1
|
Hu Y, Jiang K, Xia S, Zhang W, Guo J, Wang H. Amoeba community dynamics and assembly mechanisms in full-scale drinking water distribution networks under various disinfectant regimens. WATER RESEARCH 2025; 271:122861. [PMID: 39615115 DOI: 10.1016/j.watres.2024.122861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/24/2024] [Accepted: 11/25/2024] [Indexed: 01/14/2025]
Abstract
Free-living amoebae (FLA) are prevalent in drinking water distribution networks (DWDNs), yet our understanding of FLA community dynamics and assembly mechanisms in DWDNs remains limited. This study characterized the occurrence patterns of amoeba communities and identified key factors influencing their assembly across four full-scale DWDNs in three Chinese cities, each utilizing different disinfectants (chlorine, chloramine, and chlorine dioxide). High-throughput sequencing of full-length 18S rRNA genes revealed highly diverse FLA communities and an array of rare FLA species in DWDNs. Unique FLA community structures and higher gene copy numbers of three amoeba taxa of concern (Vermamoeba vermiformis, Acanthamoeba, and Naegleria fowleri) were observed in the chloraminated DWDN, highlighting the distinct impact of chloramine on shaping the amoeba community. The FLA communities in DWDNs were primarily driven by deterministic processes, with disinfectant and nitrogen compounds (nitrate, nitrite, and ammonia) identified as the main influencing factors. Machine learning models revealed high SHapley Additive exPlanations (SHAP) values of dominant amoeba genera (e.g., Vannella and Vermamoeba), indicating their critical ecological roles in shaping broader bacterial and eukaryotic communities. Correlation analyses between amoeba genera and bacterial taxa revealed that 82 % of the bacterial taxa exhibiting a negative correlation with amoebae were gram-negative, suggesting the preferred predation of amoebae toward gram-negative bacteria. Network analysis revealed the presence of only one to two amoebae in distinct modules, suggesting that individual amoebae might be selective in grazing. These findings provide insight into the amoeba community dynamics, assembly mechanisms and ecological roles of amoebae in drinking water, which can aid in risk assessments and mitigation strategies within DWDNs.
Collapse
Affiliation(s)
- Yuxing Hu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China; Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Kaiyang Jiang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Siqing Xia
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Weixian Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Hong Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
2
|
Chen A, Covitz RM, Folsom AA, Mu X, Peck RF, Noh S. Symbiotic T6SS affects horizontal transmission of Paraburkholderia bonniea among Dictyostelium discoideum amoeba hosts. ISME COMMUNICATIONS 2025; 5:ycaf005. [PMID: 40046898 PMCID: PMC11882306 DOI: 10.1093/ismeco/ycaf005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/10/2025] [Accepted: 01/10/2025] [Indexed: 03/09/2025]
Abstract
Three species of Paraburkholderia are able to form facultative symbiotic relationships with the amoeba, Dictyostelium discoideum. These symbiotic Paraburkholderia share a type VI secretion system (T6SS) that is absent in other close relatives. We tested the phenotypic and transcriptional effect of tssH ATPase gene disruption in P. bonniea on its symbiosis with D. discoideum. We hypothesized that the ∆tssH mutant would have a significantly reduced ability to affect host fitness or transmit itself from host to host. We found that the T6SS does not directly affect host fitness. Instead, wildtype P. bonniea had significantly higher rates of horizontal transmission compared to ∆tssH. In addition, we observed significant differences in the range of infection prevalence achieved by wildtype vs. ∆tssH symbionts over multiple host social stages in the absence of opportunities for environmental symbiont acquisition. Successful symbiont transmission significantly contributes to sustained symbiotic association. Therefore, the shared T6SS appears necessary for a long-term evolutionary relationship between D. discoideum and its Paraburkholderia symbionts. The lack of difference in host fitness outcomes was confirmed by indistinguishable host gene expression patterns between hosts infected by wildtype or ∆tssH P. bonniea in an RNA-seq time series. These data also provided insight into how Paraburkholderia symbionts may evade phagocytosis by its amoeba host. Most significantly, cellular oxidant detoxification and lysosomal hydrolase delivery appear to be subject to the push and pull of host-symbiont crosstalk.
Collapse
Affiliation(s)
- Anna Chen
- Biology Department, Colby College, 5717 Mayflower Hill, Waterville, ME 04901, United States
| | - Rachel M Covitz
- Biology Department, Colby College, 5717 Mayflower Hill, Waterville, ME 04901, United States
- School of Medicine, University of Pittsburgh, 3550 Terrace Street, Pittsburgh, PA 15213, United States
| | - Abigail A Folsom
- Biology Department, Colby College, 5717 Mayflower Hill, Waterville, ME 04901, United States
| | - Xiangxi Mu
- Biology Department, Colby College, 5717 Mayflower Hill, Waterville, ME 04901, United States
| | - Ronald F Peck
- Biology Department, Colby College, 5717 Mayflower Hill, Waterville, ME 04901, United States
| | - Suegene Noh
- Biology Department, Colby College, 5717 Mayflower Hill, Waterville, ME 04901, United States
| |
Collapse
|
3
|
Shreenidhi PM, Brock DA, McCabe RI, Strassmann JE, Queller DC. Costs of being a diet generalist for the protist predator Dictyostelium discoideum. Proc Natl Acad Sci U S A 2024; 121:e2313203121. [PMID: 38530891 PMCID: PMC10998602 DOI: 10.1073/pnas.2313203121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 02/29/2024] [Indexed: 03/28/2024] Open
Abstract
Consumers range from specialists that feed on few resources to generalists that feed on many. Generalism has the clear advantage of having more resources to exploit, but the costs that limit generalism are less clear. We explore two understudied costs of generalism in a generalist amoeba predator, Dictyostelium discoideum, feeding on naturally co-occurring bacterial prey. Both involve costs of combining prey that are suitable on their own. First, amoebas exhibit a reduction in growth rate when they switched to one species of prey bacteria from another compared to controls that experience only the second prey. The effect was consistent across all six tested species of bacteria. These switching costs typically disappear within a day, indicating adjustment to new prey bacteria. This suggests that these costs are physiological. Second, amoebas usually grow more slowly on mixtures of prey bacteria compared to the expectation based on their growth on single prey. There were clear mixing costs in three of the six tested prey mixtures, and none showed significant mixing benefits. These results support the idea that, although amoebas can consume a variety of prey, they must use partially different methods and thus must pay costs to handle multiple prey, either sequentially or simultaneously.
Collapse
Affiliation(s)
- P. M. Shreenidhi
- Department of Biology, Washington University in St. Louis, St. Louis, MO63130
| | - Debra A. Brock
- Department of Biology, Washington University in St. Louis, St. Louis, MO63130
| | - Rachel I. McCabe
- Department of Biology, Washington University in St. Louis, St. Louis, MO63130
| | - Joan E. Strassmann
- Department of Biology, Washington University in St. Louis, St. Louis, MO63130
| | - David C. Queller
- Department of Biology, Washington University in St. Louis, St. Louis, MO63130
| |
Collapse
|
4
|
Gao S, Jin W, Quan Y, Li Y, Shen Y, Yuan S, Yi L, Wang Y, Wang Y. Bacterial capsules: Occurrence, mechanism, and function. NPJ Biofilms Microbiomes 2024; 10:21. [PMID: 38480745 PMCID: PMC10937973 DOI: 10.1038/s41522-024-00497-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 03/05/2024] [Indexed: 03/17/2024] Open
Abstract
In environments characterized by extended multi-stress conditions, pathogens develop a variety of immune escape mechanisms to enhance their ability to infect the host. The capsules, polymers that bacteria secrete near their cell wall, participates in numerous bacterial life processes and plays a crucial role in resisting host immune attacks and adapting to their niche. Here, we discuss the relationship between capsules and bacterial virulence, summarizing the molecular mechanisms of capsular regulation and pathogenesis to provide new insights into the research on the pathogenesis of pathogenic bacteria.
Collapse
Affiliation(s)
- Shuji Gao
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Wenjie Jin
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Yingying Quan
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Yue Li
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Yamin Shen
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Shuo Yuan
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Li Yi
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
- College of Life Science, Luoyang Normal University, Luoyang, 471934, China
| | - Yuxin Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China.
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China.
| | - Yang Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China.
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China.
| |
Collapse
|
5
|
Huang W, Zhao Y, Zhang L, Shi Y, Wang Z, Mai Y, Shu L. Soil physical structure drives N-glycan mediated trophic interactions in soil amoebae: Mechanisms and environmental implications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167509. [PMID: 37788775 DOI: 10.1016/j.scitotenv.2023.167509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/11/2023] [Accepted: 09/29/2023] [Indexed: 10/05/2023]
Abstract
Soil protozoa are an essential part of the terrestrial ecosystem, playing a vital role in the global element cycling and energy flow. However, one research gap is what are the key factors driving their diversity and environmental fates. In this study, we hypothesized that soil texture could affect soil protozoa's predation and their interactions with environmental pollutants, and we tested it by using a soil amoeba Dictyostelium discoideum as a model system. We found that soil texture affected amoeba's growth and development. In addition, environmental factors cannot explain the variation of amoeba's fitness in different soil textures. Soil sandy particles and water content rather than particle size contribute to amoeba's fitness. Furthermore, different soil textures induced distinct transcriptional responses to amoebae, especially N-glycan-related and multiple signaling pathways and the expression of key genes (e.g., Ras superfamily, cxgE, trap1). The expression of N-glycan-related pathways, which is positively correlated with amoeba predation, was inhibited in sand soil, decreasing amoeba's fitness. Finally, the results showed that soil texture also affects amoeba's interaction with environmental pollutants. In conclusion, this study shows that soil physical structures affect amoeba's interactions with bacteria and environmental pollutants. SYNOPSIS: Soil texture affects soil protozoa's growth and development and their interactions with environmental pollutants.
Collapse
Affiliation(s)
- Wei Huang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Yuanchen Zhao
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Lin Zhang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Yikun Shi
- Department of Mechanical and Electronic Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Zihe Wang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Yingwen Mai
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Longfei Shu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
6
|
Delumeau A, Quétel I, Harnais F, Sellin A, Gros O, Talarmin A, Marcelino I. Bacterial microbiota management in free-living amoebae (Heterolobosea lineage) isolated from water: The impact of amoebae identity, grazing conditions, and passage number. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165816. [PMID: 37506913 DOI: 10.1016/j.scitotenv.2023.165816] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/24/2023] [Accepted: 07/24/2023] [Indexed: 07/30/2023]
Abstract
Free-living amoebae (FLA) are ubiquitous protozoa mainly found in aquatic environments. They are well-known reservoirs and vectors for the transmission of amoeba-resistant bacteria (ARB), most of which are pathogenic to humans. Yet, the natural bacterial microbiota associated with FLA remains largely unknown. Herein, we characterized the natural bacterial microbiota of different FLA species isolated from recreational waters in Guadeloupe. Monoxenic cultures of Naegleria australiensis, Naegleria sp. WTP3, Paravahlkampfia ustiana and Vahlkampfia sp. AK-2007 (Heterolobosea lineage) were cultivated under different grazing conditions, during successive passages. The whole bacterial microbiota of the waters and the amoebal cysts was characterized using 16S rRNA gene metabarcoding. The culturable subset of ARB was analyzed by mass spectrometry (MALDI-TOF MS), conventional 16S PCR, and disk diffusion method (to assess bacterial antibiotic resistance). Transmission electron microscopy was used to locate the ARB inside the amoebae. According to alpha and beta-diversity analyses, FLA bacterial microbiota were significantly different from the ones of their habitat. While Vogesella and Aquabacterium genera were detected in water, the most common ARB belonged to Pseudomonas, Bosea, and Escherichia/Shigella genera. The different FLA species showed both temporary and permanent associations with differentially bacterial taxa, suggesting host specificity. These associations depend on the number of passages and grazing conditions. Additionally, Naegleria, Vahlkampfia and Paravahlkampfia cysts were shown to naturally harbor viable bacteria of the Acinetobacter, Escherichia, Enterobacter, Pseudomonas and Microbacterium genera, all being pathogenic to humans. To our knowledge, this is the first time Paravahlkampfia and Vahlkampfia have been demonstrated as hosts of pathogenic ARB in water. Globally, the persistence of these ARB inside resistant cysts represents a potential health risk. To ensure the continued safety of recreational waters, it is crucial to (i) regularly control both the amoebae and their ARB and (ii) improve knowledge on amoebae-bacteria interactions to establish better water management protocols.
