC cells migrate predominantly along the dorsolateral pathway to populate the craniofacial and pharyngeal regions, whereas trunk crest cells migrate along the ventrolateral pathways to form the dorsal root ganglia. These two patterns thus reflect the branchiomeric and somitomeric architecture, respectively, of the vertebrate body plan. The so-called vagal NC occupies a postotic, intermediate level between the head and trunk NC. This level of NC gives rise to both trunk- and cephalic-type (circumpharyngeal) NC cells. The anatomical pattern of the amphioxus, a basal chordate, suggests that somites and pharyngeal gills coexist along an extensive length of the body axis, indicating that the embryonic environment is similar to that of vertebrate vagal NC cells and may have been ancestral for vertebrates. The amniote-like condition in which the cephalic and trunk domains are distinctly separated would have been brought about, in part, by anteroposterior reduction of the pharyngeal domain.
Collapse
|
34
|
Trunk neural crest origin of dermal denticles in a cartilaginous fish. Proc Natl Acad Sci U S A 2017; 114:13200-13205. [PMID: 29158384 DOI: 10.1073/pnas.1713827114] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cartilaginous fishes (e.g., sharks and skates) possess a postcranial dermal skeleton consisting of tooth-like "denticles" embedded within their skin. As with teeth, the principal skeletal tissue of dermal denticles is dentine. In the head, cranial neural crest cells give rise to the dentine-producing cells (odontoblasts) of teeth. However, trunk neural crest cells are generally regarded as nonskeletogenic, and so the embryonic origin of trunk denticle odontoblasts remains unresolved. Here, we use expression of FoxD3 to pinpoint the specification and emigration of trunk neural crest cells in embryos of a cartilaginous fish, the little skate (Leucoraja erinacea). Using cell lineage tracing, we further demonstrate that trunk neural crest cells do, in fact, give rise to odontoblasts of trunk dermal denticles. These findings expand the repertoire of vertebrate trunk neural crest cell fates during normal development, highlight the likely primitive skeletogenic potential of this cell population, and point to a neural crest origin of dentine throughout the ancestral vertebrate dermal skeleton.
Collapse
|
35
|
Paço A, Freitas R. Hox D genes and the fin-to-limb
transition: Insights from fish studies. Genesis 2017; 56. [DOI: 10.1002/dvg.23069] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 08/14/2017] [Accepted: 09/08/2017] [Indexed: 11/07/2022]
Affiliation(s)
- Ana Paço
- IBMC - Instituto de Biologia Celular e Molecular; Porto Portugal
- I3S - Instituto de Investigação e Inovação em Saúde; Porto Portugal
- Universidade do Porto; Porto Portugal
| | - Renata Freitas
- IBMC - Instituto de Biologia Celular e Molecular; Porto Portugal
- I3S - Instituto de Investigação e Inovação em Saúde; Porto Portugal
- Universidade do Porto; Porto Portugal
| |
Collapse
|
36
|
Chen J, Liu X, Yao X, Gao F, Bao B. Dorsal fin development in flounder, Paralichthys olivaceus: Bud formation and its cellular origin. Gene Expr Patterns 2017; 25-26:22-28. [PMID: 28442438 DOI: 10.1016/j.gep.2017.04.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Revised: 04/15/2017] [Accepted: 04/19/2017] [Indexed: 01/25/2023]
Abstract
The development of the median fin has not been investigated extensively in teleosts, although in other fishes it has been proposed that it involves the same genetic programs operating in the paired appendages. Adult median fins develop from the larval bud; therefore an investigation of fin bud formation and its cellular origin is essential to understanding the maturation mechanisms. In Paralichthys olivaceus, skeletogenesis proceeds from an anterior to posterior direction providing a good opportunity to study the formation of dorsal fin bud. An apical ectodermal ridge appeared at the basal stratum of the presumptive dorsal fin was first observed at 3 days post hatching. Then the apical ectodermal fold formed as the bud outgrew in 6 days post-hatch larvae. The bud continued to grow, breaking through the dorsal fin fold in 9 days post-hatch larvae. At 13 days post-hatch, the bud grew beyond the edge of the fin fold and formed into the four future rays. Molecular markers of cell type showed the existence of neural crest cells, scleroblasts and sclerotomes in the dorsal fin bud. The earliest gene expression in the dorsal fin bud was Hoxd10 at 3 days post-hatch larvae, then Hoxd9, Hoxd11 and Hoxd12. This indicates Hoxd10 might be a candidate molecular marker of the bud formation site. Some key molecular markers for paired appendage development, such as FGF8, Wnt7, and Shh were expressed at the apical ectodermal ridge and later the apical ectodermal fold. Moreover, the form of the dorsal fin bud could be inhibited by Hh pathway inhibitor, further indicating that common basic molecular mechanisms might be utilized by median fins.
