1
|
Zhu J, Chen Y, Liu X, Sun Z, Zhang J, Shen T, Niu Y, Xiao Z. Zebrafish as a model for olfactory research: A systematic review from molecular mechanism to technology application. Food Chem 2025; 487:144698. [PMID: 40373719 DOI: 10.1016/j.foodchem.2025.144698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 04/25/2025] [Accepted: 05/08/2025] [Indexed: 05/17/2025]
Abstract
Zebrafish with unique biological traits can serve as an ideal model for studying olfactory mechanisms. This review analyzes their olfactory system, focusing on the regulation of receptor gene expression, mechanisms of odor recognition, and research methodologies including behavioral assays, molecular docking, and biotechnological approaches. Current limitations include predominantly qualitative data, insufficient cross-species comparisons, and unclear mechanisms of environmental modulation. Nevertheless, zebrafish models show significant potential in deciphering human olfaction and applications in neuroscience, biotechnology, healthcare, food safety, and environmental monitoring. Future research should establish cross-species olfactory databases, standardize behavioral assessments, and resolve technical bottlenecks to advance applications in precision medicine, food quality control, and pollutant detection.
Collapse
Affiliation(s)
- JianCai Zhu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - YingQian Chen
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - XiaoJie Liu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - ZhenChun Sun
- Guizhou Academy of Tobacco Science, Guiyang 550081, China
| | - Jing Zhang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - TianYin Shen
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - YunWei Niu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China.
| | - ZuoBing Xiao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China; School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
2
|
Doszyn O, Dulski T, Zmorzynska J. Protocol for microinjection of rapamycin into the zebrafish habenula. STAR Protoc 2025; 6:103566. [PMID: 39799571 PMCID: PMC11772950 DOI: 10.1016/j.xpro.2024.103566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/15/2024] [Accepted: 12/16/2024] [Indexed: 01/15/2025] Open
Abstract
Mechanistic target of rapamycin complex 1 (mTorC1) activity plays a crucial role in brain development. Here, we present an approach for rapamycin microinjection into the habenula of larval zebrafish to achieve localized inhibition of the mTorC1 pathway and explore the role of mTorC1 in habenula function. We describe steps for performing microinjections and maintaining zebrafish larvae before and after the procedure. For complete details on the use and execution of this protocol, please refer to Doszyn et al.1.
Collapse
Affiliation(s)
- Olga Doszyn
- Laboratory of Developmental Neurobiology, International Institute of Molecular Mechanisms and Machines, 02-247 Warsaw, Poland; Laboratory of Molecular and Cellular Neurobiology, International Institute of Molecular and Cell Biology in Warsaw, 02-109 Warsaw, Poland
| | - Tomasz Dulski
- Laboratory of Developmental Neurobiology, International Institute of Molecular Mechanisms and Machines, 02-247 Warsaw, Poland
| | - Justyna Zmorzynska
- Laboratory of Developmental Neurobiology, International Institute of Molecular Mechanisms and Machines, 02-247 Warsaw, Poland; Laboratory of Molecular and Cellular Neurobiology, International Institute of Molecular and Cell Biology in Warsaw, 02-109 Warsaw, Poland.
| |
Collapse
|
3
|
Guichard L, Lagadec R, Michel L, Mayeur H, Fuentès M, Pain J, Heier N, Rougemont Q, Rodicio MC, Barreiro-Iglesias A, Blader P, Schubert M, Mazan S. The lamprey habenula provides an extreme example for the temporal regulation of asymmetric development. Front Cell Dev Biol 2025; 13:1528797. [PMID: 39981098 PMCID: PMC11839670 DOI: 10.3389/fcell.2025.1528797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 01/20/2025] [Indexed: 02/22/2025] Open
Abstract
By their phylogenetic position and their marked epithalamic asymmetries, lampreys are relevant models for understanding the formation and evolution of this trait across vertebrates. In this study, we use a transcriptomic approach to identify novel signature markers to characterize the highly asymmetric, bipartite organization of habenulae in lampreys. Lamprey habenulae are subdivided into two complementary subdomains related, respectively, to the lateral/ventral and the medial/dorsal habenulae of jawed vertebrates: a dorsal, right-restricted subdomain and a bilateral subdomain that includes the left habenula as well as its ventral right counterpart. Analysis of the formation of the lamprey habenula at prolarval and larval stages using a combination of morphological, immunohistochemical, and in situ hybridization approaches highlights a marked asymmetric temporal regulation. The dorsal right subdomain forms and already expresses all identified signature markers in prolarval stages. In contrast, the left and ventral right subdomain appears significantly later, with the first indication of neuronal identity elaboration in these territories being observed in larval stages. As in gnathostomes, Wnt signaling may be involved in the regulation of this unique, asymmetric mode of development, since β-catenin shows asymmetric and highly dynamic nuclear distributions both in neural progenitors and differentiated neuronal precursors of the two habenular subdomains. These data confirm the importance of lampreys to unravel the developmental logic underlying the recurrence and variation of habenular asymmetries in vertebrates and pave the way for future functional analyses.
Collapse
Affiliation(s)
- Lucile Guichard
- CNRS, UMR7232-Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, Sorbonne Université, Banyuls-sur-Mer, France
| | - Ronan Lagadec
- CNRS, UMR7232-Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, Sorbonne Université, Banyuls-sur-Mer, France
| | - Léo Michel
- CNRS, UMR7232-Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, Sorbonne Université, Banyuls-sur-Mer, France
| | - Hélène Mayeur
- CNRS, UMR7232-Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, Sorbonne Université, Banyuls-sur-Mer, France
| | - Michaël Fuentès
- CNRS, UMR7232-Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, Sorbonne Université, Banyuls-sur-Mer, France
| | - Jordan Pain
- CNRS, UMR7232-Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, Sorbonne Université, Banyuls-sur-Mer, France
| | - Noah Heier
- CNRS, UMR7232-Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, Sorbonne Université, Banyuls-sur-Mer, France
| | - Quentin Rougemont
- CNRS, AgroParisTech, Laboratoire Ecologie Systématique et Evolution, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Maria Celina Rodicio
- Departamento de Bioloxía Funcional, Facultade de Bioloxía, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Antón Barreiro-Iglesias
- Departamento de Bioloxía Funcional, Facultade de Bioloxía, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Aquatic One Health Research Center (ARCUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Patrick Blader
- Molecular, Cellular and Developmental Biology (MCD, UMR5077), Centre de Biologie Intégrative (CBI, FR3743), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Michael Schubert
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer, Institut de la Mer de Villefranche, Sorbonne Université, CNRS, Villefranche-sur-Mer, France
| | - Sylvie Mazan
- CNRS, UMR7232-Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, Sorbonne Université, Banyuls-sur-Mer, France
| |
Collapse
|
4
|
Dai Q, Kyuragi Y, Zakia H, Oishi N, Yao L, Aki M, Shibata M, Zhang Z, Wang L, Yang J, Murai T, Fujiwara H. The role of sleep quality in mediating the relationship between habenula volume and resilience. Psychiatry Res 2025; 344:116358. [PMID: 39799818 DOI: 10.1016/j.psychres.2025.116358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/09/2024] [Accepted: 01/08/2025] [Indexed: 01/15/2025]
Abstract
BACKGROUND Our human volumetric MRI study (Dai et al., 2024) demonstrated that habenula (Hb) volume is associated with psychological resilience, a key protective factor against depression. However, the biological mechanisms underpinning this relationship remain unclear. A recent animal study highlighted that neuronal activity in the Hb modulates rapid eye movement (REM) sleep, influencing depressive behaviors during wakefulness. Based on this, we hypothesized that sleep quality mediates the relationship between Hb volume and psychological resilience in humans. METHODS We utilized a deep learning-based automated segmentation model to estimate Hb volume from 3T-MRI T1-weighted images of 84 healthy participants. Correlation analyses were performed to examine the relationship between Hb volume and questionnaire-based assessments of sleep quality. Mediation analysis was then conducted with Hb volume as the independent variable, psychological resilience as the dependent variable, and sleep quality as the mediator. RESULTS Hb volume was found to be negatively correlated with sleep disturbance, indicating that individuals with larger Hb volumes experienced better sleep quality. A lateralization effect was also observed, where greater leftward asymmetry (larger left Hb volume compared to right) was associated with more severe sleep disturbances. Moreover, sleep quality was identified as a mediator in the relationship between Hb volume and psychological resilience. CONCLUSION This study provides preliminary evidence of the association among Hb volume, sleep quality, and resilience. Sleep quality appears to be a critical mediator in the biological processes linking smaller Hb volumes to decreased psychological resilience. Enhancing sleep quality may be a promising approach for bolstering psychological resilience and reducing the risk of depression.
Collapse
Affiliation(s)
- Qi Dai
- Department of Neuropsychiatry, Graduate School of Medicine, Kyoto University, Japan
| | - Yusuke Kyuragi
- Department of Neuropsychiatry, Graduate School of Medicine, Kyoto University, Japan
| | - Halwa Zakia
- Department of Neuropsychiatry, Graduate School of Medicine, Kyoto University, Japan
| | - Naoya Oishi
- Department of Neuropsychiatry, Graduate School of Medicine, Kyoto University, Japan; Human Brain Research Center, Graduate School of Medicine, Kyoto University, Japan
| | - Lichang Yao
- Department of Neuropsychiatry, Graduate School of Medicine, Kyoto University, Japan
| | - Morio Aki
- Department of Neuropsychiatry, Graduate School of Medicine, Kyoto University, Japan
| | - Mami Shibata
- Department of Neuropsychiatry, Graduate School of Medicine, Kyoto University, Japan
| | - Zhilin Zhang
- Department of Neuropsychiatry, Graduate School of Medicine, Kyoto University, Japan; Research Center for Medical Artificial Intelligence, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Luyao Wang
- School of Life Science, Shanghai University, Shanghai, China
| | - Jiajia Yang
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Japan
| | - Toshiya Murai
- Department of Neuropsychiatry, Graduate School of Medicine, Kyoto University, Japan
| | - Hironobu Fujiwara
- Department of Neuropsychiatry, Graduate School of Medicine, Kyoto University, Japan; Artificial Intelligence Ethics and Society Team, RIKEN Center for Advanced Intelligence Project, Saitama, Japan; The General Research Division, Osaka University Research Center on Ethical, Legal and Social Issues, Kyoto, Japan.
| |
Collapse
|
5
|
D'Gama PP, Jeong I, Nygård AM, Jamali A, Yaksi E, Jurisch-Yaksi N. Motile cilia modulate neuronal and astroglial activity in the zebrafish larval brain. Cell Rep 2025; 44:115195. [PMID: 39798091 DOI: 10.1016/j.celrep.2024.115195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 10/11/2024] [Accepted: 12/20/2024] [Indexed: 01/15/2025] Open
Abstract
The brain uses a specialized system to transport cerebrospinal fluid (CSF), consisting of interconnected ventricles lined by motile ciliated ependymal cells. These cells act jointly with CSF secretion and cardiac pressure gradients to regulate CSF dynamics. To date, the link between cilia-mediated CSF flow and brain function is poorly understood. Using zebrafish larvae as a model system, we identify that loss of ciliary motility does not alter progenitor proliferation, brain morphology, or spontaneous neural activity despite leading to an enlarged telencephalic ventricle. We observe altered neuronal responses to photic stimulations in the optic tectum and hindbrain and brain asymmetry defects in the habenula. Finally, we investigate astroglia since they contact CSF and regulate neuronal activity. Our analyses reveal a reduction in astroglial calcium signals during both spontaneous and light-evoked activity. Our findings highlight a role of motile cilia in regulating brain physiology through the modulation of neural and astroglial networks.
Collapse
Affiliation(s)
- Percival P D'Gama
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Erling Skjalgssons Gate 1, 7491 Trondheim, Norway
| | - Inyoung Jeong
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Erling Skjalgssons Gate 1, 7491 Trondheim, Norway
| | - Andreas Moe Nygård
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Erling Skjalgssons Gate 1, 7491 Trondheim, Norway
| | - Ahmed Jamali
- Kavli Institute for Systems Neuroscience and Centre for Algorithms in the Cortex, Norwegian University of Science and Technology, Olav Kyrres Gate 9, 7030 Trondheim, Norway
| | - Emre Yaksi
- Kavli Institute for Systems Neuroscience and Centre for Algorithms in the Cortex, Norwegian University of Science and Technology, Olav Kyrres Gate 9, 7030 Trondheim, Norway; Koç University Research Center for Translational Medicine, Koç University School of Medicine, Davutpaşa Caddesi, No:4, Topkapı, Istanbul 34010, Turkey
| | - Nathalie Jurisch-Yaksi
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Erling Skjalgssons Gate 1, 7491 Trondheim, Norway; Kavli Institute for Systems Neuroscience and Centre for Algorithms in the Cortex, Norwegian University of Science and Technology, Olav Kyrres Gate 9, 7030 Trondheim, Norway.
| |
Collapse
|
6
|
Gobbo A, Messina A, Vallortigara G. Swimming through asymmetry: zebrafish as a model for brain and behavior lateralization. Front Behav Neurosci 2025; 19:1527572. [PMID: 39906337 PMCID: PMC11788415 DOI: 10.3389/fnbeh.2025.1527572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 01/06/2025] [Indexed: 02/06/2025] Open
Abstract
The left and right sides of the brain show anatomical, neurochemical and functional differences. In the past century, brain and behavior lateralization was considered a human peculiarity associated with language and handedness. However, nowadays lateralization is known to occur among all vertebrates, from primates to fish. Fish, especially zebrafish (Danio rerio), have emerged as a crucial model for exploring the evolution and mechanisms of brain asymmetry. This review summarizes recent advances in zebrafish research on brain lateralization, highlighting how genetic tools, imaging, and transgenic methods have been used to investigate left-right asymmetries and their impact on sensory, cognitive, and social behaviors including possible links to neurodevelopmental and neurodegenerative disorders.