Collapse
Affiliation(s)
- Aurélie Delumeau
- Institut Pasteur de la Guadeloupe, Unité TReD-Path, Les Abymes, Guadeloupe, France
| | - Isaure Quétel
- Institut Pasteur de la Guadeloupe, Unité TReD-Path, Les Abymes, Guadeloupe, France
| | - Florian Harnais
- Institut Pasteur de la Guadeloupe, Unité TReD-Path, Les Abymes, Guadeloupe, France
| | - Arantxa Sellin
- Institut Pasteur de la Guadeloupe, Unité TReD-Path, Les Abymes, Guadeloupe, France
| | - Olivier Gros
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Pointe-à-Pitre, Guadeloupe, France
| | - Antoine Talarmin
- Institut Pasteur de la Guadeloupe, Unité TReD-Path, Les Abymes, Guadeloupe, France
| | - Isabel Marcelino
- Institut Pasteur de la Guadeloupe, Unité TReD-Path, Les Abymes, Guadeloupe, France.
| |
Collapse
|
7
|
Nucci A, Rocha EPC, Rendueles O. Adaptation to novel spatially-structured environments is driven by the capsule and alters virulence-associated traits. Nat Commun 2022; 13:4751. [PMID: 35963864 PMCID: PMC9376106 DOI: 10.1038/s41467-022-32504-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 08/02/2022] [Indexed: 12/14/2022] Open
Abstract
The extracellular capsule is a major virulence factor, but its ubiquity in free-living bacteria with large environmental breadths suggests that it shapes adaptation to novel niches. Yet, how it does so, remains unexplored. Here, we evolve three Klebsiella strains and their capsule mutants in parallel. Their comparison reveals different phenotypic and genotypic evolutionary changes that alter virulence-associated traits. Non-capsulated populations accumulate mutations that reduce exopolysaccharide production and increase biofilm formation and yield, whereas most capsulated populations become hypermucoviscous, a signature of hypervirulence. Hence, adaptation to novel environments primarily occurs by fine-tuning expression of the capsular locus. The same evolutionary conditions selecting for mutations in the capsular gene wzc leading to hypermucoviscosity also result in increased susceptibility to antibiotics by mutations in the ramA regulon. This implies that general adaptive processes outside the host can affect capsule evolution and its role in virulence and infection outcomes may be a by-product of such adaptation. Phenotypic and genotypic evolution in worrisome Klebsiella spp. is influenced by the capsule. Here the authors show that adaptation outside the host can impact virulence-associated traits, including de novo emergence of hypermucoviscosity.
Collapse
Affiliation(s)
- Amandine Nucci
- Institut Pasteur, Université de Paris, CNRS, UMR3525, Microbial Evolutionary Genomics, F-75015, Paris, France
| | - Eduardo P C Rocha
- Institut Pasteur, Université de Paris, CNRS, UMR3525, Microbial Evolutionary Genomics, F-75015, Paris, France
| | - Olaya Rendueles
- Institut Pasteur, Université de Paris, CNRS, UMR3525, Microbial Evolutionary Genomics, F-75015, Paris, France.
| |
Collapse
|
8
|
Kufs JE, Reimer C, Stallforth P, Hillmann F, Regestein L. The potential of amoeba-based processes for natural product syntheses. Curr Opin Biotechnol 2022; 77:102766. [PMID: 35944344 DOI: 10.1016/j.copbio.2022.102766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 11/18/2022]
Abstract
The identification of novel platform organisms for the production and discovery of small molecules is of high interest for the pharmaceutical industry. In particular, the structural complexity of most natural products with therapeutic potential restricts an industrial production since chemical syntheses often require complex multistep routes. The amoeba Dictyostelium discoideum can be easily cultivated in bioreactors due to its planktonic growth behavior and contains numerous polyketide and terpene synthase genes with only a few compounds being already elucidated. Hence, the amoeba both bears a wealth of hidden natural products and allows for the development of new bioprocesses for existing pharmaceuticals. In this mini review, we present D. discoideum as a novel platform for the production of complex secondary metabolites and discuss its suitability for industrial processes. We also provide initial insights into future bioprocesses, both involving bacterial coculture setups and for the production of plant-based pharmaceuticals.
Collapse
Affiliation(s)
- Johann E Kufs
- Bio Pilot Plant, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (Leibniz-HKI), Jena, Germany
| | - Christin Reimer
- Evolution of Microbial Interactions, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (Leibniz-HKI), Jena, Germany; Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany
| | - Pierre Stallforth
- Paleobiotechnology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (Leibniz-HKI), Jena, Germany; Friedrich Schiller University Jena, Institute for Organic Chemistry and Macromolecular Chemistry, Jena, Germany
| | - Falk Hillmann
- Evolution of Microbial Interactions, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (Leibniz-HKI), Jena, Germany
| | - Lars Regestein
- Bio Pilot Plant, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (Leibniz-HKI), Jena, Germany.
| |
Collapse
|
9
|
Abstract
Introduction Neutrophilic granulocytes are short‐lived cells continuously circulating in the vascular system of vertebrates. They play a basic and decisive role in the innate immune defence of the hosts against all types of pathogenic microorganisms. Methods Based on a literature study, the functions of neutrophils and cells with similar functions are described. The study places special emphasis on organisms in the aquatic environment and the pathogens occurring in that particular environment. Results The evolutionary origin of this specific cell type is not clear, but its most basic traits (recognition of foreign elements, extracellular trap release, phagocytosis and elimination of ingested material) are found in phagocytes in members of evolutionary ancient invertebrate groups spanning from amoebae, sponges, sea‐anemones, mollusks (snails and mussels), arthropods (crustaceans and insects) to echinoderms (sea stars and sea urchins). Their functions as innate immune sentinels and effector cells in these groups are well described. Neutrophilic granulocytes with elongated and lobed nuclei (possibly allowing cell movements through narrow extracellular spaces and leaving space for phagosomes) occur in vertebrates including fish, amphibians, reptiles, birds and mammals although the morphology of the nucleus, stainability of cytoplasmic granula, and the antimicrobial armament vary among groups. Following the pathogen invasion of a fish host, the neutrophils migrates from the vascular system into the infection focus. They apply their PRRs (including TLRs) to recognize the invader as non‐self, produce netosis by casting extracellular chromatin containing traps in the microenvironment. These nets assist the immobilization of invading microbes and prevents their further spread. The cells attach to and engulf the microbes by phagocytosis, whereafter they eliminate the pathogen in phagolysosomes equipped with a range of killing mechanisms and attract, by release of chemokines, additional immune cells (monocytes, macrophages and lymphocytes) to the site of invasion. Their role in innate immunity of fish hosts towards aquatic pathogens has been elucidated by in vivo and in vitro studies. Neutrophils interact with virus (e.g. IPNV and VHSV), bacteria (e.g. Aeromonas, Vibrio, Edwardsiella, Mycobacterium and Renibacterium) and parasites, including monogeneans (Gyrodactylus), cestodes (Diphyllobothrium), trematodes (Diplostomum) and ciliates (Ichthyophthirius and Philasterides). Despite the decisive function of neutrophils in innate immunity and early protection, the excessive production of ROS, RNS and NETs may lead to pathological disturbances in the host, which are exacerbated if the pathogens evolve immune evasion mechanisms. Conclusion Neutrophils in aquatic organisms play a central role in innate immunity but may serve as a toll and a support in acquired protection. The strong impact of the cellular reactions not only on pathogen but also on host tissues emphasizes that an optimal immune reaction is balanced, involves targeted and specific effector mechanisms, which leaves a minimum of collateral damage in host organs.
Collapse
Affiliation(s)
- Kurt Buchmann
- Laboratory of Aquatic Pathobiology, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| |
Collapse
|
10
|
The genetic architecture underlying prey-dependent performance in a microbial predator. Nat Commun 2022; 13:319. [PMID: 35031602 PMCID: PMC8760311 DOI: 10.1038/s41467-021-27844-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 12/10/2021] [Indexed: 11/30/2022] Open
Abstract
Natural selection should favour generalist predators that outperform specialists across all prey types. Two genetic solutions could explain why intraspecific variation in predatory performance is, nonetheless, widespread: mutations beneficial on one prey type are costly on another (antagonistic pleiotropy), or mutational effects are prey-specific, which weakens selection, allowing variation to persist (relaxed selection). To understand the relative importance of these alternatives, we characterised natural variation in predatory performance in the microbial predator Dictyostelium discoideum. We found widespread nontransitive differences among strains in predatory success across different bacterial prey, which can facilitate stain coexistence in multi-prey environments. To understand the genetic basis, we developed methods for high throughput experimental evolution on different prey (REMI-seq). Most mutations (~77%) had prey-specific effects, with very few (~4%) showing antagonistic pleiotropy. This highlights the potential for prey-specific effects to dilute selection, which would inhibit the purging of variation and prevent the emergence of an optimal generalist predator. What prevents a generalist predator from evolving and outperforming specialist predators? By combing analyses of natural variation with experimental evolution, Stewart et al. suggest that predator variation persists because most mutations have prey-specific effects, which results in relaxed selection
Collapse
|
11
|
Gruenheit N, Baldwin A, Stewart B, Jaques S, Keller T, Parkinson K, Salvidge W, Baines R, Brimson C, Wolf JB, Chisholm R, Harwood AJ, Thompson CRL. Mutant resources for functional genomics in Dictyostelium discoideum using REMI-seq technology. BMC Biol 2021; 19:172. [PMID: 34429112 PMCID: PMC8386026 DOI: 10.1186/s12915-021-01108-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 07/22/2021] [Indexed: 01/26/2023] Open
Abstract
Background Genomes can be sequenced with relative ease, but ascribing gene function remains a major challenge. Genetically tractable model systems are crucial to meet this challenge. One powerful model is the social amoeba Dictyostelium discoideum, a eukaryotic microbe widely used to study diverse questions in the cell, developmental and evolutionary biology. Results We describe REMI-seq, an adaptation of Tn-seq, which allows high throughput, en masse, and quantitative identification of the genomic site of insertion of a drug resistance marker after restriction enzyme-mediated integration. We use REMI-seq to develop tools which greatly enhance the efficiency with which the sequence, transcriptome or proteome variation can be linked to phenotype in D. discoideum. These comprise (1) a near genome-wide resource of individual mutants and (2) a defined pool of ‘barcoded’ mutants to allow large-scale parallel phenotypic analyses. These resources are freely available and easily accessible through the REMI-seq website that also provides comprehensive guidance and pipelines for data analysis. We demonstrate that integrating these resources allows novel regulators of cell migration, phagocytosis and macropinocytosis to be rapidly identified. Conclusions We present methods and resources, generated using REMI-seq, for high throughput gene function analysis in a key model system. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01108-y.
