1
|
Gao B, Zhang J, Zhang J, Pei G, Liu T, Wang L, Funahashi S, Wu J, Zhang Z, Zhang J. Gamma Transcranial Alternating Current Stimulation Enhances Working Memory Ability in Healthy People: An EEG Microstate Study. Brain Sci 2025; 15:381. [PMID: 40309851 PMCID: PMC12025431 DOI: 10.3390/brainsci15040381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/28/2025] [Accepted: 03/31/2025] [Indexed: 05/02/2025] Open
Abstract
BACKGROUND Working memory (WM) is a core cognitive function closely linked to various cognitive processes including language, decision making, and reasoning. Transcranial alternating current stimulation (tACS), a non-invasive brain stimulation technique, has been shown to modulate cognitive abilities and treat psychiatric disorders. Although gamma tACS (γ-tACS) has demonstrated positive effects on WM, its underlying neural mechanisms remain unclear. METHODS In this study, we employed electroencephalogram (EEG) microstate analysis to investigate the spatiotemporal dynamics of γ-tACS effects on WM performance. Healthy participants (N = 104) participated in two-back and three-back WM tasks before and after two types (sine and triangular) of γ-tACS, with sham stimulation as a control. RESULTS Our results revealed that γ-tACS improved performance in both the two-back and three-back tasks, with triangular γ-tACS showing greater accuracy improvement in the three-back task than the sham group. Furthermore, γ-tACS significantly modulated EEG microstate dynamics, specifically downregulating microstate Class C and upregulating microstate Classes D and B. These changes were positively correlated with reduced reaction times in the three-back task. CONCLUSIONS Our findings establish microstate analysis as an effective approach for evaluating γ-tACS-induced changes in global brain activity and advance the understanding of how γ-tACS influences WM.
Collapse
Affiliation(s)
- Binbin Gao
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China;
| | - Jinyan Zhang
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China; (J.Z.); (J.Z.)
| | - Jianxu Zhang
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China; (J.Z.); (J.Z.)
| | - Guangying Pei
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China; (G.P.); (T.L.); (L.W.); (J.W.)
| | - Tiantian Liu
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China; (G.P.); (T.L.); (L.W.); (J.W.)
| | - Li Wang
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China; (G.P.); (T.L.); (L.W.); (J.W.)
| | - Shintaro Funahashi
- Advanced Research Institute for Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China;
| | - Jinglong Wu
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China; (G.P.); (T.L.); (L.W.); (J.W.)
| | - Zhilin Zhang
- Research Center for Medical Artificial Intelligence, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Jian Zhang
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China; (G.P.); (T.L.); (L.W.); (J.W.)
| |
Collapse
|
2
|
Guo Z, Qiu H, Li Y, Wang S, Gao Y, Yuan M, He S, Yan F, Wang Y, Ma X. Gamma oscillatory transcranial direct current stimulation of motor cortex enhances corticospinal excitability and brain connectivity in healthy individuals. Cereb Cortex 2025; 35:bhaf093. [PMID: 40298444 DOI: 10.1093/cercor/bhaf093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 02/20/2025] [Accepted: 03/31/2025] [Indexed: 04/30/2025] Open
Abstract
Cortical excitability, the tendency of neurons to respond to various stimuli, is impaired in most neuropsychiatric conditions. Non-invasive brain stimulation can exert therapeutic effects by modulating the cortical excitability. Transcranial direct current stimulation (tDCS) and transcranial alternating current stimulation (tACS) have shown promise in various neuropsychiatric disorders, including improving cognitive abilities and motor function following stroke. Oscillatory transcranial direct current stimulation (otDCS), as a novel stimulation paradigm, combines tDCS and tACS to simultaneously regulate neuronal membrane potentials and oscillatory rhythms. This combination may produce more significant effects on neurons. To investigate this, participants received the following stimuli for 20 min on different days: (i) 2 mA 40 Hz otDCS, (ii) 2 mA 40 Hz tACS, (iii) 2 mA tDCS, and (iv) sham stimulation. Motor evoked potentials (MEPs) and transcranial magnetic stimulation combined with electroencephalography (TMS-EEG) were assessed both before and after stimulation. The increase in MEPs amplitudes was most pronounced under otDCS conditions compared with tACS and tDCS. Furthermore, analysis of TMS-EEG data revealed that changes in time-varying brain network patterns were most pronounced after otDCS, manifesting as enhanced brain-wide information connectivity. Our results indicate that gamma otDCS has significant potential for regulating cortical excitability and activating brain networks.
Collapse
Affiliation(s)
- Ziyu Guo
- Department of Neurology, The First Hospital of Hebei Medical University, No. 89 Donggang Road, Yuhua District, Shijiazhuang 050031, China
- Department of Neurology of Graduate School, Hebei Medical University, No. 361 Zhongshan Street, Changan District, Shijiazhuang 050017, China
| | - Huiqing Qiu
- Department of Neurology, The First Hospital of Hebei Medical University, No. 89 Donggang Road, Yuhua District, Shijiazhuang 050031, China
- Department of Neurology, Hebei Hospital of Xuanwu Hospital Capital Medical University, No. 89 Donggang Road, Yuhua District, Shijiazhuang 050031, China
| | - Yang Li
- Department of Neurology, The First Hospital of Hebei Medical University, No. 89 Donggang Road, Yuhua District, Shijiazhuang 050031, China
- Department of Neurology, Hebei Hospital of Xuanwu Hospital Capital Medical University, No. 89 Donggang Road, Yuhua District, Shijiazhuang 050031, China
| | - Shuaixiang Wang
- Department of Neurology, The First Hospital of Hebei Medical University, No. 89 Donggang Road, Yuhua District, Shijiazhuang 050031, China
- Department of Neurology of Graduate School, Hebei Medical University, No. 361 Zhongshan Street, Changan District, Shijiazhuang 050017, China
| | - Yan Gao
- Department of Neurology, The First Hospital of Hebei Medical University, No. 89 Donggang Road, Yuhua District, Shijiazhuang 050031, China
- Department of Neurology, Hebei Hospital of Xuanwu Hospital Capital Medical University, No. 89 Donggang Road, Yuhua District, Shijiazhuang 050031, China
| | - Mengwei Yuan
- Department of Neurology, The First Hospital of Hebei Medical University, No. 89 Donggang Road, Yuhua District, Shijiazhuang 050031, China
- Department of Neurology of Graduate School, Hebei Medical University, No. 361 Zhongshan Street, Changan District, Shijiazhuang 050017, China
| | - Sha He
- Department of Neurology, The First Hospital of Hebei Medical University, No. 89 Donggang Road, Yuhua District, Shijiazhuang 050031, China
- Department of Neurology, Hebei Hospital of Xuanwu Hospital Capital Medical University, No. 89 Donggang Road, Yuhua District, Shijiazhuang 050031, China
| | - Fangyuan Yan
- Department of Neurology, The First Hospital of Hebei Medical University, No. 89 Donggang Road, Yuhua District, Shijiazhuang 050031, China
- Department of Neurology of Graduate School, Hebei Medical University, No. 361 Zhongshan Street, Changan District, Shijiazhuang 050017, China
| | - Yuping Wang
- Department of Neurology, The First Hospital of Hebei Medical University, No. 89 Donggang Road, Yuhua District, Shijiazhuang 050031, China
- Department of Neurology, Hebei Hospital of Xuanwu Hospital Capital Medical University, No. 89 Donggang Road, Yuhua District, Shijiazhuang 050031, China
- Neuromedical Technology Innovation Center of Hebei Province, No. 89 Donggang Road, Yuhua District, Shijiazhuang 050031, China
- Department of Neurology, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing 100053, China
- Beijing Key Laboratory of Neuromodulation, No. 45 Changchun Street, Xicheng District, Beijing 100053, China
- Center of Epilepsy, Beijing Institute for Brain Disorders, Capital Medical University, No.10 Xitoutiao, You An Men Wai, Fengtai District, Beijing 100069, China
- Center for Sleep and Consciousness Disorders, Beijing Institute for Brain Disorders, No. 45 Changchun Street, Xicheng District, Beijing 100053, China
- Collaborative Innovation Center for Brain Disorders, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing 100053, China
| | - Xiaowei Ma
- Department of Neurology, The First Hospital of Hebei Medical University, No. 89 Donggang Road, Yuhua District, Shijiazhuang 050031, China
- Department of Neurology of Graduate School, Hebei Medical University, No. 361 Zhongshan Street, Changan District, Shijiazhuang 050017, China
- Department of Neurology, Hebei Hospital of Xuanwu Hospital Capital Medical University, No. 89 Donggang Road, Yuhua District, Shijiazhuang 050031, China
- Department of Neurology, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing 100053, China
| |
Collapse
|
3
|
Zhang S, Cui X, Yu S, Li X. Is transcranial alternating current stimulation effective for improving working memory? A three-level meta-analysis. Psychon Bull Rev 2025; 32:636-651. [PMID: 39438426 DOI: 10.3758/s13423-024-02595-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2024] [Indexed: 10/25/2024]
Abstract
Working memory, an essential component of cognitive function, can be improved through specific methods. This meta-analysis evaluates the effectiveness of transcranial alternating current stimulation (tACS), an emerging technique for enhancing working memory, and explores its efficacy, influencing factors, and underlying mechanisms. A PRISMA systematic search was conducted. Hedges's g was used to quantify effect sizes. We constructed a three-level meta-analytic model to account for all effect sizes and performed subgroup analyses to assess moderating factors. Recognizing the distinct neural underpinnings of various working memory processes, we separately assessed the effects on n-back tasks and traditional working memory tasks. A total of 39 studies with 405 effect sizes were included (170 from n-back tasks and 235 from other tasks). The overall analysis indicated a net benefit of g = 0.060 of tACS on working memory. Separate analyses showed that tACS had a small positive effect on n-back tasks (g = 0.102), but almost no effect on traditional working memory tasks (g = 0.045). Further analyses revealed mainly: A moderately positive effect of theta tACS (without anti-phase stimulation) on n-back tasks (g = 0.207); and a small effect of offline stimulation on working memory maintenance (g = 0.127). Overall, tACS has minimal impact on working memory improvement, but it shows potential under certain conditions. Specifically, both online and offline theta tACS can improve n-back task performance, while only offline stimulation enhances working memory maintenance. More research is needed to understand the mechanisms behind these effects to make tACS an effective method.
Collapse
Affiliation(s)
- Siyuan Zhang
- Institute of Psychology, Key Laboratory of Mental Health, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaobing Cui
- Institute of Psychology, Key Laboratory of Mental Health, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Shuting Yu
- Institute of Psychology, Key Laboratory of Mental Health, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Xuebing Li
- Institute of Psychology, Key Laboratory of Mental Health, Chinese Academy of Sciences, Beijing, China.
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
4
|
Murray A, Soulières I, Saint-Amour D. No aftereffect of transcranial alternating current stimulation (tACS) on theta activity during an inter-sensory selective attention task. Int J Psychophysiol 2025; 210:112539. [PMID: 40010408 DOI: 10.1016/j.ijpsycho.2025.112539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 02/21/2025] [Accepted: 02/22/2025] [Indexed: 02/28/2025]
Abstract
BACKGROUND Selective attention is essential to filter the constant flow of sensory information reaching the brain. The contribution of theta neuronal oscillations to attentional function has been the subject of several electrophysiological studies, yet no causal relationship has been established between theta rhythms and selective attention mechanisms. OBJECTIVE AND HYPOTHESES We aimed to clarify the causal role of theta oscillations in inter-sensory selective attention processes by combining transcranial alternating current stimulation (tACS) and electrophysiology (EEG) techniques. We hypothesized that modulation of theta activity by tACS enhances selective attention, with greater behavioral efficiency and theta power over fronto-central regions after theta-tACS compared to control conditions. METHODS In a double-blinded within-subject study conducted in young adults (n = 20), three stimulation conditions were applied prior to a cued inter-sensory (auditory and visual) selective attention task. The frequency of theta stimulation was individualized to match the endogenous theta peak of each participant. In addition to a sham condition, stimulation at an off-target frequency (20 Hz) was also applied. We analyzed behavioral efficiency and variability measures and performed spectral and time-frequency power analyses. RESULTS No statistically significant differences in task performance or theta EEG activity were found between theta-tACS and control-tACS conditions (ps > 0.05). CONCLUSIONS The results of our study suggest that theta-tACS did not modulate performance or offline oscillations in the context of inter-sensory attention. These findings challenge the design of tACS protocols for future studies aiming to understand the contribution of theta oscillations in attentional processes.
Collapse
Affiliation(s)
- Audrey Murray
- Département de psychologie, Université du Québec à Montréal, Montréal, Canada; Centre de recherche du Centre Hospitalier Universitaire Sainte-Justine, Montréal, Canada; Centre intégré universitaire de santé et de services sociaux du Nord-de-l'île-de-Montréal, Montréal, Canada
| | - Isabelle Soulières
- Département de psychologie, Université du Québec à Montréal, Montréal, Canada; Centre intégré universitaire de santé et de services sociaux du Nord-de-l'île-de-Montréal, Montréal, Canada
| | - Dave Saint-Amour
- Département de psychologie, Université du Québec à Montréal, Montréal, Canada; Centre de recherche du Centre Hospitalier Universitaire Sainte-Justine, Montréal, Canada.
| |
Collapse
|
5
|
Diedrich L, Kolhoff HI, Bergmann C, Bähr M, Antal A. Boosting working memory in the elderly: driving prefrontal theta-gamma coupling via repeated neuromodulation. GeroScience 2025; 47:1425-1440. [PMID: 38992335 PMCID: PMC11979004 DOI: 10.1007/s11357-024-01272-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 06/27/2024] [Indexed: 07/13/2024] Open
Abstract
The escalating global burden of age-related neurodegenerative diseases and associated healthcare costs necessitates innovative interventions to stabilize or enhance cognitive functions. Deficits in working memory (WM) are linked to alterations in prefrontal theta-gamma cross-frequency coupling. Low-intensity transcranial alternating current stimulation (tACS) has emerged as a non-invasive, low-cost approach capable of modulating ongoing oscillations in targeted brain areas through entrainment. This study investigates the impact of multi-session peak-coupled theta-gamma cross-frequency tACS administered to the dorsolateral prefrontal cortex (DLPFC) on WM performance in older adults. In a randomized, sham-controlled, triple-blinded design, 77 participants underwent 16 stimulation sessions over six weeks while performing n-back tasks. Signal detection measures revealed increased 2-back sensitivity and robust modulations of response bias, indicating improved WM and decision-making adaptations, respectively. No effects were observed in the 1-back condition, emphasizing dependencies on cognitive load. Repeated tACS reinforces behavioral changes, indicated by increasing effect sizes. This study supports prior research correlating prefrontal theta-gamma coupling with WM processes and provides unique insights into the neurocognitive benefits of repeated tACS intervention. The well-tolerated and highly effective multi-session tACS intervention among the elderly underscores its therapeutic potential in vulnerable populations.
Collapse
Affiliation(s)
- Lukas Diedrich
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany.
| | - Hannah I Kolhoff
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Clara Bergmann
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Mathias Bähr
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Andrea Antal
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
6
|
Ding X, Zhou Y, Liu Y, Yao XL, Wang JX, Xie Q. Application and research progress of different frequency tACS in stroke rehabilitation: A systematic review. Brain Res 2025; 1852:149521. [PMID: 39983809 DOI: 10.1016/j.brainres.2025.149521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 02/09/2025] [Accepted: 02/18/2025] [Indexed: 02/23/2025]
Abstract
After a stroke, abnormal changes in neural oscillations that are related to the severity and prognosis of the disease can occur. Resetting these abnormal neural oscillations is a potential approach for stroke rehabilitation. Transcranial alternating current stimulation (tACS) can modulate intrinsic neural oscillations noninvasively and has attracted attention as a possible technique to improve multiple post-stroke symptoms, including deficits in speech, vision, and motor ability and overall neurological recovery. The clinical effect of tACS varies according to the selected frequency. Therefore, choosing an appropriate frequency to optimize outcomes for specific dysfunctions is essential. This review focuses on the current research status and possibilities of tACS with different frequencies in stroke rehabilitation. We also discuss the possible mechanisms of tACS in stroke to provide a theoretical foundation for the method and highlight the controversial aspects that need further exploration. Although tACS has great potential, few clinical studies have applied it in the treatment of stroke, and no consensus has been reached. We analyze limitations in experimental designs and identify potential tACS approaches worthy of exploration in the future.
