1
|
Xue H, Ma R. Boundary Flow-Induced Membrane Tubulation Under Turgor Pressures. MEMBRANES 2025; 15:106. [PMID: 40277976 PMCID: PMC12029034 DOI: 10.3390/membranes15040106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 03/24/2025] [Accepted: 03/31/2025] [Indexed: 04/26/2025]
Abstract
During clathrin-mediated endocytosis in yeast cells, a small patch of flat membrane is deformed into a tubular shape. It is generally believed that the tubulation is powered by actin polymerization. However, studies based on quantitative measurement of the actin molecules suggest that they are not sufficient to produce the forces to overcome the high turgor pressure inside of the cell. In this paper, we model the membrane as a viscous 2D fluid with elasticity and study the dynamic membrane deformation powered by a boundary lipid flow under osmotic pressure. We find that in the absence pressure, the lipid flow drives the membrane into a spherical shape or a parachute shape. The shapes over time exhibit self-similarity. The presence of pressure transforms the membrane into a tubular shape that elongates almost linearly with time and the self-similarity between shapes at different times is lost. Furthermore, the width of the tube is found to scale inversely to the cubic root of the pressure, and the tension across the membrane is negative and scales to the cubic root squared of the pressure. Our results demonstrate that boundary flow powered by myosin motors, as a new way to deform the membrane, could be a supplementary mechanism to actin polymerization to drive endocytosis in yeast cells.
Collapse
Affiliation(s)
- Hao Xue
- Department of Physics, Xiamen University, Xiamen 361005, China;
| | - Rui Ma
- Department of Physics, Xiamen University, Xiamen 361005, China;
- Fujian Provincial Key Lab for Soft Functional Materials Research, Xiamen University, Xiamen 361005, China
| |
Collapse
|
2
|
Mazheika IS, Kamzolkina OV. The curtain model as an alternative and complementary to the classic turgor concept of filamentous fungi. Arch Microbiol 2025; 207:65. [PMID: 39979668 DOI: 10.1007/s00203-025-04271-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/02/2025] [Accepted: 02/09/2025] [Indexed: 02/22/2025]
Abstract
Turgor pressure is critically important for all organisms with the cell wall. In fungi, turgor is involved in the apical growth of hyphae, affects cell size, provides tension to the plasma membrane, creates the necessary rigidity for hyphae to penetrate the substrate, and has many other functions. However, there is increasing evidence that turgor pressure is not always the sole or main factor influencing some of these processes. This review characterizes the curtain model, previously proposed to describe the regulation of plasma membrane tension in the hyphae of basidiomycetes. The current understanding of the four main components of the model is outlined: the driving actin cytoskeleton, the elastic cell wall, tight adhesion of the plasma membrane to the cell wall, and macroinvaginations of the plasma membrane. All four elements, as a single model, complement or replace some physiological functions of turgor and allow us to understand how a non-apical fungal cell maintains its physiological functionality under changing environmental conditions. Further experimental confirmation of this model is fundamentally important for mycology and applied sciences.
Collapse
Affiliation(s)
- Igor S Mazheika
- Department of Mycology and Algology, Lomonosov Moscow State University, Moscow, Russia, 119991.
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia, 117971.
| | - Olga V Kamzolkina
- Department of Mycology and Algology, Lomonosov Moscow State University, Moscow, Russia, 119991
| |
Collapse
|
3
|
Reignier Y, Minc N. Analysis of Cell Wall Mechanics in Fission Yeast. Methods Mol Biol 2025; 2862:77-91. [PMID: 39527194 DOI: 10.1007/978-1-0716-4168-2_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The growth and shape of fungal cells, such as fission yeast, are strongly constrained by the mechanics of their cell wall (CW). The cell wall encases the plasma membrane and defines instantaneous cell shapes by opposing turgor pressure-derived stress on the cell surface. Measuring cell wall mechanical properties may thus bring key insights into the regulation of cell morphogenesis, cell growth, but also cell surface integrity and survival. The fission yeast cell wall has a thickness of a few tens to hundreds of nanometers, and bulk elasticity similar to that of rubber (tens of MPa). These mechanical properties vary locally around single cells, for instance, at the new vs. old growing ends, or birth scars, and may also largely depend on growth conditions and life cycle phases. While cell wall thickness and mechanics have been traditionally measured by complex methodologies including electron microscopy and atomic force microscopy, we here propose a method based on light microscopy to infer with medium-throughput cell wall mechanical properties, as well as turgor pressure in time and space in living cells. This analysis will enhance our appreciation of the mechanical regulation of fission yeast cell morphogenesis and may be directly transferable to the study of other fungal cells.
Collapse
Affiliation(s)
- Yannis Reignier
- Equipe Labellisée LIGUE Contre le Cancer, Institut Jacques Monod, Université Paris Cité, CNRS, Paris, France
| | - Nicolas Minc
- Equipe Labellisée LIGUE Contre le Cancer, Institut Jacques Monod, Université Paris Cité, CNRS, Paris, France.
| |
Collapse
|
4
|
Chevalier L, Klingelschmitt F, Mousseron L, Minc N. Mechanical strategies supporting growth and size diversity in Filamentous Fungi. Mol Biol Cell 2024; 35:br17. [PMID: 39046771 PMCID: PMC11449389 DOI: 10.1091/mbc.e24-04-0171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/03/2024] [Accepted: 07/11/2024] [Indexed: 07/25/2024] Open
Abstract
The stereotypical tip growth of filamentous fungi supports their lifestyles and functions. It relies on the polarized remodeling and expansion of a protective elastic cell wall (CW) driven by large cytoplasmic turgor pressure. Remarkably, hyphal filament diameters and cell elongation rates can vary extensively among different fungi. To date, however, how fungal cell mechanics may be adapted to support these morphological diversities while ensuring surface integrity remains unknown. Here, we combined super-resolution imaging and deflation assays to measure local CW thickness, elasticity and turgor in a set of fungal species spread on the evolutionary tree that spans a large range in cell size and growth speeds. While CW elasticity exhibited dispersed values, presumably reflecting differences in CW composition, both thickness and turgor scaled in dose-dependence with cell diameter and growth speeds. Notably, larger cells exhibited thinner lateral CWs, and faster cells thinner apical CWs. Counterintuitively, turgor pressure was also inversely scaled with cell diameter and tip growth speed, challenging the idea that turgor is the primary factor dictating tip elongation rates. We propose that fast-growing cells with rapid CW turnover have evolved strategies based on a less turgid cytoplasm and thin walls to safeguard surface integrity and survival.
Collapse
Affiliation(s)
- Louis Chevalier
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
- Equipe Labellisée LIGUE Contre le Cancer, 75013 Paris, France
| | - Flora Klingelschmitt
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
- Equipe Labellisée LIGUE Contre le Cancer, 75013 Paris, France
| | - Ludovic Mousseron
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
- Equipe Labellisée LIGUE Contre le Cancer, 75013 Paris, France
| | - Nicolas Minc
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
- Equipe Labellisée LIGUE Contre le Cancer, 75013 Paris, France
| |
Collapse
|
5
|
Rezig IM, Yaduma WG, McInerny CJ. Processes Controlling the Contractile Ring during Cytokinesis in Fission Yeast, Including the Role of ESCRT Proteins. J Fungi (Basel) 2024; 10:154. [PMID: 38392827 PMCID: PMC10890238 DOI: 10.3390/jof10020154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/24/2024] Open
Abstract
Cytokinesis, as the last stage of the cell division cycle, is a tightly controlled process amongst all eukaryotes, with defective division leading to severe cellular consequences and implicated in serious human diseases and conditions such as cancer. Both mammalian cells and the fission yeast Schizosaccharomyces pombe use binary fission to divide into two equally sized daughter cells. Similar to mammalian cells, in S. pombe, cytokinetic division is driven by the assembly of an actomyosin contractile ring (ACR) at the cell equator between the two cell tips. The ACR is composed of a complex network of membrane scaffold proteins, actin filaments, myosin motors and other cytokinesis regulators. The contraction of the ACR leads to the formation of a cleavage furrow which is severed by the endosomal sorting complex required for transport (ESCRT) proteins, leading to the final cell separation during the last stage of cytokinesis, the abscission. This review describes recent findings defining the two phases of cytokinesis in S. pombe: ACR assembly and constriction, and their coordination with septation. In summary, we provide an overview of the current understanding of the mechanisms regulating ACR-mediated cytokinesis in S. pombe and emphasize a potential role of ESCRT proteins in this process.
Collapse
Affiliation(s)
- Imane M Rezig
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Davidson Building, Glasgow G12 8QQ, UK
| | - Wandiahyel G Yaduma
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Davidson Building, Glasgow G12 8QQ, UK
- Department of Chemistry, School of Sciences, Adamawa State College of Education, Hong 640001, Adamawa State, Nigeria
| | - Christopher J McInerny
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Davidson Building, Glasgow G12 8QQ, UK
| |
Collapse
|
6
|
Lin Z, Mao Z, Ma R. Inferring biophysical properties of membranes during endocytosis using machine learning. SOFT MATTER 2024; 20:651-660. [PMID: 38164011 DOI: 10.1039/d3sm01221b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Endocytosis is a fundamental cellular process in eukaryotic cells that facilitates the transport of molecules into the cell. With the help of fluorescence microscopy and electron tomography, researchers have accumulated extensive geometric data of membrane shapes during endocytosis. These data contain rich information about the mechanical properties of membranes, which are hard to access via experiments due to the small dimensions of the endocytic patch. In this study, we propose an approach that combines machine learning with the Helfrich theory of membranes to infer the mechanical properties of membranes during endocytosis from a dataset of membrane shapes extracted from electron tomography. Our results demonstrate that machine learning can output solutions that both match the experimental profile and satisfy the membrane shape equations derived from Helfrich theory. The learning results show that during the early stage of endocytosis, the inferred membrane tension is negative, indicating the presence of strong compressive forces at the boundary of the endocytic invagination. Our method presents a generic framework for extracting membrane information from super-resolution imaging.
Collapse
Affiliation(s)
- Zhiwei Lin
- Department of Physics, College of Physical Science and Technology, Xiamen University, Xiamen 361005, China.
| | - Zhiping Mao
- School of Mathematical Sciences, Fujian Provincial Key Laboratory of Mathematical Modeling and High-Performance Scientific Computing, Xiamen University, Xiamen 361005, China.
| | - Rui Ma
- Department of Physics, College of Physical Science and Technology, Xiamen University, Xiamen 361005, China.
- Fujian Provincial Key Laboratory for Soft Functional Materials Research, Research Institute for Biomimetics and Soft Matter, Xiamen University, Xiamen 361005, China
| |
Collapse
|
7
|
Lemière J, Chang F. Quantifying turgor pressure in budding and fission yeasts based upon osmotic properties. Mol Biol Cell 2023; 34:ar133. [PMID: 37903220 PMCID: PMC10848946 DOI: 10.1091/mbc.e23-06-0215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/02/2023] [Accepted: 10/11/2023] [Indexed: 11/01/2023] Open
Abstract
Walled cells, such as plants, fungi, and bacteria cells, possess a high internal hydrostatic pressure, termed turgor pressure, that drives volume growth and contributes to cell shape determination. Rigorous measurement of turgor pressure, however, remains challenging, and reliable quantitative measurements, even in budding yeast are still lacking. Here, we present a simple and robust experimental approach to access turgor pressure in yeasts based upon the determination of isotonic concentration using protoplasts as osmometers. We propose three methods to identify the isotonic condition - three-dimensional cell volume, cytoplasmic fluorophore intensity, and mobility of a cytGEMs nano-rheology probe - that all yield consistent values. Our results provide turgor pressure estimates of 1.0 ± 0.1 MPa for Schizosaccharomyces pombe, 0.49 ± 0.01 MPa for Schizosaccharomyces japonicus, 0.5 ± 0.1 MPa for Saccharomyces cerevisiae W303a and 0.31 ± 0.03 MPa for Saccharomyces cerevisiae BY4741. Large differences in turgor pressure and nano-rheology measurements between the Saccharomyces cerevisiae strains demonstrate how fundamental biophysical parameters can vary even among wild-type strains of the same species. These side-by-side measurements of turgor pressure in multiple yeast species provide critical values for quantitative studies on cellular mechanics and comparative evolution.