Collapse
Affiliation(s)
- Nicole Gruenheit
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London, WC1E 6BT, UK
| | - Amy Baldwin
- Cardiff School of Biosciences, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK
| | - Balint Stewart
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London, WC1E 6BT, UK
| | - Sarah Jaques
- Cardiff School of Biosciences, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK
| | - Thomas Keller
- Division of Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, The University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | - Katie Parkinson
- Division of Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, The University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | - William Salvidge
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London, WC1E 6BT, UK
| | - Robert Baines
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London, WC1E 6BT, UK
| | - Chris Brimson
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London, WC1E 6BT, UK
| | - Jason B Wolf
- Milner Centre for Evolution and Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Rex Chisholm
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois, 60611, USA
| | - Adrian J Harwood
- Cardiff School of Biosciences, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK.
| | - Christopher R L Thompson
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
12
|
Shu L, He Z, Guan X, Yang X, Tian Y, Zhang S, Wu C, He Z, Yan Q, Wang C, Shi Y. A dormant amoeba species can selectively sense and predate on different soil bacteria. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13824] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Longfei Shu
- Environmental Microbiomics Research Center School of Environmental Science and Engineering Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)Sun Yat‐sen University Guangzhou China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology Sun Yat‐Sen University Guangzhou China
| | - Zhenzhen He
- Environmental Microbiomics Research Center School of Environmental Science and Engineering Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)Sun Yat‐sen University Guangzhou China
| | - Xiaotong Guan
- Environmental Microbiomics Research Center School of Environmental Science and Engineering Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)Sun Yat‐sen University Guangzhou China
| | - Xueqin Yang
- Environmental Microbiomics Research Center School of Environmental Science and Engineering Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)Sun Yat‐sen University Guangzhou China
| | - Yuehui Tian
- Environmental Microbiomics Research Center School of Environmental Science and Engineering Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)Sun Yat‐sen University Guangzhou China
| | - Siyi Zhang
- Environmental Microbiomics Research Center School of Environmental Science and Engineering Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)Sun Yat‐sen University Guangzhou China
| | - Chenyuan Wu
- Environmental Microbiomics Research Center School of Environmental Science and Engineering Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)Sun Yat‐sen University Guangzhou China
| | - Zhili He
- Environmental Microbiomics Research Center School of Environmental Science and Engineering Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)Sun Yat‐sen University Guangzhou China
| | - Qingyun Yan
- Environmental Microbiomics Research Center School of Environmental Science and Engineering Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)Sun Yat‐sen University Guangzhou China
| | - Cheng Wang
- Environmental Microbiomics Research Center School of Environmental Science and Engineering Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)Sun Yat‐sen University Guangzhou China
| | - Yijing Shi
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology Sun Yat‐Sen University Guangzhou China
- School of Environment Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment SCNU Environmental Research InstituteSouth China Normal University Guangzhou China
| |
Collapse
|
13
|
de Oliveira JL, Morales AC, Hurst LD, Urrutia AO, Thompson CRL, Wolf JB. Inferring Adaptive Codon Preference to Understand Sources of Selection Shaping Codon Usage Bias. Mol Biol Evol 2021; 38:3247-3266. [PMID: 33871580 PMCID: PMC8321536 DOI: 10.1093/molbev/msab099] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Alternative synonymous codons are often used at unequal frequencies. Classically, studies of such codon usage bias (CUB) attempted to separate the impact of neutral from selective forces by assuming that deviations from a predicted neutral equilibrium capture selection. However, GC-biased gene conversion (gBGC) can also cause deviation from a neutral null. Alternatively, selection has been inferred from CUB in highly expressed genes, but the accuracy of this approach has not been extensively tested, and gBGC can interfere with such extrapolations (e.g., if expression and gene conversion rates covary). It is therefore critical to examine deviations from a mutational null in a species with no gBGC. To achieve this goal, we implement such an analysis in the highly AT rich genome of Dictyostelium discoideum, where we find no evidence of gBGC. We infer neutral CUB under mutational equilibrium to quantify "adaptive codon preference," a nontautologous genome wide quantitative measure of the relative selection strength driving CUB. We observe signatures of purifying selection consistent with selection favoring adaptive codon preference. Preferred codons are not GC rich, underscoring the independence from gBGC. Expression-associated "preference" largely matches adaptive codon preference but does not wholly capture the influence of selection shaping patterns across all genes, suggesting selective constraints associated specifically with high expression. We observe patterns consistent with effects on mRNA translation and stability shaping adaptive codon preference. Thus, our approach to quantifying adaptive codon preference provides a framework for inferring the sources of selection that shape CUB across different contexts within the genome.
Collapse
Affiliation(s)
- Janaina Lima de Oliveira
- Instituto de Biologia, Universidade Federal da Bahia, Salvador, Bahia, 40170-115, Brazil.,Milner Centre for Evolution and Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Atahualpa Castillo Morales
- Milner Centre for Evolution and Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Laurence D Hurst
- Milner Centre for Evolution and Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Araxi O Urrutia
- Milner Centre for Evolution and Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK.,Instituto de Ecologia, UNAM, Ciudad de Mexico 04510, Mexico
| | - Christopher R L Thompson
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London, WC1E 6BT, UK
| | - Jason B Wolf
- Milner Centre for Evolution and Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| |
Collapse
|
14
|
How Phagocytic Cells Kill Different Bacteria: a Quantitative Analysis Using Dictyostelium discoideum. mBio 2021; 12:mBio.03169-20. [PMID: 33593980 PMCID: PMC8545105 DOI: 10.1128/mbio.03169-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ingestion and killing of bacteria by phagocytic cells protect the human body against infections. While many mechanisms have been proposed to account for bacterial killing in phagosomes, their relative importance, redundancy, and specificity remain unclear. In this study, we used the Dictyostelium discoideum amoeba as a model phagocyte and quantified the requirement of 11 individual gene products, including nine putative effectors, for the killing of bacteria. This analysis revealed that radically different mechanisms are required to kill Klebsiella pneumoniae, Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Bacillus subtilis AlyL, a lysozyme-like protein equipped with a distinct bacteriolytic region, plays a specific role in the intracellular killing of K. pneumoniae, with assistance from BpiC and Aoah, two lipopolysaccharide (LPS)-binding proteins. Rapid killing of E. coli and P. aeruginosa requires the presence of BpiC and of the NoxA NADPH oxidase. No single effector tested is essential for rapid killing of S. aureus or B. subtilis Overall, our observations reveal an unsuspected degree of specificity in the elimination of bacteria in phagosomes.IMPORTANCE Phagocytic cells ingest and kill bacteria, a process essential for the defense of the human body against infections. Many potential killing mechanisms have been identified in phagocytic cells, including free radicals, toxic ions, enzymes, and permeabilizing peptides. Yet fundamental questions remain unanswered: what is the relative importance of these mechanisms, how redundant are they, and are different mechanisms used to kill different species of bacteria? We addressed these questions using Dictyostelium discoideum, a model phagocytic cell amenable to genetic manipulations and quantitative analysis. Our results reveal that vastly different mechanisms are required to kill different species of bacteria. This very high degree of specificity was unexpected and indicates that a lot remains to be discovered about how phagocytic cells eliminate bacteria.
Collapse
|
15
|
Abstract
Amoebae are protists that have complicated relationships with bacteria, covering the whole spectrum of symbiosis. Amoeba-bacterium interactions contribute to the study of predation, symbiosis, pathogenesis, and human health. Given the complexity of their relationships, it is necessary to understand the ecology and evolution of their interactions. In this paper, we provide an updated review of the current understanding of amoeba-bacterium interactions. We start by discussing the diversity of amoebae and their bacterial partners. We also define three types of ecological interactions between amoebae and bacteria and discuss their different outcomes. Finally, we focus on the implications of amoeba-bacterium interactions on human health, horizontal gene transfer, drinking water safety, and the evolution of symbiosis. In conclusion, amoeba-bacterium interactions are excellent model systems to investigate a wide range of scientific questions. Future studies should utilize advanced techniques to address research gaps, such as detecting hidden diversity, lack of amoeba genomes, and the impacts of amoeba predation on the microbiome.
Collapse
|
16
|
Slinger J, Adams MB, Wynne JW. Bacteriomic Profiling of Branchial Lesions Induced by Neoparamoeba perurans Challenge Reveals Commensal Dysbiosis and an Association with Tenacibaculum dicentrarchi in AGD-Affected Atlantic Salmon ( Salmo salar L.). Microorganisms 2020; 8:E1189. [PMID: 32764238 PMCID: PMC7464746 DOI: 10.3390/microorganisms8081189] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/28/2020] [Accepted: 07/31/2020] [Indexed: 12/22/2022] Open
Abstract
Amoebic gill disease is a parasitic condition that commonly affects marine farmed Atlantic salmon. The causative agent, Neoparamoeba perurans, induces a marked proliferation of the gill mucosa and focal superficial necrosis upon branchial lesions. The effect that amoebic branchialitis has upon gill associated commensal bacteria is unknown. A 16S rRNA sequencing approach was employed to profile changes in bacterial community composition, within amoebic gill disease (AGD)-affected and non-affected gill tissue. The bacterial diversity of biopsies with and without diseased tissue was significantly lower in the AGD-affected fish compared to uninfected fish. Furthermore, within the AGD-affected tissue, lesions appeared to contain a significantly higher abundance of the Flavobacterium, Tenacibaculum dicentrarchi compared to adjunct unaffected tissues. Quantitative PCR specific to both N. perurans and T. dicentrarchi was used to further examine the co-abundance of these known fish pathogens. A moderate positive correlation between these pathogens was observed. Taken together, the present study sheds new light on the complex interaction between the host, parasite and bacterial communities during AGD progression. The role that T. dicentrarchi may play in this complex relationship requires further investigation.
Collapse
Affiliation(s)
- Joel Slinger
- CSIRO Agriculture and Food, Aquaculture Program, Bribie Island, QLD 4507, Australia
- Institute of Marine and Antarctic Studies, University of Tasmania, Launceston, TAS 7250, Australia;
| | - Mark B. Adams
- Institute of Marine and Antarctic Studies, University of Tasmania, Launceston, TAS 7250, Australia;
| | - James W. Wynne
- CSIRO Agriculture and Food, Aquaculture Program, Hobart, TAS 7000, Australia;
| |
Collapse
|
17
|
Paraburkholderia Symbionts Display Variable Infection Patterns That Are Not Predictive of Amoeba Host Outcomes. Genes (Basel) 2020; 11:genes11060674. [PMID: 32575747 PMCID: PMC7349545 DOI: 10.3390/genes11060674] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/07/2020] [Accepted: 06/18/2020] [Indexed: 12/17/2022] Open
Abstract
Symbiotic interactions exist within a parasitism to mutualism continuum that is influenced, among others, by genes and context. Dynamics of intracellular invasion, replication, and prevalence may underscore both host survivability and symbiont stability. More infectious symbionts might exert higher corresponding costs to hosts, which could ultimately disadvantage both partners. Here, we quantify infection patterns of diverse Paraburkholderia symbiont genotypes in their amoeba host Dictyostelium discoideum and probe the relationship between these patterns and host outcomes. We exposed D. discoideum to thirteen strains of Paraburkholderia each belonging to one of the three symbiont species found to naturally infect D. discoideum: Paraburkholderia agricolaris, Paraburkholderia hayleyella, and Paraburkholderia bonniea. We quantified the infection prevalence and intracellular density of fluorescently labeled symbionts along with the final host population size using flow cytometry and confocal microscopy. We find that infection phenotypes vary across symbiont strains. Symbionts belonging to the same species generally display similar infection patterns but are interestingly distinct when it comes to host outcomes. This results in final infection loads that do not strongly correlate to final host outcomes, suggesting other genetic factors that are not a direct cause or consequence of symbiont abundance impact host fitness.