Collapse
Affiliation(s)
| | - Andrea Messina
- Centre for Mind/Brain Sciences, University of Trento, Rovereto, Italy
| | | |
Collapse
|
7
|
Lanoizelet M, Michel L, Lagadec R, Mayeur H, Guichard L, Logeux V, Séverac D, Martin K, Klopp C, Marcellini S, Castillo H, Pollet N, Candal E, Debiais-Thibaud M, Boisvert C, Billoud B, Schubert M, Blader P, Mazan S. Analysis of a shark reveals ancient, Wnt-dependent, habenular asymmetries in vertebrates. Nat Commun 2024; 15:10194. [PMID: 39587074 PMCID: PMC11589584 DOI: 10.1038/s41467-024-54042-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 10/30/2024] [Indexed: 11/27/2024] Open
Abstract
The mode of evolution of left-right asymmetries in the vertebrate habenulae remains largely unknown. Using a transcriptomic approach, we show that in a cartilaginous fish, the catshark Scyliorhinus canicula, habenulae exhibit marked asymmetries, in both their medial and lateral components. Comparisons across vertebrates suggest that those identified in lateral habenulae reflect an ancestral gnathostome trait, partially conserved in lampreys, and independently lost in tetrapods and neopterygians. Asymmetry formation involves distinct mechanisms in the catshark lateral and medial habenulae. Medial habenulae are submitted to a marked, asymmetric temporal regulation of neurogenesis, undetectable in their lateral counterparts. Conversely, asymmetry formation in lateral habenulae results from asymmetric choices of neuronal identity in post-mitotic progenitors, a regulation dependent on the repression of Wnt signaling by Nodal on the left. Based on comparisons with the mouse and the zebrafish, we propose that habenular asymmetry formation involves a recurrent developmental logic across vertebrates, which relies on conserved, temporally regulated genetic programs sequentially shaping choices of neuronal identity on both sides and asymmetrically modified by Wnt activity.
Collapse
Affiliation(s)
- Maxence Lanoizelet
- CNRS, Sorbonne Université, UMR7232-Biologie Intégrative des Organismes Marins, Observatoire Océanologique, Banyuls-sur-Mer, France
| | - Léo Michel
- CNRS, Sorbonne Université, UMR7232-Biologie Intégrative des Organismes Marins, Observatoire Océanologique, Banyuls-sur-Mer, France
| | - Ronan Lagadec
- CNRS, Sorbonne Université, UMR7232-Biologie Intégrative des Organismes Marins, Observatoire Océanologique, Banyuls-sur-Mer, France
| | - Hélène Mayeur
- CNRS, Sorbonne Université, UMR7232-Biologie Intégrative des Organismes Marins, Observatoire Océanologique, Banyuls-sur-Mer, France
| | - Lucile Guichard
- CNRS, Sorbonne Université, UMR7232-Biologie Intégrative des Organismes Marins, Observatoire Océanologique, Banyuls-sur-Mer, France
| | - Valentin Logeux
- Centre de Ressources Biologiques Marines, Sorbonne Université, Observatoire Océanologique, UMS 2348, Banyuls-sur-Mer, France
| | - Dany Séverac
- MGX, Université Montpellier, CNRS, INSERM, Montpellier, France
| | - Kyle Martin
- UK Research and Innovation, Biotechnology and Biological Sciences Research Council, Swindon, UK
| | - Christophe Klopp
- Plateforme Bioinformatique, Genotoul, BioinfoMics, UR875 Biométrie et Intelligence Artificielle, INRAE, Castanet-Tolosan, France
| | - Sylvain Marcellini
- Department of Cell Biology, School of Biological Sciences, University of Concepcion, Concepcion, Chile
| | - Héctor Castillo
- Department of Cell Biology, School of Biological Sciences, University of Concepcion, Concepcion, Chile
| | - Nicolas Pollet
- Université Paris-Saclay, CNRS, IRD, Évolution, Génomes, Comportement et Écologie, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Eva Candal
- Departament of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | | | - Catherine Boisvert
- School of Molecular and Life Sciences, Curtin University, Perth, WA, Australia
| | - Bernard Billoud
- UMR8227, CNRS-Sorbonne Université, Station Biologique, Roscoff, France
| | - Michael Schubert
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer, Institut de la Mer de Villefranche, Sorbonne Université, CNRS, Villefranche-sur-Mer, France
| | - Patrick Blader
- Centre de Biologie Intégrative (CBI, FR 3743), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Sylvie Mazan
- CNRS, Sorbonne Université, UMR7232-Biologie Intégrative des Organismes Marins, Observatoire Océanologique, Banyuls-sur-Mer, France.
| |
Collapse
|
8
|
Turrini L, Ricci P, Sorelli M, de Vito G, Marchetti M, Vanzi F, Pavone FS. Two-photon all-optical neurophysiology for the dissection of larval zebrafish brain functional and effective connectivity. Commun Biol 2024; 7:1261. [PMID: 39367042 PMCID: PMC11452506 DOI: 10.1038/s42003-024-06731-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 08/13/2024] [Indexed: 10/06/2024] Open
Abstract
One of the most audacious goals of modern neuroscience is unraveling the complex web of causal relations underlying the activity of neuronal populations on a whole-brain scale. This endeavor, which was prohibitive only a couple of decades ago, has recently become within reach owing to the advancements in optical methods and the advent of genetically encoded indicators/actuators. These techniques, applied to the translucent larval zebrafish have enabled recording and manipulation of the activity of extensive neuronal populations spanning the entire vertebrate brain. Here, we present a custom two-photon optical system that couples light-sheet imaging and 3D excitation with acousto-optic deflectors for simultaneous high-speed volumetric recording and optogenetic stimulation. By employing a zebrafish line with pan-neuronal expression of both the calcium reporter GCaMP6s and the red-shifted opsin ReaChR, we implemented a crosstalk-free, noninvasive all-optical approach and applied it to reconstruct the functional and effective connectivity of the left habenula.
Collapse
Affiliation(s)
- Lapo Turrini
- National Institute of Optics, National Research Council (INO-CNR), Sesto Fiorentino, Italy.
- European Laboratory for Non-linear Spectroscopy (LENS), Sesto Fiorentino, Italy.
- Department of Physics and Astronomy, University of Florence, Sesto Fiorentino, Italy.
| | - Pietro Ricci
- Department of Physics and Astronomy, University of Florence, Sesto Fiorentino, Italy
- Department of Applied Physics, University of Barcelona, Barcelona, Spain
| | - Michele Sorelli
- European Laboratory for Non-linear Spectroscopy (LENS), Sesto Fiorentino, Italy
- Department of Physics and Astronomy, University of Florence, Sesto Fiorentino, Italy
| | - Giuseppe de Vito
- National Institute of Optics, National Research Council (INO-CNR), Sesto Fiorentino, Italy
- European Laboratory for Non-linear Spectroscopy (LENS), Sesto Fiorentino, Italy
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | | | - Francesco Vanzi
- European Laboratory for Non-linear Spectroscopy (LENS), Sesto Fiorentino, Italy
- Department of Biology, University of Florence, Sesto Fiorentino, Italy
| | - Francesco Saverio Pavone
- National Institute of Optics, National Research Council (INO-CNR), Sesto Fiorentino, Italy.
- European Laboratory for Non-linear Spectroscopy (LENS), Sesto Fiorentino, Italy.
- Department of Physics and Astronomy, University of Florence, Sesto Fiorentino, Italy.
| |
Collapse
|
9
|
Lapraz F, Fixary-Schuster C, Noselli S. Brain bilateral asymmetry - insights from nematodes, zebrafish, and Drosophila. Trends Neurosci 2024; 47:803-818. [PMID: 39322499 DOI: 10.1016/j.tins.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/16/2024] [Accepted: 08/06/2024] [Indexed: 09/27/2024]
Abstract
Chirality is a fundamental trait of living organisms, encompassing the homochirality of biological molecules and the left-right (LR) asymmetry of visceral organs and the brain. The nervous system in bilaterian organisms displays a lateralized organization characterized by the presence of asymmetrical neuronal circuits and brain functions that are predominantly localized within one hemisphere. Although body asymmetry is relatively well understood, and exhibits robust phenotypic expression and regulation via conserved molecular mechanisms across phyla, current findings indicate that the asymmetry of the nervous system displays greater phenotypic, genetic, and evolutionary variability. In this review we explore the use of nematode, zebrafish, and Drosophila genetic models to investigate neuronal circuit asymmetry. We discuss recent discoveries in the context of body-brain concordance and highlight the distinct characteristics of nervous system asymmetry and its cognitive correlates.
Collapse
|
10
|
Michel L, Molina P, Mameli M. The behavioral relevance of a modular organization in the lateral habenula. Neuron 2024; 112:2669-2685. [PMID: 38772374 DOI: 10.1016/j.neuron.2024.04.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 05/23/2024]
Abstract
Behavioral strategies for survival rely on the updates the brain continuously makes based on the surrounding environment. External stimuli-neutral, positive, and negative-relay core information to the brain, where a complex anatomical network rapidly organizes actions, including approach or escape, and regulates emotions. Human neuroimaging and physiology in nonhuman primates, rodents, and teleosts suggest a pivotal role of the lateral habenula in translating external information into survival behaviors. Here, we review the literature describing how discrete habenular modules-reflecting the molecular signatures, anatomical connectivity, and functional components-are recruited by environmental stimuli and cooperate to prompt specific behavioral outcomes. We argue that integration of these findings in the context of valence processing for reinforcing or discouraging behaviors is necessary, offering a compelling model to guide future work.
Collapse
Affiliation(s)
- Leo Michel
- The Department of Fundamental Neuroscience, The University of Lausanne, 1005 Lausanne, Switzerland
| | - Patricia Molina
- The Department of Fundamental Neuroscience, The University of Lausanne, 1005 Lausanne, Switzerland
| | - Manuel Mameli
- The Department of Fundamental Neuroscience, The University of Lausanne, 1005 Lausanne, Switzerland; Inserm, UMR-S 839, 75005 Paris, France.
| |
Collapse
|
11
|
Jiang X, Huang T, Chang F, Song Y, Wu D. Effects of Endoscopic Sinus Surgery on Olfactory Bulb Volume among Patients with Chronic Rhinosinusitis: A Systematic Review and Meta-Analysis. Am J Rhinol Allergy 2024; 38:251-257. [PMID: 38549395 DOI: 10.1177/19458924241241874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
BACKGROUND Endoscopic sinus surgery (ESS) could significantly improve olfactory function among patients with chronic rhinosinusitis (CRS). This study aimed to perform a meta-analysis to evaluate the effect of ESS on the olfactory bulb volume (OBV) among patients with CRS. METHODS A systemic search of PubMed, Medline, Embase, Web of Science, and other databases was conducted to identify studies assessing OBV changes in patients with CRS after ESS utilizing magnetic resonance imaging. RESULTS A total of four studies with 168 participants were included. Comparing the changes in OBV of patients with CRS before and after surgery within 3-6 months, the ESS significantly improved the overall OBV (P = 0.005, I2 = 66%), with the left OBV increased by 5.57mm3 (P = 0.84, I2 = 0%), and the right OBV increased by 8.63mm3 (P = 0.09, I2 = 53%). A difference in OBV persists between healthy controls and patients with CRS 3-6 months after ESS. The overall OBV of patients with CRS after ESS was significantly smaller than controls (mean difference = -3.84, P = 0.04), with a mean difference of 4.13mm3 on the left side (P = 0.72, I2 = 0%), and a mean difference of 3.22mm3 on the right side (P = 0.0001, I2 = 89%). CONCLUSIONS ESS significantly increases the OBV among patients with CRS.
Collapse
Affiliation(s)
- Xincen Jiang
- Department of Otolaryngology-Head and Neck Surgery, Peking University Third Hospital, Beijing, PR China
- Department of Medicine, Peking University, Beijing, China
| | - Tianhao Huang
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, People's Republic of China
| | - Feifan Chang
- Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
| | - Yu Song
- Department of Otolaryngology-Head and Neck Surgery, Peking University Third Hospital, Beijing, PR China
| | - Dawei Wu
- Department of Otolaryngology-Head and Neck Surgery, Peking University Third Hospital, Beijing, PR China
| |
Collapse
|
12
|
D’Gama PP, Jeong I, Nygård AM, Trinh AT, Yaksi E, Jurisch-Yaksi N. Ciliogenesis defects after neurulation impact brain development and neuronal activity in larval zebrafish. iScience 2024; 27:110078. [PMID: 38868197 PMCID: PMC11167523 DOI: 10.1016/j.isci.2024.110078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 03/06/2024] [Accepted: 05/19/2024] [Indexed: 06/14/2024] Open
Abstract
Cilia are slender, hair-like structures extending from cell surfaces and playing essential roles in diverse physiological processes. Within the nervous system, primary cilia contribute to signaling and sensory perception, while motile cilia facilitate cerebrospinal fluid flow. Here, we investigated the impact of ciliary loss on neural circuit development using a zebrafish line displaying ciliogenesis defects. We found that cilia defects after neurulation affect neurogenesis and brain morphology, especially in the cerebellum, and lead to altered gene expression profiles. Using whole brain calcium imaging, we measured reduced light-evoked and spontaneous neuronal activity in all brain regions. By shedding light on the intricate role of cilia in neural circuit formation and function in the zebrafish, our work highlights their evolutionary conserved role in the brain and sets the stage for future analysis of ciliopathy models.
