1
|
Zaccaron AZ, Stergiopoulos I. The dynamics of fungal genome organization and its impact on host adaptation and antifungal resistance. J Genet Genomics 2025; 52:628-640. [PMID: 39522682 DOI: 10.1016/j.jgg.2024.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/15/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024]
Abstract
Fungi are a diverse kingdom characterized by remarkable genomic plasticity that facilitates pathogenicity and adaptation to adverse environmental conditions. In this review, we delve into the dynamic organization of fungal genomes and its implications for host adaptation and antifungal resistance. We examine key features and the heterogeneity of genomes across different fungal species, including but not limited to their chromosome content, DNA composition, distribution and arrangement of their content across chromosomes, and other major traits. We further highlight how this variability in genomic traits influences their virulence and adaptation to adverse conditions. Fungal genomes exhibit large variations in size, gene content, and structural features, such as the abundance of transposable elements (TEs), compartmentalization into gene-rich and TE-rich regions, and the presence or absence of dispensable chromosomes. Genomic structural variations are equally diverse in fungi, ranging from whole-chromosome duplications that may enhance tolerance to antifungal compounds, to targeted deletion of effector encoding genes that may promote virulence. Finally, the often-overlooked fungal mitochondrial genomes can also affect virulence and resistance to fungicides. Such and other features of fungal genome organization are reviewed and discussed in the context of host-microbe interactions and antifungal resistance.
Collapse
Affiliation(s)
- Alex Z Zaccaron
- Department of Plant Pathology, University of California Davis (UCD), Davis, CA, USA; Integrative Genetics and Genomics Graduate Group, University of California, Davis, CA 95616, USA
| | - Ioannis Stergiopoulos
- Department of Plant Pathology, University of California Davis (UCD), Davis, CA, USA.
| |
Collapse
|
2
|
Acevedo KL, Eaton E, Leite J, Zhao S, Chacon-Vargas K, McCarthy CM, Choi D, O’Donnell S, Gluck-Thaler E, Yu JH, Gibbons JG. Population Genomics of Aspergillus sojae is Shaped by the Food Environment. Genome Biol Evol 2025; 17:evaf067. [PMID: 40195023 PMCID: PMC12014904 DOI: 10.1093/gbe/evaf067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/13/2025] [Accepted: 03/26/2025] [Indexed: 04/09/2025] Open
Abstract
Traditional fermented foods often contain specialized microorganisms adapted to their unique environments. For example, the filamentous mold Aspergillus oryzae, used in saké fermentation, has evolved to thrive in starch-rich conditions compared to its wild ancestor, Aspergillus flavus. Similarly, Aspergillus sojae, used in soybean-based fermentations like miso and shochu, is hypothesized to have been domesticated from Aspergillus parasiticus. Here, we examined the effects of long-term A. sojae use in soybean fermentation on population structure, genome variation, and phenotypic traits. We analyzed 17 A. sojae and 24 A. parasiticus genomes (23 of which were sequenced for this study), alongside phenotypic traits of 9 isolates. Aspergillus sojae formed a distinct, low-diversity population, suggesting a recent clonal expansion. Interestingly, a population of A. parasiticus was more closely related to A. sojae than other A. parasiticus populations. Genome comparisons revealed loss-of-function mutations in A. sojae, notably in biosynthetic gene clusters encoding secondary metabolites, including the aflatoxin cluster. Interestingly though, A. sojae harbored a partial duplication of a siderophore biosynthetic cluster. Phenotypic assays showed A. sojae lacked aflatoxin production, while it was variable in A. parasiticus isolates. Additionally, certain A. sojae strains exhibited larger colony diameters under miso-like salt conditions. These findings support the hypothesis that A. parasiticus is the progenitor of A. sojae and that domestication significantly reduced genetic diversity. Future research should explore how wild and food-associated strains influence sensory attributes and microbial community dynamics in fermented soy products.
Collapse
Affiliation(s)
- Kimberly L Acevedo
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
- Organismic & Evolutionary Biology Graduate Program, University of Massachusetts, Amherst, MA 01003, USA
| | - Elizabeth Eaton
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Julia Leite
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Shu Zhao
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA 01003, USA
| | - Katherine Chacon-Vargas
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA 01003, USA
| | - Colin M McCarthy
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Dasol Choi
- Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Samuel O’Donnell
- Department of Plant Pathology, University of Wisconsin, Madison, WI 53706, USA
| | - Emile Gluck-Thaler
- Department of Plant Pathology, University of Wisconsin, Madison, WI 53706, USA
| | - Jae-Hyuk Yu
- Department of Bacteriology, Food Research Institute, University of Wisconsin, Madison, WI 53706, USA
| | - John G Gibbons
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
- Organismic & Evolutionary Biology Graduate Program, University of Massachusetts, Amherst, MA 01003, USA
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
3
|
Caron T, Crequer E, Le Piver M, Le Prieur S, Brunel S, Snirc A, Cueff G, Roueyre D, Place M, Chassard C, Simon A, de la Vega RCR, Coton M, Coton E, Foulongne-Oriol M, Branca A, Giraud T. Identification of quantitative trait loci (QTLs) for key cheese making phenotypes in the blue-cheese mold Penicillium roqueforti. PLoS Genet 2025; 21:e1011669. [PMID: 40233118 PMCID: PMC12047768 DOI: 10.1371/journal.pgen.1011669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/02/2025] [Accepted: 03/28/2025] [Indexed: 04/17/2025] Open
Abstract
Elucidating the genomic architecture of quantitative traits is essential for our understanding of adaptation and for breeding in domesticated organisms. Penicillium roqueforti is the mold used worldwide for the blue cheese maturation, contributing to flavors through proteolytic and lipolytic activities. The two domesticated cheese populations display very little genetic diversity, but are differentiated and carry opposite mating types. We produced haploid F1 progenies from five crosses, using parents belonging to cheese and non-cheese populations. Analyses of high-quality genome assemblies of the parental strains revealed five large translocations, two having occurred via a circular intermediate, one with footprints of Starship giant mobile elements. Offspring genotyping with genotype-by-sequencing (GBS) revealed several genomic regions with segregation distortion, possibly linked to degeneration in cheese lineages. We found transgressions for several traits relevant for cheese making, with offspring having more extreme trait values than parental strains. We identified quantitative trait loci (QTLs) for colony color, lipolysis, proteolysis, extrolite production, including mycotoxins, but not for growth rates. Some genomic regions appeared rich in QTLs for both lipid and protein metabolism, and other regions for the production of multiple extrolites, indicating that QTLs have pleiotropic effects. Some QTLs corresponded to known biosynthetic gene clusters, e.g., for the production of melanin or extrolites. F1 hybrids constitute valuable strains for cheese producers, with new traits and new allelic combinations, and allowed identifying target genomic regions for traits important in cheese making, paving the way for strain improvement. The findings further contribute to our understanding of the genetic mechanisms underlying rapid adaptation, revealing convergent adaptation targeting major gene regulators.
Collapse
Affiliation(s)
- Thibault Caron
- Ecologie Systématique Evolution, IDEEV, Gif-sur-Yvette, France
- Laboratoire Interprofessionnel de Production—SAS L.I.P., Aurillac, France
| | - Ewen Crequer
- Ecologie Systématique Evolution, IDEEV, Gif-sur-Yvette, France
- Univ Brest, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, Plouzané, France
| | - Mélanie Le Piver
- Laboratoire Interprofessionnel de Production—SAS L.I.P., Aurillac, France
| | | | - Sammy Brunel
- Laboratoire Interprofessionnel de Production—SAS L.I.P., Aurillac, France
| | - Alodie Snirc
- Ecologie Systématique Evolution, IDEEV, Gif-sur-Yvette, France
| | - Gwennina Cueff
- Univ Brest, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, Plouzané, France
| | - Daniel Roueyre
- Laboratoire Interprofessionnel de Production—SAS L.I.P., Aurillac, France
| | - Michel Place
- Laboratoire Interprofessionnel de Production—SAS L.I.P., Aurillac, France
| | | | | | | | - Monika Coton
- Univ Brest, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, Plouzané, France
| | - Emmanuel Coton
- Univ Brest, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, Plouzané, France
| | | | - Antoine Branca
- Ecologie Systématique Evolution, IDEEV, Gif-sur-Yvette, France
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, Gif-sur-Yvette, France
| | - Tatiana Giraud
- Ecologie Systématique Evolution, IDEEV, Gif-sur-Yvette, France
| |
Collapse
|
4
|
Hartmann FE, Rodríguez de la Vega RC, Demené A, Badet T, Vernadet JP, Rougemont Q, Labat A, Snirc A, Stauber L, Croll D, Prospero S, Dutech C, Giraud T. An Inversion Polymorphism Under Balancing Selection, Involving Giant Mobile Elements, in an Invasive Fungal Pathogen. Mol Biol Evol 2025; 42:msaf026. [PMID: 39907064 PMCID: PMC11848846 DOI: 10.1093/molbev/msaf026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 01/23/2025] [Accepted: 01/23/2025] [Indexed: 02/06/2025] Open
Abstract
Recombination suppression can evolve in sex or mating-type chromosomes, or in autosomal supergenes, with different haplotypes being maintained by balancing selection. In the invasive chestnut blight fungus Cryphonectria parasitica, a genomic region was suggested to lack recombination and to be partially physically linked to the mating-type (MAT) locus based on segregation analyses. Using hundreds of available C. parasitica genomes and generating new high-quality genome assemblies, we show that a ca. 1.2 Mb genomic region proximal to the mating-type locus lacks recombination, with the segregation of two highly differentiated haplotypes in balanced proportions in invasive populations. High-quality genome assemblies further revealed an inversion in one of the haplotypes in the invaded range. The two haplotypes were estimated to have diverged 1.5 million years ago, and each harboured specific genes, some of which likely belonging to Starships. These are large transposable elements, mobilized by tyrosine recombinases, able to move accessory genes, and involved in adaptation in multiple fungi. The MAT-proximal region carried genes upregulated under virus infection or vegetative incompatibility reaction. In the native range, the MAT-proximal region also appeared to have a different evolutionary history than the rest of the genome. In all continents, the MAT-Proximal region was enriched in nonsynonymous substitutions, in gene presence/absence polymorphism, in tyrosine recombinases and in transposable elements. This study thus sheds light on a case of a large nonrecombining region partially linked to a mating compatibility locus, likely maintained by balancing selection on differentiated haplotypes, possibly involved in adaptation in a devastating tree pathogen.
Collapse
Affiliation(s)
- Fanny E Hartmann
- Ecologie Systematique et Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Gif-sur-Yvette F-91190, France
| | | | - Arthur Demené
- Biodiversité Gènes & Communautés, INRAE, Univ. Bordeaux, Cestas F-33610, France
| | - Thomas Badet
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Jean-Philippe Vernadet
- Ecologie Systematique et Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Gif-sur-Yvette F-91190, France
| | - Quentin Rougemont
- Ecologie Systematique et Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Gif-sur-Yvette F-91190, France
| | - Amandine Labat
- Ecologie Systematique et Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Gif-sur-Yvette F-91190, France
| | - Alodie Snirc
- Ecologie Systematique et Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Gif-sur-Yvette F-91190, France
| | - Lea Stauber
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Daniel Croll
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Simone Prospero
- Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| | - Cyril Dutech
- Biodiversité Gènes & Communautés, INRAE, Univ. Bordeaux, Cestas F-33610, France
| | - Tatiana Giraud
- Ecologie Systematique et Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Gif-sur-Yvette F-91190, France
| |
Collapse
|
5
|
Urquhart AS, Gluck-Thaler E, Vogan AA. Gene acquisition by giant transposons primes eukaryotes for rapid evolution via horizontal gene transfer. SCIENCE ADVANCES 2024; 10:eadp8738. [PMID: 39642232 PMCID: PMC11623301 DOI: 10.1126/sciadv.adp8738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 10/31/2024] [Indexed: 12/08/2024]
Abstract
Horizontal gene transfer (HGT) disseminates genetic information between species and is a powerful mechanism of adaptation. Yet, we know little about its underlying drivers in eukaryotes. Giant Starship transposons have been implicated as agents of fungal HGT, providing an unprecedented opportunity to reveal the evolutionary parameters behind this process. Here, we characterize the ssf gene cluster, which contributes to formaldehyde resistance, and use it to demonstrate how mobile element evolution shapes fungal adaptation. We found that ssf clusters have been acquired by various distantly related Starships, which each exhibit multiple instances of horizontal transfer across fungal species (at least nine events, including between different taxonomic orders). Many ssf clusters have subsequently integrated into their host's genome, illustrating how Starships shape the evolutionary trajectory of fungal hosts beyond any single transfer. Our results demonstrate the key role Starships play in mediating rapid and repeated adaptation via HGT, elevating the importance of mobile element evolution in eukaryotic biology.
Collapse
Affiliation(s)
- Andrew S. Urquhart
- Systematic Biology, Department of Organismal Biology, University of Uppsala, Uppsala 752 36, Sweden
- Commonwealth Scientific and Industrial Research Organisation, St. Lucia, Queensland 4067, Australia
- Applied Biosciences, Macquarie University, Macquarie Park, New South Wales 2113, Australia
| | - Emile Gluck-Thaler
- Laboratory of Evolutionary Genetics, University of Neuchâtel, Neuchâtel 2000, Switzerland
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI 53706, USA
- Wisconsin Institute for Discovery, Madison, WI 53706, USA
| | - Aaron A. Vogan
- Systematic Biology, Department of Organismal Biology, University of Uppsala, Uppsala 752 36, Sweden
| |
Collapse
|
6
|
Peck LD, Llewellyn T, Bennetot B, O’Donnell S, Nowell RW, Ryan MJ, Flood J, Rodríguez de la Vega RC, Ropars J, Giraud T, Spanu PD, Barraclough TG. Horizontal transfers between fungal Fusarium species contributed to successive outbreaks of coffee wilt disease. PLoS Biol 2024; 22:e3002480. [PMID: 39637834 PMCID: PMC11620798 DOI: 10.1371/journal.pbio.3002480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 09/30/2024] [Indexed: 12/07/2024] Open
Abstract
Outbreaks of fungal diseases have devastated plants and animals throughout history. Over the past century, the repeated emergence of coffee wilt disease caused by the fungal pathogen Fusarium xylarioides severely impacted coffee production across sub-Saharan Africa. To improve the disease management of such pathogens, it is crucial to understand their genetic structure and evolutionary potential. We compared the genomes of 13 historic strains spanning 6 decades and multiple disease outbreaks to investigate population structure and host specialisation. We found that F. xylarioides comprised at least 4 distinct lineages: 1 host-specific to Coffea arabica, 1 to C. canephora var. robusta, and 2 historic lineages isolated from various Coffea species. The presence/absence of large genomic regions across populations, the higher genetic similarities of these regions between species than expected based on genome-wide divergence and their locations in different loci in genomes across populations showed that horizontal transfers of effector genes from members of the F. oxysporum species complex contributed to host specificity. Multiple transfers into F. xylarioides populations matched different parts of the F. oxysporum mobile pathogenicity chromosome and were enriched in effector genes and transposons. Effector genes in this region and other carbohydrate-active enzymes important in the breakdown of plant cell walls were shown by transcriptomics to be highly expressed during infection of C. arabica by the fungal arabica strains. Widespread sharing of specific transposons between F. xylarioides and F. oxysporum, and the correspondence of a putative horizontally transferred regions to a Starship (large mobile element involved in horizontal gene transfers in fungi), reinforce the inference of horizontal transfers and suggest that mobile elements were involved. Our results support the hypothesis that horizontal gene transfers contributed to the repeated emergence of coffee wilt disease.