Collapse
|
18
|
Lamrabet O, Jauslin T, Lima WC, Leippe M, Cosson P. The multifarious lysozyme arsenal of Dictyostelium discoideum. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 107:103645. [PMID: 32061941 DOI: 10.1016/j.dci.2020.103645] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/12/2020] [Accepted: 02/12/2020] [Indexed: 06/10/2023]
Abstract
Dictyostelium discoideum is a free-living soil amoeba which feeds upon bacteria. To bind, ingest, and kill bacteria, D. discoideum uses molecular mechanisms analogous to those found in professional phagocytic cells of multicellular organisms. D. discoideum is equipped with a large arsenal of antimicrobial peptides and proteins including amoebapore-like peptides and lysozymes. This review describes the family of lysozymes in D. discoideum. We identified 22 genes potentially encoding four different types of lysozymes in the D. discoideum genome. Although most of these genes are also present in the genomes of other amoebal species, no other organism is as well-equipped with lysozyme genes as D. discoideum.
Collapse
Affiliation(s)
- Otmane Lamrabet
- Faculty of Medicine, University of Geneva, Centre Médical Universitaire, 1 rue Michel Servet, CH-1211, Geneva 4, Switzerland.
| | - Tania Jauslin
- Faculty of Medicine, University of Geneva, Centre Médical Universitaire, 1 rue Michel Servet, CH-1211, Geneva 4, Switzerland
| | - Wanessa Cristina Lima
- Faculty of Medicine, University of Geneva, Centre Médical Universitaire, 1 rue Michel Servet, CH-1211, Geneva 4, Switzerland
| | - Matthias Leippe
- Zoological Institute, Comparative Immunobiology, University of Kiel, Kiel, Germany
| | - Pierre Cosson
- Faculty of Medicine, University of Geneva, Centre Médical Universitaire, 1 rue Michel Servet, CH-1211, Geneva 4, Switzerland
| |
Collapse
|
19
|
Karow M, Fischer S, Meßling S, Konertz R, Riehl J, Xiong Q, Rijal R, Wagle P, S. Clemen C, Eichinger L. Functional Characterisation of the Autophagy ATG12~5/16 Complex in Dictyostelium discoideum. Cells 2020; 9:cells9051179. [PMID: 32397394 PMCID: PMC7290328 DOI: 10.3390/cells9051179] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/04/2020] [Accepted: 05/06/2020] [Indexed: 12/21/2022] Open
Abstract
Macroautophagy, a highly conserved and complex intracellular degradative pathway, involves more than 20 core autophagy (ATG) proteins, among them the hexameric ATG12~5/16 complex, which is part of the essential ubiquitin-like conjugation systems in autophagy. Dictyostelium discoideumatg5 single, atg5/12 double, and atg5/12/16 triple gene knock-out mutant strains displayed similar defects in the conjugation of ATG8 to phosphatidylethanolamine, development, and cell viability upon nitrogen starvation. This implies that ATG5, 12 and 16 act as a functional unit in canonical autophagy. Macropinocytosis of TRITC dextran and phagocytosis of yeast were significantly decreased in ATG5¯ and ATG5¯/12¯ and even further in ATG5¯/12¯/16¯ cells. In contrast, plaque growth on Klebsiella aerogenes was about twice as fast for ATG5¯ and ATG5¯/12¯/16¯ cells in comparison to AX2, but strongly decreased for ATG5¯/12¯ cells. Along this line, phagocytic uptake of Escherichia coli was significantly reduced in ATG5¯/12¯ cells, while no difference in uptake, but a strong increase in membrane association of E. coli, was seen for ATG5¯ and ATG5¯/12¯/16¯ cells. Proteasomal activity was also disturbed in a complex fashion, consistent with an inhibitory activity of ATG16 in the absence of ATG5 and/or ATG12. Our results confirm the essential function of the ATG12~5/16 complex in canonical autophagy, and furthermore are consistent with autophagy-independent functions of the complex and its individual components. They also strongly support the placement of autophagy upstream of the ubiquitin-proteasome system (UPS), as a fully functional UPS depends on autophagy.
Collapse
Affiliation(s)
- Malte Karow
- Centre for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, 50931 Cologne, Germany; (M.K.); (S.F.); (S.M.); (R.K.); (J.R.)
| | - Sarah Fischer
- Centre for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, 50931 Cologne, Germany; (M.K.); (S.F.); (S.M.); (R.K.); (J.R.)
| | - Susanne Meßling
- Centre for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, 50931 Cologne, Germany; (M.K.); (S.F.); (S.M.); (R.K.); (J.R.)
| | - Roman Konertz
- Centre for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, 50931 Cologne, Germany; (M.K.); (S.F.); (S.M.); (R.K.); (J.R.)
| | - Jana Riehl
- Centre for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, 50931 Cologne, Germany; (M.K.); (S.F.); (S.M.); (R.K.); (J.R.)
| | - Qiuhong Xiong
- Institute of Biomedical Sciences, Shanxi University, No. 92 Wucheng Road, Taiyuan 030006, China;
| | - Ramesh Rijal
- Department of Biology, Texas A&M University, College Station, TX 77843-3474, USA;
| | - Prerana Wagle
- Bioinformatics Core Facility, CECAD Research Center, University of Cologne, 50931 Cologne, Germany;
| | - Christoph S. Clemen
- Institute of Aerospace Medicine, German Aerospace Center (DLR), 51147 Cologne, Germany;
- Center for Physiology and Pathophysiology, Institute of Vegetative Physiology, Medical Faculty, University of Cologne, 50931 Cologne, Germany
- Institute of Neuropathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Ludwig Eichinger
- Centre for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, 50931 Cologne, Germany; (M.K.); (S.F.); (S.M.); (R.K.); (J.R.)
- Correspondence: ; Tel.: +49-221-478-6928; Fax: +49-221-478-97524
| |
Collapse
|
20
|
Lamrabet O, Melotti A, Burdet F, Hanna N, Perrin J, Nitschke J, Pagni M, Hilbi H, Soldati T, Cosson P. Transcriptional Responses of Dictyostelium discoideum Exposed to Different Classes of Bacteria. Front Microbiol 2020; 11:410. [PMID: 32210949 PMCID: PMC7078664 DOI: 10.3389/fmicb.2020.00410] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 02/27/2020] [Indexed: 12/19/2022] Open
Abstract
Dictyostelium discoideum amoebae feed by ingesting bacteria, then killing them in phagosomes. Ingestion and killing of different bacteria have been shown to rely on largely different molecular mechanisms. One would thus expect that D. discoideum adapts its ingestion and killing machinery when encountering different bacteria. In this study, we investigated by RNA sequencing if and how D. discoideum amoebae respond to the presence of different bacteria by modifying their gene expression patterns. Each bacterial species analyzed induced a specific modification of the transcriptome. Bacteria such as Bacillus subtilis, Klebsiella pneumoniae, or Mycobacterium marinum induced a specific and different transcriptional response, while Micrococcus luteus did not trigger a significant gene regulation. Although folate has been proposed to be one of the key molecules secreted by bacteria and recognized by hunting amoebae, it elicited a very specific and restricted transcriptional signature, distinct from that triggered by any bacteria analyzed here. Our results indicate that D. discoideum amoebae respond in a highly specific, almost non-overlapping manner to different species of bacteria. We additionally identify specific sets of genes that can be used as reporters of the response of D. discoideum to different bacteria.
Collapse
Affiliation(s)
- Otmane Lamrabet
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Astrid Melotti
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Frédéric Burdet
- Vital-IT Group, SIB, Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Nabil Hanna
- Department of Biochemistry, Faculty of Science, University of Geneva, Geneva, Switzerland
| | - Jackie Perrin
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Jahn Nitschke
- Department of Biochemistry, Faculty of Science, University of Geneva, Geneva, Switzerland
| | - Marco Pagni
- Vital-IT Group, SIB, Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Hubert Hilbi
- Faculty of Medicine, Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Thierry Soldati
- Department of Biochemistry, Faculty of Science, University of Geneva, Geneva, Switzerland
| | - Pierre Cosson
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
21
|
Patterns of partnership: surveillance and mimicry in host-microbiota mutualisms. Curr Opin Microbiol 2020; 54:87-94. [PMID: 32062152 DOI: 10.1016/j.mib.2020.01.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 01/14/2020] [Indexed: 02/07/2023]
Abstract
The repertoire of microbial cues monitored by animal and plant tissues encompasses not just molecules but also microbial activities. These include typical pathogen strategies of injuring membranes, degrading cellular material, and scavenging resources. These activities, however, are not exclusive to pathogens. Instead, they characterize the competitive strategies of microbes living in multispecies communities, like those typically found colonizing host tissues. Similar activities are also deployed by host tissues to keep microbes in check. We propose that host surveillance and mimicry of Microbial-Associated Competitive Activities (MACAs), derived from an evolutionary history of living in mixed microbial communities, has shaped contemporary animal and plant tissue programs of defense, repair, metabolism, and development.
Collapse
|
22
|
Bodinier R, Leiba J, Sabra A, Jauslin TN, Lamrabet O, Guilhen C, Marchetti A, Iwade Y, Kawata T, Lima WC, Cosson P. LrrkA, a kinase with leucine-rich repeats, links folate sensing with Kil2 activity and intracellular killing. Cell Microbiol 2019; 22:e13129. [PMID: 31652367 PMCID: PMC7003747 DOI: 10.1111/cmi.13129] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/20/2019] [Accepted: 10/03/2019] [Indexed: 12/14/2022]
Abstract
Phagocytic cells ingest bacteria by phagocytosis and kill them efficiently inside phagolysosomes. The molecular mechanisms involved in intracellular killing and their regulation are complex and still incompletely understood. Dictyostelium discoideum has been used as a model to discover and to study new gene products involved in intracellular killing of ingested bacteria. In this study, we performed random mutagenesis of Dictyostelium cells and isolated a mutant defective for growth on bacteria. This mutant is characterized by the genetic inactivation of the lrrkA gene, which encodes a protein with a kinase domain and leucine-rich repeats. LrrkA knockout (KO) cells kill ingested Klebsiella pneumoniae bacteria inefficiently. This defect is not additive to the killing defect observed in kil2 KO cells, suggesting that the function of Kil2 is partially controlled by LrrkA. Indeed, lrrkA KO cells exhibit a phenotype similar to that of kil2 KO cells: Intraphagosomal proteolysis is inefficient, and both intraphagosomal killing and proteolysis are restored upon exogenous supplementation with magnesium ions. Bacterially secreted folate stimulates intracellular killing in Dictyostelium cells, but this stimulation is lost in cells with genetic inactivation of kil2, lrrkA, or far1. Together, these results indicate that the stimulation of intracellular killing by folate involves Far1 (the cell surface receptor for folate), LrrkA, and Kil2. This study is the first identification of a signalling pathway regulating intraphagosomal bacterial killing in Dictyostelium cells.