Collapse
Affiliation(s)
- Joël Lemière
- Department of Cell and Tissue Biology, University of California, San Francisco, CA 94143
| | - Fred Chang
- Department of Cell and Tissue Biology, University of California, San Francisco, CA 94143
| |
Collapse
|
8
|
Lemière J, Chang F. Quantifying turgor pressure in budding and fission yeasts based upon osmotic properties. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.07.544129. [PMID: 37333400 PMCID: PMC10274794 DOI: 10.1101/2023.06.07.544129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Walled cells, such as plants, fungi, and bacteria cells, possess a high internal hydrostatic pressure, termed turgor pressure, that drives volume growth and contributes to cell shape determination. Rigorous measurement of turgor pressure, however, remains challenging, and reliable quantitative measurements, even in budding yeast are still lacking. Here, we present a simple and robust experimental approach to access turgor pressure in yeasts based upon the determination of isotonic concentration using protoplasts as osmometers. We propose three methods to identify the isotonic condition - 3D cell volume, cytoplasmic fluorophore intensity, and mobility of a cytGEMs nano-rheology probe - that all yield consistent values. Our results provide turgor pressure estimates of 1.0 ± 0.1 MPa for S. pombe, 0.49 ± 0.01 MPa for S. japonicus, 0.5 ± 0.1 MPa for S. cerevisiae W303a and 0.31 ± 0.03 MPa for S. cerevisiae BY4741. Large differences in turgor pressure and nano-rheology measurements between the S. cerevisiae strains demonstrate how fundamental biophysical parameters can vary even among wildtype strains of the same species. These side-by-side measurements of turgor pressure in multiple yeast species provide critical values for quantitative studies on cellular mechanics and comparative evolution.
Collapse
Affiliation(s)
- Joël Lemière
- Department of Cell and Tissue Biology, University of San Francisco, CA, USA
| | - Fred Chang
- Department of Cell and Tissue Biology, University of San Francisco, CA, USA
| |
Collapse
|
9
|
Willet AH, Wos M, Igarashi MG, Ren L, Turner LA, Gould KL. Elevated levels of sphingolipid MIPC in the plasma membrane disrupt the coordination of cell growth with cell wall formation in fission yeast. PLoS Genet 2023; 19:e1010987. [PMID: 37792890 PMCID: PMC10578601 DOI: 10.1371/journal.pgen.1010987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/16/2023] [Accepted: 09/19/2023] [Indexed: 10/06/2023] Open
Abstract
Coupling cell wall expansion with cell growth is a universal challenge faced by walled organisms. Mutations in Schizosaccharomyces pombe css1, which encodes a PM inositol phosphosphingolipid phospholipase C, prevent cell wall expansion but not synthesis of cell wall material. To probe how Css1 modulates cell wall formation we used classical and chemical genetics coupled with quantitative mass spectrometry. We found that elevated levels of the sphingolipid biosynthetic pathway's final product, mannosylinositol phosphorylceramide (MIPC), specifically correlated with the css1-3 phenotype. We also found that an apparent indicator of sphingolipids and a sterol biosensor accumulated at the cytosolic face of the PM at cell tips and the division site of css1-3 cells and, in accord, the PM in css1-3 was less dynamic than in wildtype cells. Interestingly, disrupting the protein glycosylation machinery recapitulated the css1-3 phenotype and led us to investigate Ghs2, a glycosylated PM protein predicted to modify cell wall material. Disrupting Ghs2 function led to aberrant cell wall material accumulation suggesting Ghs2 is dysfunctional in css1-3. We conclude that preventing an excess of MIPC in the S. pombe PM is critical to the function of key PM-localized proteins necessary for coupling growth with cell wall formation.
Collapse
Affiliation(s)
- Alaina H. Willet
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, United States of America
| | - Marcin Wos
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, United States of America
| | - Maya G. Igarashi
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, United States of America
| | - Liping Ren
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, United States of America
| | - Lesley A. Turner
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, United States of America
| | - Kathleen L. Gould
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, United States of America
| |
Collapse
|
10
|
Mochizuki T, Tanigawa T, Shindo S, Suematsu M, Oguchi Y, Mioka T, Kato Y, Fujiyama M, Hatano E, Yamaguchi M, Chibana H, Abe F. Activation of CWI pathway through high hydrostatic pressure, enhancing glycerol efflux via the aquaglyceroporin Fps1 in Saccharomyces cerevisiae. Mol Biol Cell 2023; 34:ar92. [PMID: 37379203 PMCID: PMC10398897 DOI: 10.1091/mbc.e23-03-0086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/26/2023] [Accepted: 06/22/2023] [Indexed: 06/30/2023] Open
Abstract
The fungal cell wall is the initial barrier for the fungi against diverse external stresses, such as osmolarity changes, harmful drugs, and mechanical injuries. This study explores the roles of osmoregulation and the cell-wall integrity (CWI) pathway in response to high hydrostatic pressure in the yeast Saccharomyces cerevisiae. We demonstrate the roles of the transmembrane mechanosensor Wsc1 and aquaglyceroporin Fps1 in a general mechanism to maintain cell growth under high-pressure regimes. The promotion of water influx into cells at 25 MPa, as evident by an increase in cell volume and a loss of the plasma membrane eisosome structure, activates the CWI pathway through the function of Wsc1. Phosphorylation of Slt2, the downstream mitogen-activated protein kinase, was increased at 25 MPa. Glycerol efflux increases via Fps1 phosphorylation, which is initiated by downstream components of the CWI pathway, and contributes to the reduction in intracellular osmolarity under high pressure. The elucidation of the mechanisms underlying adaptation to high pressure through the well-established CWI pathway could potentially translate to mammalian cells and provide novel insights into cellular mechanosensation.
Collapse
Affiliation(s)
- Takahiro Mochizuki
- Department of Chemistry and Biological Science, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| | - Toshiki Tanigawa
- Department of Chemistry and Biological Science, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| | - Seiya Shindo
- Department of Chemistry and Biological Science, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| | - Momoka Suematsu
- Department of Chemistry and Biological Science, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| | - Yuki Oguchi
- Center for Instrumental Analysis, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| | - Tetsuo Mioka
- Department of Chemistry and Biological Science, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| | - Yusuke Kato
- Department of Chemistry and Biological Science, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| | - Mina Fujiyama
- Department of Chemistry and Biological Science, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| | - Eri Hatano
- Department of Chemistry and Biological Science, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| | - Masashi Yamaguchi
- Medical Mycology Research Center, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8673, Japan
| | - Hiroji Chibana
- Medical Mycology Research Center, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8673, Japan
| | - Fumiyoshi Abe
- Department of Chemistry and Biological Science, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| |
Collapse
|
11
|
Cell wall dynamics stabilize tip growth in a filamentous fungus. PLoS Biol 2023; 21:e3001981. [PMID: 36649360 PMCID: PMC9882835 DOI: 10.1371/journal.pbio.3001981] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 01/27/2023] [Accepted: 12/22/2022] [Indexed: 01/18/2023] Open
Abstract
Hyphal tip growth allows filamentous fungi to colonize space, reproduce, or infect. It features remarkable morphogenetic plasticity including unusually fast elongation rates, tip turning, branching, or bulging. These shape changes are all driven from the expansion of a protective cell wall (CW) secreted from apical pools of exocytic vesicles. How CW secretion, remodeling, and deformation are modulated in concert to support rapid tip growth and morphogenesis while ensuring surface integrity remains poorly understood. We implemented subresolution imaging to map the dynamics of CW thickness and secretory vesicles in Aspergillus nidulans. We found that tip growth is associated with balanced rates of CW secretion and expansion, which limit temporal fluctuations in CW thickness, elongation speed, and vesicle amount, to less than 10% to 20%. Affecting this balance through modulations of growth or trafficking yield to near-immediate changes in CW thickness, mechanics, and shape. We developed a model with mechanical feedback that accounts for steady states of hyphal growth as well as rapid adaptation of CW mechanics and vesicle recruitment to different perturbations. These data provide unprecedented details on how CW dynamics emerges from material secretion and expansion, to stabilize fungal tip growth as well as promote its morphogenetic plasticity.
Collapse
|
12
|
Municio-Diaz C, Muller E, Drevensek S, Fruleux A, Lorenzetti E, Boudaoud A, Minc N. Mechanobiology of the cell wall – insights from tip-growing plant and fungal cells. J Cell Sci 2022; 135:280540. [DOI: 10.1242/jcs.259208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ABSTRACT
The cell wall (CW) is a thin and rigid layer encasing the membrane of all plant and fungal cells. It ensures mechanical integrity by bearing mechanical stresses derived from large cytoplasmic turgor pressure, contacts with growing neighbors or growth within restricted spaces. The CW is made of polysaccharides and proteins, but is dynamic in nature, changing composition and geometry during growth, reproduction or infection. Such continuous and often rapid remodeling entails risks of enhanced stress and consequent damages or fractures, raising the question of how the CW detects and measures surface mechanical stress and how it strengthens to ensure surface integrity? Although early studies in model fungal and plant cells have identified homeostatic pathways required for CW integrity, recent methodologies are now allowing the measurement of pressure and local mechanical properties of CWs in live cells, as well as addressing how forces and stresses can be detected at the CW surface, fostering the emergence of the field of CW mechanobiology. Here, using tip-growing cells of plants and fungi as case study models, we review recent progress on CW mechanosensation and mechanical regulation, and their implications for the control of cell growth, morphogenesis and survival.
Collapse
Affiliation(s)
- Celia Municio-Diaz
- Université de Paris, CNRS, Institut Jacques Monod 1 , F-75006 Paris , France
- Equipe Labellisée LIGUE Contre le Cancer 2 , 75013 Paris , France
| | - Elise Muller
- LadHyX, CNRS, Ecole polytechnique, Institut Polytechnique de Paris 3 , 91128 Palaiseau Cedex , France
| | - Stéphanie Drevensek
- LadHyX, CNRS, Ecole polytechnique, Institut Polytechnique de Paris 3 , 91128 Palaiseau Cedex , France
| | - Antoine Fruleux
- LPTMS, CNRS, Université Paris-Saclay 4 , 91405 Orsay , France
| | - Enrico Lorenzetti
- LadHyX, CNRS, Ecole polytechnique, Institut Polytechnique de Paris 3 , 91128 Palaiseau Cedex , France
| | - Arezki Boudaoud
- LadHyX, CNRS, Ecole polytechnique, Institut Polytechnique de Paris 3 , 91128 Palaiseau Cedex , France
| | - Nicolas Minc
- Université de Paris, CNRS, Institut Jacques Monod 1 , F-75006 Paris , France
- Equipe Labellisée LIGUE Contre le Cancer 2 , 75013 Paris , France
| |
Collapse
|
13
|
Kamakura S, Ashworth MP, Yamada K, Mikami D, Kobayashi A, Idei M, Sato S. Morphological plasticity in response to salinity change in the euryhaline diatom Pleurosira laevis (Bacillariophyta). JOURNAL OF PHYCOLOGY 2022; 58:631-642. [PMID: 35796617 DOI: 10.1111/jpy.13277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
Pleurosira laevis is a salt-tolerant diatom distributed around the world. The valve of P. laevis has distinct structures called ocelli, which are sharply defined areas with fine, densely packed pores. Two formae of this diatom, P. laevis f. laevis and P. laevis f. polymorpha, are distinguished from each other by their flat or dome-shaped valve faces and degree of elevation of the ocelli, respectively. In this study, we established 4 strains of P. laevis isolated from freshwaters or coastal areas in Japan and the United States, and tracked the formation of newly formed valves with the fluorescent SDV-specific dye PDMPO in culture under several salinity conditions. The result clearly demonstrated the morphological plasticity of the valves, controlled by environmental salinity. The laevis form and polymorpha form valves were produced at salinities of 2 and 7, respectively. The salinity thresholds dictating the morphological plasticity of the valve were consistent in all 4 strains. A similar morphology to the polymorpha form was reproduced in a freshwater medium with the addition of sorbitol, suggesting that osmotic pressure plays a key role in this morphological plasticity. The highly reproducible and easily manipulated change in morphology makes this diatom an ideal model for lab experiments focusing on the molecular and genetic factors involved with valve morphogenesis.