Collapse
Affiliation(s)
- Jie Chen
- The Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, Shanghai 201306, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Xiaoyu Liu
- The Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, Shanghai 201306, China
| | - Xiaohua Yao
- The Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, Shanghai 201306, China
| | - Fei Gao
- The Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, Shanghai 201306, China
| | - Baolong Bao
- The Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, Shanghai 201306, China.
| |
Collapse
|
37
|
Tocts AMS, Johnson DW, Carter AJR. Strong nonlinear selection against fluctuating asymmetry in wild populations of a marine fish. Evolution 2016; 70:2899-2908. [PMID: 27757960 DOI: 10.1111/evo.13092] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 08/27/2016] [Accepted: 09/26/2016] [Indexed: 01/10/2023]
Abstract
Theoretical links between fluctuating asymmetry (FA) and fitness have led many to use FA as a proxy for average fitness. However, studies examining whether asymmetry actually correlates with individual fitness in wild populations are relatively rare and often use simple measures of association (e.g., correlation coefficients). Consequently, the pattern of selection on asymmetry in the wild is seldom clear. We examined selection on FA of pectoral fin morphology in two wild populations of a marine fish (the kelp perch; Brachyistius frenatus). As expected, variance in signed FA in each initial sample was significantly greater than that found in the surviving population, indicating selection against FA. Our estimate of the fitness surface confirmed perfect symmetry as the phenotypic optimum and indicated strong, nonlinear selection against asymmetry. No difference in the form of selection was detected between populations. However, the level of FA in the initial samples varied among populations, leading to an overall difference in the level of selective mortality. Our results suggest that selection on asymmetry in wild populations may be strongly nonlinear, and indicate that the demographic costs of asymmetry may play a substantial role in the dynamics of populations.
Collapse
Affiliation(s)
- Ashley M S Tocts
- Department of Biological Sciences, California State University, Long Beach, CA, 90840, USA
| | - Darren W Johnson
- Department of Biological Sciences, California State University, Long Beach, CA, 90840, USA
| | - Ashley J R Carter
- Department of Biological Sciences, California State University, Long Beach, CA, 90840, USA
| |
Collapse
|
38
|
Digits and fin rays share common developmental histories. Nature 2016; 537:225-228. [PMID: 27533041 PMCID: PMC5161576 DOI: 10.1038/nature19322] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 07/20/2016] [Indexed: 12/14/2022]
Abstract
Understanding the evolutionary transformation of fish fins into tetrapod limbs is a fundamental problem in biology. The search for antecedents of tetrapod digits in fish has remained controversial because the distal skeletons of limbs and fins differ structurally, developmentally, and histologically. Moreover, comparisons of fins with limbs have been limited by a relative paucity of data on the cellular and molecular processes underlying the development of the fin skeleton. Here, we provide a functional analysis, using CRISPR/Cas9 and fate mapping, of 5' hox genes and enhancers in zebrafish that are indispensable for the development of the wrists and digits of tetrapods. We show that cells marked by the activity of an autopodial hoxa13 enhancer exclusively form elements of the fin fold, including the osteoblasts of the dermal rays. In hox13 knockout fish, we find that a marked reduction and loss of fin rays is associated with an increased number of endochondral distal radials. These discoveries reveal a cellular and genetic connection between the fin rays of fish and the digits of tetrapods and suggest that digits originated via the transition of distal cellular fates.