Collapse
Affiliation(s)
- Romain Bodinier
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Jade Leiba
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Ayman Sabra
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Tania N Jauslin
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Otmane Lamrabet
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Cyril Guilhen
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Anna Marchetti
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Yumi Iwade
- Department of Biology, Faculty of Science, Toho University, Funabashi, Japan
| | - Takefumi Kawata
- Department of Biology, Faculty of Science, Toho University, Funabashi, Japan
| | - Wanessa C Lima
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Pierre Cosson
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
23
|
Khojandi N, Haselkorn TS, Eschbach MN, Naser RA, DiSalvo S. Intracellular Burkholderia Symbionts induce extracellular secondary infections; driving diverse host outcomes that vary by genotype and environment. THE ISME JOURNAL 2019; 13:2068-2081. [PMID: 31019270 PMCID: PMC6776111 DOI: 10.1038/s41396-019-0419-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 01/06/2019] [Accepted: 04/10/2019] [Indexed: 02/07/2023]
Abstract
Symbiotic associations impact and are impacted by their surrounding ecosystem. The association between Burkholderia bacteria and the soil amoeba Dictyostelium discoideum is a tractable model to unravel the biology underlying symbiont-endowed phenotypes and their impacts. Several Burkholderia species stably associate with D. discoideum and typically reduce host fitness in food-rich environments while increasing fitness in food-scarce environments. Burkholderia symbionts are themselves inedible to their hosts but induce co-infections with secondary bacteria that can serve as a food source. Thus, Burkholderia hosts are "farmers" that carry food bacteria to new environments, providing a benefit when food is scarce. We examined the ability of specific Burkholderia genotypes to induce secondary co-infections and assessed host fitness under a range of co-infection conditions and environmental contexts. Although all Burkholderia symbionts intracellularly infected Dictyostelium, we found that co-infections are predominantly extracellular, suggesting that farming benefits are derived from extracellular infection of host structures. Furthermore, levels of secondary infection are linked to conditional host fitness; B. agricolaris infected hosts have the highest level of co-infection and have the highest fitness in food-scarce environments. This study illuminates the phenomenon of co-infection induction across Dictyostelium associated Burkholderia species and exemplifies the contextual complexity of these associations.
Collapse
Affiliation(s)
- Niloufar Khojandi
- Department of Biological Sciences, Southern Illinois University Edwardsville, Edwardsville, IL, 62026, USA
- Department of Molecular Microbiology and Immunology, St. Louis University, St. Louis, MO, 63104, USA
| | - Tamara S Haselkorn
- Department of Biology, University of Central Arkansas, 201 Donaghey Avenue, Conway, AR, 72035, USA
| | - Madison N Eschbach
- Department of Biological Sciences, Southern Illinois University Edwardsville, Edwardsville, IL, 62026, USA
| | - Rana A Naser
- Department of Biological Sciences, Southern Illinois University Edwardsville, Edwardsville, IL, 62026, USA
| | - Susanne DiSalvo
- Department of Biological Sciences, Southern Illinois University Edwardsville, Edwardsville, IL, 62026, USA.
| |
Collapse
|
24
|
Conditional expression explains molecular evolution of social genes in a microbe. Nat Commun 2019; 10:3284. [PMID: 31337766 PMCID: PMC6650454 DOI: 10.1038/s41467-019-11237-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 06/25/2019] [Indexed: 12/30/2022] Open
Abstract
Conflict is thought to play a critical role in the evolution of social interactions by promoting diversity or driving accelerated evolution. However, despite our sophisticated understanding of how conflict shapes social traits, we have limited knowledge of how it impacts molecular evolution across the underlying social genes. Here we address this problem by analyzing the genome-wide impact of social interactions using genome sequences from 67 Dictyostelium discoideum strains. We find that social genes tend to exhibit enhanced polymorphism and accelerated evolution. However, these patterns are not consistent with conflict driven processes, but instead reflect relaxed purifying selection. This pattern is most likely explained by the conditional nature of social interactions, whereby selection on genes expressed only in social interactions is diluted by generations of inactivity. This dilution of selection by inactivity enhances the role of drift, leading to increased polymorphism and accelerated evolution, which we call the Red King process.
Collapse
|
25
|
Farinholt T, Dinh C, Kuspa A. Social amoebae establish a protective interface with their bacterial associates by lectin agglutination. SCIENCE ADVANCES 2019; 5:eaav4367. [PMID: 31355329 PMCID: PMC6656538 DOI: 10.1126/sciadv.aav4367] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 06/20/2019] [Indexed: 05/13/2023]
Abstract
Both animals and amoebae use phagocytosis and DNA-based extracellular traps as anti-bacterial defense mechanisms. Whether, like animals, amoebae also use tissue-level barriers to reduce direct contact with bacteria has remained unclear. We have explored this question in the social amoeba Dictyostelium discoideum, which forms plaques on lawns of bacteria that expand as amoebae divide and bacteria are consumed. We show that CadA, a cell adhesion protein that functions in D. discoideum development, is also a bacterial agglutinin that forms a protective interface at the plaque edge that limits exposure of vegetative amoebae to bacteria. This interface is important for amoebal survival when bacteria-to-amoebae ratios are high, optimizing amoebal feeding behavior, and protecting amoebae from oxidative stress. Lectins also control bacterial access to the gut epithelium of mammals to limit inflammatory processes; thus, this strategy of antibacterial defense is shared across a broad spectrum of eukaryotic taxa.
Collapse
Affiliation(s)
- Timothy Farinholt
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Christopher Dinh
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Adam Kuspa
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Corresponding author.
| |
Collapse
|
26
|
Rashidi G, Ostrowski EA. Phagocyte chase behaviours: discrimination between Gram-negative and Gram-positive bacteria by amoebae. Biol Lett 2019; 15:20180607. [PMID: 30958215 PMCID: PMC6371911 DOI: 10.1098/rsbl.2018.0607] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 11/27/2018] [Indexed: 01/23/2023] Open
Abstract
Phagocytes are cells that pursue, engulf and kill bacteria. They include macrophages and neutrophils of the mammalian immune system, as well as free-living amoebae that hunt and engulf bacteria for food. Phagocytosis can result in diverse outcomes, ranging from sustenance to infection and colonization by either pathogens or beneficial symbionts-and thus, discrimination may be necessary to seek out good bacteria while avoiding bad ones. Here we tested whether the soil amoeba Dictyostelium discoideum can discriminate among different types of bacteria using behavioural assays where amoebae were presented with paired choices of different bacteria. We observed variation in the extent to which the amoebae pursued different types of bacteria, as well as preferential migration towards Gram-negative compared with Gram-positive bacteria. Response profiles were similar for amoebae that originated from different geographical locations, suggesting that chase preference is conserved across much of the species range. While prior work has demonstrated that bacteria use chemotaxis to seek out amoebae they colonize, our work suggests that the opposite also occurs-amoebae can preferentially direct themselves to particular bacteria in the environment. Preferential sensing and response may help to explain why some amoeba-bacteria associations are more common in nature than others.
Collapse
Affiliation(s)
- Ghazal Rashidi
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Elizabeth A. Ostrowski
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
- Institute of Natural and Mathematical Sciences, Massey University, Auckland, New Zealand
| |
Collapse
|
27
|
Functional Characterization of Ubiquitin-Like Core Autophagy Protein ATG12 in Dictyostelium discoideum. Cells 2019; 8:cells8010072. [PMID: 30669443 PMCID: PMC6356199 DOI: 10.3390/cells8010072] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/15/2019] [Accepted: 01/17/2019] [Indexed: 12/12/2022] Open
Abstract
Autophagy is a highly conserved intracellular degradative pathway that is crucial for cellular homeostasis. During autophagy, the core autophagy protein ATG12 plays, together with ATG5 and ATG16, an essential role in the expansion of the autophagosomal membrane. In this study we analyzed gene replacement mutants of atg12 in Dictyostelium discoideum AX2 wild-type and ATG16‾ cells. RNAseq analysis revealed a strong enrichment of, firstly, autophagy genes among the up-regulated genes and, secondly, genes implicated in cell motility and phagocytosis among the down-regulated genes in the generated ATG12‾, ATG16‾ and ATG12‾/16‾ cells. The mutant strains showed similar defects in fruiting body formation, autolysosome maturation, and cellular viability, implying that ATG12 and ATG16 act as a functional unit in canonical autophagy. In contrast, ablation of ATG16 or of ATG12 and ATG16 resulted in slightly more severe defects in axenic growth, macropinocytosis, and protein homeostasis than ablation of only ATG12, suggesting that ATG16 fulfils an additional function in these processes. Phagocytosis of yeast, spore viability, and maximal cell density were much more affected in ATG12‾/16‾ cells, indicating that both proteins also have cellular functions independent of each other. In summary, we show that ATG12 and ATG16 fulfil autophagy-independent functions in addition to their role in canonical autophagy.
Collapse
|
28
|
Rubin M, Miller AD, Katoh-Kurasawa M, Dinh C, Kuspa A, Shaulsky G. Cooperative predation in the social amoebae Dictyostelium discoideum. PLoS One 2019; 14:e0209438. [PMID: 30625171 PMCID: PMC6326426 DOI: 10.1371/journal.pone.0209438] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 12/05/2018] [Indexed: 12/05/2022] Open
Abstract
The eukaryotic amoeba Dictyostelium discoideum is commonly used to study sociality. The amoebae cooperate during development, exhibiting altruism, cheating, and kin-discrimination, but growth while preying on bacteria has been considered asocial. Here we show that Dictyostelium are cooperative predators. Using mutants that grow poorly on Gram-negative bacteria but grow well on Gram-positive bacteria, we show that growth depends on cell-density and on prey type. We also found synergy, by showing that pairwise mixes of different mutants grow well on live Gram-negative bacteria. Moreover, wild-type amoebae produce diffusible factors that facilitate mutant growth and some mutants exploit the wild type in mixed cultures. Finding cooperative predation in D. discoideum should facilitate studies of this fascinating phenomenon, which has not been amenable to genetic analysis before.
Collapse
Affiliation(s)
- Michelle Rubin
- Graduate Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX, United States of America
| | - Amber D. Miller
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States of America
| | - Mariko Katoh-Kurasawa
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States of America
| | - Christopher Dinh
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, United States of America
| | - Adam Kuspa
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States of America
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, United States of America
| | - Gad Shaulsky
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States of America
- * E-mail:
| |
Collapse
|
29
|
Brock DA, Haselkorn TS, Garcia JR, Bashir U, Douglas TE, Galloway J, Brodie F, Queller DC, Strassmann JE. Diversity of Free-Living Environmental Bacteria and Their Interactions With a Bactivorous Amoeba. Front Cell Infect Microbiol 2018; 8:411. [PMID: 30533398 PMCID: PMC6266680 DOI: 10.3389/fcimb.2018.00411] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 11/05/2018] [Indexed: 01/06/2023] Open
Abstract
A small subset of bacteria in soil interact directly with eukaryotes. Which ones do so can reveal what is important to a eukaryote and how eukaryote defenses might be breached. Soil amoebae are simple eukaryotic organisms and as such could be particularly good for understanding how eukaryote microbiomes originate and are maintained. One such amoeba, Dictyostelium discoideum, has both permanent and temporary associations with bacteria. Here we focus on culturable bacterial associates in order to interrogate their relationship with D. discoideum. To do this, we isolated over 250 D. discoideum fruiting body samples from soil and deer feces at Mountain Lake Biological Station. In one-third of the wild D. discoideum we tested, one to six bacterial species were found per fruiting body sorus (spore mass) for a total of 174 bacterial isolates. The remaining two-thirds of D. discoideum fruiting body samples did not contain culturable bacteria, as is thought to be the norm. A majority (71.4%) of the unique bacterial haplotypes are in Proteobacteria. The rest are in either Actinobacteria, Bacteriodetes, or Firmicutes. The highest bacterial diversity was found in D. discoideum fruiting bodies originating from deer feces (27 OTUs), greater than either of those originating in shallow (11 OTUs) or in deep soil (4 OTUs). Rarefaction curves and the Chao1 estimator for species richness indicated the diversity in any substrate was not fully sampled, but for soil it came close. A majority of the D. discoideum-associated bacteria were edible by D. discoideum and supported its growth (75.2% for feces and 81.8% for soil habitats). However, we found several bacteria genera were able to evade phagocytosis and persist in D. discoideum cells through one or more social cycles. This study focuses not on the entire D. discoideum microbiome, but on the culturable subset of bacteria that have important eukaryote interactions as prey, symbionts, or pathogens. These eukaryote and bacteria interactions may provide fertile ground for investigations of bacteria using amoebas to gain an initial foothold in eukaryotes and of the origins of symbiosis and simple microbiomes.