Collapse
Affiliation(s)
- Percival P. D’Gama
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Erling Skalgssons gate 1, 7030 Trondheim, Norway
| | - Inyoung Jeong
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Erling Skalgssons gate 1, 7030 Trondheim, Norway
| | - Andreas Moe Nygård
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Erling Skalgssons gate 1, 7030 Trondheim, Norway
| | - Anh-Tuan Trinh
- Kavli Institute for Systems Neuroscience and Centre for Algorithms in the Cortex, Norwegian University of Science and Technology, Olav Kyrres Gate 9, 7030 Trondheim, Norway
| | - Emre Yaksi
- Kavli Institute for Systems Neuroscience and Centre for Algorithms in the Cortex, Norwegian University of Science and Technology, Olav Kyrres Gate 9, 7030 Trondheim, Norway
- Koç University Research Center for Translational Medicine, Koç University School of Medicine, Davutpaşa Caddesi, No:4, Topkapı 34010, Istanbul, Turkey
| | - Nathalie Jurisch-Yaksi
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Erling Skalgssons gate 1, 7030 Trondheim, Norway
- Kavli Institute for Systems Neuroscience and Centre for Algorithms in the Cortex, Norwegian University of Science and Technology, Olav Kyrres Gate 9, 7030 Trondheim, Norway
| |
Collapse
|
13
|
Doszyn O, Kedra M, Zmorzynska J. Hyperactive mTORC1 disrupts habenula function and light preference in zebrafish model of Tuberous sclerosis complex. iScience 2024; 27:110149. [PMID: 38947496 PMCID: PMC11214417 DOI: 10.1016/j.isci.2024.110149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/26/2024] [Accepted: 05/27/2024] [Indexed: 07/02/2024] Open
Abstract
Mechanistic target of rapamycin complex 1 (mTORC1) is an integration hub for extracellular and intracellular signals necessary for brain development. Hyperactive mTORC1 is found in autism spectrum disorder (ASD) characterized by atypical reactivity to sensory stimuli, among other symptoms. In Tuberous sclerosis complex (TSC) inactivating mutations in the TSC1 or TSC2 genes result in hyperactivation of the mTORC1 pathway and ASD. Here, we show that lack of light preference of the TSC zebrafish model, tsc2 vu242/vu242 is caused by aberrant processing of light stimuli in the left dorsal habenula and tsc2 vu242/vu242 fish have impaired function of the left dorsal habenula, in which neurons exhibited higher activity and lacked habituation to the light stimuli. These characteristics were rescued by rapamycin. We thus discovered that hyperactive mTorC1 caused aberrant habenula function resulting in lack of light preference. Our results suggest that mTORC1 hyperactivity contributes to atypical reactivity to sensory stimuli in ASD.
Collapse
Affiliation(s)
- Olga Doszyn
- Laboratory of Molecular and Cellular Neurobiology, International Institute of Molecular and Cell Biology in Warsaw, 02-109 Warsaw, Poland
- Laboratory of Developmental Neurobiology, International Institute of Molecular Mechanisms and Machines, 02-247 Warsaw, Poland
| | - Magdalena Kedra
- Laboratory of Molecular and Cellular Neurobiology, International Institute of Molecular and Cell Biology in Warsaw, 02-109 Warsaw, Poland
| | - Justyna Zmorzynska
- Laboratory of Molecular and Cellular Neurobiology, International Institute of Molecular and Cell Biology in Warsaw, 02-109 Warsaw, Poland
- Laboratory of Developmental Neurobiology, International Institute of Molecular Mechanisms and Machines, 02-247 Warsaw, Poland
| |
Collapse
|
14
|
Spikol ED, Cheng J, Macurak M, Subedi A, Halpern ME. Genetically defined nucleus incertus neurons differ in connectivity and function. eLife 2024; 12:RP89516. [PMID: 38819436 PMCID: PMC11142643 DOI: 10.7554/elife.89516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024] Open
Abstract
The nucleus incertus (NI), a conserved hindbrain structure implicated in the stress response, arousal, and memory, is a major site for production of the neuropeptide relaxin-3. On the basis of goosecoid homeobox 2 (gsc2) expression, we identified a neuronal cluster that lies adjacent to relaxin 3a (rln3a) neurons in the zebrafish analogue of the NI. To delineate the characteristics of the gsc2 and rln3a NI neurons, we used CRISPR/Cas9 targeted integration to drive gene expression specifically in each neuronal group, and found that they differ in their efferent and afferent connectivity, spontaneous activity, and functional properties. gsc2 and rln3a NI neurons have widely divergent projection patterns and innervate distinct subregions of the midbrain interpeduncular nucleus (IPN). Whereas gsc2 neurons are activated more robustly by electric shock, rln3a neurons exhibit spontaneous fluctuations in calcium signaling and regulate locomotor activity. Our findings define heterogeneous neurons in the NI and provide new tools to probe its diverse functions.
Collapse
Affiliation(s)
- Emma D Spikol
- Department of Molecular and Systems Biology, Geisel School of Medicine at DartmouthHanoverUnited States
- Department of Neuroscience, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Ji Cheng
- Department of Molecular and Systems Biology, Geisel School of Medicine at DartmouthHanoverUnited States
- Department of Biology, Johns Hopkins UniversityBaltimoreUnited States
| | - Michelle Macurak
- Department of Biology, Johns Hopkins UniversityBaltimoreUnited States
| | - Abhignya Subedi
- Department of Biology, Johns Hopkins UniversityBaltimoreUnited States
| | - Marnie E Halpern
- Department of Molecular and Systems Biology, Geisel School of Medicine at DartmouthHanoverUnited States
- Department of Neuroscience, Johns Hopkins University School of MedicineBaltimoreUnited States
- Department of Biology, Johns Hopkins UniversityBaltimoreUnited States
| |
Collapse
|
15
|
Powell GT, Faro A, Zhao Y, Stickney H, Novellasdemunt L, Henriques P, Gestri G, White ER, Ren J, Lu W, Young RM, Hawkins TA, Cavodeassi F, Schwarz Q, Dreosti E, Raible DW, Li VSW, Wright GJ, Jones EY, Wilson SW. Cachd1 interacts with Wnt receptors and regulates neuronal asymmetry in the zebrafish brain. Science 2024; 384:573-579. [PMID: 38696577 PMCID: PMC7615972 DOI: 10.1126/science.ade6970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 03/27/2024] [Indexed: 05/04/2024]
Abstract
Neurons on the left and right sides of the nervous system often show asymmetric properties, but how such differences arise is poorly understood. Genetic screening in zebrafish revealed that loss of function of the transmembrane protein Cachd1 resulted in right-sided habenula neurons adopting left-sided identity. Cachd1 is expressed in neuronal progenitors, functions downstream of asymmetric environmental signals, and influences timing of the normally asymmetric patterns of neurogenesis. Biochemical and structural analyses demonstrated that Cachd1 can bind simultaneously to Lrp6 and Frizzled family Wnt co-receptors. Consistent with this, lrp6 mutant zebrafish lose asymmetry in the habenulae, and epistasis experiments support a role for Cachd1 in modulating Wnt pathway activity in the brain. These studies identify Cachd1 as a conserved Wnt receptor-interacting protein that regulates lateralized neuronal identity in the zebrafish brain.
Collapse
Affiliation(s)
- Gareth T. Powell
- Cell and Developmental Biology, University College London; London, WC1E 6BT, UK
- Wellcome Trust Sanger Institute; Cambridge CB10 1SA, UK
| | - Ana Faro
- Cell and Developmental Biology, University College London; London, WC1E 6BT, UK
| | - Yuguang Zhao
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford; Oxford, OX3 7BN, UK
| | - Heather Stickney
- Cell and Developmental Biology, University College London; London, WC1E 6BT, UK
- Departments of Otolaryngology-HNS and Biological Structure, University of Washington; Seattle, WA 98195-7420, USA
- Ambry Genetics; Aliso Viejo, CA 92656, USA
| | - Laura Novellasdemunt
- The Francis Crick Institute; London, NW1 1AT, UK
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology; 08028, Barcelona, Spain
| | - Pedro Henriques
- Cell and Developmental Biology, University College London; London, WC1E 6BT, UK
| | - Gaia Gestri
- Cell and Developmental Biology, University College London; London, WC1E 6BT, UK
| | | | - Jingshan Ren
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford; Oxford, OX3 7BN, UK
| | - Weixian Lu
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford; Oxford, OX3 7BN, UK
| | - Rodrigo M. Young
- Cell and Developmental Biology, University College London; London, WC1E 6BT, UK
- Institute of Ophthalmology, University College London; London, EC1V 9EL, UK
- Center for Integrative Biology, Facultad de Ciencias, Universidad Mayor; Camino La Piramide 5750, 8580745, Santiago, Chile
| | - Thomas A. Hawkins
- Cell and Developmental Biology, University College London; London, WC1E 6BT, UK
| | - Florencia Cavodeassi
- Cell and Developmental Biology, University College London; London, WC1E 6BT, UK
- St. George’s, University of London; London, SW17 0RE, UK
| | - Quenten Schwarz
- Institute of Ophthalmology, University College London; London, EC1V 9EL, UK
| | - Elena Dreosti
- Cell and Developmental Biology, University College London; London, WC1E 6BT, UK
| | - David W. Raible
- Departments of Otolaryngology-HNS and Biological Structure, University of Washington; Seattle, WA 98195-7420, USA
| | | | - Gavin J. Wright
- Wellcome Trust Sanger Institute; Cambridge CB10 1SA, UK
- Department of Biology, Hull York Medical School, York Biomedical Research Institute, University of York; York, YO10 5DD, UK
| | - E. Yvonne Jones
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford; Oxford, OX3 7BN, UK
| | - Stephen W. Wilson
- Cell and Developmental Biology, University College London; London, WC1E 6BT, UK
| |
Collapse
|
16
|
Cheng RK, Jagannathan NS, Kathrada AI, Jesuthasan S, Tucker-Kellogg L. Computational modeling of light processing in the habenula and dorsal raphe based on laser ablation of functionally-defined cells. BMC Neurosci 2024; 25:22. [PMID: 38627616 PMCID: PMC11022313 DOI: 10.1186/s12868-024-00866-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 03/26/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND The habenula is a major regulator of serotonergic neurons in the dorsal raphe, and thus of brain state. The functional connectivity between these regions is incompletely characterized. Here, we use the ability of changes in irradiance to trigger reproducible changes in activity in the habenula and dorsal raphe of zebrafish larvae, combined with two-photon laser ablation of specific neurons, to establish causal relationships. RESULTS Neurons in the habenula can show an excitatory response to the onset or offset of light, while neurons in the anterior dorsal raphe display an inhibitory response to light, as assessed by calcium imaging. The raphe response changed in a complex way following ablations in the dorsal habenula (dHb) and ventral habenula (vHb). After ablation of the ON cells in the vHb (V-ON), the raphe displayed no response to light. After ablation of the OFF cells in the vHb (V-OFF), the raphe displayed an excitatory response to darkness. After ablation of the ON cells in the dHb (D-ON), the raphe displayed an excitatory response to light. We sought to develop in silico models that could recapitulate the response of raphe neurons as a function of the ON and OFF cells of the habenula. Early attempts at mechanistic modeling using ordinary differential equation (ODE) failed to capture observed raphe responses accurately. However, a simple two-layer fully connected neural network (NN) model was successful at recapitulating the diversity of observed phenotypes with root-mean-squared error values ranging from 0.012 to 0.043. The NN model also estimated the raphe response to ablation of D-off cells, which can be verified via future experiments. CONCLUSION Lesioning specific cells in different regions of habenula led to qualitatively different responses to light in the dorsal raphe. A simple neural network is capable of mimicking experimental observations. This work illustrates the ability of computational modeling to integrate complex observations into a simple compact formalism for generating testable hypotheses, and for guiding the design of biological experiments.
Collapse
Affiliation(s)
- Ruey-Kuang Cheng
- Lee Kong Chian School of Medicine, Nanyang Technological University, 636921, Singapore, Singapore
- Neural Circuitry and Behavior Laboratory, Institute of Molecular and Cell Biology, A*STAR, 138673, Singapore, Singapore
| | - N Suhas Jagannathan
- Centre for Computational Biology, and Duke-NUS Graduate Medical School Singapore, 8 College Road, 169857, Singapore, Singapore
- Program in Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School Singapore, 8 College Road, 169857, Singapore, Singapore
| | - Ahmad Ismat Kathrada
- Lee Kong Chian School of Medicine, Nanyang Technological University, 636921, Singapore, Singapore
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, 117583, Singapore, Singapore
| | - Suresh Jesuthasan
- Lee Kong Chian School of Medicine, Nanyang Technological University, 636921, Singapore, Singapore.
- Neural Circuitry and Behavior Laboratory, Institute of Molecular and Cell Biology, A*STAR, 138673, Singapore, Singapore.
| | - Lisa Tucker-Kellogg
- Centre for Computational Biology, and Duke-NUS Graduate Medical School Singapore, 8 College Road, 169857, Singapore, Singapore.
- Program in Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School Singapore, 8 College Road, 169857, Singapore, Singapore.
| |
Collapse
|
17
|
Habicher J, Sanvido I, Bühler A, Sartori S, Piccoli G, Carl M. The Risk Genes for Neuropsychiatric Disorders negr1 and opcml Are Expressed throughout Zebrafish Brain Development. Genes (Basel) 2024; 15:363. [PMID: 38540422 PMCID: PMC10969947 DOI: 10.3390/genes15030363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 06/14/2024] Open
Abstract
The immunoglobulin LAMP/OBCAM/NTM (IgLON) family of cell adhesion molecules comprises five members known for their involvement in establishing neural circuit connectivity, fine-tuning, and maintenance. Mutations in IgLON genes result in alterations in these processes and can lead to neuropsychiatric disorders. The two IgLON family members NEGR1 and OPCML share common links with several of them, such as schizophrenia, autism, and major depressive disorder. However, the onset and the underlying molecular mechanisms have remained largely unresolved, hampering progress in developing therapies. NEGR1 and OPCML are evolutionarily conserved in teleosts like the zebrafish (Danio rerio), which is excellently suited for disease modelling and large-scale screening for disease-ameliorating compounds. To explore the potential applicability of zebrafish for extending our knowledge on NEGR1- and OPCML-linked disorders and to develop new therapeutic strategies, we investigated the spatio-temporal expression of the two genes during early stages of development. negr1 and opcml are expressed maternally and subsequently in partially distinct domains of conserved brain regions. Other areas of expression in zebrafish have not been reported in mammals to date. Our results indicate that NEGR1 and OPCML may play roles in neural circuit development and function at stages earlier than previously anticipated. A detailed functional analysis of the two genes based on our findings could contribute to understanding the mechanistic basis of related psychiatric disorders.