Collapse
Affiliation(s)
- Lily D. Peck
- Science and Solutions for a Changing Planet, Grantham Institute, Imperial College London, London, United Kingdom
- Department of Life Sciences, Silwood Park Campus, Imperial College London, Berkshire, United Kingdom
- CABI, Egham, Surrey, United Kingdom
| | - Theo Llewellyn
- Science and Solutions for a Changing Planet, Grantham Institute, Imperial College London, London, United Kingdom
- Comparative Fungal Biology, Royal Botanic Gardens, Kew, Richmond, United Kingdom
| | - Bastien Bennetot
- Ecologie Systematique et Evolution, CNRS, AgroParisTech, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Samuel O’Donnell
- Ecologie Systematique et Evolution, CNRS, AgroParisTech, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Reuben W. Nowell
- Department of Biology, University of Oxford, Oxford, United Kingdom
- Biological & Environmental Sciences, University of Stirling, Scotland, United Kingdom
| | | | | | | | - Jeanne Ropars
- Ecologie Systematique et Evolution, CNRS, AgroParisTech, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Tatiana Giraud
- Ecologie Systematique et Evolution, CNRS, AgroParisTech, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Pietro D. Spanu
- Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, United Kingdom
| | - Timothy G. Barraclough
- Department of Life Sciences, Silwood Park Campus, Imperial College London, Berkshire, United Kingdom
- Department of Biology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
7
|
Kirtil HE, Orakci A, Arici M, Metin B. Genetic diversity and population structure of Penicillium roqueforti isolates from Turkish blue cheeses. Int J Food Microbiol 2024; 421:110801. [PMID: 38924974 DOI: 10.1016/j.ijfoodmicro.2024.110801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/04/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024]
Abstract
Blue cheeses, including renowned mold-ripened varieties such as Roquefort (France), Gorgonzola (Italy), Stilton (UK), Danablue (Denmark), and Cabrales (Spain), owe their distinct blue-green color and unique flavor to the fungal species Penicillium roqueforti. In Turkey, traditional cheeses similar to blue cheeses, namely mold-ripened Tulum and Civil, employ production techniques distinct from their European counterparts. Notably, mold-ripening in Turkish cheeses is spontaneous and does not involve starter cultures. Despite P. roqueforti being recognized for its distinct genetic populations sourced from various blue cheeses and non-cheese origins globally, the characteristics of the P. roqueforti population within Turkish cheeses remain unexplored. This study aimed to unravel the genetic characteristics and population structure of P. roqueforti from Turkish mold-ripened cheeses. Analysis of mold-ripened Civil (n = 22) and Tulum (n = 8) samples revealed 66 P. roqueforti isolates (76.6 % of total fungal isolates). Subsequently, these isolates (n = 66) and those from previous studies (Tulum n = 53, Golot n = 1) were used to assess genetic characteristics and mating genotypes. All 120 isolates harbored horizontal transfer regions (Wallaby and CheesyTer) and predominantly possessed the MAT1-2 mating genotype, similar to global blue cheese populations. However, most lacked the mpaC deletion associated with such populations. Analysis of the population with three polymorphic microsatellite markers revealed 36 haplotypes (HTs). Some cheeses contained isolates with different HTs or opposite mating genotypes, aligning with spontaneous fungal growth. Tulum and Civil isolates exhibited similar population diversity without forming distinct subgroups. Phylogenetic analysis of 20 selected isolates showed 75 % aligning with global blue cheese isolates, while 25 % formed unique clades. Overall, Turkish P. roqueforti isolates share genetic similarities with global populations but exhibit unique characteristics, suggesting potential new clades deserving further investigation. This research illuminates the characteristics of P. roqueforti isolates from Turkish cheeses, contributing to the knowledge of the global intraspecific diversity of the P. roqueforti species.
Collapse
Affiliation(s)
- Hatice Ebrar Kirtil
- Department of Food Engineering, Faculty of Engineering and Natural Sciences, Istanbul Sabahattin Zaim University, 34303 Istanbul, Turkey
| | - Aysenur Orakci
- Department of Food Engineering, Faculty of Engineering and Natural Sciences, Istanbul Sabahattin Zaim University, 34303 Istanbul, Turkey
| | - Muhammet Arici
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, 34210 Istanbul, Turkey
| | - Banu Metin
- Department of Food Engineering, Faculty of Engineering and Natural Sciences, Istanbul Sabahattin Zaim University, 34303 Istanbul, Turkey; Food and Agricultural Research Center (GTUAM), Istanbul Sabahattin Zaim University, 34303 Istanbul, Turkey.
| |
Collapse
|
8
|
Luciano-Rosario D, Jurick WM, Gottschalk C. The Near-Gapless Penicillium fuscoglaucum Genome Enables the Discovery of Lifestyle Features as an Emerging Post-Harvest Phytopathogen. J Fungi (Basel) 2024; 10:430. [PMID: 38921416 PMCID: PMC11204653 DOI: 10.3390/jof10060430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/28/2024] [Accepted: 06/03/2024] [Indexed: 06/27/2024] Open
Abstract
Penicillium spp. occupy many diverse biological niches that include plant pathogens, opportunistic human pathogens, saprophytes, indoor air contaminants, and those selected specifically for industrial applications to produce secondary metabolites and lifesaving antibiotics. Recent phylogenetic studies have established Penicillium fuscoglaucum as a synonym for Penicillium commune, which is an indoor air contaminant and toxin producer and can infect apple fruit during storage. During routine culturing on selective media in the lab, we obtained an isolate of P. fuscoglaucum Pf_T2 and sequenced its genome. The Pf_T2 genome is far superior to available genomic resources for the species. Our assembly exhibits a length of 35.1 Mb, a BUSCO score of 97.9% complete, and consists of five scaffolds/contigs representing the four expected chromosomes. It was determined that the Pf_T2 genome was colinear with a type specimen P. fuscoglaucum and contained a lineage-specific, intact cyclopiazonic acid (CPA) gene cluster. For comparison, a highly virulent postharvest apple pathogen, P. expansum strain TDL 12.1, was included and showed a similar growth pattern in culture to our Pf_T2 isolate but was far more aggressive in apple fruit than P. fuscoglaucum. The genome of Pf_T2 serves as a major improvement over existing resources, has superior annotation, and can inform forthcoming omics-based work and functional genetic studies to probe secondary metabolite production and disparities in aggressiveness during apple fruit decay.
Collapse
Affiliation(s)
- Dianiris Luciano-Rosario
- Food Quality Laboratory, USDA-ARS, Beltsville, MD 20705, USA;
- ORISE Postdoctoral Research Fellow, Oak Ridge, TN 37830, USA
| | - Wayne M. Jurick
- Food Quality Laboratory, USDA-ARS, Beltsville, MD 20705, USA;
| | | |
Collapse
|
9
|
Bucknell AH, McDonald MC. That's no moon, it's a Starship: Giant transposons driving fungal horizontal gene transfer. Mol Microbiol 2023; 120:555-563. [PMID: 37434470 DOI: 10.1111/mmi.15118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/09/2023] [Accepted: 06/13/2023] [Indexed: 07/13/2023]
Abstract
To date, most reports of horizontal gene transfer (HGT) in fungi rely on genome sequence data and are therefore an indirect measure of HGT after the event has occurred. However, a novel group of class II-like transposons known as Starships may soon alter this status quo. Starships are giant transposable elements that carry dozens of genes, some of which are host-beneficial, and are linked to many recent HGT events in the fungal kingdom. These transposons remain active and mobile in many fungal genomes and their transposition has recently been shown to be driven by a conserved tyrosine-recombinase called 'Captain'. This perspective explores some of the remaining unanswered questions about how these Starship transposons move, both within a genome and between different species. We seek to outline several experimental approaches that can be used to identify the genes essential for Starship-mediated HGT and draw links to other recently discovered giant transposons outside of the fungal kingdom.
Collapse
Affiliation(s)
- Angus H Bucknell
- School of Biosciences, Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| | - Megan C McDonald
- School of Biosciences, Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| |
Collapse
|
10
|
Cosetta CM, Niccum B, Kamkari N, Dente M, Podniesinski M, Wolfe BE. Bacterial-fungal interactions promote parallel evolution of global transcriptional regulators in a widespread Staphylococcus species. THE ISME JOURNAL 2023; 17:1504-1516. [PMID: 37524910 PMCID: PMC10432416 DOI: 10.1038/s41396-023-01462-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/06/2023] [Accepted: 06/15/2023] [Indexed: 08/02/2023]
Abstract
Experimental studies of microbial evolution have largely focused on monocultures of model organisms, but most microbes live in communities where interactions with other species may impact rates and modes of evolution. Using the cheese rind model microbial community, we determined how species interactions shape the evolution of the widespread food- and animal-associated bacterium Staphylococcus xylosus. We evolved S. xylosus for 450 generations alone or in co-culture with one of three microbes: the yeast Debaryomyces hansenii, the bacterium Brevibacterium aurantiacum, and the mold Penicillium solitum. We used the frequency of colony morphology mutants (pigment and colony texture phenotypes) and whole-genome sequencing of isolates to quantify phenotypic and genomic evolution. The yeast D. hansenii strongly promoted diversification of S. xylosus. By the end of the experiment, all populations co-cultured with the yeast were dominated by pigment and colony morphology mutant phenotypes. Populations of S. xylosus grown alone, with B. aurantiacum, or with P. solitum did not evolve novel phenotypic diversity. Whole-genome sequencing of individual mutant isolates across all four treatments identified numerous unique mutations in the operons for the SigB, Agr, and WalRK global regulators, but only in the D. hansenii treatment. Phenotyping and RNA-seq experiments highlighted altered pigment and biofilm production, spreading, stress tolerance, and metabolism of S. xylosus mutants. Fitness experiments revealed antagonistic pleiotropy, where beneficial mutations that evolved in the presence of the yeast had strong negative fitness effects in other biotic environments. This work demonstrates that bacterial-fungal interactions can have long-term evolutionary consequences within multispecies microbiomes by facilitating the evolution of strain diversity.
Collapse
Affiliation(s)
- Casey M Cosetta
- Department of Biology, Tufts University, Medford, MA, 02155, USA
| | - Brittany Niccum
- Department of Biology, Tufts University, Medford, MA, 02155, USA
| | - Nick Kamkari
- Department of Biology, Tufts University, Medford, MA, 02155, USA
| | - Michael Dente
- Department of Biology, Tufts University, Medford, MA, 02155, USA
| | | | - Benjamin E Wolfe
- Department of Biology, Tufts University, Medford, MA, 02155, USA.
| |
Collapse
|
11
|
Lo Y, Bruxaux J, Rodríguez de la Vega RC, O'Donnell S, Snirc A, Coton M, Le Piver M, Le Prieur S, Roueyre D, Dupont J, Houbraken J, Debuchy R, Ropars J, Giraud T, Branca A. Domestication in dry-cured meat Penicillium fungi: Convergent specific phenotypes and horizontal gene transfers without strong genetic subdivision. Evol Appl 2023; 16:1637-1660. [PMID: 37752962 PMCID: PMC10519415 DOI: 10.1111/eva.13591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/17/2023] [Accepted: 08/18/2023] [Indexed: 09/28/2023] Open
Abstract
Some fungi have been domesticated for food production, with genetic differentiation between populations from food and wild environments, and food populations often acquiring beneficial traits through horizontal gene transfers (HGTs). Studying their adaptation to human-made substrates is of fundamental and applied importance for understanding adaptation processes and for further strain improvement. We studied here the population structures and phenotypes of two distantly related Penicillium species used for dry-cured meat production, P. nalgiovense, the most common species in the dry-cured meat food industry, and P. salamii, used locally by farms. Both species displayed low genetic diversity, lacking differentiation between strains isolated from dry-cured meat and those from other environments. Nevertheless, the strains collected from dry-cured meat within each species displayed slower proteolysis and lipolysis than their wild conspecifics, and those of P. nalgiovense were whiter. Phenotypically, the non-dry-cured meat strains were more similar to their sister species than to their conspecific dry-cured meat strains, indicating an evolution of specific phenotypes in dry-cured meat strains. A comparison of available Penicillium genomes from various environments revealed HGTs, particularly between P. nalgiovense and P. salamii (representing almost 1.5 Mb of cumulative length). HGTs additionally involved P. biforme, also found in dry-cured meat products. We further detected positive selection based on amino acid changes. Our findings suggest that selection by humans has shaped the P. salamii and P. nalgiovense populations used for dry-cured meat production, which constitutes domestication. Several genetic and phenotypic changes were similar in P. salamii, P. nalgiovense and P. biforme, indicating convergent adaptation to the same human-made environment. Our findings have implications for fundamental knowledge on adaptation and for the food industry: the discovery of different phenotypes and of two mating types paves the way for strain improvement by conventional breeding, to elucidate the genomic bases of beneficial phenotypes and to generate diversity.
