1
|
Schlegel P, Yin Y, Bates AS, Dorkenwald S, Eichler K, Brooks P, Han DS, Gkantia M, Dos Santos M, Munnelly EJ, Badalamente G, Serratosa Capdevila L, Sane VA, Fragniere AMC, Kiassat L, Pleijzier MW, Stürner T, Tamimi IFM, Dunne CR, Salgarella I, Javier A, Fang S, Perlman E, Kazimiers T, Jagannathan SR, Matsliah A, Sterling AR, Yu SC, McKellar CE, Costa M, Seung HS, Murthy M, Hartenstein V, Bock DD, Jefferis GSXE. Whole-brain annotation and multi-connectome cell typing of Drosophila. Nature 2024; 634:139-152. [PMID: 39358521 PMCID: PMC11446831 DOI: 10.1038/s41586-024-07686-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 06/06/2024] [Indexed: 10/04/2024]
Abstract
The fruit fly Drosophila melanogaster has emerged as a key model organism in neuroscience, in large part due to the concentration of collaboratively generated molecular, genetic and digital resources available for it. Here we complement the approximately 140,000 neuron FlyWire whole-brain connectome1 with a systematic and hierarchical annotation of neuronal classes, cell types and developmental units (hemilineages). Of 8,453 annotated cell types, 3,643 were previously proposed in the partial hemibrain connectome2, and 4,581 are new types, mostly from brain regions outside the hemibrain subvolume. Although nearly all hemibrain neurons could be matched morphologically in FlyWire, about one-third of cell types proposed for the hemibrain could not be reliably reidentified. We therefore propose a new definition of cell type as groups of cells that are each quantitatively more similar to cells in a different brain than to any other cell in the same brain, and we validate this definition through joint analysis of FlyWire and hemibrain connectomes. Further analysis defined simple heuristics for the reliability of connections between brains, revealed broad stereotypy and occasional variability in neuron count and connectivity, and provided evidence for functional homeostasis in the mushroom body through adjustments of the absolute amount of excitatory input while maintaining the excitation/inhibition ratio. Our work defines a consensus cell type atlas for the fly brain and provides both an intellectual framework and open-source toolchain for brain-scale comparative connectomics.
Collapse
Affiliation(s)
- Philipp Schlegel
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Yijie Yin
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Alexander S Bates
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
- Department of Neurobiology and Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford, UK
| | - Sven Dorkenwald
- Computer Science Department, Princeton University, Princeton, NJ, USA
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Katharina Eichler
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Paul Brooks
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Daniel S Han
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
- School of Mathematics and Statistics, University of New South Wales, Sydney, New South Wales, Australia
| | - Marina Gkantia
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Marcia Dos Santos
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Eva J Munnelly
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Griffin Badalamente
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | | | - Varun A Sane
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Alexandra M C Fragniere
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Ladann Kiassat
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Markus W Pleijzier
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Tomke Stürner
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Imaan F M Tamimi
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Christopher R Dunne
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Irene Salgarella
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Alexandre Javier
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Siqi Fang
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | | | | | - Sridhar R Jagannathan
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Arie Matsliah
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Amy R Sterling
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Eyewire, Boston, MA, USA
| | - Szi-Chieh Yu
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Claire E McKellar
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Marta Costa
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - H Sebastian Seung
- Computer Science Department, Princeton University, Princeton, NJ, USA
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Mala Murthy
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Volker Hartenstein
- Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
| | - Davi D Bock
- Department of Neurological Sciences, Larner College of Medicine, University of Vermont, Burlington, VT, USA.
| | - Gregory S X E Jefferis
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK.
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
2
|
Schlegel P, Yin Y, Bates AS, Dorkenwald S, Eichler K, Brooks P, Han DS, Gkantia M, Dos Santos M, Munnelly EJ, Badalamente G, Capdevila LS, Sane VA, Pleijzier MW, Tamimi IFM, Dunne CR, Salgarella I, Javier A, Fang S, Perlman E, Kazimiers T, Jagannathan SR, Matsliah A, Sterling AR, Yu SC, McKellar CE, Costa M, Seung HS, Murthy M, Hartenstein V, Bock DD, Jefferis GSXE. Whole-brain annotation and multi-connectome cell typing quantifies circuit stereotypy in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.27.546055. [PMID: 37425808 PMCID: PMC10327018 DOI: 10.1101/2023.06.27.546055] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
The fruit fly Drosophila melanogaster combines surprisingly sophisticated behaviour with a highly tractable nervous system. A large part of the fly's success as a model organism in modern neuroscience stems from the concentration of collaboratively generated molecular genetic and digital resources. As presented in our FlyWire companion paper 1 , this now includes the first full brain connectome of an adult animal. Here we report the systematic and hierarchical annotation of this ~130,000-neuron connectome including neuronal classes, cell types and developmental units (hemilineages). This enables any researcher to navigate this huge dataset and find systems and neurons of interest, linked to the literature through the Virtual Fly Brain database 2 . Crucially, this resource includes 4,552 cell types. 3,094 are rigorous consensus validations of cell types previously proposed in the hemibrain connectome 3 . In addition, we propose 1,458 new cell types, arising mostly from the fact that the FlyWire connectome spans the whole brain, whereas the hemibrain derives from a subvolume. Comparison of FlyWire and the hemibrain showed that cell type counts and strong connections were largely stable, but connection weights were surprisingly variable within and across animals. Further analysis defined simple heuristics for connectome interpretation: connections stronger than 10 unitary synapses or providing >1% of the input to a target cell are highly conserved. Some cell types showed increased variability across connectomes: the most common cell type in the mushroom body, required for learning and memory, is almost twice as numerous in FlyWire as the hemibrain. We find evidence for functional homeostasis through adjustments of the absolute amount of excitatory input while maintaining the excitation-inhibition ratio. Finally, and surprisingly, about one third of the cell types proposed in the hemibrain connectome could not yet be reliably identified in the FlyWire connectome. We therefore suggest that cell types should be defined to be robust to inter-individual variation, namely as groups of cells that are quantitatively more similar to cells in a different brain than to any other cell in the same brain. Joint analysis of the FlyWire and hemibrain connectomes demonstrates the viability and utility of this new definition. Our work defines a consensus cell type atlas for the fly brain and provides both an intellectual framework and open source toolchain for brain-scale comparative connectomics.
Collapse
|
3
|
Hamid A, Gutierrez A, Munroe J, Syed MH. The Drivers of Diversity: Integrated genetic and hormonal cues regulate neural diversity. Semin Cell Dev Biol 2023; 142:23-35. [PMID: 35915026 DOI: 10.1016/j.semcdb.2022.07.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/06/2022] [Accepted: 07/17/2022] [Indexed: 11/17/2022]
Abstract
Proper functioning of the nervous system relies not only on the generation of a vast repertoire of distinct neural cell types but also on the precise neural circuitry within them. How the generation of highly diverse neural populations is regulated during development remains a topic of interest. Landmark studies in Drosophila have identified the genetic and temporal cues regulating neural diversity and thus have provided valuable insights into our understanding of temporal patterning of the central nervous system. The development of the Drosophila central complex, which is mostly derived from type II neural stem cell (NSC) lineages, showcases how a small pool of NSCs can give rise to vast and distinct progeny. Similar to the human outer subventricular zone (OSVZ) neural progenitors, type II NSCs generate intermediate neural progenitors (INPs) to expand and diversify lineages that populate higher brain centers. Each type II NSC has a distinct spatial identity and timely regulated expression of many transcription factors and mRNA binding proteins. Additionally, INPs derived from them show differential expression of genes depending on their birth order. Together type II NSCs and INPs display a combinatorial temporal patterning that expands neural diversity of the central brain lineages. We cover advances in current understanding of type II NSC temporal patterning and discuss similarities and differences in temporal patterning mechanisms of various NSCs with a focus on how cell-intrinsic and extrinsic hormonal cues regulate temporal transitions in NSCs during larval development. Cell extrinsic ligands activate conserved signaling pathways and extrinsic hormonal cues act as a temporal switch that regulate temporal progression of the NSCs. We conclude by elaborating on how a progenitor's temporal code regulates the fate specification and identity of distinct neural types. At the end, we also discuss open questions in linking developmental cues to neural identity, circuits, and underlying behaviors in the adult fly.
Collapse
Affiliation(s)
- Aisha Hamid
- Department of Biology, University of New Mexico, Albuquerque, NM 87113, USA
| | - Andrew Gutierrez
- Department of Biology, University of New Mexico, Albuquerque, NM 87113, USA
| | - Jordan Munroe
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| | | |
Collapse
|
4
|
Santarelli S, Londero C, Soldano A, Candelaresi C, Todeschini L, Vernizzi L, Bellosta P. Drosophila melanogaster as a model to study autophagy in neurodegenerative diseases induced by proteinopathies. Front Neurosci 2023; 17:1082047. [PMID: 37274187 PMCID: PMC10232775 DOI: 10.3389/fnins.2023.1082047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 04/14/2023] [Indexed: 06/06/2023] Open
Abstract
Proteinopathies are a large group of neurodegenerative diseases caused by both genetic and sporadic mutations in particular genes which can lead to alterations of the protein structure and to the formation of aggregates, especially toxic for neurons. Autophagy is a key mechanism for clearing those aggregates and its function has been strongly associated with the ubiquitin-proteasome system (UPS), hence mutations in both pathways have been associated with the onset of neurodegenerative diseases, particularly those induced by protein misfolding and accumulation of aggregates. Many crucial discoveries regarding the molecular and cellular events underlying the role of autophagy in these diseases have come from studies using Drosophila models. Indeed, despite the physiological and morphological differences between the fly and the human brain, most of the biochemical and molecular aspects regulating protein homeostasis, including autophagy, are conserved between the two species.In this review, we will provide an overview of the most common neurodegenerative proteinopathies, which include PolyQ diseases (Huntington's disease, Spinocerebellar ataxia 1, 2, and 3), Amyotrophic Lateral Sclerosis (C9orf72, SOD1, TDP-43, FUS), Alzheimer's disease (APP, Tau) Parkinson's disease (a-syn, parkin and PINK1, LRRK2) and prion diseases, highlighting the studies using Drosophila that have contributed to understanding the conserved mechanisms and elucidating the role of autophagy in these diseases.