Collapse
Affiliation(s)
- Xue Ding
- Department of Rehabilitation Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Rehabilitation Medicine, Shanghai Ruijin Rehabilitation Hospital, Shanghai, China
| | - Yu Zhou
- Department of Rehabilitation Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yang Liu
- Department of Rehabilitation Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-Ling Yao
- Department of Rehabilitation Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ji-Xian Wang
- Department of Rehabilitation Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Qing Xie
- Department of Rehabilitation Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Rehabilitation Medicine, Shanghai Ruijin Rehabilitation Hospital, Shanghai, China.
| |
Collapse
|
7
|
Seo J, Lee D, Pantazis D, Min BK. Phase-lagged tACS between executive and default mode networks modulates working memory. Sci Rep 2025; 15:9171. [PMID: 40097468 PMCID: PMC11914490 DOI: 10.1038/s41598-025-91881-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 02/24/2025] [Indexed: 03/19/2025] Open
Abstract
Transcranial alternating current stimulation (tACS) is an efficient neuromodulation technique to enhance cognitive function in a non-invasive manner. Using functional magnetic resonance imaging, we investigated whether a cross-frequency coupled tACS protocol with a phase lag (45 and 180 degrees) between the central executive and the default mode networks modulated working-memory performance. We found tACS-phase-dependent modulation of task performance reflected in hippocampal activation and task-related functional connectivity. Our observations provide a neurophysiological basis for neuromodulation and a feasible non-invasive approach to selectively stimulate a task-relevant deep brain structure. Overall, our study highlights the potential of tACS as a powerful tool for enhancing cognitive function and sheds light on the underlying mechanisms of this technique.
Collapse
Affiliation(s)
- Jeehye Seo
- Institute of Brain and Cognitive Engineering, Korea University, Seoul, 02841, Korea
| | - Dongha Lee
- Cognitive Science Research Group, Korea Brain Research Institute, Daegu, 41062, Korea
| | - Dimitrios Pantazis
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Byoung-Kyong Min
- Institute of Brain and Cognitive Engineering, Korea University, Seoul, 02841, Korea.
- Department of Brain and Cognitive Engineering, Korea University, Seoul, 02841, Korea.
| |
Collapse
|
8
|
Wang H, Qin N, Maimaitiaili D, Wu J, Wang S, Zhou Y, Lu J, Li Y. Transcranial electrical stimulation as a therapeutic strategy for Alzheimer's disease: Current uses and challenges. J Alzheimers Dis 2025; 104:297-305. [PMID: 39994987 DOI: 10.1177/13872877251315777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Alzheimer's disease (AD) is an age-related neurodegenerative disorder for which there are currently rarely effective drug treatments available to halt or slow down its progression. With the aging of the world population, AD as the primary cause of dementia, is rapidly becoming one of the most expensive, lethal, and burdening diseases of this century. In recent years, the new method used to treat nervous system diseases including AD is transcranial electrical stimulation (tES) with non-invasive and for regulating the flexibility of neural circuits operation and behaviors. The rationale of tES for AD neuromodulation is derived from research on animal and clinical trials. In the present paper, we review the current uses of the tES including transcranial direct current stimulation, transcranial alternating current stimulation, and transcranial pulsed electrical stimulation in rehabilitation for AD's core clinical symptom with cognitive dysfunctions, as well as the relevant data from AD animal models have also been discussed. Finally, the regarding applied challenges of tES in AD therapy have been referred for further improvement.
Collapse
Affiliation(s)
- Huan Wang
- Department of Rehabilitation, Shanghai Seventh People's Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, China
| | - Ning Qin
- Department of Rehabilitation, Shanghai Seventh People's Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, China
| | - Dilinuer Maimaitiaili
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, China
| | - Jiali Wu
- Department of Rehabilitation Medicine, Tong Ren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuangqin Wang
- Department of Rehabilitation, Shanghai Seventh People's Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, China
| | - Yixin Zhou
- Department of Rehabilitation, Shanghai Seventh People's Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jingjue Lu
- Department of Rehabilitation, Shanghai Seventh People's Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuanli Li
- Department of Rehabilitation, Shanghai Seventh People's Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, China
| |
Collapse
|
9
|
Debnath R, Elyamany O, Iffland JR, Rauh J, Siebert M, Andraes E, Leicht G, Mulert C. Theta transcranial alternating current stimulation over the prefrontal cortex enhances theta power and working memory performance. Front Psychiatry 2025; 15:1493675. [PMID: 39876999 PMCID: PMC11772280 DOI: 10.3389/fpsyt.2024.1493675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 12/11/2024] [Indexed: 01/31/2025] Open
Abstract
Introduction Transcranial alternating current stimulation (tACS) is a promising tool for modulating brain oscillations. This study investigated whether 5 Hz tACS could modulate neural oscillations in the prefrontal cortex and how this modulation impacts performance in working memory (WM) tasks. Method In two sessions, 28 healthy participants received 5 Hz tACS or sham stimulation over the left dorsolateral prefrontal cortex (DLPFC) while performing tasks with high and low WM loads. Resting-state EEG was recorded before and after stimulations for 5 minutes. EEG power was measured at electrodes surrounding the stimulation site. Results The results showed that tACS significantly improved reaction time (RT) compared to sham stimulation. This effect was task-specific, as tACS improved RT for hit responses only in high WM load trials, with no impact on low-load trials. Moreover, tACS significantly increased EEG power at 5 Hz and in the theta band compared to pre-stimulation levels. Discussion These findings demonstrate that tACS applied over left DLPFC modulates post-stimulation brain oscillations at the stimulation sites - known as tACS after-effects. Furthermore, the results suggest that 5 Hz tACS enhances response speed by elevating task-related activity in the prefrontal cortex to an optimal level for task performance. Conclusion In summary, the findings highlight the potential of tACS as a technique for modulating specific brain oscillations, with implications for research and therapeutic interventions.
Collapse
Affiliation(s)
- Ranjan Debnath
- Centre for Psychiatry and Psychotherapy, Justus-Liebig University Giessen, Giessen, Germany
| | - Osama Elyamany
- Centre for Psychiatry and Psychotherapy, Justus-Liebig University Giessen, Giessen, Germany
- Centre for Mind, Brain and Behaviour (CMBB), University of Marburg and Justus-Liebig University Giessen, Marburg, Germany
| | - Jona Ruben Iffland
- Centre for Psychiatry and Psychotherapy, Justus-Liebig University Giessen, Giessen, Germany
| | - Jonas Rauh
- Department of Psychiatry and Psychotherapy, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Siebert
- Centre for Psychiatry and Psychotherapy, Justus-Liebig University Giessen, Giessen, Germany
| | - Elisa Andraes
- Centre for Psychiatry and Psychotherapy, Justus-Liebig University Giessen, Giessen, Germany
| | - Gregor Leicht
- Department of Psychiatry and Psychotherapy, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Mulert
- Centre for Psychiatry and Psychotherapy, Justus-Liebig University Giessen, Giessen, Germany
- Centre for Mind, Brain and Behaviour (CMBB), University of Marburg and Justus-Liebig University Giessen, Marburg, Germany
| |
Collapse
|
10
|
Palmisano A, Pezanko LR, Cappon D, Tatti E, Macone J, Koch G, Smeralda CL, Romanella SM, Ruffini G, Rivolta D, Press DZ, Pascual-Leone A, El-Fakhri G, Santarnecchi E. Preliminary Evidence for Perturbation-Based tACS-EEG Biomarkers of Gamma Activity in Alzheimer's Disease. Int J Geriatr Psychiatry 2025; 40:e70025. [PMID: 39799469 DOI: 10.1002/gps.70025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 09/06/2024] [Accepted: 11/08/2024] [Indexed: 01/15/2025]
Abstract
BACKGROUND Alzheimer's disease (AD) is characterized by impaired inhibitory circuitry and GABAergic dysfunction, which is associated with reduced fast brain oscillations in the gamma band (γ, 30-90 Hz) in several animal models. Investigating such activity in human patients could lead to the identification of novel biomarkers of diagnostic and prognostic value. The current study aimed to test a multimodal "Perturbation-based" transcranial Alternating Current Stimulation-Electroencephalography (tACS)-EEG protocol to detect how responses to tACS in AD patients correlate with patients' clinical phenotype. METHODS Fourteen participants with mild to moderate dementia due to AD underwent a baseline assessment including cognitive status, peripheral neuroinflammation, and resting-state (rs)EEG. The tACS-EEG recordings included brief (6') tACS blocks of gamma (i.e., 40 Hz) stimulation administered through 4 different montages, with Pre/Post 32-Channels EEG for each block. Changes in tACS-EEG and rsEEG γ band power with respect to baseline were adopted as a metric of induction and compared with cognitive scores and neuroinflammatory biomarkers. RESULTS We found positive correlations between 40 Hz-induced γ activity in fronto-central-parietal areas and patient cognitive status and negative ones with neuroinflammatory markers. Participants with greater cognitive impairment exhibited less γ induction and higher peripheral neuroinflammation. The same analysis performed with spectral power from baseline rsEEG resulted in no significant correlations, promoting the value of tACS-based perturbation for capturing individual differences in pathology-related brain features. CONCLUSIONS Our work suggests a link between tACS-induced γ band spectral power and clinical severity, with weaker γ induction corresponding to more severe clinical/cognitive impairment. This study provides preliminary support for the development of novel physiological biomarkers and therapeutic targets based on disease severity.
Collapse
Affiliation(s)
- Annalisa Palmisano
- Precision Neuroscience & Neuromodulation Program, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
- Department of Education, Psychology, and Communication, University of Bari Aldo Moro, Bari, Italy
- Chair of Lifespan Developmental Neuroscience, TUD Dresden University of Technology, Dresden, Germany
| | - Luke R Pezanko
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Davide Cappon
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Elisa Tatti
- CUNY School of Medicine, New York City, New York, USA
| | - Joanna Macone
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Carmelo L Smeralda
- Precision Neuroscience & Neuromodulation Program, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Siena Brain Investigation & Neuromodulation Lab, Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology Section, University of Siena, Siena, Italy
| | - Sara M Romanella
- Precision Neuroscience & Neuromodulation Program, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Siena Brain Investigation & Neuromodulation Lab, Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology Section, University of Siena, Siena, Italy
| | | | - Davide Rivolta
- Department of Education, Psychology, and Communication, University of Bari Aldo Moro, Bari, Italy
| | - Daniel Z Press
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Alvaro Pascual-Leone
- Hinda and Arthur Marcus Institute for Aging Research and Deanna and Sidney Wolk Center for Memory Health, Boston, Massachusetts, USA
- Department of Neurology, Harvard Medical School, Boston, Massachusetts, USA
| | - Georges El-Fakhri
- Department of Radiology & Biomedical Imaging, Department of Biomedical Informatics & Data Science, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Emiliano Santarnecchi
- Precision Neuroscience & Neuromodulation Program, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
11
|
Yao Z, Wei J, Huang G, Li L, Liang Z, Zhang L, Wu H, Yuan T, Zhang Z, Hu X. Right Frontal Gamma Transcranial Alternating Current Stimulation Modulates Optimism Biases. Neurosci Bull 2025; 41:172-176. [PMID: 39427086 PMCID: PMC11748648 DOI: 10.1007/s12264-024-01307-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/19/2024] [Indexed: 10/21/2024] Open
Affiliation(s)
- Ziqing Yao
- Department of Psychology, The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, SAR, China
| | - Jinwen Wei
- School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, 518060, China
- Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen University, Shenzhen, 518060, China
| | - Gan Huang
- School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, 518060, China
- Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen University, Shenzhen, 518060, China
| | - Linling Li
- School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, 518060, China
- Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen University, Shenzhen, 518060, China
| | - Zhen Liang
- School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, 518060, China
- Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen University, Shenzhen, 518060, China
| | - Li Zhang
- School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, 518060, China
- Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen University, Shenzhen, 518060, China
| | - Haiyan Wu
- Centre for Cognitive and Brain Sciences and Department of Psychology, University of Macau, Macau SAR, China
| | - Tifei Yuan
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, National Center for Mental Disorders, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai, 210109, China
| | - Zhiguo Zhang
- School of Computer Science and Technology, Harbin Institute of Technology, Shenzhen, 518055, China.
- Peng Cheng Laboratory, Shenzhen, 518055, China.
| | - Xiaoqing Hu
- Department of Psychology, The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, SAR, China.
- HKU-Shenzhen Institute of Research and Innovation, Shenzhen, 518063, China.
| |
Collapse
|
12
|
Yang M, Li Z, Pan F, Wu S, Jia X, Wang R, Ji L, Li W, Li C. Alpha tACS on Parieto-Occipital Cortex Mitigates Motion Sickness Based on Multiple Physiological Observation. IEEE Trans Neural Syst Rehabil Eng 2024; 32:2398-2407. [PMID: 38949929 DOI: 10.1109/tnsre.2024.3419753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Approximately one third of the population is prone to motion sickness (MS), which is associated with the dysfunction in the integration of sensory inputs. Transcranial alternating current stimulation (tACS) has been widely used to modulate neurological functions by affecting neural oscillation. However, it has not been applied in the treatment of motion sickness. This study aims to investigate changes in brain oscillations during exposure to MS stimuli and to further explore the potential impact of tACS with the corresponding frequency and site on MS symptoms. A total of 19 subjects were recruited to be exposed to Coriolis stimuli to complete an inducing session. After that, they were randomly assigned to tACS stimulation group or sham stimulation group to complete a stimulation session. Electroencephalography (EEG), electrocardiogram, and galvanic skin response were recorded during the experiment. All the subjects suffering from obvious MS symptoms after inducing session were observed that alpha power of four channels of parieto-occipital lobe significantly decreased (P7: t =3.589, p <0.001; P8: t =2.667, p <0.05; O1: t =3.556, p <0.001; O2: t =2.667, p <0.05). Based on this, tACS group received the tACS stimulation at 10Hz from Oz to CPz. Compared to sham group, tACS stimulation significantly improved behavioral performance and entrained the alpha oscillation in individuals whose alpha power decrease during the inducing session. The findings show that parieto-occipital alpha oscillation plays a critical role in the integration of sensory inputs, and alpha tACS on parieto-occipital can become a potential method to mitigate MS symptoms.
Collapse
|
13
|
De Paolis ML, Paoletti I, Zaccone C, Capone F, D'Amelio M, Krashia P. Transcranial alternating current stimulation (tACS) at gamma frequency: an up-and-coming tool to modify the progression of Alzheimer's Disease. Transl Neurodegener 2024; 13:33. [PMID: 38926897 PMCID: PMC11210106 DOI: 10.1186/s40035-024-00423-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
The last decades have witnessed huge efforts devoted to deciphering the pathological mechanisms underlying Alzheimer's Disease (AD) and to testing new drugs, with the recent FDA approval of two anti-amyloid monoclonal antibodies for AD treatment. Beyond these drug-based experimentations, a number of pre-clinical and clinical trials are exploring the benefits of alternative treatments, such as non-invasive stimulation techniques on AD neuropathology and symptoms. Among the different non-invasive brain stimulation approaches, transcranial alternating current stimulation (tACS) is gaining particular attention due to its ability to externally control gamma oscillations. Here, we outline the current knowledge concerning the clinical efficacy, safety, ease-of-use and cost-effectiveness of tACS on early and advanced AD, applied specifically at 40 Hz frequency, and also summarise pre-clinical results on validated models of AD and ongoing patient-centred trials.
Collapse
Affiliation(s)
- Maria Luisa De Paolis
- Department of Medicine and Surgery, Università Campus Bio-Medico Di Roma, Via Alvaro del Portillo, 21 - 00128, Rome, Italy
| | - Ilaria Paoletti
- Department of Medicine and Surgery, Università Campus Bio-Medico Di Roma, Via Alvaro del Portillo, 21 - 00128, Rome, Italy
| | - Claudio Zaccone
- Department of Medicine and Surgery, Università Campus Bio-Medico Di Roma, Via Alvaro del Portillo, 21 - 00128, Rome, Italy
| | - Fioravante Capone
- Department of Medicine and Surgery, Università Campus Bio-Medico Di Roma, Via Alvaro del Portillo, 21 - 00128, Rome, Italy
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200 - 00128, Rome, Italy
| | - Marcello D'Amelio
- Department of Medicine and Surgery, Università Campus Bio-Medico Di Roma, Via Alvaro del Portillo, 21 - 00128, Rome, Italy.
- Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, Via del Fosso Di Fiorano, 64 - 00143, Rome, Italy.
| | - Paraskevi Krashia
- Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, Via del Fosso Di Fiorano, 64 - 00143, Rome, Italy
- Department of Sciences and Technologies for Sustainable Development and One Health, Università Campus Bio-Medico Di Roma, Via Alvaro del Portillo, 21 - 00128, Rome, Italy
| |
Collapse
|
14
|
Black T, Jenkins BW, Laprairie RB, Howland JG. Therapeutic potential of gamma entrainment using sensory stimulation for cognitive symptoms associated with schizophrenia. Neurosci Biobehav Rev 2024; 161:105681. [PMID: 38641090 DOI: 10.1016/j.neubiorev.2024.105681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/27/2024] [Accepted: 04/16/2024] [Indexed: 04/21/2024]
Abstract
Schizophrenia is a complex neuropsychiatric disorder with significant morbidity. Treatment options that address the spectrum of symptoms are limited, highlighting the need for innovative therapeutic approaches. Gamma Entrainment Using Sensory Stimulation (GENUS) is an emerging treatment for neuropsychiatric disorders that uses sensory stimulation to entrain impaired oscillatory network activity and restore brain function. Aberrant oscillatory activity often underlies the symptoms experienced by patients with schizophrenia. We propose that GENUS has therapeutic potential for schizophrenia. This paper reviews the current status of schizophrenia treatment and explores the use of sensory stimulation as an adjunctive treatment, specifically through gamma entrainment. Impaired gamma frequency entrainment is observed in patients, particularly in response to auditory and visual stimuli. Thus, sensory stimulation, such as music listening, may have therapeutic potential for individuals with schizophrenia. GENUS holds novel therapeutic potential to improve the lives of individuals with schizophrenia, but further research is required to determine the efficacy of GENUS, optimize its delivery and therapeutic window, and develop strategies for its implementation in specific patient populations.
Collapse
Affiliation(s)
- Tallan Black
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada.
| | - Bryan W Jenkins
- Division of Behavioral Biology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Robert B Laprairie
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada; Department of Pharmacology, College of Medicine, Dalhousie University, Halifax, NS, Canada
| | - John G Howland
- Department of Anatomy, Physiology, and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
15
|
Li R, Meng J, You J, Zhou X, Xu M, Ming D. Long-range and cross-frequency neural modulation of gamma flicker on vigilance decrement. Cogn Neurodyn 2024; 18:417-429. [PMID: 39554724 PMCID: PMC11564507 DOI: 10.1007/s11571-023-10008-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 08/01/2023] [Accepted: 09/10/2023] [Indexed: 11/19/2024] Open
Abstract
Vigilance decrement is a ubiquitous problem in attention-demanding tasks. Therefore, it is significant to develop neuromodulation methods to mitigate the negative neural effect of vigilance decrement. As one of the non-invasive brain stimulation techniques, visual flicker/rhythmic visual stimulation (RVS) has been proposed to entrain neural oscillations and thereby modulate cognitive processes supported by these brain rhythms, but its effects on vigilance decrement are still unclear. Here, we investigated the effect of gamma flicker on vigilance decrement and its underlying neural mechanism. Thirty participants were recruited to perform a 12-min vigilance task. They were required to discriminate the orientation of lateralized triangle targets with/without 40-Hz RVS background. As a result, it was found that 40-Hz RVS mitigated the decrease in perceptual sensitivity ( A ' ) with time-on-task, a typical adverse effect on behaviors caused by vigilance decrement. Electroencephalography (EEG) results showed that 40-Hz RVS could reduce the significant decline of post-stimulus theta-band inter-trial coherence (ITC) in the prefrontal cortex (PFC) with time-on-task. Regression analysis further revealed that the anterior theta-band ITC was significantly correlated to perceptual sensitivity ( A ' ) in a positive manner. These findings indicated that gamma flicker to the visual cortex had a cross-frequency neuromodulation effect on low-frequency EEG responses over the long-range PFC region. Furthermore, this study provides new insights into the neural effects of 40-Hz RVS, which could impact time-on-task effects on vigilance behaviors and alter the utilization of attentional resources. Supplementary Information The online version contains supplementary material available at 10.1007/s11571-023-10008-6.
Collapse
Affiliation(s)
- Rong Li
- College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, 300072 China
| | - Jiayuan Meng
- College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, 300072 China
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072 China
| | - Jia You
- College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, 300072 China
| | - Xiaoyu Zhou
- College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, 300072 China
| | - Minpeng Xu
- College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, 300072 China
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072 China
| | - Dong Ming
- College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, 300072 China
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072 China
| |
Collapse
|
16
|
Penhale SH, Arif Y, Schantell M, Johnson HJ, Willett MP, Okelberry HJ, Meehan CE, Heinrichs‐Graham E, Wilson TW. Healthy aging alters the oscillatory dynamics and fronto-parietal connectivity serving fluid intelligence. Hum Brain Mapp 2024; 45:e26591. [PMID: 38401133 PMCID: PMC10893975 DOI: 10.1002/hbm.26591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/13/2023] [Accepted: 12/31/2023] [Indexed: 02/26/2024] Open
Abstract
Fluid intelligence (Gf) involves logical reasoning and novel problem-solving abilities. Often, abstract reasoning tasks like Raven's progressive matrices are used to assess Gf. Prior work has shown an age-related decline in fluid intelligence capabilities, and although many studies have sought to identify the underlying mechanisms, our understanding of the critical brain regions and dynamics remains largely incomplete. In this study, we utilized magnetoencephalography (MEG) to investigate 78 individuals, ages 20-65 years, as they completed an abstract reasoning task. MEG data was co-registered with structural MRI data, transformed into the time-frequency domain, and the resulting neural oscillations were imaged using a beamformer. We found worsening behavioral performance with age, including prolonged reaction times and reduced accuracy. MEG analyses indicated robust oscillations in the theta, alpha/beta, and gamma range during the task. Whole brain correlation analyses with age revealed relationships in the theta and alpha/beta frequency bands, such that theta oscillations became stronger with increasing age in a right prefrontal region and alpha/beta oscillations became stronger with increasing age in parietal and right motor cortices. Follow-up connectivity analyses revealed increasing parieto-frontal connectivity with increasing age in the alpha/beta frequency range. Importantly, our findings are consistent with the parieto-frontal integration theory of intelligence (P-FIT). These results further suggest that as people age, there may be alterations in neural responses that are spectrally specific, such that older people exhibit stronger alpha/beta oscillations across the parieto-frontal network during abstract reasoning tasks.
Collapse
Affiliation(s)
- Samantha H. Penhale
- Institute for Human Neuroscience, Boys Town National Research HospitalNebraskaUSA
| | - Yasra Arif
- Institute for Human Neuroscience, Boys Town National Research HospitalNebraskaUSA
| | - Mikki Schantell
- Institute for Human Neuroscience, Boys Town National Research HospitalNebraskaUSA
- University of Nebraska Medical CenterOmahaNebraskaUSA
| | - Hallie J. Johnson
- Institute for Human Neuroscience, Boys Town National Research HospitalNebraskaUSA
| | - Madelyn P. Willett
- Institute for Human Neuroscience, Boys Town National Research HospitalNebraskaUSA
| | - Hannah J. Okelberry
- Institute for Human Neuroscience, Boys Town National Research HospitalNebraskaUSA
| | - Chloe E. Meehan
- Institute for Human Neuroscience, Boys Town National Research HospitalNebraskaUSA
- Department of PsychologyUniversity of NebraskaOmahaNebraskaUSA
| | - Elizabeth Heinrichs‐Graham
- Institute for Human Neuroscience, Boys Town National Research HospitalNebraskaUSA
- Department of Pharmacology and NeuroscienceCreighton UniversityOmahaNebraskaUSA
| | - Tony W. Wilson
- Institute for Human Neuroscience, Boys Town National Research HospitalNebraskaUSA
- Department of Pharmacology and NeuroscienceCreighton UniversityOmahaNebraskaUSA
| |
Collapse
|
17
|
Fusco G, Scandola M, Lin H, Inzlicht M, Aglioti SM. Modulating preferences during intertemporal choices through exogenous midfrontal transcranial alternating current stimulation: A registered report. Cortex 2024; 171:435-464. [PMID: 38113613 DOI: 10.1016/j.cortex.2023.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 08/24/2023] [Accepted: 09/21/2023] [Indexed: 12/21/2023]
Abstract
Decision conflicts may arise when the costs and benefits of choices are evaluated as a function of outcomes predicted along a temporal dimension. Electrophysiology studies suggest that during performance monitoring a typical oscillatory activity in the theta rhythm, named midfrontal theta, may index conflict processing and resolution. In the present within-subject, sham controlled, cross-over preregistered study, we delivered online midfrontal transcranial Alternating Current Stimulation (tACS) to modulate electrocortical activity during intertemporal decisions. Participants were invited to select choice preference between economic offers at three different intermixed levels of conflict (i.e., low, medium, high) while receiving either theta -, gamma-, or sham tACS in separate blocks and sessions. At the end of each stimulation block, a Letter-Flanker task was also administered to measure behavioural aftereffects. We hypothesized that theta-tACS would have acted on the performance monitoring system inducing behavioural changes (i.e., faster decisions and more impulsive choices) in high conflicting trials, rather than gamma- and sham-tACS. Results very partially confirmed our predictions. Unexpectedly, both theta- and gamma-driven neuromodulation speeded-up decisions compared to sham. However, exploratory analyses revealed that such an effect was stronger in the high-conflict decisions during theta-tACS. These findings were independent from the influence of the sensations induced by the electrical stimulation. Moreover, further analyses highlighted a significant association during theta-tACS between the selection of immediate offers in high-conflict trials and attentional impulsiveness, suggesting that individual factors may account for the tACS effects during intertemporal decisions. Finally, we did not capture long-lasting behavioural changes following tACS in the Flanker task. Our findings may inform scholars to improve experimental designs and boost the knowledge toward a more effective application of tACS.
Collapse
Affiliation(s)
- Gabriele Fusco
- Sapienza University of Rome and CLNS@SAPIENZA, Istituto Italiano di Tecnologia, Italy; IRCCS Santa Lucia Foundation, Rome, Italy.
| | - Michele Scandola
- NPSY Lab-Vr, Department of Human Sciences, University of Verona, Verona, Italy
| | - Hause Lin
- Sloan School of Management, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Michael Inzlicht
- Department of Psychology, University of Toronto, Toronto, Canada
| | - Salvatore Maria Aglioti
- Sapienza University of Rome and CLNS@SAPIENZA, Istituto Italiano di Tecnologia, Italy; IRCCS Santa Lucia Foundation, Rome, Italy
| |
Collapse
|
18
|
Shi C, Zhang C, Chen JF, Yao Z. Enhancement of low gamma oscillations by volitional conditioning of local field potential in the primary motor and visual cortex of mice. Cereb Cortex 2024; 34:bhae051. [PMID: 38425214 DOI: 10.1093/cercor/bhae051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 01/04/2024] [Accepted: 01/25/2024] [Indexed: 03/02/2024] Open
Abstract
Volitional control of local field potential oscillations in low gamma band via brain machine interface can not only uncover the relationship between low gamma oscillation and neural synchrony but also suggest a therapeutic potential to reverse abnormal local field potential oscillation in neurocognitive disorders. In nonhuman primates, the volitional control of low gamma oscillations has been demonstrated by brain machine interface techniques in the primary motor and visual cortex. However, it is not clear whether this holds in other brain regions and other species, for which gamma rhythms might involve in highly different neural processes. Here, we established a closed-loop brain-machine interface and succeeded in training mice to volitionally elevate low gamma power of local field potential in the primary motor and visual cortex. We found that the mice accomplished the task in a goal-directed manner and spiking activity exhibited phase-locking to the oscillation in local field potential in both areas. Moreover, long-term training made the power enhancement specific to direct and adjacent channel, and increased the transcriptional levels of NMDA receptors as well as that of hypoxia-inducible factor relevant to metabolism. Our results suggest that volitionally generated low gamma rhythms in different brain regions share similar mechanisms and pave the way for employing brain machine interface in therapy of neurocognitive disorders.
Collapse
Affiliation(s)
- Chennan Shi
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, The State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325001, China
| | - Chenyu Zhang
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, The State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Jiang-Fan Chen
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, The State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325001, China
| | - Zhimo Yao
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, The State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| |
Collapse
|
19
|
Klichowski M, Wicher A, Kruszwicka A, Golebiewski R. Reverse effect of home-use binaural beats brain stimulation. Sci Rep 2023; 13:11079. [PMID: 37422545 PMCID: PMC10329717 DOI: 10.1038/s41598-023-38313-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 07/06/2023] [Indexed: 07/10/2023] Open
Abstract
Binaural beats brain stimulation is a popular strategy for supporting home-use cognitive tasks. However, such home-use brain stimulation may be neutral to cognitive processes, and any intellectual improvement may be only a placebo effect. Thus, without belief in it, it may bring no benefits. Here we test 1000 individuals at their homes as they perform a two-part fluid intelligence test. Some took the second part listening to binaural beats, while others took it in silence or listening to other sounds. The binaural beats group was divided into three subgroups. The first one was informed that they would listen to sounds that improve the brain's work, the second that neutral sounds, and the third that some sounds the nature of which was not defined. We found that listening to binaural beats was not neutral, as it dramatically deteriorated the score irrespective of the condition. Silence or other sounds had no effect. Thus, home-use binaural beats brain stimulation brings reverse effects to those assumed: instead of supporting the effectiveness of cognitive activities, it may weaken them.
Collapse
Affiliation(s)
- Michal Klichowski
- Cognitive Neuroscience Center, Adam Mickiewicz University, Poznan, Poland.
- Learning Laboratory, Faculty of Educational Studies, Adam Mickiewicz University, Poznan, Poland.
| | - Andrzej Wicher
- Cognitive Neuroscience Center, Adam Mickiewicz University, Poznan, Poland
- Department of Acoustics, Faculty of Physics, Adam Mickiewicz University, Poznan, Poland
| | - Agnieszka Kruszwicka
- Cognitive Neuroscience Center, Adam Mickiewicz University, Poznan, Poland
- Learning Laboratory, Faculty of Educational Studies, Adam Mickiewicz University, Poznan, Poland
| | - Roman Golebiewski
- Cognitive Neuroscience Center, Adam Mickiewicz University, Poznan, Poland
- Department of Acoustics, Faculty of Physics, Adam Mickiewicz University, Poznan, Poland
| |
Collapse
|
20
|
Nissim NR, McAfee DC, Edwards S, Prato A, Lin JX, Lu Z, Coslett HB, Hamilton RH. Efficacy of Transcranial Alternating Current Stimulation in the Enhancement of Working Memory Performance in Healthy Adults: A Systematic Meta-Analysis. Neuromodulation 2023; 26:728-737. [PMID: 36759231 PMCID: PMC10257732 DOI: 10.1016/j.neurom.2022.12.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/22/2022] [Accepted: 12/29/2022] [Indexed: 02/10/2023]
Abstract
BACKGROUND Transcranial alternating current stimulation (tACS)-a noninvasive brain stimulation technique that modulates cortical oscillations in the brain-has shown the capacity to enhance working memory (WM) abilities in healthy individuals. The efficacy of tACS in the improvement of WM performance in healthy individuals is not yet fully understood. OBJECTIVE/HYPOTHESIS This meta-analysis aimed to systematically evaluate the efficacy of tACS in the enhancement of WM in healthy individuals and to assess moderators of response to stimulation. We hypothesized that active tACS would significantly enhance WM compared with sham. We further hypothesized that it would do so in a task-dependent manner and that differing stimulation parameters would affect response to tACS. MATERIALS AND METHODS Ten tACS studies met the inclusion criteria and provided 32 effects in the overall analysis. Random-effect models assessed mean change scores on WM tasks from baseline to poststimulation. The included studies involved varied in stimulation parameters, between-subject and within-subject study designs, and online vs offline tACS. RESULTS We observed a significant, heterogeneous, and moderate effect size for active tACS in the enhancement of WM performance over sham (Cohen's d = 0.5). Cognitive load, task domain, session number, and stimulation region showed a significant relationship between active tACS and enhanced WM behavior over sham. CONCLUSIONS Our findings indicate that active tACS enhances WM performance in healthy individuals compared with sham. Future randomized controlled trials are needed to further explore key parameters, including personalized stimulation vs standardized electroencephalography frequencies and maintenance of tACS effects, and whether tACS-induced effects translate to populations with WM impairments.