Collapse
Affiliation(s)
- Ying‐Chu Lo
- IDEEV – Laboratoire Ecologie, Systématique et Evolution, CNRS, AgroParisTechUniversité Paris‐SaclayGif‐sur‐YvetteFrance
| | - Jade Bruxaux
- IDEEV – Laboratoire Ecologie, Systématique et Evolution, CNRS, AgroParisTechUniversité Paris‐SaclayGif‐sur‐YvetteFrance
- Department of Ecology and Environmental ScienceUmeå UniversityUmeåSweden
| | | | - Samuel O'Donnell
- IDEEV – Laboratoire Ecologie, Systématique et Evolution, CNRS, AgroParisTechUniversité Paris‐SaclayGif‐sur‐YvetteFrance
| | - Alodie Snirc
- IDEEV – Laboratoire Ecologie, Systématique et Evolution, CNRS, AgroParisTechUniversité Paris‐SaclayGif‐sur‐YvetteFrance
| | - Monika Coton
- Univ Brest, Laboratoire Universitaire de Biodiversité et Ecologie MicrobiennePlouzanéFrance
| | - Mélanie Le Piver
- Laboratoire Interprofessionnel de Production – SAS L.I.PAurillacFrance
| | - Stéphanie Le Prieur
- IDEEV – Laboratoire Ecologie, Systématique et Evolution, CNRS, AgroParisTechUniversité Paris‐SaclayGif‐sur‐YvetteFrance
| | - Daniel Roueyre
- Laboratoire Interprofessionnel de Production – SAS L.I.PAurillacFrance
| | - Joëlle Dupont
- Origine, Structure, Evolution de la Biodiversité, UMR 7205 CNRS‐MNHN, Muséum National d'Histoire NaturelleParis Cedex 05France
| | - Jos Houbraken
- Westerdijk Fungal Biodiversity InstituteUtrechtThe Netherlands
| | - Robert Debuchy
- Université Paris‐Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC)Gif‐sur‐YvetteFrance
| | - Jeanne Ropars
- IDEEV – Laboratoire Ecologie, Systématique et Evolution, CNRS, AgroParisTechUniversité Paris‐SaclayGif‐sur‐YvetteFrance
| | - Tatiana Giraud
- IDEEV – Laboratoire Ecologie, Systématique et Evolution, CNRS, AgroParisTechUniversité Paris‐SaclayGif‐sur‐YvetteFrance
| | - Antoine Branca
- IDEEV – Laboratoire Ecologie, Systématique et Evolution, CNRS, AgroParisTechUniversité Paris‐SaclayGif‐sur‐YvetteFrance
- IDEEV – Laboratoire Evolution, Génomes Comportement, EcologieCNRS Université Paris Saclay UMR 9191, IRD UMR 247Gif‐sur‐YvetteFrance
| |
Collapse
|
12
|
Crequer E, Ropars J, Jany J, Caron T, Coton M, Snirc A, Vernadet J, Branca A, Giraud T, Coton E. A new cheese population in Penicillium roqueforti and adaptation of the five populations to their ecological niche. Evol Appl 2023; 16:1438-1457. [PMID: 37622099 PMCID: PMC10445096 DOI: 10.1111/eva.13578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/26/2023] [Accepted: 06/22/2023] [Indexed: 08/26/2023] Open
Abstract
Domestication is an excellent case study for understanding adaptation and multiple fungal lineages have been domesticated for fermenting food products. Studying domestication in fungi has thus both fundamental and applied interest. Genomic studies have revealed the existence of four populations within the blue-cheese-making fungus Penicillium roqueforti. The two cheese populations show footprints of domestication, but the adaptation of the two non-cheese populations to their ecological niches (i.e., silage/spoiled food and lumber/spoiled food) has not been investigated yet. Here, we reveal the existence of a new P. roqueforti population, specific to French Termignon cheeses, produced using small-scale traditional practices, with spontaneous blue mould colonisation. This Termignon population is genetically differentiated from the four previously identified populations, providing a novel source of genetic diversity for cheese making. The Termignon population indeed displayed substantial genetic diversity, both mating types, horizontally transferred regions previously detected in the non-Roquefort population, and intermediate phenotypes between cheese and non-cheese populations. Phenotypically, the non-Roquefort cheese population was the most differentiated, with specific traits beneficial for cheese making, in particular higher tolerance to salt, to acidic pH and to lactic acid. Our results support the view that this clonal population, used for many cheese types in multiple countries, is a domesticated lineage on which humans exerted strong selection. The lumber/spoiled food and silage/spoiled food populations were not more tolerant to crop fungicides but showed faster growth in various carbon sources (e.g., dextrose, pectin, sucrose, xylose and/or lactose), which can be beneficial in their ecological niches. Such contrasted phenotypes between P. roqueforti populations, with beneficial traits for cheese-making in the cheese populations and enhanced ability to metabolise sugars in the lumber/spoiled food population, support the inference of domestication in cheese fungi and more generally of adaptation to anthropized environments.
Collapse
Affiliation(s)
- Ewen Crequer
- Univ BrestINRAE, Laboratoire Universitaire de Biodiversité et Ecologie MicrobiennePlouzanéFrance
- Université Paris‐SaclayCNRS, AgroParisTech, Laboratoire Ecologie Systématique et Evolution, UMR 8079Gif‐sur‐YvetteFrance
| | - Jeanne Ropars
- Université Paris‐SaclayCNRS, AgroParisTech, Laboratoire Ecologie Systématique et Evolution, UMR 8079Gif‐sur‐YvetteFrance
| | - Jean‐Luc Jany
- Univ BrestINRAE, Laboratoire Universitaire de Biodiversité et Ecologie MicrobiennePlouzanéFrance
| | - Thibault Caron
- Université Paris‐SaclayCNRS, AgroParisTech, Laboratoire Ecologie Systématique et Evolution, UMR 8079Gif‐sur‐YvetteFrance
| | - Monika Coton
- Univ BrestINRAE, Laboratoire Universitaire de Biodiversité et Ecologie MicrobiennePlouzanéFrance
| | - Alodie Snirc
- Université Paris‐SaclayCNRS, AgroParisTech, Laboratoire Ecologie Systématique et Evolution, UMR 8079Gif‐sur‐YvetteFrance
| | - Jean‐Philippe Vernadet
- Université Paris‐SaclayCNRS, AgroParisTech, Laboratoire Ecologie Systématique et Evolution, UMR 8079Gif‐sur‐YvetteFrance
| | - Antoine Branca
- Université Paris‐SaclayCNRS, AgroParisTech, Laboratoire Ecologie Systématique et Evolution, UMR 8079Gif‐sur‐YvetteFrance
| | - Tatiana Giraud
- Université Paris‐SaclayCNRS, AgroParisTech, Laboratoire Ecologie Systématique et Evolution, UMR 8079Gif‐sur‐YvetteFrance
| | - Emmanuel Coton
- Univ BrestINRAE, Laboratoire Universitaire de Biodiversité et Ecologie MicrobiennePlouzanéFrance
| |
Collapse
|
13
|
Urquhart AS, Vogan AA, Gardiner DM, Idnurm A. Starships are active eukaryotic transposable elements mobilized by a new family of tyrosine recombinases. Proc Natl Acad Sci U S A 2023; 120:e2214521120. [PMID: 37023132 PMCID: PMC10104507 DOI: 10.1073/pnas.2214521120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 01/04/2023] [Indexed: 04/07/2023] Open
Abstract
Transposable elements in eukaryotic organisms have historically been considered "selfish," at best conferring indirect benefits to their host organisms. The Starships are a recently discovered feature in fungal genomes that are, in some cases, predicted to confer beneficial traits to their hosts and also have hallmarks of being transposable elements. Here, we provide experimental evidence that Starships are indeed autonomous transposons, using the model Paecilomyces variotii, and identify the HhpA "Captain" tyrosine recombinase as essential for their mobilization into genomic sites with a specific target site consensus sequence. Furthermore, we identify multiple recent horizontal gene transfers of Starships, implying that they jump between species. Fungal genomes have mechanisms to defend against mobile elements, which are frequently detrimental to the host. We discover that Starships are also vulnerable to repeat-induced point mutation defense, thereby having implications on the evolutionary stability of such elements.
Collapse
Affiliation(s)
- Andrew S. Urquhart
- Commonwealth Scientific and Industrial Research Organisation, St Lucia, QLD4067, Australia
- Applied Biosciences, Macquarie University, Macquarie Park, NSW2109, Australia
| | - Aaron A. Vogan
- Department of Organismal Biology, Uppsala University, 752 36Uppsala, Sweden
| | - Donald M. Gardiner
- Commonwealth Scientific and Industrial Research Organisation, St Lucia, QLD4067, Australia
- University of Queensland, St Lucia, QLD4067, Australia
| | - Alexander Idnurm
- School of BioSciences, University of Melbourne, Parkville, VIC3010, Australia
| |
Collapse
|
14
|
Panaccione DG. Derivation of the multiply-branched ergot alkaloid pathway of fungi. Microb Biotechnol 2023; 16:742-756. [PMID: 36636806 PMCID: PMC10034635 DOI: 10.1111/1751-7915.14214] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 12/16/2022] [Accepted: 01/02/2023] [Indexed: 01/14/2023] Open
Abstract
Ergot alkaloids are a large family of fungal specialized metabolites that are important as toxins in agriculture and as the foundation of powerful pharmaceuticals. Fungi from several lineages and diverse ecological niches produce ergot alkaloids from at least one of several branches of the ergot alkaloid pathway. The biochemical and genetic bases for the different branches have been established and are summarized briefly herein. Several pathway branches overlap among fungal lineages and ecological niches, indicating activities of ergot alkaloids benefit fungi in different environments and conditions. Understanding the functions of the multiple genes in each branch of the pathway allows researchers to parse the abundant genomic sequence data available in public databases in order to assess the ergot alkaloid biosynthesis capacity of previously unexplored fungi. Moreover, the characterization of the genes involved in the various branches provides opportunities and resources for the biotechnological manipulation of ergot alkaloids for experimentation and pharmaceutical development.
Collapse
Affiliation(s)
- Daniel G Panaccione
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, West Virginia, USA
| |
Collapse
|
15
|
Cheng YY, Zhou Z, Papadopoulos JM, Zuke JD, Falbel TG, Anantharaman K, Burton BM, Venturelli OS. Efficient plasmid transfer via natural competence in a microbial co-culture. Mol Syst Biol 2023; 19:e11406. [PMID: 36714980 PMCID: PMC9996237 DOI: 10.15252/msb.202211406] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/21/2022] [Accepted: 01/09/2023] [Indexed: 01/31/2023] Open
Abstract
The molecular and ecological factors shaping horizontal gene transfer (HGT) via natural transformation in microbial communities are largely unknown, which is critical for understanding the emergence of antibiotic-resistant pathogens. We investigate key factors shaping HGT in a microbial co-culture by quantifying extracellular DNA release, species growth, and HGT efficiency over time. In the co-culture, plasmid release and HGT efficiency are significantly enhanced than in the respective monocultures. The donor is a key determinant of HGT efficiency as plasmids induce the SOS response, enter a multimerized state, and are released in high concentrations, enabling efficient HGT. However, HGT is reduced in response to high donor lysis rates. HGT is independent of the donor viability state as both live and dead cells transfer the plasmid with high efficiency. In sum, plasmid HGT via natural transformation depends on the interplay of plasmid properties, donor stress responses and lysis rates, and interspecies interactions.
Collapse
Affiliation(s)
- Yu-Yu Cheng
- Department of Biochemistry, University of Wisconsin, Madison, WI, USA
| | - Zhichao Zhou
- Department of Bacteriology, University of Wisconsin, Madison, WI, USA
| | - James M Papadopoulos
- Department of Chemical & Biological Engineering, University of Wisconsin, Madison, WI, USA
| | - Jason D Zuke
- Department of Bacteriology, University of Wisconsin, Madison, WI, USA
| | - Tanya G Falbel
- Department of Bacteriology, University of Wisconsin, Madison, WI, USA
| | | | - Briana M Burton
- Department of Bacteriology, University of Wisconsin, Madison, WI, USA
| | - Ophelia S Venturelli
- Department of Biochemistry, University of Wisconsin, Madison, WI, USA.,Department of Bacteriology, University of Wisconsin, Madison, WI, USA.,Department of Chemical & Biological Engineering, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
16
|
Friedrich A, Gounot JS, Tsouris A, Bleykasten C, Freel K, Caradec C, Schacherer J. Contrasting Genomic Evolution Between Domesticated and Wild Kluyveromyces lactis Yeast Populations. Genome Biol Evol 2023; 15:evad004. [PMID: 36634937 PMCID: PMC9897184 DOI: 10.1093/gbe/evad004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/20/2022] [Accepted: 01/09/2023] [Indexed: 01/14/2023] Open
Abstract
The process of domestication has variable consequences on genome evolution leading to different phenotypic signatures. Access to the complete genome sequences of a large number of individuals makes it possible to explore the different facets of this domestication process. Here, we sought to explore the genome evolution of Kluyveromyces lactis, a yeast species well known for its involvement in dairy processes and also present in natural environments. Using a combination of short- and long-read sequencing strategies, we investigated the genomic variability of 41 K. lactis isolates and found that the overall genetic diversity of this species is very high (θw = 3.3 × 10-2) compared with other species such as Saccharomyces cerevisiae (θw = 1.6 × 10-2). However, the domesticated dairy population shows a reduced level of diversity (θw = 1 × 10-3), probably due to a domestication bottleneck. In addition, this entire population is characterized by the introgression of the LAC4 and LAC12 genes, responsible for lactose fermentation and coming from the closely related species, Kluyveromyces marxianus, as previously described. Our results highlighted that the LAC4/LAC12 gene cluster was acquired through multiple and independent introgression events. Finally, we also identified several genes that could play a role in adaptation to dairy environments through copy number variation. These genes are involved in sugar consumption, flocculation, and drug resistance, and may play a role in dairy processes. Overall, our study illustrates contrasting genomic evolution and sheds new light on the impact of domestication processes on it.