Collapse
Affiliation(s)
- Judith Habicher
- Department of Cellular, Computational and Integrative Biology, CIBIO, University of Trento, 38123 Trento, Italy; (J.H.); (I.S.); (A.B.); (S.S.); (G.P.)
| | - Ilaria Sanvido
- Department of Cellular, Computational and Integrative Biology, CIBIO, University of Trento, 38123 Trento, Italy; (J.H.); (I.S.); (A.B.); (S.S.); (G.P.)
| | - Anja Bühler
- Department of Cellular, Computational and Integrative Biology, CIBIO, University of Trento, 38123 Trento, Italy; (J.H.); (I.S.); (A.B.); (S.S.); (G.P.)
- Molecular Cardiology, Department of Internal Medicine II, University of Ulm, 89081 Ulm, Germany
| | - Samuele Sartori
- Department of Cellular, Computational and Integrative Biology, CIBIO, University of Trento, 38123 Trento, Italy; (J.H.); (I.S.); (A.B.); (S.S.); (G.P.)
| | - Giovanni Piccoli
- Department of Cellular, Computational and Integrative Biology, CIBIO, University of Trento, 38123 Trento, Italy; (J.H.); (I.S.); (A.B.); (S.S.); (G.P.)
| | - Matthias Carl
- Department of Cellular, Computational and Integrative Biology, CIBIO, University of Trento, 38123 Trento, Italy; (J.H.); (I.S.); (A.B.); (S.S.); (G.P.)
| |
Collapse
|
18
|
Palieri V, Paoli E, Wu YK, Haesemeyer M, Grunwald Kadow IC, Portugues R. The preoptic area and dorsal habenula jointly support homeostatic navigation in larval zebrafish. Curr Biol 2024; 34:489-504.e7. [PMID: 38211586 PMCID: PMC10849091 DOI: 10.1016/j.cub.2023.12.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 11/22/2023] [Accepted: 12/11/2023] [Indexed: 01/13/2024]
Abstract
Animals must maintain physiological processes within an optimal temperature range despite changes in their environment. Through behavioral assays, whole-brain functional imaging, and neural ablations, we show that larval zebrafish, an ectothermic vertebrate, achieves thermoregulation through homeostatic navigation-non-directional and directional movements toward the temperature closest to its physiological setpoint. A brain-wide circuit encompassing several brain regions enables this behavior. We identified the preoptic area of the hypothalamus (PoA) as a key brain structure in triggering non-directional reorientation when thermal conditions are worsening. This result shows an evolutionary conserved role of the PoA as principal thermoregulator of the brain also in ectotherms. We further show that the habenula (Hb)-interpeduncular nucleus (IPN) circuit retains a short-term memory of the sensory history to support the generation of coherent directed movements even in the absence of continuous sensory cues. We finally provide evidence that this circuit may not be exclusive for temperature but may convey a more abstract representation of relative valence of physiologically meaningful stimuli regardless of their specific identity to enable homeostatic navigation.
Collapse
Affiliation(s)
- Virginia Palieri
- Institute of Neuroscience, Technical University of Munich, Biedersteiner Strasse 29, 80802 Munich, Germany; School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Emanuele Paoli
- Institute of Neuroscience, Technical University of Munich, Biedersteiner Strasse 29, 80802 Munich, Germany
| | - You Kure Wu
- Institute of Neuroscience, Technical University of Munich, Biedersteiner Strasse 29, 80802 Munich, Germany
| | - Martin Haesemeyer
- Department of Neuroscience, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Ilona C Grunwald Kadow
- School of Life Sciences, Technical University of Munich, Freising, Germany; Institute of Physiology II, University of Bonn, Medical Faculty (UKB), Nussallee 11, 53115 Bonn, Germany.
| | - Ruben Portugues
- Institute of Neuroscience, Technical University of Munich, Biedersteiner Strasse 29, 80802 Munich, Germany; Munich Cluster of Systems Neurology (SyNergy), Feodor-Lynen-Str. 17, 81377 Munich, Germany.
| |
Collapse
|
19
|
Petrucco L, Lavian H, Wu YK, Svara F, Štih V, Portugues R. Neural dynamics and architecture of the heading direction circuit in zebrafish. Nat Neurosci 2023; 26:765-773. [PMID: 37095397 PMCID: PMC10166860 DOI: 10.1038/s41593-023-01308-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 03/16/2023] [Indexed: 04/26/2023]
Abstract
Animals generate neural representations of their heading direction. Notably, in insects, heading direction is topographically represented by the activity of neurons in the central complex. Although head direction cells have been found in vertebrates, the connectivity that endows them with their properties is unknown. Using volumetric lightsheet imaging, we find a topographical representation of heading direction in a neuronal network in the zebrafish anterior hindbrain, where a sinusoidal bump of activity rotates following directional swims of the fish and is otherwise stable over many seconds. Electron microscopy reconstructions show that, although the cell bodies are located in a dorsal region, these neurons arborize in the interpeduncular nucleus, where reciprocal inhibitory connectivity stabilizes the ring attractor network that encodes heading. These neurons resemble those found in the fly central complex, showing that similar circuit architecture principles may underlie the representation of heading direction across the animal kingdom and paving the way to an unprecedented mechanistic understanding of these networks in vertebrates.
Collapse
Affiliation(s)
- Luigi Petrucco
- Institute of Neuroscience, Technical University of Munich, Munich, Germany
- Graduate School of Systemic Neurosciences, Ludwig-Maximilian University, Munich, Germany
| | - Hagar Lavian
- Institute of Neuroscience, Technical University of Munich, Munich, Germany
| | - You Kure Wu
- Institute of Neuroscience, Technical University of Munich, Munich, Germany
| | - Fabian Svara
- Department of Computational Neuroethology, Max Planck Institute for Neurobiology of Behavior - caesar, Bonn, Germany
| | | | - Ruben Portugues
- Institute of Neuroscience, Technical University of Munich, Munich, Germany.
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
20
|
Zhu Z, Wang S, Lee T, Zhang R. Habenula functional connectivity variability increases with disease severity in individuals with major depression. J Affect Disord 2023; 333:216-224. [PMID: 37088249 DOI: 10.1016/j.jad.2023.04.082] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 03/23/2023] [Accepted: 04/18/2023] [Indexed: 04/25/2023]
Abstract
BACKGROUND Increasing evidence has suggested the significant relationships between major depressive disorder (MDD) and the neural abnormalities of the Habenula (Hb). Yet, previous research on the relationships between Hb and MDD mainly focuses on the static descriptions of their functional connectivity. However, recent work suggests that the connectivity patterns are indeed dynamic, though related analysis and interpretation remain scarce. METHODS Using seed-based resting-state fMRI, the static (sFC) and dynamic functional connectivity (dFC) between the Hb and whole-brain were calculated, including 51 clinical participants (MDDs) and 45 healthy controls (HCs). Association between the aberrant connectivity patterns and depressive symptomatology was also analyzed. RESULTS Compared with the HCs, MDDs exhibited increased sFC from the left Hb to the right inferior temporal gyrus and left superior frontal gyrus (SFG), while sFC to the right calcarine gyrus decreased. Notably, we observed that dFC between the left Hb and the right supplementary motor area, right postcentral gyrus (PoCG), left inferior frontal gyrus as well as left occipital gyrus was weak in MDDs. Furthermore, sFC between the Hb and SFG correlated positively with the measured attention-related cognitive deficits. Importantly, there was a positive correlation between dFC between the Hb and PoCG and depressive severity. CONCLUSIONS The findings indicate that the anomalous neural circuitry of Hb may underpin impaired attention disengagement, emotional modulation and motor inhibition associated with depressive symptoms such as rumination disposition and psychomotor retardation. This may open new avenues for studying the neuropathology mechanisms and guiding new treatment strategies for MDD.
Collapse
Affiliation(s)
- Ziqing Zhu
- Cognitive Control and Brain Healthy Laboratory, Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Sibin Wang
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Tatia Lee
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China; Laboratory of Neuropsychology and Human Neuroscience, The University of Hong Kong, Hong Kong, China; Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong-Macao Greater Bay Area, China.
| | - Ruibin Zhang
- Cognitive Control and Brain Healthy Laboratory, Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, China; State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China; Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong-Macao Greater Bay Area, China; Department of Psychiatry, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
21
|
Kinoshita M, Okamoto H. Acetylcholine potentiates glutamate transmission from the habenula to the interpeduncular nucleus in losers of social conflict. Curr Biol 2023:S0960-9822(23)00445-1. [PMID: 37105168 DOI: 10.1016/j.cub.2023.03.087] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/02/2023] [Accepted: 03/31/2023] [Indexed: 04/29/2023]
Abstract
Switching behaviors from aggression to submission in losers at the end of conspecific social fighting is essential to avoid serious injury or death. We have previously shown that the experience of defeat induces a loser-specific potentiation in the habenula (Hb)-interpeduncular nucleus (IPN) and show here that this is induced by acetylcholine. Calcium imaging and electrophysiological recording using acute brain slices from winners and losers of fighting behavior in zebrafish revealed that the ventral IPN (vIPN) dominates over the dorsal IPN in the neural response to Hb stimulation in losers. We also show that GluA1 α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunits on the postsynaptic membrane increased in the vIPN of losers. Furthermore, these loser-specific neural properties disappeared in the presence of an α7 nicotinic acetylcholine receptor (nAChR) antagonist and, conversely, were induced in brain slices of winners treated with α7 nAChR agonists. These data suggest that acetylcholine released from Hb terminals in the vIPN induces activation of α7 nAChR followed by an increase in postsynaptic membrane GluA1. This results in an increase in active synapses on postsynaptic neurons, resulting in the potentiation of neurotransmissions to the vIPN. This acetylcholine-induced neuromodulation could be the neural foundation for behavioral switching in losers. Our results could increase our understanding of the mechanisms of various mood disorders such as social anxiety disorder and social withdrawal.
Collapse
Affiliation(s)
- Masae Kinoshita
- Laboratory for Neural Circuit Dynamics of Decision Making, RIKEN Center for Brain Science, Saitama 351-0198, Japan
| | - Hitoshi Okamoto
- Laboratory for Neural Circuit Dynamics of Decision Making, RIKEN Center for Brain Science, Saitama 351-0198, Japan; RIKEN CBS-Kao Collaboration Center, Saitama 351-0198, Japan.
| |
Collapse
|
22
|
Naija A, Yalcin HC. Evaluation of cadmium and mercury on cardiovascular and neurological systems: Effects on humans and fish. Toxicol Rep 2023; 10:498-508. [PMID: 37396852 PMCID: PMC10313869 DOI: 10.1016/j.toxrep.2023.04.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/09/2023] [Accepted: 04/17/2023] [Indexed: 07/04/2023] Open
Abstract
Chemicals are at the top of public health concerns and metals have received much attention in terms of toxicological studies. Cadmium (Cd) and mercury (Hg) are among the most toxic heavy metals and are widely distributed in the environment. They are considered important factors involved in several organ disturbances. Heart and brain tissues are not among the first exposure sites to Cd and Hg but they are directly affected and may manifest intoxication reactions leading to death. Many cases of human intoxication with Cd and Hg showed that these metals have potential cardiotoxic and neurotoxic effects. Human exposure to heavy metals is through fish consumption which is considered as an excellent source of human nutrients. In the current review, we will summarize the most known cases of human intoxication with Cd and Hg, highlight their toxic effects on fish, and investigate the common signal pathways of both Cd and Hg to affect heart and brain tissues. Also, we will present the most common biomarkers used in the assessment of cardiotoxicity and neurotoxicity using Zebrafish model.
Collapse
|
23
|
Sy SKH, Chan DCW, Chan RCH, Lyu J, Li Z, Wong KKY, Choi CHJ, Mok VCT, Lai HM, Randlett O, Hu Y, Ko H. An optofluidic platform for interrogating chemosensory behavior and brainwide neural representation in larval zebrafish. Nat Commun 2023; 14:227. [PMID: 36641479 PMCID: PMC9840631 DOI: 10.1038/s41467-023-35836-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 01/03/2023] [Indexed: 01/15/2023] Open
Abstract
Studying chemosensory processing desires precise chemical cue presentation, behavioral response monitoring, and large-scale neuronal activity recording. Here we present Fish-on-Chips, a set of optofluidic tools for highly-controlled chemical delivery while simultaneously imaging behavioral outputs and whole-brain neuronal activities at cellular resolution in larval zebrafish. These include a fluidics-based swimming arena and an integrated microfluidics-light sheet fluorescence microscopy (µfluidics-LSFM) system, both of which utilize laminar fluid flows to achieve spatiotemporally precise chemical cue presentation. To demonstrate the strengths of the platform, we used the navigation arena to reveal binasal input-dependent behavioral strategies that larval zebrafish adopt to evade cadaverine, a death-associated odor. The µfluidics-LSFM system enables sequential presentation of odor stimuli to individual or both nasal cavities separated by only ~100 µm. This allowed us to uncover brainwide neural representations of cadaverine sensing and binasal input summation in the vertebrate model. Fish-on-Chips is readily generalizable and will empower the investigation of neural coding in the chemical senses.