Collapse
Affiliation(s)
- Stefania Santarelli
- Department of Cellular, Computational and Integrative Biology (CiBiO), University of Trento, Trento, Italy
| | - Chiara Londero
- Department of Cellular, Computational and Integrative Biology (CiBiO), University of Trento, Trento, Italy
| | - Alessia Soldano
- Department of Cellular, Computational and Integrative Biology (CiBiO), University of Trento, Trento, Italy
- Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| | - Carlotta Candelaresi
- Department of Cellular, Computational and Integrative Biology (CiBiO), University of Trento, Trento, Italy
| | - Leonardo Todeschini
- Department of Cellular, Computational and Integrative Biology (CiBiO), University of Trento, Trento, Italy
| | - Luisa Vernizzi
- Institute of Molecular Life Sciences, University of Zurich, Zürich, Switzerland
| | - Paola Bellosta
- Department of Cellular, Computational and Integrative Biology (CiBiO), University of Trento, Trento, Italy
- Department of Medicine, NYU Langone Medical Center, New York, NY, United States
| |
Collapse
|
5
|
Truman JW, Riddiford LM. Drosophila postembryonic nervous system development: a model for the endocrine control of development. Genetics 2023; 223:iyac184. [PMID: 36645270 PMCID: PMC9991519 DOI: 10.1093/genetics/iyac184] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/13/2022] [Indexed: 01/17/2023] Open
Abstract
During postembryonic life, hormones, including ecdysteroids, juvenile hormones, insulin-like peptides, and activin/TGFβ ligands act to transform the larval nervous system into an adult version, which is a fine-grained mosaic of recycled larval neurons and adult-specific neurons. Hormones provide both instructional signals that make cells competent to undergo developmental change and timing cues to evoke these changes across the nervous system. While touching on all the above hormones, our emphasis is on the ecdysteroids, ecdysone and 20-hydroxyecdysone (20E). These are the prime movers of insect molting and metamorphosis and are involved in all phases of nervous system development, including neurogenesis, pruning, arbor outgrowth, and cell death. Ecdysteroids appear as a series of steroid peaks that coordinate the larval molts and the different phases of metamorphosis. Each peak directs a stereotyped cascade of transcription factor expression. The cascade components then direct temporal programs of effector gene expression, but the latter vary markedly according to tissue and life stage. The neurons read the ecdysteroid titer through various isoforms of the ecdysone receptor, a nuclear hormone receptor. For example, at metamorphosis the pruning of larval neurons is mediated through the B isoforms, which have strong activation functions, whereas subsequent outgrowth is mediated through the A isoform through which ecdysteroids play a permissive role to allow local tissue interactions to direct outgrowth. The major circulating ecdysteroid can also change through development. During adult development ecdysone promotes early adult patterning and differentiation while its metabolite, 20E, later evokes terminal adult differentiation.
Collapse
Affiliation(s)
- James W Truman
- Friday Harbor Laboratories, University of Washington, Friday Harbor, WA 98250, USA
- Department of Biology, University of Washington, Box 351800, Seattle, WA 98195, USA
| | - Lynn M Riddiford
- Friday Harbor Laboratories, University of Washington, Friday Harbor, WA 98250, USA
- Department of Biology, University of Washington, Box 351800, Seattle, WA 98195, USA
| |
Collapse
|
6
|
Cobham AE, Neumann B, Mirth CK. Maintaining robust size across environmental conditions through plastic brain growth dynamics. Open Biol 2022; 12:220037. [PMID: 36102061 PMCID: PMC9471992 DOI: 10.1098/rsob.220037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Organ growth is tightly regulated across environmental conditions to generate an appropriate final size. While the size of some organs is free to vary, others need to maintain constant size to function properly. This poses a unique problem: how is robust final size achieved when environmental conditions alter key processes that regulate organ size throughout the body, such as growth rate and growth duration? While we know that brain growth is ‘spared’ from the effects of the environment from humans to fruit flies, we do not understand how this process alters growth dynamics across brain compartments. Here, we explore how this robustness in brain size is achieved by examining differences in growth patterns between the larval body, the brain and a brain compartment—the mushroom bodies—in Drosophila melanogaster across both thermal and nutritional conditions. We identify key differences in patterns of growth between the whole brain and mushroom bodies that are likely to underlie robustness of final organ shape. Further, we show that these differences produce distinct brain shapes across environments.
Collapse
Affiliation(s)
- Ansa E Cobham
- School of Biological Sciences, Monash University, Melbourne, Australia
| | - Brent Neumann
- Neuroscience Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia
| | - Christen K Mirth
- School of Biological Sciences, Monash University, Melbourne, Australia
| |
Collapse
|
7
|
Sood C, Justis VT, Doyle SE, Siegrist SE. Notch signaling regulates neural stem cell quiescence entry and exit in Drosophila. Development 2022; 149:274416. [PMID: 35112131 PMCID: PMC8918809 DOI: 10.1242/dev.200275] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 01/13/2022] [Indexed: 12/18/2022]
Abstract
Stem cells enter and exit quiescence as part of normal developmental programs and to maintain tissue homeostasis in adulthood. Although it is clear that stem cell intrinsic and extrinsic cues, local and systemic, regulate quiescence, it remains unclear whether intrinsic and extrinsic cues coordinate to control quiescence and how cue coordination is achieved. Here, we report that Notch signaling coordinates neuroblast intrinsic temporal programs with extrinsic nutrient cues to regulate quiescence in Drosophila. When Notch activity is reduced, quiescence is delayed or altogether bypassed, with some neuroblasts dividing continuously during the embryonic-to-larval transition. During embryogenesis before quiescence, neuroblasts express Notch and the Notch ligand Delta. After division, Delta is partitioned to adjacent GMC daughters where it transactivates Notch in neuroblasts. Over time, in response to intrinsic temporal cues and increasing numbers of Delta-expressing daughters, neuroblast Notch activity increases, leading to cell cycle exit and consequently, attenuation of Notch pathway activity. Quiescent neuroblasts have low to no active Notch, which is required for exit from quiescence in response to nutrient cues. Thus, Notch signaling coordinates proliferation versus quiescence decisions.
Collapse
|
8
|
Drosophila septin interacting protein 1 regulates neurogenesis in the early developing larval brain. Sci Rep 2022; 12:292. [PMID: 34997175 PMCID: PMC8742078 DOI: 10.1038/s41598-021-04474-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 12/21/2021] [Indexed: 11/09/2022] Open
Abstract
Neurogenesis in the Drosophila central brain progresses dynamically in order to generate appropriate numbers of neurons during different stages of development. Thus, a central challenge in neurobiology is to reveal the molecular and genetic mechanisms of neurogenesis timing. Here, we found that neurogenesis is significantly impaired when a novel mutation, Nuwa, is induced at early but not late larval stages. Intriguingly, when the Nuwa mutation is induced in neuroblasts of olfactory projection neurons (PNs) at the embryonic stage, embryonic-born PNs are generated, but larval-born PNs of the same origin fail to be produced. Through molecular characterization and transgenic rescue experiments, we determined that Nuwa is a loss-of-function mutation in Drosophila septin interacting protein 1 (sip1). Furthermore, we found that SIP1 expression is enriched in neuroblasts, and RNAi knockdown of sip1 using a neuroblast driver results in formation of small and aberrant brains. Finally, full-length SIP1 protein and truncated SIP1 proteins lacking either the N- or C-terminus display different subcellular localization patterns, and only full-length SIP1 can rescue the Nuwa-associated neurogenesis defect. Taken together, these results suggest that SIP1 acts as a crucial factor for specific neurogenesis programs in the early developing larval brain.
Collapse
|
9
|
Sood C, Doyle SE, Siegrist SE. Steroid hormones, dietary nutrients, and temporal progression of neurogenesis. CURRENT OPINION IN INSECT SCIENCE 2021; 43:70-77. [PMID: 33127508 PMCID: PMC8058227 DOI: 10.1016/j.cois.2020.10.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/10/2020] [Accepted: 10/16/2020] [Indexed: 05/13/2023]
Abstract
Temporal patterning of neural progenitors, in which different factors are sequentially expressed, is an evolutionarily conserved strategy for generating neuronal diversity during development. In the Drosophila embryo, mechanisms that mediate temporal patterning of neural stem cells (neuroblasts) are largely cell-intrinsic. However, after embryogenesis, neuroblast temporal patterning relies on extrinsic cues as well, as freshly hatched larvae seek out nutrients and other key resources in varying natural environments. We recap current understanding of neuroblast-intrinsic temporal programs and discuss how neuroblast extrinsic cues integrate and coordinate with neuroblast intrinsic programs to control numbers and types of neurons produced. One key emerging extrinsic factor that impacts temporal patterning of neuroblasts and their daughters as well as termination of neurogenesis is the steroid hormone, ecdysone, a known regulator of large-scale developmental transitions in insects and arthropods. Lastly, we consider evolutionary conservation and discuss recent work on thyroid hormone signaling in early vertebrate brain development.