Collapse
Affiliation(s)
- Nicole R Nissim
- Laboratory for Cognition and Neural Stimulation, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Moss Rehabilitation Research Institute, Einstein Medical Center, Elkins Park, PA, USA.
| | - Darrian C McAfee
- Laboratory for Cognition and Neural Stimulation, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Shanna Edwards
- Laboratory for Cognition and Neural Stimulation, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Amara Prato
- Laboratory for Cognition and Neural Stimulation, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jennifer X Lin
- Laboratory for Cognition and Neural Stimulation, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Zhiye Lu
- Laboratory for Cognition and Neural Stimulation, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - H Branch Coslett
- Laboratory for Cognition and Neural Stimulation, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Moss Rehabilitation Research Institute, Einstein Medical Center, Elkins Park, PA, USA
| | - Roy H Hamilton
- Laboratory for Cognition and Neural Stimulation, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Moss Rehabilitation Research Institute, Einstein Medical Center, Elkins Park, PA, USA
| |
Collapse
|
21
|
Lin Y, Li Q, Chen A. The causal mechanisms underlying analogical reasoning performance improvement by executive attention intervention. Hum Brain Mapp 2023; 44:3241-3253. [PMID: 36971608 PMCID: PMC10171494 DOI: 10.1002/hbm.26278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 02/09/2023] [Accepted: 02/27/2023] [Indexed: 03/29/2023] Open
Abstract
Analogical reasoning is important for human. We have found that a short executive attention intervention improved analogical reasoning performance in healthy young adults. Nevertheless, previous electrophysiological evidence was limited for comprehensively characterizing the neural mechanisms underlying the improvement. And although we hypothesized that the intervention improved active inhibitory control and attention shift first and then relation integration, it is still unclear whether there are two sequential cognitive neural activities were indeed changed during analogical reasoning. In the present study, we combined hypothesis with multivariate pattern analysis (MVPA) to explore the effects of the intervention on electrophysiology. Results showed that in the resting state after the intervention, alpha and high gamma power and the functional connectivity between the anterior and middle in the alpha band could discriminate the experimental group from the active control group, respectively. These indicated that the intervention influenced the activity of multiple bands and the interaction of frontal and parietal regions. In the analogical reasoning, alpha, theta, and gamma activities could also fulfill such discrimination, and furthermore, they were sequential (alpha first, theta, and gamma later). These results directly supported our previous hypothesis. The present study deepens our understanding about how executive attention contributes to higher-order cognition.
Collapse
|
22
|
Lee TL, Lee H, Kang N. A meta-analysis showing improved cognitive performance in healthy young adults with transcranial alternating current stimulation. NPJ SCIENCE OF LEARNING 2023; 8:1. [PMID: 36593247 PMCID: PMC9807644 DOI: 10.1038/s41539-022-00152-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Transcranial alternating current stimulation (tACS) is a non-invasive brain stimulation used for improving cognitive functions via delivering weak electrical stimulation with a certain frequency. This systematic review and meta-analysis investigated the effects of tACS protocols on cognitive functions in healthy young adults. We identified 56 qualified studies that compared cognitive functions between tACS and sham control groups, as indicated by cognitive performances and cognition-related reaction time. Moderator variable analyses specified effect size according to (a) timing of tACS, (b) frequency band of simulation, (c) targeted brain region, and (b) cognitive domain, respectively. Random-effects model meta-analysis revealed small positive effects of tACS protocols on cognitive performances. The moderator variable analyses found significant effects for online-tACS with theta frequency band, online-tACS with gamma frequency band, and offline-tACS with theta frequency band. Moreover, cognitive performances were improved in online- and offline-tACS with theta frequency band on either prefrontal and posterior parietal cortical regions, and further both online- and offline-tACS with theta frequency band enhanced executive function. Online-tACS with gamma frequency band on posterior parietal cortex was effective for improving cognitive performances, and the cognitive improvements appeared in executive function and perceptual-motor function. These findings suggested that tACS protocols with specific timing and frequency band may effectively improve cognitive performances.
Collapse
Affiliation(s)
- Tae Lee Lee
- Department of Human Movement Science, Incheon National University, Incheon, South Korea
- Neuromechanical Rehabilitation Research Laboratory, Incheon National University, Incheon, South Korea
| | - Hanall Lee
- Department of Human Movement Science, Incheon National University, Incheon, South Korea
- Neuromechanical Rehabilitation Research Laboratory, Incheon National University, Incheon, South Korea
| | - Nyeonju Kang
- Department of Human Movement Science, Incheon National University, Incheon, South Korea.
- Neuromechanical Rehabilitation Research Laboratory, Incheon National University, Incheon, South Korea.
- Division of Sport Science & Sport Science Institute, Incheon National University, Incheon, South Korea.
| |
Collapse
|
23
|
10 Minutes Frontal 40 Hz tACS-Effects on Working Memory Tested by Luck-Vogel Task. Behav Sci (Basel) 2022; 13:bs13010039. [PMID: 36661611 PMCID: PMC9855106 DOI: 10.3390/bs13010039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/21/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
Working memory is a cognitive process that involves short-term active maintenance, flexible updating, and processing of goal- or task-relevant information. All frequency bands are involved in working memory. The activities of the theta and gamma frequency bands in the frontoparietal network are highly involved in working memory processes; theta oscillations play a role in the temporal organization of working memory items, and gamma oscillations influence the maintenance of information in working memory. Transcranial alternating current stimulation (tACS) results in frequency-specific modulation of endogenous oscillations and has shown promising results in cognitive neuroscience. The electrophysiological and behavioral changes induced by the modulation of endogenous gamma frequency in the prefrontal cortex using tACS have not been extensively studied in the context of working memory. Therefore, we aimed to investigate the effects of frontal gamma-tACS on working memory outcomes. We hypothesized that a 10-min gamma tACS administered over the frontal cortex would significantly improve working memory outcomes. Young healthy participants performed Luck-Vogel cognitive behavioral tasks with simultaneous pre- and post-intervention EEG recording (Sham versus 40 Hz tACS). Data from forty-one participants: sham (15 participants) and tACS (26 participants), were used for the statistical and behavioral analysis. The relative changes in behavioral outcomes and EEG due to the intervention were analyzed. The results show that tACS caused an increase in the power spectral density in the high beta and low gamma EEG bands and a decrease in left-right coherence. On the other hand, tACS had no significant effect on success rates and response times. Conclusion: 10 min of frontal 40 Hz tACS was not sufficient to produce detectable behavioral effects on working memory, whereas electrophysiological changes were evident. The limitations of the current stimulation protocol and future directions are discussed in detail in the following sections.
Collapse
|
24
|
Chan D, Suk HJ, Jackson BL, Milman NP, Stark D, Klerman EB, Kitchener E, Fernandez Avalos VS, de Weck G, Banerjee A, Beach SD, Blanchard J, Stearns C, Boes AD, Uitermarkt B, Gander P, Howard M, Sternberg EJ, Nieto-Castanon A, Anteraper S, Whitfield-Gabrieli S, Brown EN, Boyden ES, Dickerson BC, Tsai LH. Gamma frequency sensory stimulation in mild probable Alzheimer's dementia patients: Results of feasibility and pilot studies. PLoS One 2022; 17:e0278412. [PMID: 36454969 PMCID: PMC9714926 DOI: 10.1371/journal.pone.0278412] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 10/11/2022] [Indexed: 12/02/2022] Open
Abstract
Non-invasive Gamma ENtrainment Using Sensory stimulation (GENUS) at 40Hz reduces Alzheimer's disease (AD) pathology such as amyloid and tau levels, prevents cerebral atrophy, and improves behavioral testing performance in mouse models of AD. Here, we report data from (1) a Phase 1 feasibility study (NCT04042922, ClinicalTrials.gov) in cognitively normal volunteers (n = 25), patients with mild AD dementia (n = 16), and patients with epilepsy who underwent intracranial electrode monitoring (n = 2) to assess safety and feasibility of a single brief GENUS session to induce entrainment and (2) a single-blinded, randomized, placebo-controlled Phase 2A pilot study (NCT04055376) in patients with mild probable AD dementia (n = 15) to assess safety, compliance, entrainment, and exploratory clinical outcomes after chronic daily 40Hz sensory stimulation for 3 months. Our Phase 1 study showed that 40Hz GENUS was safe and effectively induced entrainment in both cortical regions and other cortical and subcortical structures such as the hippocampus, amygdala, insula, and gyrus rectus. Our Phase 2A study demonstrated that chronic daily 40Hz light and sound GENUS was well-tolerated and that compliance was equally high in both the control and active groups, with participants equally inaccurate in guessing their group assignments prior to unblinding. Electroencephalography recordings show that our 40Hz GENUS device safely and effectively induced 40Hz entrainment in participants with mild AD dementia. After 3 months of daily stimulation, the group receiving 40Hz stimulation showed (i) lesser ventricular dilation and hippocampal atrophy, (ii) increased functional connectivity in the default mode network as well as with the medial visual network, (iii) better performance on the face-name association delayed recall test, and (iv) improved measures of daily activity rhythmicity compared to the control group. These results support further evaluation of GENUS in a pivotal clinical trial to evaluate its potential as a novel disease-modifying therapeutic for patients with AD.
Collapse
Affiliation(s)
- Diane Chan
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Neurology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ho-Jun Suk
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Brennan L. Jackson
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- McGovern Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Noah P. Milman
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Behavioral Neuroscience, Northeastern University, Boston, Massachusetts, United States of America
| | - Danielle Stark
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Elizabeth B. Klerman
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Erin Kitchener
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Vanesa S. Fernandez Avalos
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Gabrielle de Weck
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Arit Banerjee
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Sara D. Beach
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- McGovern Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Joel Blanchard
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Colton Stearns
- Department of Computer Science, Stanford University, Stanford, California, United States of America
| | - Aaron D. Boes
- Department of Pediatrics, Neurology, & Psychiatry, University of Iowa Hospitals and Clinics, Iowa City, Iowa, United States of America
| | - Brandt Uitermarkt
- Department of Pediatrics, Neurology, & Psychiatry, University of Iowa Hospitals and Clinics, Iowa City, Iowa, United States of America
| | - Phillip Gander
- Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, Iowa, United States of America
| | - Matthew Howard
- Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, Iowa, United States of America
- Neuroscience Institute, University of Iowa, Iowa City, Iowa, United States of America
| | - Eliezer J. Sternberg
- Department of Neurology, Milford Regional Neurology, Milford, Massachusetts, United States of America
- Department of Neurology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Alfonso Nieto-Castanon
- Department of Behavioral Neuroscience, Northeastern University, Boston, Massachusetts, United States of America
| | - Sheeba Anteraper
- Department of Behavioral Neuroscience, Northeastern University, Boston, Massachusetts, United States of America
| | - Susan Whitfield-Gabrieli
- Department of Behavioral Neuroscience, Northeastern University, Boston, Massachusetts, United States of America
| | - Emery N. Brown
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Institute for Medical Engineering and Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Institute for Data Systems and Society, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Edward S. Boyden
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- McGovern Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Center for Neurobiological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Koch Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Howard Hughes Medical Institute, Cambridge, Massachusetts, United States of America
| | - Bradford C. Dickerson
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Neurology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Li-Huei Tsai
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| |
Collapse
|
25
|
Kim SE, Kim HS, Kwak Y, Ahn MH, Choi KM, Min BK. Neurodynamic correlates for the cross-frequency coupled transcranial alternating current stimulation during working memory performance. Front Neurosci 2022; 16:1013691. [PMID: 36263365 PMCID: PMC9574066 DOI: 10.3389/fnins.2022.1013691] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Transcranial current stimulation is a neuromodulation technique used to modulate brain oscillations and, in turn, to enhance human cognitive function in a non-invasive manner. This study investigated whether cross-frequency coupled transcranial alternating current stimulation (CFC-tACS) improved working memory performance. Participants in both the tACS-treated and sham groups were instructed to perform a modified Sternberg task, where a combination of letters and digits was presented. Theta-phase/high-gamma-amplitude CFC-tACS was administered over electrode F3 and its four surrounding return electrodes (Fp1, Fz, F7, and C3) for 20 min. To identify neurophysiological correlates for the tACS-mediated enhancement of working memory performance, we analyzed EEG alpha and theta power, cross-frequency coupling, functional connectivity, and nodal efficiency during the retention period of the working memory task. We observed significantly reduced reaction times in the tACS-treated group, with suppressed treatment-mediated differences in frontal alpha power and unidirectional Fz-delta-phase to Oz-high-gamma-amplitude modulation during the second half of the retention period when network analyses revealed tACS-mediated fronto-occipital dissociative neurodynamics between alpha suppression and delta/theta enhancement. These findings indicate that tACS modulated top-down control and functional connectivity across the fronto-occipital regions, resulting in improved working memory performance. Our observations are indicative of the feasibility of enhancing cognitive performance by the CFC-formed tACS.
Collapse
Affiliation(s)
- Seong-Eun Kim
- Department of Applied Artificial Intelligence, Seoul National University of Science and Technology, Seoul, South Korea
| | - Hyun-Seok Kim
- Biomedical Engineering Research Center, Asan Medical Center, Seoul, South Korea
| | - Youngchul Kwak
- Department of Electronics Engineering, Pohang University of Science and Technology, Pohang, South Korea
| | - Min-Hee Ahn
- Laboratory of Brain and Cognitive Science for Convergence Medicine, College of Medicine, Hallym University, Anyang, South Korea
| | - Kyung Mook Choi
- Institute for Brain and Cognitive Engineering, Korea University, Seoul, South Korea
| | - Byoung-Kyong Min
- Institute for Brain and Cognitive Engineering, Korea University, Seoul, South Korea
- Department of Brain and Cognitive Engineering, Korea University, Seoul, South Korea
- Interdisciplinary Program in Brain and Cognitive Sciences, Korea University, Seoul, South Korea
- *Correspondence: Byoung-Kyong Min,
| |
Collapse
|
26
|
Battisti A, Lazzaro G, Costanzo F, Varuzza C, Rossi S, Vicari S, Menghini D. Effects of a short and intensive transcranial direct current stimulation treatment in children and adolescents with developmental dyslexia: A crossover clinical trial. Front Psychol 2022; 13:986242. [PMID: 36160506 PMCID: PMC9500580 DOI: 10.3389/fpsyg.2022.986242] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/23/2022] [Indexed: 12/02/2022] Open
Abstract
Developmental Dyslexia (DD) significantly interferes with children’s academic, personal, social, and emotional functioning. Nevertheless, therapeutic options need to be further validated and tested in randomized controlled clinical trials. The use of transcranial direct current stimulation (tDCS) has been gaining ground in recent years as a new intervention option for DD. However, there are still open questions regarding the most suitable tDCS protocol for young people with DD. The current crossover study tested the effectiveness of a short and intensive tDCS protocol, including the long-term effects, as well as the influence of age and neuropsychological processes at baseline on reading improvements. Twenty-four children and adolescents with DD were randomly assigned to receive active tDCS during the first slot and sham tDCS during the second slot or vice versa. Five consecutive daily sessions of left anodal/right cathodal tDCS set at 1 mA for 20 min were administered over the parieto-occipital regions. Reading measures (text, high frequency word, low frequency word, and non-word lists) and neuropsychological measures (visual-spatial and verbal working memory, phoneme blending, and rapid automatized naming tasks) were collected before, immediately after, 1 week and 1 month later the treatment. Our results showed that only the active tDCS condition improved non-word reading speed immediately after and 1 month later the end of the treatment compared with baseline. In addition, the improvement in non-word reading speed was significantly correlated with age and with neuropsychological measures (verbal working memory and phoneme blending) at baseline but only in the active tDCS condition. The current crossover study contributed to enforce previous effects of tDCS, including long-term effects, on non-word reading speed and to understand the effect of age and neuropsychological processes on reading outcomes. Our findings showed that tDCS could be a low-cost and easy-to-implement treatment option with long-term effects for children and adolescents with DD.