Collapse
Affiliation(s)
- Debra A Brock
- Queller/Strassmann Laboratory, Washington University in St. Louis, Department of Biology, St. Louis, MO, United States
| | - Tamara S Haselkorn
- Queller/Strassmann Laboratory, Washington University in St. Louis, Department of Biology, St. Louis, MO, United States
| | - Justine R Garcia
- Queller/Strassmann Laboratory, Washington University in St. Louis, Department of Biology, St. Louis, MO, United States
| | - Usman Bashir
- Queller/Strassmann Laboratory, Washington University in St. Louis, Department of Biology, St. Louis, MO, United States
| | - Tracy E Douglas
- Queller/Strassmann Laboratory, Washington University in St. Louis, Department of Biology, St. Louis, MO, United States
| | - Jesse Galloway
- Mountain Lake Biological Laboratory, University of Virginia, Mountain Lake, VA, United States
| | - Fisher Brodie
- Mountain Lake Biological Laboratory, University of Virginia, Mountain Lake, VA, United States
| | - David C Queller
- Queller/Strassmann Laboratory, Washington University in St. Louis, Department of Biology, St. Louis, MO, United States
| | - Joan E Strassmann
- Queller/Strassmann Laboratory, Washington University in St. Louis, Department of Biology, St. Louis, MO, United States
| |
Collapse
|
30
|
Kundu S, Sharma R. Origin, evolution, and divergence of plant class C GH9 endoglucanases. BMC Evol Biol 2018; 18:79. [PMID: 29848310 PMCID: PMC5977491 DOI: 10.1186/s12862-018-1185-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 04/18/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Glycoside hydrolases of the GH9 family encode cellulases that predominantly function as endoglucanases and have wide applications in the food, paper, pharmaceutical, and biofuel industries. The partitioning of plant GH9 endoglucanases, into classes A, B, and C, is based on the differential presence of transmembrane, signal peptide, and the carbohydrate binding module (CBM49). There is considerable debate on the distribution and the functions of these enzymes which may vary in different organisms. In light of these findings we examined the origin, emergence, and subsequent divergence of plant GH9 endoglucanases, with an emphasis on elucidating the role of CBM49 in the digestion of crystalline cellulose by class C members. RESULTS Since, the digestion of crystalline cellulose mandates the presence of a well-defined set of aromatic and polar amino acids and/or an attributable domain that can mediate this conversion, we hypothesize a vertical mode of transfer of genes that could favour the emergence of class C like GH9 endoglucanase activity in land plants from potentially ancestral non plant taxa. We demonstrated the concomitant occurrence of a GH9 domain with CBM49 and other homologous carbohydrate binding modules, in putative endoglucanase sequences from several non-plant taxa. In the absence of comparable full length CBMs, we have characterized several low strength patterns that could approximate the CBM49, thereby, extending support for digestion of crystalline cellulose to other segments of the protein. We also provide data suggestive of the ancestral role of putative class C GH9 endoglucanases in land plants, which includes detailed phylogenetics and the presence and subsequent loss of CBM49, transmembrane, and signal peptide regions in certain populations of early land plants. These findings suggest that classes A and B of modern vascular land plants may have emerged by diverging directly from CBM49 encompassing putative class C enzymes. CONCLUSION Our detailed phylogenetic and bioinformatics analysis of putative GH9 endoglucanase sequences across major taxa suggests that plant class C enzymes, despite their recent discovery, could function as the last common ancestor of classes A and B. Additionally, research into their ability to digest or inter-convert crystalline and amorphous forms of cellulose could make them lucrative candidates for engineering biofuel feedstock.
Collapse
Affiliation(s)
- Siddhartha Kundu
- Department of Biochemistry, Government of NCT of Delhi, Dr. Baba Saheb Ambedkar Medical College & Hospital, New Delhi, 110085, India. .,Crop Genetics and Informatics Group, School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| | - Rita Sharma
- Crop Genetics and Informatics Group, School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
31
|
Pan M, Neilson MP, Grunfeld AM, Cruz P, Wen X, Insall RH, Jin T. A G-protein-coupled chemoattractant receptor recognizes lipopolysaccharide for bacterial phagocytosis. PLoS Biol 2018; 16:e2005754. [PMID: 29799847 PMCID: PMC5969738 DOI: 10.1371/journal.pbio.2005754] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 04/27/2018] [Indexed: 11/19/2022] Open
Abstract
Phagocytes locate microorganisms via chemotaxis and then consume them using phagocytosis. Dictyostelium amoebas are stereotypical phagocytes that prey on diverse bacteria using both processes. However, as typical phagocytic receptors, such as complement receptors or Fcγ receptors, have not been found in Dictyostelium, it remains mysterious how these cells recognize bacteria. Here, we show that a single G-protein-coupled receptor (GPCR), folic acid receptor 1 (fAR1), simultaneously recognizes the chemoattractant folate and the phagocytic cue lipopolysaccharide (LPS), a major component of bacterial surfaces. Cells lacking fAR1 or its cognate G-proteins are defective in chemotaxis toward folate and phagocytosis of Klebsiella aerogenes. Computational simulations combined with experiments show that responses associated with chemotaxis can also promote engulfment of particles coated with chemoattractants. Finally, the extracellular Venus-Flytrap (VFT) domain of fAR1 acts as the binding site for both folate and LPS. Thus, fAR1 represents a new member of the pattern recognition receptors (PRRs) and mediates signaling from both bacterial surfaces and diffusible chemoattractants to reorganize actin for chemotaxis and phagocytosis.
Collapse
Affiliation(s)
- Miao Pan
- Chemotaxis Signal Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, Maryland, United States of America
| | | | - Alexander M. Grunfeld
- Chemotaxis Signal Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, Maryland, United States of America
| | - Phillip Cruz
- Bioinformatics and Computational Biosciences Branch, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Xi Wen
- Chemotaxis Signal Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, Maryland, United States of America
| | | | - Tian Jin
- Chemotaxis Signal Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, Maryland, United States of America
| |
Collapse
|
32
|
Buracco S, Peracino B, Andreini C, Bracco E, Bozzaro S. Differential Effects of Iron, Zinc, and Copper on Dictyostelium discoideum Cell Growth and Resistance to Legionella pneumophila. Front Cell Infect Microbiol 2018; 7:536. [PMID: 29379774 PMCID: PMC5770829 DOI: 10.3389/fcimb.2017.00536] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 12/26/2017] [Indexed: 12/29/2022] Open
Abstract
Iron, zinc, and copper play fundamental roles in eucaryotes and procaryotes, and their bioavailability regulates host-pathogen interactions. For intracellular pathogens, the source of metals is the cytoplasm of the host, which in turn manipulates intracellular metal traffic following pathogen recognition. It is established that iron is withheld from the pathogen-containing vacuole, whereas for copper and zinc the evidence is unclear. Most infection studies in mammals have concentrated on effects of metal deficiency/overloading at organismal level. Thus, zinc deficiency or supplementation correlate with high risk of respiratory tract infection or recovery from severe infection, respectively. Iron, zinc, and copper deficiency or overload affects lymphocyte proliferation/maturation, and thus the adaptive immune response. Whether they regulate innate immunity at macrophage level is open, except for iron. The early identification in a mouse mutant susceptible to mycobacterial infection of the iron transporter Nramp1 allowed dissecting Nramp1 role in phagocytes, from the social amoeba Dictyostelium to macrophages. Nramp1 regulates iron efflux from the phagosomes, thus starving pathogenic bacteria for iron. Similar studies for zinc or copper are scant, due to the large number of copper and zinc transporters. In Dictyostelium, zinc and copper transporters include 11 and 6 members, respectively. To assess the role of zinc or copper in Dictyostelium, cells were grown under conditions of metal depletion or excess and tested for resistance to Legionella pneumophila infection. Iron shortage or overload inhibited Dictyostelium cell growth within few generations. Surprisingly, zinc or copper depletion failed to affect growth. Zinc or copper overloading inhibited cell growth at, respectively, 50- or 500-fold the physiological concentration, suggesting very efficient control of their homeostasis, as confirmed by Inductively Coupled Plasma Mass Spectrometry quantification of cellular metals. Legionella infection was inhibited or enhanced in cells grown under iron shortage or overload, respectively, confirming a major role for iron in controlling resistance to pathogens. In contrast, zinc and copper depletion or excess during growth did not affect Legionella infection. Using Zinpyr-1 as fluorescent sensor, we show that zinc accumulates in endo-lysosomal vesicles, including phagosomes, and the contractile vacuole. Furthermore, we provide evidence for permeabilization of the Legionella-containing vacuole during bacterial proliferation.
Collapse
Affiliation(s)
- Simona Buracco
- Department of Clinical and Biological Sciences, University of Torino, Turin, Italy
| | - Barbara Peracino
- Department of Clinical and Biological Sciences, University of Torino, Turin, Italy
| | - Claudia Andreini
- Magnetic Resonance Center (CERM), University of Florence, Florence, Italy
| | - Enrico Bracco
- Department of Oncology, University of Torino, Turin, Italy
| | - Salvatore Bozzaro
- Department of Clinical and Biological Sciences, University of Torino, Turin, Italy
| |
Collapse
|
33
|
Dunn JD, Bosmani C, Barisch C, Raykov L, Lefrançois LH, Cardenal-Muñoz E, López-Jiménez AT, Soldati T. Eat Prey, Live: Dictyostelium discoideum As a Model for Cell-Autonomous Defenses. Front Immunol 2018; 8:1906. [PMID: 29354124 PMCID: PMC5758549 DOI: 10.3389/fimmu.2017.01906] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 12/13/2017] [Indexed: 12/11/2022] Open
Abstract
The soil-dwelling social amoeba Dictyostelium discoideum feeds on bacteria. Each meal is a potential infection because some bacteria have evolved mechanisms to resist predation. To survive such a hostile environment, D. discoideum has in turn evolved efficient antimicrobial responses that are intertwined with phagocytosis and autophagy, its nutrient acquisition pathways. The core machinery and antimicrobial functions of these pathways are conserved in the mononuclear phagocytes of mammals, which mediate the initial, innate-immune response to infection. In this review, we discuss the advantages and relevance of D. discoideum as a model phagocyte to study cell-autonomous defenses. We cover the antimicrobial functions of phagocytosis and autophagy and describe the processes that create a microbicidal phagosome: acidification and delivery of lytic enzymes, generation of reactive oxygen species, and the regulation of Zn2+, Cu2+, and Fe2+ availability. High concentrations of metals poison microbes while metal sequestration inhibits their metabolic activity. We also describe microbial interference with these defenses and highlight observations made first in D. discoideum. Finally, we discuss galectins, TNF receptor-associated factors, tripartite motif-containing proteins, and signal transducers and activators of transcription, microbial restriction factors initially characterized in mammalian phagocytes that have either homologs or functional analogs in D. discoideum.