Collapse
Affiliation(s)
- Shiho Kamakura
- Graduate School of Bioscience and Biotechnology, Fukui Prefectural University, 1-1 Gakuencho, Obama, Fukui, 917-0003, Japan
| | - Matt P Ashworth
- Department of Molecular Biosciences, The University of Texas at Austin, 1 University Station (A6700), Austin, Texas, 78712, USA
| | - Kazumasa Yamada
- Faculty of Marine Science and Technology, Fukui Prefectural University, 1-1 Gakuencho, Obama, Fukui, 917-0003, Japan
| | - Daichi Mikami
- Graduate School of Bioscience and Biotechnology, Fukui Prefectural University, 1-1 Gakuencho, Obama, Fukui, 917-0003, Japan
| | - Atsushi Kobayashi
- Kanto Daiichi High School, 2-10-11 Matsushima, Edogawa-ku, Tokyo, 132-0031, Japan
| | - Masahiko Idei
- Faculty of Education, Bunkyo University, 3337 Minami-ogishima, Koshigaya, Saitama, 343-8511, Japan
| | - Shinya Sato
- Faculty of Marine Science and Technology, Fukui Prefectural University, 1-1 Gakuencho, Obama, Fukui, 917-0003, Japan
| |
Collapse
|
14
|
Moshtohry M, Bellingham-Johnstun K, Elting MW, Laplante C. Laser ablation reveals the impact of Cdc15p on the stiffness of the contractile. Mol Biol Cell 2022; 33:br9. [PMID: 35274981 PMCID: PMC9265155 DOI: 10.1091/mbc.e21-10-0515] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The mechanics that govern the constriction of the contractile ring remain poorly understood yet are critical to understanding the forces that drive cytokinesis. We used laser ablation in fission yeast cells to unravel these mechanics focusing on the role of Cdc15p as a putative anchoring protein. Our work shows that the severed constricting contractile ring recoils to a finite point leaving a gap that can heal if less than ∼1 µm. Severed contractile rings in Cdc15p-depleted cells exhibit an exaggerated recoil, which suggests that the recoil is limited by the anchoring of the ring to the plasma membrane. Based on a physical model of the severed contractile ring, we propose that Cdc15p impacts the stiffness of the contractile ring more than the viscous drag.
Collapse
Affiliation(s)
- Mohamed Moshtohry
- Department of Physics, North Carolina State University, Raleigh, NC 27607
| | | | - Mary Williard Elting
- Department of Physics, North Carolina State University, Raleigh, NC 27607.,Cluster for Quantitative and Computational Developmental Biology, North Carolina State University, Raleigh, NC 27607
| | - Caroline Laplante
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27607.,Cluster for Quantitative and Computational Developmental Biology, North Carolina State University, Raleigh, NC 27607
| |
Collapse
|
15
|
Molines AT, Lemière J, Gazzola M, Steinmark IE, Edrington CH, Hsu CT, Real-Calderon P, Suhling K, Goshima G, Holt LJ, Thery M, Brouhard GJ, Chang F. Physical properties of the cytoplasm modulate the rates of microtubule polymerization and depolymerization. Dev Cell 2022; 57:466-479.e6. [PMID: 35231427 PMCID: PMC9319896 DOI: 10.1016/j.devcel.2022.02.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 11/01/2021] [Accepted: 01/31/2022] [Indexed: 11/20/2022]
Abstract
The cytoplasm is a crowded, visco-elastic environment whose physical properties change according to physiological or developmental states. How the physical properties of the cytoplasm impact cellular functions in vivo remains poorly understood. Here, we probe the effects of cytoplasmic concentration on microtubules by applying osmotic shifts to fission yeast, moss, and mammalian cells. We show that the rates of both microtubule polymerization and depolymerization scale linearly and inversely with cytoplasmic concentration; an increase in cytoplasmic concentration decreases the rates of microtubule polymerization and depolymerization proportionally, whereas a decrease in cytoplasmic concentration leads to the opposite. Numerous lines of evidence indicate that these effects are due to changes in cytoplasmic viscosity rather than cellular stress responses or macromolecular crowding per se. We reconstituted these effects on microtubules in vitro by tuning viscosity. Our findings indicate that, even in normal conditions, the viscosity of the cytoplasm modulates the reactions that underlie microtubule dynamic behaviors.
Collapse
Affiliation(s)
- Arthur T Molines
- Department of Cell and Tissue Biology, University of California, San Francisco, USA; Marine Biological Laboratory, Woods Hole, MA 02543, USA.
| | - Joël Lemière
- Department of Cell and Tissue Biology, University of California, San Francisco, USA
| | - Morgan Gazzola
- University of Grenoble-Alpes, CEA, CNRS, INRA, Interdisciplinary Research Institute of Grenoble, Laboratoire de Phyiologie Cellulaire & Vegétale, CytoMorpho Lab, 38054 Grenoble, France
| | | | | | - Chieh-Ting Hsu
- Department of Physics, McGill University, Montréal, Quebec, Canada
| | - Paula Real-Calderon
- Department of Cell and Tissue Biology, University of California, San Francisco, USA
| | - Klaus Suhling
- Department of Physics, King's College London, London, UK
| | - Gohta Goshima
- Sugashima Marine Biological Laboratory and Division of Biological Science, Graduate School of Science, Nagoya University, Toba City, Mie, Japan; Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Liam J Holt
- Institute for Systems Genetics, New York University Langone Health, New York, NY 10016, USA; Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Manuel Thery
- University of Grenoble-Alpes, CEA, CNRS, INRA, Interdisciplinary Research Institute of Grenoble, Laboratoire de Phyiologie Cellulaire & Vegétale, CytoMorpho Lab, 38054 Grenoble, France; Université de Paris, INSERM, CEA, Institut de Recherche Saint Louis, U 976, CytoMorpho Lab, 75010 Paris, France
| | - Gary J Brouhard
- Department of Biology, McGill University, Montréal, Quebec, Canada
| | - Fred Chang
- Department of Cell and Tissue Biology, University of California, San Francisco, USA; Marine Biological Laboratory, Woods Hole, MA 02543, USA.
| |
Collapse
|
16
|
Sinha D, Ivan D, Gibbs E, Chetluru M, Goss J, Chen Q. Fission yeast polycystin Pkd2p promotes cell size expansion and antagonizes the Hippo-related SIN pathway. J Cell Sci 2022; 135:jcs259046. [PMID: 35099006 PMCID: PMC8919332 DOI: 10.1242/jcs.259046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 01/14/2022] [Indexed: 11/20/2022] Open
Abstract
Polycystins are conserved mechanosensitive channels whose mutations lead to the common human renal disorder autosomal dominant polycystic kidney disease (ADPKD). Previously, we discovered that the plasma membrane-localized fission yeast polycystin homolog Pkd2p is an essential protein required for cytokinesis; however, its role remains unclear. Here, we isolated a novel temperature-sensitive pkd2 mutant, pkd2-B42. Among the strong growth defects of this mutant, the most striking was that many mutant cells often lost a significant portion of their volume in just 5 min followed by a gradual recovery, a process that we termed 'deflation'. Unlike cell lysis, deflation did not result in plasma membrane rupture and occurred independently of cell cycle progression. The tip extension of pkd2-B42 cells was 80% slower than that of wild-type cells, and their turgor pressure was 50% lower. Both pkd2-B42 and the hypomorphic depletion mutant pkd2-81KD partially rescued mutants of the septation initiation network (SIN), a yeast Hippo-related signaling pathway, by preventing cell lysis, enhancing septum formation and doubling the number of Sid2p and Mob1p molecules at the spindle pole bodies. We conclude that Pkd2p promotes cell size expansion during interphase by regulating turgor pressure and antagonizes the SIN during cytokinesis. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Debatrayee Sinha
- Department of Biological Sciences, The University of Toledo, 2801 West Bancroft St, Toledo, OH 43606, USA
| | - Denisa Ivan
- Department of Biological Sciences, The University of Toledo, 2801 West Bancroft St, Toledo, OH 43606, USA
| | - Ellie Gibbs
- Department of Biological Sciences, Wellesley College, 106 Central Street, Wellesley, MA 02482, USA
| | - Madhurya Chetluru
- Department of Biological Sciences, The University of Toledo, 2801 West Bancroft St, Toledo, OH 43606, USA
| | - John Goss
- Department of Biological Sciences, Wellesley College, 106 Central Street, Wellesley, MA 02482, USA
| | - Qian Chen
- Department of Biological Sciences, The University of Toledo, 2801 West Bancroft St, Toledo, OH 43606, USA
| |
Collapse
|
17
|
Jia C, Singh A, Grima R. Characterizing non-exponential growth and bimodal cell size distributions in fission yeast: An analytical approach. PLoS Comput Biol 2022; 18:e1009793. [PMID: 35041656 PMCID: PMC8797179 DOI: 10.1371/journal.pcbi.1009793] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 01/28/2022] [Accepted: 12/23/2021] [Indexed: 11/29/2022] Open
Abstract
Unlike many single-celled organisms, the growth of fission yeast cells within a cell cycle is not exponential. It is rather characterized by three distinct phases (elongation, septation, and reshaping), each with a different growth rate. Experiments also showed that the distribution of cell size in a lineage can be bimodal, unlike the unimodal distributions measured for the bacterium Escherichia coli. Here we construct a detailed stochastic model of cell size dynamics in fission yeast. The theory leads to analytic expressions for the cell size and the birth size distributions, and explains the origin of bimodality seen in experiments. In particular, our theory shows that the left peak in the bimodal distribution is associated with cells in the elongation phase, while the right peak is due to cells in the septation and reshaping phases. We show that the size control strategy, the variability in the added size during a cell cycle, and the fraction of time spent in each of the three cell growth phases have a strong bearing on the shape of the cell size distribution. Furthermore, we infer all the parameters of our model by matching the theoretical cell size and birth size distributions to those from experimental single-cell time-course data for seven different growth conditions. Our method provides a much more accurate means of determining the size control strategy (timer, adder or sizer) than the standard method based on the slope of the best linear fit between the birth and division sizes. We also show that the variability in added size and the strength of size control in fission yeast depend weakly on the temperature but strongly on the culture medium. More importantly, we find that stronger size homeostasis and larger added size variability are required for fission yeast to adapt to unfavorable environmental conditions. Advances in microscopy enable us to follow single cells over long timescales from which we can understand how their size varies with time and the nature of innate strategies developed to control cell size. These data show that in many cell types, growth is exponential and the distribution of cell size has one peak, namely there is a single characteristic cell size. However data for fission yeast show remarkable differences: growth is non-exponential and the distribution of cell sizes has two peaks, corresponding to different growth phases. Here we construct a detailed stochastic mathematical model of this organism; by solving the model analytically, we show that it is able to predict the two peaked distributions of cell size seen in data and provide an explanation for each peak in terms of various growth phases of the single-celled organism. Furthermore, by fitting the model to the data, we infer values for the rates of all microscopic processes in our model. This method is shown to provide a much more reliable inference than current methods and shed light on how the strategy used by fission yeast cells to control their size varies with external conditions.