Collapse
Affiliation(s)
- Andrea Battisti
- Child and Adolescent Neuropsychiatry Unit, Department of Neuroscience, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
- Department of Human Science, LUMSA University, Rome, Italy
| | - Giulia Lazzaro
- Child and Adolescent Neuropsychiatry Unit, Department of Neuroscience, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Floriana Costanzo
- Child and Adolescent Neuropsychiatry Unit, Department of Neuroscience, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Cristiana Varuzza
- Child and Adolescent Neuropsychiatry Unit, Department of Neuroscience, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Serena Rossi
- Child and Adolescent Neuropsychiatry Unit, Department of Neuroscience, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Stefano Vicari
- Child and Adolescent Neuropsychiatry Unit, Department of Neuroscience, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
- Department of Life Science and Public Health, Catholic University of the Sacred Heart, Rome, Italy
| | - Deny Menghini
- Child and Adolescent Neuropsychiatry Unit, Department of Neuroscience, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
- *Correspondence: Deny Menghini,
| |
Collapse
|
27
|
Local and Distributed fMRI Changes Induced by 40 Hz Gamma tACS of the Bilateral Dorsolateral Prefrontal Cortex: A Pilot Study. Neural Plast 2022; 2022:6197505. [PMID: 35880231 PMCID: PMC9308536 DOI: 10.1155/2022/6197505] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 05/06/2022] [Accepted: 06/21/2022] [Indexed: 11/18/2022] Open
Abstract
Over the past few years, the possibility of modulating fast brain oscillatory activity in the gamma (γ) band through transcranial alternating current stimulation (tACS) has been discussed in the context of both cognitive enhancement and therapeutic scenarios. However, the effects of tACS targeting regions outside the motor cortex, as well as its spatial specificity, are still unclear. Here, we present a concurrent tACS-fMRI block design study to characterize the impact of 40 Hz tACS applied over the left and right dorsolateral prefrontal cortex (DLPFC) in healthy subjects. Results suggest an increase in blood oxygenation level-dependent (BOLD) activity in the targeted bilateral DLPFCs, as well as in surrounding brain areas affected by stimulation according to biophysical modeling, i.e., the premotor cortex and anterior cingulate cortex (ACC). However, off-target effects were also observed, primarily involving the visual cortices, with further effects on the supplementary motor areas (SMA), left subgenual cingulate, and right superior temporal gyrus. The specificity of 40 Hz tACS over bilateral DLPFC and the possibility for network-level effects should be considered in future studies, especially in the context of recently promoted gamma-induction therapeutic protocols for neurodegenerative disorders.
Collapse
|
28
|
Antal A, Luber B, Brem AK, Bikson M, Brunoni AR, Cohen Kadosh R, Dubljević V, Fecteau S, Ferreri F, Flöel A, Hallett M, Hamilton RH, Herrmann CS, Lavidor M, Loo C, Lustenberger C, Machado S, Miniussi C, Moliadze V, Nitsche MA, Rossi S, Rossini PM, Santarnecchi E, Seeck M, Thut G, Turi Z, Ugawa Y, Venkatasubramanian G, Wenderoth N, Wexler A, Ziemann U, Paulus W. Non-invasive brain stimulation and neuroenhancement. Clin Neurophysiol Pract 2022; 7:146-165. [PMID: 35734582 PMCID: PMC9207555 DOI: 10.1016/j.cnp.2022.05.002] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/19/2022] [Accepted: 05/18/2022] [Indexed: 12/15/2022] Open
Abstract
Attempts to enhance human memory and learning ability have a long tradition in science. This topic has recently gained substantial attention because of the increasing percentage of older individuals worldwide and the predicted rise of age-associated cognitive decline in brain functions. Transcranial brain stimulation methods, such as transcranial magnetic (TMS) and transcranial electric (tES) stimulation, have been extensively used in an effort to improve cognitive functions in humans. Here we summarize the available data on low-intensity tES for this purpose, in comparison to repetitive TMS and some pharmacological agents, such as caffeine and nicotine. There is no single area in the brain stimulation field in which only positive outcomes have been reported. For self-directed tES devices, how to restrict variability with regard to efficacy is an essential aspect of device design and function. As with any technique, reproducible outcomes depend on the equipment and how well this is matched to the experience and skill of the operator. For self-administered non-invasive brain stimulation, this requires device designs that rigorously incorporate human operator factors. The wide parameter space of non-invasive brain stimulation, including dose (e.g., duration, intensity (current density), number of repetitions), inclusion/exclusion (e.g., subject's age), and homeostatic effects, administration of tasks before and during stimulation, and, most importantly, placebo or nocebo effects, have to be taken into account. The outcomes of stimulation are expected to depend on these parameters and should be strictly controlled. The consensus among experts is that low-intensity tES is safe as long as tested and accepted protocols (including, for example, dose, inclusion/exclusion) are followed and devices are used which follow established engineering risk-management procedures. Devices and protocols that allow stimulation outside these parameters cannot claim to be "safe" where they are applying stimulation beyond that examined in published studies that also investigated potential side effects. Brain stimulation devices marketed for consumer use are distinct from medical devices because they do not make medical claims and are therefore not necessarily subject to the same level of regulation as medical devices (i.e., by government agencies tasked with regulating medical devices). Manufacturers must follow ethical and best practices in marketing tES stimulators, including not misleading users by referencing effects from human trials using devices and protocols not similar to theirs.
Collapse
Key Words
- AD, Alzheimer’s Disease
- BDNF, brain derived neurotrophic factor
- Cognitive enhancement
- DARPA, Defense Advanced Research Projects Agency
- DIY stimulation
- DIY, Do-It-Yourself
- DLPFC, dorsolateral prefrontal cortex
- EEG, electroencephalography
- EMG, electromyography
- FCC, Federal Communications Commission
- FDA, (U.S.) Food and Drug Administration
- Home-stimulation
- IFCN, International Federation of Clinical Neurophysiology
- LTD, long-term depression
- LTP, long-term potentiation
- MCI, mild cognitive impairment
- MDD, Medical Device Directive
- MDR, Medical Device Regulation
- MEP, motor evoked potential
- MRI, magnetic resonance imaging
- NIBS, noninvasive brain stimulation
- Neuroenhancement
- OTC, Over-The-Counter
- PAS, paired associative stimulation
- PET, positron emission tomography
- PPC, posterior parietal cortex
- QPS, quadripulse stimulation
- RMT, resting motor threshold
- SAE, serious adverse event
- SMA, supplementary motor cortex
- TBS, theta-burst stimulation
- TMS, transcranial magnetic stimulation
- Transcranial brain stimulation
- rTMS, repetitive transcranial magnetic stimulation
- tACS
- tACS, transcranial alternating current stimulation
- tDCS
- tDCS, transcranial direct current stimulation
- tES, transcranial electric stimulation
- tRNS, transcranial random noise stimulation
Collapse
Affiliation(s)
- Andrea Antal
- Department of Neurology, University Medical Center, Göttingen, Germany
| | - Bruce Luber
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Anna-Katharine Brem
- University Hospital of Old Age Psychiatry, University of Bern, Bern, Switzerland
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Marom Bikson
- Biomedical Engineering at the City College of New York (CCNY) of the City University of New York (CUNY), NY, USA
| | - Andre R. Brunoni
- Departamento de Clínica Médica e de Psiquiatria, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- Service of Interdisciplinary Neuromodulation (SIN), Laboratory of Neurosciences (LIM-27), Institute of Psychiatry, Hospital das Clínicas da Faculdade de Medicina da USP, São Paulo, Brazil
| | - Roi Cohen Kadosh
- School of Psychology, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
| | - Veljko Dubljević
- Science, Technology and Society Program, College of Humanities and Social Sciences, North Carolina State University, Raleigh, NC, USA
| | - Shirley Fecteau
- Department of Psychiatry and Neurosciences, Faculty of Medicine, Université Laval, CERVO Brain Research Centre, Centre intégré universitaire en santé et services sociaux de la Capitale-Nationale, Quebec City, Quebec, Canada
| | - Florinda Ferreri
- Unit of Neurology, Unit of Clinical Neurophysiology, Study Center of Neurodegeneration (CESNE), Department of Neuroscience, University of Padua, Padua, Italy
- Department of Clinical Neurophysiology, Kuopio University Hospital, University of Eastern Finland, Kuopio, Finland
| | - Agnes Flöel
- Department of Neurology, Universitätsmedizin Greifswald, 17475 Greifswald, Germany
- German Centre for Neurodegenerative Diseases (DZNE) Standort Greifswald, 17475 Greifswald, Germany
| | - Mark Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Roy H. Hamilton
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Christoph S. Herrmann
- Experimental Psychology Lab, Department of Psychology, Carl von Ossietzky Universität, Oldenburg, Germany
| | - Michal Lavidor
- Department of Psychology and the Gonda Brain Research Center, Bar Ilan University, Israel
| | - Collen Loo
- School of Psychiatry and Black Dog Institute, University of New South Wales; The George Institute; Sydney, Australia
| | - Caroline Lustenberger
- Neural Control of Movement Lab, Institute of Human Movement Sciences and Sport, Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
| | - Sergio Machado
- Department of Sports Methods and Techniques, Federal University of Santa Maria, Santa Maria, Brazil
- Laboratory of Physical Activity Neuroscience, Neurodiversity Institute, Queimados-RJ, Brazil
| | - Carlo Miniussi
- Center for Mind/Brain Sciences – CIMeC and Centre for Medical Sciences - CISMed, University of Trento, Rovereto, Italy
| | - Vera Moliadze
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig Holstein, Kiel University, Kiel, Germany
| | - Michael A Nitsche
- Department Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors at TU, Dortmund, Germany
- Dept. Neurology, University Medical Hospital Bergmannsheil, Bochum, Germany
| | - Simone Rossi
- Siena Brain Investigation and Neuromodulation Lab (Si-BIN Lab), Unit of Neurology and Clinical Neurophysiology, Department of Medicine, Surgery and Neuroscience, University of Siena, Italy
| | - Paolo M. Rossini
- Department of Neuroscience and Neurorehabilitation, Brain Connectivity Lab, IRCCS-San Raffaele-Pisana, Rome, Italy
| | - Emiliano Santarnecchi
- Precision Neuroscience and Neuromodulation Program, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Margitta Seeck
- Department of Clinical Neurosciences, Hôpitaux Universitaires de Genève, Switzerland
| | - Gregor Thut
- Centre for Cognitive Neuroimaging, School of Psychology and Neuroscience, EEG & Epolepsy Unit, University of Glasgow, United Kingdom
| | - Zsolt Turi
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Yoshikazu Ugawa
- Department of Human Neurophysiology, Fukushima Medical University, Fukushima, Japan
| | | | - Nicole Wenderoth
- Neural Control of Movement Lab, Institute of Human Movement Sciences and Sport, Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
- Future Health Technologies, Singapore-ETH Centre, Campus for Research Excellence And Technological Enterprise (CREATE), Singapore
| | - Anna Wexler
- Department of Medical Ethics and Health Policy, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Ulf Ziemann
- Department of Neurology and Stroke, University of Tübingen, Germany
- Hertie Institute for Clinical Brain Research, University of Tübingen, Germany
| | - Walter Paulus
- Department of of Neurology, Ludwig Maximilians University Munich, Germany
| |
Collapse
|
29
|
Palm U, Baumgartner C, Hoffmann L, Padberg F, Hasan A, Strube W, Papazova I. Single session gamma transcranial alternating stimulation does not modulate working memory in depressed patients and healthy controls. Neurophysiol Clin 2022; 52:128-136. [PMID: 35351388 DOI: 10.1016/j.neucli.2022.03.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVES Gamma transcranial alternating current stimulation (gamma tACS) is considered a non-invasive brain stimulation technique for modulation of cognitive performance and for treatment of psychiatric disorders. There is heterogeneous data on its effectiveness in improving working memory. METHODS In this randomized crossover study, we tested 22 patients with major depression and 21 healthy volunteers who received 20 min of active and sham 40 Hz gamma tACS over bilateral dorsolateral prefrontal cortex during a computerized n-back task in a cross-over design. RESULTS We showed no improvement in reaction time and accuracy of working memory during active or sham stimulation in both groups, and no interaction between cognitive load and stimulation conditions. CONCLUSION The present study suggests that a single session of gamma tACS does not affect cognition in depression. However, the bilateral electrode montage and learning or ceiling effects may have affected results. Overall, this study is in line with the heterogeneous results of previous gamma tACS studies, emphasizing that methodologies and study designs should be harmonized.
Collapse
Affiliation(s)
- Ulrich Palm
- Department of Psychiatry and Psychotherapy, Hospital of the University of Munich, Munich, Germany; Medical Park Chiemseeblick, Bernau-Felden, Germany.
| | - Carolin Baumgartner
- Department of Psychiatry and Psychotherapy, Hospital of the University of Munich, Munich, Germany
| | - Lina Hoffmann
- Department of Psychiatry and Psychotherapy, Hospital of the University of Munich, Munich, Germany
| | - Frank Padberg
- Department of Psychiatry and Psychotherapy, Hospital of the University of Munich, Munich, Germany
| | - Alkomiet Hasan
- Department of Psychiatry and Psychotherapy, Hospital of the University of Munich, Munich, Germany; Psychiatry and Psychotherapy, Faculty of Medicine, University of Augsburg, Bezirkskrankenhaus Augsburg, Augsburg, Germany
| | - Wolfgang Strube
- Department of Psychiatry and Psychotherapy, Hospital of the University of Munich, Munich, Germany; Psychiatry and Psychotherapy, Faculty of Medicine, University of Augsburg, Bezirkskrankenhaus Augsburg, Augsburg, Germany
| | - Irina Papazova
- Department of Psychiatry and Psychotherapy, Hospital of the University of Munich, Munich, Germany; Psychiatry and Psychotherapy, Faculty of Medicine, University of Augsburg, Bezirkskrankenhaus Augsburg, Augsburg, Germany
| |
Collapse
|
30
|
Taylor BK, Heinrichs-Graham E, Eastman JA, Frenzel MR, Wang YP, Calhoun VD, Stephen JM, Wilson TW. Longitudinal changes in the neural oscillatory dynamics underlying abstract reasoning in children and adolescents. Neuroimage 2022; 253:119094. [PMID: 35306160 PMCID: PMC9152958 DOI: 10.1016/j.neuroimage.2022.119094] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 11/18/2022] Open
Abstract
Fluid reasoning is the ability to problem solve in the absence of prior knowledge and is commonly conceptualized as “non-verbal” intelligence. Importantly, fluid reasoning abilities rapidly develop throughout childhood and adolescence. Although numerous studies have characterized the neural underpinnings of fluid reasoning in adults, there is a paucity of research detailing the developmental trajectory of this neural processing. Herein, we examine longitudinal changes in the neural oscillatory dynamics underlying fluid intelligence in a sample of typically developing youths. A total of 34 participants age 10 to 16 years-old completed an abstract reasoning task during magnetoencephalography (MEG) on two occasions set one year apart. We found robust longitudinal optimization in theta, beta, and gamma oscillatory activity across years of the study across a distributed network commonly implicated in fluid reasoning abilities. More specifically, activity tended to decrease longitudinally in additional, compensatory areas such as the right lateral prefrontal cortex and increase in areas commonly utilized in mature adult samples (e.g., left frontal and parietal cortices). Importantly, shifts in neural activity were associated with improvements in task performance from one year to the next. Overall, the data suggest a longitudinal shift in performance that is accompanied by a reconfiguration of the functional oscillatory dynamics serving fluid reasoning during this important period of development.
Collapse
Affiliation(s)
- Brittany K Taylor
- Institute for Human Neuroscience, Boys Town National Research Hospital, 378 Bucher Circle, Boys Town, NE 68010, USA; Department of Pharmacology and Neuroscience, Creighton University, Omaha, NE, USA.
| | - Elizabeth Heinrichs-Graham
- Institute for Human Neuroscience, Boys Town National Research Hospital, 378 Bucher Circle, Boys Town, NE 68010, USA; Department of Pharmacology and Neuroscience, Creighton University, Omaha, NE, USA
| | - Jacob A Eastman
- Institute for Human Neuroscience, Boys Town National Research Hospital, 378 Bucher Circle, Boys Town, NE 68010, USA
| | - Michaela R Frenzel
- Institute for Human Neuroscience, Boys Town National Research Hospital, 378 Bucher Circle, Boys Town, NE 68010, USA
| | - Yu-Ping Wang
- Department of Biomedical Engineering, Tulane University, New Orleans, LA, USA
| | - Vince D Calhoun
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA; Mind Research Network, Albuquerque, NM, USA
| | | | - Tony W Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, 378 Bucher Circle, Boys Town, NE 68010, USA; Department of Pharmacology and Neuroscience, Creighton University, Omaha, NE, USA
| |
Collapse
|
31
|
Santarnecchi E, Sprugnoli G, Sicilia I, Dukart J, Neri F, Romanella SM, Cerase A, Vatti G, Rocchi R, Rossi A. Thalamic altered spontaneous activity and connectivity in obstructive sleep apnea syndrome. J Neuroimaging 2022; 32:314-327. [PMID: 34964182 PMCID: PMC9094633 DOI: 10.1111/jon.12952] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 10/30/2021] [Accepted: 11/15/2021] [Indexed: 10/19/2022] Open
Abstract
BACKGROUND AND PURPOSE Obstructive sleep apnea (OSA) syndrome is a sleep disorder characterized by excessive snoring, repetitive apneas, and nocturnal arousals, that leads to fragmented sleep and intermittent nocturnal hypoxemia. Morphometric and functional brain alterations in cortical and subcortical structures have been documented in these patients via magnetic resonance imaging (MRI), even if correlational data between the alterations in the brain and cognitive and clinical indexes are still not reported. METHODS We examined the impact of OSA on brain spontaneous activity by measuring the fractional amplitude of low-frequency fluctuations (fALFF) in resting-state functional MRI data of 20 drug-naïve patients with OSA syndrome and 20 healthy controls matched for age, gender, and body mass index. RESULTS Patients showed a pattern of significantly abnormal subcortical functional activity as compared to controls, with increased activity selectively involving the thalami, specifically their intrinsic nuclei connected to somatosensory and motor-premotor cortical regions. Using these nuclei as seed regions, the subsequent functional connectivity analysis highlighted an increase in patients' thalamocortical connectivity at rest. Additionally, the correlation between fALFF and polysomnographic data revealed a possible link between OSA severity and fALFF of regions belonging to the central autonomic network. CONCLUSIONS Our results suggest a hyperactivation in thalamic diurnal activity in patients with OSA syndrome, which we interpret as a possible consequence of increased thalamocortical circuitry activation during nighttime due to repeated arousals.