Collapse
|
39
|
Singh AP, Dinwiddie A, Mahalwar P, Schach U, Linker C, Irion U, Nüsslein-Volhard C. Pigment Cell Progenitors in Zebrafish Remain Multipotent through Metamorphosis. Dev Cell 2016; 38:316-30. [DOI: 10.1016/j.devcel.2016.06.020] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 05/24/2016] [Accepted: 06/15/2016] [Indexed: 12/21/2022]
|
40
|
Loewen TN, Carriere B, Reist JD, Halden NM, Anderson WG. Linking physiology and biomineralization processes to ecological inferences on the life history of fishes. Comp Biochem Physiol A Mol Integr Physiol 2016; 202:123-140. [PMID: 27328377 DOI: 10.1016/j.cbpa.2016.06.017] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 06/10/2016] [Accepted: 06/14/2016] [Indexed: 02/07/2023]
Abstract
Biomineral chemistry is frequently used to infer life history events and habitat use in fishes; however, significant gaps remain in our understanding of the underlying mechanisms. Here we have taken a multidisciplinary approach to review the current understanding of element incorporation into biomineralized structures in fishes. Biominerals are primarily composed of calcium-based derivatives such as calcium carbonate found in otoliths and calcium phosphates found in scales, fins and bones. By focusing on non-essential life elements (strontium and barium) and essential life elements (calcium, zinc and magnesium), we attempt to connect several fields of study to synergise how physiology may influence biomineralization and subsequent inference of life history. Data provided in this review indicate that the presence of non-essential elements in biominerals of fish is driven primarily by hypo- and hyper-calcemic environmental conditions. The uptake kinetics between environmental calcium and its competing mimics define what is ultimately incorporated in the biomineral structure. Conversely, circannual hormonally driven variations likely influence essential life elements like zinc that are known to associate with enzyme function. Environmental temperature and pH as well as uptake kinetics for strontium and barium isotopes demonstrate the role of mass fractionation in isotope selection for uptake into fish bony structures. In consideration of calcium mobilisation, the action of osteoclast-like cells on calcium phosphates of scales, fins and bones likely plays a role in fractionation along with transport kinetics. Additional investigations into calcium mobilisation are warranted to understand differing views of strontium, and barium isotope fractionation between calcium phosphates and calcium carbonate structures in fishes.
Collapse
Affiliation(s)
- T N Loewen
- Interdisciplinary Studies (Geological Sciences), University of Manitoba, Winnipeg, MB, Canada; Freshwater Institute, Fisheries & Oceans, Winnipeg, MB, Canada.
| | - B Carriere
- Biological Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - J D Reist
- Freshwater Institute, Fisheries & Oceans, Winnipeg, MB, Canada
| | - N M Halden
- Geological Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - W G Anderson
- Biological Sciences, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
41
|
Abstract
Adipose fins are positioned between the dorsal and caudal fins of many teleost fishes and primitively lack skeleton. In at least four lineages, adipose fins have evolved lepidotrichia (bony fin rays), co-opting the developmental programme for the dermal skeleton of other fins into this new territory. Here I provide, to my knowledge, the first description of lepidotrichia development in an adipose fin, characterizing the ontogeny of the redtail catfish, Phractocephalus hemioliopterus. Development of these fin rays differs from canonical lepidotrich development in the following four ways: skeleton begins developing in adults, not in larvae; rays begin developing at the fin's distal tip, not proximally; the order in which rays ossify is variable, not fixed; and lepidotrichia appear to grow both proximally and distally, not exclusively proximodistally. Lepidotrichia are often wavy, of irregular thickness and exhibit no regular pattern of segmentation or branching. This skeleton is among the most variable observed in a vertebrate appendage, offering a unique opportunity to explore the basis of hypervariation, which is generally assumed to reflect an absence of function. I argue that this variation reflects a lack of canalization as compared with other, more ancient lepidotrichs and suggest developmental context can affect the morphology of serial homologues.