Collapse
Affiliation(s)
- Chen Jia
- Applied and Computational Mathematics Division, Beijing Computational Science Research Center, Beijing, China
| | - Abhyudai Singh
- Department of Electrical and Computer Engineering, University of Delaware, Newark, Delaware, United States of America
| | - Ramon Grima
- School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
- * E-mail:
| |
Collapse
|
18
|
Cells under pressure: how yeast cells respond to mechanical forces. Trends Microbiol 2022; 30:495-510. [PMID: 35000797 DOI: 10.1016/j.tim.2021.11.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/31/2021] [Accepted: 11/08/2021] [Indexed: 11/23/2022]
Abstract
In their natural habitats, unicellular fungal microbes are exposed to a myriad of mechanical cues such as shear forces from fluid flow, osmotic changes, and contact forces arising from microbial expansion in confined niches. While the rigidity of the cell wall is critical to withstand such external forces and balance high internal turgor pressure, it poses mechanical challenges during physiological processes such as cell growth, division, and mating that require cell wall remodeling. Thus, even organisms as simple as yeast have evolved complex signaling networks to sense and respond to intrinsic and extrinsic mechanical forces. In this review, we summarize the type and origin of mechanical forces experienced by unicellular yeast and discuss how these forces reorganize cell polarity and how pathogenic fungi exploit polarized assemblies to track weak spots in host tissues for successful penetration. We then describe mechanisms of force-sensing by conserved sets of mechanosensors. Finally, we elaborate downstream mechanotransduction mechanisms that orchestrate appropriate cellular responses, leading to improved mechanical fitness.
Collapse
|
19
|
Lemière J, Real-Calderon P, Holt LJ, Fai TG, Chang F. Control of nuclear size by osmotic forces in Schizosaccharomyces pombe. eLife 2022; 11:76075. [PMID: 35856499 PMCID: PMC9410708 DOI: 10.7554/elife.76075] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
The size of the nucleus scales robustly with cell size so that the nuclear-to-cell volume ratio (N/C ratio) is maintained during cell growth in many cell types. The mechanism responsible for this scaling remains mysterious. Previous studies have established that the N/C ratio is not determined by DNA amount but is instead influenced by factors such as nuclear envelope mechanics and nuclear transport. Here, we developed a quantitative model for nuclear size control based upon colloid osmotic pressure and tested key predictions in the fission yeast Schizosaccharomyces pombe. This model posits that the N/C ratio is determined by the numbers of macromolecules in the nucleoplasm and cytoplasm. Osmotic shift experiments showed that the fission yeast nucleus behaves as an ideal osmometer whose volume is primarily dictated by osmotic forces. Inhibition of nuclear export caused accumulation of macromolecules in the nucleoplasm, leading to nuclear swelling. We further demonstrated that the N/C ratio is maintained by a homeostasis mechanism based upon synthesis of macromolecules during growth. These studies demonstrate the functions of colloid osmotic pressure in intracellular organization and size control.
Collapse
Affiliation(s)
- Joël Lemière
- Department of Cell and Tissue Biology, University of California, San FranciscoSan FranciscoUnited States
| | - Paula Real-Calderon
- Department of Cell and Tissue Biology, University of California, San FranciscoSan FranciscoUnited States,Centro Andaluz de Biología del DesarrolloSevillaSpain
| | - Liam J Holt
- Institute for Systems Genetics, New York University Langone HealthNew YorkUnited States
| | - Thomas G Fai
- Department of Mathematics and Volen Center for Complex Systems, Brandeis UniversityWalthamUnited States
| | - Fred Chang
- Department of Cell and Tissue Biology, University of California, San FranciscoSan FranciscoUnited States
| |
Collapse
|
20
|
Neeli-Venkata R, Diaz CM, Celador R, Sanchez Y, Minc N. Detection of surface forces by the cell-wall mechanosensor Wsc1 in yeast. Dev Cell 2021; 56:2856-2870.e7. [PMID: 34666001 DOI: 10.1016/j.devcel.2021.09.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 07/13/2021] [Accepted: 09/24/2021] [Indexed: 11/19/2022]
Abstract
Surface receptors of animal cells, such as integrins, promote mechanosensation by forming clusters as signaling hubs that transduce tensile forces. Walled cells of plants and fungi also feature surface sensors, with long extracellular domains that are embedded in their cell walls (CWs) and are thought to detect injuries and promote repair. How these sensors probe surface forces remains unknown. By studying the conserved CW sensor Wsc1 in fission yeast, we uncovered the formation of micrometer-sized clusters at sites of force application onto the CW. Clusters assembled within minutes of CW compression, in dose dependence with mechanical stress and disassembled upon relaxation. Our data support that Wsc1 accumulates to sites of enhanced mechanical stress through reduced lateral diffusivity, mediated by the binding of its extracellular WSC domain to CW polysaccharides, independent of canonical polarity, trafficking, and downstream CW regulatory pathways. Wsc1 may represent an autonomous module to detect and transduce local surface forces onto the CW.
Collapse
Affiliation(s)
- Ramakanth Neeli-Venkata
- Université de Paris, CNRS, Institut Jacques Monod, 75006 Paris, France; Equipe Labellisée LIGUE Contre le Cancer, Paris, France
| | - Celia Municio Diaz
- Université de Paris, CNRS, Institut Jacques Monod, 75006 Paris, France; Equipe Labellisée LIGUE Contre le Cancer, Paris, France
| | - Ruben Celador
- Instituto de Biología Funcional y Genómica, CSIC/Universidad de Salamanca and Departamento de Microbiología y Genética, Universidad de Salamanca, C/ Zacarías González, 37007 Salamanca, Spain
| | - Yolanda Sanchez
- Instituto de Biología Funcional y Genómica, CSIC/Universidad de Salamanca and Departamento de Microbiología y Genética, Universidad de Salamanca, C/ Zacarías González, 37007 Salamanca, Spain
| | - Nicolas Minc
- Université de Paris, CNRS, Institut Jacques Monod, 75006 Paris, France; Equipe Labellisée LIGUE Contre le Cancer, Paris, France.
| |
Collapse
|
21
|
Muriel O, Michon L, Kukulski W, Martin SG. Ultrastructural plasma membrane asymmetries in tension and curvature promote yeast cell fusion. J Cell Biol 2021; 220:e202103142. [PMID: 34382996 PMCID: PMC8366684 DOI: 10.1083/jcb.202103142] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/15/2021] [Accepted: 07/26/2021] [Indexed: 12/24/2022] Open
Abstract
Cell-cell fusion is central for sexual reproduction, and generally involves gametes of different shapes and sizes. In walled fission yeast Schizosaccharomyces pombe, the fusion of h+ and h- isogametes requires the fusion focus, an actin structure that concentrates glucanase-containing vesicles for cell wall digestion. Here, we present a quantitative correlative light and electron microscopy (CLEM) tomographic dataset of the fusion site, which reveals the fusion focus ultrastructure. Unexpectedly, gametes show marked asymmetries: a taut, convex plasma membrane of h- cells progressively protrudes into a more slack, wavy plasma membrane of h+ cells. Asymmetries are relaxed upon fusion, with observations of ramified fusion pores. h+ cells have a higher exo-/endocytosis ratio than h- cells, and local reduction in exocytosis strongly diminishes membrane waviness. Reciprocally, turgor pressure reduction specifically in h- cells impedes their protrusions into h+ cells and delays cell fusion. We hypothesize that asymmetric membrane conformations, due to differential turgor pressure and exocytosis/endocytosis ratios between mating types, favor cell-cell fusion.
Collapse
Affiliation(s)
- Olivia Muriel
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Laetitia Michon
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Wanda Kukulski
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Sophie G. Martin
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
22
|
Miller KE, Magliozzi JO, Picard NA, Moseley JB. Sequestration of the exocytic SNARE Psy1 into multiprotein nodes reinforces polarized morphogenesis in fission yeast. Mol Biol Cell 2021; 32:ar7. [PMID: 34347508 PMCID: PMC8684755 DOI: 10.1091/mbc.e20-05-0277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/06/2021] [Accepted: 07/29/2021] [Indexed: 11/11/2022] Open
Abstract
Polarized morphogenesis is achieved by targeting or inhibiting growth in distinct regions. Rod-shaped fission yeast cells grow exclusively at their ends by restricting exocytosis and secretion to these sites. This growth pattern implies the existence of mechanisms that prevent exocytosis and growth along nongrowing cell sides. We previously identified a set of 50-100 megadalton-sized node structures along the sides of fission yeast cells that contained the interacting proteins Skb1 and Slf1. Here, we show that Skb1-Slf1 nodes contain the syntaxin-like soluble N-ethylmaleimide-sensitive factor attachment protein receptor Psy1, which mediates exocytosis in fission yeast. Psy1 localizes in a diffuse pattern at cell tips, where it likely promotes exocytosis and growth, but is sequestered in Skb1-Slf1 nodes at cell sides where growth does not occur. Mutations that prevent node assembly or inhibit Psy1 localization to nodes lead to aberrant exocytosis at cell sides and increased cell width. Genetic results indicate that this Psy1 node mechanism acts in parallel to actin cables and Cdc42 regulation. Our work suggests that sequestration of syntaxin-like Psy1 at nongrowing regions of the cell cortex reinforces cell morphology by restricting exocytosis to proper sites of polarized growth.
Collapse
Affiliation(s)
- Kristi E. Miller
- Department of Biochemistry and Cell Biology, the Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Joseph O. Magliozzi
- Department of Biochemistry and Cell Biology, the Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Noelle A. Picard
- Department of Biochemistry and Cell Biology, the Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - James B. Moseley
- Department of Biochemistry and Cell Biology, the Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| |
Collapse
|
23
|
Cell Length Growth in the Fission Yeast Cell Cycle: Is It (Bi)linear or (Bi)exponential? Processes (Basel) 2021. [DOI: 10.3390/pr9091533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Fission yeast is commonly used as a model organism in eukaryotic cell growth studies. To describe the cells’ length growth patterns during the mitotic cycle, different models have been proposed previously as linear, exponential, bilinear and biexponential ones. The task of discriminating among these patterns is still challenging. Here, we have analyzed 298 individual cells altogether, namely from three different steady-state cultures (wild-type, wee1-50 mutant and pom1Δ mutant). We have concluded that in 190 cases (63.8%) the bilinear model was more adequate than either the linear or the exponential ones. These 190 cells were further examined by separately analyzing the linear segments of the best fitted bilinear models. Linear and exponential functions have been fitted to these growth segments to determine whether the previously fitted bilinear functions were really correct. The majority of these growth segments were found to be linear; nonetheless, a significant number of exponential ones were also detected. However, exponential ones occurred mainly in cases of rather short segments (<40 min), where there were not enough data for an accurate model fitting. By contrast, in long enough growth segments (≥40 min), linear patterns highly dominated over exponential ones, verifying that overall growth is probably bilinear.