Collapse
Affiliation(s)
- Emiliano Santarnecchi
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Giulia Sprugnoli
- Siena Brain Investigation & Neuromodulation Laboratory, Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology Unit, University of Siena, Siena, Italy
| | - Isabella Sicilia
- Center for Sleep Study, University of Siena School of Medicine, Siena, Italy
| | - Juergen Dukart
- Institute of Neuroscience and Medicine, Brain & Behavior (INM-7), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Francesco Neri
- Siena Brain Investigation & Neuromodulation Laboratory, Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology Unit, University of Siena, Siena, Italy
| | - Sara M. Romanella
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Siena Brain Investigation & Neuromodulation Laboratory, Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology Unit, University of Siena, Siena, Italy
| | - Alfonso Cerase
- Department of Medicine, Surgery and Neuroscience, Section of Neuroradiology, University of Siena, Siena, Italy
| | - Giampaolo Vatti
- Center for Sleep Study, University of Siena School of Medicine, Siena, Italy
| | - Raffaele Rocchi
- Center for Sleep Study, University of Siena School of Medicine, Siena, Italy
| | - Alessandro Rossi
- Siena Brain Investigation & Neuromodulation Laboratory, Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology Unit, University of Siena, Siena, Italy
- Center for Sleep Study, University of Siena School of Medicine, Siena, Italy
| |
Collapse
|
32
|
Redondo-Camós M, Cattaneo G, Perellón-Alfonso R, Alviarez-Schulze V, Morris TP, Solana-Sanchez J, España-Irla G, Delgado-Gallén S, Pachón-García C, Albu S, Zetterberg H, Tormos JM, Pascual-Leone A, Bartres-Faz D. Local Prefrontal Cortex TMS-Induced Reactivity Is Related to Working Memory and Reasoning in Middle-Aged Adults. Front Psychol 2022; 13:813444. [PMID: 35222201 PMCID: PMC8866698 DOI: 10.3389/fpsyg.2022.813444] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 01/18/2022] [Indexed: 12/19/2022] Open
Abstract
Introduction The prefrontal cortex (PFC) plays a crucial role in cognition, particularly in executive functions. Cortical reactivity measured with Transcranial Magnetic Stimulation combined with Electroencephalography (TMS-EEG) is altered in pathological conditions, and it may also be a marker of cognitive status in middle-aged adults. In this study, we investigated the associations between cognitive measures and TMS evoked EEG reactivity and explored whether the effects of this relationship were related to neurofilament light chain levels (NfL), a marker of neuroaxonal damage. Methods Fifty two healthy middle-aged adults (41–65 years) from the Barcelona Brain Health Initiative cohort underwent TMS-EEG, a comprehensive neuropsychological assessment, and a blood test for NfL levels. Global and Local Mean-Field Power (GMFP/LMFP), two measures of cortical reactivity, were quantified after left prefrontal cortex (L-PFC) stimulation, and cognition was set as the outcome of the regression analysis. The left inferior parietal lobe (L-IPL) was used as a control stimulation condition. Results Local reactivity was significantly associated with working memory and reasoning only after L-PFC stimulation. No associations were found between NfL and cognition. These specific associations were independent of the status of neuroaxonal damage indexed by the NfL biomarker and remained after adjusting for age, biological sex, and education. Conclusion Our results demonstrate that TMS evoked EEG reactivity at the L-PFC, but not the L-IPL, is related to the cognitive status of middle-aged individuals and independent of NfL levels, and may become a valuable biomarker of frontal lobe-associated cognitive function.
Collapse
Affiliation(s)
- María Redondo-Camós
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la Universitat Autónoma de Barcelona, Barcelona, Spain.,Departament de Medicina, Facultat de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain.,Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Barcelona, Spain
| | - Gabriele Cattaneo
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la Universitat Autónoma de Barcelona, Barcelona, Spain.,Departament de Medicina, Facultat de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain.,Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Barcelona, Spain
| | - Ruben Perellón-Alfonso
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Departament de Medicina, Facultat de Medicina i Ciències de la Salut, i Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Vanessa Alviarez-Schulze
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la Universitat Autónoma de Barcelona, Barcelona, Spain.,Departament de Medicina, Facultat de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain.,Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Barcelona, Spain.,Departamento de Ciencias del Comportamiento, Escuela de Psicología, Universidad Metropolitana, Caracas, Venezuela
| | - Timothy P Morris
- Center for Cognitive and Brain Health, Department of Psychology, Northeastern University, Boston, MA, United States
| | - Javier Solana-Sanchez
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la Universitat Autónoma de Barcelona, Barcelona, Spain.,Departament de Medicina, Facultat de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain.,Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Barcelona, Spain
| | - Goretti España-Irla
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la Universitat Autónoma de Barcelona, Barcelona, Spain.,Departament de Medicina, Facultat de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain.,Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Barcelona, Spain
| | - Selma Delgado-Gallén
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la Universitat Autónoma de Barcelona, Barcelona, Spain.,Departament de Medicina, Facultat de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain.,Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Barcelona, Spain
| | - Catherine Pachón-García
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la Universitat Autónoma de Barcelona, Barcelona, Spain.,Departament de Medicina, Facultat de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain.,Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Barcelona, Spain
| | - Sergiu Albu
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la Universitat Autónoma de Barcelona, Barcelona, Spain.,Departament de Medicina, Facultat de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain.,Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Barcelona, Spain
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Neurodegenerative Disease, University College London Institute of Neurology, London, United Kingdom.,UK Dementia Research Institute, University College London, London, United Kingdom.,Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| | - Josep M Tormos
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la Universitat Autónoma de Barcelona, Barcelona, Spain.,Departament de Medicina, Facultat de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain.,Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Barcelona, Spain
| | - Alvaro Pascual-Leone
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la Universitat Autónoma de Barcelona, Barcelona, Spain.,Hinda and Arthur Marcus Institute for Aging Research and Deanna and Sidney Wolk Center for Memory Health, Hebrew SeniorLife, Boston, MA, United States.,Department of Neurology, Harvard Medical School, Boston, MA, United States
| | - David Bartres-Faz
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la Universitat Autónoma de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Departament de Medicina, Facultat de Medicina i Ciències de la Salut, i Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
33
|
Al Qasem W, Abubaker M, Kvašňák E. Working Memory and Transcranial-Alternating Current Stimulation-State of the Art: Findings, Missing, and Challenges. Front Psychol 2022; 13:822545. [PMID: 35237214 PMCID: PMC8882605 DOI: 10.3389/fpsyg.2022.822545] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/19/2022] [Indexed: 12/06/2022] Open
Abstract
Working memory (WM) is a cognitive process that involves maintaining and manipulating information for a short period of time. WM is central to many cognitive processes and declines rapidly with age. Deficits in WM are seen in older adults and in patients with dementia, schizophrenia, major depression, mild cognitive impairment, Alzheimer's disease, etc. The frontal, parietal, and occipital cortices are significantly involved in WM processing and all brain oscillations are implicated in tackling WM tasks, particularly theta and gamma bands. The theta/gamma neural code hypothesis assumes that retained memory items are recorded via theta-nested gamma cycles. Neuronal oscillations can be manipulated by sensory, invasive- and non-invasive brain stimulations. Transcranial alternating-current stimulation (tACS) and repetitive transcranial magnetic stimulation (rTMS) are frequency-tuned non-invasive brain stimulation (NIBS) techniques that have been used to entrain endogenous oscillations in a frequency-specific manner. Compared to rTMS, tACS demonstrates superior cost, tolerability, portability, and safety profile, making it an attractive potential tool for improving cognitive performance. Although cognitive research with tACS is still in its infancy compared to rTMS, a number of studies have shown a promising WM enhancement effect, especially in the elderly and patients with cognitive deficits. This review focuses on the various methods and outcomes of tACS on WM in healthy and unhealthy human adults and highlights the established findings, unknowns, challenges, and perspectives important for translating laboratory tACS into realistic clinical settings. This will allow researchers to identify gaps in the literature and develop frequency-tuned tACS protocols with promising safety and efficacy outcomes. Therefore, research efforts in this direction should help to consider frequency-tuned tACS as a non-pharmacological tool of cognitive rehabilitation in physiological aging and patients with cognitive deficits.
Collapse
Affiliation(s)
- Wiam Al Qasem
- Department of Medical Biophysics and Medical Informatics, Third Faculty of Medicine, Charles University in Prague, Praha, Czechia
| | | | | |
Collapse
|
34
|
Assogna M, Sprugnoli G, Press D, Dickerson B, Macone J, Bonnì S, Borghi I, Connor A, Hoffman M, Grover N, Wong B, Shen C, Martorana A, O'Reilly M, Ruffini G, El Fakhri G, Koch G, Santarnecchi E. Gamma-induction in frontotemporal dementia (GIFTeD) randomized placebo-controlled trial: Rationale, noninvasive brain stimulation protocol, and study design. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2022; 7:e12219. [PMID: 35141396 PMCID: PMC8813035 DOI: 10.1002/trc2.12219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 08/02/2021] [Accepted: 09/20/2021] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Frontotemporal dementia (FTD) is a neurodegenerative disorder for which there is no effective pharmacological treatment. Recently, interneuron activity responsible for fast oscillatory brain activity has been found to be impaired in a mouse model of FTD with consequent cognitive and behavioral alterations. In this study, we aim to investigate the safety, tolerability, and efficacy of a novel promising therapeutic intervention for FTD based on 40 Hz transcranial alternating current stimulation (tACS), a form of non-invasive brain stimulation thought to engage neural activity in a frequency-specific manner and thus suited to restore altered brain oscillatory patterns. METHODS This is a multi-site, randomized, double-blind, placebo-controlled trial on 50 patients with a diagnosis of behavioral variant FTD (bvFTD). Participants will be randomized to undergo either 30 days of 1-hour daily tACS or Sham (placebo) tACS. The outcomes will be assessed at baseline, right after the intervention and at a 3- to 6-months follow-up. The primary outcome measures are represented by the safety and feasibility of tACS administration, which will be assessed considering the nature, frequency, and severity of adverse events as well as attrition rate, respectively. To assess secondary outcomes, participants will undergo extensive neuropsychological and behavioral assessments and fluorodeoxyglucose (FDG)-positron emission tomography (PET) scans to evaluate changes in brain metabolism, functional and structural magnetic resonance imaging (MRI), resting and evoked electroencephalography, as well as blood biomarkers to measure changes in neurodegenerative and neuroinflammatory markers. RESULTS The trial started in October 2020 and will end in October 2023. Study protocols have been approved by the local institutional review board (IRB) at each data-collection site. DISCUSSION This study will evaluate the safety and tolerability of 40 Hz tACS in bvFTD patients and its efficacy on gamma oscillatory activity, cognitive function, and brain glucose hypometabolism.
Collapse
Affiliation(s)
- Martina Assogna
- Berenson‐Allen Center for Noninvasive Brain StimulationBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
- Non‐Invasive Brain Stimulation UnitDepartment of Behavioural and Clinical NeurologySanta Lucia Foundation IRCCSRomeItaly
| | - Giulia Sprugnoli
- Berenson‐Allen Center for Noninvasive Brain StimulationBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
- Radiology UnitDepartment of Medicine and SurgeryUniversity of ParmaParmaItaly
| | - Daniel Press
- Berenson‐Allen Center for Noninvasive Brain StimulationBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
| | - Brad Dickerson
- Frontotemporal Disorders Unit and Alzheimer's Disease Research CenterDepartments of Psychiatry and NeurologyMassachusetts General HospitalBostonMassachusettsUSA
| | - Joanna Macone
- Berenson‐Allen Center for Noninvasive Brain StimulationBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
| | - Sonia Bonnì
- Non‐Invasive Brain Stimulation UnitDepartment of Behavioural and Clinical NeurologySanta Lucia Foundation IRCCSRomeItaly
| | - Ilaria Borghi
- Non‐Invasive Brain Stimulation UnitDepartment of Behavioural and Clinical NeurologySanta Lucia Foundation IRCCSRomeItaly
| | - Ann Connor
- Berenson‐Allen Center for Noninvasive Brain StimulationBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
| | - Megan Hoffman
- Berenson‐Allen Center for Noninvasive Brain StimulationBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
| | - Nainika Grover
- Berenson‐Allen Center for Noninvasive Brain StimulationBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
| | - Bonnie Wong
- Frontotemporal Disorders Unit and Alzheimer's Disease Research CenterDepartments of Psychiatry and NeurologyMassachusetts General HospitalBostonMassachusettsUSA
| | - Changyu Shen
- Richard and Susan Smith Center for Outcomes Research in CardiologyDivision of CardiologyBeth Israel Deaconess Medical and Harvard Medical SchoolBostonMassachusettsUSA
| | | | - Molly O'Reilly
- Berenson‐Allen Center for Noninvasive Brain StimulationBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
| | | | - Georges El Fakhri
- Gordon Center for Medical ImagingDepartment of RadiologyMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Giacomo Koch
- Non‐Invasive Brain Stimulation UnitDepartment of Behavioural and Clinical NeurologySanta Lucia Foundation IRCCSRomeItaly
| | - Emiliano Santarnecchi
- Berenson‐Allen Center for Noninvasive Brain StimulationBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
- Gordon Center for Medical ImagingDepartment of RadiologyMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
35
|
Rossi S, Santarnecchi E, Feurra M. Noninvasive brain stimulation and brain oscillations. HANDBOOK OF CLINICAL NEUROLOGY 2022; 184:239-247. [PMID: 35034738 DOI: 10.1016/b978-0-12-819410-2.00013-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Recent technological advances in the field of noninvasive brain stimulation (NIBS) have allowed to interact with endogenous brain oscillatory activity, the main neural communication code of our brain, opening new scenarios for transient modifications of cognitive and behavioral performances: such a possibility can be capitalized both for research purposes in healthy subjects, as well as in the context of therapeutic and rehabilitative settings. Among NiBS methodologies, transcranial magnetic stimulation (TMS) has been the first used to this purpose, and also thanks to the technical development of TMS-EEG co-registering systems, the mechanistic knowledge regarding the role of brain oscillations has been improved. Another approach to brain oscillations considers electric stimulation methods, such as transcranial direct current stimulation (tDCS), and especially transcranial alternating current stimulation (tACS), for which -however- some technical and conceptual caveats have emerged. In this chapter, we briefly review the uses of NiBS in this field up to now, by providing an update on the current status of research applications as well as of its attempts of exploitation in translational clinical applications, especially regarding motor disorders and for understanding and reducing some psychiatric symptoms.