Collapse
Affiliation(s)
- Thomas A Stewart
- Department of Organismal Biology and Anatomy, University of Chicago, 1027 E. 57th Street, Chicago, IL 60637, USA
| |
Collapse
|
42
|
Abstract
As the processes of embryogenesis become increasingly well understood, there is growing interest in the development that occurs at later, postembryonic stages. Postembryonic development holds tremendous potential for discoveries of both fundamental and translational importance. Zebrafish, which are small, rapidly and externally developing, and which boast a wealth of genetic resources, are an outstanding model of vertebrate postembryonic development. Nonetheless, there are specific challenges posed by working with zebrafish at these stages, and this chapter is meant to serve as a primer for those working with larval and juvenile zebrafish. Since accurate staging is critical for high-quality results and experimental reproducibility, we outline best practices for reporting postembryonic developmental progress. Emphasizing the importance of accurate staging, we present new data showing that rates of growth and size-stage relationships can differ even between wild-type strains. Finally, since rapid and uniform development is particularly critical when working at postembryonic stages, we briefly describe methods that we use to achieve high rates of growth and developmental uniformity through postembryonic stages in both wild-type and growth-compromised zebrafish.
Collapse
Affiliation(s)
- S K McMenamin
- University of Massachusetts, Lowell, MA, United States; University of Washington, Seattle, WA, United States
| | - M N Chandless
- University of Washington, Seattle, WA, United States
| | - D M Parichy
- University of Washington, Seattle, WA, United States
| |
Collapse
|
43
|
Molecular mechanisms underlying the exceptional adaptations of batoid fins. Proc Natl Acad Sci U S A 2015; 112:15940-5. [PMID: 26644578 DOI: 10.1073/pnas.1521818112] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Extreme novelties in the shape and size of paired fins are exemplified by extinct and extant cartilaginous and bony fishes. Pectoral fins of skates and rays, such as the little skate (Batoid, Leucoraja erinacea), show a strikingly unique morphology where the pectoral fin extends anteriorly to ultimately fuse with the head. This results in a morphology that essentially surrounds the body and is associated with the evolution of novel swimming mechanisms in the group. In an approach that extends from RNA sequencing to in situ hybridization to functional assays, we show that anterior and posterior portions of the pectoral fin have different genetic underpinnings: canonical genes of appendage development control posterior fin development via an apical ectodermal ridge (AER), whereas an alternative Homeobox (Hox)-Fibroblast growth factor (Fgf)-Wingless type MMTV integration site family (Wnt) genetic module in the anterior region creates an AER-like structure that drives anterior fin expansion. Finally, we show that GLI family zinc finger 3 (Gli3), which is an anterior repressor of tetrapod digits, is expressed in the posterior half of the pectoral fin of skate, shark, and zebrafish but in the anterior side of the pelvic fin. Taken together, these data point to both highly derived and deeply ancestral patterns of gene expression in skate pectoral fins, shedding light on the molecular mechanisms behind the evolution of novel fin morphologies.
Collapse
|
44
|
Vullo R, Guinot G. Denticle-embedded ampullary organs in a Cretaceous shark provide unique insight into the evolution of elasmobranch electroreceptors. Naturwissenschaften 2015; 102:65. [PMID: 26420508 DOI: 10.1007/s00114-015-1315-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 09/13/2015] [Accepted: 09/17/2015] [Indexed: 11/29/2022]
Abstract
Here, we report a novel type of dermal denticle (or placoid scale), unknown among both living and fossil chondrichthyan fishes, in a Cretaceous lamniform shark. By their morphology and location, these dermal denticles, grouped into clusters in the cephalic region, appear to have been directly associated with the electrosensory ampullary system. These denticles have a relatively enlarged (∼350 μm in diameter), ornamented crown with a small (∼100 μm) asterisk- or cross-shaped central perforation connected to a multi-alveolate internal cavity. The formation of such a complex structure can be explained by the annular coalescence and fusion, around an ampullary vesicle, of several developmental units still at papillary stage (i.e. before mineralization), leading to a single denticle embedding an alveolar ampulla devoid of canal. This differs from larger typical ampullae of Lorenzini with a well-developed canal opening in a pore of the skin and may represent another adaptive response to low skin resistance. Since it has been recently demonstrated that ampullary organs arise from lateral line placodes in chondrichthyans, this highly specialized type of dermal denticle (most likely non-deciduous) may be derived from the modified placoid scales covering the superficial neuromasts (pit organs) of the mechanosensory lateral line system of many modern sharks.