Collapse
|
24
|
Odermatt PD, Miettinen TP, Lemière J, Kang JH, Bostan E, Manalis SR, Huang KC, Chang F. Variations of intracellular density during the cell cycle arise from tip-growth regulation in fission yeast. eLife 2021; 10:64901. [PMID: 34100714 PMCID: PMC8221806 DOI: 10.7554/elife.64901] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 06/07/2021] [Indexed: 12/24/2022] Open
Abstract
Intracellular density impacts the physical nature of the cytoplasm and can globally affect cellular processes, yet density regulation remains poorly understood. Here, using a new quantitative phase imaging method, we determined that dry-mass density in fission yeast is maintained in a narrow distribution and exhibits homeostatic behavior. However, density varied during the cell cycle, decreasing during G2, increasing in mitosis and cytokinesis, and dropping rapidly at cell birth. These density variations were explained by a constant rate of biomass synthesis, coupled to slowdown of volume growth during cell division and rapid expansion post-cytokinesis. Arrest at specific cell-cycle stages exacerbated density changes. Spatially heterogeneous patterns of density suggested links between density regulation, tip growth, and intracellular osmotic pressure. Our results demonstrate that systematic density variations during the cell cycle are predominantly due to modulation of volume expansion, and reveal functional consequences of density gradients and cell-cycle arrests.
Collapse
Affiliation(s)
- Pascal D Odermatt
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, United States.,Department of Bioengineering, Stanford University, Stanford, United States
| | - Teemu P Miettinen
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, United States.,MRC Laboratory for Molecular Cell Biology, University College, London, United Kingdom
| | - Joël Lemière
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, United States
| | - Joon Ho Kang
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, United States.,Department of Physics, Massachusetts Institute of Technology, Cambridge, United States.,Brain Science Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Emrah Bostan
- Informatics Institute, University of Amsterdam, Amsterdamn, Netherlands
| | - Scott R Manalis
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, United States.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, United States.,Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, United States
| | - Kerwyn Casey Huang
- Department of Bioengineering, Stanford University, Stanford, United States.,Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, United States.,Chan Zuckerberg Biohub, San Francisco, United States
| | - Fred Chang
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
25
|
Lemière J, Ren Y, Berro J. Rapid adaptation of endocytosis, exocytosis and eisosomes after an acute increase in membrane tension in yeast cells. eLife 2021; 10:62084. [PMID: 33983119 PMCID: PMC9045820 DOI: 10.7554/elife.62084] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 05/12/2021] [Indexed: 11/13/2022] Open
Abstract
During clathrin-mediated endocytosis (CME) in eukaryotes, actin assembly is required to overcome large membrane tension and turgor pressure. However, the molecular mechanisms by which the actin machinery adapts to varying membrane tension remain unknown. In addition, how cells reduce their membrane tension when they are challenged by hypotonic shocks remains unclear. We used quantitative microscopy to demonstrate that cells rapidly reduce their membrane tension using three parallel mechanisms. In addition to using their cell wall for mechanical protection, yeast cells disassemble eisosomes to buffer moderate changes in membrane tension on a minute time scale. Meanwhile, a temporary reduction in the rate of endocytosis for 2–6 min and an increase in the rate of exocytosis for at least 5 min allow cells to add large pools of membrane to the plasma membrane. We built on these results to submit the cells to abrupt increases in membrane tension and determine that the endocytic actin machinery of fission yeast cells rapidly adapts to perform CME. Our study sheds light on the tight connection between membrane tension regulation, endocytosis, and exocytosis.
Collapse
Affiliation(s)
- Joël Lemière
- Department of Molecular Biophysics and Biochemistry, Department of Cell Biology, Yale University, New Haven, United States
| | - Yuan Ren
- Department of Molecular Biophysics and Biochemistry, Department of Cell Biology, Yale University, New Haven, United States
| | - Julien Berro
- Department of Molecular Biophysics and Biochemistry, Department of Cell Biology, Yale University, New Haven, United States
| |
Collapse
|
26
|
Li K, Zhang PP, Chen XL, Zhang YZ, Su HN. Internal pressure-induced formation of hemispherical poles in Bacillus subtilis. Antonie van Leeuwenhoek 2021; 114:1205-1212. [PMID: 33973093 DOI: 10.1007/s10482-021-01590-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 04/30/2021] [Indexed: 11/29/2022]
Abstract
The cell of a rod-shaped bacterium is composed of a cylinder and two hemispherical poles. In recent decades, the molecular mechanism of morphogenesis in rod-shaped bacteria has received extensive research. However, most works have focused on the morphogenesis of cylinders, and the morphogenesis of the hemispherical poles remains unclear. In the past, the pole of bacterial cell wall was considered as a rigid hemispherical structure. However, our work indicated that the pole in the isolated sacculi from Bacillus subtilis was a flat structure instead of a hemisphere form. Further works showed that internal pressure was responsible for shaping the hemispherical poles, indicating an elastic nature of the cell wall in poles. In addition, we found that the internal pressure was able to transform septa into hemispherical shape which is similar to normal poles. Based on our work, we proposed a model for the internal pressure-induced formation of hemispherical poles in B. subtilis, and this work may provide new clues into basic knowledge of the morphogenesis of rod-shaped bacteria.
Collapse
Affiliation(s)
- Kang Li
- State Key Laboratory of Microbial Technology, and Marine Biotechnology Research Center, Shandong University, Qingdao, 266237, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Pan-Pan Zhang
- State Key Laboratory of Microbial Technology, and Marine Biotechnology Research Center, Shandong University, Qingdao, 266237, China
| | - Xiu-Lan Chen
- State Key Laboratory of Microbial Technology, and Marine Biotechnology Research Center, Shandong University, Qingdao, 266237, China
| | - Yu-Zhong Zhang
- State Key Laboratory of Microbial Technology, and Marine Biotechnology Research Center, Shandong University, Qingdao, 266237, China.,College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, 266003, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Hai-Nan Su
- State Key Laboratory of Microbial Technology, and Marine Biotechnology Research Center, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
27
|
Gibbs E, Hsu J, Barth K, Goss JW. Characterization of the nanomechanical properties of the fission yeast (Schizosaccharomyces pombe) cell surface by atomic force microscopy. Yeast 2021; 38:480-492. [PMID: 33913187 PMCID: PMC9291503 DOI: 10.1002/yea.3564] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/14/2021] [Accepted: 04/23/2021] [Indexed: 11/11/2022] Open
Abstract
Variations in cell wall composition and biomechanical properties can contribute to the cellular plasticity required during complex processes such as polarized growth and elongation in microbial cells. This study utilizes atomic force microscopy (AFM) to map the cell surface topography of fission yeast, Schizosaccharomyces pombe, at the pole regions and to characterize the biophysical properties within these regions under physiological, hydrated conditions. High-resolution images acquired from AFM topographic scanning reveal decreased surface roughness at the cell poles. Force extension curves acquired by nanoindentation probing with AFM cantilever tips under low applied force revealed increased cell wall deformation and decreased cellular stiffness (cellular spring constant) at cell poles (17 ± 4 mN/m) relative to the main body of the cell that is not undergoing growth and expansion (44 ± 10 mN/m). These findings suggest that the increased deformation and decreased stiffness at regions of polarized growth at fission yeast cell poles provide the plasticity necessary for cellular extension. This study provides a direct biophysical characterization of the S. pombe cell surface by AFM, and it provides a foundation for future investigation of how the surface topography and local nanomechanical properties vary during different cellular processes.
Collapse
Affiliation(s)
- Ellie Gibbs
- Department of Biological Sciences, Wellesley College, Wellesley, MA, USA
| | - Justine Hsu
- Biochemistry Program, Wellesley College, Wellesley, MA, USA
| | - Kathryn Barth
- Biochemistry Program, Wellesley College, Wellesley, MA, USA
| | - John W Goss
- Department of Biological Sciences, Wellesley College, Wellesley, MA, USA.,Biochemistry Program, Wellesley College, Wellesley, MA, USA
| |
Collapse
|
28
|
Ma R, Berro J. Endocytosis against high turgor pressure is made easier by partial coating and freely rotating base. Biophys J 2021; 120:1625-1640. [PMID: 33675763 DOI: 10.1016/j.bpj.2021.02.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 01/27/2021] [Accepted: 02/11/2021] [Indexed: 02/02/2023] Open
Abstract
During clathrin-mediated endocytosis, a patch of flat plasma membrane is deformed into a vesicle. In walled cells, such as plants and fungi, the turgor pressure is high and pushes the membrane against the cell wall, thus hindering membrane internalization. In this work, we study how a patch of membrane is deformed against turgor pressure by force and by curvature-generating proteins. We show that a large amount of force is needed to merely start deforming the membrane and an even larger force is needed to pull a membrane tube. The magnitude of these forces strongly depends on how the base of the membrane is constrained and how the membrane is coated with curvature-generating proteins. In particular, these forces can be reduced by partially, but not fully, coating the membrane patch with curvature-generating proteins. Our theoretical results show excellent agreement with experimental data.
Collapse
Affiliation(s)
- Rui Ma
- Department of Physics, Xiamen University, Xiamen, China; Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut; Nanobiology Institute, Yale University, West Haven, Connecticut.
| | - Julien Berro
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut; Nanobiology Institute, Yale University, West Haven, Connecticut; Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut.
| |
Collapse
|
29
|
Taheraly S, Ershov D, Dmitrieff S, Minc N. An image analysis method to survey the dynamics of polar protein abundance in the regulation of tip growth. J Cell Sci 2020; 133:133/22/jcs252064. [PMID: 33257499 DOI: 10.1242/jcs.252064] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/14/2020] [Indexed: 11/20/2022] Open
Abstract
Tip growth is critical for the lifestyle of many walled cells. In yeast and fungi, this process is typically associated with the polarized deposition of conserved tip factors, including landmarks, Rho GTPases, cytoskeleton regulators, and membrane and cell wall remodelers. Because tip growth speeds may vary extensively between life cycles or species, we asked whether the local amount of specific polar elements could determine or limit tip growth speeds. Using the model fission yeast, we developed a quantitative image analysis pipeline to dynamically correlate single tip elongation speeds and polar protein abundance in large data sets. We found that polarity landmarks are typically diluted by growth. In contrast, tip growth speed is positively correlated with the local amount of factors related to actin, secretion or cell wall remodeling, but, surprisingly, exhibits long saturation plateaus above certain concentrations of those factors. Similar saturation observed for Spitzenkörper components in much faster growing fungal hyphae suggests that elements independent of canonical surface remodelers may limit single tip growth. This work provides standardized methods and resources to decipher the complex mechanisms that control cell growth.This article has an associated First Person interview with Sarah Taheraly, joint first author of the paper.