Collapse
Affiliation(s)
- Chhavi Sood
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Susan E Doyle
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Sarah E Siegrist
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA.
| |
Collapse
|
10
|
Scheffer LK, Xu CS, Januszewski M, Lu Z, Takemura SY, Hayworth KJ, Huang GB, Shinomiya K, Maitlin-Shepard J, Berg S, Clements J, Hubbard PM, Katz WT, Umayam L, Zhao T, Ackerman D, Blakely T, Bogovic J, Dolafi T, Kainmueller D, Kawase T, Khairy KA, Leavitt L, Li PH, Lindsey L, Neubarth N, Olbris DJ, Otsuna H, Trautman ET, Ito M, Bates AS, Goldammer J, Wolff T, Svirskas R, Schlegel P, Neace E, Knecht CJ, Alvarado CX, Bailey DA, Ballinger S, Borycz JA, Canino BS, Cheatham N, Cook M, Dreher M, Duclos O, Eubanks B, Fairbanks K, Finley S, Forknall N, Francis A, Hopkins GP, Joyce EM, Kim S, Kirk NA, Kovalyak J, Lauchie SA, Lohff A, Maldonado C, Manley EA, McLin S, Mooney C, Ndama M, Ogundeyi O, Okeoma N, Ordish C, Padilla N, Patrick CM, Paterson T, Phillips EE, Phillips EM, Rampally N, Ribeiro C, Robertson MK, Rymer JT, Ryan SM, Sammons M, Scott AK, Scott AL, Shinomiya A, Smith C, Smith K, Smith NL, Sobeski MA, Suleiman A, Swift J, Takemura S, Talebi I, Tarnogorska D, Tenshaw E, Tokhi T, Walsh JJ, Yang T, Horne JA, Li F, Parekh R, Rivlin PK, Jayaraman V, Costa M, Jefferis GSXE, et alScheffer LK, Xu CS, Januszewski M, Lu Z, Takemura SY, Hayworth KJ, Huang GB, Shinomiya K, Maitlin-Shepard J, Berg S, Clements J, Hubbard PM, Katz WT, Umayam L, Zhao T, Ackerman D, Blakely T, Bogovic J, Dolafi T, Kainmueller D, Kawase T, Khairy KA, Leavitt L, Li PH, Lindsey L, Neubarth N, Olbris DJ, Otsuna H, Trautman ET, Ito M, Bates AS, Goldammer J, Wolff T, Svirskas R, Schlegel P, Neace E, Knecht CJ, Alvarado CX, Bailey DA, Ballinger S, Borycz JA, Canino BS, Cheatham N, Cook M, Dreher M, Duclos O, Eubanks B, Fairbanks K, Finley S, Forknall N, Francis A, Hopkins GP, Joyce EM, Kim S, Kirk NA, Kovalyak J, Lauchie SA, Lohff A, Maldonado C, Manley EA, McLin S, Mooney C, Ndama M, Ogundeyi O, Okeoma N, Ordish C, Padilla N, Patrick CM, Paterson T, Phillips EE, Phillips EM, Rampally N, Ribeiro C, Robertson MK, Rymer JT, Ryan SM, Sammons M, Scott AK, Scott AL, Shinomiya A, Smith C, Smith K, Smith NL, Sobeski MA, Suleiman A, Swift J, Takemura S, Talebi I, Tarnogorska D, Tenshaw E, Tokhi T, Walsh JJ, Yang T, Horne JA, Li F, Parekh R, Rivlin PK, Jayaraman V, Costa M, Jefferis GSXE, Ito K, Saalfeld S, George R, Meinertzhagen IA, Rubin GM, Hess HF, Jain V, Plaza SM. A connectome and analysis of the adult Drosophila central brain. eLife 2020; 9:e57443. [PMID: 32880371 PMCID: PMC7546738 DOI: 10.7554/elife.57443] [Show More Authors] [Citation(s) in RCA: 554] [Impact Index Per Article: 110.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 09/01/2020] [Indexed: 12/26/2022] Open
Abstract
The neural circuits responsible for animal behavior remain largely unknown. We summarize new methods and present the circuitry of a large fraction of the brain of the fruit fly Drosophila melanogaster. Improved methods include new procedures to prepare, image, align, segment, find synapses in, and proofread such large data sets. We define cell types, refine computational compartments, and provide an exhaustive atlas of cell examples and types, many of them novel. We provide detailed circuits consisting of neurons and their chemical synapses for most of the central brain. We make the data public and simplify access, reducing the effort needed to answer circuit questions, and provide procedures linking the neurons defined by our analysis with genetic reagents. Biologically, we examine distributions of connection strengths, neural motifs on different scales, electrical consequences of compartmentalization, and evidence that maximizing packing density is an important criterion in the evolution of the fly's brain.
Collapse
Affiliation(s)
- Louis K Scheffer
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - C Shan Xu
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | | | - Zhiyuan Lu
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
- Life Sciences Centre, Dalhousie UniversityHalifaxCanada
| | - Shin-ya Takemura
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Kenneth J Hayworth
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Gary B Huang
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Kazunori Shinomiya
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | | | - Stuart Berg
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Jody Clements
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Philip M Hubbard
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - William T Katz
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Lowell Umayam
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Ting Zhao
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - David Ackerman
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | | | - John Bogovic
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Tom Dolafi
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Dagmar Kainmueller
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Takashi Kawase
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Khaled A Khairy
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | | | - Peter H Li
- Google ResearchMountain ViewUnited States
| | | | - Nicole Neubarth
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Donald J Olbris
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Hideo Otsuna
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Eric T Trautman
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Masayoshi Ito
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
- Institute for Quantitative Biosciences, University of TokyoTokyoJapan
| | | | - Jens Goldammer
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
- Institute of Zoology, Biocenter Cologne, University of CologneCologneGermany
| | - Tanya Wolff
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Robert Svirskas
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | | | - Erika Neace
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | | | - Chelsea X Alvarado
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Dennis A Bailey
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Samantha Ballinger
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | | | - Brandon S Canino
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Natasha Cheatham
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Michael Cook
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Marisa Dreher
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Octave Duclos
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Bryon Eubanks
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Kelli Fairbanks
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Samantha Finley
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Nora Forknall
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Audrey Francis
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | | | - Emily M Joyce
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - SungJin Kim
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Nicole A Kirk
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Julie Kovalyak
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Shirley A Lauchie
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Alanna Lohff
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Charli Maldonado
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Emily A Manley
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Sari McLin
- Life Sciences Centre, Dalhousie UniversityHalifaxCanada
| | - Caroline Mooney
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Miatta Ndama
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Omotara Ogundeyi
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Nneoma Okeoma
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Christopher Ordish
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Nicholas Padilla
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | | | - Tyler Paterson
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Elliott E Phillips
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Emily M Phillips
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Neha Rampally
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Caitlin Ribeiro
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | | | - Jon Thomson Rymer
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Sean M Ryan
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Megan Sammons
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Anne K Scott
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Ashley L Scott
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Aya Shinomiya
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Claire Smith
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Kelsey Smith
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Natalie L Smith
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Margaret A Sobeski
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Alia Suleiman
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Jackie Swift
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Satoko Takemura
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Iris Talebi
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | | | - Emily Tenshaw
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Temour Tokhi
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - John J Walsh
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Tansy Yang
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | | | - Feng Li
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Ruchi Parekh
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Patricia K Rivlin
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Vivek Jayaraman
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Marta Costa
- Department of Zoology, University of CambridgeCambridgeUnited Kingdom
| | - Gregory SXE Jefferis
- MRC Laboratory of Molecular BiologyCambridgeUnited States
- Department of Zoology, University of CambridgeCambridgeUnited Kingdom
| | - Kei Ito
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
- Institute for Quantitative Biosciences, University of TokyoTokyoJapan
- Institute of Zoology, Biocenter Cologne, University of CologneCologneGermany
| | - Stephan Saalfeld
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Reed George
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Ian A Meinertzhagen
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
- Life Sciences Centre, Dalhousie UniversityHalifaxCanada
| | - Gerald M Rubin
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Harald F Hess
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Viren Jain
- Google Research, Google LLCZurichSwitzerland
| | - Stephen M Plaza
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| |
Collapse
|
11
|
King LB, Boto T, Botero V, Aviles AM, Jomsky BM, Joseph C, Walker JA, Tomchik SM. Developmental loss of neurofibromin across distributed neuronal circuits drives excessive grooming in Drosophila. PLoS Genet 2020; 16:e1008920. [PMID: 32697780 PMCID: PMC7398555 DOI: 10.1371/journal.pgen.1008920] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 08/03/2020] [Accepted: 06/08/2020] [Indexed: 02/06/2023] Open
Abstract
Neurofibromatosis type 1 is a monogenetic disorder that predisposes individuals to tumor formation and cognitive and behavioral symptoms. The neuronal circuitry and developmental events underlying these neurological symptoms are unknown. To better understand how mutations of the underlying gene (NF1) drive behavioral alterations, we have examined grooming in the Drosophila neurofibromatosis 1 model. Mutations of the fly NF1 ortholog drive excessive grooming, and increased grooming was observed in adults when Nf1 was knocked down during development. Furthermore, intact Nf1 Ras GAP-related domain signaling was required to maintain normal grooming. The requirement for Nf1 was distributed across neuronal circuits, which were additive when targeted in parallel, rather than mapping to discrete microcircuits. Overall, these data suggest that broadly-distributed alterations in neuronal function during development, requiring intact Ras signaling, drive key Nf1-mediated behavioral alterations. Thus, global developmental alterations in brain circuits/systems function may contribute to behavioral phenotypes in neurofibromatosis type 1.