Collapse
Affiliation(s)
- Samuel K H Sy
- Division of Neurology, Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Department of Biomedical Engineering, Faculty of Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Department of Electrical and Electronic Engineering, Faculty of Engineering, The University of Hong Kong, Pok Fu Lam, Hong Kong Island, Hong Kong SAR, China
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong SAR, China
| | - Danny C W Chan
- Division of Neurology, Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Department of Anaesthesia and Intensive Care, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Peter Hung Pain Research Institute, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Roy C H Chan
- Division of Neurology, Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Jing Lyu
- Division of Neurology, Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Zhongqi Li
- Division of Neurology, Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Kenneth K Y Wong
- Department of Electrical and Electronic Engineering, Faculty of Engineering, The University of Hong Kong, Pok Fu Lam, Hong Kong Island, Hong Kong SAR, China
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong SAR, China
| | - Chung Hang Jonathan Choi
- Department of Biomedical Engineering, Faculty of Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Peter Hung Pain Research Institute, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Chow Yuk Ho Technology Centre for Innovative Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Vincent C T Mok
- Division of Neurology, Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Margaret K. L. Cheung Research Centre for Management of Parkinsonism, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Hei-Ming Lai
- Division of Neurology, Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Margaret K. L. Cheung Research Centre for Management of Parkinsonism, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Owen Randlett
- Institut national de la santé et de la recherche médicale, Université Claude Bernard Lyon 1, Lyon, France
| | - Yu Hu
- Department of Mathematics and Division of Life Science, Faculty of Science, Hong Kong University of Science and Technology, Clear Water Bay, New Territories, Hong Kong SAR, China
| | - Ho Ko
- Division of Neurology, Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.
- Peter Hung Pain Research Institute, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.
- Chow Yuk Ho Technology Centre for Innovative Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.
- Margaret K. L. Cheung Research Centre for Management of Parkinsonism, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.
- Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.
- Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.
| |
Collapse
|
24
|
Rogers LJ. Unfolding a sequence of sensory influences and interactions in the development of functional brain laterality. Front Behav Neurosci 2023; 16:1103192. [PMID: 36688123 PMCID: PMC9852852 DOI: 10.3389/fnbeh.2022.1103192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 12/16/2022] [Indexed: 01/09/2023] Open
Abstract
Evidence of sensory experience influencing the development of lateralized brain and behavior is reviewed. The epigenetic role of light exposure during two specific stages of embryonic development of precocial avian species is a particular focus of the research discussed. Two specific periods of light sensitivity (in early versus late incubation), each depending on different subcellular and cellular processes, affect lateralized behavior after hatching. Auditory and olfactory stimulation during embryonic development is also discussed with consideration of interactions with light-generated visual lateralization.
Collapse
|
25
|
Michel L, Palma K, Cerda M, Lagadec R, Mayeur H, Fuentès M, Besseau L, Martin P, Magnanou E, Blader P, Concha ML, Mazan S. Diversification of habenular organization and asymmetries in teleosts: Insights from the Atlantic salmon and European eel. Front Cell Dev Biol 2022; 10:1015074. [DOI: 10.3389/fcell.2022.1015074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022] Open
Abstract
Habenulae asymmetries are widespread across vertebrates and analyses in zebrafish, the reference model organism for this process, have provided insight into their molecular nature, their mechanisms of formation and their important roles in the integration of environmental and internal cues with a variety of organismal adaptive responses. However, the generality of the characteristics identified in this species remains an open question, even on a relatively short evolutionary scale, in teleosts. To address this question, we have characterized the broad organization of habenulae in the Atlantic salmon and quantified the asymmetries in each of the identified subdomains. Our results show that a highly conserved partitioning into a dorsal and a ventral component is retained in the Atlantic salmon and that asymmetries are mainly observed in the former as in zebrafish. A remarkable difference is that a prominent left-restricted pax6 positive nucleus is observed in the Atlantic salmon, but undetectable in zebrafish. This nucleus is not observed outside teleosts, and harbors a complex presence/absence pattern in this group, retaining its location and cytoarchitectonic organization in an elopomorph, the European eel. These findings suggest an ancient origin and high evolvability of this trait in the taxon. Taken together, our data raise novel questions about the variability of asymmetries across teleosts and their biological significance depending on ecological contexts.
Collapse
|
26
|
Agostini C, Bühler A, Antico Calderone A, Aadepu N, Herder C, Loosli F, Carl M. Conserved and diverged asymmetric gene expression in the brain of teleosts. Front Cell Dev Biol 2022; 10:1005776. [PMID: 36211473 PMCID: PMC9532764 DOI: 10.3389/fcell.2022.1005776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 08/29/2022] [Indexed: 11/25/2022] Open
Abstract
Morphological left-right brain asymmetries are universal phenomena in animals. These features have been studied for decades, but the functional relevance is often unclear. Studies from the zebrafish dorsal diencephalon on the genetics underlying the establishment and function of brain asymmetries have uncovered genes associated with the development of functional brain asymmetries. To gain further insights, comparative studies help to investigate the emergence of asymmetries and underlying genetics in connection to functional adaptation. Evolutionarily distant isogenic medaka inbred lines, that show divergence of complex traits such as morphology, physiology and behavior, are a valuable resource to investigate intra-species variations in a given trait of interest. For a detailed study of asymmetry in the medaka diencephalon we generated molecular probes of ten medaka genes that are expressed asymmetrically in the zebrafish habenulae and pineal complex. We find expression of eight genes in the corresponding brain areas of medaka with differences in the extent of left-right asymmetry compared to zebrafish. Our marker gene analysis of the diverged medaka inbred strains revealed marked inter-strain size differences of the respective expression domains in the parapineal and the habenulae, which we hypothesize may result from strain-specific gene loss. Thus, our analysis reveals both inter-species differences but also intra-species plasticity of gene expression in the teleost dorsal diencephalon. These findings are a starting point showing the potential to identify the genetics underlying the emergence and modulations of asymmetries. They are also the prerequisite to examine whether variance in habenular gene expression may cause variation of behavioral traits.
Collapse
Affiliation(s)
- Carolina Agostini
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
- Institute of Biological and Chemical Systems, Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Anja Bühler
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | | | - Narendar Aadepu
- Institute of Biological and Chemical Systems, Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology, Karlsruhe, Germany
- Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| | - Cathrin Herder
- Institute of Biological and Chemical Systems, Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Felix Loosli
- Institute of Biological and Chemical Systems, Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology, Karlsruhe, Germany
- *Correspondence: Felix Loosli, ; Matthias Carl,
| | - Matthias Carl
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
- *Correspondence: Felix Loosli, ; Matthias Carl,
| |
Collapse
|
27
|
Suryadi, Cheng RK, Birkett E, Jesuthasan S, Chew LY. Dynamics and potential significance of spontaneous activity in the habenula. eNeuro 2022; 9:ENEURO.0287-21.2022. [PMID: 35981869 PMCID: PMC9450562 DOI: 10.1523/eneuro.0287-21.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 05/31/2022] [Accepted: 06/27/2022] [Indexed: 11/21/2022] Open
Abstract
The habenula is an evolutionarily conserved structure of the vertebrate brain that is essential for behavioural flexibility and mood control. It is spontaneously active and is able to access diverse states when the animal is exposed to sensory stimuli. Here we investigate the dynamics of habenula spontaneous activity, to gain insight into how sensitivity is optimized. Two-photon calcium imaging was performed in resting zebrafish larvae at single cell resolution. An analysis of avalanches of inferred spikes suggests that the habenula is subcritical. Activity had low covariance and a small mean, arguing against dynamic criticality. A multiple regression estimator of autocorrelation time suggests that the habenula is neither fully asynchronous nor perfectly critical, but is reverberating. This pattern of dynamics may enable integration of information and high flexibility in the tuning of network properties, thus providing a potential mechanism for the optimal responses to a changing environment.Significance StatementSpontaneous activity in neurons shapes the response to stimuli. One structure with a high level of spontaneous neuronal activity is the habenula, a regulator of broadly acting neuromodulators involved in mood and learning. How does this activity influence habenula function? We show here that the habenula of a resting animal is near criticality, in a state termed reverberation. This pattern of dynamics is consistent with high sensitivity and flexibility, and may enable the habenula to respond optimally to a wide range of stimuli.
Collapse
Affiliation(s)
- Suryadi
- School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore 637371
| | - Ruey-Kuang Cheng
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921
| | - Elliot Birkett
- Institute of Molecular and Cell Biology, Singapore 138673
- School of Biosciences, University of Sheffield, Sheffield, United Kingdom
| | - Suresh Jesuthasan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921
- Institute of Molecular and Cell Biology, Singapore 138673
| | - Lock Yue Chew
- School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore 637371
- Complexity Institute, Nanyang Technological University, Singapore 637335
| |
Collapse
|
28
|
Ogawa S, Parhar IS. Role of Habenula in Social and Reproductive Behaviors in Fish: Comparison With Mammals. Front Behav Neurosci 2022; 15:818782. [PMID: 35221943 PMCID: PMC8867168 DOI: 10.3389/fnbeh.2021.818782] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 12/27/2021] [Indexed: 02/05/2023] Open
Abstract
Social behaviors such as mating, parenting, fighting, and avoiding are essential functions as a communication tool in social animals, and are critical for the survival of individuals and species. Social behaviors are controlled by a complex circuitry that comprises several key social brain regions, which is called the social behavior network (SBN). The SBN further integrates social information with external and internal factors to select appropriate behavioral responses to social circumstances, called social decision-making. The social decision-making network (SDMN) and SBN are structurally, neurochemically and functionally conserved in vertebrates. The social decision-making process is also closely influenced by emotional assessment. The habenula has recently been recognized as a crucial center for emotion-associated adaptation behaviors. Here we review the potential role of the habenula in social function with a special emphasis on fish studies. Further, based on evolutional, molecular, morphological, and behavioral perspectives, we discuss the crucial role of the habenula in the vertebrate SDMN.
Collapse
|
29
|
Kugler EC, Frost J, Silva V, Plant K, Chhabria K, Chico TJA, Armitage PA. Zebrafish vascular quantification: a tool for quantification of three-dimensional zebrafish cerebrovascular architecture by automated image analysis. Development 2022; 149:273928. [PMID: 35005771 PMCID: PMC8918806 DOI: 10.1242/dev.199720] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 12/17/2021] [Indexed: 12/17/2022]
Abstract
Zebrafish transgenic lines and light sheet fluorescence microscopy allow in-depth insights into three-dimensional vascular development in vivo. However, quantification of the zebrafish cerebral vasculature in 3D remains highly challenging. Here, we describe and test an image analysis workflow for 3D quantification of the total or regional zebrafish brain vasculature, called zebrafish vasculature quantification (ZVQ). It provides the first landmark- or object-based vascular inter-sample registration of the zebrafish cerebral vasculature, producing population average maps allowing rapid assessment of intra- and inter-group vascular anatomy. ZVQ also extracts a range of quantitative vascular parameters from a user-specified region of interest, including volume, surface area, density, branching points, length, radius and complexity. Application of ZVQ to 13 experimental conditions, including embryonic development, pharmacological manipulations and morpholino-induced gene knockdown, shows that ZVQ is robust, allows extraction of biologically relevant information and quantification of vascular alteration, and can provide novel insights into vascular biology. To allow dissemination, the code for quantification, a graphical user interface and workflow documentation are provided. Together, ZVQ provides the first open-source quantitative approach to assess the 3D cerebrovascular architecture in zebrafish. Summary: An image analysis workflow pipeline for 3D quantification of the total or regional zebrafish brain vasculature, called zebrafish vasculature quantification or ZVQ.
Collapse
Affiliation(s)
- Elisabeth C Kugler
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Medical School, Beech Hill Road, Sheffield S10 2RX, UK.,The Bateson Centre, Firth Court, University of Sheffield, Western Bank, Sheffield S10 2TN, UK.,Insigneo Institute for in silico Medicine, The Pam Liversidge Building, Sheffield S1 3JD, UK
| | - James Frost
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Medical School, Beech Hill Road, Sheffield S10 2RX, UK.,Hull York Medical School, John Hughlings Jackson Building, University Road, University of York, Heslington, York YO10 5DD, UK
| | - Vishmi Silva
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Medical School, Beech Hill Road, Sheffield S10 2RX, UK
| | - Karen Plant
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Medical School, Beech Hill Road, Sheffield S10 2RX, UK.,The Bateson Centre, Firth Court, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Karishma Chhabria
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Medical School, Beech Hill Road, Sheffield S10 2RX, UK.,The Bateson Centre, Firth Court, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Tim J A Chico
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Medical School, Beech Hill Road, Sheffield S10 2RX, UK.,The Bateson Centre, Firth Court, University of Sheffield, Western Bank, Sheffield S10 2TN, UK.,Insigneo Institute for in silico Medicine, The Pam Liversidge Building, Sheffield S1 3JD, UK
| | - Paul A Armitage
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Medical School, Beech Hill Road, Sheffield S10 2RX, UK.,Insigneo Institute for in silico Medicine, The Pam Liversidge Building, Sheffield S1 3JD, UK
| |
Collapse
|
30
|
Ogawa S, Parhar IS. Functions of habenula in reproduction and socio-reproductive behaviours. Front Neuroendocrinol 2022; 64:100964. [PMID: 34793817 DOI: 10.1016/j.yfrne.2021.100964] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/11/2021] [Accepted: 11/02/2021] [Indexed: 12/19/2022]
Abstract
Habenula is an evolutionarily conserved structure in the brain of vertebrates. Recent reports have drawn attention to the habenula as a processing centre for emotional decision-making and its role in psychiatric disorders. Emotional decision-making process is also known to be closely associated with reproductive conditions. The habenula receives innervations from reproductive centres within the brain and signals from key reproductive neuroendocrine regulators such as gonadal sex steroids, gonadotropin-releasing hormone (GnRH), and kisspeptin. In this review, based on morphological, biochemical, physiological, and pharmacological evidence we discuss an emerging role of the habenula in reproduction. Further, we discuss the modulatory role of reproductive endocrine factors in the habenula and their association with socio-reproductive behaviours such as mating, anxiety and aggression.