Collapse
Affiliation(s)
- Anne Friedrich
- Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg 67000, France
| | | | - Andreas Tsouris
- Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg 67000, France
| | | | - Kelle Freel
- Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg 67000, France
| | - Claudia Caradec
- Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg 67000, France
| | - Joseph Schacherer
- Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg 67000, France
- Institut Universitaire de France (IUF), Paris 75005, France
| |
Collapse
|
17
|
Ropars J, Giraud T. Convergence in domesticated fungi used for cheese and dry-cured meat maturation: beneficial traits, genomic mechanisms, and degeneration. Curr Opin Microbiol 2022; 70:102236. [PMID: 36368125 DOI: 10.1016/j.mib.2022.102236] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/29/2022] [Accepted: 10/18/2022] [Indexed: 11/09/2022]
Abstract
Humans have domesticated genetically distant fungi for similar uses, the fermentation of lipid-rich and sugar-rich food to generate attractive aspects, odor and aroma, and to improve shelf life and product safety. Multiple independent domestication events also occurred within species. We review recent evidence of phenotypic convergence during the domestication of fungi for making cheese (Saccharomyces cerevisiae, Penicillium roqueforti, P. camemberti, and Geotrichum candidum) and for dry-cured meat making (P. nalgiovense and P. salamii). Convergence following adaptation to similar ecological niches involved colony aspect (fluffiness and color), lipolysis, proteolysis, volatile compound production, and competitive ability against food spoilers. We review evidence for convergence in genetic diversity loss in domesticated populations and in the degeneration of unused traits, such as toxin production and sexual reproduction. Phenotypic convergence sometimes occurred by similar mechanisms of genomic adaptation, in particular horizontal gene transfers and loss of genes.
Collapse
Affiliation(s)
- Jeanne Ropars
- Ecologie Systématique Evolution, IDEEV, Bâtiment 680, 12 route RD128, 91190 Gif-sur-Yvette, France
| | - Tatiana Giraud
- Ecologie Systématique Evolution, IDEEV, Bâtiment 680, 12 route RD128, 91190 Gif-sur-Yvette, France.
| |
Collapse
|
18
|
Liu P, Cuerda-Gil D, Shahid S, Slotkin RK. The Epigenetic Control of the Transposable Element Life Cycle in Plant Genomes and Beyond. Annu Rev Genet 2022; 56:63-87. [DOI: 10.1146/annurev-genet-072920-015534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Within the life cycle of a living organism, another life cycle exists for the selfish genome inhabitants, which are called transposable elements (TEs). These mobile sequences invade, duplicate, amplify, and diversify within a genome, increasing the genome's size and generating new mutations. Cells act to defend their genome, but rather than permanently destroying TEs, they use chromatin-level repression and epigenetic inheritance to silence TE activity. This level of silencing is ephemeral and reversible, leading to a dynamic equilibrium between TE suppression and reactivation within a host genome. The coexistence of the TE and host genome can also lead to the domestication of the TE to serve in host genome evolution and function. In this review, we describe the life cycle of a TE, with emphasis on how epigenetic regulation is harnessed to control TEs for host genome stability and innovation.
Collapse
Affiliation(s)
- Peng Liu
- Donald Danforth Plant Science Center, St. Louis, Missouri, USA
| | - Diego Cuerda-Gil
- Donald Danforth Plant Science Center, St. Louis, Missouri, USA
- Graduate Program in the Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, USA
| | - Saima Shahid
- Donald Danforth Plant Science Center, St. Louis, Missouri, USA
| | - R. Keith Slotkin
- Donald Danforth Plant Science Center, St. Louis, Missouri, USA
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
19
|
Fardella PA, Tian Z, Clarke BB, Belanger FC. The Epichloë festucae Antifungal Protein Efe-AfpA Protects Creeping Bentgrass ( Agrostis stolonifera) from the Plant Pathogen Clarireedia jacksonii, the Causal Agent of Dollar Spot Disease. J Fungi (Basel) 2022; 8:jof8101097. [PMID: 36294663 PMCID: PMC9605492 DOI: 10.3390/jof8101097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/11/2022] [Accepted: 10/15/2022] [Indexed: 11/16/2022] Open
Abstract
Dollar spot disease, caused by the fungal pathogen Clarireedia jacksonii, is a major problem in many turfgrass species, particularly creeping bentgrass (Agrostis stolonifera). It is well-established that strong creeping red fescue (Festuca rubra subsp. rubra) exhibits good dollar spot resistance when infected by the fungal endophyte Epichloë festucae. This endophyte-mediated disease resistance is unique to the fine fescues and has not been observed in other grass species infected with other Epichloë spp. The mechanism underlying the unique endophyte-mediated disease resistance in strong creeping red fescue has not yet been established. We pursued the possibility that it may be due to the presence of an abundant secreted antifungal protein produced by E. festucae. Here, we compare the activity of the antifungal protein expressed in Escherichia coli, Pichia pastoris, and Penicillium chrysogenum. Active protein was recovered from all systems, with the best activity being from Pe. chrysogenum. In greenhouse assays, topical application of the purified antifungal protein to creeping bentgrass and endophyte-free strong creeping red fescue protected the plants from developing severe symptoms caused by C. jacksonii. These results support the hypothesis that Efe-AfpA is a major contributor to the dollar spot resistance observed with E. festucae-infected strong creeping red fescue in the field, and that this protein could be developed as an alternative or complement to fungicides for the management of this disease on turfgrasses.
Collapse
|
20
|
Punt M, Seekles SJ, van Dam JL, de Adelhart Toorop C, Martina RR, Houbraken J, Ram AFJ, Wösten HAB, Ohm RA. High sorbic acid resistance of Penicillium roqueforti is mediated by the SORBUS gene cluster. PLoS Genet 2022; 18:e1010086. [PMID: 35704633 PMCID: PMC9200314 DOI: 10.1371/journal.pgen.1010086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/11/2022] [Indexed: 12/04/2022] Open
Abstract
Penicillium roqueforti is a major food-spoilage fungus known for its high resistance to the food preservative sorbic acid. Here, we demonstrate that the minimum inhibitory concentration of undissociated sorbic acid (MICu) ranges between 4.2 and 21.2 mM when 34 P. roqueforti strains were grown on malt extract broth. A genome-wide association study revealed that the six most resistant strains contained the 180 kbp gene cluster SORBUS, which was absent in the other 28 strains. In addition, a SNP analysis revealed five genes outside the SORBUS cluster that may be linked to sorbic acid resistance. A partial SORBUS knock-out (>100 of 180 kbp) in a resistant strain reduced sorbic acid resistance to similar levels as observed in the sensitive strains. Whole genome transcriptome analysis revealed a small set of genes present in both resistant and sensitive P. roqueforti strains that were differentially expressed in the presence of the weak acid. These genes could explain why P. roqueforti is more resistant to sorbic acid when compared to other fungi, even in the absence of the SORBUS cluster. Together, the MICu of 21.2 mM makes P. roqueforti among the most sorbic acid-resistant fungi, if not the most resistant fungus, which is mediated by the SORBUS gene cluster. Chemical preservatives, such as sorbic acid, are often used in food to prevent spoilage by fungi, yet some fungi are particularly well-suited to deal with these preservatives. First, we investigated the resistance of 34 Penicillium roqueforti strains to various food preservatives. This revealed that some strains were highly resistant to sorbic acid, while others are more sensitive. Next, we used DNA sequencing to compare the genetic variation between these strains and discovered a specific genetic region (SORBUS) that is unique to the resistant strains. Through comparative analysis with other fungal species the SORBUS region was studied in more detail and with the use of genetic engineering tools we removed this unique region. Finally, the mutant lacking the SORBUS region was confirmed to have lost its sorbic acid resistance. This finding is of particular interest as it suggests that only some, not all, P. roqueforti strains are potent spoilers and that specific genetic markers could help in the identification of resistant strains.
Collapse
Affiliation(s)
- Maarten Punt
- TiFN, Wageningen, The Netherlands
- Microbiology, Department of Biology, Utrecht University, Utrecht, The Netherlands
| | - Sjoerd J. Seekles
- TiFN, Wageningen, The Netherlands
- Department Molecular Microbiology and Biotechnology, Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| | - Jisca L. van Dam
- Department Molecular Microbiology and Biotechnology, Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| | | | - Raithel R. Martina
- Microbiology, Department of Biology, Utrecht University, Utrecht, The Netherlands
| | - Jos Houbraken
- TiFN, Wageningen, The Netherlands
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - Arthur F. J. Ram
- TiFN, Wageningen, The Netherlands
- Department Molecular Microbiology and Biotechnology, Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| | - Han A. B. Wösten
- TiFN, Wageningen, The Netherlands
- Microbiology, Department of Biology, Utrecht University, Utrecht, The Netherlands
| | - Robin A. Ohm
- TiFN, Wageningen, The Netherlands
- Microbiology, Department of Biology, Utrecht University, Utrecht, The Netherlands
- * E-mail:
| |
Collapse
|
21
|
Wang R, Wu J, Jiang N, Lin H, An F, Wu C, Yue X, Shi H, Wu R. Recent developments in horizontal gene transfer with the adaptive innovation of fermented foods. Crit Rev Food Sci Nutr 2022; 63:569-584. [PMID: 35647734 DOI: 10.1080/10408398.2022.2081127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Horizontal gene transfer (HGT) has contributed significantly to the adaptability of bacteria, yeast and mold in fermented foods, whose evidence has been found in several fermented foods. Although not every HGT has biological significance, it plays an important role in improving the quality of fermented foods. In this review, how HGT facilitated microbial domestication and adaptive evolution in fermented foods was discussed. HGT can assist in the industrial innovation of fermented foods, and this adaptive evolution strategy can improve the quality of fermented foods. Additionally, the mechanism underlying HGT in fermented foods were analyzed. Furthermore, the critical bottlenecks involved in optimizing HGT during the production of fermented foods and strategies for optimizing HGT were proposed. Finally, the prospect of HGT for promoting the industrial innovation of fermented foods was highlighted. The comprehensive report on HGT in fermented foods provides a new trend for domesticating preferable starters for food fermentation, thus optimizing the quality and improving the industrial production of fermented foods.
Collapse
Affiliation(s)
- Ruhong Wang
- College of Food Science, Shenyang Agricultural University, Shenyang, P.R. China
| | - Junrui Wu
- College of Food Science, Shenyang Agricultural University, Shenyang, P.R. China.,Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang Agricultural University, Shenyang, P.R. China.,Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang Agricultural University, Shenyang, P.R. China
| | - Nan Jiang
- College of Food Science, Shenyang Agricultural University, Shenyang, P.R. China
| | - Hao Lin
- College of Food Science, Shenyang Agricultural University, Shenyang, P.R. China
| | - Feiyu An
- College of Food Science, Shenyang Agricultural University, Shenyang, P.R. China
| | - Chen Wu
- College of Food Science, Shenyang Agricultural University, Shenyang, P.R. China
| | - Xiqing Yue
- College of Food Science, Shenyang Agricultural University, Shenyang, P.R. China.,Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang Agricultural University, Shenyang, P.R. China.,Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang Agricultural University, Shenyang, P.R. China
| | - Haisu Shi
- College of Food Science, Shenyang Agricultural University, Shenyang, P.R. China.,Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang Agricultural University, Shenyang, P.R. China.,Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang Agricultural University, Shenyang, P.R. China
| | - Rina Wu
- College of Food Science, Shenyang Agricultural University, Shenyang, P.R. China.,Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang Agricultural University, Shenyang, P.R. China.,Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang Agricultural University, Shenyang, P.R. China
| |
Collapse
|
22
|
A large transposable element mediates metal resistance in the fungus Paecilomyces variotii. Curr Biol 2022; 32:937-950.e5. [PMID: 35063120 DOI: 10.1016/j.cub.2021.12.048] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 08/11/2021] [Accepted: 12/17/2021] [Indexed: 12/19/2022]
Abstract
The horizontal transfer of large gene clusters by mobile elements is a key driver of prokaryotic adaptation in response to environmental stresses. Eukaryotic microbes face similar stresses; however, a parallel role for mobile elements has not been established. A stress faced by many microorganisms is toxic metal ions in their environment. In fungi, identified mechanisms for protection against metals generally rely on genes that are dispersed within an organism's genome. Here, we discover a large (∼85 kb) region that confers tolerance to five metal/metalloid ions (arsenate, cadmium, copper, lead, and zinc) in the genomes of some, but not all, strains of a fungus, Paecilomyces variotii. We name this region HEPHAESTUS (Hφ) and present evidence that it is mobile within the P. variotii genome with features characteristic of a transposable element. HEPHAESTUS contains the greatest complement of host-beneficial genes carried by a transposable element in eukaryotes, suggesting that eukaryotic transposable elements might play a role analogous to bacteria in the horizontal transfer of large regions of host-beneficial DNA. Genes within HEPHAESTUS responsible for individual metal tolerances include those encoding a P-type ATPase transporter-PcaA-required for cadmium and lead tolerance, a transporter-ZrcA-providing tolerance to zinc, and a multicopper oxidase-McoA-conferring tolerance to copper. In addition, a subregion of Hφ confers tolerance to arsenate. The genome sequences of other fungi in the Eurotiales contain further examples of HEPHAESTUS, suggesting that it is responsible for independently assembling tolerance to a diverse array of ions, including chromium, mercury, and sodium.
Collapse
|
23
|
Maixner F, Sarhan MS, Huang KD, Tett A, Schoenafinger A, Zingale S, Blanco-Míguez A, Manghi P, Cemper-Kiesslich J, Rosendahl W, Kusebauch U, Morrone SR, Hoopmann MR, Rota-Stabelli O, Rattei T, Moritz RL, Oeggl K, Segata N, Zink A, Reschreiter H, Kowarik K. Hallstatt miners consumed blue cheese and beer during the Iron Age and retained a non-Westernized gut microbiome until the Baroque period. Curr Biol 2021; 31:5149-5162.e6. [PMID: 34648730 PMCID: PMC8660109 DOI: 10.1016/j.cub.2021.09.031] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/16/2021] [Accepted: 09/14/2021] [Indexed: 02/06/2023]
Abstract
We subjected human paleofeces dating from the Bronze Age to the Baroque period (18th century AD) to in-depth microscopic, metagenomic, and proteomic analyses. The paleofeces were preserved in the underground salt mines of the UNESCO World Heritage site of Hallstatt in Austria. This allowed us to reconstruct the diet of the former population and gain insights into their ancient gut microbiome composition. Our dietary survey identified bran and glumes of different cereals as some of the most prevalent plant fragments. This highly fibrous, carbohydrate-rich diet was supplemented with proteins from broad beans and occasionally with fruits, nuts, or animal food products. Due to these traditional dietary habits, all ancient miners up to the Baroque period have gut microbiome structures akin to modern non-Westernized individuals whose diets are also mainly composed of unprocessed foods and fresh fruits and vegetables. This may indicate a shift in the gut community composition of modern Westernized populations due to quite recent dietary and lifestyle changes. When we extended our microbial survey to fungi present in the paleofeces, in one of the Iron Age samples, we observed a high abundance of Penicillium roqueforti and Saccharomyces cerevisiae DNA. Genome-wide analysis indicates that both fungi were involved in food fermentation and provides the first molecular evidence for blue cheese and beer consumption in Iron Age Europe.