Collapse
Affiliation(s)
- Lanikea B. King
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida, United States of America
| | - Tamara Boto
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida, United States of America
| | - Valentina Botero
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida, United States of America
| | - Ari M. Aviles
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida, United States of America
- Honors College, Florida Atlantic University, Jupiter, Florida, United States of America
| | - Breanna M. Jomsky
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida, United States of America
- Honors College, Florida Atlantic University, Jupiter, Florida, United States of America
| | - Chevara Joseph
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida, United States of America
- Honors College, Florida Atlantic University, Jupiter, Florida, United States of America
| | - James A. Walker
- Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Cambridge, Massachusetts, United States of America
| | - Seth M. Tomchik
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida, United States of America
| |
Collapse
|
12
|
Yuan X, Sipe CW, Suzawa M, Bland ML, Siegrist SE. Dilp-2-mediated PI3-kinase activation coordinates reactivation of quiescent neuroblasts with growth of their glial stem cell niche. PLoS Biol 2020; 18:e3000721. [PMID: 32463838 PMCID: PMC7282672 DOI: 10.1371/journal.pbio.3000721] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 06/09/2020] [Accepted: 05/13/2020] [Indexed: 12/20/2022] Open
Abstract
Dietary nutrients provide macromolecules necessary for organism growth and development. In response to animal feeding, evolutionarily conserved growth signaling pathways are activated, leading to increased rates of cell proliferation and tissue growth. It remains unclear how different cell types within developing tissues coordinate growth in response to dietary nutrients and whether coordinated growth of different cell types is necessary for proper tissue function. Using the early Drosophila larval brain, we asked whether nutrient-dependent growth of neural stem cells (neuroblasts), glia, and trachea is coordinated and whether coordinated growth among these major brain cell types is required for neural development. It is known that in response to dietary nutrients and PI3-kinase activation, brain and ventral nerve cord neuroblasts reactivate from quiescence and ventral nerve cord glia expand their membranes. Here, we assay growth in a cell-type specific manner at short time intervals in the brain and determine that growth is coordinated among different cell types and that coordinated growth is mediated in part through activation of PI3-kinase signaling. Of the 7 Drosophila insulin-like peptides (Dilps), we find that Dilp-2 is required for PI3-kinase activation and growth coordination between neuroblasts and glia in the brain. Dilp-2 induces brain cortex glia to initiate membrane growth and make first contact with quiescent neuroblasts. Once reactivated, neuroblasts promote cortex glia growth to ultimately form a selective membrane barrier. Our results highlight the importance of bidirectional growth signaling between neural stem cells and surrounding cell types in the brain in response to nutrition and demonstrate how coordinated growth among different cell types drives tissue morphogenesis and function.
Collapse
Affiliation(s)
- Xin Yuan
- Department of Biology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Conor W. Sipe
- Department of Biology, University of Virginia, Charlottesville, Virginia, United States of America
- Department of Biology, Shepherd University, Shepherdstown, West Virginia, United States of America
| | - Miyuki Suzawa
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Michelle L. Bland
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Sarah E. Siegrist
- Department of Biology, University of Virginia, Charlottesville, Virginia, United States of America
- * E-mail:
| |
Collapse
|
13
|
Baral SS, Lieux ME, DiMario PJ. Nucleolar stress in Drosophila neuroblasts, a model for human ribosomopathies. Biol Open 2020; 9:bio046565. [PMID: 32184230 PMCID: PMC7197718 DOI: 10.1242/bio.046565] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 03/03/2020] [Indexed: 12/11/2022] Open
Abstract
Different stem cells or progenitor cells display variable threshold requirements for functional ribosomes. This is particularly true for several human ribosomopathies in which select embryonic neural crest cells or adult bone marrow stem cells, but not others, show lethality due to failures in ribosome biogenesis or function (now known as nucleolar stress). To determine if various Drosophila neuroblasts display differential sensitivities to nucleolar stress, we used CRISPR-Cas9 to disrupt the Nopp140 gene that encodes two splice variant ribosome biogenesis factors (RBFs). Disruption of Nopp140 induced nucleolar stress that arrested larvae in the second instar stage. While the majority of larval neuroblasts arrested development, the mushroom body (MB) neuroblasts continued to proliferate as shown by their maintenance of deadpan, a neuroblast-specific transcription factor, and by their continued EdU incorporation. MB neuroblasts in wild-type larvae appeared to contain more fibrillarin and Nopp140 in their nucleoli as compared to other neuroblasts, indicating that MB neuroblasts stockpile RBFs as they proliferate in late embryogenesis while other neuroblasts normally enter quiescence. A greater abundance of Nopp140 encoded by maternal transcripts in Nopp140-/- MB neuroblasts of 1----2-day-old larvae likely rendered these cells more resilient to nucleolar stress.
Collapse
Affiliation(s)
- Sonu Shrestha Baral
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Molly E Lieux
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Patrick J DiMario
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
14
|
Liu LY, Long X, Yang CP, Miyares RL, Sugino K, Singer RH, Lee T. Mamo decodes hierarchical temporal gradients into terminal neuronal fate. eLife 2019; 8:e48056. [PMID: 31545163 PMCID: PMC6764822 DOI: 10.7554/elife.48056] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 09/20/2019] [Indexed: 12/20/2022] Open
Abstract
Temporal patterning is a seminal method of expanding neuronal diversity. Here we unravel a mechanism decoding neural stem cell temporal gene expression and transforming it into discrete neuronal fates. This mechanism is characterized by hierarchical gene expression. First, Drosophila neuroblasts express opposing temporal gradients of RNA-binding proteins, Imp and Syp. These proteins promote or inhibit chinmo translation, yielding a descending neuronal gradient. Together, first and second-layer temporal factors define a temporal expression window of BTB-zinc finger nuclear protein, Mamo. The precise temporal induction of Mamo is achieved via both transcriptional and post-transcriptional regulation. Finally, Mamo is essential for the temporally defined, terminal identity of α'/β' mushroom body neurons and identity maintenance. We describe a straightforward paradigm of temporal fate specification where diverse neuronal fates are defined via integrating multiple layers of gene regulation. The neurodevelopmental roles of orthologous/related mammalian genes suggest a fundamental conservation of this mechanism in brain development.
Collapse
Affiliation(s)
- Ling-Yu Liu
- Howard Hughes Medical Institute, Janelia Research CampusAshburnUnited States
| | - Xi Long
- Howard Hughes Medical Institute, Janelia Research CampusAshburnUnited States
| | - Ching-Po Yang
- Howard Hughes Medical Institute, Janelia Research CampusAshburnUnited States
| | - Rosa L Miyares
- Howard Hughes Medical Institute, Janelia Research CampusAshburnUnited States
| | - Ken Sugino
- Howard Hughes Medical Institute, Janelia Research CampusAshburnUnited States
| | - Robert H Singer
- Howard Hughes Medical Institute, Janelia Research CampusAshburnUnited States
- Department of Anatomy and Structural Biology, Gruss Lipper Biophotonics CenterAlbert Einstein College of MedicineNew YorkUnited States
- Dominick P Purpura Department of Neuroscience, Gruss Lipper Biophotonics CenterAlbert Einstein College of MedicineNew YorkUnited States
| | - Tzumin Lee
- Howard Hughes Medical Institute, Janelia Research CampusAshburnUnited States
| |
Collapse
|
15
|
E93 Integrates Neuroblast Intrinsic State with Developmental Time to Terminate MB Neurogenesis via Autophagy. Curr Biol 2019; 29:750-762.e3. [PMID: 30773368 DOI: 10.1016/j.cub.2019.01.039] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 12/05/2018] [Accepted: 01/14/2019] [Indexed: 12/17/2022]
Abstract
Most neurogenesis occurs during development, driven by the cell divisions of neural stem cells (NSCs). We use Drosophila to understand how neurogenesis terminates once development is complete, a process critical for neural circuit formation. We identified E93, a steroid-hormone-induced transcription factor that downregulates phosphatidylinositol 3-kinase (PI3K) levels to activate autophagy for elimination of mushroom body (MB) neuroblasts. MB neuroblasts are a subset of Drosophila NSCs that generate neurons important for memory and learning. MB neurogenesis extends into adulthood when E93 is reduced and terminates prematurely when E93 is overexpressed. E93 is expressed in MB neuroblasts during later stages of pupal development only, which includes the time when MB neuroblasts normally terminate their divisions. Cell intrinsic Imp and Syp temporal factors regulate timing of E93 expression in MB neuroblasts, and extrinsic steroid hormone receptor (EcR) activation boosts E93 levels high for termination. Imp inhibits premature expression of E93 in a Syp-dependent manner, and Syp positively regulates E93 to promote neurogenesis termination. Imp and Syp together with E93 form a temporal cassette, which consequently links early developmental neurogenesis with termination. Altogether, E93 functions as a late-acting temporal factor integrating extrinsic hormonal cues linked to developmental timing with neuroblast intrinsic temporal cues to precisely time neurogenesis ending during development.