Collapse
Affiliation(s)
- Sarah Taheraly
- Université de Paris, CNRS, Institut Jacques Monod, 75013, Paris, France
| | - Dmitry Ershov
- Université de Paris, CNRS, Institut Jacques Monod, 75013, Paris, France
| | - Serge Dmitrieff
- Université de Paris, CNRS, Institut Jacques Monod, 75013, Paris, France
| | - Nicolas Minc
- Université de Paris, CNRS, Institut Jacques Monod, 75013, Paris, France
| |
Collapse
|
30
|
Nagy Z, Medgyes-Horváth A, Vörös E, Sveiczer Á. Strongly oversized fission yeast cells lack any size control and tend to grow linearly rather than bilinearly. Yeast 2020; 38:206-221. [PMID: 33244789 DOI: 10.1002/yea.3535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/26/2020] [Accepted: 11/02/2020] [Indexed: 12/28/2022] Open
Abstract
During the mitotic cycle, the rod-shaped fission yeast cells grow only at their tips. The newly born cells grow first unipolarly at their old end, but later in the cycle, the 'new end take-off' event occurs, resulting in bipolar growth. Photographs were taken of several steady-state and induction synchronous cultures of different cell cycle mutants of fission yeast, generally larger than wild type. Length measurements of many individual cells were performed from birth to division. For all the measured growth patterns, three different functions (linear, bilinear and exponential) were fitted, and the most adequate one was chosen by using specific statistical criteria, considering the altering parameter numbers. Although the growth patterns were heterogeneous in all the cultures studied, we could find some tendencies. In cultures with sufficiently wide size distribution, cells large enough at birth tend to grow linearly, whereas the other cells generally tend to grow bilinearly. We have found that among bilinearly growing cells, the larger they are at birth, the rate change point during their bilinear pattern occurs earlier in the cycle. This shifting near to the beginning of the cycle might finally cause a linear pattern, if the cells are even larger. In all of the steady-state cultures studied, a size control mechanism operates to maintain homeostasis. By contrast, strongly oversized cells of induction synchronous cultures lack any sizer, and their cycle rather behaves like an adder. We could determine the critical cell size for both the G1 and G2 size controls, where these mechanisms become cryptic. TAKE AWAY: Most individual fission yeast cells in steady-state cultures grow bilinearly. In strongly oversized fission yeast cells, linear growth dominates over bilinear. Above birth length thresholds, both the G1 and G2 size controls become cryptic.
Collapse
Affiliation(s)
- Zsófia Nagy
- Department of Applied Biotechnology and Food Science, Budapest University of Technology and Economics, Budapest, Hungary
| | - Anna Medgyes-Horváth
- Department of Applied Biotechnology and Food Science, Budapest University of Technology and Economics, Budapest, Hungary
| | - Eszter Vörös
- Department of Applied Biotechnology and Food Science, Budapest University of Technology and Economics, Budapest, Hungary
| | - Ákos Sveiczer
- Department of Applied Biotechnology and Food Science, Budapest University of Technology and Economics, Budapest, Hungary
| |
Collapse
|
31
|
Poddar A, Sidibe O, Ray A, Chen Q. Calcium spikes accompany cleavage furrow ingression and cell separation during fission yeast cytokinesis. Mol Biol Cell 2020; 32:15-27. [PMID: 33175606 PMCID: PMC8098820 DOI: 10.1091/mbc.e20-09-0609] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The role of calcium signaling in cytokinesis has long remained ambiguous. Past studies of embryonic cell division discovered that calcium concentration increases transiently at the division plane just before cleavage furrow ingression, suggesting that these calcium transients could trigger contractile ring constriction. However, such calcium transients have only been found in animal embryos and their function remains controversial. We explored cytokinetic calcium transients in the fission yeast Schizosaccharomyces pombe by adopting GCaMP, a genetically encoded calcium indicator, to determine the intracellular calcium level of this model organism. We validated GCaMP as a highly sensitive calcium reporter in fission yeast, allowing us to capture calcium transients triggered by osmotic shocks. We identified a correlation between the intracellular calcium level and cell division, consistent with the existence of calcium transients during cytokinesis. Using time-lapse microscopy and quantitative image analysis, we discovered calcium spikes both at the start of cleavage furrow ingression and the end of cell separation. Inhibition of these calcium spikes slowed the furrow ingression and led to frequent lysis of daughter cells. We conclude that like the larger animal embryos, fission yeast triggers calcium transients that may play an important role in cytokinesis (197).
Collapse
Affiliation(s)
- Abhishek Poddar
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606
| | - Oumou Sidibe
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606
| | - Aniruddha Ray
- Department of Physics and Astronomy, University of Toledo, Toledo, OH 43606
| | - Qian Chen
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606
| |
Collapse
|
32
|
Puerner C, Kukhaleishvili N, Thomson D, Schaub S, Noblin X, Seminara A, Bassilana M, Arkowitz RA. Mechanical force-induced morphology changes in a human fungal pathogen. BMC Biol 2020; 18:122. [PMID: 32912212 PMCID: PMC7488538 DOI: 10.1186/s12915-020-00833-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/22/2020] [Indexed: 12/12/2022] Open
Abstract
Background The initial step of a number of human or plant fungal infections requires active penetration of host tissue. For example, active penetration of intestinal epithelia by Candida albicans is critical for dissemination from the gut into the bloodstream. However, little is known about how this fungal pathogen copes with resistive forces upon host cell invasion. Results In the present study, we have used PDMS micro-fabrication to probe the ability of filamentous C. albicans cells to penetrate and grow invasively in substrates of different stiffness. We show that there is a threshold for penetration that corresponds to a stiffness of ~ 200 kPa and that invasive growth within a stiff substrate is characterized by dramatic filament buckling, along with a stiffness-dependent decrease in extension rate. We observed a striking alteration in cell morphology, i.e., reduced cell compartment length and increased diameter during invasive growth, that is not due to depolarization of active Cdc42, but rather occurs at a substantial distance from the site of growth as a result of mechanical compression. Conclusions Our data reveal that in response to this compression, active Cdc42 levels are increased at the apex, whereas active Rho1 becomes depolarized, similar to that observed in membrane protrusions. Our results show that cell growth and morphology are altered during invasive growth, suggesting stiffness dictates the host cells that C. albicans can penetrate.
Collapse
Affiliation(s)
- Charles Puerner
- Université Côte d'Azur, CNRS, INSERM, Institute of Biology Valrose (iBV), Parc Valrose, Nice, France
| | - Nino Kukhaleishvili
- Université Côte d'Azur, CNRS, INSERM, Institute of Biology Valrose (iBV), Parc Valrose, Nice, France.,Université Côte d'Azur, CNRS, Institute Physics of Nice (INPHYNI), Ave. J. Vallot, Nice, France
| | - Darren Thomson
- Université Côte d'Azur, CNRS, INSERM, Institute of Biology Valrose (iBV), Parc Valrose, Nice, France.,Present Address: Manchester Fungal Infection Group, School of Biological Sciences, University of Manchester, Manchester, UK
| | - Sebastien Schaub
- Université Côte d'Azur, CNRS, INSERM, Institute of Biology Valrose (iBV), Parc Valrose, Nice, France.,Present Address: Sorbonne University, CNRS, Developmental Biology Laboratory (LBDV), Villefranche-sur-mer, France
| | - Xavier Noblin
- Université Côte d'Azur, CNRS, Institute Physics of Nice (INPHYNI), Ave. J. Vallot, Nice, France.
| | - Agnese Seminara
- Université Côte d'Azur, CNRS, Institute Physics of Nice (INPHYNI), Ave. J. Vallot, Nice, France
| | - Martine Bassilana
- Université Côte d'Azur, CNRS, INSERM, Institute of Biology Valrose (iBV), Parc Valrose, Nice, France
| | - Robert A Arkowitz
- Université Côte d'Azur, CNRS, INSERM, Institute of Biology Valrose (iBV), Parc Valrose, Nice, France.
| |
Collapse
|
33
|
Odermatt PD, Hannebelle MTM, Eskandarian HA, Nievergelt AP, McKinney JD, Fantner GE. Overlapping and essential roles for molecular and mechanical mechanisms in mycobacterial cell division. NATURE PHYSICS 2020; 16:57-62. [PMID: 31921326 PMCID: PMC6952280 DOI: 10.1038/s41567-019-0679-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 09/04/2019] [Indexed: 05/30/2023]
Abstract
Mechanisms to control cell division are essential for cell proliferation and survival 1. Bacterial cell growth and division require the coordinated activity of peptidoglycan synthases and hydrolytic enzymes 2-4 to maintain mechanical integrity of the cell wall 5. Recent studies suggest that cell separation is governed by mechanical forces 6,7. How mechanical forces interact with molecular mechanisms to control bacterial cell division in space and time is poorly understood. Here, we use a combination of atomic force microscope (AFM) imaging, nanomechanical mapping, and nanomanipulation to show that enzymatic activity and mechanical forces serve overlapping and essential roles in mycobacterial cell division. We find that mechanical stress gradually accumulates in the cell wall concentrated at the future division site, culminating in rapid (millisecond) cleavage of nascent sibling cells. Inhibiting cell wall hydrolysis delays cleavage; conversely, locally increasing cell wall stress causes instantaneous and premature cleavage. Cells deficient in peptidoglycan hydrolytic activity fail to locally decrease their cell wall strength and undergo natural cleavage, instead forming chains of non-growing cells. Cleavage of these cells can be mechanically induced by local application of stress with AFM. These findings establish a direct link between actively controlled molecular mechanisms and passively controlled mechanical forces in bacterial cell division.
Collapse
Affiliation(s)
- Pascal D. Odermatt
- Laboratory for Bio- and Nano-Instrumentation, School of Engineering, Swiss Federal Institute of Technology in Lausanne (EPFL), Switzerland
| | - Mélanie T. M. Hannebelle
- Laboratory for Bio- and Nano-Instrumentation, School of Engineering, Swiss Federal Institute of Technology in Lausanne (EPFL), Switzerland
- Laboratory of Microbiology and Microtechnology, School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), Switzerland
| | - Haig A. Eskandarian
- Laboratory for Bio- and Nano-Instrumentation, School of Engineering, Swiss Federal Institute of Technology in Lausanne (EPFL), Switzerland
- Laboratory of Microbiology and Microtechnology, School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), Switzerland
| | - Adrian P. Nievergelt
- Laboratory for Bio- and Nano-Instrumentation, School of Engineering, Swiss Federal Institute of Technology in Lausanne (EPFL), Switzerland
| | - John D. McKinney
- Laboratory of Microbiology and Microtechnology, School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), Switzerland
| | - Georg E. Fantner
- Laboratory for Bio- and Nano-Instrumentation, School of Engineering, Swiss Federal Institute of Technology in Lausanne (EPFL), Switzerland
| |
Collapse
|
34
|
External signal-mediated polarized growth in fungi. Curr Opin Cell Biol 2019; 62:150-158. [PMID: 31875532 DOI: 10.1016/j.ceb.2019.11.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/28/2019] [Accepted: 11/04/2019] [Indexed: 12/13/2022]
Abstract
As the majority of fungi are nonmotile, polarized growth in response to an external signal enables them to search for nutrients and mating partners, and hence is crucial for survival and proliferation. Although the mechanisms underlying polarization in response to external signals has commonalities with polarization during mitotic division, during budding, and fission growth, the importance of diverse feedback loops regulating external signal-mediated polarized growth is likely to be distinct and uniquely adapted to a dynamic environment. Here, we highlight recent advances in our understanding of the mechanisms that are crucial for polarity in response to external signals in fungi, with particular focus on the roles of membrane traffic, small GTPases, and lipids, as well as the interplay between cell shape and cell growth.
Collapse
|
35
|
Knapp BD, Odermatt P, Rojas ER, Cheng W, He X, Huang KC, Chang F. Decoupling of Rates of Protein Synthesis from Cell Expansion Leads to Supergrowth. Cell Syst 2019; 9:434-445.e6. [PMID: 31706948 PMCID: PMC6911364 DOI: 10.1016/j.cels.2019.10.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 07/02/2019] [Accepted: 09/30/2019] [Indexed: 01/02/2023]
Abstract
Cell growth is a complex process in which cells synthesize cellular components while they increase in size. It is generally assumed that the rate of biosynthesis must somehow be coordinated with the rate of growth in order to maintain intracellular concentrations. However, little is known about potential feedback mechanisms that could achieve proteome homeostasis or the consequences when this homeostasis is perturbed. Here, we identify conditions in which fission yeast cells are prevented from volume expansion but nevertheless continue to synthesize biomass, leading to general accumulation of proteins and increased cytoplasmic density. Upon removal of these perturbations, this biomass accumulation drove cells to undergo a multi-generational period of "supergrowth" wherein rapid volume growth outpaced biosynthesis, returning proteome concentrations back to normal within hours. These findings demonstrate a mechanism for global proteome homeostasis based on modulation of volume growth and dilution.