Collapse
Affiliation(s)
- Simone Rossi
- Unit of Neurology and Clinical Neurophysiology, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy.
| | - Emiliano Santarnecchi
- Unit of Neurology and Clinical Neurophysiology, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy; Berenson-Allen Center for Non-invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Matteo Feurra
- Centre for Cognition and Decision Making, Institute for Cognitive Neuroscience, National Research University Higher School of Economics, Moscow, Russian Federation
| |
Collapse
|
36
|
Dhaynaut M, Sprugnoli G, Cappon D, Macone J, Sanchez JS, Normandin MD, Guehl NJ, Koch G, Paciorek R, Connor A, Press D, Johnson K, Pascual-Leone A, El Fakhri G, Santarnecchi E. Impact of 40 Hz Transcranial Alternating Current Stimulation on Cerebral Tau Burden in Patients with Alzheimer's Disease: A Case Series. J Alzheimers Dis 2022; 85:1667-1676. [PMID: 34958021 PMCID: PMC9023125 DOI: 10.3233/jad-215072] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is characterized by diffuse amyloid-β (Aβ) and phosphorylated Tau (p-Tau) aggregates as well as neuroinflammation. Exogenously-induced 40 Hz gamma oscillations have been showing to reduce Aβ and p-Tau deposition presumably via microglia activation in AD mouse models. OBJECTIVE We aimed to translate preclinical data on gamma-induction in AD patients by means of transcranial alternating current stimulation (tACS). METHODS Four participants with mild-to-moderate AD received 1 h of daily 40 Hz (gamma) tACS for 4 weeks (Monday to Friday) targeting the bitemporal lobes (20 h treatment duration). Participant underwent Aβ, p-Tau, and microglia PET imaging with [11C]-PiB, [18F]-FTP, and [11C]-PBR28 respectively, before and after the intervention along with electrophysiological assessment. RESULTS No adverse events were reported, and an increase in gamma spectral power on EEG was observed after the treatment. [18F]-FTP PET revealed a significant decrease over 2% of p-Tau burden in 3/4 patients following the tACS treatment, primarily involving the temporal lobe regions targeted by tACS and especially mesial regions (e.g., entorhinal cortex). The amount of intracerebral Aβ as measured by [11C]-PiB was not significantly influenced by tACS, whereas 1/4 reported a significant decrease of microglia activation as measured by [11C]-PBR28. CONCLUSION tACS seems to represent a safe and feasible option for gamma induction in AD patients, with preliminary evidence of a possible effect on protein clearance partially mimicking what is observed in animal models. Longer interventions and placebo control conditions are needed to fully evaluate the potential for tACS to slow disease progression.
Collapse
Affiliation(s)
- Maeva Dhaynaut
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Giulia Sprugnoli
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Davide Cappon
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Joanna Macone
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Justin S. Sanchez
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Marc D. Normandin
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Nicolas J. Guehl
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Rachel Paciorek
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Ann Connor
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Daniel Press
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Keith Johnson
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Alvaro Pascual-Leone
- Hinda and Arthur Marcus Institute for Aging Research and Deanna and Sidney Wolk Center for Memory Health, Hebrew SeniorLife, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Georges El Fakhri
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Emiliano Santarnecchi
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
37
|
Liu B, Yan X, Chen X, Wang Y, Gao X. tACS facilitates flickering driving by boosting steady-state visual evoked potentials. J Neural Eng 2021; 18. [PMID: 34962233 DOI: 10.1088/1741-2552/ac3ef3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 12/01/2021] [Indexed: 11/12/2022]
Abstract
Objective.There has become of increasing interest in transcranial alternating current stimulation (tACS) since its inception nearly a decade ago. tACS in modulating brain state is an active area of research and has been demonstrated effective in various neuropsychological and clinical domains. In the visual domain, much effort has been dedicated to brain rhythms and rhythmic stimulation, i.e. tACS. However, less is known about the interplay between the rhythmic stimulation and visual stimulation.Approach.Here, we used steady-state visual evoked potential (SSVEP), induced by flickering driving as a widely used technique for frequency-tagging, to investigate the aftereffect of tACS in healthy human subjects. Seven blocks of 64-channel electroencephalogram were recorded before and after the administration of 20min 10Hz tACS, while subjects performed several blocks of SSVEP tasks. We characterized the physiological properties of tACS aftereffect by comparing and validating the temporal, spatial, spatiotemporal and signal-to-noise ratio (SNR) patterns between and within blocks in real tACS and sham tACS.Main results.Our result revealed that tACS boosted the 10Hz SSVEP significantly. Besides, the aftereffect on SSVEP was mitigated with time and lasted up to 5 min.Significance.Our results demonstrate the feasibility of facilitating the flickering driving by external rhythmic stimulation and open a new possibility to alter the brain state in a direction by noninvasive transcranial brain stimulation.
Collapse
Affiliation(s)
- Bingchuan Liu
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, People's Republic of China
| | - Xinyi Yan
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, People's Republic of China
| | - Xiaogang Chen
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, People's Republic of China
| | - Yijun Wang
- State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Xiaorong Gao
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, People's Republic of China
| |
Collapse
|
38
|
Sprugnoli G, Munsch F, Cappon D, Paciorek R, Macone J, Connor A, El Fakhri G, Salvador R, Ruffini G, Donohoe K, Shafi MM, Press D, Alsop DC, Pascual Leone A, Santarnecchi E. Impact of multisession 40Hz tACS on hippocampal perfusion in patients with Alzheimer's disease. Alzheimers Res Ther 2021; 13:203. [PMID: 34930421 PMCID: PMC8690894 DOI: 10.1186/s13195-021-00922-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/20/2021] [Indexed: 11/10/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is associated with alterations in cortical perfusion that correlate with cognitive impairment. Recently, neural activity in the gamma band has been identified as a driver of arteriolar vasomotion while, on the other hand, gamma activity induction on preclinical models of AD has been shown to promote protein clearance and cognitive protection. METHODS In two open-label studies, we assessed the possibility to modulate cerebral perfusion in 15 mild to moderate AD participants via 40Hz (gamma) transcranial alternating current stimulation (tACS) administered 1 h daily for 2 or 4 weeks, primarily targeting the temporal lobe. Perfusion-sensitive MRI scans were acquired at baseline and right after the intervention, along with electrophysiological recording and cognitive assessments. RESULTS No serious adverse effects were reported by any of the participants. Arterial spin labeling MRI revealed a significant increase in blood perfusion in the bilateral temporal lobes after the tACS treatment. Moreover, perfusion changes displayed a positive correlation with changes in episodic memory and spectral power changes in the gamma band. CONCLUSIONS Results suggest 40Hz tACS should be further investigated in larger placebo-controlled trials as a safe, non-invasive countermeasure to increase fast brain oscillatory activity and increase perfusion in critical brain areas in AD patients. TRIAL REGISTRATION Studies were registered separately on ClinicalTrials.gov ( NCT03290326 , registered on September 21, 2017; NCT03412604 , registered on January 26, 2018).
Collapse
Affiliation(s)
- Giulia Sprugnoli
- Berenson-Allen Center for Non-Invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Department of Radiology, University Hospital of Parma, Parma, Italy
| | - Fanny Munsch
- Department of Radiology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Davide Cappon
- Berenson-Allen Center for Non-Invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Rachel Paciorek
- Berenson-Allen Center for Non-Invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Joanna Macone
- Berenson-Allen Center for Non-Invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Ann Connor
- Berenson-Allen Center for Non-Invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Georges El Fakhri
- Center for Advanced Medical Imaging Sciences, Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | - Kevin Donohoe
- Center for Advanced Medical Imaging Sciences, Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Mouhsin M Shafi
- Berenson-Allen Center for Non-Invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Daniel Press
- Berenson-Allen Center for Non-Invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - David C Alsop
- Department of Radiology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Alvaro Pascual Leone
- Hinda and Arthur Marcus Institute for Aging Research and Deanna and Sidney Wolk Center for Memory Health, Hebrew Senior Life, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- Guttmann Brain Health Institute, Barcelona, Spain
| | - Emiliano Santarnecchi
- Precision Neuroscience & Neuromodulation Program, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
39
|
Biel AL, Sterner E, Röll L, Sauseng P. Modulating verbal working memory with fronto-parietal transcranial electric stimulation at theta frequency: Does it work? Eur J Neurosci 2021; 55:405-425. [PMID: 34902182 DOI: 10.1111/ejn.15563] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 11/22/2021] [Accepted: 11/29/2021] [Indexed: 11/29/2022]
Abstract
Oscillatory theta activity in a fronto-parietal network has been associated with working memory (WM) processes and may be directly related to WM performance. In their seminal study, Polanía et al. (2012) (de-)coupled a fronto-parietal theta-network by applying transcranial alternating current stimulation (tACS), and showed that anti-phase tACS led to slower and in-phase tACS to faster response times in a verbal WM task compared to placebo stimulation. In the literature, this 'synchronization-desynchronization' effect has only been partly replicated, and electric field modelling suggests that it might not be the fronto-parietal network that is primarily stimulated during in-phase tACS with a shared return electrode. This provides one possible reason for inconsistency in the literature. In this study, we aimed to reproduce the findings reported by Polanía et al. (2012). We also aimed to investigate whether in-phase theta tACS with multiple close-by return electrodes for focal stimulation of the frontal and the parietal cortex will have at least as much of a facilitatory effect as the in-phase stimulation as indicated by Polania et al. (2012). In a single-trial distributional analysis, we explored whether mean, variation and right-skewness of the response time distribution are affected. Against our hypothesis, we found no 'synchronization-desynchronization' effect by fronto-parietal theta tACS on response times using the same delayed letter discrimination task and stimulation parameters in two experiments, both between-subjects and within-subjects. However, we could show that in a more demanding 3-back task, fronto-parietal in-phase and in-phase focal theta tACS substantially improved task performance compared to placebo stimulation.
Collapse
Affiliation(s)
- Anna Lena Biel
- Department of Psychology, Ludwig-Maximilians-Universität München, Munich, Germany.,Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universität München, Planegg, Martinsried, Germany
| | - Elisabeth Sterner
- Department of Psychology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Lukas Röll
- Department of Psychology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Paul Sauseng
- Department of Psychology, Ludwig-Maximilians-Universität München, Munich, Germany.,Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universität München, Planegg, Martinsried, Germany
| |
Collapse
|
40
|
Arif Y, Spooner RK, Heinrichs-Graham E, Wilson TW. High-definition transcranial direct current stimulation modulates performance and alpha/beta parieto-frontal connectivity serving fluid intelligence. J Physiol 2021; 599:5451-5463. [PMID: 34783045 PMCID: PMC9250752 DOI: 10.1113/jp282387] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/08/2021] [Indexed: 11/08/2022] Open
Abstract
Fluid intelligence (Gƒ) includes logical reasoning abilities and is an essential component of normative cognition. Despite the broad consensus that parieto-prefrontal connectivity is critical for Gƒ (e.g. the parieto-frontal integration theory of intelligence, P-FIT), the dynamics of such functional connectivity during logical reasoning remains poorly understood. Further, given the known importance of these brain regions for Gƒ, numerous studies have targeted one or both of these areas with non-invasive stimulation with the goal of improving Gƒ, but to date there remains little consensus on the overall stimulation-related effects. To examine this, we applied high-definition direct current anodal stimulation to the left and right dorsolateral prefrontal cortex (DLPFC) of 24 healthy adults for 20 min in three separate sessions (sham, left, and right active). Following stimulation, participants completed a logical reasoning task during magnetoencephalography (MEG). Significant neural responses at the sensor-level were imaged using a beamformer, and peak task-induced activity was subjected to dynamic functional connectivity analyses to evaluate the impact of distinct stimulation montages on network activity. We found that participants responded faster following right DLPFC stimulation vs. sham. Moreover, our neural findings followed a similar trajectory of effects such that left parieto-frontal connectivity decreased following right and left DLPFC stimulation compared to sham, with connectivity following right stimulation being significantly correlated with the faster reaction times. Importantly, our findings are consistent with P-FIT, as well as the neural efficiency hypothesis (NEH) of intelligence. In sum, this study provides evidence for beneficial effects of right DLPFC stimulation on logical reasoning. KEY POINTS: Logical reasoning is an indispensable component of fluid intelligence and involves multispectral oscillatory activity in parietal and frontal regions. Parieto-frontal integration is well characterized in logical reasoning; however, its direct neural quantification and neuromodulation by brain stimulation remain poorly understood. High-definition transcranial direct current stimulation of dorsolateral prefrontal cortex (DLPFC) had modulatory effects on task performance and neural interactions serving logical reasoning, with right stimulation showing beneficial effects. Right DLPFC stimulation led to a decrease in the response time (i.e. better task performance) and left parieto-frontal connectivity with a marginal positive association between behavioural and neural metrics. Other modes of targeted stimulation of DLPFC (e.g. frequency-specific) can be employed in future studies.
Collapse
Affiliation(s)
- Yasra Arif
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA
- Interdisciplinary Graduate Program in Biomedical Sciences (Neuroscience), University of Nebraska Medical Center, Omaha, NE, USA
| | - Rachel K. Spooner
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA
- Interdisciplinary Graduate Program in Biomedical Sciences (Neuroscience), University of Nebraska Medical Center, Omaha, NE, USA
| | | | - Tony W. Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA
| |
Collapse
|
41
|
Chan D, Suk HJ, Jackson B, Milman NP, Stark D, Beach SD, Tsai LH. Induction of specific brain oscillations may restore neural circuits and be used for the treatment of Alzheimer's disease. J Intern Med 2021; 290:993-1009. [PMID: 34156133 DOI: 10.1111/joim.13329] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/24/2021] [Accepted: 05/17/2021] [Indexed: 01/08/2023]
Abstract
Brain oscillations underlie the function of our brains, dictating how we both think and react to the world around us. The synchronous activity of neurons generates these rhythms, which allow different parts of the brain to communicate and orchestrate responses to internal and external stimuli. Perturbations of cognitive rhythms and the underlying oscillator neurons that synchronize different parts of the brain contribute to the pathophysiology of diseases including Alzheimer's disease, (AD), Parkinson's disease (PD), epilepsy and other diseases of rhythm that have been studied extensively by Gyorgy Buzsaki. In this review, we discuss how neurologists manipulate brain oscillations with neuromodulation to treat diseases and how this can be leveraged to improve cognition and pathology underlying AD. While multiple modalities of neuromodulation are currently clinically indicated for some disorders, nothing is yet approved for improving memory in AD. Recent investigations into novel methods of neuromodulation show potential for improving cognition in memory disorders. Here, we demonstrate that neuronal stimulation using audiovisual sensory stimulation that generated 40-HZ gamma waves reduced AD-specific pathology and improved performance in behavioural tests in mouse models of AD, making this new mode of neuromodulation a promising new avenue for developing a new therapeutic intervention for the treatment of dementia.
Collapse
Affiliation(s)
- D Chan
- From the, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - H-J Suk
- From the, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - B Jackson
- From the, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.,McGovern Institute, Massachusetts Institute of Technology, Cambridge, MA, USA.,Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - N P Milman
- From the, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Behavioral Neuroscience, Northeastern University, Boston, MA, USA
| | - D Stark
- From the, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - S D Beach
- From the, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.,Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA.,Division of Medical Sciences, Harvard Medical School, Boston, MA, USA
| | - L-H Tsai
- From the, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.,Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
42
|
Recent developments, current challenges, and future directions in electrophysiological approaches to studying intelligence. INTELLIGENCE 2021. [DOI: 10.1016/j.intell.2021.101569] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
43
|
Kim J, Kim H, Jeong H, Roh D, Kim DH. tACS as a promising therapeutic option for improving cognitive function in mild cognitive impairment: A direct comparison between tACS and tDCS. J Psychiatr Res 2021; 141:248-256. [PMID: 34256276 DOI: 10.1016/j.jpsychires.2021.07.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 06/17/2021] [Accepted: 07/05/2021] [Indexed: 02/07/2023]
Abstract
Neuromodulation has gained attention as a potential non-pharmacological intervention for mild cognitive impairment (MCI). However, no studies have directly compared the effects of transcranial alternating current stimulation (tACS) with transcranial direct current stimulation (tDCS) on MCI patients. We aimed to identify the more promising and efficient therapeutic option between tACS and tDCS for cognitive enhancement in MCI patients. We compared the effects of gamma-tACS with tDCS on cognitive function and electroencephalography (EEG) in MCI patients. In this sham-controlled, double-blinded, repeated-measures study with the order of the stimulation counterbalanced across patients (n = 20), both gamma-tACS (40 H z) and tDCS were administered at the same intensity (2 mA) in the dorsolateral prefrontal cortex for 30 min. Cognitive tests (Stroop and Trail-Making-Test [TMT]) and EEG were performed before and after single-session stimulation. Gamma-tACS improved the Stroop-color in comparison with tDCS (p = .044) and sham (p = .010) and enhanced the TMT-B in comparison with sham (p = .021). However, tDCS was not significantly different from sham in changes of any cognitive test scores. In EEG analysis, gamma-tACS increased beta activity in comparison with sham and tDCS, whereas tDCS decreased delta and theta activity in comparison with sham. Gamma-tACS also increased beta 2 source activity in the anterior cingulate, compared to sham. The cognitive benefits of tACS in MCI patients appeared superior to those of tDCS. tACS facilitated cognitive function by increasing beta activity, while tDCS delayed the progression of MCI symptoms by decreasing slow-frequency activity. Thus, tACS could be used as a new therapeutic option for MCI.