Collapse
|
16
|
Harding K, White K. Drosophila as a Model for Developmental Biology: Stem Cell-Fate Decisions in the Developing Nervous System. J Dev Biol 2018; 6:E25. [PMID: 30347666 PMCID: PMC6315890 DOI: 10.3390/jdb6040025] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 10/16/2018] [Accepted: 10/17/2018] [Indexed: 12/25/2022] Open
Abstract
Stem cells face a diversity of choices throughout their lives. At specific times, they may decide to initiate cell division, terminal differentiation, or apoptosis, or they may enter a quiescent non-proliferative state. Neural stem cells in the Drosophila central nervous system do all of these, at stereotypical times and anatomical positions during development. Distinct populations of neural stem cells offer a unique system to investigate the regulation of a particular stem cell behavior, while comparisons between populations can lead us to a broader understanding of stem cell identity. Drosophila is a well-described and genetically tractable model for studying fundamental stem cell behavior and the mechanisms that underlie cell-fate decisions. This review will focus on recent advances in our understanding of the factors that contribute to distinct stem cell-fate decisions within the context of the Drosophila nervous system.
Collapse
Affiliation(s)
- Katherine Harding
- Massachusetts General Hospital Cutaneous Biology Research Center, Harvard Medical School, Boston, MA 02129, USA
| | - Kristin White
- Massachusetts General Hospital Cutaneous Biology Research Center, Harvard Medical School, Boston, MA 02129, USA.
| |
Collapse
|
17
|
Iung LHDS, Mulder HA, Neves HHDR, Carvalheiro R. Genomic regions underlying uniformity of yearling weight in Nellore cattle evaluated under different response variables. BMC Genomics 2018; 19:619. [PMID: 30115034 PMCID: PMC6097312 DOI: 10.1186/s12864-018-5003-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 08/08/2018] [Indexed: 02/22/2023] Open
Abstract
BACKGROUND In livestock, residual variance has been studied because of the interest to improve uniformity of production. Several studies have provided evidence that residual variance is partially under genetic control; however, few investigations have elucidated genes that control it. The aim of this study was to identify genomic regions associated with within-family residual variance of yearling weight (YW; N = 423) in Nellore bulls with high density SNP data, using different response variables. For this, solutions from double hierarchical generalized linear models (DHGLM) were used to provide the response variables, as follows: a DGHLM assuming non-null genetic correlation between mean and residual variance (rmv ≠ 0) to obtain deregressed EBV for mean (dEBVm) and residual variance (dEBVv); and a DHGLM assuming rmv = 0 to obtain two alternative response variables for residual variance, dEBVv_r0 and log-transformed variance of estimated residuals (ln_[Formula: see text]). RESULTS The dEBVm and dEBVv were highly correlated, resulting in common regions associated with mean and residual variance of YW. However, higher effects on variance than the mean showed that these regions had effects on the variance beyond scale effects. More independent association results between mean and residual variance were obtained when null rmv was assumed. While 13 and 4 single nucleotide polymorphisms (SNPs) showed a strong association (Bayes Factor > 20) with dEBVv and ln_[Formula: see text], respectively, only suggestive signals were found for dEBVv_r0. All overlapping 1-Mb windows among top 20 between dEBVm and dEBVv were previously associated with growth traits. The potential candidate genes for uniformity are involved in metabolism, stress, inflammatory and immune responses, mineralization, neuronal activity and bone formation. CONCLUSIONS It is necessary to use a strategy like assuming null rmv to obtain genomic regions associated with uniformity that are not associated with the mean. Genes involved not only in metabolism, but also stress, inflammatory and immune responses, mineralization, neuronal activity and bone formation were the most promising biological candidates for uniformity of YW. Although no clear evidence of using a specific response variable was found, we recommend consider different response variables to study uniformity to increase evidence on candidate regions and biological mechanisms behind it.
Collapse
Affiliation(s)
- Laiza Helena de Souza Iung
- School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Via de Acesso Prof. Paulo Donato Castelane, S/N, Vila Industrial, FCAV/UNESP, Jaboticabal, São Paulo, 14884-900 Brazil
| | - Herman Arend Mulder
- Wageningen University & Research Animal Breeding and Genomics, P.O. Box 338, 6700 AH Wageningen, The Netherlands
| | | | - Roberto Carvalheiro
- School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Via de Acesso Prof. Paulo Donato Castelane, S/N, Vila Industrial, FCAV/UNESP, Jaboticabal, São Paulo, 14884-900 Brazil
| |
Collapse
|
18
|
Wang X, Amei A, de Belle JS, Roberts SP. Environmental effects on Drosophila brain development and learning. J Exp Biol 2018; 221:jeb169375. [PMID: 29061687 PMCID: PMC5818026 DOI: 10.1242/jeb.169375] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 10/18/2017] [Indexed: 01/18/2023]
Abstract
Brain development and behavior are sensitive to a variety of environmental influences including social interactions and physicochemical stressors. Sensory input in situ is a mosaic of both enrichment and stress, yet little is known about how multiple environmental factors interact to affect brain anatomical structures, circuits and cognitive function. In this study, we addressed these issues by testing the individual and combined effects of sub-adult thermal stress, larval density and early-adult living spatial enrichment on brain anatomy and olfactory associative learning in adult Drosophila melanogaster In response to heat stress, the mushroom bodies (MBs) were the most volumetrically impaired among all of the brain structures, an effect highly correlated with reduced odor learning performance. However, MBs were not sensitive to either larval culture density or early-adult living conditions. Extreme larval crowding reduced the volume of the antennal lobes, optic lobes and central complex. Neither larval crowding nor early-adult spatial enrichment affected olfactory learning. These results illustrate that various brain structures react differently to environmental inputs, and that MB development and learning are highly sensitive to certain stressors (pre-adult hyperthermia) and resistant to others (larval crowding).
Collapse
Affiliation(s)
- Xia Wang
- School of Life Sciences, University of Nevada, Las Vegas, NV 89154, USA
| | - Amei Amei
- Department of Mathematical Sciences, University of Nevada, Las Vegas, NV 89154, USA
| | - J Steven de Belle
- School of Life Sciences, University of Nevada, Las Vegas, NV 89154, USA
| | - Stephen P Roberts
- School of Life Sciences, University of Nevada, Las Vegas, NV 89154, USA
| |
Collapse
|
19
|
Groothuis J, Smid HM. Nasonia Parasitic Wasps Escape from Haller's Rule by Diphasic, Partially Isometric Brain-Body Size Scaling and Selective Neuropil Adaptations. BRAIN, BEHAVIOR AND EVOLUTION 2017; 90:243-254. [PMID: 29059675 DOI: 10.1159/000480421] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 08/16/2017] [Indexed: 11/19/2022]
Abstract
Haller's rule states that brains scale allometrically with body size in all animals, meaning that relative brain size increases with decreasing body size. This rule applies both on inter- and intraspecific comparisons. Only 1 species, the extremely small parasitic wasp Trichogramma evanescens, is known as an exception and shows an isometric brain-body size relation in an intraspecific comparison between differently sized individuals. Here, we investigated if such an isometric brain-body size relationship also occurs in an intraspecific comparison with a slightly larger parasitic wasp, Nasonia vitripennis, a species that may vary 10-fold in body weight upon differences in levels of scramble competition during larval development. We show that Nasonia exhibits diphasic brain-body size scaling: larger wasps scale allometrically, following Haller's rule, whereas the smallest wasps show isometric scaling. Brains of smaller wasps are, therefore, smaller than expected and we hypothesized that this may lead to adaptations in brain architecture. Volumetric analysis of neuropil composition revealed that wasps of different sizes differed in relative volume of multiple neuropils. The optic lobes and mushroom bodies in particular were smaller in the smallest wasps. Furthermore, smaller brains had a relatively smaller total neuropil volume and larger cellular rind than large brains. These changes in relative brain size and brain architecture suggest that the energetic constraints on brain tissue outweigh specific cognitive requirements in small Nasonia wasps.
Collapse
Affiliation(s)
- Jitte Groothuis
- Laboratory of Entomology, Wageningen University, Wageningen, The Netherlands
| | | |
Collapse
|
20
|
Syed MH, Mark B, Doe CQ. Playing Well with Others: Extrinsic Cues Regulate Neural Progenitor Temporal Identity to Generate Neuronal Diversity. Trends Genet 2017; 33:933-942. [PMID: 28899597 DOI: 10.1016/j.tig.2017.08.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 08/18/2017] [Accepted: 08/18/2017] [Indexed: 11/27/2022]
Abstract
During neurogenesis, vertebrate and Drosophila progenitors change over time as they generate a diverse population of neurons and glia. Vertebrate neural progenitors have long been known to use both progenitor-intrinsic and progenitor-extrinsic cues to regulate temporal patterning. In contrast, virtually all temporal patterning mechanisms discovered in Drosophila neural progenitors (neuroblasts) involve progenitor-intrinsic temporal transcription factor cascades. Recent results, however, have revealed several extrinsic pathways that regulate Drosophila neuroblast temporal patterning: nutritional cues regulate the timing of neuroblast proliferation/quiescence and a steroid hormone cue that is required for temporal transcription factor expression. Here, we discuss newly discovered extrinsic cues regulating neural progenitor temporal identity in Drosophila, highlight conserved mechanisms, and raise open questions for the future.