Collapse
Affiliation(s)
- Romain Vullo
- Géosciences Rennes, UMR CNRS 6118, Université de Rennes 1, 35042, Rennes, France.
| | - Guillaume Guinot
- Département de Géologie et Paléontologie, Muséum d'Histoire Naturelle de Genève, CP 6434, 1211, Geneva 6, Switzerland
- Institut des Sciences de l'Evolution, UMR CNRS 5554, Université de Montpellier, 34095, Montpellier, France
| |
Collapse
|
45
|
Taniguchi Y, Kurth T, Medeiros DM, Tazaki A, Ramm R, Epperlein HH. Mesodermal origin of median fin mesenchyme and tail muscle in amphibian larvae. Sci Rep 2015; 5:11428. [PMID: 26086331 PMCID: PMC4471895 DOI: 10.1038/srep11428] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 04/01/2015] [Indexed: 01/02/2023] Open
Abstract
Mesenchyme is an embryonic precursor tissue that generates a range of structures in vertebrates including cartilage, bone, muscle, kidney, and the erythropoietic system. Mesenchyme originates from both mesoderm and the neural crest, an ectodermal cell population, via an epithelial to mesenchymal transition (EMT). Because ectodermal and mesodermal mesenchyme can form in close proximity and give rise to similar derivatives, the embryonic origin of many mesenchyme-derived tissues is still unclear. Recent work using genetic lineage tracing methods have upended classical ideas about the contributions of mesodermal mesenchyme and neural crest to particular structures. Using similar strategies in the Mexican axolotl (Ambystoma mexicanum), and the South African clawed toad (Xenopus laevis), we traced the origins of fin mesenchyme and tail muscle in amphibians. Here we present evidence that fin mesenchyme and striated tail muscle in both animals are derived solely from mesoderm and not from neural crest. In the context of recent work in zebrafish, our experiments suggest that trunk neural crest cells in the last common ancestor of tetrapods and ray-finned fish lacked the ability to form ectomesenchyme and its derivatives.
Collapse
Affiliation(s)
- Yuka Taniguchi
- 1] Department of Anatomy, Technische Universität Dresden, Fetscherstrasse 74, D-01307 Dresden, Germany [2] Center for Regenerative Therapies, Technische Universität Dresden, Fetscherstrasse 105, D-01307 Dresden, Germany
| | - Thomas Kurth
- Center for Regenerative Therapies, Technische Universität Dresden, Fetscherstrasse 105, D-01307 Dresden, Germany
| | - Daniel Meulemans Medeiros
- Department of Ecology and Evolutionary Biology (EBIO), University of Colorado, Ramaley N122 Campus Box 334, Boulder, CO 80309-0334, USA
| | - Akira Tazaki
- Center for Regenerative Therapies, Technische Universität Dresden, Fetscherstrasse 105, D-01307 Dresden, Germany
| | - Robert Ramm
- 1] Center for Regenerative Therapies, Technische Universität Dresden, Fetscherstrasse 105, D-01307 Dresden, Germany [2] Leibniz Research Labs for Biotechnology Artificial Organs (LEBAO),Dept of Cardiac, Thoracic,Transplantation and Vascular Surgery, MHHCarl Neuberg Str. 1, D-30625 Hannover, Germany
| | - Hans-Henning Epperlein
- 1] Department of Anatomy, Technische Universität Dresden, Fetscherstrasse 74, D-01307 Dresden, Germany [2] Center for Regenerative Therapies, Technische Universität Dresden, Fetscherstrasse 105, D-01307 Dresden, Germany
| |
Collapse
|
46
|
Evolution of vertebrates as viewed from the crest. Nature 2015; 520:474-482. [PMID: 25903629 DOI: 10.1038/nature14436] [Citation(s) in RCA: 155] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 02/05/2015] [Indexed: 12/21/2022]
Abstract
The origin of vertebrates was accompanied by the advent of a novel cell type: the neural crest. Emerging from the central nervous system, these cells migrate to diverse locations and differentiate into numerous derivatives. By coupling morphological and gene regulatory information from vertebrates and other chordates, we describe how addition of the neural-crest-specification program may have enabled cells at the neural plate border to acquire multipotency and migratory ability. Analysis of the topology of the neural crest gene regulatory network can serve as a useful template for understanding vertebrate evolution, including elaboration of neural crest derivatives.