Collapse
Affiliation(s)
- Frank Maixner
- Institute for Mummy Studies, EURAC Research, Viale Druso 1, 39100 Bolzano, Italy.
| | - Mohamed S Sarhan
- Institute for Mummy Studies, EURAC Research, Viale Druso 1, 39100 Bolzano, Italy
| | - Kun D Huang
- Department CIBIO, University of Trento, Via Sommarive 9, 38123 Povo (Trento), Italy; Department of Sustainable Agro-Ecosystems and Bioresources, Fondazione Edmund Mach, Via Edmund Mach 1, 38010 San Michele all'Adige (TN), Italy
| | - Adrian Tett
- Department CIBIO, University of Trento, Via Sommarive 9, 38123 Povo (Trento), Italy; CUBE (Division of Computational Systems Biology), Centre for Microbiology and Environmental Systems Science, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| | - Alexander Schoenafinger
- Institute for Mummy Studies, EURAC Research, Viale Druso 1, 39100 Bolzano, Italy; Institute of Botany, University of Innsbruck, Sternwartestraße 15, 6020 Innsbruck, Austria
| | - Stefania Zingale
- Institute for Mummy Studies, EURAC Research, Viale Druso 1, 39100 Bolzano, Italy
| | - Aitor Blanco-Míguez
- Department CIBIO, University of Trento, Via Sommarive 9, 38123 Povo (Trento), Italy
| | - Paolo Manghi
- Department CIBIO, University of Trento, Via Sommarive 9, 38123 Povo (Trento), Italy
| | - Jan Cemper-Kiesslich
- Interfaculty Department of Legal Medicine & Department of Classics, University of Salzburg, Ignaz-Harrer-Straße 79, 5020 Salzburg, Austria
| | - Wilfried Rosendahl
- Reiss-Engelhorn-Museen, Zeughaus C5, 68159 Mannheim, Germany; Curt-Egelhorn-Zentrum Archäomtrie, D6,3, 61859 Mannheim, Germany
| | - Ulrike Kusebauch
- Institute for Systems Biology, 401 Terry Avenue North, Seattle, WA 98109, USA
| | - Seamus R Morrone
- Institute for Systems Biology, 401 Terry Avenue North, Seattle, WA 98109, USA
| | - Michael R Hoopmann
- Institute for Systems Biology, 401 Terry Avenue North, Seattle, WA 98109, USA
| | - Omar Rota-Stabelli
- Center Agriculture Food Environment (C3A), University of Trento, 38010 San Michele all'Adige (TN), Italy
| | - Thomas Rattei
- CUBE (Division of Computational Systems Biology), Centre for Microbiology and Environmental Systems Science, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| | - Robert L Moritz
- Institute for Systems Biology, 401 Terry Avenue North, Seattle, WA 98109, USA
| | - Klaus Oeggl
- Institute of Botany, University of Innsbruck, Sternwartestraße 15, 6020 Innsbruck, Austria
| | - Nicola Segata
- Department CIBIO, University of Trento, Via Sommarive 9, 38123 Povo (Trento), Italy
| | - Albert Zink
- Institute for Mummy Studies, EURAC Research, Viale Druso 1, 39100 Bolzano, Italy
| | - Hans Reschreiter
- Prehistoric Department, Museum of Natural History Vienna, Burgring 7, 1010 Vienna, Austria
| | - Kerstin Kowarik
- Prehistoric Department, Museum of Natural History Vienna, Burgring 7, 1010 Vienna, Austria.
| |
Collapse
|
24
|
Jia SL, Chi Z, Chen L, Liu GL, Hu Z, Chi ZM. Molecular evolution and regulation of DHN melanin-related gene clusters are closely related to adaptation of different melanin-producing fungi. Genomics 2021; 113:1962-1975. [PMID: 33901575 DOI: 10.1016/j.ygeno.2021.04.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 03/31/2021] [Accepted: 04/20/2021] [Indexed: 12/31/2022]
Abstract
Many genes responsible for melanin biosynthesis in fungi were physically linked together. The PKS gene clusters in most of the melanin-producing fungi were regulated by the Cmr1. It was found that a close rearrangement of the PKS gene clusters had evolved in most of the melanin-producing fungi and various functions of melanin in them were beneficial to their adaptation to the changing environments. The melanin-producing fungi had undergone at least five large-scale differentiations, making their PKS gene clusters be quickly evolved and the fungi be adapted to different harsh environments. The recent gene losses and expansion were remarkably frequent in the PKS gene clusters, leading to their rapid evolution and adaptation of their hosts to different environments. The PKS gene and the CMR1 gene in them were subject to a strong co-evolution, but the horizontal gene transfer events might have occurred in the genome-duplicated species, Aspergillus and Penicillium.
Collapse
Affiliation(s)
- Shu-Lei Jia
- College of Marine Life Sciences, Ocean University of China, Yushan Road, No. 5, Qingdao, China
| | - Zhe Chi
- College of Marine Life Sciences, Ocean University of China, Yushan Road, No. 5, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 266003 Qingdao, China
| | - Lu Chen
- College of Marine Life Sciences, Ocean University of China, Yushan Road, No. 5, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 266003 Qingdao, China
| | - Guang-Lei Liu
- College of Marine Life Sciences, Ocean University of China, Yushan Road, No. 5, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 266003 Qingdao, China
| | - Zhong Hu
- Department of Biology, Shantou University, Shantou 515063, China
| | - Zhen-Ming Chi
- College of Marine Life Sciences, Ocean University of China, Yushan Road, No. 5, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 266003 Qingdao, China.
| |
Collapse
|
25
|
Caron T, Piver ML, Péron AC, Lieben P, Lavigne R, Brunel S, Roueyre D, Place M, Bonnarme P, Giraud T, Branca A, Landaud S, Chassard C. Strong effect of Penicillium roqueforti populations on volatile and metabolic compounds responsible for aromas, flavor and texture in blue cheeses. Int J Food Microbiol 2021; 354:109174. [PMID: 34103155 DOI: 10.1016/j.ijfoodmicro.2021.109174] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 03/09/2021] [Accepted: 03/15/2021] [Indexed: 01/25/2023]
Abstract
Studies of food microorganism domestication can provide important insight into adaptation mechanisms and lead to commercial applications. Penicillium roqueforti is a fungus with four genetically differentiated populations, two of which were independently domesticated for blue cheese-making, with the other two populations thriving in other environments. Most blue cheeses are made with strains from a single P. roqueforti population, whereas Roquefort cheeses are inoculated with strains from a second population. We made blue cheeses in accordance with the production specifications for Roquefort-type cheeses, inoculating each cheese with a single P. roqueforti strain, using a total of three strains from each of the four populations. We investigated differences between the cheeses made with the strains from the four P. roqueforti populations, in terms of the induced flora, the proportion of blue color, water activity and the identity and abundance of aqueous and organic metabolites as proxies for proteolysis and lipolysis as well as volatile compounds responsible for flavor and aroma. We found that the population-of-origin of the P. roqueforti strains used for inoculation had a minor impact on bacterial diversity and no effect on the abundance of the main microorganism. The cheeses produced with P. roqueforti strains from cheese populations had a higher percentage of blue area and a higher abundance of the volatile compounds typical of blue cheeses, such as methyl ketones and secondary alcohols. In particular, the Roquefort strains produced higher amounts of these aromatic compounds, partly due to more efficient proteolysis and lipolysis. The Roquefort strains also led to cheeses with a lower water availability, an important feature for preventing spoilage in blue cheeses, which is subject to controls for the sale of Roquefort cheese. The typical appearance and flavors of blue cheeses thus result from human selection on P. roqueforti, leading to the acquisition of specific features by the two cheese populations. These findings have important implications for our understanding of adaptation and domestication, and for cheese improvement.
Collapse
Affiliation(s)
- Thibault Caron
- Ecologie Systematique Evolution, Université Paris-Saclay, CNRS, AgroParisTech, 91400 Orsay, France; Laboratoire Interprofessionnel de Production - SAS L.I.P., 34 rue de Salers, 15 000 Aurillac, France.
| | - Mélanie Le Piver
- Laboratoire Interprofessionnel de Production - SAS L.I.P., 34 rue de Salers, 15 000 Aurillac, France
| | - Anne-Claire Péron
- Université Paris-Saclay, INRAE, AgroParisTech, UMR SayFood, 78850 Thiverval-Grignon, France
| | - Pascale Lieben
- Université Paris-Saclay, INRAE, AgroParisTech, UMR SayFood, 78850 Thiverval-Grignon, France
| | - René Lavigne
- Université Clermont Auvergne, INRAE, Vetagro Sup, UMRF, 20 Côte de Reyne, 15000 Aurillac, France
| | - Sammy Brunel
- Laboratoire Interprofessionnel de Production - SAS L.I.P., 34 rue de Salers, 15 000 Aurillac, France
| | - Daniel Roueyre
- Laboratoire Interprofessionnel de Production - SAS L.I.P., 34 rue de Salers, 15 000 Aurillac, France
| | - Michel Place
- Laboratoire Interprofessionnel de Production - SAS L.I.P., 34 rue de Salers, 15 000 Aurillac, France
| | - Pascal Bonnarme
- Université Paris-Saclay, INRAE, AgroParisTech, UMR SayFood, 78850 Thiverval-Grignon, France
| | - Tatiana Giraud
- Ecologie Systematique Evolution, Université Paris-Saclay, CNRS, AgroParisTech, 91400 Orsay, France
| | - Antoine Branca
- Ecologie Systematique Evolution, Université Paris-Saclay, CNRS, AgroParisTech, 91400 Orsay, France
| | - Sophie Landaud
- Université Paris-Saclay, INRAE, AgroParisTech, UMR SayFood, 78850 Thiverval-Grignon, France
| | - Christophe Chassard
- Université Clermont Auvergne, INRAE, Vetagro Sup, UMRF, 20 Côte de Reyne, 15000 Aurillac, France
| |
Collapse
|
26
|
Bigey F, Segond D, Friedrich A, Guezenec S, Bourgais A, Huyghe L, Agier N, Nidelet T, Sicard D. Evidence for Two Main Domestication Trajectories in Saccharomyces cerevisiae Linked to Distinct Bread-Making Processes. Curr Biol 2021; 31:722-732.e5. [DOI: 10.1016/j.cub.2020.11.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/07/2020] [Accepted: 11/05/2020] [Indexed: 10/22/2022]
|
27
|
Fredericks LR, Lee MD, Crabtree AM, Boyer JM, Kizer EA, Taggart NT, Roslund CR, Hunter SS, Kennedy CB, Willmore CG, Tebbe NM, Harris JS, Brocke SN, Rowley PA. The Species-Specific Acquisition and Diversification of a K1-like Family of Killer Toxins in Budding Yeasts of the Saccharomycotina. PLoS Genet 2021; 17:e1009341. [PMID: 33539346 PMCID: PMC7888664 DOI: 10.1371/journal.pgen.1009341] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 02/17/2021] [Accepted: 01/05/2021] [Indexed: 12/24/2022] Open
Abstract
Killer toxins are extracellular antifungal proteins that are produced by a wide variety of fungi, including Saccharomyces yeasts. Although many Saccharomyces killer toxins have been previously identified, their evolutionary origins remain uncertain given that many of these genes have been mobilized by double-stranded RNA (dsRNA) viruses. A survey of yeasts from the Saccharomyces genus has identified a novel killer toxin with a unique spectrum of activity produced by Saccharomyces paradoxus. The expression of this killer toxin is associated with the presence of a dsRNA totivirus and a satellite dsRNA. Genetic sequencing of the satellite dsRNA confirmed that it encodes a killer toxin with homology to the canonical ionophoric K1 toxin from Saccharomyces cerevisiae and has been named K1-like (K1L). Genomic homologs of K1L were identified in six non-Saccharomyces yeast species of the Saccharomycotina subphylum, predominantly in subtelomeric regions of the genome. When ectopically expressed in S. cerevisiae from cloned cDNAs, both K1L and its homologs can inhibit the growth of competing yeast species, confirming the discovery of a family of biologically active K1-like killer toxins. The sporadic distribution of these genes supports their acquisition by horizontal gene transfer followed by diversification. The phylogenetic relationship between K1L and its genomic homologs suggests a common ancestry and gene flow via dsRNAs and DNAs across taxonomic divisions. This appears to enable the acquisition of a diverse arsenal of killer toxins by different yeast species for potential use in niche competition.
Collapse
Affiliation(s)
- Lance R. Fredericks
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Mark D. Lee
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Angela M. Crabtree
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Josephine M. Boyer
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Emily A. Kizer
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Nathan T. Taggart
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Cooper R. Roslund
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Samuel S. Hunter
- iBEST Genomics Core, University of Idaho, Moscow, Idaho, United States of America
| | - Courtney B. Kennedy
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Cody G. Willmore
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Nova M. Tebbe
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Jade S. Harris
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Sarah N. Brocke
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Paul A. Rowley
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| |
Collapse
|
28
|
Valero-Jiménez CA, Steentjes MBF, Slot JC, Shi-Kunne X, Scholten OE, van Kan JAL. Dynamics in Secondary Metabolite Gene Clusters in Otherwise Highly Syntenic and Stable Genomes in the Fungal Genus Botrytis. Genome Biol Evol 2020; 12:2491-2507. [PMID: 33283866 PMCID: PMC7719232 DOI: 10.1093/gbe/evaa218] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2020] [Indexed: 02/05/2023] Open
Abstract
Fungi of the genus Botrytis infect >1,400 plant species and cause losses in many crops. Besides the broad host range pathogen Botrytis cinerea, most other species are restricted to a single host. Long-read technology was used to sequence genomes of eight Botrytis species, mostly pathogenic on Allium species, and the related onion white rot fungus, Sclerotium cepivorum. Most assemblies contained <100 contigs, with the Botrytis aclada genome assembled in 16 gapless chromosomes. The core genome and pan-genome of 16 Botrytis species were defined and the secretome, effector, and secondary metabolite repertoires analyzed. Among those genes, none is shared among all Allium pathogens and absent from non-Allium pathogens. The genome of each of the Allium pathogens contains 8-39 predicted effector genes that are unique for that single species, none stood out as potential determinant for host specificity. Chromosome configurations of common ancestors of the genus Botrytis and family Sclerotiniaceae were reconstructed. The genomes of B. cinerea and B. aclada were highly syntenic with only 19 rearrangements between them. Genomes of Allium pathogens were compared with ten other Botrytis species (nonpathogenic on Allium) and with 25 Leotiomycetes for their repertoire of secondary metabolite gene clusters. The pattern was complex, with several clusters displaying patchy distribution. Two clusters involved in the synthesis of phytotoxic metabolites are at distinct genomic locations in different Botrytis species. We provide evidence that the clusters for botcinic acid production in B. cinerea and Botrytis sinoallii were acquired by horizontal transfer from taxa within the same genus.