Collapse
Affiliation(s)
- Mubarak Hussain Syed
- Institute of Neuroscience, Institute of Molecular Biology, Howard Hughes Medical Institute, University of Oregon, Eugene, OR 97403, USA
| | - Brandon Mark
- Institute of Neuroscience, Institute of Molecular Biology, Howard Hughes Medical Institute, University of Oregon, Eugene, OR 97403, USA
| | - Chris Q Doe
- Institute of Neuroscience, Institute of Molecular Biology, Howard Hughes Medical Institute, University of Oregon, Eugene, OR 97403, USA.
| |
Collapse
|
21
|
Yang CP, Samuels TJ, Huang Y, Yang L, Ish-Horowicz D, Davis I, Lee T. Imp and Syp RNA-binding proteins govern decommissioning of Drosophila neural stem cells. Development 2017; 144:3454-3464. [PMID: 28851709 PMCID: PMC5665480 DOI: 10.1242/dev.149500] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 08/21/2017] [Indexed: 02/03/2023]
Abstract
The termination of the proliferation of Drosophila neural stem cells, also known as neuroblasts (NBs), requires a ‘decommissioning’ phase that is controlled in a lineage-specific manner. Most NBs, with the exception of those of the mushroom body (MB), are decommissioned by the ecdysone receptor and mediator complex, causing them to shrink during metamorphosis, followed by nuclear accumulation of Prospero and cell cycle exit. Here, we demonstrate that the levels of Imp and Syp RNA-binding proteins regulate NB decommissioning. Descending Imp and ascending Syp expression have been shown to regulate neuronal temporal fate. We show that Imp levels decline slower in the MB than in other central brain NBs. MB NBs continue to express Imp into pupation, and the presence of Imp prevents decommissioning partly by inhibiting the mediator complex. Late-larval induction of transgenic Imp prevents many non-MB NBs from decommissioning in early pupae. Moreover, the presence of abundant Syp in aged NBs permits Prospero accumulation that, in turn, promotes cell cycle exit. Together, our results reveal that progeny temporal fate and progenitor decommissioning are co-regulated in protracted neuronal lineages. Highlighted Article: Temporal progression of Imp/Syp gradients determines the timing of neuroblast decommissioning and cell cycle exit in addition to progeny temporal fate, allowing proper completion of a neuronal lineage.
Collapse
Affiliation(s)
- Ching-Po Yang
- Howard Hughes Medical Institute, Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Tamsin J Samuels
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Yaling Huang
- Howard Hughes Medical Institute, Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Lu Yang
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - David Ish-Horowicz
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom.,MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, United Kingdom
| | - Ilan Davis
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Tzumin Lee
- Howard Hughes Medical Institute, Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA
| |
Collapse
|
22
|
Sipe CW, Siegrist SE. Eyeless uncouples mushroom body neuroblast proliferation from dietary amino acids in Drosophila. eLife 2017; 6:26343. [PMID: 28826476 PMCID: PMC5576483 DOI: 10.7554/elife.26343] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 08/08/2017] [Indexed: 11/13/2022] Open
Abstract
Cell proliferation is coupled with nutrient availability. If nutrients become limited, proliferation ceases, because growth factor and/or PI3-kinase activity levels become attenuated. Here, we report an exception to this generality within a subpopulation of Drosophila neural stem cells (neuroblasts). We find that most neuroblasts enter and exit cell cycle in a nutrient-dependent manner that is reversible and regulated by PI3-kinase. However, a small subset, the mushroom body neuroblasts, which generate neurons important for memory and learning, divide independent of dietary nutrient conditions and PI3-kinase activity. This nutrient-independent proliferation is regulated by Eyeless, a Pax-6 orthologue, expressed in mushroom body neuroblasts. When Eyeless is knocked down, mushroom body neuroblasts exit cell cycle when nutrients are withdrawn. Conversely, when Eyeless is ectopically expressed, some non-mushroom body neuroblasts divide independent of dietary nutrient conditions. Therefore, Eyeless uncouples MB neuroblast proliferation from nutrient availability, allowing preferential neurogenesis in brain subregions during nutrient poor conditions.
Collapse
Affiliation(s)
- Conor W Sipe
- Department of Biology, University of Virginia, Charlottesville, United States
| | - Sarah E Siegrist
- Department of Biology, University of Virginia, Charlottesville, United States
| |
Collapse
|
23
|
|
24
|
Rossi AM, Fernandes VM, Desplan C. Timing temporal transitions during brain development. Curr Opin Neurobiol 2016; 42:84-92. [PMID: 27984764 DOI: 10.1016/j.conb.2016.11.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 11/24/2016] [Accepted: 11/24/2016] [Indexed: 01/05/2023]
Abstract
During development a limited number of progenitors generate diverse cell types that comprise the nervous system. Neuronal diversity, which arises largely at the level of neural stem cells, is critical for brain function. Often these cells exhibit temporal patterning: they sequentially produce neurons of distinct cell fates as a consequence of intrinsic and/or extrinsic cues. Here, we review recent advances in temporal patterning during neuronal specification, focusing on conserved players and mechanisms in invertebrate and vertebrate models. These studies underscore temporal patterning as an evolutionarily conserved strategy to generate neuronal diversity. Understanding the general principles governing temporal patterning and the molecular players involved will improve our ability to direct neural progenitors towards specific neuronal fates for brain repair.
Collapse
Affiliation(s)
- Anthony M Rossi
- Department of Biology, New York University, New York, NY 10003, USA
| | | | - Claude Desplan
- Department of Biology, New York University, New York, NY 10003, USA; CGSB, NYU Abu Dhabi, United Arab Emirates.
| |
Collapse
|
25
|
Strigini M, Leulier F. The role of the microbial environment in Drosophila post-embryonic development. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 64:39-52. [PMID: 26827889 DOI: 10.1016/j.dci.2016.01.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 01/19/2016] [Accepted: 01/26/2016] [Indexed: 05/14/2023]
Abstract
Development, growth and maturation of animals are under genetic and environmental control. Multicellular organisms interact throughout their lives with a variety of environment- and body-associated microorganisms. It has now been appreciated that the very conspicuous and varied microbial population associated with the food and the gastro-intestinal tract is a critical factor that can influence growth. Beyond the phenomenology, the mechanisms underlying the beneficial effects of microbes on development are being revealed from studies in Drosophila melanogaster, a particularly well suited system for a mechanistic understanding of host/microbiota interactions. Association of otherwise germ-free eggs with specific bacterial strains isolated from Drosophila gut samples can accelerate growth in larvae raised on restrictive diets. We review advances made possible by the exploitation of such simplified gnotobiotic systems in the search for the genes, molecules and physiological adaptations responsible for this effect in both host and microbes. Transposon mutagenesis and gene-trait match studies in bacteria can identify the key microbial genes and metabolites required for the beneficial effect, acetic acid being one of them. In the fly, functional genomic analysis, transcriptomics and metabolomics point to the modulation of systemic insulin and steroid hormone signalling as well as the regulation of intestinal physiology, including the enhancement of intestinal protease activity, as crucial mediators of the host's response.
Collapse
Affiliation(s)
- Maura Strigini
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique, Université Claude Bernard Lyon 1, Unité Mixte de Recherche 5242, Allée d'Italie 46, F-69364 Lyon, Cedex 07, France.
| | - François Leulier
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique, Université Claude Bernard Lyon 1, Unité Mixte de Recherche 5242, Allée d'Italie 46, F-69364 Lyon, Cedex 07, France.