Collapse
Affiliation(s)
- Satoshi Ogawa
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Selangor, Malaysia
| | - Ishwar S Parhar
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Selangor, Malaysia.
| |
Collapse
|
31
|
Choi JH, Duboue ER, Macurak M, Chanchu JM, Halpern ME. Specialized neurons in the right habenula mediate response to aversive olfactory cues. eLife 2021; 10:e72345. [PMID: 34878403 PMCID: PMC8691842 DOI: 10.7554/elife.72345] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 12/07/2021] [Indexed: 12/27/2022] Open
Abstract
Hemispheric specializations are well studied at the functional level but less is known about the underlying neural mechanisms. We identified a small cluster of cholinergic neurons in the dorsal habenula (dHb) of zebrafish, defined by their expression of the lecithin retinol acyltransferase domain containing 2 a (lratd2a) gene and their efferent connections with a subregion of the ventral interpeduncular nucleus (vIPN). The lratd2a-expressing neurons in the right dHb are innervated by a subset of mitral cells from both the left and right olfactory bulb and are activated upon exposure to the odorant cadaverine that is repellent to adult zebrafish. Using an intersectional strategy to drive expression of the botulinum neurotoxin specifically in these neurons, we find that adults no longer show aversion to cadaverine. Mutants with left-isomerized dHb that lack these neurons are also less repelled by cadaverine and their behavioral response to alarm substance, a potent aversive cue, is diminished. However, mutants in which both dHb have right identity appear more reactive to alarm substance. The results implicate an asymmetric dHb-vIPN neural circuit in the processing of repulsive olfactory cues and in modulating the resultant behavioral response.
Collapse
Affiliation(s)
- Jung-Hwa Choi
- Carnegie Institution for Science, Department of EmbryologyBaltimoreUnited States
| | - Erik R Duboue
- Jupiter Life Science Initiative, Florida Atlantic UniversityJupiterUnited States
- Wilkes Honors College, Florida Atlantic UniversityJupiterUnited States
| | - Michelle Macurak
- Carnegie Institution for Science, Department of EmbryologyBaltimoreUnited States
| | - Jean-Michel Chanchu
- Carnegie Institution for Science, Department of EmbryologyBaltimoreUnited States
| | - Marnie E Halpern
- Carnegie Institution for Science, Department of EmbryologyBaltimoreUnited States
| |
Collapse
|
32
|
Hageter J, Waalkes M, Starkey J, Copeland H, Price H, Bays L, Showman C, Laverty S, Bergeron SA, Horstick EJ. Environmental and Molecular Modulation of Motor Individuality in Larval Zebrafish. Front Behav Neurosci 2021; 15:777778. [PMID: 34938167 PMCID: PMC8685292 DOI: 10.3389/fnbeh.2021.777778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/17/2021] [Indexed: 11/21/2022] Open
Abstract
Innate behavioral biases such as human handedness are a ubiquitous form of inter-individual variation that are not strictly hardwired into the genome and are influenced by diverse internal and external cues. Yet, genetic and environmental factors modulating behavioral variation remain poorly understood, especially in vertebrates. To identify genetic and environmental factors that influence behavioral variation, we take advantage of larval zebrafish light-search behavior. During light-search, individuals preferentially turn in leftward or rightward loops, in which directional bias is sustained and non-heritable. Our previous work has shown that bias is maintained by a habenula-rostral PT circuit and genes associated with Notch signaling. Here we use a medium-throughput recording strategy and unbiased analysis to show that significant individual to individual variation exists in wildtype larval zebrafish turning preference. We classify stable left, right, and unbiased turning types, with most individuals exhibiting a directional preference. We show unbiased behavior is not due to a loss of photo-responsiveness but reduced persistence in same-direction turning. Raising larvae at elevated temperature selectively reduces the leftward turning type and impacts rostral PT neurons, specifically. Exposure to conspecifics, variable salinity, environmental enrichment, and physical disturbance does not significantly impact inter-individual turning bias. Pharmacological manipulation of Notch signaling disrupts habenula development and turn bias individuality in a dose dependent manner, establishing a direct role of Notch signaling. Last, a mutant allele of a known Notch pathway affecter gene, gsx2, disrupts turn bias individuality, implicating that brain regions independent of the previously established habenula-rostral PT likely contribute to inter-individual variation. These results establish that larval zebrafish is a powerful vertebrate model for inter-individual variation with established neural targets showing sensitivity to specific environmental and gene signaling disruptions. Our results provide new insight into how variation is generated in the vertebrate nervous system.
Collapse
Affiliation(s)
- John Hageter
- Department of Biology, West Virginia University, Morgantown, WV, United States
| | - Matthew Waalkes
- Department of Biology, West Virginia University, Morgantown, WV, United States
| | - Jacob Starkey
- Department of Biology, West Virginia University, Morgantown, WV, United States
| | - Haylee Copeland
- Department of Biology, West Virginia University, Morgantown, WV, United States
| | - Heather Price
- Department of Biology, West Virginia University, Morgantown, WV, United States
| | - Logan Bays
- Department of Biology, West Virginia University, Morgantown, WV, United States
| | - Casey Showman
- Department of Biology, West Virginia University, Morgantown, WV, United States
| | - Sean Laverty
- Department of Mathematics and Statistics, University of Central Oklahoma, Edmond, OK, United States
| | - Sadie A. Bergeron
- Department of Biology, West Virginia University, Morgantown, WV, United States
- Department of Neuroscience, West Virginia University, Morgantown, WV, United States
| | - Eric J. Horstick
- Department of Biology, West Virginia University, Morgantown, WV, United States
- Department of Neuroscience, West Virginia University, Morgantown, WV, United States
| |
Collapse
|
33
|
Salaberry NL, Mendoza J. The circadian clock in the mouse habenula is set by catecholamines. Cell Tissue Res 2021; 387:261-274. [PMID: 34816282 DOI: 10.1007/s00441-021-03557-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 11/12/2021] [Indexed: 12/15/2022]
Abstract
Circadian rhythms are those variations in behavioral and molecular processes of organisms that follow roughly 24 h cycles in the absence of any external cue. The hypothalamic suprachiasmatic nucleus (SCN) harbors the principal brain pacemaker driving circadian rhythms. The epithalamic habenula (Hb) contains a self-sustained circadian clock functionally coupled to the SCN. Anatomically, the Hb projects to the midbrain dopamine (DA) and serotonin (5-HT) systems, and it receives inputs from the forebrain, midbrain, and brainstem. The SCN is set by internal signals such as 5-HT or melatonin from the raphe nuclei and pineal gland, respectively. However, how the Hb clock is set by internal cues is not well characterized. Hence, in the present study, we determined whether DA, noradrenaline (NA), 5-HT, and the neuropeptides orexin (ORX) and vasopressin influence the Hb circadian clock. Using PER2::Luciferase transgenic mice, we found that the amplitude of the PER2 protein circadian oscillations from Hb explants was strongly affected by DA and NA. Importantly, these effects were dose-and region (rostral vs. caudal) dependent for NA, with a main effect in the caudal part of the Hb. Furthermore, ORX also induced a significant change in the amplitude of PER2 protein oscillations in the caudal Hb. In conclusion, catecholaminergic (DA, NA) and ORXergic transmission impacts the clock properties of the Hb clock likely contributing to the circadian regulation of motivated behaviors. Accordingly, pathological conditions that lead in alterations of catecholamine or ORX activity (drug intake, compulsive feeding) might affect the Hb clock and conduct to circadian disturbances.
Collapse
Affiliation(s)
- Nora L Salaberry
- Institute of Cellular and Integrative Neurosciences, CNRS UPR-3212, 8 Allée du Général Rouvillois, Strasbourg, 67000, France
| | - Jorge Mendoza
- Institute of Cellular and Integrative Neurosciences, CNRS UPR-3212, 8 Allée du Général Rouvillois, Strasbourg, 67000, France.
| |
Collapse
|
34
|
Roy N, Parhar I. Habenula orphan G-protein coupled receptors in the pathophysiology of fear and anxiety. Neurosci Biobehav Rev 2021; 132:870-883. [PMID: 34801259 DOI: 10.1016/j.neubiorev.2021.11.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/02/2021] [Accepted: 11/08/2021] [Indexed: 10/19/2022]
Abstract
The phasic emotion, fear, and the tonic emotion, anxiety, have been conventionally inspected in clinical frameworks to epitomize memory acquisition, storage, and retrieval. However, inappropriate expression of learned fear in a safe environment and its resistance to suppression is a cardinal feature of various fear-related disorders. A significant body of literature suggests the involvement of extra-amygdala circuitry in fear disorders. Consistent with this view, the present review underlies incentives for the association between the habenula and fear memory. G protein-coupled receptors (GPCRs) are important to understand the molecular mechanisms central to fear learning due to their neuromodulatory role. The efficacy of a pharmacological strategy aimed at exploiting habenular-GPCR desensitization machinery can serve as a therapeutic target combating the pathophysiology of fear disorders. Originating from this milieu, the conserved nature of orphan GPCRs in the brain, with some having the highest expression in the habenula can lead to recent endeavors in understanding its functionality in fear circuitry.
Collapse
Affiliation(s)
- Nisa Roy
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia.
| | - Ishwar Parhar
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia.
| |
Collapse
|
35
|
Zaupa M, Naini SMA, Younes MA, Bullier E, Duboué ER, Le Corronc H, Soula H, Wolf S, Candelier R, Legendre P, Halpern ME, Mangin JM, Hong E. Trans-inhibition of axon terminals underlies competition in the habenulo-interpeduncular pathway. Curr Biol 2021; 31:4762-4772.e5. [PMID: 34529937 DOI: 10.1016/j.cub.2021.08.051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/12/2021] [Accepted: 08/18/2021] [Indexed: 11/19/2022]
Abstract
Survival of animals is dependent on the correct selection of an appropriate behavioral response to competing external stimuli. Theoretical models have been proposed and underlying mechanisms are emerging to explain how one circuit is selected among competing neural circuits. The evolutionarily conserved forebrain to midbrain habenulo-interpeduncular nucleus (Hb-IPN) pathway consists of cholinergic and non-cholinergic neurons, which mediate different aversive behaviors. Simultaneous calcium imaging of neuronal cell bodies and of the population dynamics of their axon terminals reveals that signals in the cell bodies are not reflective of terminal activity. We find that axon terminals of cholinergic and non-cholinergic habenular neurons exhibit stereotypic patterns of spontaneous activity that are negatively correlated and localize to discrete subregions of the target IPN. Patch-clamp recordings show that calcium bursts in cholinergic terminals at the ventral IPN trigger excitatory currents in IPN neurons, which precede inhibition of non-cholinergic terminals at the adjacent dorsal IPN. Inhibition is mediated through presynaptic GABAB receptors activated in non-cholinergic habenular neurons upon GABA release from the target IPN. Together, the results reveal a hardwired mode of competition at the terminals of two excitatory neuronal populations, providing a physiological framework to explore the relationship between different aversive responses.
Collapse
Affiliation(s)
- Margherita Zaupa
- INSERM, CNRS, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Sorbonne Université, 75005 Paris, France
| | - Seyedeh Maryam Alavi Naini
- INSERM, CNRS, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Sorbonne Université, 75005 Paris, France
| | - Maroun Abi Younes
- INSERM, CNRS, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Sorbonne Université, 75005 Paris, France
| | - Erika Bullier
- INSERM, CNRS, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Sorbonne Université, 75005 Paris, France
| | - Erik R Duboué
- Jupiter Life Science Initiative, Wilkes Honors College and Charles E. Schmidt College of Science, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Hervé Le Corronc
- INSERM, CNRS, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Sorbonne Université, 75005 Paris, France
| | - Hédi Soula
- INSERM, Sorbonne Université, Nutriomics, La Pitié Salpétrière, 75013 Paris, France
| | - Sebastien Wolf
- Laboratoire Jean Perrin, CNRS, Sorbonne Université, 75005 Paris, France
| | - Raphaël Candelier
- Laboratoire Jean Perrin, CNRS, Sorbonne Université, 75005 Paris, France
| | - Pascal Legendre
- INSERM, CNRS, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Sorbonne Université, 75005 Paris, France
| | - Marnie E Halpern
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Jean-Marie Mangin
- INSERM, CNRS, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Sorbonne Université, 75005 Paris, France
| | - Elim Hong
- INSERM, CNRS, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Sorbonne Université, 75005 Paris, France.
| |
Collapse
|
36
|
Bartoszek EM, Ostenrath AM, Jetti SK, Serneels B, Mutlu AK, Chau KTP, Yaksi E. Ongoing habenular activity is driven by forebrain networks and modulated by olfactory stimuli. Curr Biol 2021; 31:3861-3874.e3. [PMID: 34416179 PMCID: PMC8445323 DOI: 10.1016/j.cub.2021.08.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/13/2021] [Accepted: 08/05/2021] [Indexed: 01/08/2023]
Abstract
Ongoing neural activity, which represents internal brain states, is constantly modulated by the sensory information that is generated by the environment. In this study, we show that the habenular circuits act as a major brain hub integrating the structured ongoing activity of the limbic forebrain circuitry and the olfactory information. We demonstrate that ancestral homologs of amygdala and hippocampus in zebrafish forebrain are the major drivers of ongoing habenular activity. We also reveal that odor stimuli can modulate the activity of specific habenular neurons that are driven by this forebrain circuitry. Our results highlight a major role for the olfactory system in regulating the ongoing activity of the habenula and the forebrain, thereby altering brain's internal states.