Collapse
Affiliation(s)
| | | | - Jason C Slot
- Department of Plant Pathology, The Ohio State University
| | | | - Olga E Scholten
- Plant Breeding, Wageningen University & Research, The Netherlands
| | - Jan A L van Kan
- Laboratory of Phytopathology, Wageningen University, The Netherlands
| |
Collapse
|
29
|
Lateral Gene Transfer Mechanisms and Pan-genomes in Eukaryotes. Trends Parasitol 2020; 36:927-941. [DOI: 10.1016/j.pt.2020.07.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 07/20/2020] [Accepted: 07/20/2020] [Indexed: 02/06/2023]
|
30
|
Naranjo‐Ortiz MA, Gabaldón T. Fungal evolution: cellular, genomic and metabolic complexity. Biol Rev Camb Philos Soc 2020; 95:1198-1232. [PMID: 32301582 PMCID: PMC7539958 DOI: 10.1111/brv.12605] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 03/31/2020] [Accepted: 04/02/2020] [Indexed: 12/13/2022]
Abstract
The question of how phenotypic and genomic complexity are inter-related and how they are shaped through evolution is a central question in biology that historically has been approached from the perspective of animals and plants. In recent years, however, fungi have emerged as a promising alternative system to address such questions. Key to their ecological success, fungi present a broad and diverse range of phenotypic traits. Fungal cells can adopt many different shapes, often within a single species, providing them with great adaptive potential. Fungal cellular organizations span from unicellular forms to complex, macroscopic multicellularity, with multiple transitions to higher or lower levels of cellular complexity occurring throughout the evolutionary history of fungi. Similarly, fungal genomes are very diverse in their architecture. Deep changes in genome organization can occur very quickly, and these phenomena are known to mediate rapid adaptations to environmental changes. Finally, the biochemical complexity of fungi is huge, particularly with regard to their secondary metabolites, chemical products that mediate many aspects of fungal biology, including ecological interactions. Herein, we explore how the interplay of these cellular, genomic and metabolic traits mediates the emergence of complex phenotypes, and how this complexity is shaped throughout the evolutionary history of Fungi.
Collapse
Affiliation(s)
- Miguel A. Naranjo‐Ortiz
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyDr. Aiguader 88, Barcelona08003Spain
| | - Toni Gabaldón
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyDr. Aiguader 88, Barcelona08003Spain
- Department of Experimental Sciences, Universitat Pompeu Fabra (UPF)Dr. Aiguader 88, 08003BarcelonaSpain
- ICREAPg. Lluís Companys 23, 08010BarcelonaSpain
| |
Collapse
|
31
|
Domestication of the Emblematic White Cheese-Making Fungus Penicillium camemberti and Its Diversification into Two Varieties. Curr Biol 2020; 30:4441-4453.e4. [PMID: 32976806 DOI: 10.1016/j.cub.2020.08.082] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 07/02/2020] [Accepted: 08/24/2020] [Indexed: 12/24/2022]
Abstract
Domestication involves recent adaptation under strong human selection and rapid diversification and therefore constitutes a good model for studies of these processes. We studied the domestication of the emblematic white mold Penicillium camemberti, used for the maturation of soft cheeses, such as Camembert and Brie, about which surprisingly little was known, despite its economic and cultural importance. Whole-genome-based analyses of genetic relationships and diversity revealed that an ancient domestication event led to the emergence of the gray-green P. biforme mold used in cheese making, by divergence from the blue-green wild P. fuscoglaucum fungus. Another much more recent domestication event led to the generation of the P. camemberti clonal lineage as a sister group to P. biforme. Penicillium biforme displayed signs of phenotypic adaptation to cheese making relative to P. fuscoglaucum, in terms of whiter color, faster growth on cheese medium under cave conditions, lower amounts of toxin production, and greater ability to prevent the growth of other fungi. The P. camemberti lineage displayed even stronger signs of domestication for all these phenotypic features. We also identified two differentiated P. camemberti varieties, apparently associated with different kinds of cheeses and with contrasted phenotypic features in terms of color, growth, toxin production, and competitive ability. We have thus identified footprints of domestication in these fungi, with genetic differentiation between cheese and wild populations, bottlenecks, and specific phenotypic traits beneficial for cheese making. This study has not only fundamental implications for our understanding of domestication but can also have important effects on cheese making.
Collapse
|
32
|
Saak CC, Dinh CB, Dutton RJ. Experimental approaches to tracking mobile genetic elements in microbial communities. FEMS Microbiol Rev 2020; 44:606-630. [PMID: 32672812 PMCID: PMC7476777 DOI: 10.1093/femsre/fuaa025] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 06/29/2020] [Indexed: 12/19/2022] Open
Abstract
Horizontal gene transfer is an important mechanism of microbial evolution and is often driven by the movement of mobile genetic elements between cells. Due to the fact that microbes live within communities, various mechanisms of horizontal gene transfer and types of mobile elements can co-occur. However, the ways in which horizontal gene transfer impacts and is impacted by communities containing diverse mobile elements has been challenging to address. Thus, the field would benefit from incorporating community-level information and novel approaches alongside existing methods. Emerging technologies for tracking mobile elements and assigning them to host organisms provide promise for understanding the web of potential DNA transfers in diverse microbial communities more comprehensively. Compared to existing experimental approaches, chromosome conformation capture and methylome analyses have the potential to simultaneously study various types of mobile elements and their associated hosts. We also briefly discuss how fermented food microbiomes, given their experimental tractability and moderate species complexity, make ideal models to which to apply the techniques discussed herein and how they can be used to address outstanding questions in the field of horizontal gene transfer in microbial communities.
Collapse
Affiliation(s)
- Christina C Saak
- Division of Biological Sciences, Section of Molecular Biology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Cong B Dinh
- Division of Biological Sciences, Section of Molecular Biology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Rachel J Dutton
- Division of Biological Sciences, Section of Molecular Biology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| |
Collapse
|
33
|
Li B, Chen Y, Zhang Z, Qin G, Chen T, Tian S. Molecular basis and regulation of pathogenicity and patulin biosynthesis in
Penicillium expansum. Compr Rev Food Sci Food Saf 2020; 19:3416-3438. [DOI: 10.1111/1541-4337.12612] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/26/2020] [Accepted: 07/19/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Boqiang Li
- Key Laboratory of Plant Resources, Institute of Botany, The Innovative Academy of Seed Design Chinese Academy of Sciences Beijing China
- Key Laboratory of Post‐Harvest Handing of Fruits Ministry of Agriculture Beijing China
| | - Yong Chen
- Key Laboratory of Plant Resources, Institute of Botany, The Innovative Academy of Seed Design Chinese Academy of Sciences Beijing China
| | - Zhanquan Zhang
- Key Laboratory of Plant Resources, Institute of Botany, The Innovative Academy of Seed Design Chinese Academy of Sciences Beijing China
| | - Guozheng Qin
- Key Laboratory of Plant Resources, Institute of Botany, The Innovative Academy of Seed Design Chinese Academy of Sciences Beijing China
- Key Laboratory of Post‐Harvest Handing of Fruits Ministry of Agriculture Beijing China
| | - Tong Chen
- Key Laboratory of Plant Resources, Institute of Botany, The Innovative Academy of Seed Design Chinese Academy of Sciences Beijing China
| | - Shiping Tian
- Key Laboratory of Plant Resources, Institute of Botany, The Innovative Academy of Seed Design Chinese Academy of Sciences Beijing China
- Key Laboratory of Post‐Harvest Handing of Fruits Ministry of Agriculture Beijing China
- University of Chinese Academy of Sciences Beijing China
| |
Collapse
|
34
|
Gallone B, Steensels J, Verstrepen KJ. Moulded by humans: The domestication of blue-veined cheese fungi. Mol Ecol 2020; 29:2517-2520. [PMID: 32585769 DOI: 10.1111/mec.15525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/26/2020] [Accepted: 06/09/2020] [Indexed: 12/26/2022]
Abstract
It is hard to imagine a world without food-associated microbes. The production of bread, wine, beer, salami, coffee, chocolate, cheese and many other foods and beverages all rely on specific microbes. In cheese, myriad microbial species collaborate to yield the complex organoleptic properties that are appreciated by millions of people worldwide. In the early days of cheese making, these complex communities emerged spontaneously from the natural flora associated with the raw materials, the equipment, the production environment or craftsmen involved in the production process. However, in some cases, the microbes shifted their natural habitat to the new cheese-associated environment. The most obvious cause of this is backslopping, where part of a fermented product is used to inoculate the next batch. In addition, some microbes may simply adhere to the tools used in the production process. These microbial communities gradually adapted to the novel man-made niches, a process referred to as "domestication." Domestication is associated with specific genomic and phenotypic changes and ultimately leads to lineages that are genetically and phenotypically distinct from their wild ancestors. In this issue of Molecular Ecology, Dumas et al. have investigated a prime example of cheese-associated microbes, the fungus Penicillium roqueforti. The authors identified several hallmarks of domestication in the genome and phenome of this species, allowing them to hypothesize about the origin of blue-veined cheese fungi domestication, and the specific evolutionary processes involved in adaptation to the cheese matrix.
Collapse
Affiliation(s)
- Brigida Gallone
- VIB - KU Leuven Center for Microbiology, Leuven, Belgium.,CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Leuven, Belgium.,Leuven Institute for Beer Research (LIBR), Leuven, Belgium
| | - Jan Steensels
- VIB - KU Leuven Center for Microbiology, Leuven, Belgium.,CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Leuven, Belgium.,Leuven Institute for Beer Research (LIBR), Leuven, Belgium
| | - Kevin J Verstrepen
- VIB - KU Leuven Center for Microbiology, Leuven, Belgium.,CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Leuven, Belgium.,Leuven Institute for Beer Research (LIBR), Leuven, Belgium
| |
Collapse
|
35
|
HGT in the human and skin commensal Malassezia: A bacterially derived flavohemoglobin is required for NO resistance and host interaction. Proc Natl Acad Sci U S A 2020; 117:15884-15894. [PMID: 32576698 DOI: 10.1073/pnas.2003473117] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The skin of humans and animals is colonized by commensal and pathogenic fungi and bacteria that share this ecological niche and have established microbial interactions. Malassezia are the most abundant fungal skin inhabitant of warm-blooded animals and have been implicated in skin diseases and systemic disorders, including Crohn's disease and pancreatic cancer. Flavohemoglobin is a key enzyme involved in microbial nitrosative stress resistance and nitric oxide degradation. Comparative genomics and phylogenetic analyses within the Malassezia genus revealed that flavohemoglobin-encoding genes were acquired through independent horizontal gene transfer events from different donor bacteria that are part of the mammalian microbiome. Through targeted gene deletion and functional complementation in Malassezia sympodialis, we demonstrated that bacterially derived flavohemoglobins are cytoplasmic proteins required for nitric oxide detoxification and nitrosative stress resistance under aerobic conditions. RNA-sequencing analysis revealed that endogenous accumulation of nitric oxide resulted in up-regulation of genes involved in stress response and down-regulation of the MalaS7 allergen-encoding genes. Solution of the high-resolution X-ray crystal structure of Malassezia flavohemoglobin revealed features conserved with both bacterial and fungal flavohemoglobins. In vivo pathogenesis is independent of Malassezia flavohemoglobin. Lastly, we identified an additional 30 genus- and species-specific horizontal gene transfer candidates that might have contributed to the evolution of this genus as the most common inhabitants of animal skin.
Collapse
|
36
|
Penicillium roqueforti: an overview of its genetics, physiology, metabolism and biotechnological applications. FUNGAL BIOL REV 2020. [DOI: 10.1016/j.fbr.2020.03.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
37
|
Dumas E, Feurtey A, Rodríguez de la Vega RC, Le Prieur S, Snirc A, Coton M, Thierry A, Coton E, Le Piver M, Roueyre D, Ropars J, Branca A, Giraud T. Independent domestication events in the blue-cheese fungus Penicillium roqueforti. Mol Ecol 2020; 29:2639-2660. [PMID: 31960565 PMCID: PMC7497015 DOI: 10.1111/mec.15359] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 01/02/2020] [Accepted: 01/04/2020] [Indexed: 12/13/2022]
Abstract
Domestication provides an excellent framework for studying adaptive divergence. Using population genomics and phenotypic assays, we reconstructed the domestication history of the blue cheese mould Penicillium roqueforti. We showed that this fungus was domesticated twice independently. The population used in Roquefort originated from an old domestication event associated with weak bottlenecks and exhibited traits beneficial for pre‐industrial cheese production (slower growth in cheese and greater spore production on bread, the traditional multiplication medium). The other cheese population originated more recently from the selection of a single clonal lineage, was associated with all types of blue cheese worldwide except Roquefort, and displayed phenotypes more suited for industrial cheese production (high lipolytic activity, efficient cheese cavity colonization ability and salt tolerance). We detected genomic regions affected by recent positive selection and putative horizontal gene transfers. This study sheds light on the processes of rapid adaptation and raises questions about genetic resource conservation. see also the Perspective by Brigida Gallone, Jan Steensels and Kevin J. Verstrepen.