| |
Collapse
|
26
|
Alvarez-Rivero J, Moris-Sanz M, Estacio-Gómez A, Montoliu-Nerin M, Díaz-Benjumea FJ, Herrero P. Variability in the number of abdominal leucokinergic neurons in adult Drosophila melanogaster. J Comp Neurol 2016; 525:639-660. [PMID: 27506156 DOI: 10.1002/cne.24093] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 07/25/2016] [Accepted: 07/25/2016] [Indexed: 12/15/2022]
Abstract
Developmental plasticity allows individuals with the same genotype to show different phenotypes in response to environmental changes. An example of this is how neuronal diversity is protected at the expense of neuronal number under sustained undernourishment during the development of the Drosophila optic lobe. In the development of the Drosophila central nervous system, neuroblasts go through two phases of neurogenesis separated by a period of mitotic quiescence. Although during embryonic development much evidence indicates that both cell number and the cell fates generated by each neuroblast are very precisely controlled in a cell autonomous manner, after quiescence extrinsic factors control the reactivation of neuroblast proliferation in a fashion that has not yet been elucidated. Moreover, there is very little information about whether environmental changes affect lineage progression during postembryonic neurogenesis. Using as a model system the pattern of abdominal leucokinergic neurons (ABLKs), we have analyzed how changes in a set of environmental factors affect the number of ABLKs generated during postembryonic neurogenesis. We describe the variability in ABLK number between individuals and between hemiganglia of the same individual and, by genetic analysis, we identify the bithorax-complex genes and the ecdysone hormone as critical factors in these differences. We also explore the possible adaptive roles involved in this process. J. Comp. Neurol. 525:639-660, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - Marta Moris-Sanz
- Severo Ochoa Center for Molecular Biology (CBMSO), 28049, Madrid, Spain
| | | | | | | | - Pilar Herrero
- Severo Ochoa Center for Molecular Biology (CBMSO), 28049, Madrid, Spain.,Department of Biology, Faculty of Sciences, Autonoma University of Madrid, 28049, Madrid, Spain
| |
Collapse
|
27
|
Chawla G, Deosthale P, Childress S, Wu YC, Sokol NS. A let-7-to-miR-125 MicroRNA Switch Regulates Neuronal Integrity and Lifespan in Drosophila. PLoS Genet 2016; 12:e1006247. [PMID: 27508495 PMCID: PMC4979967 DOI: 10.1371/journal.pgen.1006247] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 07/15/2016] [Indexed: 12/21/2022] Open
Abstract
Messenger RNAs (mRNAs) often contain binding sites for multiple, different microRNAs (miRNAs). However, the biological significance of this feature is unclear, since such co-targeting miRNAs could function coordinately, independently, or redundantly with one another. Here, we show that two co-transcribed Drosophila miRNAs, let-7 and miR-125, non-redundantly regulate a common target, the transcription factor Chronologically Inappropriate Morphogenesis (Chinmo). We first characterize novel adult phenotypes associated with loss of both let-7 and miR-125, which are derived from a common, polycistronic transcript that also encodes a third miRNA, miR-100. Consistent with the coordinate upregulation of all three miRNAs in aging flies, these phenotypes include brain degeneration and shortened lifespan. However, transgenic rescue analysis reveal separable roles for these miRNAs: adult miR-125 but not let-7 mutant phenotypes are associated with ectopic Chinmo expression in adult brains and are suppressed by chinmo reduction. In contrast, let-7 is predominantly responsible for regulating chinmo during nervous system formation. These results indicate that let-7 and miR-125 function during two distinct stages, development and adulthood, rather than acting at the same time. These different activities are facilitated by an increased rate of processing of let-7 during development and a lower rate of decay of the accumulated miR-125 in the adult nervous system. Thus, this work not only establishes a key role for the highly conserved miR-125 in aging. It also demonstrates that two co-transcribed miRNAs function independently during distinct stages to regulate a common target, raising the possibility that such biphasic control may be a general feature of clustered miRNAs. Deregulation of mRNAs that are targeted by multiple miRNAs is a common feature of a number of diseased states including neurodegenerative disorders. The currently accepted model is that the combined action of all binding miRNAs ensures target repression. Here, we show that two co-expressed miRNAs exert distinct outcomes on a common target. While miR-125 extends lifespan by repressing its target, chinmo, in adult brains, let-7 downregulates Chinmo in developing animals. Our results indicate that differential processing and turnover rates of let-7 and miR-125 contribute to this switch in miRNA activity. This study has identified the physiological relevance of the targeting of a single mRNA by multiple miRNAs in a scenario where each miRNA exerts a distinct and non-overlapping outcome.
Collapse
Affiliation(s)
- Geetanjali Chawla
- Department of Biology, Indiana University, Bloomington, Bloomington, Indiana, United States of America
- * E-mail: (GC); (NSS)
| | - Padmini Deosthale
- Department of Biology, Indiana University, Bloomington, Bloomington, Indiana, United States of America
| | - Sue Childress
- Medical Sciences Program, Indiana University, Bloomington, Bloomington, Indiana, United States of America
| | - Yen-chi Wu
- Department of Biology, Indiana University, Bloomington, Bloomington, Indiana, United States of America
| | - Nicholas S. Sokol
- Department of Biology, Indiana University, Bloomington, Bloomington, Indiana, United States of America
- * E-mail: (GC); (NSS)
| |
Collapse
|
28
|
Blumröder R, Glunz A, Dunkelberger BS, Serway CN, Berger C, Mentzel B, de Belle JS, Raabe T. Mcm3 replicative helicase mutation impairs neuroblast proliferation and memory in Drosophila. GENES BRAIN AND BEHAVIOR 2016; 15:647-59. [PMID: 27283469 DOI: 10.1111/gbb.12304] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 06/06/2016] [Accepted: 06/07/2016] [Indexed: 01/03/2023]
Abstract
In the developing Drosophila brain, a small number of neural progenitor cells (neuroblasts) generate in a co-ordinated manner a high variety of neuronal cells by integration of temporal, spatial and cell-intrinsic information. In this study, we performed the molecular and phenotypic characterization of a structural brain mutant called small mushroom bodies (smu), which was isolated in a screen for mutants with altered brain structure. Focusing on the mushroom body neuroblast lineages we show that failure of neuroblasts to generate the normal number of mushroom body neurons (Kenyon cells) is the major cause of the smu phenotype. In particular, the premature loss of mushroom body neuroblasts caused a pronounced effect on the number of late-born Kenyon cells. Neuroblasts showed no obvious defects in processes controlling asymmetric cell division, but generated less ganglion mother cells. Cloning of smu uncovered a single amino acid substitution in an evolutionarily conserved protein interaction domain of the Minichromosome maintenance 3 (Mcm3) protein. Mcm3 is part of the multimeric Cdc45/Mcm/GINS (CMG) complex, which functions as a helicase during DNA replication. We propose that at least in the case of mushroom body neuroblasts, timely replication is not only required for continuous proliferation but also for their survival. The absence of Kenyon cells in smu reduced learning and early phases of conditioned olfactory memory. Corresponding to the absence of late-born Kenyon cells projecting to α'/β' and α/β lobes, smu is profoundly defective in later phases of persistent memory.
Collapse
Affiliation(s)
- R Blumröder
- Institute of Medical Radiation and Cell Research, University of Würzburg, Germany
| | - A Glunz
- Institute of Medical Radiation and Cell Research, University of Würzburg, Germany
| | - B S Dunkelberger
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, USA.,Present address: Las Vegas High School, Las Vegas, NV, USA
| | - C N Serway
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, USA.,Present address: UNM Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM, USA
| | - C Berger
- Institute of Medical Radiation and Cell Research, University of Würzburg, Germany
| | - B Mentzel
- Institute of Medical Radiation and Cell Research, University of Würzburg, Germany.,Present address: State of Lower Saxony, Ministry of the Environment, Energy and Climate Protection, Hannover, Germany
| | - J S de Belle
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, USA.,Present address: Dart Neuroscience LLC, San Diego, CA, USA
| | - T Raabe
- Institute of Medical Radiation and Cell Research, University of Würzburg, Germany.
| |
Collapse
|
29
|
Mellert DJ, Williamson WR, Shirangi TR, Card GM, Truman JW. Genetic and Environmental Control of Neurodevelopmental Robustness in Drosophila. PLoS One 2016; 11:e0155957. [PMID: 27223118 PMCID: PMC4880190 DOI: 10.1371/journal.pone.0155957] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 05/06/2016] [Indexed: 11/19/2022] Open
Abstract
Interindividual differences in neuronal wiring may contribute to behavioral individuality and affect susceptibility to neurological disorders. To investigate the causes and potential consequences of wiring variation in Drosophila melanogaster, we focused on a hemilineage of ventral nerve cord interneurons that exhibits morphological variability. We find that late-born subclasses of the 12A hemilineage are highly sensitive to genetic and environmental variation. Neurons in the second thoracic segment are particularly variable with regard to two developmental decisions, whereas its segmental homologs are more robust. This variability “hotspot” depends on Ultrabithorax expression in the 12A neurons, indicating variability is cell-intrinsic and under genetic control. 12A development is more variable and sensitive to temperature in long-established laboratory strains than in strains recently derived from the wild. Strains with a high frequency of one of the 12A variants also showed a high frequency of animals with delayed spontaneous flight initiation, whereas other wing-related behaviors did not show such a correlation and were thus not overtly affected by 12A variation. These results show that neurodevelopmental robustness is variable and under genetic control in Drosophila and suggest that the fly may serve as a model for identifying conserved gene pathways that stabilize wiring in stressful developmental environments. Moreover, some neuronal lineages are variation hotspots and thus may be more amenable to evolutionary change.
Collapse
Affiliation(s)
- David J. Mellert
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, United States of America
- * E-mail:
| | - W. Ryan Williamson
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, United States of America
| | - Troy R. Shirangi
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, United States of America
| | - Gwyneth M. Card
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, United States of America
| | - James W. Truman
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, United States of America
| |
Collapse
|
30
|
Yang CP, Fu CC, Sugino K, Liu Z, Ren Q, Liu LY, Yao X, Lee LP, Lee T. Transcriptomes of lineage-specific Drosophila neuroblasts profiled by genetic targeting and robotic sorting. Development 2015; 143:411-21. [PMID: 26700685 DOI: 10.1242/dev.129163] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 12/11/2015] [Indexed: 12/21/2022]
Abstract
A brain consists of numerous distinct neurons arising from a limited number of progenitors, called neuroblasts in Drosophila. Each neuroblast produces a specific neuronal lineage. To unravel the transcriptional networks that underlie the development of distinct neuroblast lineages, we marked and isolated lineage-specific neuroblasts for RNA sequencing. We labeled particular neuroblasts throughout neurogenesis by activating a conditional neuroblast driver in specific lineages using various intersection strategies. The targeted neuroblasts were efficiently recovered using a custom-built device for robotic single-cell picking. Transcriptome analysis of mushroom body, antennal lobe and type II neuroblasts compared with non-selective neuroblasts, neurons and glia revealed a rich repertoire of transcription factors expressed among neuroblasts in diverse patterns. Besides transcription factors that are likely to be pan-neuroblast, many transcription factors exist that are selectively enriched or repressed in certain neuroblasts. The unique combinations of transcription factors present in different neuroblasts may govern the diverse lineage-specific neuron fates.