Collapse
Affiliation(s)
- Joe Dan Dunn
- Faculty of Sciences, Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | - Cristina Bosmani
- Faculty of Sciences, Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | - Caroline Barisch
- Faculty of Sciences, Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | - Lyudmil Raykov
- Faculty of Sciences, Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | - Louise H Lefrançois
- Faculty of Sciences, Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | - Elena Cardenal-Muñoz
- Faculty of Sciences, Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | | | - Thierry Soldati
- Faculty of Sciences, Department of Biochemistry, University of Geneva, Geneva, Switzerland
| |
Collapse
|
34
|
Fort P, Blangy A. The Evolutionary Landscape of Dbl-Like RhoGEF Families: Adapting Eukaryotic Cells to Environmental Signals. Genome Biol Evol 2017; 9:1471-1486. [PMID: 28541439 PMCID: PMC5499878 DOI: 10.1093/gbe/evx100] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2017] [Indexed: 12/27/2022] Open
Abstract
The dynamics of cell morphology in eukaryotes is largely controlled by small GTPases of the Rho family. Rho GTPases are activated by guanine nucleotide exchange factors (RhoGEFs), of which diffuse B-cell lymphoma (Dbl)-like members form the largest family. Here, we surveyed Dbl-like sequences from 175 eukaryotic genomes and illuminate how the Dbl family evolved in all eukaryotic supergroups. By combining probabilistic phylogenetic approaches and functional domain analysis, we show that the human Dbl-like family is made of 71 members, structured into 20 subfamilies. The 71 members were already present in ancestral jawed vertebrates, but several members were subsequently lost in specific clades, up to 12% in birds. The jawed vertebrate repertoire was established from two rounds of duplications that occurred between tunicates, cyclostomes, and jawed vertebrates. Duplicated members showed distinct tissue distributions, conserved at least in Amniotes. All 20 subfamilies have members in Deuterostomes and Protostomes. Nineteen subfamilies are present in Porifera, the first phylum that diverged in Metazoa, 14 in Choanoflagellida and Filasterea, single-celled organisms closely related to Metazoa and three in Fungi, the sister clade to Metazoa. Other eukaryotic supergroups show an extraordinary variability of Dbl-like repertoires as a result of repeated and independent gain and loss events. Last, we observed that in Metazoa, the number of Dbl-like RhoGEFs varies in proportion of cell signaling complexity. Overall, our analysis supports the conclusion that Dbl-like RhoGEFs were present at the origin of eukaryotes and evolved as highly adaptive cell signaling mediators.
Collapse
Affiliation(s)
- Philippe Fort
- CRBM, Université of Montpellier, France.,CNRS, UMR5237, Montpellier, France
| | - Anne Blangy
- CRBM, Université of Montpellier, France.,CNRS, UMR5237, Montpellier, France
| |
Collapse
|
35
|
Meena NP, Kimmel AR. Chemotactic network responses to live bacteria show independence of phagocytosis from chemoreceptor sensing. eLife 2017; 6. [PMID: 28541182 PMCID: PMC5476428 DOI: 10.7554/elife.24627] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 05/24/2017] [Indexed: 12/21/2022] Open
Abstract
Aspects of innate immunity derive from characteristics inherent to phagocytes, including chemotaxis toward and engulfment of unicellular organisms or cell debris. Ligand chemotaxis has been biochemically investigated using mammalian and model systems, but precision of chemotaxis towards ligands being actively secreted by live bacteria is not well studied, nor has there been systematic analyses of interrelationships between chemotaxis and phagocytosis. The genetic/molecular model Dictyostelium and mammalian phagocytes share mechanistic pathways for chemotaxis and phagocytosis; Dictyostelium chemotax toward bacteria and phagocytose them as food sources. We quantified Dictyostelium chemotaxis towards live gram positive and gram negative bacteria and demonstrate high sensitivity to multiple bacterially-secreted chemoattractants. Additive/competitive assays indicate that intracellular signaling-networks for multiple ligands utilize independent upstream adaptive mechanisms, but common downstream targets, thus amplifying detection at low signal propagation, but strengthening discrimination of multiple inputs. Finally, analyses of signaling-networks for chemotaxis and phagocytosis indicate that chemoattractant receptor-signaling is not essential for bacterial phagocytosis. DOI:http://dx.doi.org/10.7554/eLife.24627.001
Collapse
Affiliation(s)
- Netra Pal Meena
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, The National Institutes of Health, Bethesda, United States
| | - Alan R Kimmel
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, The National Institutes of Health, Bethesda, United States
| |
Collapse
|
36
|
Mergaert P, Kikuchi Y, Shigenobu S, Nowack ECM. Metabolic Integration of Bacterial Endosymbionts through Antimicrobial Peptides. Trends Microbiol 2017; 25:703-712. [PMID: 28549825 DOI: 10.1016/j.tim.2017.04.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 04/10/2017] [Accepted: 04/21/2017] [Indexed: 01/05/2023]
Abstract
Antimicrobial peptides (AMPs) are massively produced by eukaryotic hosts during symbiotic interactions with bacteria. Among other roles, these symbiotic AMPs have the capacity to permeabilize symbiont membranes and facilitate metabolite flow across the host-symbiont interface. We propose that an ancestral role of these peptides is to facilitate metabolic exchange between the symbiotic partners through membrane permeabilization. This function may be particularly critical for integration of endosymbiont and host metabolism in interactions involving bacteria with strongly reduced genomes lacking most small metabolite transporters. Moreover, AMPs could have acted in a similar way at the onset of plastid and mitochondrion evolution, after a host cell took up a bacterium and needed to extract nutrients from it in the absence of dedicated solute transporters.
Collapse
Affiliation(s)
- Peter Mergaert
- Institute for Integrative Biology of the Cell, UMR9198, CNRS, Université Paris-Sud, CEA, Gif-sur-Yvette, France.
| | - Yoshitomo Kikuchi
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Hokkaido Center, Sapporo, Japan; Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | | | - Eva C M Nowack
- Department of Biology, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
37
|
Sanders D, Borys KD, Kisa F, Rakowski SA, Lozano M, Filutowicz M. Multiple Dictyostelid Species Destroy Biofilms of Klebsiella oxytoca and Other Gram Negative Species. Protist 2017; 168:311-325. [PMID: 28499132 DOI: 10.1016/j.protis.2017.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 03/29/2017] [Accepted: 04/03/2017] [Indexed: 12/17/2022]
Abstract
Dictyostelids are free-living phagocytes that feed on bacteria in diverse habitats. When bacterial prey is in short supply or depleted, they undergo multicellular development culminating in the formation of dormant spores. In this work, we tested isolates representing four dictyostelid species from two genera (Dictyostelium and Polysphondylium) for the potential to feed on biofilms preformed on glass and polycarbonate surfaces. The abilities of dictyostelids were monitored for three hallmarks of activity: 1) spore germination on biofilms, 2) predation on biofilm enmeshed bacteria by phagocytic cells and 3) characteristic stages of multicellular development (streaming and fructification). We found that all dictyostelid isolates tested could feed on biofilm enmeshed bacteria produced by human and plant pathogens: Klebsiella oxytoca, Pseudomonas aeruginosa, Pseudomonas syringae, Erwinia amylovora 1189 (biofilm former) and E. amylovora 1189 Δams (biofilm deficient mutant). However, when dictyostelids were fed planktonic E. amylovora Δams the bacterial cells exhibited an increased susceptibility to predation by one of the two dictyostelid strains they were tested against. Taken together, the qualitative and quantitative data presented here suggest that dictyostelids have preferences in bacterial prey which affects their efficiency of feeding on bacterial biofilms.
Collapse
Affiliation(s)
- Dean Sanders
- Department of Bacteriology, University of Wisconsin-Madison 1550 Linden Dr., Madison, WI 53706, USA
| | - Katarzyna D Borys
- Department of Bacteriology, University of Wisconsin-Madison 1550 Linden Dr., Madison, WI 53706, USA
| | - Fikrullah Kisa
- Department of Bacteriology, University of Wisconsin-Madison 1550 Linden Dr., Madison, WI 53706, USA
| | - Sheryl A Rakowski
- Department of Bacteriology, University of Wisconsin-Madison 1550 Linden Dr., Madison, WI 53706, USA
| | - Marcela Lozano
- Department of Bacteriology, University of Wisconsin-Madison 1550 Linden Dr., Madison, WI 53706, USA
| | - Marcin Filutowicz
- Department of Bacteriology, University of Wisconsin-Madison 1550 Linden Dr., Madison, WI 53706, USA.
| |
Collapse
|
38
|
Leiba J, Sabra A, Bodinier R, Marchetti A, Lima WC, Melotti A, Perrin J, Burdet F, Pagni M, Soldati T, Lelong E, Cosson P. Vps13F links bacterial recognition and intracellular killing in Dictyostelium. Cell Microbiol 2017; 19. [PMID: 28076662 PMCID: PMC5484366 DOI: 10.1111/cmi.12722] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 01/06/2017] [Accepted: 01/06/2017] [Indexed: 12/22/2022]
Abstract
Bacterial sensing, ingestion, and killing by phagocytic cells are essential processes to protect the human body from infectious microorganisms. The cellular mechanisms involved in intracellular killing, their relative importance, and their specificity towards different bacteria are however poorly defined. In this study, we used Dictyostelium discoideum, a phagocytic cell model amenable to genetic analysis, to identify new gene products involved in intracellular killing. A random genetic screen led us to identify the role of Vps13F in intracellular killing of Klebsiella pneumoniae. Vps13F knock‐out (KO) cells exhibited a delayed intracellular killing of K. pneumoniae, although the general organization of the phagocytic and endocytic pathway appeared largely unaffected. Transcriptomic analysis revealed that vps13F KO cells may be functionally similar to previously characterized fspA KO cells, shown to be defective in folate sensing. Indeed, vps13F KO cells showed a decreased chemokinetic response to various stimulants, suggesting a direct or indirect role of Vps13F in intracellular signaling. Overstimulation with excess folate restored efficient killing in vps13F KO cells. Finally, genetic inactivation of Far1, the folate receptor, resulted in inefficient intracellular killing of K. pneumoniae. Together, these observations show that stimulation of Dictyostelium by bacterial folate is necessary for rapid intracellular killing of K. pneumoniae.
Collapse
Affiliation(s)
- Jade Leiba
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Ayman Sabra
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Romain Bodinier
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Anna Marchetti
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Wanessa C Lima
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Astrid Melotti
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Jackie Perrin
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Frederic Burdet
- Vital-IT, Swiss Institute of Bioinformatics, University of Lausanne, Lausanne, Switzerland
| | - Marco Pagni
- Vital-IT, Swiss Institute of Bioinformatics, University of Lausanne, Lausanne, Switzerland
| | - Thierry Soldati
- Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | - Emmanuelle Lelong
- Genomic Research Laboratory, Division of Infectious Diseases, Geneva University Hospitals, Geneva, Switzerland
| | - Pierre Cosson
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
39
|
Gene Prioritization by Compressive Data Fusion and Chaining. PLoS Comput Biol 2015; 11:e1004552. [PMID: 26465776 PMCID: PMC4605714 DOI: 10.1371/journal.pcbi.1004552] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 09/12/2015] [Indexed: 01/17/2023] Open
Abstract
Data integration procedures combine heterogeneous data sets into predictive models, but they are limited to data explicitly related to the target object type, such as genes. Collage is a new data fusion approach to gene prioritization. It considers data sets of various association levels with the prediction task, utilizes collective matrix factorization to compress the data, and chaining to relate different object types contained in a data compendium. Collage prioritizes genes based on their similarity to several seed genes. We tested Collage by prioritizing bacterial response genes in Dictyostelium as a novel model system for prokaryote-eukaryote interactions. Using 4 seed genes and 14 data sets, only one of which was directly related to the bacterial response, Collage proposed 8 candidate genes that were readily validated as necessary for the response of Dictyostelium to Gram-negative bacteria. These findings establish Collage as a method for inferring biological knowledge from the integration of heterogeneous and coarsely related data sets.