Collapse
Affiliation(s)
- Benjamin D Knapp
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA; Biophysics Program, Stanford University, Stanford, CA 94305, USA
| | - Pascal Odermatt
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Enrique R Rojas
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Wenpeng Cheng
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Xiangwei He
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Kerwyn Casey Huang
- Biophysics Program, Stanford University, Stanford, CA 94305, USA; Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 941586, USA.
| | - Fred Chang
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
36
|
Heimlicher MB, Bächler M, Liu M, Ibeneche-Nnewihe C, Florin EL, Hoenger A, Brunner D. Reversible solidification of fission yeast cytoplasm after prolonged nutrient starvation. J Cell Sci 2019; 132:jcs.231688. [PMID: 31558680 PMCID: PMC6857596 DOI: 10.1242/jcs.231688] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 09/20/2019] [Indexed: 12/19/2022] Open
Abstract
Cells depend on a highly ordered organisation of their content and must develop strategies to maintain the anisotropic distribution of organelles during periods of nutrient shortage. One of these strategies is to solidify the cytoplasm, which was observed in bacteria and yeast cells with acutely interrupted energy production. Here, we describe a different type of cytoplasm solidification fission yeast cells switch to, after having run out of nutrients during multiple days in culture. It provides the most profound reversible cytoplasmic solidification of yeast cells described to date. Our data exclude the previously proposed mechanisms for cytoplasm solidification in yeasts and suggest a mechanism that immobilises cellular components in a size-dependent manner. We provide experimental evidence that, in addition to time, cells use intrinsic nutrients and energy sources to reach this state. Such cytoplasmic solidification may provide a robust means to protect cellular architecture in dormant cells. Summary: After prolonged quiescence, fission yeast cell populations switch state to immobilise subcellular components much more profoundly than cells experiencing acute energy depletion.
Collapse
Affiliation(s)
- Maria B Heimlicher
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Mirjam Bächler
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Minghua Liu
- Dept. of Molecular, Cellular and Developmental Biology, University of Colorado at Boulder, UCB-0347, Boulder, CO 80309, USA
| | - Chieze Ibeneche-Nnewihe
- Center for Nonlinear Dynamics and Department of Physics, University of Texas at Austin, Austin, TX 78712, USA
| | - Ernst-Ludwig Florin
- Center for Nonlinear Dynamics and Department of Physics, University of Texas at Austin, Austin, TX 78712, USA
| | - Andreas Hoenger
- Dept. of Molecular, Cellular and Developmental Biology, University of Colorado at Boulder, UCB-0347, Boulder, CO 80309, USA
| | - Damian Brunner
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
37
|
Coelho C, Casadevall A. Answers to naysayers regarding microbial extracellular vesicles. Biochem Soc Trans 2019; 47:1005-1012. [PMID: 31320501 PMCID: PMC11386541 DOI: 10.1042/bst20180252] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/30/2019] [Accepted: 07/02/2019] [Indexed: 11/08/2023]
Abstract
It is now over 30 years since the discovery of extracellular vesicles (EVs) in Gram-negative bacteria. However, for cell-walled microbes such as fungi, mycobacteria and Gram-positive bacteria it was thought that EV release would be impossible, since such structures were not believed to cross the thick cell wall. This notion was disproven 10 years ago with the discovery of EVs in fungi, mycobacteria, and gram-positive bacteria. Today, EVs have been described in practically every species tested, ranging from Fungi through Bacteria and Archaea, suggesting that EVs are a feature of every living cell. However, there continues to be skepticism in some quarters regarding EV release and their biological significance. In this review, we list doubts that have been verbalized to us and provide answers to counter them. In our opinion, there is no doubt as to existence and physiological function of EVs and we take this opportunity to highlight the most pressing topics in our understanding of the biological processes underlying these structures.
Collapse
Affiliation(s)
- Carolina Coelho
- Medical Research Council Centre for Medical Mycology, Department of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, U.K.
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, U.K
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, U.S.A
| |
Collapse
|
38
|
Systematic mapping of cell wall mechanics in the regulation of cell morphogenesis. Proc Natl Acad Sci U S A 2019; 116:13833-13838. [PMID: 31235592 DOI: 10.1073/pnas.1820455116] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Walled cells of plants, fungi, and bacteria come with a large range of shapes and sizes, which are ultimately dictated by the mechanics of their cell wall. This stiff and thin polymeric layer encases the plasma membrane and protects the cells mechanically by opposing large turgor pressure derived mechanical stresses. To date, however, we still lack a quantitative understanding for how local and/or global mechanical properties of the wall support cell morphogenesis. Here, we combine subresolution imaging and laser-mediated wall relaxation to quantitate subcellular values of wall thickness (h) and bulk elastic moduli (Y) in large populations of live mutant cells and in conditions affecting cell diameter in the rod-shaped model fission yeast. We find that lateral wall stiffness, defined by the surface modulus, σ = hY, robustly scales with cell diameter. This scaling is valid across tens of mutants spanning various functions-within the population of individual isogenic strains, along single misshaped cells, and even across the fission yeasts clade. Dynamic modulations of cell diameter by chemical and/or mechanical means suggest that the cell wall can rapidly adapt its surface mechanics, rendering stretched wall portions stiffer than unstretched ones. Size-dependent wall stiffening constrains diameter definition and limits size variations; it may also provide an efficient means to keep elastic strains in the wall below failure strains, potentially promoting cell survival. This quantitative set of data impacts our current understanding of the mechanics of cell walls and its contribution to morphogenesis.
Collapse
|
39
|
Abstract
Division of amoebas, fungi, and animal cells into two daughter cells at the end of the cell cycle depends on a common set of ancient proteins, principally actin filaments and myosin-II motors. Anillin, formins, IQGAPs, and many other proteins regulate the assembly of the actin filaments into a contractile ring positioned between the daughter nuclei by different mechanisms in fungi and animal cells. Interactions of myosin-II with actin filaments produce force to assemble and then constrict the contractile ring to form a cleavage furrow. Contractile rings disassemble as they constrict. In some cases, knowledge about the numbers of participating proteins and their biochemical mechanisms has made it possible to formulate molecularly explicit mathematical models that reproduce the observed physical events during cytokinesis by computer simulations.
Collapse
Affiliation(s)
- Thomas D Pollard
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520-8103, USA;
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8103, USA
- Department of Cell Biology, Yale University, New Haven, Connecticut 06520-8103, USA
| | - Ben O'Shaughnessy
- Department of Chemical Engineering, Columbia University, New York, NY 10027, USA;
| |
Collapse
|
40
|
Abstract
Division of amoebas, fungi, and animal cells into two daughter cells at the end of the cell cycle depends on a common set of ancient proteins, principally actin filaments and myosin-II motors. Anillin, formins, IQGAPs, and many other proteins regulate the assembly of the actin filaments into a contractile ring positioned between the daughter nuclei by different mechanisms in fungi and animal cells. Interactions of myosin-II with actin filaments produce force to assemble and then constrict the contractile ring to form a cleavage furrow. Contractile rings disassemble as they constrict. In some cases, knowledge about the numbers of participating proteins and their biochemical mechanisms has made it possible to formulate molecularly explicit mathematical models that reproduce the observed physical events during cytokinesis by computer simulations.
Collapse
Affiliation(s)
- Thomas D Pollard
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520-8103, USA;
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8103, USA
- Department of Cell Biology, Yale University, New Haven, Connecticut 06520-8103, USA
| | - Ben O'Shaughnessy
- Department of Chemical Engineering, Columbia University, New York, NY 10027, USA;
| |
Collapse
|
41
|
Morris Z, Sinha D, Poddar A, Morris B, Chen Q. Fission yeast TRP channel Pkd2p localizes to the cleavage furrow and regulates cell separation during cytokinesis. Mol Biol Cell 2019; 30:1791-1804. [PMID: 31116668 PMCID: PMC6727746 DOI: 10.1091/mbc.e18-04-0270] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Force plays a central role in separating daughter cells during cytokinesis, the last stage of cell division. However, the mechanism of force sensing during cytokinesis remains unknown. Here we discovered that Pkd2p, a putative force-sensing transient receptor potential channel, localizes to the cleavage furrow during cytokinesis of the fission yeast, Schizosaccharomyces pombe. Pkd2p, whose human homologues are associated with autosomal polycystic kidney disease, is an essential protein whose localization depends on the contractile ring and the secretory pathway. We identified and characterized a novel pkd2 mutant pkd2-81KD. The pkd2 mutant cells show signs of osmotic stress, including temporary shrinking, paused turnover of the cytoskeletal structures, and hyperactivated mitogen-activated protein kinase signaling. During cytokinesis, although the contractile ring constricts more rapidly in the pkd2 mutant than the wild-type cells (50% higher), the cell separation in the mutant is slower and often incomplete. These cytokinesis defects are also consistent with misregulated turgor pressure. Finally, the pkd2 mutant exhibits strong genetic interactions with two mutants of the septation initiation network pathway, a signaling cascade essential for cytokinesis. We propose that Pkd2p modulates osmotic homeostasis and is potentially a novel regulator of cytokinesis.
Collapse
Affiliation(s)
- Zachary Morris
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606
| | - Debatrayee Sinha
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606
| | - Abhishek Poddar
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606
| | - Brittni Morris
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606
| | - Qian Chen
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606
| |
Collapse
|
42
|
Ma R, Berro J. Crosslinking actin networks produces compressive force. Cytoskeleton (Hoboken) 2019; 76:346-354. [PMID: 31278856 PMCID: PMC7001507 DOI: 10.1002/cm.21552] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 06/21/2019] [Accepted: 07/02/2019] [Indexed: 11/11/2022]
Abstract
Actin has been shown to be essential for clathrin-mediated endocytosis in yeast. However, actin polymerization alone is likely insufficient to produce enough force to deform the membrane against the huge turgor pressure of yeast cells. In this paper, we used Brownian dynamics simulations to demonstrate that crosslinking of a meshwork of nonpolymerizing actin filaments is able to produce compressive forces. We show that the force can be up to several thousand pico-Newtons if the crosslinker has a high stiffness. The force decays over time as a result of crosslinker turnover, and is a result of converting chemical binding energy into elastic energy.
Collapse
Affiliation(s)
- Rui Ma
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut
- Nanobiology Institute, Yale University, West Haven, Connecticut
| | - Julien Berro
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut
- Nanobiology Institute, Yale University, West Haven, Connecticut
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
43
|
Sequential assembly of the septal cell envelope prior to V snapping in Corynebacterium glutamicum. Nat Chem Biol 2019; 15:221-231. [PMID: 30664686 DOI: 10.1038/s41589-018-0206-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 11/27/2018] [Indexed: 12/11/2022]
Abstract
Members of the Corynebacterineae, including Corynebacterium and Mycobacterium, have an atypical cell envelope characterized by an additional mycomembrane outside of the peptidoglycan layer. How this multilayered cell envelope is assembled remains unclear. Here, we tracked the assembly dynamics of different envelope layers in Corynebacterium glutamicum and Mycobacterium smegmatis by using metabolic labeling and found that the septal cell envelope is assembled sequentially in both species. Additionally, we demonstrate that in C. glutamicum, the peripheral peptidoglycan layer at the septal junction remains contiguous throughout septation, forming a diffusion barrier for the fluid mycomembrane. This diffusion barrier is resolved through perforations in the peripheral peptidoglycan, thus leading to the confluency of the mycomembrane before daughter cell separation (V snapping). Furthermore, the same junctional peptidoglycan also serves as a mechanical link holding the daughter cells together and undergoes mechanical fracture during V snapping. Finally, we show that normal V snapping in C. glutamicum depends on complete assembly of the septal cell envelope.