Collapse
Affiliation(s)
- Ching-Po Yang
- Howard Hughes Medical Institute, Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Chi-Cheng Fu
- Howard Hughes Medical Institute, Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA Departments of Bioengineering, Electrical Engineering and Computer Science, and Biophysics Graduate Program, University of California, Berkeley, CA 94720, USA
| | - Ken Sugino
- Howard Hughes Medical Institute, Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Zhiyong Liu
- Howard Hughes Medical Institute, Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Qingzhong Ren
- Howard Hughes Medical Institute, Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Ling-Yu Liu
- Howard Hughes Medical Institute, Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Xiaohao Yao
- Howard Hughes Medical Institute, Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Luke P Lee
- Departments of Bioengineering, Electrical Engineering and Computer Science, and Biophysics Graduate Program, University of California, Berkeley, CA 94720, USA
| | - Tzumin Lee
- Howard Hughes Medical Institute, Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA
| |
Collapse
|
31
|
Yasugi T, Nishimura T. Temporal regulation of the generation of neuronal diversity in Drosophila. Dev Growth Differ 2015; 58:73-87. [PMID: 26690868 DOI: 10.1111/dgd.12245] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 10/10/2015] [Accepted: 10/10/2015] [Indexed: 12/18/2022]
Abstract
For the construction of complex neural networks, the generation of neurons and glia must be tightly regulated both spatially and temporally. One of the major issues in neural development is the generation of a large variety of neurons and glia over time from a relatively small number of neural stem cells. In Drosophila, neural stem cells, called neuroblasts (NBs), have been used as a useful model system to uncover the molecular and cellular machinery involved in the establishment of neural diversity. NBs divide asymmetrically and produce another self-renewing progenitor cell and a differentiating cell. NBs are subdivided into several types based on their location in the central nervous system. Each type of NB has specific features related to the timing of cell generation, cell cycle progression, temporal patterning for neuronal specification, and termination mechanism. In this review, we focus on the molecular mechanisms that regulate the proliferation of NBs and generate a large variety of neuronal and glia subtypes during development.
Collapse
Affiliation(s)
- Tetsuo Yasugi
- Laboratory for Growth Control Signaling, RIKEN Center for Developmental Biology (CDB), 2-2-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Takashi Nishimura
- Laboratory for Growth Control Signaling, RIKEN Center for Developmental Biology (CDB), 2-2-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| |
Collapse
|
32
|
Lovick JK, Kong A, Omoto JJ, Ngo KT, Younossi-Hartenstein A, Hartenstein V. Patterns of growth and tract formation during the early development of secondary lineages in the Drosophila larval brain. Dev Neurobiol 2015; 76:434-51. [PMID: 26178322 DOI: 10.1002/dneu.22325] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 07/09/2015] [Accepted: 07/10/2015] [Indexed: 11/10/2022]
Abstract
The Drosophila brain consists of a relatively small number of invariant, genetically determined lineages which provide a model to study the relationship between gene function and neuronal architecture. In following this long-term goal, we reconstruct the morphology (projection pattern and connectivity) and gene expression patterns of brain lineages throughout development. In this article, we focus on the secondary phase of lineage morphogenesis, from the reactivation of neuroblast proliferation in the first larval instar to the time when proliferation ends and secondary axon tracts have fully extended in the late third larval instar. We have reconstructed the location and projection of secondary lineages at close (4 h) intervals and produced a detailed map in the form of confocal z-projections and digital three-dimensional models of all lineages at successive larval stages. Based on these reconstructions, we could compare the spatio-temporal pattern of axon formation and morphogenetic movements of different lineages in normal brain development. In addition to wild type, we reconstructed lineage morphology in two mutant conditions. (1) Expressing the construct UAS-p35 which rescues programmed cell death we could systematically determine which lineages normally lose hemilineages to apoptosis. (2) so-Gal4-driven expression of dominant-negative EGFR ablated the optic lobe, which allowed us to conclude that the global centrifugal movement normally affecting the cell bodies of lateral lineages in the late larva is causally related to the expansion of the optic lobe, and that the central pattern of axonal projections of these lineages is independent of the presence or absence of the optic lobe.
Collapse
Affiliation(s)
- Jennifer K Lovick
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, California, 90095
| | - Angel Kong
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, California, 90095
| | - Jaison J Omoto
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, California, 90095
| | - Kathy T Ngo
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, California, 90095
| | - Amelia Younossi-Hartenstein
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, California, 90095
| | - Volker Hartenstein
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, California, 90095
| |
Collapse
|
33
|
Carvalho MJA, Mirth CK. Coordinating morphology with behavior during development: an integrative approach from a fly perspective. Front Ecol Evol 2015. [DOI: 10.3389/fevo.2015.00005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
34
|
Urquhart-Cronish M, Sokolowski MB. Gene-environment interplay in Drosophila melanogaster: chronic nutritional deprivation in larval life affects adult fecal output. JOURNAL OF INSECT PHYSIOLOGY 2014; 69:95-100. [PMID: 24929224 DOI: 10.1016/j.jinsphys.2014.06.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Revised: 06/01/2014] [Accepted: 06/05/2014] [Indexed: 06/03/2023]
Abstract
Life history consequences of stress in early life are varied and known to have lasting impacts on the fitness of an organism. Gene-environment interactions play a large role in how phenotypic differences are mediated by stressful conditions during development. Here we use natural allelic 'rover/sitter' variants of the foraging (for) gene and chronic early life nutrient deprivation to investigate gene-environment interactions on excretion phenotypes. Excretion assay analysis and a fully factorial nutritional regimen encompassing the larval and adult life cycle of Drosophila melanogaster were used to assess the effects of larval and adult nutritional stress on adult excretion phenotypes. Natural allelic variants of for exhibited differences in the number of fecal spots when they were nutritionally deprived as larvae and well fed as adults. for mediates the excretion response to chronic early-life nutritional stress in mated female, virgin female, and male rovers and sitters. Transgenic manipulations of for in a sitter genetic background under larval but not adult food deprivation increases the number of fecal spots. Our study shows that food deprivation early in life affects adult excretion phenotypes and these excretion differences are mediated by for.
Collapse
Affiliation(s)
| | - Marla B Sokolowski
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON M5S 3B2, Canada; Child and Brain Development Program, Canadian Institute for Advanced Research, Toronto, ON M5G 1ZB, Canada.
| |
Collapse
|
35
|
Lanet E, Maurange C. Building a brain under nutritional restriction: insights on sparing and plasticity from Drosophila studies. Front Physiol 2014; 5:117. [PMID: 24723892 PMCID: PMC3972452 DOI: 10.3389/fphys.2014.00117] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 03/10/2014] [Indexed: 11/13/2022] Open
Abstract
While the growth of the developing brain is known to be well-protected compared to other organs in the face of nutrient restriction (NR), careful analysis has revealed a range of structural alterations and long-term neurological defects. Yet, despite intensive studies, little is known about the basic principles that govern brain development under nutrient deprivation. For over 20 years, Drosophila has proved to be a useful model for investigating how a functional nervous system develops from a restricted number of neural stem cells (NSCs). Recently, a few studies have started to uncover molecular mechanisms as well as region-specific adaptive strategies that preserve brain functionality and neuronal repertoire under NR, while modulating neuron numbers. Here, we review the developmental constraints that condition the response of the developing brain to NR. We then analyze the recent Drosophila work to highlight key principles that drive sparing and plasticity in different regions of the central nervous system (CNS). As simple animal models start to build a more integrated picture, understanding how the developing brain copes with NR could help in defining strategies to limit damage and improve brain recovery after birth.
Collapse
Affiliation(s)
- Elodie Lanet
- Aix Marseille Université, CNRS, IBDM UMR 7288 Marseille, France
| | - Cédric Maurange
- Aix Marseille Université, CNRS, IBDM UMR 7288 Marseille, France
| |
Collapse
|
36
|
Estacio-Gómez A, Díaz-Benjumea FJ. Roles of Hox genes in the patterning of the central nervous system of Drosophila. Fly (Austin) 2013; 8:26-32. [PMID: 24406332 DOI: 10.4161/fly.27424] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
One of the key aspects of functional nervous systems is the restriction of particular neural subtypes to specific regions, which permits the establishment of differential segment-specific neuromuscular networks. Although Hox genes play a major role in shaping the anterior-posterior body axis during animal development, our understanding of how they act in individual cells to determine particular traits at precise developmental stages is rudimentary. We have used the abdominal leucokinergic neurons (ABLKs) to address this issue. These neurons are generated during both embryonic and postembryonic neurogenesis by the same progenitor neuroblast, and are designated embryonic and postembryonic ABLKs, respectively. We report that the genes of the Bithorax-Complex, Ultrabithorax (Ubx) and abdominal-A (abd-A) are redundantly required to specify the embryonic ABLKs. Moreover, the segment-specific pattern of the postembryonic ABLKs, which are restricted to the most anterior abdominal segments, is controlled by the absence of Abdominal-B (Abd-B), which we found was able to repress the expression of the neuropeptide leucokinin. We discuss this and other examples of how Hox genes generate diversity within the central nervous system of Drosophila.
Collapse
Affiliation(s)
- Alicia Estacio-Gómez
- Centro de Biología Molecular-Severo Ochoa (CSIC-UAM); Universidad Autónoma; Madrid, Spain
| | | |
Collapse
|