Collapse
Affiliation(s)
- Ewelina Magdalena Bartoszek
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Olav Kyrres gata 9, 7030 Trondheim, Norway
| | - Anna Maria Ostenrath
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Olav Kyrres gata 9, 7030 Trondheim, Norway
| | - Suresh Kumar Jetti
- Neuro-Electronics Research Flanders, Kapeldreef 75, 3001 Leuven, Belgium
| | - Bram Serneels
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Olav Kyrres gata 9, 7030 Trondheim, Norway
| | - Aytac Kadir Mutlu
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Olav Kyrres gata 9, 7030 Trondheim, Norway
| | - Khac Thanh Phong Chau
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Olav Kyrres gata 9, 7030 Trondheim, Norway
| | - Emre Yaksi
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Olav Kyrres gata 9, 7030 Trondheim, Norway; Neuro-Electronics Research Flanders, Kapeldreef 75, 3001 Leuven, Belgium.
| |
Collapse
|
37
|
Left-right asymmetric and smaller right habenula volume in major depressive disorder on high-resolution 7-T magnetic resonance imaging. PLoS One 2021; 16:e0255459. [PMID: 34343199 PMCID: PMC8330903 DOI: 10.1371/journal.pone.0255459] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 07/18/2021] [Indexed: 02/08/2023] Open
Abstract
The habenula (Hb) has been hypothesized to play an essential role in major depressive disorder (MDD) as it is considered to be an important node between fronto-limbic areas and midbrain monoaminergic structures based on animal studies. In this study, we aimed to investigate the differences in volume and T1 value of the Hb between patients with MDD and healthy control (HC) subjects. Analysis for the Hb volumes was performed using high-resolution 7-T magnetic resonance (MR) image data from 33 MDD patients and 36 healthy subjects. Two researchers blinded to the clinical data manually delineated the habenular nuclei and Hb volume, and T1 values were calculated based on overlapping voxels. We compared the Hb volume and T1 value between the MDD and HC groups and compared the volume and T1 values between the left and right Hbs in each group. Compared to HC subjects, MDD patients had a smaller right Hb volume; however, there was no significant volume difference in the left Hb between groups. In the MDD group, the right Hb was smaller in volume and lower in T1 value than the left Hb. The present findings suggest a smaller right Hb volume and left-right asymmetry of Hb volume in MDD. Future high-resolution 7-T MR imaging studies with larger sample sizes will be needed to derive a more definitive conclusion.
Collapse
|
38
|
Corradi L, Filosa A. Neuromodulation and Behavioral Flexibility in Larval Zebrafish: From Neurotransmitters to Circuits. Front Mol Neurosci 2021; 14:718951. [PMID: 34335183 PMCID: PMC8319623 DOI: 10.3389/fnmol.2021.718951] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 06/25/2021] [Indexed: 11/13/2022] Open
Abstract
Animals adapt their behaviors to their ever-changing needs. Internal states, such as hunger, fear, stress, and arousal are important behavioral modulators controlling the way an organism perceives sensory stimuli and reacts to them. The translucent zebrafish larva is an ideal model organism for studying neuronal circuits regulating brain states, owning to the possibility of easy imaging and manipulating activity of genetically identified neurons while the animal performs stereotyped and well-characterized behaviors. The main neuromodulatory circuits present in mammals can also be found in the larval zebrafish brain, with the advantage that they contain small numbers of neurons. Importantly, imaging and behavioral techniques can be combined with methods for generating targeted genetic modifications to reveal the molecular underpinnings mediating the functions of such circuits. In this review we discuss how studying the larval zebrafish brain has contributed to advance our understanding of circuits and molecular mechanisms regulating neuromodulation and behavioral flexibility.
Collapse
Affiliation(s)
- Laura Corradi
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Alessandro Filosa
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| |
Collapse
|
39
|
Optogenetic Manipulation of Olfactory Responses in Transgenic Zebrafish: A Neurobiological and Behavioral Study. Int J Mol Sci 2021; 22:ijms22137191. [PMID: 34281244 PMCID: PMC8269104 DOI: 10.3390/ijms22137191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 07/01/2021] [Indexed: 11/18/2022] Open
Abstract
Olfaction is an important neural system for survival and fundamental behaviors such as predator avoidance, food finding, memory formation, reproduction, and social communication. However, the neural circuits and pathways associated with the olfactory system in various behaviors are not fully understood. Recent advances in optogenetics, high-resolution in vivo imaging, and reconstructions of neuronal circuits have created new opportunities to understand such neural circuits. Here, we generated a transgenic zebrafish to manipulate olfactory signal optically, expressing the Channelrhodopsin (ChR2) under the control of the olfactory specific promoter, omp. We observed light-induced neuronal activity of olfactory system in the transgenic fish by examining c-fos expression, and a calcium indicator suggesting that blue light stimulation caused activation of olfactory neurons in a non-invasive manner. To examine whether the photo-activation of olfactory sensory neurons affect behavior of zebrafish larvae, we devised a behavioral choice paradigm and tested how zebrafish larvae choose between two conflicting sensory cues, an aversive odor or the naturally preferred phototaxis. We found that when the conflicting cues (the preferred light and aversive odor) were presented together simultaneously, zebrafish larvae swam away from the aversive odor. However, the transgenic fish with photo-activation were insensitive to the aversive odor and exhibited olfactory desensitization upon optical stimulation of ChR2. These results show that an aversive olfactory stimulus can override phototaxis, and that olfaction is important in decision making in zebrafish. This new transgenic model will be useful for the analysis of olfaction related behaviors and for the dissection of underlying neural circuits.
Collapse
|
40
|
Cherng BW, Islam T, Torigoe M, Tsuboi T, Okamoto H. The Dorsal Lateral Habenula-Interpeduncular Nucleus Pathway Is Essential for Left-Right-Dependent Decision Making in Zebrafish. Cell Rep 2021; 32:108143. [PMID: 32937118 DOI: 10.1016/j.celrep.2020.108143] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 07/29/2020] [Accepted: 08/21/2020] [Indexed: 01/03/2023] Open
Abstract
How animals behave using suitable information to adapt to the environment is not well known. We address this issue by devising an automated system to let zebrafish exploit either internal (choice of left or right turn) or external (choice of cue color) navigation information to achieve operant behavior by reward reinforcement learning. The results of behavioral task with repeated rule shift indicate that zebrafish can learn operant behavior using both internal-directional and external-cued information. The learning time is reduced as rule shifts are repeated, revealing the capacity of zebrafish to adaptively retrieve the suitable rule memory after training. Zebrafish with an impairment in the neural pathway from the lateral subregion of the dorsal habenula to the interpeduncular nucleus, known to be potentiated in the winners of social conflicts, show specific defects in the application of the internal-directional rule, suggesting the dual roles of this pathway.
Collapse
Affiliation(s)
- Bor-Wei Cherng
- Laboratory for Neural Circuit Dynamics of Decision-making, RIKEN Center for Brain Science, Saitama 351-0198, Japan; Department of Life Science, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| | - Tanvir Islam
- Laboratory for Neural Circuit Dynamics of Decision-making, RIKEN Center for Brain Science, Saitama 351-0198, Japan
| | - Makio Torigoe
- Laboratory for Neural Circuit Dynamics of Decision-making, RIKEN Center for Brain Science, Saitama 351-0198, Japan
| | - Takashi Tsuboi
- Department of Life Science, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| | - Hitoshi Okamoto
- Laboratory for Neural Circuit Dynamics of Decision-making, RIKEN Center for Brain Science, Saitama 351-0198, Japan; RIKEN CBS-Kao Collaboration Center, Saitama 351-0198, Japan; Department of Life Science, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan.
| |
Collapse
|
41
|
Nakajo H, Chou MY, Kinoshita M, Appelbaum L, Shimazaki H, Tsuboi T, Okamoto H. Hunger Potentiates the Habenular Winner Pathway for Social Conflict by Orexin-Promoted Biased Alternative Splicing of the AMPA Receptor Gene. Cell Rep 2021; 31:107790. [PMID: 32579920 DOI: 10.1016/j.celrep.2020.107790] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/13/2020] [Accepted: 05/29/2020] [Indexed: 12/31/2022] Open
Abstract
Many animals fight for dominance between conspecifics. Because winners could obtain more resources than losers, fighting outcomes are important for the animal's survival, especially in a situation with insufficient resources, such as hunger. However, it remains unclear whether and how hunger affects fighting outcomes. Herein, we investigate the effects of food deprivation on brain activity and fighting behaviors in zebrafish. We report that starvation induces winning in social conflicts. Before the fights, starved fish show potentiation of the lateral subregion of the dorsal habenula (dHbL)-dorsal/intermediate interpeduncular nucleus (d/iIPN) pathway, which is known to be essential for and potentiated after winning fights. Circuit potentiation is mediated by hypothalamic orexin/hypocretin neuropeptides, which prolong AMPA-type glutamate receptor (AMPAR) activity by increasing the expression of a flip type of alternative splicing variant of the AMPAR subunit. This mechanism may underlie how hungry vertebrates win fights and may be commonly shared across animal phylogeny.
Collapse
Affiliation(s)
- Haruna Nakajo
- Laboratory for Neural Circuit Dynamics of Decision Making, RIKEN Center for Brain Science, Saitama 351-0198, Japan; Department of Life Sciences, Graduate School of Arts and Science, The University of Tokyo, Tokyo 153-8902, Japan
| | - Ming-Yi Chou
- Laboratory for Neural Circuit Dynamics of Decision Making, RIKEN Center for Brain Science, Saitama 351-0198, Japan; Department of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Masae Kinoshita
- Laboratory for Neural Circuit Dynamics of Decision Making, RIKEN Center for Brain Science, Saitama 351-0198, Japan
| | - Lior Appelbaum
- The Faculty of Life Sciences and the Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Hideaki Shimazaki
- Graduate School of Informatics, Kyoto University, Kyoto 606-8501, Japan
| | - Takashi Tsuboi
- Department of Life Sciences, Graduate School of Arts and Science, The University of Tokyo, Tokyo 153-8902, Japan
| | - Hitoshi Okamoto
- Laboratory for Neural Circuit Dynamics of Decision Making, RIKEN Center for Brain Science, Saitama 351-0198, Japan; RIKEN CBS-Kao Collaboration Center, Saitama 351-0198, Japan; Department of Life Sciences, Graduate School of Arts and Science, The University of Tokyo, Tokyo 153-8902, Japan.
| |
Collapse
|
42
|
Fitzgerald JA, Könemann S, Krümpelmann L, Županič A, Vom Berg C. Approaches to Test the Neurotoxicity of Environmental Contaminants in the Zebrafish Model: From Behavior to Molecular Mechanisms. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:989-1006. [PMID: 33270929 DOI: 10.1002/etc.4951] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/15/2020] [Accepted: 11/29/2020] [Indexed: 06/12/2023]
Abstract
The occurrence of neuroactive chemicals in the aquatic environment is on the rise and poses a potential threat to aquatic biota of currently unpredictable outcome. In particular, subtle changes caused by these chemicals to an organism's sensation or behavior are difficult to tackle with current test systems that focus on rodents or with in vitro test systems that omit whole-animal responses. In recent years, the zebrafish (Danio rerio) has become a popular model organism for toxicological studies and testing strategies, such as the standardized use of zebrafish early life stages in the Organisation for Economic Co-operation and Development's guideline 236. In terms of neurotoxicity, the zebrafish provides a powerful model to investigate changes to the nervous system from several different angles, offering the ability to tackle the mechanisms of action of chemicals in detail. The mechanistic understanding gained through the analysis of this model species provides a good basic knowledge of how neuroactive chemicals might interact with a teleost nervous system. Such information can help infer potential effects occurring to other species exposed to neuroactive chemicals in their aquatic environment and predicting potential risks of a chemical for the aquatic ecosystem. In the present article, we highlight approaches ranging from behavioral to structural, functional, and molecular analysis of the larval zebrafish nervous system, providing a holistic view of potential neurotoxic outcomes. Environ Toxicol Chem 2021;40:989-1006. © 2020 SETAC.
Collapse
Affiliation(s)
- Jennifer A Fitzgerald
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Sarah Könemann
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- EPF Lausanne, School of Architecture, Civil and Environmental Engineering, Lausanne, Switzerland
| | - Laura Krümpelmann
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Anže Županič
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- National Institute of Biology, Ljubljana, Slovenia
| | - Colette Vom Berg
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| |
Collapse
|
43
|
Wang GT, Pan HY, Lang WH, Yu YD, Hsieh CH, Kuan YS. Three-dimensional multi-gene expression maps reveal cell fate changes associated with laterality reversal of zebrafish habenula. J Neurosci Res 2021; 99:1632-1645. [PMID: 33638209 DOI: 10.1002/jnr.24806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 11/09/2022]
Abstract
The conserved bilateral habenular nuclei (HA) in vertebrate diencephalon develop into compartmentalized structures containing neurons derived from different cell lineages. Despite extensive studies demonstrated that zebrafish larval HA display distinct left-right (L-R) asymmetry in gene expression and connectivity, the spatial gene expression domains were mainly obtained from two-dimensional (2D) snapshots of colorimetric RNA in situ hybridization staining which could not properly reflect different HA neuronal lineages constructed in three-dimension (3D). Combing the tyramide-based fluorescent mRNA in situ hybridization, confocal microscopy and customized imaging processing procedures, we have created spatial distribution maps of four genes for 4-day-old zebrafish and in sibling fish whose L-R asymmetry was spontaneously reversed. 3D volumetric analyses showed that ratios of cpd2, lov, ron, and nrp1a expression in L-R reversed HA were reversed according to the parapineal positions. However, the quantitative changes of gene expression in reversed larval brains do not mirror the gene expression level in the obverse larval brains. There were a total 87.78% increase in lov+ nrp1a+ and a total 12.45% decrease in lov+ ron+ double-positive neurons when the L-R asymmetry of HA was reversed. Thus, our volumetric analyses of the 3D maps indicate that changes of HA neuronal cell fates are associated with the reversal of HA laterality. These changes likely account for the behavior changes associated with HA laterality alterations.