Collapse
|
44
|
O’Shaughnessy B, Thiyagarajan S. Mechanisms of contractile ring tension production and constriction. Biophys Rev 2018; 10:1667-1681. [PMID: 30456601 PMCID: PMC6297097 DOI: 10.1007/s12551-018-0476-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 10/23/2018] [Indexed: 12/24/2022] Open
Abstract
The contractile ring is a remarkable tension-generating cellular machine that constricts and divides cells into two during cytokinesis, the final stage of the cell cycle. Since the ring's discovery, the parallels with muscle have been emphasized. Both are contractile actomyosin machineries, and long ago, a muscle-like sliding filament mechanism was proposed for the ring. This review focuses on the mechanisms that generate ring tension and constrict contractile rings. The emphasis is on fission yeast, whose contractile ring is sufficiently well characterized that realistic mathematical models are feasible, and possible lessons from fission yeast that may apply to animal cells are discussed. Recent discoveries relevant to the organization in fission yeast rings suggest a stochastic steady-state version of the classic sliding filament mechanism for tension. The importance of different modes of anchoring for tension production and for organizational stability of constricting rings is discussed. Possible mechanisms are discussed that set the constriction rate and enable the contractile ring to meet the technical challenge of maintaining structural integrity and tension-generating capacity while continuously disassembling throughout constriction.
Collapse
Affiliation(s)
- Ben O’Shaughnessy
- Department of Chemical Engineering, Columbia University, New York, NY 10027 USA
| | | |
Collapse
|
45
|
Abstract
There are numerous yeast species related to wine making, particularly non-Saccharomyces, that deserve special attention due to the great potential they have when it comes to making certain changes in the composition of the wine. Among them, Schizosaccharomyces pombe stands out for its particular metabolism that gives it certain abilities such as regulating the acidity of wine through maloalcoholic fermentation. In addition, this species is characterized by favouring the formation of stable pigments in wine and releasing large quantities of polysaccharides during ageing on lees. Moreover, its urease activity and its competition for malic acid with lactic acid bacteria make it a safety tool by limiting the formation of ethyl carbamate and biogenic amines in wine. However, it also has certain disadvantages such as its low fermentation speed or the development of undesirable flavours and aromas. In this chapter, the main oenological uses of Schizosaccharomyces pombe that have been proposed in recent years will be reviewed and discussed.
Collapse
|
46
|
Rui Y, Chen Y, Kandemir B, Yi H, Wang JZ, Puri VM, Anderson CT. Balancing Strength and Flexibility: How the Synthesis, Organization, and Modification of Guard Cell Walls Govern Stomatal Development and Dynamics. FRONTIERS IN PLANT SCIENCE 2018; 9:1202. [PMID: 30177940 PMCID: PMC6110162 DOI: 10.3389/fpls.2018.01202] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 07/26/2018] [Indexed: 05/02/2023]
Abstract
Guard cells are pairs of epidermal cells that control gas diffusion by regulating the opening and closure of stomatal pores. Guard cells, like other types of plant cells, are surrounded by a three-dimensional, extracellular network of polysaccharide-based wall polymers. In contrast to the walls of diffusely growing cells, guard cell walls have been hypothesized to be uniquely strong and elastic to meet the functional requirements of withstanding high turgor and allowing for reversible stomatal movements. Although the walls of guard cells were long underexplored as compared to extensive studies of stomatal development and guard cell signaling, recent research has provided new genetic, cytological, and physiological data demonstrating that guard cell walls function centrally in stomatal development and dynamics. In this review, we highlight and discuss the latest evidence for how wall polysaccharides are synthesized, deposited, reorganized, modified, and degraded in guard cells, and how these processes influence stomatal form and function. We also raise open questions and provide a perspective on experimental approaches that could be used in the future to shed light on the composition and architecture of guard cell walls.
Collapse
Affiliation(s)
- Yue Rui
- Department of Biology, The Pennsylvania State University, University Park, PA, United States
- Intercollege Graduate Degree Program in Plant Biology, The Pennsylvania State University, University Park, PA, United States
| | - Yintong Chen
- Department of Biology, The Pennsylvania State University, University Park, PA, United States
- Intercollege Graduate Degree Program in Molecular Cellular and Integrative Biosciences, The Pennsylvania State University, University Park, PA, United States
| | - Baris Kandemir
- College of Information Sciences and Technology, The Pennsylvania State University, University Park, PA, United States
| | - Hojae Yi
- Department of Agricultural and Biological Engineering, The Pennsylvania State University, University Park, PA, United States
| | - James Z. Wang
- College of Information Sciences and Technology, The Pennsylvania State University, University Park, PA, United States
| | - Virendra M. Puri
- Department of Agricultural and Biological Engineering, The Pennsylvania State University, University Park, PA, United States
| | - Charles T. Anderson
- Department of Biology, The Pennsylvania State University, University Park, PA, United States
- Intercollege Graduate Degree Program in Plant Biology, The Pennsylvania State University, University Park, PA, United States
- Intercollege Graduate Degree Program in Molecular Cellular and Integrative Biosciences, The Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
47
|
Davì V, Tanimoto H, Ershov D, Haupt A, De Belly H, Le Borgne R, Couturier E, Boudaoud A, Minc N. Mechanosensation Dynamically Coordinates Polar Growth and Cell Wall Assembly to Promote Cell Survival. Dev Cell 2018; 45:170-182.e7. [DOI: 10.1016/j.devcel.2018.03.022] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 02/05/2018] [Accepted: 03/26/2018] [Indexed: 02/03/2023]
|
48
|
Wang J, Mao J, Yang G, Zheng F, Niu C, Li Y, Liu C, Li Q. The FKS family genes cause changes in cell wall morphology resulted in regulation of anti-autolytic ability in Saccharomyces cerevisiae. BIORESOURCE TECHNOLOGY 2018; 249:49-56. [PMID: 29040859 DOI: 10.1016/j.biortech.2017.09.113] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/11/2017] [Accepted: 09/15/2017] [Indexed: 06/07/2023]
Abstract
The aim of this study was to discuss the functions of FKS family genes which encode β-1, 3-glucan synthase regarding the viability and autolysis of yeast strain. Loss of FKS1 gene severely influences the viability and anti-autolytic ability of yeast. Mutation of FKS1 and FKS2 genes led to cell reconstruction, resulting in a sharp shrinkage of cell volume and decreased stress resistance, viability, and anti-autolytic ability. Deletion of FKS3 gene did not clearly influence the synthesis of β-1, 3-glucan of yeast but increased the strain's stress resistance, viability, and anti-autolytic ability. It is suggested that FKS3 would be the potential target for improving the stress resistance of yeast. The results revealed the relationship among FKS family genes and demonstrated their functions on yeast cell wall construction and anti-autolytic ability.
Collapse
Affiliation(s)
- Jinjing Wang
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, Wuxi, Jiangsu 214122, China; Lab of Brewing Science and Engineering of Jiangnan University, China, Wuxi, Jiangsu 214122, China
| | - Jiangchuan Mao
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, Wuxi, Jiangsu 214122, China; Lab of Brewing Science and Engineering of Jiangnan University, China, Wuxi, Jiangsu 214122, China
| | - Ge Yang
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, Wuxi, Jiangsu 214122, China; Lab of Brewing Science and Engineering of Jiangnan University, China, Wuxi, Jiangsu 214122, China
| | - Feiyun Zheng
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, Wuxi, Jiangsu 214122, China; Lab of Brewing Science and Engineering of Jiangnan University, China, Wuxi, Jiangsu 214122, China
| | - Chengtuo Niu
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, Wuxi, Jiangsu 214122, China; Lab of Brewing Science and Engineering of Jiangnan University, China, Wuxi, Jiangsu 214122, China
| | - Yongxian Li
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, Wuxi, Jiangsu 214122, China; Lab of Brewing Science and Engineering of Jiangnan University, China, Wuxi, Jiangsu 214122, China
| | - Chunfeng Liu
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, Wuxi, Jiangsu 214122, China; Lab of Brewing Science and Engineering of Jiangnan University, China, Wuxi, Jiangsu 214122, China
| | - Qi Li
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, Wuxi, Jiangsu 214122, China; Lab of Brewing Science and Engineering of Jiangnan University, China, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
49
|
Xiang X. Nuclear movement in fungi. Semin Cell Dev Biol 2017; 82:3-16. [PMID: 29241689 DOI: 10.1016/j.semcdb.2017.10.024] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 10/17/2017] [Accepted: 10/23/2017] [Indexed: 12/22/2022]
Abstract
Nuclear movement within a cell occurs in a variety of eukaryotic organisms including yeasts and filamentous fungi. Fungal molecular genetic studies identified the minus-end-directed microtubule motor cytoplasmic dynein as a critical protein for nuclear movement or orientation of the mitotic spindle contained in the nucleus. Studies in the budding yeast first indicated that dynein anchored at the cortex via its anchoring protein Num1 exerts pulling force on an astral microtubule to orient the anaphase spindle across the mother-daughter axis before nuclear division. Prior to anaphase, myosin V interacts with the plus end of an astral microtubule via Kar9-Bim1/EB1 and pulls the plus end along the actin cables to move the nucleus/spindle close to the bud neck. In addition, pushing or pulling forces generated from cortex-linked polymerization or depolymerization of microtubules drive nuclear movements in yeasts and possibly also in filamentous fungi. In filamentous fungi, multiple nuclei within a hyphal segment undergo dynein-dependent back-and-forth movements and their positioning is also influenced by cytoplasmic streaming toward the hyphal tip. In addition, nuclear movement occurs at various stages of fungal development and fungal infection of plant tissues. This review discusses our current understanding on the mechanisms of nuclear movement in fungal organisms, the importance of nuclear positioning and the regulatory strategies that ensure the proper positioning of nucleus/spindle.
Collapse
Affiliation(s)
- Xin Xiang
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences - F. Edward Hébert School of Medicine, Bethesda, MD, USA.
| |
Collapse
|
50
|
Chang F. Forces that shape fission yeast cells. Mol Biol Cell 2017; 28:1819-1824. [PMID: 28684607 PMCID: PMC5541833 DOI: 10.1091/mbc.e16-09-0671] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 04/18/2017] [Accepted: 04/18/2017] [Indexed: 11/11/2022] Open
Abstract
One of the major challenges of modern cell biology is to understand how cells are assembled from nanoscale components into micrometer-scale entities with a specific size and shape. Here I describe how our quest to understand the morphogenesis of the fission yeast Schizosaccharomyces pombe drove us to investigate cellular mechanics. These studies build on the view that cell shape arises from the physical properties of an elastic cell wall inflated by internal turgor pressure. Consideration of cellular mechanics provides new insights into not only mechanisms responsible for cell-shape determination and growth, but also cellular processes such as cytokinesis and endocytosis. Studies in yeast can help to illuminate approaches and mechanisms to study the mechanobiology of the cell surface in other cell types, including animal cells.
Collapse
Affiliation(s)
- Fred Chang
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143
| |
Collapse
|