Collapse
Affiliation(s)
- Emilie Dumas
- Ecologie Systématique et Evolution, CNRS, AgroParisTech, Ecologie Systématique Evolution, Université Paris-Saclay, Orsay, France.,Laboratory for Molecular Immunology and Inflammation, Department of Rheumatology, University Hospital Ghent, The Vlaams Instituut voor Biotechnologie (VIB) Center for Inflammation Research (IRC), Ghent, Belgium
| | - Alice Feurtey
- Ecologie Systématique et Evolution, CNRS, AgroParisTech, Ecologie Systématique Evolution, Université Paris-Saclay, Orsay, France.,Environmental Genomics, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Ricardo C Rodríguez de la Vega
- Ecologie Systématique et Evolution, CNRS, AgroParisTech, Ecologie Systématique Evolution, Université Paris-Saclay, Orsay, France
| | - Stéphanie Le Prieur
- Ecologie Systématique et Evolution, CNRS, AgroParisTech, Ecologie Systématique Evolution, Université Paris-Saclay, Orsay, France
| | - Alodie Snirc
- Ecologie Systématique et Evolution, CNRS, AgroParisTech, Ecologie Systématique Evolution, Université Paris-Saclay, Orsay, France
| | - Monika Coton
- Univ Brest, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, Plouzané, France
| | - Anne Thierry
- Science et Technologie du Lait et de l'Œuf (STLO), UMR1253, Agrocampus Ouest, INRAE, Rennes, France
| | - Emmanuel Coton
- Univ Brest, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, Plouzané, France
| | - Mélanie Le Piver
- Laboratoire Interprofessionnel de Production - SAS L.I.P, Aurillac, France
| | - Daniel Roueyre
- Laboratoire Interprofessionnel de Production - SAS L.I.P, Aurillac, France
| | - Jeanne Ropars
- Ecologie Systématique et Evolution, CNRS, AgroParisTech, Ecologie Systématique Evolution, Université Paris-Saclay, Orsay, France
| | - Antoine Branca
- Ecologie Systématique et Evolution, CNRS, AgroParisTech, Ecologie Systématique Evolution, Université Paris-Saclay, Orsay, France
| | - Tatiana Giraud
- Ecologie Systématique et Evolution, CNRS, AgroParisTech, Ecologie Systématique Evolution, Université Paris-Saclay, Orsay, France
| |
Collapse
|
38
|
Bodinaku I, Shaffer J, Connors AB, Steenwyk JL, Biango-Daniels MN, Kastman EK, Rokas A, Robbat A, Wolfe BE. Rapid Phenotypic and Metabolomic Domestication of Wild Penicillium Molds on Cheese. mBio 2019; 10:e02445-19. [PMID: 31615965 PMCID: PMC6794487 DOI: 10.1128/mbio.02445-19] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 09/17/2019] [Indexed: 02/05/2023] Open
Abstract
Fermented foods provide novel ecological opportunities for natural populations of microbes to evolve through successive recolonization of resource-rich substrates. Comparative genomic data have reconstructed the evolutionary histories of microbes adapted to food environments, but experimental studies directly demonstrating the process of domestication are lacking for most fermented food microbes. Here, we show that during adaptation to cheese, phenotypic and metabolomic traits of wild Penicillium molds rapidly change to produce domesticated phenotypes with properties similar to those of the industrial cultures used to make Camembert and other bloomy rind cheeses. Over a period of just a few weeks, populations of wild Penicillium strains serially passaged on cheese had reduced pigment, spore, and mycotoxin production. Domesticated strains also had a striking change in volatile metabolite production, shifting from production of earthy or musty volatile compounds (e.g., geosmin) to fatty and cheesy volatiles (e.g., 2-nonanone, 2-undecanone). RNA sequencing demonstrated a significant decrease in expression of 356 genes in domesticated strains, with an enrichment of many secondary metabolite production pathways in these downregulated genes. By manipulating the presence of neighboring microbial species and overall resource availability, we demonstrate that the limited competition and high nutrient availability of the cheese environment promote rapid trait evolution of Penicillium molds.IMPORTANCE Industrial cultures of filamentous fungi are used to add unique aesthetics and flavors to cheeses and other microbial foods. How these microbes adapted to live in food environments is generally unknown as most microbial domestication is unintentional. Our work demonstrates that wild molds closely related to the starter culture Penicillium camemberti can readily lose traits and quickly shift toward producing desirable aroma compounds. In addition to experimentally demonstrating a putative domestication pathway for P. camemberti, our work suggests that wild Penicillium isolates could be rapidly domesticated to produce new flavors and aesthetics in fermented foods.
Collapse
Affiliation(s)
- Ina Bodinaku
- Tufts University, Department of Biology, Medford, Massachusetts, USA
| | - Jason Shaffer
- Tufts University, Department of Biology, Medford, Massachusetts, USA
| | - Allison B Connors
- Tufts University, Department of Chemistry, Medford, Massachusetts, USA
| | - Jacob L Steenwyk
- Vanderbilt University, Department of Biological Sciences, Nashville, Tennessee, USA
| | | | - Erik K Kastman
- Tufts University, Department of Biology, Medford, Massachusetts, USA
| | - Antonis Rokas
- Vanderbilt University, Department of Biological Sciences, Nashville, Tennessee, USA
| | - Albert Robbat
- Tufts University, Department of Chemistry, Medford, Massachusetts, USA
- Tufts University Sensory and Science Center, Medford, Massachusetts, USA
| | - Benjamin E Wolfe
- Tufts University, Department of Biology, Medford, Massachusetts, USA
- Tufts University Sensory and Science Center, Medford, Massachusetts, USA
| |
Collapse
|
39
|
Boto L, Pineda M, Pineda R. Potential impacts of horizontal gene transfer on human health and physiology and how anthropogenic activity can affect it. FEBS J 2019; 286:3959-3967. [PMID: 31495055 DOI: 10.1111/febs.15054] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/01/2019] [Accepted: 09/03/2019] [Indexed: 12/19/2022]
Abstract
Horizontal gene transfer (HGT) is widespread among prokaryotes driving their evolution. In this paper, we review the potential impact in humans of the HGT between prokaryotes living in close association with humans in two scenarios: horizontal transfer in human microbiomes and transfer between microbes living in human managed environments. Although our vision is focused on the possible impact of these transfers in the propagation of antibiotic resistance genes or pathogenicity determinants, we also discuss possible human physiological adaptations via gene transfer between resident and occasional bacteria in the human microbiome.
Collapse
Affiliation(s)
- Luis Boto
- Departamento DE Biodiversidad y Biologia Evolutiva, Museo Nacional de Ciencias Naturales (CSIC), Madrid, Spain
| | - Manuel Pineda
- Grupo Fisiologia Molecular y Biotecnologia de Plantas, Universidad dE Cordoba, Spain
| | - Rafael Pineda
- Instituto Maimonides de Investigacion Biomedica de Cordoba, Spain.,Departamento de Biologia Celular, Fisiologia e Inmunologia, Universidad de Cordoba, Spain
| |
Collapse
|
40
|
Transposon-Mediated Horizontal Transfer of the Host-Specific Virulence Protein ToxA between Three Fungal Wheat Pathogens. mBio 2019; 10:mBio.01515-19. [PMID: 31506307 PMCID: PMC6737239 DOI: 10.1128/mbio.01515-19] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
This work dissects the tripartite horizontal transfer of ToxA, a gene that has a direct negative impact on global wheat yields. Defining the extent of horizontally transferred DNA is important because it can provide clues to the mechanisms that facilitate HGT. Our analysis of ToxA and its surrounding 14 kb suggests that this gene was horizontally transferred in two independent events, with one event likely facilitated by a type II DNA transposon. These horizontal transfer events are now in various processes of decay in each species due to the repeated insertion of new transposons and subsequent rounds of targeted mutation by a fungal genome defense mechanism known as repeat induced point mutation. This work highlights the role that HGT plays in the evolution of host adaptation in eukaryotic pathogens. It also increases the growing body of evidence indicating that transposons facilitate adaptive HGT events between fungi present in similar environments and hosts. Most known examples of horizontal gene transfer (HGT) between eukaryotes are ancient. These events are identified primarily using phylogenetic methods on coding regions alone. Only rarely are there examples of HGT where noncoding DNA is also reported. The gene encoding the wheat virulence protein ToxA and the surrounding 14 kb is one of these rare examples. ToxA has been horizontally transferred between three fungal wheat pathogens (Parastagonospora nodorum, Pyrenophora tritici-repentis, and Bipolaris sorokiniana) as part of a conserved ∼14 kb element which contains coding and noncoding regions. Here we used long-read sequencing to define the extent of HGT between these three fungal species. Construction of near-chromosomal-level assemblies enabled identification of terminal inverted repeats on either end of the 14 kb region, typical of a type II DNA transposon. This is the first description of ToxA with complete transposon features, which we call ToxhAT. In all three species, ToxhAT resides in a large (140-to-250 kb) transposon-rich genomic island which is absent in isolates that do not carry the gene (annotated here as toxa−). We demonstrate that the horizontal transfer of ToxhAT between P. tritici-repentis and P. nodorum occurred as part of a large (∼80 kb) HGT which is now undergoing extensive decay. In B. sorokiniana, in contrast, ToxhAT and its resident genomic island are mobile within the genome. Together, these data provide insight into the noncoding regions that facilitate HGT between eukaryotes and into the genomic processes which mask the extent of HGT between these species.
Collapse
|
41
|
May A, Narayanan S, Alcock J, Varsani A, Maley C, Aktipis A. Kombucha: a novel model system for cooperation and conflict in a complex multi-species microbial ecosystem. PeerJ 2019; 7:e7565. [PMID: 31534844 PMCID: PMC6730531 DOI: 10.7717/peerj.7565] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 07/29/2019] [Indexed: 01/02/2023] Open
Abstract
Kombucha, a fermented tea beverage with an acidic and effervescent taste, is composed of a multispecies microbial ecosystem with complex interactions that are characterized by both cooperation and conflict. In kombucha, a complex community of bacteria and yeast initiates the fermentation of a starter tea (usually black or green tea with sugar), producing a biofilm that covers the liquid over several weeks. This happens through several fermentative phases that are characterized by cooperation and competition among the microbes within the kombucha solution. Yeast produce invertase as a public good that enables both yeast and bacteria to metabolize sugars. Bacteria produce a surface biofilm which may act as a public good providing protection from invaders, storage for resources, and greater access to oxygen for microbes embedded within it. The ethanol and acid produced during the fermentative process (by yeast and bacteria, respectively) may also help to protect the system from invasion by microbial competitors from the environment. Thus, kombucha can serve as a model system for addressing important questions about the evolution of cooperation and conflict in diverse multispecies systems. Further, it has the potential to be artificially selected to specialize it for particular human uses, including the development of antimicrobial ecosystems and novel materials. Finally, kombucha is easily-propagated, non-toxic, and inexpensive, making it an excellent system for scientific inquiry and citizen science.
Collapse
Affiliation(s)
- Alexander May
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
- Department of Psychology, Arizona State University, Tempe, AZ, USA
| | - Shrinath Narayanan
- The Biodesign Center for Biocomputing, Security and Society, Arizona State University, Tempe, AZ, USA
| | - Joe Alcock
- University of New Mexico, Albuquerque, NM, USA
| | - Arvind Varsani
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA
- Structural Biology Research Unit, Department of Clinical Laboratory Sciences, University of Cape Town, Cape Town, South Africa
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA
| | - Carlo Maley
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
- The Biodesign Center for Biocomputing, Security and Society, Arizona State University, Tempe, AZ, USA
| | - Athena Aktipis
- Department of Psychology, Arizona State University, Tempe, AZ, USA
- The Biodesign Center for Biocomputing, Security and Society, Arizona State University, Tempe, AZ, USA
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
42
|
Li Z, Bock R. Rapid functional activation of a horizontally transferred eukaryotic gene in a bacterial genome in the absence of selection. Nucleic Acids Res 2019; 47:6351-6359. [PMID: 31106341 PMCID: PMC6614815 DOI: 10.1093/nar/gkz370] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/07/2019] [Accepted: 04/30/2019] [Indexed: 12/02/2022] Open
Abstract
Horizontal gene transfer has occurred between organisms of all domains of life and contributed substantially to genome evolution in both prokaryotes and eukaryotes. Phylogenetic evidence suggests that eukaryotic genes horizontally transferred to bacteria provided useful new gene functions that improved metabolic plasticity and facilitated adaptation to new environments. How these eukaryotic genes evolved into functional bacterial genes is not known. Here, we have conducted a genetic screen to identify the mechanisms involved in functional activation of a eukaryotic gene after its transfer into a bacterial genome. We integrated a eukaryotic selectable marker gene cassette driven by expression elements from the red alga Porphyridium purpureum into the genome of Escherichia coli. Following growth under non-selective conditions, gene activation events were indentified by antibiotic selection. We show that gene activation in the bacterial recipient occurs at high frequency and involves two major types of spontaneous mutations: deletion and gene amplification. We further show that both mechanisms result in promoter capture and are frequently triggered by microhomology-mediated recombination. Our data suggest that horizontally transferred genes have a high probability of acquiring functionality, resulting in their maintenance if they confer a selective advantage.
Collapse
Affiliation(s)
- Zhichao Li
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Ralph Bock
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| |
Collapse
|
43
|
|
44
|
Comparative Transcriptome Analysis Shows Conserved Metabolic Regulation during Production of Secondary Metabolites in Filamentous Fungi. mSystems 2019; 4:mSystems00012-19. [PMID: 31020039 PMCID: PMC6469955 DOI: 10.1128/msystems.00012-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 03/16/2019] [Indexed: 01/16/2023] Open
Abstract
Filamentous fungi possess great potential as sources of medicinal bioactive compounds, such as antibiotics, but efficient production is hampered by a limited understanding of how their metabolism is regulated. We investigated the metabolism of six secondary metabolite-producing fungi of the Penicillium genus during nutrient depletion in the stationary phase of batch fermentations and assessed conserved metabolic responses across species using genome-wide transcriptional profiling. A coexpression analysis revealed that expression of biosynthetic genes correlates with expression of genes associated with pathways responsible for the generation of precursor metabolites for secondary metabolism. Our results highlight the main metabolic routes for the supply of precursors for secondary metabolism and suggest that the regulation of fungal metabolism is tailored to meet the demands for secondary metabolite production. These findings can aid in identifying fungal species that are optimized for the production of specific secondary metabolites and in designing metabolic engineering strategies to develop high-yielding fungal cell factories for production of secondary metabolites. IMPORTANCE Secondary metabolites are a major source of pharmaceuticals, especially antibiotics. However, the development of efficient processes of production of secondary metabolites has proved troublesome due to a limited understanding of the metabolic regulations governing secondary metabolism. By analyzing the conservation in gene expression across secondary metabolite-producing fungal species, we identified a metabolic signature that links primary and secondary metabolism and that demonstrates that fungal metabolism is tailored for the efficient production of secondary metabolites. The insight that we provide can be used to develop high-yielding fungal cell factories that are optimized for the production of specific secondary metabolites of pharmaceutical interest.