Collapse
Affiliation(s)
- Jiheon Kim
- Department of Psychiatry, Chuncheon Sacred Heart Hospital, Chuncheon, Republic of Korea; Mind-Neuromodulation Laboratory, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Hansol Kim
- Mind-Neuromodulation Laboratory, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Hyewon Jeong
- Mind-Neuromodulation Laboratory, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Daeyoung Roh
- Department of Psychiatry, Chuncheon Sacred Heart Hospital, Chuncheon, Republic of Korea; Mind-Neuromodulation Laboratory, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Do Hoon Kim
- Department of Psychiatry, Chuncheon Sacred Heart Hospital, Chuncheon, Republic of Korea; Mind-Neuromodulation Laboratory, College of Medicine, Hallym University, Chuncheon, Republic of Korea.
| |
Collapse
|
44
|
Sprugnoli G, Rossi S, Rotenberg A, Pascual-Leone A, El-Fakhri G, Golby AJ, Santarnecchi E. Personalised, image-guided, noninvasive brain stimulation in gliomas: Rationale, challenges and opportunities. EBioMedicine 2021; 70:103514. [PMID: 34391090 PMCID: PMC8365310 DOI: 10.1016/j.ebiom.2021.103514] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/12/2021] [Accepted: 07/19/2021] [Indexed: 11/22/2022] Open
Abstract
Malignant brain tumours are among the most aggressive human cancers, and despite intensive efforts made over the last decades, patients' survival has scarcely improved. Recently, high-grade gliomas (HGG) have been found to be electrically integrated with healthy brain tissue, a communication that facilitates tumour mitosis and invasion. This link to neuronal activity has provided new insights into HGG pathophysiology and opened prospects for therapeutic interventions based on electrical modulation of neural and synaptic activity in the proximity of tumour cells, which could potentially slow tumour growth. Noninvasive brain stimulation (NiBS), a group of techniques used in research and clinical settings to safely modulate brain activity and plasticity via electromagnetic or electrical stimulation, represents an appealing class of interventions to characterise and target the electrical properties of tumour-neuron interactions. Beyond neuronal activity, NiBS may also modulate function of a range of substrates and dynamics that locally interacts with HGG (e.g., vascular architecture, perfusion and blood-brain barrier permeability). Here we discuss emerging applications of NiBS in patients with brain tumours, covering potential mechanisms of action at both cellular, regional, network and whole-brain levels, also offering a conceptual roadmap for future research to prolong survival or promote wellbeing via personalised NiBS interventions.
Collapse
Affiliation(s)
- Giulia Sprugnoli
- Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Radiology Unit, Department of Medicine and Surgery, University of Parma, Parma, Italy; Image Guided Neurosurgery laboratory, Department of Neurosurgery and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Brain investigation and Neuromodulation Laboratory (Si-BIN Lab), Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology Unit, University of Siena, Siena, Italy
| | - Simone Rossi
- Brain investigation and Neuromodulation Laboratory (Si-BIN Lab), Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology Unit, University of Siena, Siena, Italy
| | - Alexander Rotenberg
- Department of Neurology and Division of Epilepsy and Clinical Neurophysiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Alvaro Pascual-Leone
- Hinda and Arthur Marcus Institute for Aging Research and Center for Memory Health, Hebrew Senior Life, Boston, MA, USA; Guttmann Brain Health Institute, Institut Guttmann, Universitat Autonoma, Barcelona, Spain
| | - Georges El-Fakhri
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Alexandra J Golby
- Image Guided Neurosurgery laboratory, Department of Neurosurgery and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Emiliano Santarnecchi
- Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
45
|
Thompson L, Khuc J, Saccani MS, Zokaei N, Cappelletti M. Gamma oscillations modulate working memory recall precision. Exp Brain Res 2021; 239:2711-2724. [PMID: 34223958 PMCID: PMC8448714 DOI: 10.1007/s00221-021-06051-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 01/25/2021] [Indexed: 12/13/2022]
Abstract
Working memory (WM)—the ability to keep information in mind for short periods of time—is linked to attention and inhibitory abilities, i.e., the capacity to ignore task-irrelevant information. These abilities have been associated with brain oscillations, especially parietal gamma and alpha bands, but it is yet unknown whether these oscillations also modulate attention and inhibitory abilities. To test this, we compared parietal gamma-transcranial alternating current stimulation (tACS) to alpha-tACS and to a non-stimulation condition (Sham) in 51 young participants. Stimulation was coupled with a WM task probing memory-based attention and inhibitory abilities by means of probabilistic retrospective cues, including informative (valid), uninformative (invalid) and neutral. Our results show that relative to alpha and sham stimulation, parietal gamma-tACS significantly increased working memory recall precision. Additional post hoc analyses also revealed strong individual variability before and following stimulation; low-baseline performers showed no significant changes in performance following both gamma and alpha-tACS relative to sham. In contrast, in high-baseline performers gamma- (but not alpha) tACS selectively and significantly improved misbinding-feature errors as well as memory precision, particularly in uninformative (invalid) cues which rely more strongly on attentional abilities. We concluded that parietal gamma oscillations, therefore, modulate working memory recall processes, although baseline performance may further influence the effect of stimulation.
Collapse
Affiliation(s)
- Lyall Thompson
- Department of Psychology, Goldsmiths, University of London, Lewisham Way, London, SE14 6NW, UK
| | - Janine Khuc
- Department of Psychology, Goldsmiths, University of London, Lewisham Way, London, SE14 6NW, UK
| | - Maria Silvia Saccani
- Department of Psychology, Goldsmiths, University of London, Lewisham Way, London, SE14 6NW, UK
| | - Nahid Zokaei
- Department of Experimental Psychology, South Parks Road, Oxford, OX1 3UD, UK.,Department of Psychiatry, Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, OX3 7JX, UK
| | - Marinella Cappelletti
- Department of Psychology, Goldsmiths, University of London, Lewisham Way, London, SE14 6NW, UK. .,Institute of Cognitive Neuroscience, University College London, 17 Queen Square, London, WC1N 3AR, UK.
| |
Collapse
|
46
|
Holzmann R, Koppehele-Gossel J, Voss U, Klimke A. Investigating Nuisance Effects Induced in EEG During tACS Application. Front Hum Neurosci 2021; 15:637080. [PMID: 34122026 PMCID: PMC8193977 DOI: 10.3389/fnhum.2021.637080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/17/2021] [Indexed: 11/13/2022] Open
Abstract
Transcranial alternating-current stimulation (tACS) in the frequency range of 1-100 Hz has come to be used routinely in electroencephalogram (EEG) studies of brain function through entrainment of neuronal oscillations. It turned out, however, to be highly non-trivial to remove the strong stimulation signal, including its harmonic and non-harmonic distortions, as well as various induced higher-order artifacts from the EEG data recorded during the stimulation. In this paper, we discuss some of the problems encountered and present methodological approaches aimed at overcoming them. To illustrate the mechanisms of artifact induction and the proposed removal strategies, we use data obtained with the help of a schematic demonstrator setup as well as human-subject data.
Collapse
Affiliation(s)
- Romain Holzmann
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
| | | | - Ursula Voss
- Vitos Hochtaunuskliniken, Friederichsdorf, Germany
- Department of Psychology, J. W. Goethe-Universität, Frankfurt am Main, Germany
| | - Ansgar Klimke
- Vitos Hochtaunuskliniken, Friederichsdorf, Germany
- Department of Psychiatry, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
47
|
Bréchet L, Yu W, Biagi MC, Ruffini G, Gagnon M, Manor B, Pascual-Leone A. Patient-Tailored, Home-Based Non-invasive Brain Stimulation for Memory Deficits in Dementia Due to Alzheimer's Disease. Front Neurol 2021; 12:598135. [PMID: 34093384 PMCID: PMC8173168 DOI: 10.3389/fneur.2021.598135] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 04/20/2021] [Indexed: 12/27/2022] Open
Abstract
Alzheimer's disease (AD) is an irreversible, progressive brain disorder that can cause dementia (Alzheimer's disease-related dementia, ADRD) with growing cognitive disability and vast physical, emotional, and financial pressures not only on the patients but also on caregivers and families. Loss of memory is an early and very debilitating symptom in AD patients and a relevant predictor of disease progression. Data from rodents, as well as human studies, suggest that dysregulation of specific brain oscillations, particularly in the hippocampus, is linked to memory deficits. Animal and human studies demonstrate that non-invasive brain stimulation (NIBS) in the form of transcranial alternating current stimulation (tACS) allows to reliably and safely interact with ongoing oscillatory patterns in the brain in specific frequencies. We developed a protocol for patient-tailored home-based tACS with an instruction program to train a caregiver to deliver daily sessions of tACS that can be remotely monitored by the study team. We provide a discussion of the neurobiological rationale to modulate oscillations and a description of the study protocol. Data of two patients with ADRD who have completed this protocol illustrate the feasibility of the approach and provide pilot evidence on the safety of the remotely-monitored, caregiver-administered, home-based tACS intervention. These findings encourage the pursuit of a large, adequately powered, randomized controlled trial of home-based tACS for memory dysfunction in ADRD.
Collapse
Affiliation(s)
- Lucie Bréchet
- Hinda and Arthur Marcus Institute for Aging Research and Center for Memory Health, Hebrew SeniorLife, Boston, MA, United States
- Department of Neurology, Harvard Medical School, Boston, MA, United States
| | - Wanting Yu
- Hinda and Arthur Marcus Institute for Aging Research and Center for Memory Health, Hebrew SeniorLife, Boston, MA, United States
| | | | - Giulio Ruffini
- Neuroelectrics Barcelona, Barcelona, Spain
- Neuroelectrics Corp., Cambridge, MA, United States
| | - Margaret Gagnon
- Hinda and Arthur Marcus Institute for Aging Research and Center for Memory Health, Hebrew SeniorLife, Boston, MA, United States
| | - Brad Manor
- Hinda and Arthur Marcus Institute for Aging Research and Center for Memory Health, Hebrew SeniorLife, Boston, MA, United States
- Department of Medicine, Harvard Medical School, Boston, MA, United States
| | - Alvaro Pascual-Leone
- Hinda and Arthur Marcus Institute for Aging Research and Center for Memory Health, Hebrew SeniorLife, Boston, MA, United States
- Department of Neurology, Harvard Medical School, Boston, MA, United States
- Guttmann Brain Health Institute, Institut Guttman de Neurorehabilitació, Barcelona, Spain
| |
Collapse
|
48
|
Guidali G, Roncoroni C, Bolognini N. Modulating Frontal Networks' Timing-Dependent-Like Plasticity With Paired Associative Stimulation Protocols: Recent Advances and Future Perspectives. Front Hum Neurosci 2021; 15:658723. [PMID: 33967723 PMCID: PMC8100231 DOI: 10.3389/fnhum.2021.658723] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/30/2021] [Indexed: 12/12/2022] Open
Abstract
Starting from the early 2000s, paired associative stimulation (PAS) protocols have been used in humans to study brain connectivity in motor and sensory networks by exploiting the intrinsic properties of timing-dependent cortical plasticity. In the last 10 years, PAS have also been developed to investigate the plastic properties of complex cerebral systems, such as the frontal ones, with promising results. In the present work, we review the most recent advances of this technique, focusing on protocols targeting frontal cortices to investigate connectivity and its plastic properties, subtending high-order cognitive functions like memory, decision-making, attentional, or emotional processing. Overall, current evidence reveals that PAS can be effectively used to assess, enhance or depress physiological connectivity within frontal networks in a timing-dependent way, in turn modulating cognitive processing in healthy and pathological conditions.
Collapse
Affiliation(s)
- Giacomo Guidali
- Neurophysiology Lab, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Camilla Roncoroni
- Department of Psychology, NeuroMI - Milan Center for Neuroscience, University of Milano-Bicocca, Milan, Italy
| | - Nadia Bolognini
- Department of Psychology, NeuroMI - Milan Center for Neuroscience, University of Milano-Bicocca, Milan, Italy.,Laboratory of Neuropsychology, IRCCS Istituto Auxologico Italiano, Milan, Italy
| |
Collapse
|
49
|
Enhancement of semantic integration reasoning by tRNS. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2021; 21:736-746. [PMID: 33796985 DOI: 10.3758/s13415-021-00885-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/23/2021] [Indexed: 11/08/2022]
Abstract
The right hemisphere is involved with the integrative processes necessary to achieve global coherence during reasoning and discourse processing. Specifically, the right temporal lobe has been proven to facilitate the processing of distant associate relationships, such as generating novel ideas. Previous studies showed a specific swing of alpha and gamma oscillatory activity over the right parieto-occipital lobe and the right anterior temporal lobe respectively, when people solve semantic problems with a specific strategy, i.e., insight problem-solving. In this study, we investigated the specificity of the right parietal and temporal lobes for semantic integration using transcranial Random Noise Stimulation (tRNS). We administered a set of pure semantics (i.e., Compound Remote Associates [CRA]) and visuo-semantic problems (i.e., Rebus Puzzles) to a sample of 31 healthy volunteers. Behavioral results showed that tRNS stimulation over the right temporal lobe enhances CRA accuracy (+12%), while stimulation on the right parietal lobe causes a decrease of response time on the same task (-2,100 ms). No effects were detected for Rebus Puzzles. Our findings corroborate the involvement of the right temporal and parietal lobes when solving purely semantic problems but not when they involve visuo-semantic material, also providing causal evidence for their postulated different roles in the semantic integration process and promoting tRNS as a candidate tool to boost verbal reasoning in humans.
Collapse
|
50
|
Santarnecchi E, Momi D, Mencarelli L, Plessow F, Saxena S, Rossi S, Rossi A, Mathan S, Pascual-Leone A. Overlapping and dissociable brain activations for fluid intelligence and executive functions. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2021; 21:327-346. [PMID: 33900569 PMCID: PMC9094637 DOI: 10.3758/s13415-021-00870-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/22/2021] [Indexed: 01/03/2023]
Abstract
Cognitive enhancement interventions aimed at boosting human fluid intelligence (gf) have targeted executive functions (EFs), such as updating, inhibition, and switching, in the context of transfer-inducing cognitive training. However, even though the link between EFs and gf has been demonstrated at the psychometric level, their neurofunctional overlap has not been quantitatively investigated. Identifying whether and how EFs and gf might share neural activation patterns could provide important insights into the overall hierarchical organization of human higher-order cognition, as well as suggest specific targets for interventions aimed at maximizing cognitive transfer. We present the results of a quantitative meta-analysis of the available fMRI and PET literature on EFs and gf in humans, showing the similarity between gf and (i) the overall global EF network, as well as (ii) specific maps for updating, switching, and inhibition. Results highlight a higher degree of similarity between gf and updating (80% overlap) compared with gf and inhibition (34%), and gf and switching (17%). Moreover, three brain regions activated for both gf and each of the three EFs also were identified, located in the left middle frontal gyrus, left inferior parietal lobule, and anterior cingulate cortex. Finally, resting-state functional connectivity analysis on two independent fMRI datasets showed the preferential behavioural correlation and anatomical overlap between updating and gf. These findings confirm a close link between gf and EFs, with implications for brain stimulation and cognitive training interventions.
Collapse
Affiliation(s)
- Emiliano Santarnecchi
- Berenson-Allen Center for Non-Invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Department of Neurology, Unit of Cognitive Neurology, Harvard Medical School, Boston, MA, USA.
| | - Davide Momi
- Berenson-Allen Center for Non-Invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Department of Neurology, Unit of Cognitive Neurology, Harvard Medical School, Boston, MA, USA
- Siena Brain Investigation & Neuromodulation Lab (Si-BIN Lab), Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology Section, University of Siena, Siena, Italy
| | - Lucia Mencarelli
- Siena Brain Investigation & Neuromodulation Lab (Si-BIN Lab), Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology Section, University of Siena, Siena, Italy
| | - Franziska Plessow
- Berenson-Allen Center for Non-Invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Department of Neurology, Unit of Cognitive Neurology, Harvard Medical School, Boston, MA, USA
- Neuroendocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Sadhvi Saxena
- Berenson-Allen Center for Non-Invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Department of Neurology, Unit of Cognitive Neurology, Harvard Medical School, Boston, MA, USA
| | - Simone Rossi
- Siena Brain Investigation & Neuromodulation Lab (Si-BIN Lab), Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology Section, University of Siena, Siena, Italy
- Siena Robotics and Systems Lab (SIRS-Lab), Engineering and Mathematics Department, University of Siena, Siena, Italy
- Human Physiology Section, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Alessandro Rossi
- Siena Brain Investigation & Neuromodulation Lab (Si-BIN Lab), Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology Section, University of Siena, Siena, Italy
- Medicine, Surgery and Neuroscience Department, University of Siena School of Medicine, Siena, Italy
| | | | - Alvaro Pascual-Leone
- Berenson-Allen Center for Non-Invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Department of Neurology, Unit of Cognitive Neurology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|