Collapse
|
47
|
Hirasawa T, Kuratani S. Evolution of the vertebrate skeleton: morphology, embryology, and development. ZOOLOGICAL LETTERS 2015; 1:2. [PMID: 26605047 PMCID: PMC4604106 DOI: 10.1186/s40851-014-0007-7] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 02/19/2014] [Indexed: 05/08/2023]
Abstract
Two major skeletal systems-the endoskeleton and exoskeleton-are recognized in vertebrate evolution. Here, we propose that these two systems are distinguished primarily by their relative positions, not by differences in embryonic histogenesis or cell lineage of origin. Comparative embryologic analyses have shown that both types of skeleton have changed their mode of histogenesis during evolution. Although exoskeletons were thought to arise exclusively from the neural crest, recent experiments in teleosts have shown that exoskeletons in the trunk are mesodermal in origin. The enameloid and dentine-coated postcranial exoskeleton seen in many vertebrates does not appear to represent an ancestral condition, as previously hypothesized, but rather a derived condition, in which the enameloid and dentine tissues became accreted to bones. Recent data from placoderm fossils are compatible with this scenario. In contrast, the skull contains neural crest-derived bones in its rostral part. Recent developmental studies suggest that the boundary between neural crest- and mesoderm-derived bones may not be consistent throughout evolution. Rather, the relative positions of bony elements may be conserved, and homologies of bony elements have been retained, with opportunistic changes in the mechanisms and cell lineages of development.
Collapse
Affiliation(s)
- Tatsuya Hirasawa
- Evolutionary Morphology Laboratory, RIKEN, 2-2-3 Minatojima-minami, Chuo-ku, Kobe, Hyogo 650-0047 Japan
| | - Shigeru Kuratani
- Evolutionary Morphology Laboratory, RIKEN, 2-2-3 Minatojima-minami, Chuo-ku, Kobe, Hyogo 650-0047 Japan
| |
Collapse
|
48
|
Duran I, Ruiz-Sánchez J, Santamaría JA, Marí-Beffa M. Holmgren's principle of delamination during fin skeletogenesis. Mech Dev 2014; 135:16-30. [PMID: 25460362 DOI: 10.1016/j.mod.2014.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 11/12/2014] [Accepted: 11/14/2014] [Indexed: 10/24/2022]
Abstract
During fin morphogenesis, several mesenchyme condensations occur to give rise to the dermal skeleton. Although each of them seems to create distinctive and unique structures, they all follow the premises of the same morphogenetic principle. Holmgren's principle of delamination was first proposed to describe the morphogenesis of skeletal elements of the cranium, but Jarvik extended it to the development of the fin exoskeleton. Since then, some cellular or molecular explanations, such as the "flypaper" model (Thorogood et al.), or the evolutionary description by Moss, have tried to clarify this topic. In this article, we review new data from zebrafish studies to meet these criteria described by Holmgren and other authors. The variety of cell lineages involved in these skeletogenic condensations sheds light on an open discussion of the contributions of mesoderm- versus neural crest-derived cell lineages to the development of the head and trunk skeleton. Moreover, we discuss emerging molecular studies that are disclosing conserved regulatory mechanisms for dermal skeletogenesis and similarities during fin development and regeneration, which may have important implications in the potential use of the zebrafish fin as a model for regenerative medicine.
Collapse
Affiliation(s)
- I Duran
- Laboratory of Bioengineering and Tissue Regeneration (LABRET), Department of Cell Biology, Genetics and Physiology, Biomedical Research Institute of Málaga (IBIMA), Faculty of Sciences, University of Málaga, 29071 Málaga, Spain; Department of Orthopedic Surgery, University of California, Los Angeles, CA 90095, USA; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 29071 Málaga, Spain.
| | - J Ruiz-Sánchez
- Laboratory of Bioengineering and Tissue Regeneration (LABRET), Department of Cell Biology, Genetics and Physiology, Biomedical Research Institute of Málaga (IBIMA), Faculty of Sciences, University of Málaga, 29071 Málaga, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 29071 Málaga, Spain
| | - J A Santamaría
- Laboratory of Bioengineering and Tissue Regeneration (LABRET), Department of Cell Biology, Genetics and Physiology, Biomedical Research Institute of Málaga (IBIMA), Faculty of Sciences, University of Málaga, 29071 Málaga, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 29071 Málaga, Spain
| | - M Marí-Beffa
- Laboratory of Bioengineering and Tissue Regeneration (LABRET), Department of Cell Biology, Genetics and Physiology, Biomedical Research Institute of Málaga (IBIMA), Faculty of Sciences, University of Málaga, 29071 Málaga, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 29071 Málaga, Spain.