Collapse
|
45
|
Geisen R, Schmidt-Heydt M, Touhami N, Himmelsbach A. New aspects of ochratoxin A and citrinin biosynthesis in Penicillium. Curr Opin Food Sci 2018. [DOI: 10.1016/j.cofs.2018.04.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
46
|
Ergot Alkaloid Synthesis Capacity of Penicillium camemberti. Appl Environ Microbiol 2018; 84:AEM.01583-18. [PMID: 30076193 DOI: 10.1128/aem.01583-18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 07/26/2018] [Indexed: 11/20/2022] Open
Abstract
Ergot alkaloids are specialized fungal metabolites with potent biological activities. They are encoded by well-characterized gene clusters in the genomes of producing fungi. Penicillium camemberti plays a major role in the ripening of Brie and Camembert cheeses. The P. camemberti genome contains a cluster of five genes shown in other fungi to be required for synthesis of the important ergot alkaloid intermediate chanoclavine-I aldehyde and two additional genes (easH and easQ) that may control modification of chanoclavine-I aldehyde into other ergot alkaloids. We analyzed samples of Brie and Camembert cheeses, as well as cultures of P. camemberti, and did not detect chanoclavine-I aldehyde or its derivatives. To create a functioning facsimile of the P. camembertieas cluster, we expressed P. camemberti easH and easQ in a chanoclavine-I aldehyde-accumulating easA knockout mutant of Neosartorya fumigata The easH-easQ-engineered N. fumigata strain accumulated a pair of compounds of m/z 269.1288 in positive-mode liquid chromatography-mass spectrometry (LC-MS). The analytes fragmented in a manner typical of the stereoisomeric ergot alkaloids rugulovasine A and B, and the related rugulovasine producer Penicillium biforme accumulated the same isomeric pair of analytes. The P. camemberti eas genes were transcribed in culture, but comparison of the P. camemberti eas cluster with the functional cluster from P. biforme indicated 11 polymorphisms. Whereas other P. camembertieas genes functioned when expressed in N. fumigata, P. camembertieasC did not restore ergot alkaloids when expressed in an easC mutant. The data indicate that P. camemberti formerly had the capacity to produce the ergot alkaloids rugulovasine A and B.IMPORTANCE The presence of ergot alkaloid synthesis genes in the genome of Penicillium camemberti is significant, because the fungus is widely consumed in Brie and Camembert cheeses. Our results show that, although the fungus has several functional genes from the ergot alkaloid pathway, it produces only an early pathway intermediate in culture and does not produce ergot alkaloids in cheese. Penicillium biforme, a close relative of P. camemberti, contains a similar but fully functional set of ergot alkaloid synthesis genes and produces ergot alkaloids chanoclavine-I, chanoclavine-I aldehyde, and rugulovasine A and B. Our reconstruction of the P. camemberti pathway in the model fungus Neosartorya fumigata indicated that P. camemberti formerly had the capacity to produce these same ergot alkaloids. Neither P. camemberti nor P. biforme produced ergot alkaloids in cheese, indicating that nutritionally driven gene regulation prevents these fungi from producing ergot alkaloids in a dairy environment.
Collapse
|
47
|
Feurtey A, Stukenbrock EH. Interspecific Gene Exchange as a Driver of Adaptive Evolution in Fungi. Annu Rev Microbiol 2018; 72:377-398. [DOI: 10.1146/annurev-micro-090817-062753] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Throughout evolutionary history in the kingdom Fungi, taxa have exchanged genetic information among species, as revealed in particular by analyses of genome sequences. In fungi, hybridization can occur by sexual mating or by fusion of vegetative structures giving rise to new species or leaving traces of introgression in the genome. Furthermore, gene exchange can occur by horizontal gene transfer between species and can even include organisms outside the kingdom Fungi. In several cases, interspecific gene exchange has been instrumental in rapid adaptive evolution of fungal species and has notably played a role in the emergence of new pathogens. Here we summarize mechanisms and examples of gene exchange in fungi with a particular focus on the genomic context. We emphasize the need for and potential of applying population genetic approaches to better understand the processes and the impact of interspecific gene exchange in rapid adaptive evolution and species diversification. The broad occurrence of gene exchange among fungal species challenges our species concepts in the kingdom Fungi.
Collapse
Affiliation(s)
- Alice Feurtey
- Environmental Genomics, Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany;,
| | - Eva H. Stukenbrock
- Environmental Genomics, Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany;,
- Environmental Genomics, Christian-Albrechts University of Kiel, 24118 Kiel, Germany
| |
Collapse
|
48
|
Leger MM, Eme L, Stairs CW, Roger AJ. Demystifying Eukaryote Lateral Gene Transfer (Response to Martin 2017 DOI: 10.1002/bies.201700115). Bioessays 2018; 40:e1700242. [PMID: 29543982 DOI: 10.1002/bies.201700242] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 02/06/2018] [Indexed: 12/28/2022]
Abstract
In a recent BioEssays paper [W. F. Martin, BioEssays 2017, 39, 1700115], William Martin sharply criticizes evolutionary interpretations that involve lateral gene transfer (LGT) into eukaryotic genomes. Most published examples of LGTs in eukaryotes, he suggests, are in fact contaminants, ancestral genes that have been lost from other extant lineages, or the result of artefactual phylogenetic inferences. Martin argues that, except for transfers that occurred from endosymbiotic organelles, eukaryote LGT is insignificant. Here, in reviewing this field, we seek to correct some of the misconceptions presented therein with regard to the evidence for LGT in eukaryotes.
Collapse
Affiliation(s)
- Michelle M Leger
- Institute of Evolutionary Biology (CSIC-UPF), Pg. Marítim de la Barceloneta, Barcelona, ES 08003, Spain
| | - Laura Eme
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Box 596, Uppsala, SE 751 25, Sweden
| | - Courtney W Stairs
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Box 596, Uppsala, SE 751 25, Sweden
| | - Andrew J Roger
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Department of Biochemistry and Molecular Biology, Dalhousie University, P.O. Box 15000, Halifax, CAN B3H 4R2, Nova Scotia, Canada
| |
Collapse
|
49
|
Gonçalves C, Wisecaver JH, Kominek J, Oom MS, Leandro MJ, Shen XX, Opulente DA, Zhou X, Peris D, Kurtzman CP, Hittinger CT, Rokas A, Gonçalves P. Evidence for loss and reacquisition of alcoholic fermentation in a fructophilic yeast lineage. eLife 2018; 7:33034. [PMID: 29648535 PMCID: PMC5897096 DOI: 10.7554/elife.33034] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 02/27/2018] [Indexed: 11/13/2022] Open
Abstract
Fructophily is a rare trait that consists of the preference for fructose over other carbon sources. Here, we show that in a yeast lineage (the Wickerhamiella/Starmerella, W/S clade) comprised of fructophilic species thriving in the high-sugar floral niche, the acquisition of fructophily is concurrent with a wider remodeling of central carbon metabolism. Coupling comparative genomics with biochemical and genetic approaches, we gathered ample evidence for the loss of alcoholic fermentation in an ancestor of the W/S clade and subsequent reinstatement through either horizontal acquisition of homologous bacterial genes or modification of a pre-existing yeast gene. An enzyme required for sucrose assimilation was also acquired from bacteria, suggesting that the genetic novelties identified in the W/S clade may be related to adaptation to the high-sugar environment. This work shows how even central carbon metabolism can be remodeled by a surge of HGT events. Cells build their components, such as the molecular machinery that helps them obtain energy from their environment, by following the instructions contained in genes. This genetic information is usually transferred from parents to offspring. Over the course of several generations, genes can accumulate small changes and the molecules they code for can acquire new roles: yet, this process is normally slow. However, certain organisms can also obtain completely new genes by ‘stealing’ them from other species. For example, yeasts, such as the ones used to make bread and beer, can take genes from nearby bacteria. This ‘horizontal gene transfer’ helps organisms to rapidly gain new characteristics, which is particularly useful if the environment changes quickly. One way that yeasts get the energy they need is by breaking down sugars through a process called alcoholic fermentation. To do this, most yeast species prefer to use a sugar called glucose, but a small group of ‘fructophilic’ species instead favors a type of sugar known as fructose. Scientists do not know exactly how fructophilic yeasts came to be, but there is some evidence horizontal gene transfers may have been involved in the process. Now, Gonçalves et al. have compared the genetic material of fructophilic yeasts with that of other groups of yeasts . Comparing genetic material helps scientists identify similarities and differences between species, and gives clues about why specific genetic features first evolved. The experiments show that, early in their history, fructophilic yeasts lost the genes that allowed them to do alcoholic fermentation, probably since they could obtain energy in a different way. However, at a later point in time, these yeasts had to adapt to survive in flower nectar, an environment rich in sugar. They then favored fructose as their source of energy, possibly because this sugar can compensate more effectively for the absence of alcoholic fermentation. Later, the yeasts acquired a gene from nearby bacteria, which allowed them to do alcoholic fermentation again: this improved their ability to use the other sugars present in flower nectars. When obtaining energy, yeasts and other organisms produce substances that are relevant to industry. Studying natural processes of evolution can help scientists understand how organisms can change the way they get their energy and adapt to new challenges. In turn, this helps to engineer yeasts into ‘cell factories’ that produce valuable chemicals in environmentally friendly and cost-effective ways.
Collapse
Affiliation(s)
- Carla Gonçalves
- UCIBIO-REQUIMTE, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Jennifer H Wisecaver
- Department of Biological Sciences, Vanderbilt University, Nashville, United States.,Department of Biochemistry, Purdue Center for Plant Biology, Purdue University, West Lafayette, United States
| | - Jacek Kominek
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, United States.,DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, United States.,J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, United States.,Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, United States
| | - Madalena Salema Oom
- UCIBIO-REQUIMTE, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal.,Centro de Investigação Interdisciplinar Egas Moniz, Instituto Universitário Egas Moniz, Caparica, Portugal
| | - Maria José Leandro
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, Portugal.,LNEG - Laboratório Nacional de Energia e Geologia, Unidade de Bioenergia (UB), Lisboa, Portugal
| | - Xing-Xing Shen
- Department of Biological Sciences, Vanderbilt University, Nashville, United States
| | - Dana A Opulente
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, United States.,DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, United States.,J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, United States.,Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, United States
| | - Xiaofan Zhou
- Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - David Peris
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, United States.,DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, United States.,J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, United States.,Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, United States.,Department of Food Biotechnology, Institute of Agrochemistry and Food Technology (IATA), CSIC, Valencia, Spain
| | - Cletus P Kurtzman
- Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, U.S. Department of Agriculture, Peoria, United States
| | - Chris Todd Hittinger
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, United States.,DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, United States.,J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, United States.,Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, United States
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, United States
| | - Paula Gonçalves
- UCIBIO-REQUIMTE, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| |
Collapse
|
50
|
Hartmann FE, Rodríguez de la Vega RC, Brandenburg JT, Carpentier F, Giraud T. Gene Presence-Absence Polymorphism in Castrating Anther-Smut Fungi: Recent Gene Gains and Phylogeographic Structure. Genome Biol Evol 2018; 10:1298-1314. [PMID: 29722826 PMCID: PMC5967549 DOI: 10.1093/gbe/evy089] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2018] [Indexed: 12/14/2022] Open
Abstract
Gene presence-absence polymorphisms segregating within species are a significant source of genetic variation but have been little investigated to date in natural populations. In plant pathogens, the gain or loss of genes encoding proteins interacting directly with the host, such as secreted proteins, probably plays an important role in coevolution and local adaptation. We investigated gene presence-absence polymorphism in populations of two closely related species of castrating anther-smut fungi, Microbotryum lychnidis-dioicae (MvSl) and M. silenes-dioicae (MvSd), from across Europe, on the basis of Illumina genome sequencing data and high-quality genome references. We observed presence-absence polymorphism for 186 autosomal genes (2% of all genes) in MvSl, and only 51 autosomal genes in MvSd. Distinct genes displayed presence-absence polymorphism in the two species. Genes displaying presence-absence polymorphism were frequently located in subtelomeric and centromeric regions and close to repetitive elements, and comparison with outgroups indicated that most were present in a single species, being recently acquired through duplications in multiple-gene families. Gene presence-absence polymorphism in MvSl showed a phylogeographic structure corresponding to clusters detected based on SNPs. In addition, gene absence alleles were rare within species and skewed toward low-frequency variants. These findings are consistent with a deleterious or neutral effect for most gene presence-absence polymorphism. Some of the observed gene loss and gain events may however be adaptive, as suggested by the putative functions of the corresponding encoded proteins (e.g., secreted proteins) or their localization within previously identified selective sweeps. The adaptive roles in plant and anther-smut fungi interactions of candidate genes however need to be experimentally tested in future studies.
Collapse
Affiliation(s)
- Fanny E Hartmann
- Department Génétique et Ecologie Evolutives, Ecologie Systématique Evolution, Bâtiment 360, Univ. Paris-Sud, AgroParisTech, CNRS, Université Paris-Saclay, Orsay, France
| | - Ricardo C Rodríguez de la Vega
- Department Génétique et Ecologie Evolutives, Ecologie Systématique Evolution, Bâtiment 360, Univ. Paris-Sud, AgroParisTech, CNRS, Université Paris-Saclay, Orsay, France
| | - Jean-Tristan Brandenburg
- Department Génétique et Ecologie Evolutives, Ecologie Systématique Evolution, Bâtiment 360, Univ. Paris-Sud, AgroParisTech, CNRS, Université Paris-Saclay, Orsay, France
| | - Fantin Carpentier
- Department Génétique et Ecologie Evolutives, Ecologie Systématique Evolution, Bâtiment 360, Univ. Paris-Sud, AgroParisTech, CNRS, Université Paris-Saclay, Orsay, France
| | - Tatiana Giraud
- Department Génétique et Ecologie Evolutives, Ecologie Systématique Evolution, Bâtiment 360, Univ. Paris-Sud, AgroParisTech, CNRS, Université Paris-Saclay, Orsay, France
| |
Collapse
|