Collapse
Affiliation(s)
- Guo-Tzau Wang
- National Center for High-Performance Computing, Hsinchu, Taiwan R.O.C
| | - He-Yen Pan
- Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei, Taiwan R.O.C
| | - Wei-Han Lang
- Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei, Taiwan R.O.C
| | - Yuan-Ding Yu
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan R.O.C
| | - Chang-Huain Hsieh
- National Center for High-Performance Computing, Hsinchu, Taiwan R.O.C
| | - Yung-Shu Kuan
- Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei, Taiwan R.O.C.,Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan R.O.C.,Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, Taiwan R.O.C.,Neuroscience Program, Academia Sinica, Taipei, Taiwan R.O.C
| |
Collapse
|
44
|
Guggiana Nilo DA, Riegler C, Hübener M, Engert F. Distributed chromatic processing at the interface between retina and brain in the larval zebrafish. Curr Biol 2021; 31:1945-1953.e5. [PMID: 33636122 DOI: 10.1016/j.cub.2021.01.088] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 12/30/2020] [Accepted: 01/25/2021] [Indexed: 02/07/2023]
Abstract
Larval zebrafish (Danio rerio) are an ideal organism for studying color vision, as their retina possesses four types of cone photoreceptors, covering most of the visible range and into the UV.1,2 Additionally, their eye and nervous systems are accessible to imaging, given that they are naturally transparent.3-5 Recent studies have found that, through a set of wavelength-range-specific horizontal, bipolar, and retinal ganglion cells (RGCs),6-9 the eye relays tetrachromatic information to several retinorecipient areas (RAs).10-13 The main RA is the optic tectum, receiving 97% of the RGC axons via the neuropil mass termed arborization field 10 (AF10).14,15 Here, we aim to understand the processing of chromatic signals at the interface between RGCs and their major brain targets. We used 2-photon calcium imaging to separately measure the responses of RGCs and neurons in the brain to four different chromatic stimuli in awake animals. We find that chromatic information is widespread throughout the brain, with a large variety of responses among RGCs, and an even greater diversity in their targets. Specific combinations of response types are enriched in specific nuclei, but there is no single color processing structure. In the main interface in this pathway, the connection between AF10 and tectum, we observe key elements of neural processing, such as enhanced signal decorrelation and improved chromatic decoding.16,17 A richer stimulus set revealed that these enhancements occur in the context of a more distributed code in tectum, facilitating chromatic signal association in this small vertebrate brain.
Collapse
Affiliation(s)
- Drago A Guggiana Nilo
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Biophysics Graduate Program, Harvard University, Boston, MA 02115, USA; Department Synapses-Circuits-Plasticity, Max Planck Institute of Neurobiology, 81252 Martinsried, Germany.
| | - Clemens Riegler
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA; Department of Neuroscience and Developmental Biology, University of Vienna, A-1090 Vienna, Austria
| | - Mark Hübener
- Department Synapses-Circuits-Plasticity, Max Planck Institute of Neurobiology, 81252 Martinsried, Germany
| | - Florian Engert
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
45
|
Bühler A, Carl M. Zebrafish Tools for Deciphering Habenular Network-Linked Mental Disorders. Biomolecules 2021; 11:biom11020324. [PMID: 33672636 PMCID: PMC7924194 DOI: 10.3390/biom11020324] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/12/2021] [Accepted: 02/14/2021] [Indexed: 11/23/2022] Open
Abstract
Simple Summary Everything that we think, feel or do depends on the function of neural networks in the brain. These are highly complex structures made of cells (neurons) and their interconnections (axons), which develop dependent on precisely coordinated interactions of genes. Any gene mutation can result in unwanted alterations in neural network formation and concomitant brain disorders. The habenula neural network is one of these important circuits, which has been linked to autism, schizophrenia, depression and bipolar disorder. Studies using the zebrafish have uncovered genes involved in the development of this network. Intriguingly, some of these genes have also been identified as risk genes of human brain disorders highlighting the power of this animal model to link risk genes and the affected network to human disease. But can we use the advantages of this model to identify new targets and compounds with ameliorating effects on brain dysfunction? In this review, we summarise the current knowledge on techniques to manipulate the habenula neural network to study the consequences on behavior. Moreover, we give an overview of existing behavioral test to mimic aspects of mental disorders and critically discuss the applicability of the zebrafish model in this field of research. Abstract The prevalence of patients suffering from mental disorders is substantially increasing in recent years and represents a major burden to society. The underlying causes and neuronal circuits affected are complex and difficult to unravel. Frequent disorders such as depression, schizophrenia, autism, and bipolar disorder share links to the habenular neural circuit. This conserved neurotransmitter system relays cognitive information between different brain areas steering behaviors ranging from fear and anxiety to reward, sleep, and social behaviors. Advances in the field using the zebrafish model organism have uncovered major genetic mechanisms underlying the formation of the habenular neural circuit. Some of the identified genes involved in regulating Wnt/beta-catenin signaling have previously been suggested as risk genes of human mental disorders. Hence, these studies on habenular genetics contribute to a better understanding of brain diseases. We are here summarizing how the gained knowledge on the mechanisms underlying habenular neural circuit development can be used to introduce defined manipulations into the system to study the functional behavioral consequences. We further give an overview of existing behavior assays to address phenotypes related to mental disorders and critically discuss the power but also the limits of the zebrafish model for identifying suitable targets to develop therapies.
Collapse
Affiliation(s)
- Anja Bühler
- Correspondence: (A.B.); (M.C.); Tel.: +39-0461-282745 (A.B.); +39-0461-283931 (M.C.)
| | - Matthias Carl
- Correspondence: (A.B.); (M.C.); Tel.: +39-0461-282745 (A.B.); +39-0461-283931 (M.C.)
| |
Collapse
|
46
|
Okamoto H, Cherng BW, Nakajo H, Chou MY, Kinoshita M. Habenula as the experience-dependent controlling switchboard of behavior and attention in social conflict and learning. Curr Opin Neurobiol 2021; 68:36-43. [PMID: 33421772 DOI: 10.1016/j.conb.2020.12.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/25/2020] [Accepted: 12/09/2020] [Indexed: 12/20/2022]
Abstract
The habenula is among the evolutionarily most conserved parts of the brain and has been known for its role in the control of behavior to cope with aversive stimuli. Recent studies in zebrafish have revealed the novel roles of the two parallel neural pathways from the dorsal habenula to its target, the interpeduncular nucleus, in the control of behavioral choice whether to behave dominantly or submissively in the social conflict. They are modifiable depending on the internal state of the fish such as hunger and play another important role in orientation of attention whether to direct it internally to oneself or externally to others. These studies, therefore, are revealing a novel role for the habenula as the integrated switchboard for concertedly controlling behavior either as a winner with self-centered (idiothetic) attention or a loser with others-oriented (allothetic) attention.
Collapse
Affiliation(s)
- Hitoshi Okamoto
- Laboratory for Neural Circuit Dynamics of Decision Making, RIKEN Center for Brain Science, Saitama 351-0198 Japan; RIKEN CBS-Kao Collaboration Center, Saitama, 351-0198, Japan.
| | - Bor-Wei Cherng
- Laboratory for Neural Circuit Dynamics of Decision Making, RIKEN Center for Brain Science, Saitama 351-0198 Japan
| | - Haruna Nakajo
- Laboratory for Neural Circuit Dynamics of Decision Making, RIKEN Center for Brain Science, Saitama 351-0198 Japan
| | - Ming-Yi Chou
- Department of Life Science, National Taiwan University, Taipei, 10617, Taiwan
| | - Masae Kinoshita
- Laboratory for Neural Circuit Dynamics of Decision Making, RIKEN Center for Brain Science, Saitama 351-0198 Japan
| |
Collapse
|
47
|
Miletto Petrazzini ME, Gambaretto L, Dadda M, Brennan C, Agrillo C. Are cerebral and behavioural lateralization related to anxiety-like traits in the animal model zebrafish ( Danio rerio)? Laterality 2020; 26:144-162. [PMID: 33334244 DOI: 10.1080/1357650x.2020.1854280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Brain lateralization refers to hemispheric asymmetries in functions and/or neuroanatomical structures. Functional specialization in non-human animals has been mainly inferred through observation of lateralized motor responses and sensory perception. Only in a few cases has the influence of brain asymmetries on behaviour been described. Zebrafish has rapidly become a valuable model to investigate this issue as it displays epithalamic asymmetries that have been correlated to some lateralized behaviours. Here we investigated the relation between neuroanatomical or behavioural lateralization and anxiety using a light-dark preference test in adult zebrafish. In Experiment 1, we observed how scototaxis response varied as a function of behavioural lateralization measured in the detour task as turning preference in front of a dummy predator. In Experiment 2, foxD3:GFP transgenic adult zebrafish with left or right parapineal position, were tested in the same light-dark test as fish in Experiment 1. No correlation was found between the behaviour observed in the detour test and in the scototaxis test nor between the left- and right-parapineal fish and the scototaxis response. The consistency of results obtained in both experiments indicates that neither behavioural nor neuroanatomical asymmetries are related to anxiety-related behaviours measured in the light-dark test.
Collapse
Affiliation(s)
- Maria Elena Miletto Petrazzini
- Department of Biomedical Sciences, University of Padova, Padova, Italy.,Department of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Linda Gambaretto
- Department of General Psychology, University of Padova, Padova, Italy
| | - Marco Dadda
- Department of General Psychology, University of Padova, Padova, Italy
| | - Caroline Brennan
- Department of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Christian Agrillo
- Department of General Psychology, University of Padova, Padova, Italy.,Padova Neuroscience Center, University of Padova, Padova, Italy
| |
Collapse
|
48
|
Messina A, Boiti A, Vallortigara G. Asymmetric distribution of pallial‐expressed genes in zebrafish (
Danio rerio
). Eur J Neurosci 2020; 53:362-375. [DOI: 10.1111/ejn.14914] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/10/2020] [Accepted: 07/11/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Andrea Messina
- Center for Mind/Brain Sciences University of Trento Rovereto Italy
| | - Alessandra Boiti
- Center for Mind/Brain Sciences University of Trento Rovereto Italy
| | | |
Collapse
|
49
|
Fore S, Acuña-Hinrichsen F, Mutlu KA, Bartoszek EM, Serneels B, Faturos NG, Chau KTP, Cosacak MI, Verdugo CD, Palumbo F, Ringers C, Jurisch-Yaksi N, Kizil C, Yaksi E. Functional properties of habenular neurons are determined by developmental stage and sequential neurogenesis. SCIENCE ADVANCES 2020; 6:6/36/eaaz3173. [PMID: 32917624 PMCID: PMC7473745 DOI: 10.1126/sciadv.aaz3173] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 07/17/2020] [Indexed: 05/17/2023]
Abstract
The developing brain undergoes drastic alterations. Here, we investigated developmental changes in the habenula, a brain region that mediates behavioral flexibility during learning, social interactions, and aversive experiences. We showed that developing habenular circuits exhibit multiple alterations that lead to an increase in the structural and functional diversity of cell types, inputs, and functional modules. As the habenula develops, it sequentially transforms into a multisensory brain region that can process visual, olfactory, mechanosensory, and aversive stimuli. Moreover, we observed that the habenular neurons display spatiotemporally structured spontaneous activity that shows prominent alterations and refinement with age. These alterations in habenular activity are accompanied by sequential neurogenesis and the integration of distinct neural clusters across development. Last, we revealed that habenular neurons with distinct functional properties are born sequentially at distinct developmental time windows. Our results highlight a strong link between the functional properties of habenular neurons and their precise birthdate.
Collapse
Affiliation(s)
- Stephanie Fore
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Olav Kyrres gata 9, 7030 Trondheim, Norway
| | - Francisca Acuña-Hinrichsen
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Olav Kyrres gata 9, 7030 Trondheim, Norway
| | - Kadir Aytac Mutlu
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Olav Kyrres gata 9, 7030 Trondheim, Norway
| | - Ewelina Magdalena Bartoszek
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Olav Kyrres gata 9, 7030 Trondheim, Norway
| | - Bram Serneels
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Olav Kyrres gata 9, 7030 Trondheim, Norway
| | - Nicholas Guy Faturos
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Olav Kyrres gata 9, 7030 Trondheim, Norway
| | - Khac Thanh Phong Chau
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Olav Kyrres gata 9, 7030 Trondheim, Norway
| | - Mehmet Ilyas Cosacak
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Helmholtz Association, Tatzberg 41, 01307 Dresden, Germany
| | - Carmen Diaz Verdugo
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Olav Kyrres gata 9, 7030 Trondheim, Norway
| | - Fabrizio Palumbo
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Olav Kyrres gata 9, 7030 Trondheim, Norway
| | - Christa Ringers
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Olav Kyrres gata 9, 7030 Trondheim, Norway
| | - Nathalie Jurisch-Yaksi
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Olav Kyrres gata 9, 7030 Trondheim, Norway
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Olav Kyrres Gate 9, 7030 Trondheim, Norway
- Department of Neurology and Clinical Neurophysiology, St Olav University Hospital, Edvard Griegs Gate 8, 7030 Trondheim, Norway
| | - Caghan Kizil
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Helmholtz Association, Tatzberg 41, 01307 Dresden, Germany
- Center for Molecular and Cellular Bioengineering (CMCB), TU Dresden, Fetscherstr. 105, 01307 Dresden, Germany
| | - Emre Yaksi
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Olav Kyrres gata 9, 7030 Trondheim, Norway.
| |
Collapse
|
50
|
Unmasking the relevance of hemispheric asymmetries—Break on through (to the other side). Prog Neurobiol 2020; 192:101823. [DOI: 10.1016/j.pneurobio.2020.101823] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 04/17/2020] [Accepted: 05/13/2020] [Indexed: 12/21/2022]
|