Collapse
|
40
|
Santhanam B, Cai H, Devreotes PN, Shaulsky G, Katoh-Kurasawa M. The GATA transcription factor GtaC regulates early developmental gene expression dynamics in Dictyostelium. Nat Commun 2015; 6:7551. [PMID: 26144553 PMCID: PMC4506546 DOI: 10.1038/ncomms8551] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 05/20/2015] [Indexed: 12/11/2022] Open
Abstract
In many systems, including the social amoeba Dictyostelium discoideum, development is often marked by dynamic morphological and transcriptional changes orchestrated by key transcription factors. However, efforts to examine sequential genome-wide changes of gene regulation in developmental processes have been fairly limited. Here we report the developmental regulatory dynamics of GtaC, a GATA-type zinc-finger transcription factor, through the analyses of serial ChIP- and RNA-sequencing data. GtaC is essential for developmental progression, decoding extracellular cAMP pulses during early development and may play a role in mediating cell-type differentiation at later stages. We find that GtaC exhibits temporally distinctive DNA-binding patterns concordant with each developmental stage. We identify direct GtaC targets and observe cotemporaneous GtaC-binding and developmental expression regulation. Our results suggest that GtaC regulates multiple physiological processes as Dictyostelium transitions from a group of unicellular amoebae to an integrated multicellular organism. Development involves dynamic transcriptional changes. By serial ChIP- and RNA-sequencing, here, the authors show that GtaC, a GATA type transcription factor, exhibits temporally distinctive DNA binding and regulation of gene expression concordant with the development in the social amoeba Dictyostelium discoideum.
Collapse
Affiliation(s)
- Balaji Santhanam
- 1] Graduate Program in Structural and Computational Biology and Molecular Biophysics, Baylor College of Medicine, Houston, Texas 77030, USA [2] Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Huaqing Cai
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | - Peter N Devreotes
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | - Gad Shaulsky
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Mariko Katoh-Kurasawa
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
41
|
Feasley CL, van der Wel H, West CM. Evolutionary diversity of social amoebae N-glycomes may support interspecific autonomy. Glycoconj J 2015; 32:345-59. [PMID: 25987342 DOI: 10.1007/s10719-015-9592-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 04/11/2015] [Accepted: 04/14/2015] [Indexed: 10/23/2022]
Abstract
Multiple species of cellular slime mold (CSM) amoebae share overlapping subterranean environments near the soil surface. Despite similar life-styles, individual species form independent starvation-induced fruiting bodies whose spores can renew the life cycle. N-glycans associated with the cell surface glycocalyx have been predicted to contribute to interspecific avoidance, resistance to pathogens, and prey preference. N-glycans from five CSM species that diverged 300-600 million years ago and whose genomes have been sequenced were fractionated into neutral and acidic pools and profiled by MALDI-TOF-MS. Glycan structure models were refined using linkage specific antibodies, exoglycosidase digestions, MALDI-MS/MS, and chromatographic studies. Amoebae of the type species Dictyostelium discoideum express modestly trimmed high mannose N-glycans variably modified with core α3-linked Fuc and peripherally decorated with 0-2 residues each of β-GlcNAc, Fuc, methylphosphate and/or sulfate, as reported previously. Comparative analyses of D. purpureum, D. fasciculatum, Polysphondylium pallidum, and Actyostelium subglobosum revealed that each displays a distinctive spectrum of high-mannose species with quantitative variations in the extent of these modifications, and qualitative differences including retention of Glc, mannose methylation, and absence of a peripheral GlcNAc, fucosylation, or sulfation. Starvation-induced development modifies the pattern in all species but, except for universally observed increased mannose-trimming, the N-glycans do not converge to a common profile. Correlations with glycogene repertoires will enable future reverse genetic studies to eliminate N-glycomic differences to test their functions in interspecific relations and pathogen evasion.
Collapse
Affiliation(s)
- Christa L Feasley
- Department of Biochemistry & Molecular Biology, Oklahoma Center for Medical Glycobiology, University of Oklahoma Health Sciences Center, 975 NE 10th St., BRC-415, OUHSC, Oklahoma City, OK, 73104, USA,
| | | | | |
Collapse
|
42
|
Conti F, Abnave P, Ghigo E. Unconventional animal models: a booster for new advances in host-pathogen interactions. Front Cell Infect Microbiol 2014; 4:142. [PMID: 25340043 PMCID: PMC4189411 DOI: 10.3389/fcimb.2014.00142] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 09/19/2014] [Indexed: 12/21/2022] Open
Affiliation(s)
- Filippo Conti
- Centre National de la Recherche Scientifique UMR 7278, IRD198, Institut National de la Santé et de la Recherche Médicale U1095, Aix-Marseille Université Marseille, France
| | - Prasad Abnave
- Centre National de la Recherche Scientifique UMR 7278, IRD198, Institut National de la Santé et de la Recherche Médicale U1095, Aix-Marseille Université Marseille, France
| | - Eric Ghigo
- Centre National de la Recherche Scientifique UMR 7278, IRD198, Institut National de la Santé et de la Recherche Médicale U1095, Aix-Marseille Université Marseille, France
| |
Collapse
|
43
|
Cosson P, Lima WC. Intracellular killing of bacteria: is Dictyostelium a model macrophage or an alien? Cell Microbiol 2014; 16:816-23. [PMID: 24628900 PMCID: PMC4291096 DOI: 10.1111/cmi.12291] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 03/06/2014] [Accepted: 03/10/2014] [Indexed: 12/27/2022]
Abstract
Predation of bacteria by phagocytic cells was first developed during evolution by environmental amoebae. Many of the core mechanisms used by amoebae to sense, ingest and kill bacteria have also been conserved in specialized phagocytic cells in mammalian organisms. Here we focus on recent results revealing how Dictyostelium discoideum senses and kills non-pathogenic bacteria. In this model, genetic analysis of intracellular killing of bacteria has revealed a surprisingly complex array of specialized mechanisms. These results raise new questions on these processes, and challenge current models based largely on studies in mammalian phagocytes. In addition, recent studies suggest one additional level on complexity by revealing how Dictyostelium recognizes specifically various bacterial species and strains, and adapts its metabolism to process them. It remains to be seen to what extent mechanisms uncovered in Dictyostelium are also used in mammalian phagocytic cells.
Collapse
Affiliation(s)
- Pierre Cosson
- Dpt for Cell Physiology and Metabolism, Centre Medical Universitaire, University of Geneva, 1 rue Michel Servet, 1211, Geneva 4, Switzerland
| | | |
Collapse
|
44
|
Simon M, Plattner H. Unicellular Eukaryotes as Models in Cell and Molecular Biology. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 309:141-98. [DOI: 10.1016/b978-0-12-800255-1.00003-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
45
|
Lima WC, Balestrino D, Forestier C, Cosson P. Two distinct sensing pathways allow recognition of Klebsiella pneumoniae by Dictyostelium amoebae. Cell Microbiol 2013; 16:311-23. [PMID: 24128258 PMCID: PMC4303882 DOI: 10.1111/cmi.12226] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 09/24/2013] [Accepted: 10/07/2013] [Indexed: 12/24/2022]
Abstract
Recognition of bacteria by metazoans is mediated by receptors that recognize different types of microorganisms and elicit specific cellular responses. The soil amoebae Dictyostelium discoideum feeds upon a variable mixture of environmental bacteria, and it is expected to recognize and adapt to various food sources. To date, however, no bacteria-sensing mechanisms have been described. In this study, we isolated a Dictyostelium mutant (fspA KO) unable to grow in the presence of non-capsulated Klebsiella pneumoniae bacteria, but growing as efficiently as wild-type cells in the presence of other bacteria, such as Bacillus subtilis. fspA KO cells were also unable to respond to K. pneumoniae and more specifically to bacterially secreted folate in a chemokinetic assay, while they responded readily to B. subtilis. Remarkably, both WT and fspA KO cells were able to grow in the presence of capsulated LM21 K. pneumoniae, and responded to purified capsule, indicating that capsule recognition may represent an alternative, FspA-independent mechanism for K. pneumoniae sensing. When LM21 capsule synthesis genes were deleted, growth and chemokinetic response were lost for fspA KO cells, but not for WT cells. Altogether, these results indicate that Dictyostelium amoebae use specific recognition mechanisms to respond to different K. pneumoniae elements.
Collapse
Affiliation(s)
- Wanessa C Lima
- Department for Cell Physiology and Metabolism, Centre Medical Universitaire, University of Geneva, 1 rue Michel Servet, 1211, Geneva 4, Switzerland
| | | | | | | |
Collapse
|
46
|
Bozzaro S, Buracco S, Peracino B. Iron metabolism and resistance to infection by invasive bacteria in the social amoeba Dictyostelium discoideum. Front Cell Infect Microbiol 2013; 3:50. [PMID: 24066281 PMCID: PMC3777012 DOI: 10.3389/fcimb.2013.00050] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 08/22/2013] [Indexed: 12/20/2022] Open
Abstract
Dictyostelium cells are forest soil amoebae, which feed on bacteria and proliferate as solitary cells until bacteria are consumed. Starvation triggers a change in life style, forcing cells to gather into aggregates to form multicellular organisms capable of cell differentiation and morphogenesis. As a soil amoeba and a phagocyte that grazes on bacteria as the obligate source of food, Dictyostelium could be a natural host of pathogenic bacteria. Indeed, many pathogens that occasionally infect humans are hosted for most of their time in protozoa or free-living amoebae, where evolution of their virulence traits occurs. Due to these features and its amenability to genetic manipulation, Dictyostelium has become a valuable model organism for studying strategies of both the host to resist infection and the pathogen to escape the defense mechanisms. Similarly to higher eukaryotes, iron homeostasis is crucial for Dictyostelium resistance to invasive bacteria. Iron is essential for Dictyostelium, as both iron deficiency or overload inhibit cell growth. The Dictyostelium genome shares with mammals many genes regulating iron homeostasis. Iron transporters of the Nramp (Slc11A) family are represented with two genes, encoding Nramp1 and Nramp2. Like the mammalian ortholog, Nramp1 is recruited to phagosomes and macropinosomes, whereas Nramp2 is a membrane protein of the contractile vacuole network, which regulates osmolarity. Nramp1 and Nramp2 localization in distinct compartments suggests that both proteins synergistically regulate iron homeostasis. Rather than by absorption via membrane transporters, iron is likely gained by degradation of ingested bacteria and efflux via Nramp1 from phagosomes to the cytosol. Nramp gene disruption increases Dictyostelium sensitivity to infection, enhancing intracellular growth of Legionella or Mycobacteria. Generation of mutants in other "iron genes" will help identify genes essential for iron homeostasis and resistance to pathogens.
Collapse
Affiliation(s)
- Salvatore Bozzaro
- Department of Clinical and Biological Sciences, University of Torino, Orbassano, Italy.
| | | | | |
Collapse
|
47
|
|