| |
Collapse
|
49
|
Dupin E, Le Douarin NM. The neural crest, a multifaceted structure of the vertebrates. ACTA ACUST UNITED AC 2014; 102:187-209. [PMID: 25219958 DOI: 10.1002/bdrc.21080] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Accepted: 08/22/2014] [Indexed: 12/29/2022]
Abstract
In this review, several features of the cells originating from the lateral borders of the primitive neural anlagen, the neural crest (NC) are considered. Among them, their multipotentiality, which together with their migratory properties, leads them to colonize the developing body and to participate in the development of many tissues and organs. The in vitro analysis of the developmental capacities of single NC cells (NCC) showed that they present several analogies with the hematopoietic cells whose differentiation involves the activity of stem cells endowed with different arrays of developmental potentialities. The permanence of such NC stem cells in the adult organism raises the problem of their role at that stage of life. The NC has appeared during evolution in the vertebrate phylum and is absent in their Protocordates ancestors. The major role of the NCC in the development of the vertebrate head points to a critical role for this structure in the remarkable diversification and radiation of this group of animals.
Collapse
Affiliation(s)
- Elisabeth Dupin
- INSERM, U968, Paris, F-75012, France; Sorbonne Universités, UPMC Univ Paris 06, UMR_S 968, Institut de la Vision, Paris, F-75012, France; CNRS, UMR_7210, Paris, F-75012, France
| | | |
Collapse
|
50
|
Abstract
The role of teeth and jaws, as innovations that underpinned the evolutionary success of living jawed vertebrates, is well understood, but their evolutionary origins are less clear. The origin of teeth, in particular, is mired in controversy with competing hypotheses advocating their origin in external dermal denticles ("outside-in") versus a de novo independent origin ("inside-out"). No evidence has ever been presented demonstrating materially the traditional "outside-in" theory of teeth evolving from dermal denticles, besides circumstantial evidence of a commonality of structure and organogenesis, and phylogenetic evidence that dermal denticles appear earlier in vertebrate phylogeny that do teeth. Meanwhile, evidence has mounted in support of "inside-out" theory, through developmental studies that have indicated that endoderm is required for tooth development, and fossil studies that have shown that tooth-like structures evolved before dermal denticles (conodont dental elements), that tooth replacement evolving before teeth (thelodont pharyngeal denticles), and that teeth evolved many times independently through co-option of such structures. However, the foundations of "inside-out" theory have been undermined fatally by critical reanalysis of the evidence on which it was based. Specifically, it has been shown that teeth develop from dermal, endodermal or mixed epithelia and, therefore, developmental distinctions between teeth and dermal denticles are diminished. Furthermore the odontode-like structure of conodont elements has been shown to have evolved independently of dermal and internal odontodes. The tooth-like replacement encountered in thelodont pharyngeal odontodes has been shown to have evolved independently of teeth and tooth replacement and teeth have been shown to have evolved late within the gnathostome stem lineage indicating that it is probable, if not definitive, that teeth evolved just once in gnathostome evolution. Thus, the "inside-out" hypothesis must be rejected. The phylogenetic distribution of teeth and dermal denticles shows that these odontodes were expressed first in the dermal skeleton, but their topological distribution extended internally in association with oral, nasal and pharyngeal orifices, in a number of distinct evolutionary lineages. This suggests that teeth and oral and pharyngeal denticles emerged phylogenetically through extension of odontogenic competence from the external dermis to internal epithelia. Ultimately, internal and external odontodes appear to be distinct developmental modules in living jawed vertebrates, however, the evidence suggests that this distinction was not established until the evolution of jawed vertebrates, not merely gnathostomes.
Collapse
Affiliation(s)
- Philip C J Donoghue
- School of Earth Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - Martin Rücklin
- School of Earth Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK.,Naturalis Biodiversity Center, Postbus 9517, 2300, RA, Leiden, The Netherlands
| |
Collapse
|